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Abstract

We consider perturbations of Hamiltonian systems with one degree of freedom
such that the evolution leads to separatrix crossings. Such crossings are described
by a parameter called the pseudo-phase. We prove a formula for the dependence of
the pseudo-phase on the initial conditions.

1 Introduction

We start with a Hamiltonian system with one degree of freedom

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(1.1)

with the Hamiltonian H(p, q). We assume that H has a saddle C with two separatix
loops l1 and l2 forming a figure eight. We also assume H(C) = 0, H > 0 outside
the loops and H < 0 inside each loop.

Then we add a small perturbation εf :

q̇ =
∂H

∂p
+ εfq(p, q, ε),

ṗ = −∂H
∂q

+ εfp(p, q, ε).

(1.2)

We assume that H is analytic and f is C2. We use that H is analytic to apply the lo-
cal normal form [3] in a neighborhood of C. Denote by fh(p, q, ε) = fq

∂H
∂q

+fp
∂H
∂p

the

rate of change of H divided by ε. For i = 1, 2 denote Θi = −
∮
li
fh(p(t), q(t), 0)dt

(here t is the time for the unperturbed system). Let Θ3 = Θ1 + Θ2. We assume
that Θ1,Θ2 > 0, then Θ3 > 0.

As Θ3 > 0, the trajectories of the perturbed system starting close to the figure
eight outside it eventually approach the separatrices of the unperturbed system. We
study the phase change for such trajectories. Formulas describing such phase change
were obtained (using the averaging method) in [2] for Hamiltonian systems with
one degree of freedom and slow time dependence; in [6] for slow-fast Hamiltonian
systems with one degree of freedom corresponding to slow motion. In [1] the authors
use the averaging method to compute the phase change for perturbed strongly
nonlinear oscillators. Unlike [2] and [6], they do not provide an estimate for the
accuracy of using the averaging method, but instead check that the result compares
well with numerical experiments.

A parameter called the pseudo-phase (we use the terminology from [6]) describes
the phase at the moment of separatrix crossing. We show that a formula for the
pseudo-phase similar to the formula from [6] also holds for our case, this is done in
Section 6.

The general plan of the proof is close to the one in [6]. However, instead of the
improved adiabatic invariant considered in [6] we consider the averaged system of
order 2. An important part of our paper is obtaining estimates for the coefficients of
this system (in particular, proving that solutions of this system cross the separatrices
of the unperturbed Hamiltonian system).

2 Energy-angle variables

Let us consider the action-angle variables I, ϕ; ϕ ∈ [0, 2π) We will assume that
ϕ = 0 corresponds to a specific transversal Γ that is chosen in Section 9.1. It will
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Estimates Obtained in

T T = O(ln(h)), ∂T
∂h = O(h−1), ∂2T

∂h2 = O(h−2) Section 9.3

ω ω = O(ln−1h), ∂ω
∂h = O(h−1 ln−2 h), ∂2ω

∂h2 = O(h−2 ln−2 h) Section 9.3

fh
fh = O(1), ∂fh

∂h = O(h−1), ∂fh
∂ϕ = O(lnh),

∂2fh
∂h2 = O(h−2), ∂2fh

∂h∂ϕ = O(h−1 lnh), ∂2fh
∂ϕ2 = O(ln2 h)

Section 9.5

fϕ
fϕ,

∂fϕ
∂ϕ = O(h−1); fϕ(h, 0) = O(h−1/2 ln−1 h);

∂fϕ
∂h = O(h−2)

Section 9.5

uh,1

uh,1 = O(1);
∂uh,1

∂ϕ = O(lnh);
∂uh,1

∂h ,
∂2uh,1

∂h∂ϕ = O(h−1 lnh);
∂2uh,1

∂h2 = O(h−2 lnh)
Section 10

uϕ,1 uϕ,1,
∂uϕ,1

∂ϕ = O(h−1 lnh);
∂uϕ,1

∂h = O(h−2 lnh) Section 10

fh,1 fh,1 = O(ln−1 h),
∂fh,1

∂h = O(h−1 ln−2 h) Section 10

fϕ,1 fϕ,1 = O(h−1 ln−3 h),
∂fϕ,1

∂h = O(h−2) Sections 9.6, 10

uh,2 uh,2,
∂uh,2

∂ϕ = O(h−1 ln3 h);
∂uh,2

∂h = O(h−2 ln3 h) Section 10

fh,2 fh,2 = O(ln−1 h),
∂fh,2

∂h = O(h−1) Section 10

fh,3 fh,3 = O(h−2 ln4 h) for h > ε ln10 ε. Section 10

fϕ,2 fϕ,2 = O(h−2 lnh) for h > ε ln10 ε. Section 10

f̂∗,∗
For f̂h,1, f̂h,2, f̂h,3, f̂ϕ,1, f̂ϕ,2 and derivatives: same as for

the corresponding expression with overline instead of hat.
Section 10

Table 1: estimates. Note that the estimates for functions that depend on ε, e.g. f∗, u∗,∗
and f∗,∗, are uniform in ε.

be tangent to the bisector of the angle between the separatrices. We will assume
that the separatrices are numbered in such way that for a trajectory outside the
figure eight close to the separatrices it is close to l2 for 0 < ϕ < π and to l1 for
π < ϕ < 2π.

Denote by h the value of the Hamiltonian. We will always assume h > 0, as we
study a trajectory approaching the separatrices from the outside. We will use the
”energy-angle” variables h, ϕ. In these variables the unperturbed system (1.1) is
written as ḣ = 0, ϕ̇ = ω(h). Denote by T (h) = 2π

ω(h)
the period of the unperturbed

system. We will sometimes use the time t passed from the last crossing of the
transversal ϕ = 0 instead of ϕ. We have t = ϕT

2π
.

Denote by fh, fϕ the components of f in the energy-angle variables: fy = fq
∂y
∂q

+

fp
∂y
∂p

for y = h, ϕ, y = y(q, p). Then the perturbed system (1.2) is written as

ḣ = εfh(h, ϕ, ε),

ϕ̇ = ω(h) + εfϕ(h, ϕ, ε).
(2.1)

Let us state a useful relation between the derivatives of the components of f .

Lemma 2.1.

∂fh
∂h

+
∂fϕ
∂ϕ

+
1

T

dT

dh
fh = div(f),where div(f) =

∂fq
∂q

+
∂fp
∂p

(2.2)

Proof. Let us first prove that
∂fq
∂q

+
∂fp
∂p

= ∂fI
∂I

+
∂fϕ
∂ϕ

. Here fI , fϕ is the vector field
f written in the action-angle variables.

Recall that the divergence of a vector field v with respect to a volume form
α is a function divα(v) such that Lv(α) = divα(v) · α (here L denotes the Lie
derivative). In the coordinates x, y for the euclidean volume form dx ∧ dy we have

divdx∧dy(v) = ∂vx
∂x

+
∂vy
∂y

.
Hence the equality rewrites as divdp∧dq(f) = divdI∧dϕ(f). But since I, ϕ are the

action-angle variables, dp ∧ dq = dI ∧ dϕ.
Finally, using that ∂h

∂I
= ω(h) (this follows from the Hamiltonian equations in

the action-angles variables) and fI = ∂I
∂h
fh, we can compute that ∂fI

∂I
= ∂fh

∂h
+

1
T
∂T
∂h
fh.
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3 Averaging chart

Remark 3.1. The formulas in this section are also valid for the parametric case
where H depends on a parameter z. For the parametric case we can set h to be the
column vector (h, z).

We start with the system (2.1). Let us find a change of variables

h = h+ εuh,1(h, ϕ, ε) + ε2uh,2(h, ϕ, ε),

ϕ = ϕ+ εuϕ,1(h, ϕ, ε)
(3.1)

that transforms (2.1) to the following form:

ḣ = εfh,1(h, ε) + ε2fh,2(h, ε) + ε3fh,3(h, ϕ, ε),

ϕ̇ = ω(h) + εfϕ,1(h, ε) + ε2fϕ,2(h, ϕ, ε).
(3.2)

Let us call the new chart h, ϕ the averaging chart. For brevity we will often omit
the dependence of the functions f∗, f∗,∗ and u∗,∗ on ε.

