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In this work we construct Wigner functions for hybrid continuous and discrete variable quantum
systems. We demonstrate new capabilities in the visualization of the interactions and correlations
between discrete and continuous variable quantum systems, where visualizing the full phase space has
proven difficult in the past due to the high number of degrees of freedom. Specifically, we show how to
clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-
cat state. We further show how correlations are manifested in different types of interaction, leading to
adeeper understanding of how quantum information is shared between two subsystems. Under-
standing the nature of the correlations between systems is central to harnessing quantum effects for
information processing; the methods presented here reveal the nature of these correlations, allowing a
clear visualization of the quantum information present in these hybrid discrete-continuous variable
quantum systems. The methods presented here could be viewed as a form of quantum state
spectroscopy.

1. Introduction

Quantum correlations have become central to the design and manufacture of various quantum technologies
[1-4]. Whether these quantum correlations are found between macroscopically distinct superpositions of states,
also known as Schrodinger cat states, or in the entanglement between multiple systems. Currently, such
technologies can be broadly categorized as being based on either continuous-variable (CV) or discrete-variable
(DV) quantum systems.

For CV systems, the primary focus has been on quantum optical systems; manipulating coherent states of
light for various quantum information processing applications [5-8]. In such systems, the Wigner function
[9, 10] is commonly used due to its ability to display an intuitive representation of a quantum state. Furthermore,
the Wigner function is particularly good at revealing coherences and correlations, such as squeezing and
superposition [11]. For these reasons, it has become a fundamental tool in the ‘search’ for Schrodingers cats [12],
readily identified by the iconic interference patterns arising from its quantum correlations.

By contrast the focus for DV systems has been on exploiting two-level quantum systems—qubits—in order
to generate a quantum analogue of the classical bit [2, 13, 14]. Here, the Wigner function has received little
attention as a means of visualization. Unlike the case of CV systems, there are two common approaches for
generating informationally complete DV Wigner functions, both of which have found application. The
approach developed in [15, 16] uses discrete degrees of freedom and has proven useful for quantum information
purposes, particularly in the case of contextuality and Wigner function negativity [17—19]. The second approach
(and the one used in this work) uses a DV Wigner function with continuous degrees of freedom, similar to the
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Bloch sphere [20-26]. For example, there have been various proposals put forward that use a continuous Wigner
function to reveal correlations between DV systems [26—28]. These methods have further been validated
through the direct measurement of phase-space to reveal quantum correlations [28-31]. Recently this has been
extended to experiments validating atomic Schrddinger cat states of up to 20 superconducting qubits [32].

A case that has not been explored in much detail is the phase-space representation of CV-DV hybridization.
This hybridisation is seen in many applications of quantum technologies, including simple gate models for
quantum computers, such as hybrid two-qubit gates [33, 34], and CV microwave pulse control of DV qubits
[35]. The generation of hybrid quantum correlations within CV-DV hybrid’ systems commonly takes place
within the framework of cavity quantum electrodynamics, that describes the interaction between a two-level
quantum system and a single mode of a microwave field. These models can be further used to describe the effect
of circuit quantum electrodynamics, and to consider the interaction of the microwave field with an artificial
atom. Analyzing these interactions within the framework of the Jaynes—Cummings model [36] allows us to
display how quantum information is shared between the CV and DV systems.

A number of papers [23, 24, 37] have shown the mathematical construction of hybrid states within the phase
space, these have been constructed without giving a way to visually display the degrees of freedom of such
composite systems. A method for displaying states with heterogeneous degrees of freedom, using the Wigner
function, came from the application of composite phase-space methods to quantum chemistry [38]. The
technique presented here is based on this approach, however in [38], reduced Wigner functions are used and an
envelope is further applied, potentially losing many of the non-local correlations that arise due to entanglement.
Other methods for combining CV Wigner function tomography with other representations of DV systems have
been created [39-41], however, only the CV system was treated using the Wigner function formulation. The
visualization technique used in [38] displays heterogeneous degrees of freedom, highlighting the power of a
hybrid Wigner function approach for visualizing correlations. This approach also demonstrates how many of
the correlations are lost when using standard phase-space methods, such as the reduced Wigner function. A
hybrid phase-space representation, of all the information within these hybrid systems, is crucial for a more
complete understanding of CV-DV hybridization, and its physical properties [42—44]. This understanding will
be especially helpful for advancing quantum technologies [34, 45-48], in particular quantum communication
where CV-DV hybridization has been used for teleportation [49-51] and entanglement distillation [52—-54].

