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The resonant interaction of relativistic electrons and whistler waves is an important mechanism of electron
acceleration and scattering in the Earth radiation belts and other space plasma systems. For low amplitude
waves, such an interaction is well described by the quasi-linear diffusion theory, whereas nonlinear resonant
effects induced by high-amplitude waves are mostly investigated (analytically and numerically) using the
test particle approach. In this paper, we develop a mapping technique for the description of this nonlinear
resonant interaction. Using the Hamiltonian theory for resonant systems, we derive the main characteristics
of electron transport in the phase space and combine these characteristics to construct the map. This map
can be considered as a generalization of the classical Chirikov map for systems with nondiffusive particle
transport and allows us to model the long-term evolution of the electron distribution function.

I. INTRODUCTION

Whistler waves are electromagnetic emissions within
the frequency range from the lower-hybrid up to electron
cyclotron frequency widely observed in space1,47,82,96,98

and laboratory71,85 plasmas. These waves are gen-
erated by various types of electron distributions with
thermal anisotropy39,89, beam distributions8,43,93,94,
or both9,49,52, and they play an important role
in the isotropisation of originally unstable electron
distributions30,45,76. A classical theory of whistler wave
resonant interaction with electrons is the quasi-linear
theory38,46,90 that assumes a broad spectrum of low
amplitude waves. This theory allows to describe the
main characteristics of electron acceleration48,79 and
scattering59,80 in the Earth radiation belts, in the solar
wind66, and at the Earth bow shock91,92. However, quasi-
linear theory cannot describe resonant interactions with
the very intense coherent waves34,74 often observed in
space plasmas2,81,83,95,96,99,100. Such sufficiently intense
whistlers can resonate nonlinearly with electrons21,35,60.
Such nonlinear interaction can lead to phase trapping or
non-diffusive scattering of particles5,70 and can result in a
very fast electron acceleration6,26,27,29,62,75,97. Therefore,
the effects of nonlinear resonant interaction are actively
investigated (see reviews in Refs. 7, 9, 11, 63, and 68).

Since self-consistent Vlasov or Particle-In-Cell sim-
ulations of whistler wave generation and their reso-
nances with electrons28,36,44,77 can hardly cover the long-
term dynamics of the electron distribution in realistic
space plasma systems, alternative approaches need to
be considered. Beside the test particle approach (i.e.,
the numerical integration of a large number of elec-
tron trajectories3,42,61), the most interesting approach
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for the investigation of nonlinear electron resonances
with whistler waves consists in the derivation of a ki-
netic equation (master-equation86) describing the evo-
lution of the electron distribution. This approach gen-
eralizes the quasi-linear diffusion equation by includ-
ing terms responsible for electron nonlinear accelera-
tion and scattering13,18,29,64. Such terms can be derived
analytically15,84 or numerically31,32,64.

A less investigated but potentially useful approach
is the mapping technique already widely used for sys-
tems with small wave amplitudes50,65. The well-known
Chirikov map25 describes phase space diffusion and
transport induced by periodical random jumps of parti-
cle momentum. The resonance of electrons and whistler
waves results in a similar type of dynamics: each reso-
nant interaction corresponds to an electron energy (and
pitch-angle) jump inducing particle transport in phase
space. For small amplitude whistler waves, the map of
electron resonant jumps is quite similar to the Chirikov
map22,40,41, but nonlinear resonant interaction should
significantly change such a map. In this study, we de-
velop a map describing electron motion in a system with
multiple passages through nonlinear resonances. We have
also demonstrated that this map models well the electron
distribution evolution and can be used to study the ra-
diation belt dynamics.

