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Abstract

Many steel products are produced in hot or cold rolling lines with multiple stands. The

steel material becomes thinner after being rolled at each stand. Steady-state parameters for

controlling the rolling line need to be set so as to satisfy the final product specifications and

minimize the total energy consumption. This paper develops a generalized geometric pro-

gramming model for this setting problem and proposes a global method for solving it. The

∗To whom correspondence should be addressed
†Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of

Education, China
‡Institute of Industrial & Systems Engineering, Northeastern University, Shenyang, 110819, China
¶School of Business and Economics, Loughborough University, Leicestershire LE11 3TU, United Kingdom
§Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry, Northeastern

University, Shenyang 110819, China
‖Liaoning Key Laboratory of Manufacturing System and Logistics, Northeastern University, Shenyang 110819,

China

1

This paper was published in Industrial and Engineering Chemistry Research, and can be cited as
Tang L, Tang L, Liu J and Cheng C (2019) Global method for a class of operation optimization problem in steel rolling 
systems, Industrial & Engineering Chemistry Research, 58(14), pp.5552-5566.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288350912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


model can be expressed with a linear objective function and a set of constraints including non-

convex ones. Through constructing lower bounds of some components, the constraints can

be converted to convex ones approximately. A sequential approximation method is proposed

in a gradually reduced interval to improve accuracy and efficiency. However, the resulting

convex programming model in each iteration is still complicated. To reduce the power, it is

transformed into a second-order cone programming (SOCP) model and solved using alternat-

ing direction method of multipliers(ADMM). The effectiveness of the global method is tested

using real data from a hot-rolling line with seven stands. The results demonstrate that the

proposed global method solves the problem effectively and reduces the energy consumption.

1. INTRODUCTION

As with the chemical industry, iron and steel production is a process industry,1–5 but it has its own

characteristics, such as a production process with high temperature and high energy consump-

tion,6,7 production scheduling with complicated planning,8,9 and different products with different

phase changes and technologies.10–12 Customer demands for small batches and varieties of prod-

ucts have been increasing recently. The product quality requirements in terms of strip thickness,

strip crown, and strip flatness are also higher than ever. Those problems bring some challenges for

traditional production mode in iron and steel enterprises. Steel rolling process as shown in Figure 1

is a key stage of steel production in determining product quality and affecting energy consumption.

A hot or cold rolling line consists of multiple rolling stands. The steel material gets thinner

after being extruded at each stand. Given the equipment of the production line, its efficiency and

energy consumption as well as the product quality depend largely on how the line is controlled. The

control of a rolling line is realized by load distribution which sets steady-state control parameters

and an automatic gauge control(AGC) system13 which dynamically controls the equipment based

on the setting parameters. Figure 2 shows the relationship between them. Load distribution is

an operation optimization problem (OOP). Taking product (steel strip) and plant data as input,
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Figure 1: Steel rolling process.
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Figure 2: Relationship graph between load distribution and AGC.

the OOP determines the exit thickness of each stand which can be translated to control parameter

settings accordingly. As each customer demand is different, the OOP needs to be solved for each

production batch. Moreover, before the actual production of each batch, the line needs some trial

runs on sample materials until achieving the required rolling effect. OOP is resolved on the basis

of the result after each trial run. Effective and efficient solution of the OOP can reduce the number

of trials needed and save the total time and materials of the trial process.

There have been some approaches reported in the literature for solving the load distribution

problem. Some researchers designed control parameters without considering optimal performance

criteria. Lu14 modeled a set of nonlinear equations assuming relative motor power at different

stands and proposed a balance iteration method to solve them without calculating inverse of Ja-
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cobian matrix in each iteration. Li15 presented an improved Newton–Raphson algorithm to solve

similar nonlinear equations, which could deal with singular coefficient matrix. The method is not

sensitive to the initial value. Many others considered certain objective and modeled the optimiza-

tion problem based on the relationships among the variables. These models are nonlinear noncon-

vex optimization problems and corresponding methods had been adopted to solve them. Zhang16

introduced a dynamic programming algorithm to solve the load distribution problem, where stand-

s were seen as stages. The objective was to minimize the deviation of the rolling crown from a

set target. Ozsoy17 introduced a sequence quadratic programming method to solve the load dis-

tribution problem in a hot-rolling line so as to minimize cost of time and energy. Yao et al.18

proposed an improved differential evolution algorithm for a three-stage multiobjective OOP in hot

strip rolling. Chen et al.7 presented a hybrid self-adaptive strategy to improve genetic algorithm for

solving the OOP in hot rolling production process. The aforementioned methods ignore some in-

herent structural properties of OOP such as the convexity so cannot get the global optimal solution.

These structural properties could be used for developing methods to improve the solution speed

and obtain the convex optimization problem.19 Recently, geometric programming (GP) modeling

for expressing a practical problem has been proposed.20 This method provides some tricks to help

transform a problem into GP or generalized geometric programming(GGP) for the problems with

complex posynomial. Because GP has a special form, GP modeling is a powerful optimization

technique and has been widely used for solving a variety of nonlinear optimization problems in

chemical engineering,21–25 condenser design,26 circuit design,27 and a number of other areas.28

Hershenson et al.29 described a new method for integrated circuit design via geometric program-

ming. Singh et al.30 presented a convex optimization method for the gate sizing problem under

the worst case, which could be transformed into conventional geometric programming problems.

Several other practical problems31–33 were formulated as GGP, in which posynomial functions in

the objective and constraints were replaced with signomial.

However, GGP is significantly harder to solve than GP since it may have nonpositive terms.

Fortunately, GGP has inherent convexity without the exponential transformation or convex relax-
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ation. Among the current methods, Tsai et al.34 presented two convex conditions and several

conversion rules to identify trivariate monomials. Gounaris and Floudas35 have established a way

to infer the convexity of multivariate functions that can be expressed as products of univariate

functions satisfying a set of sufficient conditions. Floudas and Lu36 presented a convex relax-

ation to deal with the signomial constraints. Lu37 proposed a beta method for solving GGP, which

maximally improved the efficiency of convexification. Nonconvex terms can be approximated as

piece-wise linear functions. According to the definition of special ordered set (SOS), the piece-

wise function can be transformed into linear functions by introducing integer variables. Thus, the

original problem can be converted to a mixed integer convex programming problem.19,37–39 How-

ever, the accuracy of the linear approximation depends on the density of break points. The more

break points there are, the more integer variables will be needed. This leads to an increase in the

number of additional variables and constraints. The computational difficulty increases with the

scale of the approximate problem. Hence, it is necessary to develop methods to avoid using integer

variables.

Motivated by convex optimization techniques in the aforementioned papers, we present a novel

convex approximate method to get optimal control variables of the OOP for rolling load distribu-

tion. The main differences between this paper and previous papers are as follows.

(a)Different from the traditional nonlinear modeling method, the convex modeling of OOP is

proposed with structural characteristics.

(b)Unlike piece-wise linear method, the underestimate of nonconvex term can be approximated

as a convex function by using the lower and upper limits of some variables. The approximate

convex model can be also transformed into a SOCP, which can be solved in polynomial time.

(c) To improve the accuracy of approximate model, we use monotonicity of the constraints

to develop the sequential approximation method, in which the variable limits can be tightened in

iterations and more precise approximation functions can be obtained on the narrower interval.