Using the procedure laid out in [24] to generate any quantum state in phase space, and adapting the
visualization method from [38], we show how the Wigner function of a hybrid system can be intuitively
represented. We begin by presenting examples of important states for CV and DV systems, illustrating how our
representation makes correlation information clear. We extend our analysis using the Jaynes—Cummings model
to show how intuitive this representation can be. The results open new directions for the use of phase-space
methods in hybrid quantum systems.

2. The Wigner function

The Wigner function is traditionally introduced as the Fourier transform of an autocorrelation function [9, 55].
Here it is more suitable to consider a general Wigner function of some arbitrary operator A, defined as [56]

W4(Q) = Tr[A ()], (1)

where T1(Q) is the displaced parity operator for some parameterization of phase space 2. The displaced parity
operator is defined through displacing a generalized parity operator [24], and for the CV Wigner function is [57]

M() = 2D(a)11; D' (a), ©)

where f[f = 32 (= 1)]4) (|, written here as an operator in the Fock basis, is the usual parity operator that
reflects a point through the origin and

D(a) = exp (ad® — o*d) (3)

is the standard CV displacement operator written using the annihilation and creation operators, @ and 4,
respectively. Note that we have introduced the subscript f, for ‘field’, to indicate CV systems. The displacement
operator can be used to define a coherent state [57]

1B) = D(B)|0)y, (4)

as the displacement of the vacuum state, |0);, generating a new coherent state | 3)r.
Asshown in [23,24], a similar approach to (2) can be used to generate Wigner functions for arbitrary
quantum systems. For two-level DV systems, for example,

> From now on, we shall refer to CV-DV hybrid states as simply ‘hybrid states’, dropping ‘CV-DV’.
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Figure 1. Shown here are six example qubit Wigner functions using the Lambert azimuthal equal-area projection, that maps a sphere
onto a circle where the north pole is mapped to the centre and the south pole is on the perimeter. Three single-qubit pure states are
shownin (a)—(c), where (a)and (b) are the eigenstates of &,, | T) ,and || ), with eigenvalues 1 respectively. (c) is the equal
superposition of the states in (a) and (b), (|1)s + |1)a)/ V2. (d)—(f) show the qubit Wigner functions of the three Pauli matrices, 6y,
&,,and &, respectively.

11,06, $) = U6, ¢, D)L U8, ¢, ®), (5)

where the generalized parity, I1,,fora single, two-level, systemis [T, = (I + v38,)/2 [23,24, 28], fora full
derivation of the kernel see [58]. Note that the subscript a here indicates that this is a state for the ‘atom’, or DV
system. The analogue of the displacement operator, U (6, ¢, ®), given in terms of Euler angles, is

U0, ¢, ) = exp(i6, ¢) exp(id, 0) exp(io, P) (©)

for the standard Pauli matrices 6, and 4,. Note as the parity operator commutes with &;, the ® term does not
contribute, and the DV Wigner function depends only on 6 and ¢, allowing it to be plotted on the surface of a
sphere. Note that by DV Wigner function, we mean the Wigner function for DV systems; the Wigner function
used here is however parameterized over the continuous variables # and ¢.

figure 1 shows examples of the DV Wigner function generated by (5) for some simple qubit states. Each of
the DV Wigner functions presented in figure 1 is plotted following [59], using the Lambert azimuthal equal-
area projection [60]. This projection is area preserving and maps the surface of a sphere to polar coordinates,
with the north pole mapped to the centre of the disc and the south pole to the outer boundary. The equator of the
sphere is projected onto a concentric circle, with a radius 1/+/2 times the radius of the entire circle, this is
explicitly seen as the white circle in figure 1(f). This means that the Lambert azimuthal equal-area projection
allows us to view the entire surface of the sphere as a circle. The reason for using this area-preserving mapping,
rather than an angle-preserving mapping, is because we are dealing with a probability distribution function. By
definition, the integral over a volume determines the probability; area-preserving therefore translates into
probability-preserving. A consequence of this mapping is that in some regions of phase space, the quasi-
probability distribution appears warped. For instance, the first three states in figures 1(a)—(c) are all rotations of
one another on a sphere.

The DV Wigner functions presented in figures 1(a)—(c) are standard two-level quantum states, where
figures 1(a) and (b) are the £1 eigenstates of the 6, operator, | 1) ,and | | ), respectively. The state in figure 1(c) is
the equal superposition of | 1) ,and | | ), or the positive eigenstate of 6. In all the presented states, there are
negative values in the DV Wigner function. Importantly, in the DV Wigner function for qubits, negative volume,
as well as being an indicator of non-classicality, is also a measure of purity [37]. This is because discrete system
coherent states are fundamentally quantum; regardless of whether the system is the polarization of a photon or
the direction of spin in an electron.