II. BASIC EQUATIONS

To derive the basic properties of the nonlinear elec-
tron (me is the rest mass and −e is the charge) inter-
action with field-aligned whistler waves (ω is a constant
frequency, k(ω, s) is the wave number given by the cold
plasma dispersion relation72 and depending on the field-
aligned coordinate s) we consider Hamiltonian (see de-
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tails in, e.g., Refs. 16 and 84):

H = mec
2γ + Uw (s, Ix) sin (φ+ ψ)

γ =

√
1 +

p2
‖

m2
ec

2
+

2IxΩce
mec2

(1)

where c is the speed of light, γ is the gamma fac-
tor of the gyroaveraged system, Ωce = eB0(s)/mec is
the electron gyrofrequency in the background magnetic
field B0(s) given by the reduced dipole model21, Uw =√

2IxΩcemeeBw/γmeck with Bw the wave amplitude, Ix
is the magnetic moment normalized in a such a way that
IxΩce has the dimension of energy. The conjugate pairs of
variables in Eq. (1) are field-aligned coordinate and mo-
mentum, (s, p‖), and gyrophase and magnetic moment,
ψ, Ix. Wave phase φ is given by the differential equation:
φ̇ = k(s)ṡ − ω (we omit the argument ω in the func-
tion k). In system (1) phases φ, ψ change much faster
than variables s, p‖, Ix because wave frequency ω and gy-
rofrequency Ωce are much larger than the electron bounce
frequency ∼ c/R where R is a spatial scale of B0(s) gra-
dient. Therefore, the first small parameter of the system
is c/RΩce � 1. The second small parameter of the sys-
tem is Bw/B0 � 1, and we consider sufficiently intense
waves with Bw/B0 ≥ c/RΩce (this condition is satisfied
for a significant fraction of whistler waves observed in the
Earth radiation belts, see Ref. 100).

Figure 1(a) shows several fragments of electron tra-

jectories around the resonance φ̇ + ψ̇ = 0 (with ψ̇ =
∂H/∂Ix ≈ Ωce/γ): there are two main effects57 – electron
trapping into resonance with the energy increase ∆γtrap,
and electron scattering on the resonance with the energy
decrease ∆γscat. We plan to construct a map describing
the long-term evolution produced by these two processes.

We start with the determination of ∆γtrap, ∆γscat and
their dependencies on particle characteristics. First, we
use the generating function W1 = ((

∫
k(s̃)ds̃−ωt)+ψ)I+

sP to introduce phase ϕ = φ+ψ and conjugate momen-
tum I:

HI = −ωI +mec
2γ + Uw (s, I) sinϕ

γ =

√
1 +

(P + kI)
2

m2
ec

2
+

2IΩce
mec2

(2)

Pairs of conjugate variables are (I, ϕ) and (s, P ). The
resonance condition (ϕ̇ = ∂HI/∂I = 0) for Hamiltonian
(2) defines the resonant momentum IR(s, P ):

kIR
mec

=

√
1− (Ωce/kc)

2 − 2 (ΩceP/kmec2)

(kc/ω)
2 − 1

− Ωce
kc
− P

mec
(3)

We expand Hamiltonian (2) around the resonance

HI ≈ Λ +
1

2
g (I − IR)

2
+ Uw (s, IR) sinϕ (4)

Λ = −ωIR +mec
2γR, γR =

√
1 +

(P + kIR)
2

m2
ec

2
+

2IRΩce
mec2

g = mec
2 ∂

2γ

∂I2

∣∣∣∣
I=IR

=
ω2
(

(kc/ω)
2 − 1

)
γR

and use the generating function W2 = (I − IR)ζ + Ps∗

to introduce new pairs of conjugate variables (ζ, Pζ) and
(s∗, P ∗) with Pζ = I − IR, s∗ = s + (∂IR/∂P )ζ, P ∗ =
P − (∂IR/∂s)ζ:

H̃I = Λ (s∗, P ∗) +
1

2
gP 2

ζ + Uw (s, IR) sin ζ

≈ Λ (s, P ) +
1

2
gP 2

ζ − rζ + Uw (s, IR) sin ζ

r = {Λ, IR}s,P =
∂Λ

∂s

∂IR
∂P
− ∂Λ

∂P

∂IR
∂s

(5)

Using Hamiltonian (2), we get mec
2∆γ = ω∆I (note

∂HI/∂t = 0) and İ = −∂HI/∂ϕ = −Uw cos(ϕ). There-
fore, the energy change ∆γ due to resonant interaction
can be written as11,56

mec
2∆γ = −ωUw

+∞∫
−∞

cosϕdt = −2ωUw

+∞∫
tR

cosϕdt

= −2ωUw

+∞∫
ζR

cos ζ

gPζ
dζ = −

√
2

g
ω

+∞∫
ζR

Uw cos ζdζ√
hζ + rζ − Uw sin ζ

= −

√
2Uw
g
ω

+∞∫
ζR

a cos ζdζ√
(ζ − ζR)− a (sin ζ − sin ζR)