Lemma 3.1. For k = h, i = 1, 2 and for k = ϕ, i = 1 we have

fk,i(h) = 〈Yk,i(h, ϕ)〉ϕ, (3.3)

fk,i(h) + ω(h)
∂uk,i
∂ϕ

(h, ϕ) = Yk,i(h, ϕ), (3.4)

where

Yh,1 = fh,

Yϕ,1 = fϕ +
∂ω

∂h
uh,1,

Yh,2 =
∂fh
∂h

uh,1 +
∂fh
∂ϕ

uϕ,1 −
∂uh,1
∂h

fh,1 −
∂uh,1
∂ϕ

fϕ,1.

(3.5)

The formulas for fh,3 and fϕ,2 are stated in Lemma 8.1 below.

We will prove this lemma in Section 8. The formulas above uniquely define fk,i and
uk,i under an additional assumption that for k = h, i = 1, 2 and for k = ϕ, i = 1
we have

〈uk,i〉ϕ = 0.

We will always assume this to hold.
For h→ 0 many expressions introduced above tend to infinity. We will use the

estimates given in Table 1, these estimates will be proved below.

Remark 3.2. For h large compared with ε (i.e. h > ε ln10 ε) the derivative of the
coordinate change given by (3.1) is close to identity (by (3.1) and Table 1). This
means that for such h this coordinate change is invertible.

Since 〈 ∂uk,i

∂ϕ
〉ϕ = 0, we have

fk,i = 〈Yk,i〉ϕ.

Using that 〈 ∂uk,i

∂ϕ
〉ϕ = 0, 〈 ∂uk,i

∂h
〉ϕ = ∂

∂h
〈uk,i〉ϕ = 0, we can simplify this for fh,2:

fh,2 = 〈∂fh
∂h

uh,1 +
∂fh
∂ϕ

uϕ,1〉ϕ. (3.6)

Using Lemma 2.1, we can prove another formula for fh,2 that gives a better estimate
for h→ 0.

Lemma 3.2.

fh,2 = 〈div(f)uh,1〉ϕ, where div(f) =
∂fq
∂q

+
∂fp
∂p

. (3.7)

This lemma is proved in Section 7.
The following formula is similar to formula 2 from [5]. We will prove it in

Section 7.

Lemma 3.3.

uh,1(h, t0) =
1

T

∫ T

0

(
t− T

2

)
fh(h, t+ t0)dt. (3.8)

Here the second argument in fh is not ϕ, as usual, but the time t. We use the
notation fh(h, t) = fh(h, ϕ(h, t)).

This can also be rewritten as follows:

uh,1(h, t0) =
1

2π

∫ T

0

(ϕ(t)− π)fh(h, t+ t0)dt. (3.9)
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4 Averaged system of order 2

The coefficients of the the initial system (3.2) in the averaging chart depend on ε.
We would like the coefficients of the averaged system that we define in this section
to be independent of ε. To this end, let us introduce some notation. First, let us
expand

f(p, q, ε) = f0(p, q) + εf1(p, q) + ε2f2(p, q, ε), (4.1)

where f0(p, q) = f(p, q, 0) and f1(p, q) = ∂f
∂ε

(p, q, 0). Clearly, f0
q , f0

p , f1
q and f1

p are
smooth functions of p and q. The functions f2

p and f2
q are uniformly bounded by

some constant independent of ε (by Taylor’s theorem with the Lagrange form of
remainder). Let us also consider the perturbed system (2.1) with the petrurbation
εf0(h, ϕ) instead of εf(h, ϕ, ε). For such system we may also consider a coordinate
change of form (3.1) that transforms it to the form (3.2). Let us add an upper index

0 to the coefficients of these equations (e.g. u0
h,1, f

0

ϕ,1) to show that we started with

the perturbation εf0. The coefficients u0
∗,∗ and f

0

∗,∗ are determined by the same

formulas as u∗,∗ and f∗,∗, but we should plug f0 instead of f into those formulas.
Now let us rewrite (3.2) in such way that only the coefficients next to the largest

powers of ε depend on ε. This is done simply by expanding the coefficients similarly
to (4.1). The resulting system will be

ḣ = εf̂h,1(h) + ε2f̂h,2(h) + ε3f̂h,3(h, ϕ, ε),

ϕ̇ = ω(h) + εf̂ϕ,1(h) + ε2f̂ϕ,2(h, ϕ, ε),
(4.2)

where
f̂h,1 = f

0

h,1, f̂ϕ,1 = f
0

ϕ,1, f̂h,2 = f
0

h,2 + 〈f1
h(h, ϕ)〉ϕ (4.3)

(here f1
h is the h-component of f1 written in (h, ϕ) coordinates), and f̂ϕ,2 and

f̂h,3 satisfy the estimates in Table 9.3. The estimates for f̂?,? will be proved in
Lemma 10.2 below, one can also find formulas for f̂ϕ,2, f̂h,3 there. Also note that

by [4, Corollary 3.1] we have
∫ T

0
f0
hdt = −Θ3 +O(h lnh), so we have

f̂h,1 =
−Θ3 +O(h lnh)

T
. (4.4)

The averaged system of order 2 is obtained from the system (4.2) by removing
all terms on the right hand side that depend on ϕ:

˙̂
h = εf̂h,1(ĥ) + ε2f̂h,2(ĥ)

˙̂ϕ = ω(ĥ) + εω1(ĥ).
(4.5)

Here we denote ω1(ĥ) = f̂ϕ,1(ĥ) in order to match with [6]. We will sometimes call
this system simply the averaged system.

Let us introduce the slow time τ = εt. Then the first equation in (4.5) can be
written as follows:

∂ĥ

∂τ
= f̂h,1(ĥ) + εf̂h,2(ĥ). (4.6)

By the estimates on f̂h,1 and f̂h,2 from Table 1 we get that

∂ĥ

∂τ
=
−Θ3 +O(ĥ ln ĥ) +O(ε)

T
. (4.7)

As Θ3 > 0, this means that for small ε any solution ĥ(τ), ϕ̂(τ) of the averaged
system of order 2 starting close to the separatrices crosses the separatrix of the
initial unperturbed Hamiltonian system. Denote by τ∗ the slow time at the moment
of crossing, ĥ(τ∗) = 0. From (4.7) we also see that for small ε, h and τ < τ∗ the
function ĥ(τ) is decreasing. By (4.7) we also have

∂τ

∂ĥ
= − T

Θ3
(1 +O(ĥ ln ĥ) +O(ε)). (4.8)

Let us prove that the solution of the averaged system (4.5) approximates the
solution of (3.2) for h separated from zero:

Lemma 4.1. Consider a solution h(τ), ϕ(τ) of (3.2) with initial conditions h(0), ϕ(0).
Consider also a solution ĥ(τ) of (4.6) with initial condition ĥ(0) such that |h(0)−
ĥ(0)| ≤ Cε2 for some C. Then for small enough ε for any τ such that

ĥ(τ) > ε ln10 ε (4.9)
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we have the following estimates (in the error terms below we write h for ĥ(τ), e.g.
O(h) instead of O(ĥ(τ))):

h(τ)− ĥ(τ) = O(ε2h−1 ln5 h),

ϕ(τ)− ϕ(0) = ε−1

∫ τ

0

(
ω(ĥ(τ ′)) + εω1(ĥ(τ ′))

)
dτ ′ +O(εh−1 ln4 h).

Proof. Let us start with the estimate for h(τ) − ĥ(τ). We will first only consider
the system up to some moment τfin such that for all τ < τfin we have

0.5ĥ(τ) < h(τ) ≤ 2ĥ(τ). (4.10)

In order to receive a better estimate, let us switch from h to the action I. From the
Hamiltonian equations in I, ϕ-chart we have ∂h

∂I
= ω. Denote I = I(h), Î = I(ĥ).