The remaining parts of this paper are organized as follows. In the next section, we present

the OOP model for rolling load distribution to minimize energy consumption, analyze its struc-
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tural properties, and transform it to SOCP. Section 3 proposes a global method based on ADMM

framework to solve the OOP. Section 4 presents experiments testing the methods on 10 set of prac-

tical data each representing a production batch in a hot rolling line. The final section gives some

conclusions.

2. MODELING AND TRANSFORMATION

2.0 Model of OOP. Operation optimization problems are a class of parameter setting problem-

s commonly seen in process industry, especially steel rolling systems. To meet production and

quality requirements, the problems are modeled considering some operation conditions in the ob-

jective function and constraints. These conditions are such complex that may be reducible to a

mathematical model by mechanism process.43

A. Deformation Model. The material thickness depends on the gap between the rollers at each

stand. For any stand i, the gap is controlled by the rolling force, torque and power models.

Pi = BQiKili (1a)

Mi = 2Pi
√

Ri(hi−1−hi)φ (1b)

Ni =
2π×103

60×102
niMi (1c)

where B is the slab width under the assumption that it remains a constant in a finishing mill, Qi is

the stress state coefficient, Ki is the deformation-resistance coefficient, li is deformation length, Ri

is the work-roller radius, hi is the exit thickness, φ is the arm coefficient, and ni is the work-roller

circumferential velocity. The definitions of Qi and Ki are given as follows:

Qi = a0 +a1

√
Ri(hi−1−hi)

hi−1 +hi
(2a)

Ki = 1.15a3 exp(a4Ti +a5)(
µi

10
)a6Ti+a7 [a8(

γi

0.4
)a2− (a8−1)(

γi

0.4
)] (2b)
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where Ti is the rolling temperature, µi is the deformation velocity, γi is the deformation degree

which is calculated by lnγi = a9+a10 lnεi, εi is the relative reduction, and a0–a10 are the regression

coefficients.

B. Temperature Model. The temperature of steel strip is an important parameter in rolling

processes, which has a directly influence on the deformation and surface quality of the slab. The

slab temperature drop model at each stand is given as follows:

Ti = Tw +(Tf −Tw)exp(−KT
∑

i
j=1 L j

hN vN
) (3)

where Tw is the cooling water temperature, L j is the distance of two stands, vN is the slab exit

velocity, KT is the cooling coefficient, and Tf is the radiation temperature.7

The temperature measurement instrument is installed at both ends of a finishing mill. On the

basis of data obtained by the thermometer, KT is evaluated as follows:

KT =
Tenter−Tout

Tenter
× hN vN

L
(4)

where Tenter is the temperature before entering the finishing mill, Tout is the temperature after

leaving the finishing mill, and L is the total length of the finishing mill.

C. Two Velocity Models. On the basis of mass conservation law, the slab velocity can be written

as follows:

vi =
vN hN

hi
(5)

The slab deformation velocity is related to the deformation degree in a unit time, which can be

expressed as

µi =
vi√

Ri(hi−1−hi)
γi (6)

D. Shape Model. The crown is a basic index for maintaining the flatness of the strip shape.

Assuming that some factors (e.g., bending roll force, hot roll type) can be ignored, the crown
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model can be simplified as the following expression.

CRi =
Pi

KP
(7)

where KP is the lateral stiffness.

It can be seen that the models are functions of the exit thickness at each stand. So, the exit

thicknesses are defined as the decision variables in the rolling process. Because energy consump-

tion is an important performance index in steel production,7,40 OOP determines an optimal set of

the rolling thickness of each stand that minimizes the total rolling energy consumption, subject to

meeting the following constraints.

• The slab can successfully enter the first stand to ensure the normal production.

• The equipment’s capacity has been brought into full play in middle stands to reach a larger

reduction of the thickness.

• The quality requirement of the strip shape is such that the crown is controlled in the last few

stands.

• The values of operation parameters are not allowed to be greater than the maximum value of

the equipment capacity.

Integrating the mechanism models, the operation optimization problem formulation of N s-
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tands is written as

min
hi

N

∑
i=1

Ni(hi−1,hi) (8)

s.t. δ̄1,iPi+1(hi,hi+1)≤ δ1,iPi(hi−1,hi), i = 1, · · · ,N −1 (9)

δ̄2,iMi+1(hi,hi+1)≤ δ2,iMi(hi−1,hi), i = 1, · · · ,N −1 (10)

δ̄3,iNi+1(hi,hi+1)≤ δ3,iNi(hi−1,hi), i = 1, · · · ,N −1 (11)

δ5,i ≤
CRi+1(hi,hi+1)

hi+1
−CRi(hi−1,hi)

hi
≤ δ4,i, i = ˆN , · · · ,N −1 (12)

0≤ Pi(hi−1,hi)≤ Pimax, i = 1, · · · ,N (13)

0≤Mi(hi−1,hi)≤Mimax, i = 1, · · · ,N (14)

0≤ Ni(hi−1,hi)≤ Nimax, i = 1, · · · ,N (15)

hi−1 ≥ hi > 0, i = 1, · · · ,N (16)

where Pi,Mi,Ni, and CRi are the rolling force, torque, power, and crown mechanism models of hi

and hi−1, respectively. The thickness hi of the ith stand is a decision variable. Pimax,Mimax, and

Nimax are the given maximum rolling force, maximum rolling torque, and maximum power of the

ith stand, respectively. h0 is the original slab thickness before being rolled. hN and CRN are

the required thickness and target crown of the final product. δ are model parameters. Constraints

9-12 are called technological conditions. Constraints 9-11 not only guarantee that the strip can be

easily to bitten into the first stand but also require the stability of the rolling process. Constraint

12 ensures that the shape variation is within the range [δ4,i,δ5,i]. Constraints 13-15 are capacity

constraints of the equipment require that the rolling force, rolling torque, and rolling power of

each stand should not exceed their maximum limits. The decision variables are required to be

positive in constraint 16.

In a practical rolling line, the fact that the value of the crown varies over a small interval is ac-

ceptable for manufacturers. So, we focus on energy consumption in the production process, while

the shape requirements are limited by the constraints. According to slab information, we adjust

the parameters δ to meet product requirement. These in OOP modeling are different from the
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literature.7,40 Moreover, mechanism models are nonlinear mathematical models. The traditional

method can be employed to deal with it, which may lose the structural features of the optimization

problem. So, we hope to find a method to analyze these structure and improve the solution speed.

Fortunately, using well-posed algebraic transformation methods reported by Boyd,20 the OOP

can be transformed into the following GGP form.

(P) :



min y0

s.t. G0(h,y)≤ y0

Gm(h,y)≤ dm, m = 1, · · · ,M

gm(h,y)≤ d̄m,m = 1, · · · ,K

hN ≥ h≥ h0,yu ≥ y≥ yl

where Gm(h,y) = ∑
t

cmt
n
∏
i=1

hγmti
i

n̄
∏
i=1

yη̄mti
i (m = 0,1 · · · ,M) is a nonlinear polynomial function, γmti ∈

R, η̄mti ∈R,cmt ∈R,dm ∈R+ are constants, h0 and hN are given thicknesses, gm(h,y) =∑
j

am jh j+

∑
k

bmkyk is a linear function, am j,bmk, d̄m ∈ R are constants, y = {y0, · · · ,y ˆN } is an intermediate

vector, and yl and yu are the lower and the upper bounds, respectively.