= −
√

2r

g
ωf (ζR, a) (6)

where tR is the time of the resonant interaction, ζR is the
value of ζ at t = tR, and we use the Hamiltonian equa-
tion ζ̇ = ∂H̃I/∂Pζ to express Pζ through the energy at

the resonance hζ = H̃I − Λ = Uw sin ζR − rζR (note Eq.
(6) is written for r > 0, see details in Refs. 11 and 56).
Coefficient a = Uw/r determines the mode of resonant
interaction: for |a| > 1 we deal with nonlinear interac-
tion with 〈∆γ〉hζ 6= 0, where 〈·〉hζdenotes averaging with
respect to hζ . Function f(ζR, a) is shown in Fig. 2 (a).
This is a periodic function with the average value11,56

equal to

〈∆γ〉hζ =
ω

π

√
2r

g

ζ+∫
ζ−

√
(ζ − ζ−)− a (sin ζ − sin ζ−)dζ

(7)
where ζ± are shown in the phase portrait of the Hamil-

tonian H̃I − Λ (see Fig. 1(b)).
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FIG. 1: (a) Change of electron energy due scattering (black; yellow shows averaged energy of scattered particle) and
trapping (red). The time interval of one resonant interaction is shown. All electrons have initially the same energy

and pitch-angle. For these trajectories and throughout the paper we consider a curvature-free dipole magnetic
field21 with the radial distance from the Earth R = 4.5 of the Earth radii. The whistler wave frequency is 0.35 times

the electron cyclotron frequency at the equator, and plasma frequency equals to 4.5 of the electron cyclotron
frequency at the equator. To evaluate the wave number k we use the cold plasma dispersion of whistler waves72.

Wave amplitude is 300 pT, typical for intense whistlers observed in the radiation belts24,83,95,99. The distribution of
the wave amplitude along magnetic field lines, Bw(s), is modeled by function tanh((λ/δλ1)2) exp(−(λ/δλ2)2) with λ

the magnetic latitude (ds = Rdλ
√

1 + sin2 λ cosλ) and δλ1 = 2◦, δλ2 = 20◦. This function fits the observed whistler
wave intensity distribution1. To simplify the simulations, we consider waves in only one hemisphere, Bw = 0 for

s < 0, and thus there is only one resonance for electrons within one bounce period. Waves are moving away from the
equatorial plane, s = 0, to large s, i.e. only k > 0 are included. (b) Phase portrait of Hamiltonian

H̃I − Λ = gP 2
ζ /2− rζ + Uw sin ζ for |Uw/r| > 1.

The energy change in Eq. (7) represents the energy
scattering ∆γscat = 〈∆γ〉hζ and depends on the reso-

nance position sR given by equations

h = −ωIR (s, P ) +mec
2γR (s, P ) , γ0 = γR (s, P ) (8)

where mec
2γ0 being the initial electron energy and h =

−ωIx0 + mec
2γ0 (with Ix0 being the initial Ix value).

Equations (8) can be rewritten as

γR =

∣∣∣∣∣∣Ωcekc ∓ kc√
(kc)

2 − ω2

√
1 +

(
Ωce
kc

)2

− 2h

mec2
Ωce
kc

∣∣∣∣∣∣
(9)

Figure 2(b) shows ∆γscat(sR). For a given h (or equiv-
alently for a given initial pitch-angle α0 determining
Ix0) we can plot ∆γscat as a function of initial energy
mec

2γ0, see Figure 2(c). As h is determined by α0 and
γ0, the energy scattering value mec

2∆γscat depends on
α0, γ0. Analogous dependencies of scattering on initial
particle parameters has been tested for several specific
Hamiltonians15,19,84. For Hamiltonian (1) we compare
the numerically calculated ∆γscat with the analytical ex-
pression (7) in Fig. 2(c): to evaluate ∆γscat numerically,

for several γ0 we run 104 trajectories for Hamiltonian (1)
for fixed h and different γ0 (the time of integration of
each trajectory includes only one resonant interaction)
and then average energy changes.