More generally, in both CV and DV Wigner functions, negative values arise as a consequence of self-
interference. In the CV Wigner function this arises from non-Gaussianity [61], and can be seen in the Fock states
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(a)

Figure 2. Example Wigner function for the product of the CV vacuum state and a DV excited state, |0)|T),, where (a) and (b) show the
reduced Wigner functions for the continuous-variable (CV) and discrete-variable (DV) Wigner functions respectively. In (c) is the full
Wigner function of the hybrid system, where the CV phase space is split up as a discrete grid. At each of these discrete points the DV
Wigner function at that point in phase space is plotted. The transparency of each of the DV Wigner functions is proportional to the
maximum quasi-probability at that point in CV phase space. The colour bar is white at 0 with limits 42 for (a), (1 + /3 /2 for (b),
and (1 + /3) for (c).

(excluding the vacuum state) or in superpositions of Gaussian states, see figure 3 for an example, discussed later
in the paper. This explains why negative values have been used as a measure of quantumness, however there is
one notable exception, the non-negative, entangled, Gaussian CV two-mode squeezed state.

Since the Gaussian states of a DV Wigner function can be visualized on a sphere, the emergence of self-
interference is now inevitable, due to the inherent geometry of the sphere. For example, the Wigner function for
the state | 1) , has a Gaussian distribution centred at the north pole; as this Gaussian distribution tends towards
zero, near the south pole, there is an emergence of negative quasi-probabilities. This negativity in the Wigner
function is manifested as a result of self-interference, as the quantum coherences interfere with each other at the
south pole. As the number of levels is increased (from the two-level system) in the DV Wigner function and take
the infinite limit’, the SU (2) DV Wigner function tends towards the Heisenberg-Weyl group, returning to the
standard CV Wigner function. This is because the effective size of the sphere increases, decreasing the relative
size of the Gaussian. In the infinite limit, the negativity in the Wigner function is completely eliminated, since the
Gaussian can no longer interact with itself on the opposite side of the sphere.

Although the example states so far have been density operators for pure states, the general formalism in (1)
allows for the Wigner function to be generated for any arbitrary operator. To emphasize this, in figures 1(d)—(f)
are the DV Wigner representation of each of the three Pauli operators. In general, Wigner function exhibit the
normalization condition

f dQ Wi(Q) = Tr[A]. @
Q

For normal density operators, this yields unity, as would be expected for any probability distribution function.
For the Pauli operators however, Tr [6;] = 0, wherei = {x, y, z}, therefore j; , dQ W;(2) = 0.The
tracelessness of these matrices can be seen in figures 1(d)—(f) by noting that the negative and positive volumes are
equivalent and therefore cancel. This feature will be key to several of our observations later in this work.

For a CV-DV hybrid system, the total displaced parity operator is simply the tensor product of the displaced
parity operator for each subsystem [23, 24, 28]

I, 0, ¢) = Ip(e) @ I (0, ), ®)
yielding a hybrid Wigner function for a density matrix p
Wy(a, 0, ¢) = Tr[p (a, 0, §)]. ©)

Hybrid systems generated with (9) usually have more degrees of freedom than is convenient to plot. For this
reason, many approaches that use phase-space methods to treat hybrid systems use reduced Wigner functions,
rather than considering the full phase space of the composite system. To give a full picture of the quantum
correlations found between the two systems, a method similar to that introduced in [38] can be used. As an
example of the utility of this method, the fully separable state, |0)| T),, is shown in figure 2. The reduced Wigner
functions for CV and DV degrees of freedom are presented in figures 2(a) and (b) respectively. In figure 2(c) we
apply the method first presented in [38] to plot the phase-space representation of this state.

Specifically, figure 2(c) was created by first dividing the CV phase space into discrete points on a rectangular
map. Each of these discrete points is then associated with a discrete complex value v, equally spaced across the

® The general Wigner function for any system in the displaced parity formalism can be found in [24].
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phase space grid. For each set point a, the values of the Wigner function for # and ¢ degrees of freedom are
calculated, with the Wigner function at that point plotted using the Lambert projection. This produces a DV
Wigner function at each o in CV phase space. The transparency of each disc is then set proportional to the
absolute maximal value of the phase space at that point, maxy 4| W;(c, 8, ¢)|. For example, to generate the disc
at the centre of figure 2(c), we calculate W, (a = 0, 0, ¢), resultingin a DV Wigner function for | 1) ,, and then
modify the amplitudes of the quasi-probabilities using the value of cv. This is then repeated for every .. Note that
amain difference between the plots presented here and in [38] is that the transparency of the DV Wigner
functions in [38] is set proportional to | Wy () |. Using the method presented here allows for a clearer view of the
quantum correlations that manifest.