Proposition 0.1 : h∗ ∈ RN −1 is an optimal solution of the (OOP) if and only if there are

positive values for (y∗0,y
∗
1, · · · ,y∗ ˆN

) such that vector (h∗,y∗) is an optimal solution of problem P.

Proof. The objective function value of OOP is nonnegative, thus we first should minimize the

positive independent variable y0 subject to the original constraints and the additional constraint

∑Ni ≤ y0. This is an equivalent transformation.

Let the complex constraints of the (OOP) be denote as Fi+1(h) ≤ Fi(h) for convenience. Ac-

cording to the previous study,42 h is a feasible solution to these constraints of the (OOP) if and

only if there are positive values for y such that the augmented vector (h,y) is a feasible solution to

the constraint Fi+1(h)≤ yi ≤ Fi(h).

Because F(h) is still not a posynomial, we use some tricks20 to deal with the constrain-

t Fī(h) = fī,1(h)
ᾱī,1 + fī,2(h)

ᾱī,2 in different cases of fī, j(h) and ᾱī, j, j = 1,2, ī = i, i+ 1. For the
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left-side inequality, if fi+1, j(h) is a posynomial and ᾱi+1, j ≥ 0, then the inequality fi+1,1(h)ᾱi+1,1 +

fi+1,2(h)ᾱi+1,2 ≤ yi+1,1 can be written as

fi+1,1(h)≤ yi+1,2 (17a)

fi+1,2(h)≤ yi+1,3 (17b)

yᾱi+1,1
i+1,2 + yᾱi+1,2

i+1,3 ≤ yi+1,1 (17c)

When a feasible solution (h,yi+1,1) satisfies fi+1,1(h)ᾱi+1,1 + fi+1,2(h)ᾱi+1,2 ≤ yi+1,1, yi+1,2 = fi+1,1(h)

and yi+1,3 = fi+1,2(h) satisfy the inequalities 17a–17c. Conversely, if h,yi+1,1,yi+1,2 and yi+1,3

satisfy the inequalities 17a–17c, then we get fi+1,1(h)ᾱi+1,1 + fi+1,2(h)ᾱi+1,2 ≤ yᾱi+1,1
i+1,2 + yᾱi+1,2

i+1,3 ≤

yi+1,1, in which f
ᾱi+1, j
i+1, j is an increasing function. If fi+1, j(h) is not posynomial, then the equiv-

alence form of the left-side inequality includes fi+1,1(h) ≤ yi+1,2, fi+1,2(h) ≤ yi+1,3, fi+1,1(h) ≥

yi+1,2, fi+1,2(h)≥ yi+1,3 and yᾱi+1,1
i+1,2 + yᾱi+1,2

i+1,3 ≤ yi+1,1.

The right-side one is yi+1,1 ≤ fi,1(h)ᾱi,1 + fi,2(h)ᾱi,2 , where fi, j(h) is a posynomial and ᾱi, j ≥ 0.

Similarly, this constraint can be equivalent to yi,2 ≤ fi,1(h),yi,3 ≤ fi,2(h),yi+1,1 ≤ yᾱi,1
i,2 + yᾱi,2

i,3 . If

fi, j(h) is not posynomial, then we add two inequations yi,2≥ fi,1(h) and yi,3≥ fi,2(h) to constraints.

Thus, the problem OOP can be equivalent to the problem P and the proof is completed.

Although the nonlinear parts of problem P seem not to have any structure characteristics at

first sight, we may exploit the inherent convexity of Hessian matrix and monotonicity of the block

constraints.

2.1 Structure Characterization. If every monomial is convex, the sum of them is also a

convex function. Hence, our basic approach is to analyze every monomial term. For simplicity, we

use g(x) = ĉ
n
∏
i=1

xαi
i to represent any term in the constraints Gm(h,y), where ĉ ∈ R is an arbitrary

constant, αi ∈ R is an arbitrary exponent and x ∈ Rn is a non-negative variable vector.

Given a twice continuously differentiable function g(x) = ĉ
n
∏
i=1

xαi
i , we have the following re-

sults:37

• Convex property a: when ĉ≥ 0 and n = 1, g(x) is convex on S, if α ≥ 1;
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• Convex property b: when ĉ≥ 0 and n≥ 1, g(x) is convex on S, if αi ≤ 0 for ∀i ∈ I;

• Convex property c: when ĉ ≥ 0 and n ≥ 2, g(x) is convex on S, if α j ≥ 1,αi ≤ 0,∀i ∈

I\{ j},1≤ α1 + · · ·+αn;

• Convex property d: when ĉ≤ 0 and n≥ 1, g(x) is convex on S, if α1 + · · ·+αn ≤ 1 for any

weight αi ≥ 0,∀i ∈ I,

where S = {xi|xi > 0, i ∈ I}, I = {1,2, · · · ,n}.

For our subsequent developments, we will discuss the monotonicity of constraints in P. We first

let

γmi := min{0,γmti, η̄mti|t = 1, · · · ,Tm},m = 0,1, · · · ,M

Next, function Gm(h,y) in the constraint can be reformulated as

Gm(h,y) =

Tm
∑

t=1
cmt

n
∏
i=1

hγmti−γmi
i

n̄
∏
i=1

yη̄mti−γmi
i

n
∏
i=1

h−γmi
i

n̄
∏
i=1

y−γmi
i

,m = 0,1, · · · ,M

where γmti− γmi ≥ 0, η̄mti− γmi ≥ 0,−γmi ≥ 0. Thus, monotonous increasing functions are defined

as G+
m(h,y) = ∑

t∈T+
m

cmt
n
∏
i=1

hγmti−γmi
i

n̄
∏
i=1

yη̄mti−γmi
i (m = 0,1, · · · ,M),

G−0 (h,y) = ∑

t∈T−0

(−c0t)
n
∏
i=1

hγ0ti−γ0i
i

n̄
∏
i=1

yη̄0ti−γ0i
i − y0

n
∏
i=1

h−γ0i
i

n̄
∏
i=1

y−γ0i
i , and

G−m(h,y) = ∑

t∈T−m
(−cmt)

n
∏
i=1

hγmti−γmi
i

n̄
∏
i=1

yη̄mti−γmi
i −dm

n
∏
i=1

h−γmi
i

n̄
∏
i=1

y−γmi
i (m = 1, · · · ,M), where T+

m :=

{i|cim > 0, i = 1, · · · ,Tm},T−m := {i|cim < 0, i = 1, · · · ,Tm}.

The convex conditions and monotonicity of the functions in the constraints are summarized so

that these characteristics can be utilized for efficient problem solution.

2.2 Convexification Strategies for Nonconvex Cases. In the best case, we can get an exact

convex operation optimization problem. When this is not possible, the nonlinear constraints can

be divided into a convex part and a nonconvex part. By constructing the lower bound on some

components of the nonconvex part, the operation optimization problem can be approximated to a
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convex formulation based on the convex conditions.

For the sake of briefness, the nonconvex term can be formulated as f nonc(x) = ĉxα1
1 xα2

2 · · ·xαn
n .