In contrast to scattering, particle trapping is a non-
local process. The energy change due to trapping sig-
nificantly exceeds ∆γscat and can be comparable with
the initial particle energy. Particles can be trapped if
the probability of trapping Π is positive11,57. For system
(5), this probability is defined by the relation20:

Π = −mec
2

ω

d∆γscat
dI

= −mec
2

ω
{∆γscat, IR} (10)

where {·, ·} is the Poisson bracket with respect to the
variables s, P . The value Π depends on the initial energy
γ0 and Ix in terms of their combination h = −ωIx0 +
mec

2γ0. If Eq. (10) gives a negative value, Π should be
set to be zero and there are no trapped particles.

Equation (10) determines the relative number of res-
onant particles that get trapped during a single reso-
nant interaction. Analogous equations have been veri-
fied using the test particle calculations for several spe-
cific Hamiltonians in Refs. 15, 20, and 84. Note that
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FIG. 2: Main parameters of the resonant system: (a) function f(ζR, a); (b) function 〈∆γscat(λR)〉, (c) function
〈∆γscat(γ0)〉; (d) probability of trapping Π(γ0). Symbols show the results of numerical simulations (h/mec

2 = 1.454
corresponds to, e.g., α0 = 45◦ of the equatorial pitch-angle for 300 keV electron energy; see details of model

parameters in the caption of Fig. 1).

due to conservation of h, the change of I is equal to the
change of γmec

2/ω, and thus Eq. (10) can be written
as Π = −d∆γscat/dγ, i.e. the derivative of the profile
∆γscat(γ) from Fig. 2(c) should give the Π(γ) profile
(for fixed h). Figure 2(d) shows this Π(γ) and the cor-
responding numerical verifications (each numerical point
shows the relative amount of 104 particles that have been
trapped during the first resonant interaction).

Being trapped at some resonant value sR defined by
Eqs. (8), particles should escape at sdetrap with an en-
ergy gain ∆γtrap = γR(sdetrap)−γ0. This detrapping co-
ordinate can be calculated using the conservation of the
adiabatic invariant (2π)−1

∮
Pζdζ for trapped particles

(see details in, e.g., Refs. 15 and 84). Formally speak-
ing, sdetrap is the solution of equation ∆γscat(sdetrap) =
∆γscat(sR), i.e., the function (7) should have the same
value at the trapping and detrapping positions20,87.

To summarize, for a given h = −ωIx0 + γ0mec
2,

the resonant system (1) can be reduced to a 1D sys-
tem that is described by the profile of energy change
due to scattering ∆γscat(γ), probability of trapping Π =
max(0,−d∆γscat/dγ), and energy change due to trapping
∆γtrap(γ). These three functions allow us to construct a
map describing the system evolution on a time interval
including many resonant interactions.

III. MAPPING TECHNIQUE

Let us discuss the meaning of the probability of trap-
ping, Π. Each trajectory far from the resonance is char-
acterized by initial energy γ, magnetic moment Ix, coor-
dinates in the (s, p‖) plane, and phase ζ which coincides
with ϕ. Knowing these values we can determine if parti-
cles will be trapped or scattered during the first resonant
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interaction. However, particle phase ζ changes with time
much faster than particle s, p‖ coordinates (ζ̇ ∼ Ωce is
the largest frequency in the system). Even a small initial
variation of ζ can result in a crucial change of the par-
ticle’s fate: trapped particles may become scattered and
vice versa. Accordingly, instead of tracing individual tra-
jectories with given ζ, it is more suitable to adopt a prob-
abilistic approach and to consider the relative amount of
trapped particle trajectories, equal to Π (see Refs. 55
and 67).