Since the state being plotted here is a pure separable state, the Wigner function can be expressed as

Wi(a, 8, ¢) = W, (@) W, (0, ¢), (10)

where py and f, are the reduced density matrices for the CV and DV systems respectively. As a result, figure 2(c)
has the same form as a coherent state, dictated by the CV Wigner function, with every point in phase space
havingan | 1) , DV Wigner function. The difference in this method, in comparison to [38], is that here the
transparency is not set by integrating out the qubit degrees of freedom; such an approach leads to aloss of
quantum correlations in the systems of interest.

3. Visualizing correlations in hybrid quantum systems

Quantifying different types of correlations in quantum systems is a key area of research that has received a great
deal of attention [62—69]. In parallel, phase-space methods have been utilized as a tool to identify and categorize
quantum correlations [41, 70-73]. Further, these methods have been used to generate measures based on the
emergence of negative quasi-probabilities in the Wigner function [37, 74—76]. However, due to the higher
number of degrees of freedom, visually representing correlations in composite systems is more difficult. We now
show how our technique produces definite signatures of both quantum and classical correlations, that can be
discerned for hybrid quantum systems. When dealing with quantum information processing with two coupled
qubits, the distinction between these two types of correlations is important. Beginning with how correlations
thatarise from superposition appear, we will describe our choices of DV and CV qubits and how the encoding of
quantum information is represented on these qubits.

Certain similarities are seen between DV and CV systems, whether in structure, choice in qubit, or in
appearance of the quantum correlations that manifest. These similarities will be demonstrated here, by showing
how quantum information can be encoded onto different types of state. Encoding quantum information onto
quantum states can be done in various ways, including a variety of approaches even within the same system [45].
We will therefore begin by using the simplest case of a DV qubit for quantum information processing. Since the
DV systems used here are two-level systems, the encoding of quantum information is straightforward; a bit value
0 or 1is simply assigned to each of the two levels, | T) ,and | | ), respectively. The DV Obit is now represented
visually by figure 1(a), likewise the 1 bit value is represented by figure 1(b). Furthermore, a general pure
superposition state

q |T)a + ball)as an

where |a /> + |b,)> = 1,allowing any weighted superposition between 0 and 1. When a, = b, = 1/+/2,an
equal superposition is yielded and is represented visually by figure 1(c).

This binary choice becomes more complicated when assigning bit values to a CV qubit. Although, there are
various ways to encode quantum information onto a CV system creating similarities between CV and DV
systems. Since the Hilbert space is infinite, there are different constraints on assigning qubit values. We will now
demonstrate two examples of CV qubits, comparing the results with the DV qubits

3.1. Fock state qubits

Fock states are orthogonal and therefore a natural choice for quantum information processing. For simplicity we
consider the vacuum and one-photon Fock states, |0)r and | 1) respectively. We can now form the analogy with
the DV qubit state by assigning bit values to these states 0 — [0)pand 1 — [1)y.

Comparison of the Wigner functions for the DV and the CV Fock qubits can be found in figures 2(a) and (b);
where in the Lambert projection, the DV qubit in figure 2(b) has a similar Gaussian form as the vacuum state in
figure 2(a). In fact, the DV qubit basis states are discrete analogues of the Fock states. Therefore, the presence of
the negative values in the DV qubit states becomes more apparent by considering the one-photon Fock state | 1)
and the DV qubit state | | ), (in figures 3(a) and (b) respectively). The orientation of the DV qubit is somewhat
arbitrary, the | 1) ,and | | ), states are orthogonal rotations of one another; therefore, the DV qubit states share

5
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Figure 3. Examples of Fock states coupled to DV qubits. (a) - (c) show the state | 1) ),. (d)=(f) are the state

10) + 1)) + [1)a) /2. (g)-(i) are the entangled state (|0);T)a + [1)r]1)a) /2. (2), (d), and (g) show the reduced CV Wigner
functions, (b), (e), and (h) are the reduced DV Wigner functions and (c), (f), and (i) are the full hybrid Wigner functions. The colour
bar is white at 0 with limits 2 for the reduced CV Wigner function, -=(1 4 +/3) /2 for reduced DV Wigner function, and

+(1 + +/3) for hybrid Wigner function.

properties of both the |0) and | 1) Fock states. This analogy can be seen further in figures 3(d) and (e), where the
Wigner functions for the states (|0); + |1)7) /2 and (|T), + ||)s)/~/2 are shown respectively.