Using variable replacement in f nonc(x), we can have

f conv(x) = ĉxα1
1 xα2

2 · · ·z
γk
k · · ·x

αn
n

xαk
k = zγk

k

where f conv is a convex function, xαk
k − zγk

k = 0 is nonconvex. Because xk = z
γk
αk
k (−1 < γk

αk
≤ 0 or

1≤ γk
αk

) and 0 < lk ≤ xk ≤ uk, we have

lk ≤ z
γk
αk
k ≤ uk,

1
uk
≤ x−1

k ≤
1
lk

(18)

If x−1
k ≥

1
uk
,z

γk
αk
k ≥ lk, then

(z
γk
αk
k − lk)x−1

k ≥
(z

γk
αk
k − lk)

uk
(19)

i.e.

1 = x−1
k z

γk
αk
k ≥

1
uk

z
γk
αk
k + lkx−1

k −
lk
uk

(20)

Similarly, if x−1
k ≤

1
lk
,z

γk
αk
k −uk ≤ 0, the following inequality holds

1−ukx−1
k ≥

1
lk

z
γk
αk
k −

uk

lk
(21)

Multiplying both sides by lk
uk

, we obtain the same inequality as 20. The equality can be relaxed as

an inequality 20, defined as the lower bound of x−1
k z

γk
αk
k . And inequality 20 is a convex constraint.

When 0 < γk
αk

< 1 or γk
αk
≤−1, in the same way we can obtain the convex function as follows:

1≥ lkz
− γk

αk
k +

1
uk

xk−
lk
uk

(22)
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Strategy1 : For all x ∈ [l,u], let

Ieq1 = {k|αk(n−m−1)≤
n−1
∑

i=m+1
αi,k = m+1, · · · ,n−1}

Ieq2 = {k|αk(n−m−1)>
n−1
∑

i=m+1
αi,k = m+1, · · · ,n−1}

|Ieqi| be the number of elements in set Ieqi, i = 1,2, if ĉ > 0, then a term f nonc(x) = ĉxα1
1 xα2

2 · · ·xαn
n

where α1 ≤ ·· · ≤ αm < 0 < αm+1 ≤ ·· · ≤ αn,m < n and 1−
m
∑

i=1
αi < αn can be convexified as

follows: 
f conv(x,z) = ĉ

m
∏
i=1

xαi
i

n−1
∏

k=m+1
zγk

k xαn
n

1
uk

z
γk
αk
k + lkx−1

k −
lk
uk
≤ 1, i f −1 < γk

αk
≤ 0,k = m+1, · · · ,n−1

lkz
− γk

αk
k + 1

uk
xk− lk

uk
≤ 1, i f γk

αk
≤−1,k = m+1, · · · ,n−1

where γk =


(1−

m
∑

i=1
αi−αn)

1
n−m−1 , i f |Ieq1| ≥ |Ieq2|

(1−
m
∑

i=1
αi−αn)

αk
n−1
∑

i=m+1
αi

, otherwise
, k = m+1, · · · ,n−1.

Strategy2 : For all x ∈ [l,u], if ĉ > 0, then a term f nonc(x) = ĉxα1
1 xα2

2 · · ·xαn
n where α1 ≤ ·· · ≤ αm <

0 < αm+1 ≤ ·· · ≤ αn and 1−
m
∑

i=1
αi ≥ αn can be convexified as follows:


f conv(x,z) = ĉ

m
∏
i=1

xαi
i

n−1
∏

k=m+1
zγk

k zγn
n

lkz
1
β

k + 1
uk

xk− lk
uk
≤ 1,k = m+1,m+2, · · · ,n−1,(− 1

β
≤−1)

1
un

z
γn
αn
n + lnx−1

n − ln
un
≤ 1,( γn

αn
≥ 1)

where γk =−αk
β
,k = m+1, · · · ,n−1,γn = 1−

m
∑

i=1
αi−

n−1
∑

k=m+1
γk,0 < β ≤ 1.
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Strategy3 : For all x ∈ [l,u], let

J = { j|
s
∑

j=m+1
α j < 1,m+1≤ s≤ n}

Ieq3 = {k||αk|(n− s+m)≤ ∑
i∈I\J
|αi|,k = 1, · · · ,m,s+1, · · · ,n}

Ieq4 = {k||αk|(n− s+m)> ∑
i∈I\J

αi,k = 1, · · · ,m,s+1, · · · ,n}

and |Ieqi| be the number of elements in set Ieqi, i = 3,4, I = {1,2, · · · ,n} and if ĉ < 0, then a term

f nonc(x) = ĉxα1
1 xα2

2 · · ·xαn
n , where α1 ≤ ·· · ≤ αm < 0 < αm+1 ≤ ·· · ≤ αs ≤ ·· · ≤ αn,m < n and

s
∑

i=m+1
αi < 1, can be convexified as follows:


f conv(x,z) = ĉ ∏

i∈J
xαi

i ∏
k∈I\J

zγk
k

1
uk

z
γk
αk
k + lkx−1

k −
lk
uk
≤ 1, i f −1 < γk

αk
≤ 0,k = 1, · · · ,m,or γk

αk
≥ 1,k = s+1, · · · ,n

lkz
− γk

αk
k + 1

uk
xk− lk

uk
≤ 1, i f γk

αk
≤−1,k = 1, · · · ,m,or 0 < γk

αk
< 1,k = s+1, · · · ,n

where γk =


(1− ∑

i∈J
αi)

1
n−s+m , i f |Ieq3| ≥ |Ieq4| and n 6= s

(1− ∑
i∈J

αi)
|αk|

∑
i∈I\J
|αi| , others

, k = 1, · · · ,m,s+1, · · · ,n.

Strategy4 : For all x ∈ [l,u], let

Ieq5 = {k|n|αk| ≤
n
∑

i=1
|αi|,k = 1, · · · ,n}

Ieq6 = {k|n|αk|>
n
∑

i=1
|αi|,k = 1, · · · ,n}

and |Ieqi| is the number of elements in set Ieqi, i= 5,6, if ĉ< 0, then a term f nonc(x)= ĉxα1
1 xα2

2 · · ·xαn
n

where α1 ≤ ·· · ≤ αm < 0 < αm+1 ≤ ·· · ≤ αn and αm+1 ≥ 1 can be convexified as follows:


f conv(x,z) = ĉ

n
∏

k=1
zγk

k

1
uk

z
γk
αk
k + lkx−1

k −
lk
uk
≤ 1, i f −1 < γk

αk
≤ 0,k = 1, · · · ,m,or γk

αk
≥ 1,k = s+1, · · · ,n

lkz
− γk

αk
k + 1

uk
xk− lk

uk
≤ 1, i f γk

αk
≤−1,k = 1, · · · ,m,or 0 < γk

αk
< 1,k = s+1, · · · ,n
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where γk =


1
n , i f |Ieq5| ≥ |Ieq6|
|αk|
n
∑

i=1
|αi|

, others
,k = 1, · · · ,n.

2.3 Second-Order Cone Programming Formulation. By introducing additional intermediate

variables, the OOP can be transformed into a convex or approximate convex optimization prob-

lem. In general, convex optimization problem can be solved directly using convex optimization

software packages. However, the solution process will be slow with the number of new variables.

The rolling line is a continuous and high speed process. The time allowed to set optimal param-

eters is short for the small batches and varieties of products. A second order cone programming

formulation has a simple structure and can be solved quickly. As an example, the simple constraint

can be cast as a conic quadratic inequality using the following relation.

x̂2 ≤ ŷ⇔‖ (2x̂, ŷ−1) ‖2≤ ŷ+1 (23)

Considering the power α as any rational number, we will give the second-order cone expression of

complex convex function in OOP. Inspired by Alizadeh,41 we get the following theorem.