Denote f̂I,j = ω−1f̂h,j , j = 1, 2, 3. As h, ϕ is a solution of (3.2), it is also a solution
of (4.2). From (4.2), (4.5) we have

İ = εf̂I,1(h) + ε2f̂I,2(h) + ε3f̂I,3(h, ϕ, ε),

˙̂
I = εf̂I,1(ĥ) + ε2f̂I,2(ĥ).

(4.11)

As f̂I,1 = (2π)−1
∫ T

0
f0
hdt, the estimate ∂

∂h
(
∫ T

0
f0
hdt) = O(lnh) ([4, Lemma 3.2])

yields
∂f̂I,1
∂h

= O(lnh).

Denote ∆ = |I(τ) − Î(τ)|. From (4.11) we have the following differential in-
equality for ∆:

∆̇ ≤ εa(τ)∆ + ε3b(τ), (4.12)

where a(τ) = | ∂f̂I,1
∂I

(ξ)+ε
∂f̂I,2
∂I

(ξ)| for some ξ ∈ [I(τ), Î(τ)] and b(τ) = |f̂I,3(I(τ), ϕ(τ))|.
We have ε

∂f̂I,2
∂I

= εω ∂
∂h

(ω−1f̂I,2) = o(1) by (4.10), (4.9) and Table 1. Hence, we
have the estimate a(τ) = O(1). By Table 1 we have b(τ) = O(h−2 ln5 h).

As in [6], we use the following estimate for ∆ obtained by solving (4.12):

∆(τ) ≤ exp

(∫ τ

0

a(τ ′)dτ ′
)(

∆(0) + ε2

∫ τ

0

b(τ ′)dτ ′
)
.

Using (4.8) and the estimates for a and b, we can make a change of variable and
compute the integrals above as integrals dĥ:∫ τ

0

a(τ ′)dτ ′ = O(1);

∫ τ

0

b(τ ′)dτ ′ = O(h−1 ln6 h).

As ∆(0) = O(ε2), this gives the estimate ∆(τ) = O(ε2h−1 ln6 h). As ∂h
∂I

= ω,
by (4.10) we have

|h(τ)− ĥ(τ)| = O(ε2h−1 ln5 h). (4.13)

From the estimate on h(τ) − ĥ(τ) we have just proved and (4.9) we get that
h(τ) − ĥ(τ) = O(ε ln−5 ε) and so for small ε we have |h(τ) − ĥ(τ)| < 0.5ε ln10 ε <
0.5ĥ(τ), so the condition (4.10) actually holds for all τ considered in this lemma.

Let us now prove the estimate for ϕ. Denote ω0,1(h) = ω(h) + εω1(h). Then
from (4.2) we have

ϕ(τ)− ϕ(0) = ε−1

∫ τ

0

(
ω0,1(h(τ ′)) + ε2f̂ϕ,2(h(τ ′), ϕ(τ ′))

)
dτ ′.

From Table 1 and (4.9) we have
∂ω0,1

∂h
= O(h−1 ln−2 h). Thus from (4.13) we have

ω0,1(h(τ))− ω0,1(ĥ(τ)) = O(ε2h−2 ln3 h). From Table 1 we have f̂ϕ,2(h(τ), ϕ(τ)) =
O(h−2 lnh). So

ϕ(τ)− ϕ(0) = ε−1

∫ τ

0

ω0,1(ĥ(τ ′))dτ ′ + ε

∫ τ

0

O((ĥ(τ ′))−2 ln3 ĥ(τ ′))dτ ′.

Again, we make a change of variable and compute the error term as an integral dĥ:
ε
∫ τ

0
O((ĥ(τ ′))−2 ln3 ĥ(τ ′))dτ = O(εh−1 ln4 h). This proves the formula for ϕ.

5 Cancellation lemma

In this section we prove the following lemma. It will be useful when we prove the
formula for the phase, because due to this lemma two terms will cancel out. Recall

the notation ω1(h) = f̂ϕ,1 = f
0

ϕ,1.
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Lemma 5.1. Consider a solution ĥ of the averaged system (4.5). Take any τ1 <
τ2 < τ∗ and denote h1 = ĥ(τ1), h2 = ĥ(τ2). We have 0 < h2 < h1. Then∫ τ2

τ1

ω1(ĥ(τ))dτ = − 2π

Θ3

∣∣∣h2

h1

u0
h,1(ĥ, 0) +O(h

1/2
1 ) +O(ε ln−1 h). (5.1)

Let us first estimate ω1. Denote I(h) =
∫ 2π

0
t(ϕ)f0

h(ϕ)dϕ.

Lemma 5.2.

ω1(h) =
1

T

dI
dh

+O(h−1/2 ln−1 h). (5.2)

Proof. Integrating by parts, we can write

2πω1 =

∫ 2π

0

f0
ϕdϕ =

∣∣∣2π
0
ϕf0

ϕ −
∫ 2π

0

ϕ
∂f0

ϕ

∂ϕ
dϕ.

Using (2.2) and the equality 1
T

∂
∂h

(Tf0
h) =

∂f0h
∂h

+ 1
T
dT
dh
f0
h , this rewrites as

2πω1 = 2πf0
ϕ(h, 0)−

∫ 2π

0

ϕ div(f0)dϕ+

∫ 2π

0

ϕ
1

T

∂

∂h
(Tf0

h)dϕ.

By Table 1 the first term is O(h−1/2 ln−1 h). The second term is O(1) as div(f0) is
bounded. As ∂

∂h
commutes with integrating by ϕ, we can rewrite the last term as

1
T

d
dh

∫ 2π

0
ϕTf0

hdϕ = 2π
T
dI
dh

. We have obtained (5.2).

Proof of Lemma 5.1. By Table 1 we have ω1 = f
0

ϕ,1 = O(h−1 ln−3 h). This means

that
∫ h′

0
Tω1dh converges, so from (4.8) we have∫ τ2

τ1

ω1(ĥ(τ))dτ = − 1

Θ3

∫ h2

h1

Tω1dĥ+O(h1 ln−1 h1) +O(ε ln−1 h).

By Lemma 5.2 we can rewrite this as∫ τ2

τ1

ω1(ĥ(τ))dτ = − 1

Θ3

∣∣∣h2

h1

I(ĥ) +O(h
1/2
1 ) +O(ε ln−1 h). (5.3)

As dt = Tdϕ
2π

, by (3.8) we have

u0
h,1(h, 0) =

1

T

∫ T

0

(
t− T

2

)
f0
h(t)dt =

1

2π

∫ 2π

0

tf0
h(t)dϕ− 1

2

∫ T

0

f0
hdt.

By [4, Corollary 3.1]
∫ T

0
f0
h(t)dt = −Θ3 +O(h lnh). Hence,∣∣∣h2

h1

u0
h,1(ĥ, 0) =

1

2π

∣∣∣h2

h1

I +O(h1 lnh1).

Comparing this with (5.3), we get (5.1).

6 Formula for the pseudo-phase

Consider a solution h(τ), ϕ(τ) of the perturbed equation (2.1) that approaches the
separatrices. Let the initial conditions be h(0) = h0, ϕ(0) = ϕ0. Set

ĥ0 = h0 − εu0
h,1(h0, ϕ0).