Also in figure 3, we show the hybrid Wigner functions for these states. In figure 3(c) we show the product of
figures 3(a) and (b). The product of figures 3(d) and (e) is shown in figure 3(f). Since in both cases the CV and DV
qubits are separable and therefore follow (10), the pattern of the hybrid phase space is similar to that found in
figure 2. The separability is evident by the existence of a DV Wigner function at every point in CV phase space,
with the amplitude modulated by the CV Wigner function at that point. For both of the hybrid Wigner functions
in figures 3(c) and (f), the negative regions in the CV Wigner functions affect the sign of the DV Wigner function,
causing there to be a negative prefactor whenever W, (a) < 0, inverting the positive and negative quasi-
probabilities at those points in CV phase space.

Having established that the hybrid Wigner function allows local correlations to be discerned reliably, we now
demonstrate how quantum correlations arising between subsystems in this type of hybrid system manifest.
Entanglement in Fock hybrid states, a Bell-Fock state’, (|0)]|T), + |1)¢]])a) /v/2 ,is shown in figure 3(i). The full
Wigner functions for bipartite Bell-Fock states have a distinctive pattern, reminiscent of the spin-orbit coupled
state from [38], where there is a twisting of the DV Wigner functions dependent on the point in CV phase space.
This DV dependence on the CV Wigner function is indicative that (10) does not hold for this state. This means
that the state in question is not separable, and since this state is a pure state this indicates coupling between the
two subsystems. This is a signature one should look for when investigating quantum correlations in this type of
hybrid state.

Comparing the hybrid Wigner function in figure 3(i) to the reduced Wigner function for the CV and DV
qubits in figures 3(g) and (h) respectively, we see the importance in considering the full phase space for entangled
states such as this. It can be seen in figures 3(g) and (h) how correlations between the two systems are lost when
considering the reduced Wigner functions, leaving only statistical mixtures of the basis states in each case.

7 Bell state for an entangled DV qubit with a CV Fock qubit.
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(a)

Figure 4. Here is an example of the Wigner representation of a Schrodinger cat state coupled to a qubit,

(18) + 1=B))(T) + |1)a) /2, where | 3) isa coherent state centred at 3 for 3 = 3. (a) shows the reduced CV Wigner function and
(b) shows the reduced DV Wigner function. (c) shows the hybrid Wigner function. The colour bar is white at 0 with limits &2 for (a),
+(1 4 /3) /2 for (b),and (1 + +/3) for (c).

3.2. Coherent state qubits
Another choice in creating a CV qubit is to encode quantum information onto coherent states [5, 6]. Unlike with
the Fock CV qubit, the coherent state basis is an overcomplete basis where there is some degree of overlap
between any two coherent states. However with sufficient distance between two coherent states, this overlap is
negligible. For simplicity, our example states will be real values of 3, where the two levels are set to the
values 6; = — (3, = (.

We then label each of the coherent states as a certain bit value; for instance 0 — (;and 1 — (3,. This creates
aqubitin the form of a Schrédinger cat state [6], with the general qubit state being

ar |B)r + by |-0B)> (12)

asin (11). This means that there is a coherent state at when a; = 1and a coherent state at — 3 when by = 1. The
superposition state af = by = 1 / V2 produces the Schrodinger cat state shown (for 3 = 3)in figure 4(a).

Coupling the CV and DV qubits in figgures 4(a) and (b) generates the full Wigner function in figure 4(c).
Explicitly, this is the state

%aﬁ» =BT + 11a). (13)

Since the full system is a simple tensor product of the two qubits, the subsystems are separable, resulting in a full
Wigner function that obeys (10). The separability between these states is seen in the full Wigner function in
figure 4(c). The image of the CV Schrédinger cat state is visible as a discrete grid, with the DV Wigner function
for the state at every point.

Given the difference in the local correlations between the two choices of CV qubit, it is now worthwhile to
demonstrate how the signature of the non-local correlations differ for the coherent state CV qubits. The hybrid
analogue of a Bell state for coherent states, the Bell-cat state, is

1

V2

Since many of the correlations in this state are due to entanglement, the standard approach of using reduced
Wigner functions is insufficient, as seen in figures 5(a) and (b). Neither reduced Wigner function has visible
quantum correlations, yielding two mixed states. This issue motivated other approaches to tomography and
state verification for such states, for instance [40] used reduced CV Wigner functions in different Pauli bases to
show Bell’s inequality. Other tomography methods for entangled hybrid systems, such as [47], also take into
consideration the problems of a reduced phase-space representation of a hybrid entangled state. Although
approaches such as these give a better appreciation of the quantum correlations, they still only provide glimpses
of the nature of the full quantum state.

