

MoAM Research Group

Loughborough University

Developing 3D Fully Parametric Multi-Scale Computational Model for Nonwoven Simulations

<u>Emrah Demirc</u>i¹, Emrah Sozumert¹, Memis Acar¹, Behnam Pourdeyhimi², V. Vadim Silberschmidt¹

¹Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK ²The Nonwovens Institute, North Carolina State University, USA

2-3 April 2019

Outline

- Loughborough University
- Motivation
- Existing Numerical Models
- Our Contribution
- Material Characterization
- Computation of Material Anisotropy
- Developing 3D Fully Parametric Model
- Case Studies
- Conclusions

Loughborough University

- Ranked 6th in the 2018 Guardian University League Table.
- Winner of the Times Higher Education 'Best Student Experience' poll for five years running
- Ranked joint 1st for 'Overall Satisfaction' National Student Survey (NSS) in 2017
- Awarded 'Best International Students Union of the Year 2014' National Union of Students (NUS)
 - Mechanically Based Engineering = 3rd (2008 and 2009)

Loughborough University

Mechanics of Advanced Materials Research Group (MOAM)

MoAM Research Group Loughborough University

The Mechanics of Advanced Materials Research Group carries out multi-disciplinary research into the response of advanced engineering materials to various types of external loading and environmental conditions, using a combination of analytical, numerical and experimental techniques.

Loughborough University

Mechanics of Advanced Materials Research Group (MOAM)

Some of the Testing Facilities

- MSC Software
 - Two servo-hydraulic machines up to 100 kN
 - Impact fatigue testing system (based on CEAST RESIL IMPACTOR)
 - Instron desktop machines up to 50 kN
 - Instron Micro Tester 5848
 - Thermosensorik GmbH Thermoelastic Stress Analysis system
 - Atomic Force Microscope
 - X-ray micro CT system
 - Nano/Micro indenter
 - Dynamic Mechanical Analyser TRITEC2000B
 - Q-Sun XenonTest Chamber

Motivation

Nonwoven Composites; Objectives and Deliverables

- Overall Objectives
 - Develop a multi-scale parametric numerical models to simulate mechanical and flow performance of nonwovens
- Overall Deliverables
 - Better understanding of micro-scale throughthickness mechanical behaviour of nonwovens
 - Simulating damage mechanisms
 - Parametric computational model for simulating compression performance and its effects
 - A clear methodology to design nonwovens considering mechanical performances before manufacturing to save time and cost

30gsm Point-bonded nonwoven

200gsm through air bonded nonwoven $\overset{\times40}{}$

2 mm

Existing Numerical Models

Quasi-continuum Models

Discontinuous Models

Ostoja-Starzewski, M., 2002. Lattice models in micromechanics. *Applied Mechanics Reviews*, 55(1), p.35.

Ridruejo, A., Gonzlez, C. & Llorca, J., 2010. Damage micromechanisms and notch sensitivity of glass-fiber non-woven felts: An experimental and numerical study. *Journal of the Mechanics and Physics of Solids*, 58(10), pp.1628–1645.

Continuous Models

Hybrid Models

Demirci, E. et al., 2012. Numerical Modelling of Thermally Bonded Nonwovens: Continuous and Discontinuous Approaches. *Solid State Phenomena*, 188, pp.164–169.

Sander, E.A. et al., 2009. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels.

Our Contribution

Material Characterization

Single Fibre Tests

Tensile Test of PP/PE 75/25 bicomponent fibre for three strain rates

Material Characterization

X-ray micro CT (75/25 PP/PE 50 gsm)

Instron[®] 5848 Micro Tester with ±5 N Instron[®] loadcell

Computation of Mechanical Anisotropy

Computation of Mechanical Anisotropy

Detection of fibres

Computation of Mechanical Anisotropy

Detection of fibres

Outline of methodology for generating computational model

13

Fibre Deposition Simulation

Fibre Generation, Trimming, and Crimp

Resultant Deposited Network

Isometric view

Side view

Detecting fibre-to-fibre contacts

Case Study 1: Through-air Bonded Nonwovens

Case Study 2: Calendered Nonwovens

Bond point pattern showing thickness variations

20 gsm thermally bonded calendered nonwoven (FE model)

Case Study 2: Calendered Nonwovens

Case Study 2: Calendered Nonwovens

Conclusions

- The computational models developed with parametric approach is capable:
 - To predict the tensile, compression, and damage behaviours of the fabric under complex real-life loadings
 - To improve design robustness and reduce risk
 - To reduce product development time and cost
 - To study the effect of manufacturing parameters on tensile, damage, compression and flow performances.

We gratefully acknowledge support by:

- the Nonwoven Institute, North Carolina State University, Raleigh, USA
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, UK
- MANN+HUMMEL GmbH, Ludwigsburg, Germany
- Reicofil GmbH & Co, Germany