By (3.1) and Lemma 10.2 this approximates the value of h in the averaging chart
corresponding to h0, ϕ0 with error O(ε2). Let ĥ(τ) be the solution of (4.6) with
this initial condition. Let τ∗ be the first time such that ĥ(τ∗) = 0. In Section 4
we showed that τ∗ exists. Let h−1 be the value of h(τ) at the first crossing of the
transversal ϕ = 0 with h(τ) < εΘ3 +ε4/3. For small ε it exists by Lemma 6.3 below.
As h decreases by approximately εΘ3 during one turn, for most points this will be
the last crossing of this transversal. However, this choice of h−1 allows us to dismiss
crossings of the transversal with h < O(ε4/3). If we wished to consider crossings
with small h, we would have to consider points being captured into the saddle of
the perturbed system. Let h−2 be the value of h at the crossing before h−1, h−3

be the previous crossing, and so on. Let us prove a formula for the pseudo-phase
h−1

εΘ3
. This formula (6.1) is similar to the one from [6], see also Section 1 for more

references.

h−1

εΘ3
=

{
1

2π

(
ϕ0+

1

ε

∫ τ∗

τ=0

(
ω(ĥ(τ))+εω1(ĥ(τ))dτ

))
+
u∗
Θ3

+O(ε1/3 ln11/3 ε)

}
+O(ε1/3),

(6.1)
where u∗ = 1

4
(Θ1 − Θ2). Note that u∗ = limh→+0 u

0
h,1(h, 0) by Lemma 6.1 below.

Let us also recall the notation ω1 = f̂ϕ,1 = f
0

ϕ,1 and that Θ2 corresponds to 0 <
ϕ < π and Θ2 to π < ϕ < 2π.
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Remark 6.1. ϕ = 0 corresponds to the transversal Γ defined in Section 9.1. How-
ever, one may easily show that (6.1) also holds if we take as Γ any transversal
tangent to the bisector of the angle between the separatrices.

Remark 6.2. We have assumed earlier that Θ1,Θ2 > 0. If they have different
signs with Θ3 = Θ1 + Θ2 > 0, the last transversal crossing can happen for h > εΘ3.
In this case h−1 should be defined in such way that h > ε4/3 during all the time
before the moment corresponging to h−1. Then the right-hand side of (6.1) would

give the fractional part of
h−1

εΘ3
.

First let us prove some auxiliary statements.

Lemma 6.1.

lim
h→+0

u0
h,1(h, 0) =

Θ1 −Θ2

4
,

Here Θ2 corresponds to 0 < ϕ < π and Θ1 to π < ϕ < 2π.

Proof. Let us split the integral expression (3.9) (with f replaced by f0) for u0
h,1(h, 0)

into the integrals over the part of the trajectory near l1 and near l2. For the first
part the value of ϕ(t)− π is close to π/2 far away from the saddle C. But close to
C we have fh ≈ 0, so the integral near l1 is close to Θ1/4. Similarly, the integral
near l2 is close to −Θ2/4.

Lemma 6.2. Take τ1 < τ∗, denote h1 = ĥ(τ1). Then we have∫ τ∗

τ1

ω(ĥ(τ))dτ =
2π

Θ3
h1 +O(εh1) +O(h2

1 lnh1). (6.2)

Proof. As ωT = 2π, (4.8) impies that∫ τ∗

τ1

ω(ĥ(τ))dτ = − 2π

Θ3

∫ 0

h1

(
1 +O(ĥ ln ĥ) +O(ε)

)
dĥ,

which gives the required estimate.

Lemma 6.3. Assume Θ1,Θ2 > 0. Then there is c1 > 0 such that for all small
enough ε the following holds. Take a point (h0, 0) on the transversal ϕ = 0 with
εΘ3 + ε4/3 ≤ h0 < c1. Then the orbit of this point intersects the transversal ϕ = 0
once more with

h = h0 − εΘ3 +O(εh0 lnh0) +O(ε2h
−1/2
0 ).

Proof. By [4, Lemma 3.5, Corollary 3.4] there is c2 > 0 such that for c2ε ≤ h0 ≤ c1
the orbit crosses the transversal and we have h = h0 − ε

∮
h=h0

fhdt + O(ε2h
−1/2
0 ).

By (4.1) we have fh − f0
h = εψ(p, q, ε) for some smooth ψ. By [4, Lemma 3.2]∮

h=h0
ψdt = O(1), so

∮
h=h0

fhdt =
∮
h=h0

f0
hdt + O(ε) = −Θ3 + O(h0 lnh0) + O(ε)

by (4.4). As ε = O(h), this gives the required estimate.
For εΘ3 +ε4/3 ≤ h0 < c2ε by [4, Proposition 5.1] the orbit of our point intersects

the transversal ϕ = 0 once more (the condition Θ1,Θ2 > 0 is used here). Moreover,
arguing as in the proof of [4, Proposition 5.1], we can get that for this new inter-
section h = h0 − εΘ3 + O(ε3/2). As Θ3ε ≤ h0 < c2ε, this estimate is equivalent to
the one claimed in the lemma.

Lemma 6.4. There is a constant c1 such that for h−n > c1 we have

h−n = h−1 + εΘ3(n− 1) +O(h2
−n lnh−n) + εO((h−n)1/2). (6.3)

Proof. This follows from Lemma 6.3 by summation.

Let us return to the proof of the formula for pseudo-phase. We denote by
h(τ), ϕ(τ) the solution h(τ), ϕ(τ) of the initial equation, written in the averaged
chart (3.1). Denote h0 = h(0), ϕ0 = ϕ(0). We have ĥ0 − h0 = O(ε2), so we may
use Lemma 4.1

Lemma 6.5. For τ such that

ĥ(τ) > ε ln10 ε (6.4)

h(τ), h(τ) and ĥ(τ) are close:

ĥ− h = O(ε2ĥ−1 ln5 ĥ) = o(ĥ),

h− h = O(ε) = o(ĥ).
(6.5)
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Proof. The first estimate is given by Lemma 4.1. To obtain the second one, we
just plug the estimates from Table 1 into the equation h = h + εuh,1 + ε2uh,2
from (3.1).

Consider a moment τ1 such that ϕ(τ1) = 0 and ĥ(τ1) is as close as possible to
ε2/3 ln4/3 ε. Note that we have (6.4) for τ = τ1. We may check that under the
condition (6.4) the difference between ĥ(τ) for consequtive times τ with ϕ(τ) = 0
is O(ε). Indeed, the time between consequtive fast times of crossing the transversal

ϕ = 0 is O(T ) and
˙̂
h is O(T−1). Hence,

ĥ(τ1) = (1 + o(1))ε2/3 ln4/3 ε. (6.6)

Denote by h1, ϕ1, h1, ϕ1, ĥ1 the values of h, ϕ, h, ϕ, ĥ at the slow time τ1. As justified
by (6.5), we may write h1 instead of ĥ1 and h1 in the error terms. For brevity let
us even denote h = h1 for the error terms and write simply O(h).

We will split the integral in (6.1) into integrals from 0 to τ1 and from τ1 to τ∗.
First, let us check that

ϕ0 +
1

ε

∫ τ1

τ=0

(
ω(ĥ(τ)) + εω1(ĥ(τ))

)
dτ = 2πm+O(εh−1 ln4 h), (6.7)

where m ∈ Z. By Lemma 4.1 we have

1

ε

∫ τ1

τ=0

(
ω(ĥ(τ)) + εω1(ĥ(τ))

)
dτ = ϕ1 − ϕ0 +O(εh−1 ln4 h).

We also have ϕ = ϕ + εuϕ,1. By Table 1 uϕ,1 = O(h−1 lnh), so ϕ1 − ϕ0 =
ϕ1 − ϕ0 +O(εh−1 lnh). As ϕ1 = 2πm, this gives the required equality (6.7).

Now let us use (6.2), (5.1) to compute the remaining terms in (6.1). We have

1

2πε

(∫ τ∗

τ=τ1

(
ω(ĥ(τ)) + εω1(ĥ(τ))

)
dτ

)
+
u∗
Θ3

= (6.8)

=
1

εΘ3

(
ĥ1 + εu0

h,1(ĥ1, 0)

)
+O(h1/2) +O(ε−1h2 lnh).

Note that the term O(ε ln−1 h) from (5.1) is absorbed into O(h1/2) by (6.4). By
Table 1 and (6.4) we have ∂

∂h
εu0
h,1 = o(1). Hence, by (6.5) we have

ĥ1+εu0
h,1(ĥ1, 0) = h1+εu0

h,1(h1, 0)+O(ε2h−1 ln5 h) = h1+εuh,1(h1, 0, ε)+O(ε2h−1 ln5 h).

