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Abstract
In this workwe constructWigner functions for hybrid continuous and discrete variable quantum
systems.We demonstrate new capabilities in the visualization of the interactions and correlations
between discrete and continuous variable quantum systems, where visualizing the full phase space has
proven difficult in the past due to the high number of degrees of freedom. Specifically, we showhow to
clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-
cat state.We further showhow correlations aremanifested in different types of interaction, leading to
a deeper understanding of howquantum information is shared between two subsystems. Under-
standing the nature of the correlations between systems is central to harnessing quantum effects for
information processing; themethods presented here reveal the nature of these correlations, allowing a
clear visualization of the quantum information present in these hybrid discrete-continuous variable
quantum systems. Themethods presented here could be viewed as a formof quantum state
spectroscopy.

1. Introduction

Quantumcorrelations have become central to the design andmanufacture of various quantum technologies
[1–4].Whether these quantum correlations are found betweenmacroscopically distinct superpositions of states,
also known as Schrödinger cat states, or in the entanglement betweenmultiple systems. Currently, such
technologies can be broadly categorized as being based on either continuous-variable (CV) or discrete-variable
(DV) quantum systems.

For CV systems, the primary focus has been on quantumoptical systems;manipulating coherent states of
light for various quantum information processing applications [5–8]. In such systems, theWigner function
[9, 10] is commonly used due to its ability to display an intuitive representation of a quantum state. Furthermore,
theWigner function is particularly good at revealing coherences and correlations, such as squeezing and
superposition [11]. For these reasons, it has become a fundamental tool in the ‘search’ for Schrödingers cats [12],
readily identified by the iconic interference patterns arising from its quantum correlations.

By contrast the focus forDV systems has been on exploiting two-level quantum systems—qubits—in order
to generate a quantumanalogue of the classical bit [2, 13, 14]. Here, theWigner function has received little
attention as ameans of visualization. Unlike the case of CV systems, there are two common approaches for
generating informationally complete DVWigner functions, both of which have found application. The
approach developed in[15, 16]uses discrete degrees of freedom and has proven useful for quantum information
purposes, particularly in the case of contextuality andWigner function negativity [17–19]. The second approach
(and the one used in this work) uses aDVWigner functionwith continuous degrees of freedom, similar to the
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Bloch sphere [20–26]. For example, there have been various proposals put forward that use a continuousWigner
function to reveal correlations betweenDV systems [26–28]. Thesemethods have further been validated
through the directmeasurement of phase-space to reveal quantum correlations [28–31]. Recently this has been
extended to experiments validating atomic Schrödinger cat states of up to 20 superconducting qubits [32].

A case that has not been explored inmuch detail is the phase-space representation of CV-DVhybridization.
This hybridisation is seen inmany applications of quantum technologies, including simple gatemodels for
quantum computers, such as hybrid two-qubit gates [33, 34], andCVmicrowave pulse control ofDVqubits
[35]. The generation of hybrid quantum correlationswithin CV-DVhybrid5 systems commonly takes place
within the framework of cavity quantum electrodynamics, that describes the interaction between a two-level
quantum system and a singlemode of amicrowave field. Thesemodels can be further used to describe the effect
of circuit quantum electrodynamics, and to consider the interaction of themicrowave fieldwith an artificial
atom.Analyzing these interactions within the framework of the Jaynes–Cummingsmodel [36] allows us to
display howquantum information is shared between theCV andDV systems.

A number of papers [23, 24, 37]have shown themathematical construction of hybrid states within the phase
space, these have been constructedwithout giving away to visually display the degrees of freedomof such
composite systems. Amethod for displaying states with heterogeneous degrees of freedom, using theWigner
function, came from the application of composite phase-spacemethods to quantum chemistry [38]. The
technique presented here is based on this approach, however in [38], reducedWigner functions are used and an
envelope is further applied, potentially losingmany of the non-local correlations that arise due to entanglement.
Othermethods for combiningCVWigner function tomographywith other representations ofDV systems have
been created [39–41], however, only theCV systemwas treated using theWigner function formulation. The
visualization technique used in [38] displays heterogeneous degrees of freedom, highlighting the power of a
hybridWigner function approach for visualizing correlations. This approach also demonstrates howmany of
the correlations are lost when using standard phase-spacemethods, such as the reducedWigner function. A
hybrid phase-space representation, of all the informationwithin these hybrid systems, is crucial for amore
complete understanding of CV-DVhybridization, and its physical properties [42–44]. This understandingwill
be especially helpful for advancing quantum technologies [34, 45–48], in particular quantum communication
where CV-DVhybridization has been used for teleportation [49–51] and entanglement distillation [52–54].