Theorem 0.1 : (a) If function g(x) = ĉ
n
∏
i=1

xαi
i satisfies convex property a, where α = a

b ,a,b ∈

Z+, and there exists no positive integer d such that a = da′ and b = db′, then g(x)≤ ȳ, for ȳ ≥ 0,

can be transformed to a system of SOC inequalities as

‖ (2w j,u j− v j) ‖2≤ u j + v j, j = 1, · · · ,J

(b) If function g(x) = ĉ
n
∏
i=1

xαi
i satisfies convex property b, where αi =

ai
b ,ai ∈ Z−,b ∈ Z+, i =

1,2, · · · ,n, then g(x)≤ ȳ, for ȳ≥ 0, can be transformed to a system of SOC inequalities as

‖ (2ws,w2s+1−w2s+2) ‖2≤ w2s+1 +w2s+2,s ∈ {J1,J2 · · · ,Jk+1}

where J1 = 0,J j = 2 j−1−1, · · · ,2 j−2, j = 2, · · · ,k+1.

(c) If function g(x)= ĉ
n
∏
i=1

xαi satisfies convex property c, where αi =
ai
b ,ai ∈Z−, i= 1,2, · · · ,n−

16



1,an ∈ Z+,b ∈ Z+, then g(x)≤ ȳ, for ȳ≥ 0, can be transformed to a group of SOC inequalities as

b.

(d) If function g(x) = ĉ
n
∏
i=1

xαi satisfies convex property d, where αi =
ai
b ,ai,b ∈ Z+, i =

1,2, · · · ,n, then ȳ≤−g(x), for ȳ≥ 0, can be transformed to a group of SOC inequalities as b.

Proof. (a) When g(x) = ĉ
n
∏
i=1

xαi
i satisfies convex property a, we have g(x) = ĉxα for ĉ ≥ 0 and

α ≥ 1. If α = 1, then g(x) is a linear function. This case directly adds to the linear constraints

without any transform. Thus, we only discuss the case of α > 1, i.e., a > b≥ 1.

Let 2k < a≤ 2k+1 and
k+1
∑

i=1
2i−1ηi = 2k+1−a, we have

ĉxα ≤ ȳ⇔ ĉbxa ≤ ȳb

⇔ ĉbx2k+1 ≤ ȳbx(2
k+1−a)

⇔ ĉbx2k+1 ≤ ȳ2kβk+1x2kηk+1 ȳ2k−1βkx2k−1ηk · · · ȳ21β2x21η2 ȳ20β1x20η1

(24)

where ηi ∈{(0,1)|
k+1
∑

i=1
2i−1ηi = 2k+1−a},βi ∈{(0,1)|

k+1
∑

i=1
2i−1βi = b} and {k := k|2k < a≤ 2k+1,k ∈ N}.

Because

2k+1 ≥ 2k+1−ηk+12k−ηk2k−1−·· ·−η120 > 2k

we can get ηk+1 = 0.

Introducing the new variables s, the above inequality 24 can be rewritten as



s2
1,1 ≤ xη1

s2
1,2 ≤ ȳβ1

s2
2,1 ≤ s1,1xη2

s2
2,2 ≤ s1,2ȳβ2

...

s2
k,1 ≤ sk−1,1xηk

s2
k,2 ≤ sk−1,2ȳβk

ĉ
1

2k x2 ≤ sk,1sk,2ȳβk+1

⇔


s2

j,1 ≤ s j−1,1xη j , j = 1, · · · ,k

s2
j,2 ≤ s j−1,2ȳβ j , j = 1, · · · ,k

s2
k+1 ≤ sk,1sk,2ȳβk+1

(25)
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where s0,1 = s0,2 = 1,sk+1 = ĉ
b

2k+1 x. Thus, the inequalities 25 except the last one can be transformed

to SOCs like 24.

The following cancellation rules can remove the corresponding inequalities to void redundant

ones when η j or β j is equal to 0.

(1)If the right-hand sides of the j̄th pair inequalities are both univariates in 25, we can combine

them to obtain an inequality of s2
j̄,1 and cancel the inequality of s j̄,2 such that s j̄,2 = 1, in which s2

j̄,1

is less than or equal to multiplication of the univariates.

(2)If s2
j, ĵ
≤ 1, ĵ = 1,2, then let s j, ĵ = 1.

According to the cancellation rules, there must be sk,1 = 1 or sk,2 = 1. Changing the notation,

the above inequalities can be cast as the following system of SOCs:

‖ (2w j,u j− v j) ‖2≤ u j + v j, j = 1, · · · ,J

(b)Because g(x) satisfies convex property b, we have ai ≤ 0, i = 1, · · · ,n and

ĉ
n
∏
i=1

xαi
i ≤ ȳ⇔ ĉb ≤ ȳb

n
∏
i=1

x|ai|
i

⇔ (ĉ
b

2k+1 )2k+1 ≤ ȳb
n
∏
i=1

x|ai|
i 1

2k+1−b−
n
∑

i=1
|ai|

⇔ (ĉ
b

2k+1 )2k+1 ≤ ȳ

k+1
∑

j=1
β j2 j−1 n

∏
i=1

x

k+1
∑

j=1
η
(i)
j 2 j−1

i 1

k+1
∑

j=1
η̄ j2 j−1

where η̄ j ∈{(0,1)|
k+1
∑
j=1

η̄ j2 j−1 = 2k+1−b−
n
∑

i=1
|ai|}, η

(i)
j ∈{(0,1)|

k+1
∑
j=1

η
(i)
j 2 j−1 = |ai|}, β j ∈{(0,1)|

k+1
∑
j=1

β j2 j−1 =

b} and k := {k|2k < b+
n
∑

i=1
|ai| ≤ 2k+1,k ∈N}. The above inequality can be expressed as k+1 lev-

els of conic quadratic inequalities, which look like

w2
s ≤ w2s+1w2s+2,s = J1, · · · ,Jk,Jk+1 (26)

where J1 = 0,Jk+1 = 2k−1, · · · ,2k+1−2. Adding new variables depend on the values of β j,η
(i)
j , η̄ j

in every level.
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The formulation for the first level is

(ĉ
2b

2k+1 ) = w2
0 ≤ w1w2

where the existence of w1 or w2 is related to βk+1,η
(i)
k+1. Interestingly, at most one w is replaced

by xi or y in the first level. If βk+1 = 1, then b ≥ 2k. We could get
n
∑

i=1
|ai| < 2k on account of

2k < b+
n
∑

i=1
|ai| ≤ 2k+1 and n > 1. Thus, |ai| 6= 2k for all i, i.e., η

(i)
k+1 = 0 holds. Conversely,

because of 2k < b +
n
∑

i=1
|ai| ≤ 2k+1 and b 6= 0, suppose ∃|al| = 2k, there must be ai 6= 2k(i =

1, · · · , l−1, l +1, · · · ,n) and b < 2k, which means η l
k+1 = 1,η(i)

k+1 = 0, i = 1, · · · , l−1, l +1, · · · ,n

and βk+1 = 0. Once there exists no new variable ws,s = 1,2, the branch is cut off.

The second level is the parent of the first level, for which the resemblant form can be written as

w2
1 ≤ w3w4

w2
2 ≤ w5w6

where the existence of ws,s = 3,4,5,6 is related to βk,η
(i)
k , η̄k. If βk = 1 or η

(l)
k = 1, then the new

variable ws is equal to y or xl and there exists no parent branching from the corresponding variable.