Will a particle be trapped or scattered depends on
ζ value at the resonance, ζR, but instead of ζ it is
more convenient to use the normalized resonant en-
ergy ξ = (a sin ζR − ζR)/2π − (a sin ζ+ − ζ+)/2π (where
ζR ∈ [ζ+ − 2π, ζ−], see Fig. 1(b)), which is distributed
uniformly (see numerical tests of ξ distributions in, e.g.,
Refs. 17 and 33); its values belong to the interval [0, 1].
Within this interval, the measure of the sub-range cor-
responding to trapping equals Π, and this sub-range is
0 ≤ ξ ≤ Π. As the particle energy does not change be-
tween two successive resonant interactions, we can write
a map of the γ → γ̄ transition during a single resonance
interaction:

γ̄ = γ +

{
∆γtrap (γ) , ξ ∈ [ 0,Π)
∆γscat (γ) , ξ ∈ (Π, 1]

Π = −d∆γscat/dγ
(11)

The map (11) should be supplemented with a map for
value ξ, which is related to ζ change (gain) between two
resonances through the equation (see Eq. (34) in Ap-
pendix A):

ξ̄ = ξ −∆ζ/2π mod 1 (12)

The rate of ζ change is defined by the Hamiltonian system
(2) (note that ζ = ϕ), but it is more convenient to use
notations of the Hamiltonian system (1):

ζ̇ = −ω +
Ωce (s)

γ
+ k (s)

p‖

meγ

(13)

p‖ = mec

√
γ2 − 1− 2IxΩce (s)

mec2

Integrating Eq. (13) over the time interval between two
resonances (in the system under consideration this time
is equal to the bounce period τb), we obtain

∆ζ = ωτb

(
$

γ
− 1

)
(14)

τb =
4

c

smax∫
0

(
γ2 − 1− 2IxΩce (s)

mec2

)−1/2

ds

$ =

smax∫
0

Ωce (s)
(
γ2 − 1− 2IxΩce(s)

mec2

)−1/2

ds

smax∫
0

ω
(
γ2 − 1− 2IxΩce(s)

mec2

)−1/2

ds

FIG. 3: Functions ωτb(γ), $(γ) for fixed value of h
(h/mec

2 = 1.454 corresponding, e.g., to an equatorial
pitch-angle α0 = 45◦ for a 300 keV electron; see details

of model parameters in the caption of Fig. 1).

where τb and $ depend on energy γ and Ix or, at h fixed,
these functions depend only on γ (see Fig. 3). Note that
the integral γ−1

∮
k(s)p‖dt =

∮
k(s)ds is equal to zero.

Combining Eq. (14) and Eq. (11), we obtain the map
for this resonant system in the (γ, ζ) plane:

ξ̄ = ξ − ωτb
(
$γ−1 − 1

)
/2π, Π = −d∆γscat/dγ

γ̄ = γ +

{
∆γtrap (γ) , ξ̄ ∈ [ 0,Π)
∆γscat (γ) , ξ̄ ∈ (Π, 1]

(15)
This map describes variation of particle energy and

phase. Figure 4(a) shows a typical trajectory obtained
from 200 iterations for map (15): the particle loses en-
ergy due to scattering and sometimes (when the phase
appears to be within the short range [0,Π)) gains en-
ergy due to trapping. After a sufficiently large number
of iterations, the particle trajectory fills the entire (ζ, γ)
plane (within the range of the resonant energies for which
∆γscat 6= 0), as shown in Fig. 4(b). Such spreading of
a single trajectory means that any initial distribution of
energy should tend toward a uniform distribution (note
that we are speaking of energies for a fixed h, i.e. the en-
ergy distribution along the resonant curve51,73). A sim-
ilar result has been obtained through numerical simula-
tions and solutions54 of the kinetic equation13 describing
the long-term dynamics of many trajectories (1). In the
next section, to check the derived map (15), we com-
pare the results provided by this map with results of test
particle simulations, as well as with results obtained by
solving the full kinetic equation.