Using the procedure laid out in[24] to generate any quantum state in phase space, and adapting the
visualizationmethod from[38], we showhow theWigner function of a hybrid system can be intuitively
represented.We begin by presenting examples of important states for CV andDV systems, illustrating howour
representationmakes correlation information clear.We extend our analysis using the Jaynes–Cummingsmodel
to showhow intuitive this representation can be. The results open new directions for the use of phase-space
methods in hybrid quantum systems.

2. TheWigner function

TheWigner function is traditionally introduced as the Fourier transformof an autocorrelation function [9, 55].
Here it ismore suitable to consider a generalWigner function of some arbitrary operator Â, defined as [56]

W = P WW ATr , 1A ( ) [ ˆ ˆ ( )] ( )ˆ

whereP Wˆ ( ) is the displaced parity operator for some parameterization of phase spaceΩ. The displaced parity
operator is defined through displacing a generalized parity operator [24], and for theCVWigner function is [57]

a a aP = PD D2 , 2f f
ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )†

whereP = å - ñá=
¥ i i1f i

i
0

ˆ ( ) ∣ ∣, written here as an operator in the Fock basis, is the usual parity operator that
reflects a point through the origin and

a a a= -D a aexp 3*ˆ ( ) ( ˆ ˆ) ( )†

is the standardCVdisplacement operatorwritten using the annihilation and creation operators, â and â†,
respectively. Note that we have introduced the subscript f, for ‘field’, to indicate CV systems. The displacement
operator can be used to define a coherent state [57]

b bñ = ñD 0 , 4f f∣ ˆ ( )∣ ( )

as the displacement of the vacuum state, ñ0 f∣ , generating a new coherent state bñf∣ .
As shown in[23, 24], a similar approach to(2) can be used to generateWigner functions for arbitrary

quantum systems. For two-level DV systems, for example,

5
Fromnowon, we shall refer to CV-DVhybrid states as simply ‘hybrid states’, dropping ‘CV-DV’.
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q f q f q fP = F P FU U, , , , , , 5a a
ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )†

where the generalized parity,Pa
ˆ , for a single, two-level, system is sP = + 3 2a zˆ (ˆ ˆ ) [23, 24, 28], for a full

derivation of the kernel see [58]. Note that the subscript a here indicates that this is a state for the ‘atom’, orDV
system. The analogue of the displacement operator, q f FU , ,ˆ ( ), given in terms of Euler angles, is

q f s f s q sF = FU , , exp i exp i exp i 6z y zˆ ( ) ( ˆ ) ( ˆ ) ( ˆ ) ( )

for the standard Paulimatrices syˆ and szˆ . Note as the parity operator commutes with szˆ , theΦ termdoes not
contribute, and theDVWigner function depends only on θ andf, allowing it to be plotted on the surface of a
sphere. Note that byDVWigner function, wemean theWigner function forDV systems; theWigner function
used here is however parameterized over the continuous variables θ andf.

figure 1 shows examples of theDVWigner function generated by(5) for some simple qubit states. Each of
theDVWigner functions presented infigure 1 is plotted following[59], using the Lambert azimuthal equal-
area projection [60]. This projection is area preserving andmaps the surface of a sphere to polar coordinates,
with the north polemapped to the centre of the disc and the south pole to the outer boundary. The equator of the
sphere is projected onto a concentric circle, with a radius 1 2 times the radius of the entire circle, this is
explicitly seen as thewhite circle infigure 1(f). Thismeans that the Lambert azimuthal equal-area projection
allows us to view the entire surface of the sphere as a circle. The reason for using this area-preservingmapping,
rather than an angle-preservingmapping, is becausewe are dealingwith a probability distribution function. By
definition, the integral over a volume determines the probability; area-preserving therefore translates into
probability-preserving. A consequence of thismapping is that in some regions of phase space, the quasi-
probability distribution appears warped. For instance, the first three states infigures 1(a)–(c) are all rotations of
one another on a sphere.

TheDVWigner functions presented infigures 1(a)–(c) are standard two-level quantum states, where
figures 1(a) and (b) are the±1 eigenstates of the szˆ operator, ñ∣ a and ñ∣ a respectively. The state infigure 1(c) is
the equal superposition of ñ∣ a and ñ∣ a, or the positive eigenstate of sxˆ . In all the presented states, there are
negative values in theDVWigner function. Importantly, in theDVWigner function for qubits, negative volume,
aswell as being an indicator of non-classicality, is also ameasure of purity [37]. This is because discrete system
coherent states are fundamentally quantum; regardless of whether the system is the polarization of a photon or
the direction of spin in an electron.