The last equality is justified by Lemma 10.2. The error term O(ε2) appears, but
it is absorbed into O(ε2h−1 ln5 h). As 0 = ϕ1 = ϕ1 + εuϕ,1, by Table 1 we have

ϕ1 = O(εh−1 lnh). Hence, by the estimate
∂uh,1

∂ϕ
= O(lnh) from Table 1 we get

εuh,1(h1, 0, ε) = εuh,1(h1, ϕ1, ε) +O(ε2h−1 ln2 h)

and
ĥ1 + εu0

h,1(ĥ1, 0) = h1 + εuh,1(h1, ϕ1, ε) +O(ε2h−1 ln5 h).

As
h1 = h1 + εuh,1(h1, ϕ1, ε) + ε2uh,2(h1, ϕ1, ε)

and by (3.1) and ε2uh,2 is small by Table 1, we obtain

ĥ1 + εu0
h,1(ĥ1, 0) = h1 +O(ε2h−1 ln5 h).

Combining this with (6.8), we get

1

2πε

(∫ τ∗

τ=τ1

(
ω(ĥ(τ)) + εω1(ĥ(τ))

)
dτ

)
+
u∗
Θ3

=
h1

εΘ3
−R(h1)

with the error term

R = O(h1/2) +O(εh−1 ln5 h) +O(ε−1h2 lnh).

After taking a sum with (6.7), we get

h1

εΘ3
=

1

2π

(
ϕ0 +

1

ε

∫ τ∗

τ=τ0

(
ω(ĥ(τ)) + εω1(ĥ(τ))dτ

))
+
u∗
Θ3
−m+R(h1).

Note that R absorbs the error term in (6.7). Applying (6.3), we get the required
formula (6.1), but with the error term R(h1) depending on h1. Note that the error
term in (6.3) is not greater than R. Then we just plug in the expression (6.6) for
h1 and obtain R = O(ε1/3 ln11/3 ε). One may check that (6.6) minimizes the error
term. Indeed, first we check that up to some power of ln ε the value of R is minimal
for h ≈ ε2/3. Then lnh ≈ (2/3) ln ε, and from this we see that R is minimal for h
given by (6.6). This completes the proof of formula (6.1).
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7 Proofs

Proof of Lemma 3.2. First let us check that

〈∂fh
∂ϕ

uϕ,1〉ϕ = 〈∂fϕ
∂ϕ

uh,1〉ϕ. (7.1)

We shall use the following equalities (see Lemma 3.1):

∂uh,1
∂ϕ

=
1

ω
(fh − fh,1),

∂uϕ,1
∂ϕ

=
1

ω
(fϕ +

∂ω

∂h
uh,1 − fϕ,1), (7.2)

fh,1 = 〈fh〉ϕ, fϕ,1 = 〈fϕ〉ϕ.

Integrating by parts, we get

2π〈∂fh
∂ϕ

uϕ,1〉ϕ =

∫ 2π

ϕ=0

∂fh
∂ϕ

uϕ,1dϕ = −
∫ 2π

ϕ=0

fh
∂uϕ,1
∂ϕ

dϕ =

= − 1

ω

∫ 2π

ϕ=0

fhfϕdϕ −
1

ω

∂ω

∂h

∫ 2π

ϕ=0

fhuh,1dϕ +
1

ω
fϕ,1

∫ 2π

ϕ=0

fhdϕ.

Using (7.2), we can rewrite the integral in the second term:

1

ω

∫ 2π

ϕ=0

fhuh,1dϕ =

∫ 2π

ϕ=0

∂uh,1
∂ϕ

uh,1dϕ+
1

ω
fh,1

∫ 2π

ϕ=0

uh,1dϕ = 0. (7.3)

Indeed, the first term is
∫ 2π

ϕ=0
uh,1duh,1 = 0, and the second term is also zero because

〈uh,1〉ϕ = 0. Hence, we have

2π〈∂fh
∂ϕ

uϕ,1〉ϕ = − 1

ω

∫ 2π

ϕ=0

fhfϕdϕ +
2π

ω
fh,1fϕ,1.

Similarly,

2π〈∂fϕ
∂ϕ

uh,1〉ϕ =

∫ 2π

ϕ=0

∂fϕ
∂ϕ

uh,1dϕ = −
∫ 2π

ϕ=0

fϕ
∂uh,1
∂ϕ

dϕ =

= − 1

ω

∫ 2π

ϕ=0

fhfϕdϕ +
1

ω
fh,1

∫ 2π

ϕ=0

fϕdϕ.

We obtained (7.1). This means that (3.6) can be rewritten as fh,2 = 〈( ∂fh
∂h

+
∂fϕ
∂ϕ

)uh,1〉ϕ. By Lemma 2.1 this equals 〈( ∂fq
∂q

+
∂fp
∂p

)uh,1〉ϕ− 1
T
∂T
∂h
〈fhuh,1〉ϕ. By (7.3)

the last term is equal to zero. This means

fh,2 = 〈(∂fq
∂q

+
∂fp
∂p

)uh,1〉ϕ.

Proof of Lemma 3.3. The function uh,1 is uniquely determined by two properties.

The first one is that
∂uh,1

∂t
= fh(t) − 〈fh〉t (this follows from (3.4), (3.5)). Denote

by U the expression on the right hand side of (3.8). We have

∂U

∂t0
=

1

T

∫ T

0

(
t− T

2

)∂fh
∂t

(t+ t0)dt.

Integrating by parts, this can be rewritten as

∂U

∂t0
=

1

T

∣∣∣T
t=0

fh(t+ t0)
(
t− T

2

)
− 1

T

∫ T

0

fh(t+ t0)dt = fh(t0)− 〈fh〉t.

Hence the first property of uh,1 holds for U .
The second property is that 〈uh,1〉t = 0. This also holds for U , it is checked by

writing
∫
U(t0)dt0 as a double integral and changing the order of integration.

8 Formulas for the averaging chart

In this section we present formulas for fϕ,2 and fh,3 from Lemma 3.1 and prove
this lemma. We use the notation introduced in Section 3.

Lemma 8.1.

• Denote by x the column vector (h, ϕ) and by x the column vector (h, ϕ). Let
fx,i = (fh,i, fϕ,i), ux,i = (uh,i, uϕ,i).
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• For k = x, h, ϕ denote uk,1,2 = uk,1 + εuk,2, fk,1,2 = fk,1 + εfk,2, fk,2,3 =

fk,2 + εfk,3, fk,1,2,3 = fk,1 + εfk,2 + ε2fk,3. For k = x the terms uϕ,2, fϕ,3
appear, we set uϕ,2 = fϕ,3 = 0.

• For a vector-function g(x) = (g1, . . . , gl) denote
(
∂g
∂x

)
int

= ( ∂g1
∂x

(ξ1), . . . , ∂gl
∂x

(ξl)),(
∂2g
∂x2

)
int

= ( ∂
2g1
∂x2

(η1), . . . , ∂
2gl
∂x2

(ηl)), where ξi, ηi are some intermediate points
on the segment [x, x].

Then we have the following system of linear equations determining fϕ,2 and fh,3:

(1 + ε
∂uϕ,1
∂ϕ

)fϕ,2 + ε2 ∂uϕ,1
∂h

fh,3 =

=
∂ω

∂h
uh,2 +

1

2
uTh,1,2

(∂2ω

∂h2

)
int
uh,1,2 +

(∂fϕ
∂x

)
int
ux,1,2 −

− ∂uϕ,1
∂h

fh,1,2 −
∂uϕ,1
∂ϕ

fϕ,1,

(1 + ε
∂uh,1,2
∂h

)fh,3 +
∂uh,1,2
∂ϕ

fϕ,2 =

=
∂fh
∂h

uh,2 +
1

2
uTx,1,2

(∂2fh
∂x2

)
int
ux,1,2−

− ∂uh,1
∂h

fh,2 −
∂uh,2
∂h

fh,1,2 −
∂uh,2
∂ϕ

fϕ,1.