UB)1M)a + 1=B)slL)a)- (14)
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[(2)

Figure 5. Here are examples of the Wigner representation of a lossy entangled Bell-cat state, with varying values of loss. (a) shows the
reduced CV Wigner function and (b) shows the reduced DV Wigner function. The reduced Wigner functions remain the same for the
following three example states. () shows the full Wigner function for the state with noloss (|a)s| T)a + [—a)|1)a) / J2.(d) shows
partialloss of the quantum correlations. () shows a fully mixed version of the state (| 3) (B1sle) (ela + |—08) (—B1flg) (gla) /2. The
colour bar is white at 0 with limits 42 for (a), (1 + /3) /2 for (b), and (1 + +/3) for (c).

The hybrid Wigner function for (14) is shown in figure 5(c). Comparing our representation with the reduced
Wigner function treatment, the quantum correlations are now visible, manifesting as interference terms
between the two coherent states. The nature of these quantum correlations is completely lost when the full
Wigner function is not generated. Further, within the quantum correlations, the qubit states approach traceless
states, as in figures 1(d)—(f), where the state at the very centre, & = 0, is in fact the &, Pauli matrix. It is important
to note at this point that the manifestation of traceless here, found only in the hybrid phase-space picture, are a
signature of quantum correlations. Some existing tomography methods can pick up these correlations, however
their full nature is not captured. For example, measuring the reduced Wigner functions results in a loss of
quantum and classical correlations, as demonstrated in figures 5(a) and (b). This makes classical and quantum
correlations, for this kind of state, indistinguishable. The ability to obtain signatures to distinguish between
classical and quantum correlations is important in determining the suitability of states in quantum information
processing.

To highlight this, we now consider two further examples of states that have the same reduced CV and DV
Wigner functions. Though the degree of quantum correlations differ for each state. The general state is

%(|/B><5|f|e><e|a + nB) (—Blrle) (gla + nl—8) (Blrlg) (ela + 1=5) (=Blrlg) (gla)s (15)

where 7 determines the purity of the state. When 1 = 1 (15) reduces to (14). Changing the value of the loss to

1 = 0.5and thenton = 0, figures 5(d) and (e) are, respectively, generated. In both, it is clear that the quantum
correlations are slowly lost. The loss of quantum correlations means these states are less useful for quantum
information purposes, and analyzing the reduced Wigner functions, unlike our approach, does not provide any
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insight to this loss. By using our method to represent the full Wigner function, it is not only possible to
distinguish the strength of the quantum correlations but, the signature of classical correlations is revealed.
In figure 5(e) is the state

§<|ﬂ><6|f|e><e|a +1-8) (— B 1g) (glo) (16)

that describes the equal classical probability of finding an excited state at $and a ground state at — 3. The classical
correlations that correspond to this probability is shown in our full picture of the Wigner function, where the

| 3)r coherent state is correlated with | T) , states, likewise the | — 3) coherent state is correlated with | | ), states.
This process not only reveals that this is the signature of classical correlations, it verifies the case that the traceless
states between the two states are a result of the quantum correlations within the hybrid system.

4. The Jaynes-Cummings model

Light-matter interaction in the form of quantum electrodynamics (QED) has been an experimental cornerstone
in understanding quantum effects. It has also given a helping hand in the development of quantum information
applications, such as single-photon quantum non-demolition measurements acting as two-qubit gates between
microwaves and atoms [35]. The standard example of a QED interaction between a two-level DV system and a
CV field is the Jaynes—Cummings model [36]. Jaynes—Cummings type interactions are the basis for the
generation of non-Gaussian states and are well known for showing the collapse and revival of Rabi oscillations
[66, 77, 78] throughout its evolution. During this evolution, quantum information is transferred back and forth
between the CV and DV systems; through this process, quantum information can then manifest asa
Schrodinger cat state or generate Bell pairs of the sort shown in figure 3(i). By using our methods, the transfer of
quantum information can be visualized as is swaps between the microwave field and the atom.

The interaction picture of the Jaynes—Cummings model

B = w@'s. + a5,), (17)

will be used, where w s the field-qubit coupling constant, and the operators & = (3, & i5;) /2 are the qubit
raising and lowering operators that transition the state between eigenstates of ,.