More generally, in bothCV andDVWigner functions, negative values arise as a consequence of self-
interference. In theCVWigner function this arises fromnon-Gaussianity [61], and can be seen in the Fock states

Figure 1. Shown here are six example qubitWigner functions using the Lambert azimuthal equal-area projection, thatmaps a sphere
onto a circle where the north pole ismapped to the centre and the south pole is on the perimeter. Three single-qubit pure states are
shown in(a)–(c), where (a) and(b) are the eigenstates of szˆ , ñ∣ a and ñ∣ a, with eigenvalues±1 respectively. (c) is the equal
superposition of the states in (a) and(b), ñ + ñ 2a a(∣ ∣ ) . (d)–(f) show the qubitWigner functions of the three Paulimatrices, sxˆ ,
syˆ , and szˆ respectively.
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(excluding the vacuum state) or in superpositions ofGaussian states, see figure 3 for an example, discussed later
in the paper. This explains why negative values have been used as ameasure of quantumness, however there is
one notable exception, the non-negative, entangled, GaussianCV two-mode squeezed state.

Since theGaussian states of aDVWigner function can be visualized on a sphere, the emergence of self-
interference is now inevitable, due to the inherent geometry of the sphere. For example, theWigner function for
the state ñ∣ ahas aGaussian distribution centred at the north pole; as this Gaussian distribution tends towards
zero, near the south pole, there is an emergence of negative quasi-probabilities. This negativity in theWigner
function ismanifested as a result of self-interference, as the quantum coherences interfere with each other at the
south pole. As the number of levels is increased (from the two-level system) in theDVWigner function and take
the infinite limit6, the SU 2( )DVWigner function tends towards theHeisenberg-Weyl group, returning to the
standardCVWigner function. This is because the effective size of the sphere increases, decreasing the relative
size of theGaussian. In the infinite limit, the negativity in theWigner function is completely eliminated, since the
Gaussian can no longer interact with itself on the opposite side of the sphere.

Although the example states so far have been density operators for pure states, the general formalism in (1)
allows for theWigner function to be generated for any arbitrary operator. To emphasize this, infigures 1(d)–(f)
are theDVWigner representation of each of the three Pauli operators. In general,Wigner function exhibit the
normalization condition

ò W W =
W

W Ad Tr . 7A ( ) [ ˆ ] ( )ˆ

For normal density operators, this yields unity, as would be expected for any probability distribution function.
For the Pauli operators however, s =Tr 0i[ ˆ ] , where i={x, y, z}, therefore ò W W =sW

Wd 0
i
( )ˆ . The

tracelessness of thesematrices can be seen infigures 1(d)–(f) by noting that the negative and positive volumes are
equivalent and therefore cancel. This featurewill be key to several of our observations later in this work.

For aCV-DVhybrid system, the total displaced parity operator is simply the tensor product of the displaced
parity operator for each subsystem [23, 24, 28]

a q f a q fP = P Ä P, , , , 8f a
ˆ ( ) ˆ ( ) ˆ ( ) ( )

yielding a hybridWigner function for a densitymatrix r̂

a q f r a q f= PrW , , Tr , , . 9( ) [ ˆ ˆ ( )] ( )ˆ

Hybrid systems generatedwith (9) usually havemore degrees of freedom than is convenient to plot. For this
reason,many approaches that use phase-spacemethods to treat hybrid systems use reducedWigner functions,
rather than considering the full phase space of the composite system. To give a full picture of the quantum
correlations found between the two systems, amethod similar to that introduced in[38] can be used. As an
example of the utility of thismethod, the fully separable state, ñ ñ0 f a∣ ∣ , is shown infigure 2. The reducedWigner
functions for CV andDVdegrees of freedom are presented infigures 2(a) and (b) respectively. Infigure 2(c)we
apply themethodfirst presented in[38] to plot the phase-space representation of this state.

Specifically,figure 2(c)was created by first dividing theCVphase space into discrete points on a rectangular
map. Each of these discrete points is then associatedwith a discrete complex valueα, equally spaced across the

Figure 2.ExampleWigner function for the product of the CVvacuum state and aDV excited state, ñ ñ0 f a∣ ∣ , where (a) and (b) show the
reducedWigner functions for the continuous-variable (CV) and discrete-variable (DV)Wigner functions respectively. In(c) is the full
Wigner function of the hybrid system,where theCVphase space is split up as a discrete grid. At each of these discrete points theDV
Wigner function at that point in phase space is plotted. The transparency of each of theDVWigner functions is proportional to the
maximumquasi-probability at that point inCVphase space. The colour bar is white at 0with limits±2 for (a),  +1 3 2( ) for (b),
and  +1 3( ) for (c).

6
The generalWigner function for any system in the displaced parity formalism can be found in[24].
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phase space grid. For each set pointα, the values of theWigner function for θ andf degrees of freedomare
calculated, with theWigner function at that point plotted using the Lambert projection. This produces aDV
Wigner function at eachα in CVphase space. The transparency of each disc is then set proportional to the
absolutemaximal value of the phase space at that point, a q fq f rWmax , ,, ∣ ( )∣ˆ . For example, to generate the disc
at the centre offigure 2(c), we calculate a q f=rW 0, ,( )ˆ , resulting in aDVWigner function for ñ∣ a, and then
modify the amplitudes of the quasi-probabilities using the value ofα. This is then repeated for everyα. Note that
amain difference between the plots presented here and in [38] is that the transparency of theDVWigner
functions in [38] is set proportional to aWf∣ ( )∣. Using themethod presented here allows for a clearer view of the
quantum correlations thatmanifest.