(8.1)

Proof of lemmas 3.1 and 8.1. We shall differentiate the coordinate change (3.1)
with respect to the time and rewrite all emerging terms as functions of x. The
derivatives of the left hand sides of (3.1) are given by (2.1). They are functions of
x, let us write Taylor’s expansions at the point x. We group together the terms of
order at least 3 for the coordinate change in h and 2 for the change in ϕ

ḣ = εfh(x) = εfh(x+ εux,1 + ε2ux,2) =

= εfh(x) + ε2 ∂fh
∂x

ux,1 + ε3

(
∂fh
∂h

uh,2 +
1

2
uTx,1,2

(∂2fh
∂x2

)
int
ux,1,2

)
,

ϕ̇ = ω(h) + εfϕ(x) = ω(h+ εuh,1 + ε2uh,2) + εfϕ(x+ εux,1 + ε2ux,2) =

= ω(h) + ε

(
∂ω

∂h
uh,1 + fϕ(x)

)
+

+ ε2

(
∂ω

∂h
uh,2 +

1

2
uTh,1,2

(∂2ω

∂h2

)
int
uh,1,2 +

(∂fϕ
∂x

)
int
ux,1,2

)
.

Now we write the terms containing the derivatives of uk,i.

εu̇h,1(x) + ε2u̇h,2(x) =

= ε
∂uh,1
∂ϕ

ω + ε2

(
∂uh,2
∂ϕ

ω +
∂uh,1
∂x

fx,1

)
+ ε3

(
∂uh,1
∂x

fx,2,3 +
∂uh,2
∂x

fx,1,2,3

)
,

εu̇ϕ,1(x) = ε
∂uϕ,1
∂ϕ

ω + ε2 ∂uϕ,1
∂x

fx,1,2,3.

Let us plug these expressions together with (3.2) into the time derivative of (3.1).
Equating the terms of the same order in ε (grouping together the terms with order
at least 3 for the equation on h and 2 for the equation on ϕ), we get (3.4) and (3.5),
as well as the following equations:

fϕ,2 =
∂ω

∂h
uh,2 +

1

2
uTh,1,2

(∂2ω

∂h2

)
int
uh,1,2 +

(∂fϕ
∂x

)
int
ux,1,2 −

∂uϕ,1
∂x

fx,1,2,3,

fh,3 =
∂fh
∂h

uh,2 +
1

2
uTx,1,2

(∂2fh
∂x2

)
int
ux,1,2 −

∂uh,1
∂x

fx,2,3 −
∂uh,2
∂x

fx,1,2,3,

which are equivalent to (8.1), we just expand some terms like fx,1,2,3 in order to

move the terms containing fϕ,2 and fh,3 to the left hand side.

9 Estimates related to the energy-angle vari-
ables

9.1 The coordinates h̃, t̃i
Our goal in this section is to estimate how q, p depend on h, ϕ for h → 0. To do
so, we introduce new coordinates h̃, t̃i. The subscript i is here because there will
be different coordinate systems in different parts of the phase space. Then we will
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estimate how q, p depend on h̃, t̃i and how h̃, t̃i depend on h, ϕ. Combining these
estimates, we will get the required estimates of the dependence of q, p on h, ϕ.

For simplicity we will assume that the Hamiltonian H is analytic. Then by [3]
one can find a new coordinate system x, y in the neighborhood of the saddle C such
that this coordinate change is analytic and volume preserving, and the unperturbed
system in the new coordinates is determined by a Hamiltonian Hx,y = Hx,y(xy).1

Let h̃ = xy, denote a(h̃) =
dHx,y

dh̃
. Then in the new chart the unperturbed system

rewrites as

ẋ = a(h̃)x, ẏ = −a(h̃)y. (9.1)

Note that h̃ is a first integral of this system. Also note that as Hx,y(x, y) = H(p, q),
we have that h̃ is a smooth function of h. This also means that h̃ is defined on the
whole phase space, even far from C. We will assume a > 0 (else we may swap x
and y). Rescaling x and y if needed, we may assume that the neighborhood of C
where the new coordinates are defined contains the square S = {−1 ≤ x, y ≤ 1}.

Figure 1: Domains where t̃i are defined.

The diagonals x = ±y split S into four triangles adjanced to each of its sides. In
each such triangle let us introduce the time t̃i (it can be positive or negative) that
passes after the trajectory intersects the adjanced side of S. The time t̃i can also
be continued outside the square to the neighborhood of the separatix crossing the
transversal t̃i = 0 (it is a side of S). Domains where each t̃i is defined are drawn
in figure 1. Note that the coordinate systems h̃, t̃i cover the whole phase space (we
only consider h close to zero here).

We will assume that ϕ = 0 corresponds to the transversal Γ given by x = y ≥ 0.

9.2 Estimates on how q, p depend on h̃, t̃i

Outside of S each point of the phase space is covered by two coordinate systems
h̃, t̃i. For both of them the coordinate change p, q ↔ h̃, t̃i is defined and is smooth
without singularities. So we only need to consider what happens inside S. For
definiteness, let us restrict ourselves to the triangle {x ≥ y, x ≥ −y} ∩ S. For
brevity we will write just t̃ for the coordinate t̃i defined in this triangle. This means
that t̃ is the time after the trajectory intersects the line x = 1. Moreover, we will
only consider the upper half of this triangle (x ≥ y, y ≥ 0). Then t̃ will be negative.
We have

x = ea(h̃)t̃, y = h̃e−a(h̃)t̃,

h̃ = xy, t̃ =
lnx

a(xy)
;

(9.2)

∂x

∂h̃
= a′(h̃)t̃x,

∂x

∂t̃
= a(h̃)x,

∂y

∂h̃
= −a′(h̃)t̃y +

1

x
,
∂y

∂t̃
= −a(h̃)y. (9.3)

1The result of [3] is for the case when H periodically depends on the time, but one may check that
when this dependence is constant the coordinate change constructed in [3] does not depend on the time.
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Note that t̃x = t̃ea(h̃)t̃ = O(1), as a(h̃)t̃ < 0. It follows that

∂y

∂h̃
= O(h−1/2);

∂x

∂h̃
,
∂y

∂t̃
,
∂x

∂t̃
= O(1). (9.4)

Here we use that x ≥ h̃1/2. Also note that h̃
h
→ c 6= 0 as h → 0, so we may write

O(hk) instead of O(h̃k). It also follows from (9.3) that

∂2y

∂h̃2
= −2a′(h̃)t̃

x
+ · · · = O(h−1/2 lnh);

∂2y

∂t̃∂h̃
= O(h−1/2);

∂2y

∂t̃2
,
∂2x

∂h̃2
,
∂2x

∂t̃2
,
∂2x

∂t̃∂h̃
= O(1).

(9.5)

Now let us return from (x, y) to (q, p). Let us consider a smooth function ψ(p, q)
without singularities (e.g. p or q), inside S it is a smooth function of x, y. Hence,
all partial derivatives of orders 1 and 2 of ψ with respect to x, y are O(1). We will
use the following formula (ai, bi are some coordinate systems)

∂2

∂ai∂aj
=
∑
l

∂2bl
∂ai∂aj

∂

∂bl
+
∑
k,l

∂bl
∂aj

∂bk
∂ai

∂2

∂bk∂bl
. (9.6)

Using this formula and (9.4), (9.5), we get the following estimates.

∂ψ

∂h̃
= O(h−1/2),

∂ψ

∂t̃i
= O(1);

∂2ψ

∂h̃2
= O(h−1),

∂2ψ

∂t̃∂h̃
= O(h−1/2),

∂2ψ

∂t̃2
= O(1).

(9.7)

These estimates are valid everywhere: we obtained them in a part of S, in other
parts of S they can be obtained similarly, and outside of S we even have O(1) on
all right hand sides as the considered coordinate change is smooth.