Following the example given in section 3, we consider a Fock state basis to model the Jaynes-Cumming
model. Choosing the initial state in the field to be a vacuum state and coupling it to an excited DV qubit results in
an evolution that fluctuates between |0)|T), and [1)¢] | ), [35], as shown in figures 2 and 3(d)—(g) respectively.
This means that the evolution can be fully described with the two levels of the Fock state qubit and the DV qubit,
allowing us to consider this as an exchange between two qubits.

The fluctuation as part of this model results in the system continuously transferring quantum information
between the two qubits, where the state at time ¢is

[W(t)) = cos(wn)|0)s[T)a — isin(w)|1)s]|)a> (18)

returning to the initial state at + = 7 /w. A video of this evolution is given in supplementary material. As the
information transfers between these two states, throughout one period, two entangled Bell-Fock states are
generated
1 .
|2%) = fqomm £ i [1)l1)a), (19)

where the full Wigner functions for these states are shown in figure 6. Both of these states have the same reduced
Wigner functions, which are not shown here since all Bell-Fock states have the same reduced Wigner functions,
shown in figures 3(g) and (h).

During Jaynes—Cummings evolution, the first of the Bell-Fock states appears at t = w™!7r/4, where the state
|¥(w™lmr/4)) = |®"). This first Bell-Fock state is shown in figure 6(a), the second |¥(3w ™7 /4)) = |®T)is given
in figure 6(b). Comparing these two states to figure 3(i), even though the reduced Wigner functions are identical,
the difference the phase plays in the full hybrid Wigner functions is apparent. Extrapolating to another choice of
phase, for example (|0)| ). — [1)f]]).)/~/2, the full hybrid Wigner function is similar to figure 3(i) with each
of the DV Wigner functions pointing in the orthogonal directions. The quantum correlations that arise in this
form of hybrid system have a unique signature which can best be described as a twisting of the DV Wigner
function at points in CV phase space.

We now consider the JCM evolution with a different initial state. The vacuum state is replaced by a coherent
state, giving the initial state | 3)¢| )q, where again 3 = 3. This choice of initial state produces very different effects
in the Jaynes-Cumming model, such as the collapse and revival of the Rabi oscillations, where the revival of the
Rabi oscillations happen at time ¢,. Three noteworthy snapshots, points within the evolution, of the Jaynes—
Cummings model are shown in figure 7, indicated by the three vertical lines in figure 7(a), showing the value of
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Figure 6. Here we show the Wigner functions for two points in the evolution of the Jaynes—Cummings model with initial state
[0)7]1)a- During the evolution of the Jaynes—Cummings model with this excited state, two entangled Bell-Fock states are generates
before returning to the initial state again. The two entangled Fock-States are shown here, where the first one in (a) is the state
(10)17) — i11)11))/~/2 . The second entangled Bell-Fock state in the evolution is shown in (b), where the state is

(10)1T)a + 111)|1)a) /<2 . The signature of entanglement in these states can be seen in the DV Wigner function dependence on the
value of the CV Wigner function, similarly to the example state in figure 3(i).

Figure 7. Here we show the Wigner functions for three points in the evolution of the Jaynes—Cummings model with initial state
|8)r11)a> where 3 = 3. (a) shows the qubit inversion, (8;), in red and the von Neumann entropy in cyan over time. ¢, is the revival time
of the Rabi oscillations. Three solid lines are shown in (a) that indicate the different point in the evolution where we have displayed the
Wigner functions. The reduced Wigner functions are then given below (a), where the reduced CV Wigner functions are in (b), (e), and
(h). The reduced DV Wigner functions are in (c), (f), and (i). The hybrid Wigner functions for the coupled system are in (d), (g), and
(j)- The values for the colours correspond to the same values in figures 4 and 5.
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the von Neumann entropy (cyan) and qubit inversion, (8;), (red) at each point in the evolution. For each of the
snapshots the reduced Wigner functions are figures 7(b), (e), and (h) for the CV system, and figures 7(c), (f), and
(i) for the DV qubit. In figures 7(d), (g), and (j) are the full Wigner function for each of these snapshots.

The first snapshot is early on in the evolution, ¢ ~ t, /9, where there is a high degree of coupling between the
two systems. The reduced Wigner functions in figures 7(b) and (c), indicate that something approaching a
Schrodinger cat state forming in the CV system; where the DV qubit is in a highly mixed state. All that can be
deduced from the reduced Wigner functions then is that there are correlations between the qubit and the field
mode; the nature of the quantum correlations remains hidden.