Since the state being plotted here is a pure separable state, theWigner function can be expressed as

a q f a q f=r r rW W W, , , , 10
f a

( ) ( ) ( ) ( )ˆ ˆ ˆ

where rfˆ and râ are the reduced densitymatrices for theCV andDV systems respectively. As a result,figure 2(c)
has the same form as a coherent state, dictated by theCVWigner function, with every point in phase space
having an ñ∣ aDVWigner function. The difference in thismethod, in comparison to[38], is that here the
transparency is not set by integrating out the qubit degrees of freedom; such an approach leads to a loss of
quantum correlations in the systems of interest.

3. Visualizing correlations in hybrid quantum systems

Quantifying different types of correlations in quantum systems is a key area of research that has received a great
deal of attention [62–69]. In parallel, phase-spacemethods have been utilized as a tool to identify and categorize
quantum correlations [41, 70–73]. Further, thesemethods have been used to generatemeasures based on the
emergence of negative quasi-probabilities in theWigner function [37, 74–76]. However, due to the higher
number of degrees of freedom, visually representing correlations in composite systems ismore difficult.We now
showhowour technique produces definite signatures of both quantumand classical correlations, that can be
discerned for hybrid quantum systems.When dealingwith quantum information processingwith two coupled
qubits, the distinction between these two types of correlations is important. Beginningwith how correlations
that arise from superposition appear, wewill describe our choices ofDV andCVqubits and how the encoding of
quantum information is represented on these qubits.

Certain similarities are seen betweenDV andCV systems, whether in structure, choice in qubit, or in
appearance of the quantum correlations thatmanifest. These similarities will be demonstrated here, by showing
howquantum information can be encoded onto different types of state. Encoding quantum information onto
quantum states can be done in variousways, including a variety of approaches evenwithin the same system [45].
Wewill therefore begin by using the simplest case of aDVqubit for quantum information processing. Since the
DV systems used here are two-level systems, the encoding of quantum information is straightforward; a bit value
0 or 1 is simply assigned to each of the two levels, ñ∣ a and ñ∣ a respectively. TheDV0bit is now represented
visually byfigure 1(a), likewise the 1 bit value is represented by figure 1(b). Furthermore, a general pure
superposition state

ñ + ña b , 11a a a a∣ ∣ ( )

where + =a b 1a a
2 2∣ ∣ ∣ ∣ , allowing anyweighted superposition between 0 and 1.When = =a b 1 2a a , an

equal superposition is yielded and is represented visually byfigure 1(c).
This binary choice becomesmore complicatedwhen assigning bit values to aCVqubit. Although, there are

variousways to encode quantum information onto aCV system creating similarities betweenCV andDV
systems. Since theHilbert space is infinite, there are different constraints on assigning qubit values.Wewill now
demonstrate two examples of CVqubits, comparing the results with theDVqubits

3.1. Fock state qubits
Fock states are orthogonal and therefore a natural choice for quantum information processing. For simplicity we
consider the vacuumand one-photon Fock states, ñ0 f∣ and ñ1 f∣ respectively.We can now form the analogywith
theDVqubit state by assigning bit values to these states  ñ0 0 f∣ and  ñ1 1 f∣ .

Comparison of theWigner functions for theDV and theCVFock qubits can be found infigures 2(a) and (b);
where in the Lambert projection, theDVqubit infigure 2(b) has a similarGaussian form as the vacuum state in
figure 2(a). In fact, theDVqubit basis states are discrete analogues of the Fock states. Therefore, the presence of
the negative values in theDVqubit states becomesmore apparent by considering the one-photon Fock state ñ1 f∣
and theDVqubit state ñ∣ a (infigures 3(a) and (b) respectively). The orientation of theDVqubit is somewhat
arbitrary, the ñ∣ a and ñ∣ a states are orthogonal rotations of one another; therefore, theDVqubit states share

5
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properties of both the ñ0 f∣ and ñ1 f∣ Fock states. This analogy can be seen further infigures 3(d) and (e), where the
Wigner functions for the states ñ + ñ0 1 2f f(∣ ∣ ) and ñ + ñ 2a a(∣ ∣ ) are shown respectively.