9.3 Estimates on how h̃, t̃i depend on h, ϕ

First, recall that h̃ is a smooth function of h without singularities and h̃
h
→ c 6= 0

as h→ 0.
Denote by S(h̃) the time that the solution with given h̃ takes to get from the

diagonal of the square S to its side. Then the total time spent inside the square

during each period is 4S(h̃). From (9.2) we have S(h̃) = − ln h̃

2a(h̃)
. Hence,

S = O(lnh),
dS

dh
= O(h−1),

d2S

dh2
= O(h−2). (9.8)

Denote by Treg,1(h) and Treg,2(h) the times that the solution spends outside S near
each of the separatix loops during each period. These are smooth functions of h.
Then

T = 4S + Treg,1 + Treg,2.

From (9.8) we get the estimates on T , ω from Table 1.
For each t̃i we have t̃i = t − t0,i, where t0,i is the value of t corresponding to

t̃i = 0. We have t0,i = kS + k1Treg,1 + k2Treg,2 with k ∈ {1, 2, 3}; k1, k2 ∈ {0, 1}
(see figure 1). Hence, we have

t̃i = (4S(h̃) + Treg,1(h) + Treg,2(h))ϕ− kS(h̃)− k1Treg,1(h)− k2Treg,2(h).

From this (and smooth dependence of h̃ on h) we get

∂t̃i
∂ϕ

= O(lnh),
∂t̃i
∂h

= O(h−1),

∂2t̃i
∂ϕ2

= 0,
∂2t̃i
∂h∂ϕ

= O(h−1),
∂2t̃i
∂h2

= O(h−2),

∂h̃

∂h
= O(1),

∂2h̃

∂h2
= O(1),

∂h̃

∂ϕ
= 0.

(9.9)

9.4 Estimates on how q, p depend on h, ϕ

As above, let ψ(p, q) be a smooth function without singularities. Applying the
formula (9.6) to (9.7) and (9.9), we get the following estimates:

∂ψ

∂h
= O(h−1),

∂ψ

∂ϕ
= O(lnh),

∂2ψ

∂h2
= O(h−2),

∂2ψ

∂h∂ϕ
= O(h−1 lnh),

∂2ψ

∂ϕ2
= O(ln2 h).

(9.10)
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9.5 Estimates on f

Here we obtain the estimates on fh and fϕ from Table 1. The estimates on fh
follow from (9.10) as fh = fq

∂h
∂q

+ fp
∂h
∂p

is smooth without singularities.

From (2.2) and Table 1 we have
∂fϕ
∂ϕ

= O(h−1). Let us apply ∂
∂h

to (2.2).

As div(f) is smooth, by (9.10) we have ∂
∂h

(div(f)) = O(h−1). So we obtain an

estimate
∂2fϕ
∂ϕ∂h

= O(h−2). The values of fϕ and
∂fϕ
∂h

are determined only by the
local behavior of f . If we estimate these functions near one separatrix loop, we
may assume that f = 0 far from this separatrix loop. We have just estimated ∂

∂ϕ

of these functions, so fϕ = O(h−1),
∂fϕ
∂h

= O(h−2), as in Table 1.
Finally, let us estimate fϕ(h, 0). For x, y > 0 we have t = 1

2a(h̃)
(lnx − ln y),

this is obtained by solving (9.1) with initial conditions x = y = h̃1/2 for t = 0. For
ϕ = 0 (and therefore t = 0, x = y = h̃1/2) we have

∂ϕ

∂x
=

∂

∂x
(ωt) = ω

∂t

∂x
=

ω

2a(h̃)x
= O(h−1/2 ln−1 h).

Similarly, ∂ϕ
∂y

= O(h−1/2 ln−1 h), and fϕ = fx
∂ϕ
∂x

+ fy
∂ϕ
∂y

= O(h−1/2 ln−1 h). Here
fx, fy are the components of the vector field f written in the x, y chart, they are
O(1).

9.6 Estimate on fϕ,1

It will be convenient to prove the estimate fϕ,1 = O(h−1 ln−3 h) here. As 〈uh,1〉ϕ =
0, by Lemma 3.1 we have

fϕ,1 = 〈fϕ〉ϕ =
1

T

∫ T

0

fϕdt. (9.11)

We split this integral into four disjoint integrals over the domains where the charts
h̃, t̃i are defined. For definiteness we will consider only one such chart h̃, t̃ corre-
sponding to the triangle 0 < y < x < 1 ⊂ S (and continued outside S as discussed
above). Denote by γ the part of our trajectory that is covered by this chart. We
can rewrite the part of (9.11) covered by our chart as

1

T

∫
γ

(∂ϕ
∂t̃
ft̃ +

∂ϕ

∂h̃
fh̃

)
dt̃, (9.12)

where fh̃, ft̃ are the components of f in the coordinates h̃, t̃. Note that dt = dt̃.
Denote by ϕ0(h̃) the value of ϕ at the moment t̃ = 0. We have ϕ = ϕ0 + ωt̃

and ∂ϕ

∂h̃
= ∂ϕ0

∂h̃
+ t̃ ∂ω

∂h̃
. We have ϕ0

2π
= kS+s1

4S+s2
= k

4
+ s1−ks2/4

4S+s2
. Here k ∈ Z, S was

defined in Section 9.3, and s1, s2 are smooth functions of h̃ corresponding to the time
spend outside S. Hence, ∂ϕ0

∂h̃
= O(h−1 ln−2 h). We also have ∂ϕ

∂t̃
= ω = O(ln−1 h),

∂ω

∂h̃
= O(h−1 ln−2 h), T = O(lnh). Hence, (9.12) rewrites as

O(ln−2 h)

∫
γ

|ft̃|dt̃+O(h−1 ln−3 h)

∫
γ

O(1 + |t̃|)|fh̃|dt̃. (9.13)

Split γ into parts that lie inside and outside S: γ = γin ∪ γout. Outside S the
functions t̃, h̃ are smooth functions of p, q without singularities, so fh̃, ft̃ = O(1).
Also, outside S we have t̃ = O(1), so the integral (9.12) over γin is O(h−1 ln−3 h).

Inside S we have

fh̃ = fx
∂h̃

∂x
+ fy

∂h̃

∂y
, ft̃ = fx

∂t̃

∂x
+ fy

∂t̃

∂y
.

Recall that inside S by (9.2) we have t̃ = O(lnx), ∂t̃
∂x

= O(x−1), ∂t̃
∂y

= O(lnx), h̃ =
xy. We also have y = O(x), fx = O(1), fy = O(1). This gives the estimates

fh̃ = O(x), ft̃ = O(x−1).

We have ∫
γin

|ft̃|dt̃ =

∫
γin

O(x−1)dt̃ =

∫
γin

O(x−2)dx = O(h−1/2).

Here we used that on γin we have x ≥ h̃1/2. We also have∫
γin

O(1 + |t̃|)|fh̃|dt̃ =

∫
γin

O(1 + | lnx|)dx = O(1).

Plugging this estimates in (9.13), we obtain that the integral (9.12) over γin is
also O(h−1 ln−3 h). Hence, the part of integral (9.11) corresponding to the chart
h̃, t̃ is O(h−1 ln−3 h). For other charts h̃, t̃i we have the same estimate, so fϕ,1 =

O(h−1 ln−3 h).

13



10 Estimates related to the averaging chart

In this section we prove the estimates from Table 1 for the functions uk,i and fk,i.

We will also prove the estimates for the functions f̂k,i. The following lemma allows
to mass-produce estimates for uk,i and fk,i. However, these estimates are not always
good, so we will estimate some of these functions differently.

Lemma 10.1. Let functions f , u be determined by the equations (3.3), (3.4) and
the condition 〈u〉ϕ = 0. Suppose that we have estimates for the function Y when
h→ 0:

Y = O(Y0(h)),
∂Y

∂h
= O(Y1(h)),

∂2Y

∂h2
= O(Y2(h)).