Until up to the k+1 level, we have

w2
2k−1 ≤ w2k+1−1w2k+1

...

w2
2k+1−2 ≤ w2k+2−3w2k+2−2

where the value of ws,s= 2k+1−1, · · · ,2k+2−2 is replaced by xη1
1

1 ,xη2
1

2 , · · · ,xηn
1

n , ȳβ1,1, respectively.

Changing the notation for the inequalities 26, we get the result b.

(c) We have αn ≥ 1,αi ≤ 0, i = 1,2, · · · ,n−1,1≤
n
∑

i=1
αi because function g(x) = ĉ

n
∏
i=1

xαi satis-

fies convex property c. If αn = 1,αi = 0, i = 1,2, · · · ,n−1, then the function g(x) = x is the linear
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one. Others, the inequality ĉ
n
∏
i=1

xαi ≤ ȳ can be written as follows:

ĉ
n
∏
i=1

xαi
i ≤ ȳ⇔ ĉbxan

n ≤ ȳb
n−1
∏
i=1

x|ai|
i

⇔ ĉbx2k+1

n ≤ ȳb
n−1
∏
i=1

x|ai|
i x2k+1−an

n

where k := {k|2k < an ≤ 2k+1,k ∈N}. The inequality can be written as a system of SOCs by using

b, where w0 = ĉ
b

2k+1 xn.

(d) We have ĉ < 0,
n
∑

i=1
αi ≤ 1 and αi ≥ 0 on account of that g(x) satisfies convex property d.

Similarly, we have

ȳ≤
n
∏
i=1

(−ĉ)xαi
i ⇔ ȳb ≤

n
∏
i=1

(−ĉ)bxai
i

⇔ 1
(−ĉ)b ȳ2k+1 ≤

n
∏
i=1

xai
i ȳ2k+1−b

where k := {k|2k < b≤ 2k+1,k ∈ N}. We only need define ω0 = ( 1
−ĉ)

b
2k+1 ȳ. It is clear that d is the

same as result b.

This completes our proof.

Here we give two examples to explain Theorem 0.1 in detail. For condition a of Theorem 0.1,

we have
x

5
4 ≤ ȳ⇔ x8 ≤ ȳ4x3

⇔



s2
1,1 ≤ xη1 = x

s2
1,2 ≤ ȳβ1 = 1

s2
2,1 ≤ s1,1xη2 = s1,1x

s2
2,2 ≤ s1,2ȳβ2 = s1,2

x2 = s2
3 ≤ s2,1s2,2ȳβ3 = s2,1s2,2ȳ

(27)
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Using the above rules, we get the following simplified equations.

x8 ≤ ȳ4x3⇔


s2

1,1 ≤ x

s2
2,1 ≤ s1,1x

x2 = s2
3 ≤ s2,1ȳ

(28)

Figure 3 is used to show condition b in Theorem 0.1. We give an example g+(x)= x
− 1

4
1 x

− 1
4

2 x
− 1

4
3 x

− 1
4

4 ≤

y in the left part of Figure 3. The function can be written as 122+1 ≤ y4x1x2x3x4. Thus, βk+1 = β3 =

1,β j = 0( j = 1,2) and η i
1 = 1,η i

j = 0(i = 1, · · · ,4, j = 2,3). In this case, w2 does not have parents

in the first level and w2 = y. The function g+(x) = x−1
1 x−1

2 x−1
3 x−1

4 x−1
5 x−1

6 x−1
7 ≤ ȳ can be writ-

ten as 122+1 ≤ ȳx1x2x3x4x5x6x7 and there will be three levels, where β1 = 1,β j = 0( j = 2,3) and

η i
1 = 1,η i

j = 0(i = 1, · · · ,n = 7, j = 2,3). Since β3 = η3 = 0, the first level is added to two new

variables w1 and w2. Similarly, the next levels have some additional variables until up to the last

one. It is shown in the right part of Figure 3.

11

w1w2

w11 w12 w13 w14

y

( )

3 3 0i  ( )

3 31, 0i  

( )

2 2 0i  

( )

1 1 0i  

(1)

0 0 1  

( )

2 2 0i  

( )

1 1 0i  

( )

2 2 0i  

(2) (3)

0 0 1   (4) (5)

0 0 1  
(6) (7)

0 0 1  (1) (2)

0 0 1  
(3) (4)

0 0 1  

( )

1 1 0i  

Figure 3: Examples for Theorem 0.1.

On the basis of the above method, the convex formulation of the problem P can be transformed
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into the second order cone optimization problem with both inequality and box constraints.

(P1) :



min cT x

s.t. AEx+ s = bE

AIx≤ bI

s ∈ C

x ∈ [l,u]

where c ∈Rn,bE ∈Rm,bI ∈RmI are given vectors, AE ∈Rm×n,AI ∈RmI×n are given matrices, the

second-order cone is C = C p+1
1 ×·· ·×C p+1

k ,C p+1
i = {(si0,si1)|||si1||2 ≤ si0,si1 ∈ Rp,si0 ∈ R}.

3. ALGORITHM

Under the above convexification strategies, we propose a global algorithm to avoid using integer

variables and improve the accuracy of approximate convex optimization problem, which is called

the sequential approximation method based on convex modeling. In the base layer, the approximate

model is solved by ADMM. In the main loop, we use the monotonicity of the function to get smaller

internal, and then input the reduced interval into the approximate model. The more accurate model

is solved as a new iteration. On the basis of the solution of the approximate model, the objective

function of the problem OOP is updated until approximate deviation converges within a given

error.

According to monotonicity of the function, we give the following rule for deleting the interval

such that the ineffective space is cut in each iteration.

If max
m=1,··· ,M

{G+
m(l)−G−m(u)} ≤ 0, then

reds+1 = [ls+1,us+1]
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satisfying

ls+1 = us−
n
∑

i=1
min

m=1,··· ,M
{ϖ i

m}(ui
s− li

s)e
i

us+1 = ls+1 +
n
∑

i=1
min

m=1,··· ,M
{ξ i

m}(ui
s− li

s+1)e
i

where

ϖ i
m =

 ϖ̄ i
m, i f G+

m(ls)−G−m(us− ϖ̄ i
m(u

i
s− li

s)e
i) = 0, ϖ̄ i

m ∈ (0,1)

1, otherwise

ξ i
m =

 ξ̄ i
m, i f G+

m(ls+1 + ξ̄ i
m(u

i
s− li

s+1)e
i)−G−m(us) = 0, ξ̄ i

m ∈ (0,1)

1, otherwise

After having sketched the cut strategy, we can proceed to outline inner-layer ADMM algorithm

details, which is inspired by SPADMM.44 SPADMM is an advanced ADMM algorithm for solving

cone optimization problems with three blocks. The algorithm is famous for rapid convergence and

solving the large-scale cone optimization problem. Because the slack variables and cone variables

are uncoupled in our problem, we can put them together as a new vector. When the problem can

be divided into two blocks, the algorithm has the same structure as with the classical ADMM,

in which the semiproximal term is equal to 0. Different from solving semidefinite programming

problem, we use ADMM to solve problem P1, which is a second-order cone optimization problem.

By introducing a non-negative slack variable z̄ ∈ RmI+2n and the indicator function δU , P1 can be

converted to the following standard formulation.