Also infigure 3, we show the hybridWigner functions for these states. Infigure 3(c)we show the product of
figures 3(a) and (b). The product offigures 3(d) and (e) is shown infigure 3(f). Since in both cases theCV andDV
qubits are separable and therefore follow (10), the pattern of the hybrid phase space is similar to that found in
figure 2. The separability is evident by the existence of aDVWigner function at every point inCVphase space,
with the amplitudemodulated by theCVWigner function at that point. For both of the hybridWigner functions
infigures 3(c) and (f), the negative regions in theCVWigner functions affect the sign of theDVWigner function,
causing there to be a negative prefactor whenever a <rW 0

f
( )ˆ , inverting the positive and negative quasi-

probabilities at those points inCVphase space.
Having established that the hybridWigner function allows local correlations to be discerned reliably, we now

demonstrate howquantum correlations arising between subsystems in this type of hybrid systemmanifest.
Entanglement in Fock hybrid states, a Bell-Fock state7, ñ ñ + ñ ñ0 1 2f a f a(∣ ∣ ∣ ∣ ) , is shown infigure 3(i). The full
Wigner functions for bipartite Bell-Fock states have a distinctive pattern, reminiscent of the spin-orbit coupled
state from[38], where there is a twisting of theDVWigner functions dependent on the point inCVphase space.
ThisDVdependence on theCVWigner function is indicative that (10)does not hold for this state. Thismeans
that the state in question is not separable, and since this state is a pure state this indicates coupling between the
two subsystems. This is a signature one should look forwhen investigating quantum correlations in this type of
hybrid state.

Comparing the hybridWigner function infigure 3(i) to the reducedWigner function for theCV andDV
qubits infigures 3(g) and (h) respectively, we see the importance in considering the full phase space for entangled
states such as this. It can be seen in figures 3(g) and (h) how correlations between the two systems are lost when
considering the reducedWigner functions, leaving only statisticalmixtures of the basis states in each case.

Figure 3.Examples of Fock states coupled toDVqubits. (a)-(c) show the state ñ ñ1 f a∣ ∣ . (d)–(f) are the state
ñ + ñ ñ + ñ0 1 2f f a a(∣ ∣ )(∣ ∣ ) . (g)–(i) are the entangled state ñ ñ + ñ ñ0 1 2f a f a(∣ ∣ ∣ ∣ ) . (a), (d), and (g) show the reducedCVWigner

functions, (b), (e), and (h) are the reducedDVWigner functions and (c), (f), and (i) are the full hybridWigner functions. The colour
bar is white at 0with limits±2 for the reducedCVWigner function,  +1 3 2( ) for reducedDVWigner function, and
 +1 3( ) for hybridWigner function.

7
Bell state for an entangledDVqubit with a CVFock qubit.
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3.2. Coherent state qubits
Another choice in creating aCVqubit is to encode quantum information onto coherent states [5, 6]. Unlike with
the FockCVqubit, the coherent state basis is an overcomplete basis where there is some degree of overlap
between any two coherent states. However with sufficient distance between two coherent states, this overlap is
negligible. For simplicity, our example states will be real values ofβ, where the two levels are set to the
values b b b= - =1 2 .

We then label each of the coherent states as a certain bit value; for instance b0 1 and b1 2. This creates
a qubit in the formof a Schrödinger cat state [6], with the general qubit state being

b bñ + - ña b , 12f f f f∣ ∣ ( )

as in (11). Thismeans that there is a coherent state atβwhen af=1 and a coherent state at b- when bf=1. The
superposition state = =a b 1 2f f produces the Schrödinger cat state shown (forβ=3) infigure 4(a).

Coupling theCV andDVqubits infiggures 4(a) and (b) generates the fullWigner function infigure 4(c).
Explicitly, this is the state

b bñ + - ñ ñ + ñ
1

2
. 13f f a a(∣ ∣ )(∣ ∣ ) ( )

Since the full system is a simple tensor product of the two qubits, the subsystems are separable, resulting in a full
Wigner function that obeys (10). The separability between these states is seen in the fullWigner function in
figure 4(c). The image of theCVSchrödinger cat state is visible as a discrete grid, with theDVWigner function
for the state at every point.

Given the difference in the local correlations between the two choices of CVqubit, it is nowworthwhile to
demonstrate how the signature of the non-local correlations differ for the coherent state CVqubits. The hybrid
analogue of a Bell state for coherent states, the Bell-cat state, is

b bñ ñ + - ñ ñ
1

2
. 14f a f a(∣ ∣ ∣ ∣ ) ( )

Sincemany of the correlations in this state are due to entanglement, the standard approach of using reduced
Wigner functions is insufficient, as seen infigures 5(a) and (b). Neither reducedWigner function has visible
quantum correlations, yielding twomixed states. This issuemotivated other approaches to tomography and
state verification for such states, for instance[40] used reducedCVWigner functions in different Pauli bases to
showBell’s inequality. Other tomographymethods for entangled hybrid systems, such as[47], also take into
consideration the problems of a reduced phase-space representation of a hybrid entangled state. Although
approaches such as these give a better appreciation of the quantum correlations, they still only provide glimpses
of the nature of the full quantum state.