IV. VERIFICATION OF MAPPING RESULTS

Let us fix h and consider a 1D energy distribution Ψ(γ)
(note that Ψ is a cut of the 2D energy/pitch-angle dis-
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FIG. 4: (a) Particle trajectory for map (15): γ and ξ as functions of iteration number, grey color shows the capture
probability Π. (b) Particle trajectory in (ξ, γ) plane for 105 iterations. (h/mec

2 = 1.454 corresponds to, e.g.,
α0 = 45◦ of the equatorial pitch-angle for 300 keV electron energy; see details of model parameters in the caption of

Fig. 1).

tribution). We can represent this distribution as a set
of 106 individual particles with different initial energies
and randomly distributed phases. Then, the trajectory
of each particle can be traced numerically using Hamil-
tonian equations (1) over a time interval including many
resonance interactions. This method reproduces the evo-
lution of Ψ(γ) driven by the wave-particle resonant inter-
action. Alternatively, we can trace trajectories and repro-
duce the evolution of Ψ(γ) using the map (15). The third
approach is to solve the kinetic equation that describes
Ψ evolution due to nonlinear resonant interactions13,16:

∂Ψ

∂t
= V

∂Ψ

∂J
+
dV

dJ
(Ψ∗ −Ψ) Θ (J) (16)

where J(γ) =
∫ γ

τb(γ
′)dγ′, V = ∆γscat/τb, Ψ∗ = Ψ(γ∗)

with γ∗ + ∆γtrap(γ
∗) = γ, and Θ = 0 for Π = 0 and

Θ = 1 for Π > 0. Equation (16) can be re-written in a
simplified form

∂Ψ

∂t
= V

∂Ψ

∂γ
+
dV

dγ
(Ψ∗τb(γ

∗)/τb(γ)−Ψ) Θ (γ) + ` (17)

where the term ` includes derivatives ∼ ∂τb/∂γ and can
be omitted for a sufficiently weak τb(γ) dependence (see
details of γ → J(γ) transformation in Refs. 14 and 16).

We consider such three types of solutions of Ψ(γ) evo-
lution (test particles, Eq. (16), and map (15)) for two ini-
tial distributions Ψ. Figure 5 shows these three solutions
for initial power law energy distribution and three mo-
ments of time (note that solutions obtained via test parti-
cle simulations and Eq. (16) depend on time, whereas the
map (15) depends on the iteration number that should
be transformed to time using the bounce period τb(γ) for
each trajectory). All three solutions show a very sim-
ilar evolution of Ψ(γ): the distribution gets flattened
within the resonant energy range (where ∆γscat 6= 0) and
forms a plateau. This is the effect of a competition be-
tween trapping (energy increase) and scattering (energy

decrease), that ultimately results in a uniform distribu-
tion (note that this uniform distribution is formed along
the resonance curves51,73, i.e. for h = const). A simi-
lar evolution, although more complicated, can be seen in
Fig. 6 showing three solutions for an initial Ψ(γ) with a
local maximum. This maximum starts drifting to lower
energies (due to scattering), whereas a new maximum
forms at high energies (due to trapping acceleration). Fi-
nally Ψ(γ) will be flattened and form a plateau within
the resonant energy range. Such an evolution of Ψ(γ)
has been predicted and described (considering solutions
of Eq. (16)) in Refs. 10 and 54.

V. DISCUSSION

In this study, we have developed a map describing
the dynamics of systems with nonlinear resonant wave-
particle interactions. For illustration we used wave and
background plasma parameters typical for the Earth in-
ner magnetosphere, where relativistic electrons resonate
with high amplitude whistlers. This system is well in-
vestigated in the regime of low wave amplitudes where
quasi-linear diffusion equations are applicable51,69,78, but
so far there is no method allowing to model the long-term
evolution of this system in the presence of nonlinear res-
onant effects. One of the most widespread technique,
test particle simulation4,23,26,27,37,53,62, provides a lot of
important information about electron acceleration and
scattering rates, but such simulations are limited to quite
short time intervals. This limitation mostly comes from
the need to integrate the entire (bounce) particle trajec-
tory even if energy and magnetic moment only change
at the locations of wave-particle resonances. Therefore,
a natural solution consist in considering only resonance-
induced changes of particle energy and pitch-angle, like
in the quasi-linear diffusion approach. The generalization
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FIG. 5: Evolution of distribution Ψ(γ) for h/mec
2 = 1.454 (this value of h corresponds to, e.g., equatorial

pitch-angle α0 = 45◦ for 300 keV electron energy; see details of the model parameters in the caption to Fig. 1):
black color shows results of test particle simulations (106 trajectories), red color shows solutions of Eq. (16), green
color shows results of mapping (15). The initial distribution Ψ(γ) is shown in all panels with grey curves. Time is

normalized on R/c (a scale of the quarter of the bounce period) with R = 4.5 Earth radii.