Evaluating the full Wigner function in figure 7(d), a better appreciation of the quantum correlations at this
point in the evolution can be obtained. The DV spin direction at the top of the CV Wigner functions are
orthogonal to those in the bottom of the CV Wigner function. Where at the top, the spins point in the direction
of the negative eigenstate of &;; at the bottom they point in the positive eigenstate of ;. The correlations found in
the middle in figure 7(d) match the quantum correlation signature for a coherent state qubit, as they are of a
form similar to the traceless states in figure 1.

The second snapshot of the Jaynes—Cummings model, ¢ & ¢, /2, is where the field mode and the qubit
disentangle, transferring the quantum correlations to form a CV Schrédinger cat state. Presence of this
Schrodinger cat state is immediately visible in the reduced CV Wigner function in figure 7(e). The reduced DV
Wigner function in figure 7(f) has now increased in both negative and positive amplitudes, rotating to the
eigenstate of &, with eigenvalue —1. The return of coherence of the DV qubit is a good indication that the
correlations between the two systems have decreased.

Both of the reduced Wigner functions in figures 7(e) and (f) suggest that this state is similar to the example
state in figure 4, which is approximately separable. Observation of figure 7(g) confirms this suggestion, but more
detail can still be found. Although very few correlations appear between the two subsystems, some residual
quantum correlation has remained between the two. These correlations are found in the slight twisting of the
qubits around the two cats and within the quantum correlations in between.

The final snapshot occurs at the revival of the Rabi oscillations, ¢ = t,, where the qubit state is closest to the
initial state within the revival. In figure 7(i) the average spin is pointing in the direction of an excited state | T) ,,
however, there is a loss of coherence associated with the decrease in amplitudes and no negative values. The full
Wigner function reveals why the coherences in the reduced DV Wigner function have formed. At most points in
the full Wigner function, the DV Wigner function is in the excited state, however at many points there are
rotations in the qubit Wigner functions, indicating some residual quantum correlations. The strongest coherent
states are found on the left-hand side, where it appears the state is returning to the initial state of a coherent state
coupledto | 1) ,.

The quantum correlations that accompany the two choices of CV qubits have a somewhat different nature
however their signatures are distinguishable when considering the full Wigner function. The correlations for the
Fock state qubits show a dependence on each other, arising due to the non-separability of the state. This closely
resembles the pattern found in spin-orbit coupled states [38], and is comparable to spin texture images. The
fundamental signatures come from the behaviour of the coherences and correlations within and between the
systems. The form of the Wigner function of a two-mode squeezed state, although lacking negative values due to
it being Gaussian, resembles the signature identified for the Bell-Fock states; the spatial dependence of one
system affecting the state in the other system.

5. Conclusions

By plotting the information generated by calculating the Wigner function fora CV-DV hybrid system, we have
shown that the usual techniques for visualizing these systems misses the full nature of the quantum correlations
that arise. For example, the most common technique of generating the reduced Wigner function causes the
correlations that arise between the systems to be traced out. Tracing out a system results in a loss of correlations
that can be found between the two systems. A method to overcome this loss of information was presented in
[38], but an envelope was applied setting the transparency of the points in phase space according to the reduced
Wigner function for the CV degrees of freedom Wy (). Here this method has been developed, changing the
envelope to instead be proportional to maxy 4| W, (a, 0, ¢)|ateach pointin CV phase space. This adjustment
further allows us to visualize the quantum correlations present in CV-DV hybrid states, such as those that
manifest between the two coherent states in a hybrid Schrédinger cat state. Doing this means it is possible to gain
amore full picture of the correlations that arise in the interaction between CV and DV systems. As well as
allowing us to characterize signatures of quantum correlations found in certain systems; a result that promises
potential usefulness in analyzing the correlations in maximally entangled states and entanglement as a result of
squeezing. Being able to visually determine the level of quantum correlations, not always clear in coupled
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systems, gives significant advantage over reduced Wigner function methods that do not always detect the purity
of Bell-cat like entanglement.

By demonstrating these methods within the Jaynes—Cummings model, we show how excitations are shared
and swapped, demonstrating a visual representation of the transfer of quantum information between systems.
Extending these methods to different systems, will allow for a more intuitive picture of how quantum
information moved around coupled systems, providing further insight into the inner process of quantum
processes and algorithms.

There have been previous experimental examples which have used phase space to investigate the types of
state considered in this paper. One notable example is [47], from a sequence of measurements of the expectation
values of the qubit in different bases, they have been able to recreate the CV Wigner function. Using a similar
procedure with our generalized displaced parity operator, it should be possible to extend this to produce
experimental results equivalent to those in this paper. This technique could be considered to be a form of
quantum state spectroscopy.
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