Figure 4.Here is an example of theWigner representation of a Schrödinger cat state coupled to a qubit,
b bñ + - ñ ñ + ñ 2f f a a(∣ ∣ )(∣ ∣ ) , where bñ∣ is a coherent state centred atβ forβ=3. (a) shows the reducedCVWigner function and

(b) shows the reducedDVWigner function. (c) shows the hybridWigner function. The colour bar is white at 0with limits±2 for (a),
 +1 3 2( ) for (b), and +1 3( ) for (c).
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The hybridWigner function for (14) is shown infigure 5(c). Comparing our representationwith the reduced
Wigner function treatment, the quantum correlations are now visible,manifesting as interference terms
between the two coherent states. The nature of these quantum correlations is completely lost when the full
Wigner function is not generated. Further, within the quantum correlations, the qubit states approach traceless
states, as infigures 1(d)–(f), where the state at the very centre,α=0, is in fact the sxˆ Paulimatrix. It is important
to note at this point that themanifestation of traceless here, found only in the hybrid phase-space picture, are a
signature of quantum correlations. Some existing tomographymethods can pick up these correlations, however
their full nature is not captured. For example,measuring the reducedWigner functions results in a loss of
quantumand classical correlations, as demonstrated infigures 5(a) and (b). Thismakes classical and quantum
correlations, for this kind of state, indistinguishable. The ability to obtain signatures to distinguish between
classical and quantum correlations is important in determining the suitability of states in quantum information
processing.

To highlight this, we now consider two further examples of states that have the same reducedCV andDV
Wigner functions. Though the degree of quantum correlations differ for each state. The general state is

b b h b b h b b b bñá ñá + ñá- ñá + - ñá ñá + - ñá- ñáe e e g g e g g
1

2
, 15f a f a f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

where η determines the purity of the state.When η=1 (15) reduces to (14). Changing the value of the loss to
η=0.5 and then to η=0,figures 5(d) and (e) are, respectively, generated. In both, it is clear that the quantum
correlations are slowly lost. The loss of quantum correlationsmeans these states are less useful for quantum
information purposes, and analyzing the reducedWigner functions, unlike our approach, does not provide any

Figure 5.Here are examples of theWigner representation of a lossy entangled Bell-cat state, with varying values of loss. (a) shows the
reducedCVWigner function and (b) shows the reducedDVWigner function. The reducedWigner functions remain the same for the
following three example states. (c) shows the fullWigner function for the state with no loss a añ ñ + - ñ ñ 2f a f a(∣ ∣ ∣ ∣ ) . (d) shows
partial loss of the quantum correlations. (e) shows a fullymixed version of the state b b b bñá ñá + - ñá- ñáe e g g 2f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) . The
colour bar is white at 0with limits±2 for (a),  +1 3 2( ) for (b), and +1 3( ) for (c).
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insight to this loss. By using ourmethod to represent the fullWigner function, it is not only possible to
distinguish the strength of the quantum correlations but, the signature of classical correlations is revealed.

Infigure 5(e) is the state

b b b bñá ñá + - ñá- ñáe e g g
1

2
16f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

that describes the equal classical probability offinding an excited state atβ and a ground state at b- . The classical
correlations that correspond to this probability is shown in our full picture of theWigner function, where the
bñf∣ coherent state is correlatedwith ñ∣ a states, likewise the b- ñf∣ coherent state is correlatedwith ñ∣ a states.
This process not only reveals that this is the signature of classical correlations, it verifies the case that the traceless
states between the two states are a result of the quantum correlationswithin the hybrid system.

4. The Jaynes-Cummingsmodel

Light-matter interaction in the formof quantum electrodynamics (QED) has been an experimental cornerstone
in understanding quantum effects. It has also given a helping hand in the development of quantum information
applications, such as single-photon quantumnon-demolitionmeasurements acting as two-qubit gates between
microwaves and atoms [35]. The standard example of aQED interaction between a two-level DV system and a
CVfield is the Jaynes–Cummingsmodel [36]. Jaynes–Cummings type interactions are the basis for the
generation of non-Gaussian states and arewell known for showing the collapse and revival of Rabi oscillations
[66, 77, 78] throughout its evolution. During this evolution, quantum information is transferred back and forth
between theCV andDV systems; through this process, quantum information can thenmanifest as a
Schrödinger cat state or generate Bell pairs of the sort shown infigure 3(i). By using ourmethods, the transfer of
quantum information can be visualized as is swaps between themicrowave field and the atom.

The interaction picture of the Jaynes–Cummingsmodel

w s s= +- +H a a , 17JCˆ ( ˆ ˆ ˆ ˆ ) ( )†

will be used, whereω is the field-qubit coupling constant, and the operators s s s=  i 2x yˆ ( ˆ ˆ ) are the qubit
raising and lowering operators that transition the state between eigenstates of szˆ .