FIG. 6: Evolution of the distribution Ψ(γ) for h/mec
2 = 1.454 (this value of h corresponds to, e.g., equatorial

pitch-angle α0 = 45◦ for 300 keV electron energy; see details of the model parameters in the caption of Fig. 1):
black color shows results of test particle simulations (106 trajectories), red color shows solutions of Eq. (16), green
color shows results of mapping (15). The initial distribution Ψ(γ) is shown in all panels with grey curves. Time is

normalized to R/c (the quarter of the bounce period) with R = 4.5 Earth radii.

of the diffusion equation with inclusion of terms related
to nonlinear wave-particle interaction results in Eq. (16)
or similar types of kinetic equations13,16,70. However,
this kinetic equation still relies on the assumption of a
uniform distribution of resonant phases (i.e., it excludes
effects related to phase correlation at multiple passages
through the resonance) and it cannot be easily general-
ized for systems with multiple waves. These two prob-

lems can be resolved using the map approach that in-
cludes resonant phase dynamics while also allowing the
inclusion of many resonances. Let us consider these two
issues in more details.

Assuming a uniform distribution of resonant phases
corresponds to the assumption that two successive reso-
nances are not correlated, i.e., that electron energy jumps
∆γ (due to trapping or scattering) can be considered as
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independent over a long run. This important property of
the resonant system usually results from the dependence
of the phase gain ∆ζ on energy γ (see Eq. (15)). This
gain is usually large ∆ζ ∼ ωτb � 1 (since whistler wave
period is much smaller than the electron bounce period
along magnetic field lines) and, thus, even a small change
of energy ∆γ due to resonant interaction should result in
a significant change of ∆ζ: δ (∆ζ) ∼ (∂∆ζ/∂γ) ∆γ, jus-
tifying the assumption of randomly distributed phases.
However, resonances can be correlated (and the distri-
bution of resonant phases can be non-uniform, see Ref.
12) for systems with small ∂∆ζ/∂γ. Such a situation
can hardly appear in the Earth radiation belts, but it
is more realistic for resonant electron interaction with
strong electrostatic waves and solitons around the bow
shock88. This corresponds to Landau resonant interac-
tion without the term $/γ in Eq. (15) and with the
time interval between resonances ∼ τb weakly depending
on energy. Therefore, the proposed map technique may
be useful for investigations of nonlinear wave-particle in-
teractions in such systems, where the assumption of a
uniform distribution of resonant phases is not applica-
ble.

The map (15) has been constructed for a system
with a single wave (single resonance). In this system
the condition h = const reduces the initially 2D space
(energy/pitch-angle or (γ, Ix)) to 1D space. However,
unlike kinetic equation (16), this map can be general-
ized to many resonances resulting in particle motion in
the (γ, Ix) space. Indeed, the map describes change of
the resonant phase ζ between two resonances and energy
change on the resonance. The ζ change can be modified
by replacing the integration over the entire bounce period
with the integration between two resonances in Eq. (14),
whereas the energy change can be replaced with energy
and Ix changes. This generalization looks much simpler
to achieve than the corresponding generalization of the
kinetic equation (16).