Then we have

1. f = O(Y0), ∂f
∂h

= O(Y1), ∂2f
∂h2

= O(Y2)

2. ∂u
∂ϕ
, u = O(Y0 lnh)

3. ∂2u
∂ϕ∂h

, ∂u
∂h

= O(Y1 lnh) +O(Y0 · h−1)

4. ∂3u
∂ϕ∂h2

, ∂
2u
∂h2

= O(Y2 lnh) +O(Y1 · h−1) +O(Y0 · h−2).

Proof. Item 1 follows from (3.3). Let us rewrite (3.4) as

∂u

∂ϕ
=

T

2π
(Y − f). (10.1)

The first part of item 2 immediately follows from (10.1) and the estimates on T
from Table 1, while the second part follows from the first part and the condition
〈u〉ϕ = 0. The second parts of items 3 and 4 follow from the first parts in the same
way. To get the first parts we differentiate (10.1) with respect to h once or twice,
respectively, and use the estimates on T from Table 1.

Let us now start with the function fh,1. We have fh,1 =
∫ T
0 fhdt

T
. By [4,

Corollary 3.1] we have
∫ T

0
fhdt = O(1), this gives the estimate for fh,1 itself. To

estimate
∂fh,1

∂h
, we use the estimate ∂

∂h
(
∫ T

0
fhdt) = O(lnh) ([4, Lemma 3.2]).

Let us estimate the function uh,1, we will estimate the derivatives later. Since
the saddle C is a critical point of H, the function fh = ∂h

∂q
fq + ∂h

∂p
fp vanishes at C.

By [4, Lemma 3.2], it follows that
∮
H=h
|fh|dt = O(1). This and (3.9) means that

uh,1 = O(1).
We use the formulas for Yk,i from (3.5). As Yh,1 = fh, by Lemma 10.1 and the

estimates for fh from Table 1 we obtain the estimates for the derivatives of uh,1.
Next, we have Yϕ,1 = fϕ + ∂ω

∂h
uh,1. From the estimates we have just obtained and

the estimates on fϕ in Table 1 we get Yϕ,1 = O(h−1),
∂Yϕ,1

∂h
= O(h−2). This gives

us the estimates on the functions fϕ,1 and uϕ,1 and their derivatives. However, for

the function fϕ,1 itself we have obtained a better estimate in Section 9.6.
To prove the estimate for fh,2, we use (3.7). As 〈uh,1〉ϕ = 0, we can replace

there div(f) with div(f)− div(f)(C):

f2,h = 〈(div(f)− div(f)(C))uh,1〉ϕ. (10.2)

We have 〈|div(f) − div(f)(C)|〉ϕ = 1
T

∮
H=h
| div(f) − div(f)(C)|dt = O(1)

T
by [4,

Lemma 3.2]. As uh,1 = O(1), by (10.2) this implies f2,h = O(1)
T

= O(ln−1 h).

By (9.10) we have ∂ div(f)
∂h

= O(h−1). We also use the estimate
∂uh,1

∂h
= O(h−1 lnh)

obtained above. Then taking ∂
∂h

of (10.2) we get
∂f2,h
∂h

= O(h−1).
For the function uh,2 we use Lemma 10.1 and estimate Yh,2 given in (3.5) by

using Table 1: Yh,2 = O(h−1 ln2 h),
∂Yh,2

∂h
= O(h−2 ln2 h).

To estimate the functions fh,3 and fϕ,2, we need to assume that

h > ε ln10 ε. (10.3)

By (8.1) we have the following system of equations:

(1 + ε
∂uϕ,1
∂ϕ

)fϕ,2 + ε2 ∂uϕ,1
∂h

fh,3 = A,

(1 + ε
∂uh,1,2
∂h

)fh,3 +
∂uh,1,2
∂ϕ

fϕ,2 = B.

From (10.3), (3.1) and the estimates on uh,1 and uh,2 we have

h = h(1 + o(1)).
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This allows us to estimate the intermediate values from (8.1) as if they were at
the point h. Using Table 1, we have A = O(h−2 lnh), B = O(h−2 ln4 h). We can
substitute the expression for fh,3 from the second equation into the first one. This
yields

fϕ,2

(
1 + ε

∂uϕ,1
∂ϕ

− ε2 ∂uϕ,1
∂h

∂uh,1,2
∂ϕ

(1 + ε
∂uh,1,2
∂h

)−1

)
=

= A− ε2 ∂uϕ,1
∂h

(1 + ε
∂uh,1,2
∂h

)−1B.

From (10.3) and Table 1 we see that
∂uh,1,2

∂ϕ
= O(lnh) and ε

∂uh,1,2

∂h
= o(1). Hence,

we have fϕ,2 = O(h−2 lnh). Then from the second equation we obtain fh,3 =

O(h−2 ln4 h).

Lemma 10.2. The estimates for the functions fh,1, fh,2, fh,3, fϕ,1, fϕ,2 and their

derivatives stated in Table 1 also hold for the corresponding functions f̂h,1, f̂h,2, f̂h,3, f̂ϕ,1, f̂ϕ,2
and their derivatives. Moreover, we have |uh,1(h, ϕ, ε)− u0

h,1(h, ϕ)| = O(ε).

Proof. Recall that the expressions f
0

∗,∗ are computed by the same formulas as f∗,∗,

with the perturbation f replaced by f0. This means that the estimates we have for

f∗,∗ (they are valid for any smooth perturbation f) also hold for f
0

∗,∗. By (4.3) we

have f̂h,1 = f
0

h,1 and f̂ϕ,1 = f
0

ϕ,1, so for these expressions and their derivatives the
lemma holds.

By (4.3) we also have f̂h,2 = f
0

h,2 + 〈f1
h(h, ϕ)〉ϕ. Denote ψ = 〈f1

h(h, ϕ)〉ϕ. Simi-

larly to the estimate on fh,1 above, we have ψ = O(ln−1 h) and ∂ψ
∂h

= O(h−1 ln−2 h).

Therefore, the estimates for fh,2 and
∂fh,2

∂h
from Table 1 also hold for f̂h,2.

We have f̂ϕ,2 = fϕ,2 + ε−1(fϕ,1 − f
0

ϕ,1). Using (4.1), we get ε−1(fϕ,1 − f
0

ϕ,1) =

〈f1
ϕ + εf2

ϕ〉ϕ, where f iϕ is the ϕ-component of f i written in the energy-angle coor-
dinates. As the estimate for fϕ,1 = 〈f〉ϕ holds for any smooth f , we can plug in

f1
ϕ + εf2

ϕ instead of f and get the estimate 〈f1
ϕ + εf2

ϕ〉ϕ = O(h−1 ln−3 h). As f2
p and

f2
q are uniformly bounded by a constant independent of ε, one may check that this

estimate is uniform in ε. Therefore, the estimate for fϕ,2 also holds for f̂ϕ,2.

Before estimating f̂h,3 we need to prove the second statement of the lemma.
The map U : f → uh,1 is linear by (3.8). Hence, uh,1(h, ϕ, ε) − u0

h,1(h, ϕ) =
U(f(p, q, ε)− f0(p, q)) = εU(f1(p, q) + εf2(p, q, ε)) = O(ε). The last equality holds,
because the estimate for uh,1 gives that U(g) = O(1) for all smooth g. Again, this
estimate is uniform in ε because f2

p and f2
q are uniformly bounded.

We have f̂h,3 = fh,3 + 〈f2
h〉ϕ + ε−1(fh,2− f

0

h,2). Clearly, 〈f2
h〉ϕ = O(1). By (3.7)

we have ε−1(fh,2−f
0

h,2) = ε−1〈div f uh,1−div f0 u0
h,1〉ϕ. As uh,1 = u0

h,1 +O(ε) and

div f = div f0 + O(ε), we get ε−1(fh,2 − f
0

h,2) = O(1), thus proving the estimate

for f̂h,3.
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