Following the example given insection 3, we consider a Fock state basis tomodel the Jaynes-Cumming
model. Choosing the initial state in the field to be a vacuum state and coupling it to an excitedDVqubit results in
an evolution that fluctuates between ñ ñ0 f a∣ ∣ and ñ ñ1 f a∣ ∣ [35], as shown infigures 2 and 3(d)–(g) respectively.
Thismeans that the evolution can be fully describedwith the two levels of the Fock state qubit and theDVqubit,
allowing us to consider this as an exchange between two qubits.

Thefluctuation as part of thismodel results in the system continuously transferring quantum information
between the two qubits, where the state at time t is

w wY ñ = ñ ñ - ñ ñt t tcos 0 isin 1 , 18f a f a∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )

returning to the initial state at p w=t . A video of this evolution is given in supplementarymaterial. As the
information transfers between these two states, throughout one period, two entangled Bell-Fock states are
generated

F ñ = ñ ñ  ñ ñ 1

2
0 i 1 , 19f a f a∣ (∣ ∣ ∣ ∣ ) ( )

where the fullWigner functions for these states are shown infigure 6. Both of these states have the same reduced
Wigner functions, which are not shown here since all Bell-Fock states have the same reducedWigner functions,
shown infigures 3(g) and (h).

During Jaynes–Cummings evolution, the first of the Bell-Fock states appears at w p= -t 41 , where the state
w pY ñ = F ñ- -41∣ ( ) ∣ . This first Bell-Fock state is shown infigure 6(a), the second w pY ñ = F ñ- +3 41∣ ( ) ∣ is given

infigure 6(b). Comparing these two states tofigure 3(i), even though the reducedWigner functions are identical,
the difference the phase plays in the full hybridWigner functions is apparent. Extrapolating to another choice of
phase, for example ñ ñ - ñ ñ0 1 2f a f a(∣ ∣ ∣ ∣ ) , the full hybridWigner function is similar tofigure 3(i)with each
of theDVWigner functions pointing in the orthogonal directions. The quantum correlations that arise in this
formof hybrid systemhave a unique signaturewhich can best be described as a twisting of theDVWigner
function at points in CVphase space.

We now consider the JCMevolutionwith a different initial state. The vacuum state is replaced by a coherent
state, giving the initial state bñ ñf a∣ ∣ , where againβ=3. This choice of initial state produces very different effects
in the Jaynes-Cummingmodel, such as the collapse and revival of the Rabi oscillations, where the revival of the
Rabi oscillations happen at time tr. Three noteworthy snapshots, points within the evolution, of the Jaynes–
Cummingsmodel are shown infigure 7, indicated by the three vertical lines infigure 7(a), showing the value of

9

J. Phys. Commun. 4 (2020) 025002 RPRundle et al



Figure 6.Herewe show theWigner functions for two points in the evolution of the Jaynes–Cummingsmodel with initial state
ñ ñ0 f a∣ ∣ . During the evolution of the Jaynes–Cummingsmodel with this excited state, two entangled Bell-Fock states are generates

before returning to the initial state again. The two entangled Fock-States are shownhere, where thefirst one in (a) is the state
ñ ñ - ñ ñ0 i 1 2f a f a(∣ ∣ ∣ ∣ ) . The second entangled Bell-Fock state in the evolution is shown in (b), where the state is
ñ ñ + ñ ñ0 i 1 2f a f a(∣ ∣ ∣ ∣ ) . The signature of entanglement in these states can be seen in theDVWigner function dependence on the

value of theCVWigner function, similarly to the example state in figure 3(i).

Figure 7.Herewe show theWigner functions for three points in the evolution of the Jaynes–Cummingsmodel with initial state
bñ ñf a∣ ∣ , whereβ=3. (a) shows the qubit inversion, sá ñzˆ , in red and the vonNeumann entropy in cyan over time. tr is the revival time
of the Rabi oscillations. Three solid lines are shown in (a) that indicate the different point in the evolutionwherewe have displayed the
Wigner functions. The reducedWigner functions are then given below (a), where the reducedCVWigner functions are in (b), (e), and
(h). The reducedDVWigner functions are in (c), (f), and (i). The hybridWigner functions for the coupled system are in (d), (g), and
(j). The values for the colours correspond to the same values in figures 4 and 5.
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the vonNeumann entropy (cyan) and qubit inversion, sá ñzˆ , (red) at each point in the evolution. For each of the
snapshots the reducedWigner functions are figures 7(b), (e), and (h) for theCV system, and figures 7(c), (f), and
(i) for theDVqubit. Infigures 7(d), (g), and (j) are the fullWigner function for each of these snapshots.

Thefirst snapshot is early on in the evolution, »t t 9r , where there is a high degree of coupling between the
two systems. The reducedWigner functions infigures 7(b) and (c), indicate that something approaching a
Schrödinger cat state forming in theCV system; where theDVqubit is in a highlymixed state. All that can be
deduced from the reducedWigner functions then is that there are correlations between the qubit and the field
mode; the nature of the quantum correlations remains hidden.