(P2) :

 min cT x+δw∈Q(w)

s.t. Ax+w = b

where A=(AT
s ,A

T
z̄ )

T ,As =AE ,Az̄ =(AT
I , In×n,−In×n)

T are coefficient matrices; b=(bT
s ,b

T
z̄ )

T ,bȳ =

bE ,bz̄ = (bT
I ,u

T ,−lT )T are coefficient vectors; I is the identity matrix; w = (sT , z̄T )T are the vari-
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ables; Q = {(s, z̄)|s ∈ C , z̄≥ 0} and the indicator function is defined by

δU(µ) :=


0, if µ ∈U

+∞, if µ 6∈U

For a given σ > 0, the augmented Lagrangian function for P2 is given by

Lσ (x,s, z̄;λ ) = cT x+δw∈Q(w)+λ
T (Ax+w−b)+

σ

2
‖Ax+w−b‖2

2 (29)

where λ ∈ RmE+mI+2n is lagrangian multiplier.
Algorithm 1: Solve the reformulated SOCP problem P2.

Initialization:ρ = 1.618,σ > 0,s0 ∈ C , z̄0 ≥ 0,λ 0 ≥ 0,x0;

Step 1: Compute xk+1 = (AT A)−1[AT (b−wk− 1
σ

λ k)− 1
σ

c].

Step 2: Compute wk+1 =

 sk+1 := argminLσ (xk+1,s;λ k
s ).

z̄k+1 := argminLσ (xk+1, z̄;λ k
z ).

Step 3: Compute λ k+1 := λ k +ρσ(Axk+1 +wk+1−b).

It is important to be clear about how to slove s-minimization problem and z̄-minimization

problem in each iteration. We next give the analytical expression for every subproblem.

The z̄-minimization problem is equivalent to

min λ T
z̄ z̄+ σ

2 ‖Az̄x+ z̄−bz̄‖2
2

s.t. z̄≥ 0

The Lagrangian function for this subproblem can be written as

L(z̄,ν) = λ
T
z̄ z̄+

σ

2
‖Az̄x+ z̄−bz̄‖2

2−ν
T z̄

24



For which the KKT conditions are

σ(Az̄x+ z̄−bz̄ +
λz̄
σ
)−ν = 0

z̄≥ 0

ν ≥ 0

νT z̄ = 0

If z̄∗ = 0, then ν∗ ≥ 0. We have

ν
∗ = σ(Az̄x−bz̄ +

λz̄

σ
)≥ 0

If z̄∗ > 0, then ν∗ = 0. We have

z̄∗ = bz̄− (Az̄x+
λz̄

σ
)> 0

Thus, the minimizer of z̄ is obtained by the following formulation

z̄k+1 = max{0,bz̄− (Az̄xk+1 +
λ k

z̄

σ
)} (30)

By scaling the dual variable λs and normalizing the coefficient of variable s, the s-minimization

problem can be reformulated as

sk+1 = argmin{δs∈C (s)+λ T
s (Asx+ s−bs)+

σ

2 ‖Asx+ s−bs‖2
2}

= argmin


σ

2 ‖s− (bs−Asx− λs
σ
)‖2

2

s.t.s ∈ C


= ∏C (bs−Asxk+1− λ k

s
σ
)

where ∏C denotes projection onto C . To simplify notation, we define the vector bs−Asxk+1− λ k
s

σ
=
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g. The projection onto the second-order cone has the following decomposition

∏
C

g = κ1C1 +κ2C2

where for i = 1,2,

κi = max(0,gn +(−1)i ‖ [g1, · · · ,gn−1] ‖2)

and

Ci =



1
2



(−1)ig1
‖[g1,··· ,gn−1]‖2

...
(−1)ign−1

‖[g1,··· ,gn−1]‖2

1


if ‖ [g1, · · · ,gn−1] ‖2 6= 0

1
2



(−1)iω1

...

(−1)iωn−1

1


if ‖ [g1, · · · ,gn−1] ‖2= 0

where ω ∈ Rn−1 is any vector satisfying ‖ ω ‖2= 1.

Thereby, a sequential approximation method is generated as follows.
Algorithm 2: sequential approximation method based on second order cone optimization

if (P) is convex then

go to Algorithm 1, stop;

else
set ε,red0 = [l,u];

end

while |G0(hk+1,yk+1)−L(G0)|< ε, do
1.Go to Algorithm 1 to solve the SOCP problem of convexification (P2). Denote the

resulting objective value as L(G0) and the solution as (hk+1,yk+1).

2. computer redk and set k = k+1.

end
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Theorem 0.2 : The sequential approximate method is a global optimization method for solving

the OOP, if the optimal solution to P2 is a feasible solution to OOP.

Proof. According to Proposition 1, we have

N

∑
i=1

Ni(h∗) = G0(h∗,y∗).

Thus, we first divide G0(h,y) into the convex part Gconv(h,y) and nonconvex part Gnonc(h,y), i.e.,

G0(h,y) = Gconv(h,y)+Gnonc(h,y).

Using the above convexification strategies, we can get the convex approximate formulation of

G0(h,y) as follows.

Gconv
0 (h,y,z) = Gconv(h,y)+Gconv(h,y,z),

where z is the convexification variable.

Next, let (x∗,w∗) be the optimal solution and L(G0) be objective function of P2. Through a

series of transformations, the following equation holds.

L(G0)(x∗,w∗) = Gconv
0 (ĥ∗, ŷ∗, ẑ∗).

Because (h∗,y∗) is the global solution to P, it follows as

G0(h∗,y∗)≤ G0(ĥ∗, ŷ∗), (31)

if (x∗,w∗) is a feasible solution to P.

From the inequality 31, it is obvious that the upper bound of the global solution to P can be

obtained by calculating the optimal objective value of P at the optimal solution of P2.
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From the property of the underestimation, we have

Gconv
0 (h∗,y∗,z∗) = Gconv(h∗,y∗)+Gconv(h∗,y∗,z∗)

≤ Gconv(h∗,y∗)+Gnonc(h∗,y∗)

= G0(h∗,y∗)

Besides, (x∗,w∗) is an optimal solution of P2. Then,

L(G0)(x∗,w∗) = Gconv
0 (ĥ∗, ŷ∗, ẑ∗)≤ Gconv

0 (h∗,y∗,z∗).

So, the lower bound of the global solution to P is the optimal objective value to (P2).

In summary, if (x∗,w∗) is a feasible solution to P2, then the global solution to OOP can be

found by

L(G0)(x∗,w∗)≤
N

∑
i=1

Ni(h∗)≤ G0(ĥ∗, ŷ∗).

And the proof is completed.

We give a simple example to show the approximation effect in Figure 4, where L(G(x)) is the

linear lower bound of G(x). The approximate solution can be as close as possible to the global

optimal solution.

4. Numerical Experiments

To evaluate the performance of the proposed method, we have conducted numerical experiments on

a set of ten problem instances. Each instance is a practical problem of rolling a different slab. The

problem data were collected from a hot-rolling plant in China and used in ref.7 The experiments

were run on a PC with a 3.40 GHz Intel(R) Core(TM) i7–6700 CPU and 16GB RAM.

We apply our proposed sequential approximation method based on second-order cone opti-

mization (GM) to solve the test instances and compare the results with those generated by the

empirical method (EM) used in practice.
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Figure 4: Sequential approximation of a concave function.