Evaluating the fullWigner function infigure 7(d), a better appreciation of the quantum correlations at this
point in the evolution can be obtained. TheDV spin direction at the top of theCVWigner functions are
orthogonal to those in the bottomof theCVWigner function.Where at the top, the spins point in the direction
of the negative eigenstate of s ;xˆ at the bottom they point in the positive eigenstate of sxˆ . The correlations found in
themiddle infigure 7(d)match the quantum correlation signature for a coherent state qubit, as they are of a
form similar to the traceless states infigure 1.

The second snapshot of the Jaynes–Cummingsmodel, »t t 2r , is where thefieldmode and the qubit
disentangle, transferring the quantum correlations to form aCVSchrödinger cat state. Presence of this
Schrödinger cat state is immediately visible in the reducedCVWigner function infigure 7(e). The reducedDV
Wigner function infigure 7(f) has now increased in both negative and positive amplitudes, rotating to the
eigenstate of syˆ with eigenvalue−1. The return of coherence of theDVqubit is a good indication that the
correlations between the two systems have decreased.

Both of the reducedWigner functions infigures 7(e) and (f) suggest that this state is similar to the example
state infigure 4, which is approximately separable. Observation of figure 7(g) confirms this suggestion, butmore
detail can still be found. Although very few correlations appear between the two subsystems, some residual
quantum correlation has remained between the two. These correlations are found in the slight twisting of the
qubits around the two cats andwithin the quantum correlations in between.

Thefinal snapshot occurs at the revival of the Rabi oscillations, »t tr, where the qubit state is closest to the
initial state within the revival. Infigure 7(i) the average spin is pointing in the direction of an excited state ñ∣ a,
however, there is a loss of coherence associatedwith the decrease in amplitudes and no negative values. The full
Wigner function reveals why the coherences in the reducedDVWigner function have formed. Atmost points in
the fullWigner function, theDVWigner function is in the excited state, however atmany points there are
rotations in the qubitWigner functions, indicating some residual quantum correlations. The strongest coherent
states are found on the left-hand side, where it appears the state is returning to the initial state of a coherent state
coupled to ñ∣ a.

The quantum correlations that accompany the two choices of CVqubits have a somewhat different nature
however their signatures are distinguishable when considering the fullWigner function. The correlations for the
Fock state qubits show a dependence on each other, arising due to the non-separability of the state. This closely
resembles the pattern found in spin-orbit coupled states [38], and is comparable to spin texture images. The
fundamental signatures come from the behaviour of the coherences and correlations within and between the
systems. The formof theWigner function of a two-mode squeezed state, although lacking negative values due to
it beingGaussian, resembles the signature identified for the Bell-Fock states; the spatial dependence of one
system affecting the state in the other system.

5. Conclusions

By plotting the information generated by calculating theWigner function for aCV-DVhybrid system,we have
shown that the usual techniques for visualizing these systemsmisses the full nature of the quantum correlations
that arise. For example, themost common technique of generating the reducedWigner function causes the
correlations that arise between the systems to be traced out. Tracing out a system results in a loss of correlations
that can be found between the two systems. Amethod to overcome this loss of informationwas presented in
[38], but an envelopewas applied setting the transparency of the points in phase space according to the reduced
Wigner function for theCVdegrees of freedom aWf ( ). Here thismethod has been developed, changing the
envelope to instead be proportional to a q fq f rWmax , ,, ∣ ( )∣ˆ at each point inCVphase space. This adjustment
further allows us to visualize the quantum correlations present inCV-DVhybrid states, such as those that
manifest between the two coherent states in a hybrid Schrödinger cat state. Doing thismeans it is possible to gain
amore full picture of the correlations that arise in the interaction betweenCV andDV systems. Aswell as
allowing us to characterize signatures of quantum correlations found in certain systems; a result that promises
potential usefulness in analyzing the correlations inmaximally entangled states and entanglement as a result of
squeezing. Being able to visually determine the level of quantum correlations, not always clear in coupled
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systems, gives significant advantage over reducedWigner functionmethods that do not always detect the purity
of Bell-cat like entanglement.

By demonstrating thesemethodswithin the Jaynes–Cummingsmodel, we showhow excitations are shared
and swapped, demonstrating a visual representation of the transfer of quantum information between systems.
Extending thesemethods to different systems, will allow for amore intuitive picture of howquantum
informationmoved around coupled systems, providing further insight into the inner process of quantum
processes and algorithms.

There have been previous experimental examples which have used phase space to investigate the types of
state considered in this paper. One notable example is [47], from a sequence ofmeasurements of the expectation
values of the qubit in different bases, they have been able to recreate theCVWigner function. Using a similar
procedure with our generalized displaced parity operator, it should be possible to extend this to produce
experimental results equivalent to those in this paper. This technique could be considered to be a formof
quantum state spectroscopy.
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