The computational results are presented in Table 1. In the table, column Si, i=1–7, shows the

exit thickness of the ith stand, time is computation time, energy is the objective function value, and

R is the percentage energy savings by the global method as compared to the other method. From

the results shown in Table 1, it can be clearly seen that our global method can reduce the energy

consumption. The average energy savings as compared with empirical method are 1.15% per ton.

The parameters are quickly optimized, compared with the empirical method.

The force and shape quality measures are obtained by using the thickness of every stand in

Table 1. And these values are given in the Table 2, where RRR is the relative reduction ratio, RCD

is the relative crown deviation, and o is the change interval of relative crown in the final stand.

From the view at microcosmic level, the smaller the grain size is, the better the shape quality will

be. In order to prevent excessive growth of the grain, the relative reduction ratio of the final stand

should be in [10%,15%]. Table 2 shows that the GM result is within the required range as with

EM.

Relative crown is an important index for evaluating intermediate shape and side shape in strip

production. According to the Shohet model, the reasonable setting for the relative crown of the last

stand should be kept in the range shown in the last column o of Table 2. Our setting also conforms
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Table 1: Comparison Results I

no. method S1 S2 S3 S4 S5 S6 S7 time energy R
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (s) (KW ) (%)

1 GM 27.53 19.32 13.37 10.04 7.94 6.43 5.70 58.09 31541
EM 25.51 18.55 12.68 9.55 7.84 6.52 5.70 >200 31587 0.15

2 GM 24.74 16.43 10.87 7.98 5.94 4.53 3.92 76.01 28093
EM 19.98 13.60 8.91 6.63 5.41 4.49 3.92 >200 28431 1.19

3 GM 22.21 13.85 8.60 5.96 4.42 3.35 2.90 66.38 24366
EM 18.35 11.91 7.52 5.34 4.22 3.39 2.90 >200 24816 1.81

4 GM 24.72 16.07 10.44 7.53 5.61 4.27 3.70 73.35 24959
EM 19.61 13.32 8.80 6.44 5.20 4.27 3.70 >200 25535 2.26

5 GM 25.40 16.51 10.59 7.45 5.50 4.16 3.60 66.37 25895
EM 19.82 13.33 8.72 6.34 5.10 4.17 3.60 >200 26379 1.83

6 GM 24.21 16.12 10.60 7.65 5.74 4.41 3.83 67.32 26520
EM 19.52 13.38 8.93 6.58 5.34 4.41 3.83 >200 27061 2.00

7 GM 25.90 18.03 12.38 9.23 7.23 5.80 5.10 66.68 29036
EM 20.02 14.56 10.23 7.96 6.70 5.72 5.10 >200 29121 0.29

8 GM 24.50 15.94 10.23 7.19 5.30 4.00 3.46 56.79 19674
EM 19.09 12.83 8.56 6.21 4.90 4.00 3.46 >200 19775 0.51

9 GM 23.89 15.47 9.87 6.91 5.09 4.05 3.50 75.62 19797
EM 18.85 12.75 8.55 6.23 4.94 4.04 3.50 >200 19910 0.57

10 GM 23.05 14.91 9.50 6.64 4.87 3.88 3.35 61.81 27313
EM 18.43 12.4 8.48 6.15 4.79 3.87 3.35 >200 27555 0.88

Table 2: Compared Results II

no. method
force (MN) final stand

S1 S2 S3 S4 S5 S6 S7 RRR(%) RCD(10−3) o(10−3)

1
GM 16.38 19.65 21.67 16.29 13.65 12.84 7.39 11.30 0.71
EM 20.03 18.11 22.44 16.30 11.54 11.19 8.33 12.58 0.02 [-1.68,3.36]

2
GM 16.34 19.50 21.34 15.83 15.42 15.27 8.29 13.38 1.35
EM 24.00 19.16 22.57 15.71 11.02 10.53 7.81 12.69 0.90 [-0.84,1.68]

3
GM 19.55 19.80 20.34 18.80 13.37 11.29 7.56 13.43 0.44
EM 24.95 19.05 20.38 18.09 10.74 9.07 8.06 14.45 0.11 [-0.38,0.76]

4
GM 16.12 18.14 18.88 16.25 13.58 12.68 6.87 13.37 1.19
EM 24.29 17.21 18.91 16.10 10.14 9.23 6.85 13.45 0.80 [-0.68,1.36]

5
GM 16.27 18.48 19.15 18.23 14.18 13.21 7.47 13.47 1.11
EM 24.92 17.97 19.19 17.25 10.51 9.58 7.60 13.67 0.59 [-0.57,1.2]

6
GM 17.00 18.93 19.28 17.87 13.73 13.52 7.31 13.22 1.24
EM 25.18 18.41 19.35 17.15 10.37 9.92 7.26 13.15 0.89 [-0.72,1.40]

7
GM 14.82 17.72 18.40 17.71 13.87 12.76 8.10 12.06 0.50
EM 23.32 16.45 18.05 15.75 10.00 9.15 7.17 10.84 0.53 [-0.94,1.9]

8
GM 12.02 14.00 14.74 13.55 11.16 10.09 5.88 13.51 1.17
EM 18.50 13.67 14.19 12.84 8.95 8.05 5.87 13.50 0.80 [-0.59,1.20]

9
GM 12.57 14.85 15.72 12.72 11.96 9.53 5.33 13.58 0.76
EM 19.05 14.13 14.76 11.71 9.24 8.40 5.26 13.36 0.28 [-0.62,1.20]

10
GM 18.33 21.04 22.15 20.11 15.51 12.31 7.57 13.44 0.78
EM 27.36 20.19 19.81 18.55 12.76 11.48 7.48 13.44 0.50 [-0.51,1.02]
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Figure 5: Comparison results for relative reduction ratio of the thickness.

to the specification and can obviously prevent the strip shape problems. So, the comparison results

shown in Table 2 indicate that the parameter setting obtained by GM can achieve more reasonable

distribution than those of the EM. The parameters of the crown and the reduction ratio guarantee

the quality of the product.
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Figure 6: Comparison results for the force.

Figure 5 shows a relative reduction ratio comparison of the thickness by using two methods,

where the relative reduction ratio is equal to hi−1−hi
hi−1

. Figure 6 presents the graphical illustrations

of rolling force at each stand. All parameters of the first stand are lower than the second one in

the GM methods, which is different from the EM setting. This guarantees that the slab can be
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bitten successfully into the first stand. The slab temperature gradually decreases during the rolling

process. Thus, the setting style from the second to fourth stands makes full use of the capacity of

the equipment in order to increase the thickness reduction as far as possible. The reduction rate is

reduced gradually at the final stages of rolling so to keep the quality and mechanical properties of

final strip. As a whole, optimized settings are better than the actual experienced settings.

Conclusion

In this paper, we have discussed a class of operation optimization problem in steel rolling systems

and presented a global method to solve it which is based on ADMM. Using the structural feature

of the problem, we built the link between the original problem and convex problem. A cut interval

method was used to reduce the current feasible region to improve the accuracy of subproblem.

This algorithm has been applied to solve 10 different hot rolling operation optimization problems

in numerical experiments. The results showed that the global method can generate effective control

parameter settings that reduce energy consumption of the rolling process. This can guarantee that

the initial best control parameters can successfully transmit to AGC before entering the finishing

mill.
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