Figure 4 shows that after many iterations the parti-
cle trajectory fills the entire available space in the (ζ, γ)
space. For ensembles including many trajectories, the fi-
nal state of the distribution function will be a uniform
distribution where phase space density Ψ should have the
same value for all energies. This is the final state for both
quasi-linear diffusion, that tends to reduce gradients of
Ψ along the resonance curve, and nonlinear wave-particle
interaction described by Eq. (16), which has only one sta-
tionary solution Ψ = const (see Ref. 10). Therefore, the
map (15) describes distribution flattening, ∂Ψ/∂γ → 0,
and allows to estimate a typical timescale of this flat-
tening. For example, Fig. 7 shows the evolution of the
dispersion D =

√
〈γ2〉 − 〈γ〉2 of distribution Ψ for four

different initial Ψ (shown in the inserted panel). The dy-
namics of Ψ is described by 105 trajectories of map (15),
and D is normalized to the dispersion of the uniform dis-
tribution for the same γ range (i.e., D/D0 ≈ 1 means
Ψ ≈ const). As the map (15) describes discrete changes
of energy with time, the beginning of the D evolution

FIG. 7: Evolution of dispersion D =
√
〈γ2〉 − 〈γ〉2 for

four distributions Ψ(γ) and h/mec
2 = 1.454 (this value

of h corresponds to, e.g. 45◦ of the equatorial
pitch-angle for 300 keV electron energy; see details of

model parameters in the caption of Fig. 1). Dispersions
are normalized to the dispersion D0 of the uniform

distribution Ψ = const.

consists of step-like jumps (note that we transformed the
iteration number to time for each trajectory to plot D
versus time). Independently of the initial distribution,
D/D0 ≈ 1 after ≈ 100τb, and this timescale is much
shorter than typical quasi-linear time scales48,79.

To conclude, in this paper we have considered non-
linear resonances between relativistic electrons and in-
tense whistler-mode waves. We have demonstrated that
the long-term dynamics of the electron distribution can
be described by a map taking into account the impor-
tant interdependence between the probability of trap-
ping Π and energy change due to scattering ∆γscat:
Π = −d∆γscat/dγ. This map is different from the classi-
cal Chirikov map25, and allows to describe both effects of
phase trapping and nonlinear scattering. The proposed
mapping technique can be useful for the description of
charged particle acceleration in various space plasma sys-
tems including the Earth radiation belts and the Earth
bow shock.
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APPENDIX A

In this Appendix we derive formula (12) which ex-
presses variation of variable ξ between two resonance
crossings via gain of phase ζ between these crossings.
We consider quite general form of Hamiltonian. Result
of our derivation is directly applicable to the particular
system considered in the main text. This derivation is
somewhat similar to the derivation provided in Ref. 58
for change of phase between separatrix crossings. Impor-
tant to notice that, following the system description in
the main text, we consider one resonance crossing per one
period of slow motion, i.e. the two resonance crossings
are separated in time by one slow period.

Let us consider a general Hamiltonian as the sum of
an unperturbed part H0(I, p, q) and a small perturba-
tion εH1(I, ζ, p, q) (with ε � 1; note in the main text
ε ∼ Bw/B0) where (q, ε−1p), (ζ, I) are pairs of conju-
gate variables (hence (ζ, I) are fast variables, (q, p) are
slow variables), and H1 is periodic in ζ. Momentum I

is an adiabatic invariant: İ = −ε∂H1/∂ζ, and I is con-
stant in the averaged over ζ system. There is no ex-
plicit dependence on time, and thus H = h = const.
The resonance condition is determined by the equation
∂H0/∂I = 0. Solving this equation for I gives the
equation I = IR(p, q) of the resonance surface. De-
note Λ(p, q) = H0(IR(p, q), p, q). The Hamiltonian can
be expanded around the resonance surface similarly to
Eq. (5). We assume that the phase portrait of the ex-
panded Hamiltonian looks like one shown in Fig. 8.

We introduce the improved adiabatic invariant J with
the variable transformation (I, ζ, p, q) 7→ (J, θ, P,Q)
such that the new Hamiltonian is H = H0(J, P,Q) +
εH̄1(J, P,Q) where H̄1 is the average of H1 over ζ (in
the leading approximation).

Far from the resonance θ changes with the frequency

θ̇ =
∂H0

∂J
+ ε

∂H̄1

∂J
(18)

with J = const, and

Q̇ = ε
∂H0

∂P
+ ε2 ∂H̄1

∂P
, Ṗ = −ε∂H0

∂Q
− ε2 ∂H̄1

∂Q
(19)

We introduce ω0(J, P,Q) = ∂H0/∂J , ω1(J, P,Q) =
∂H̄1/∂J , and consider large number N � 1 of rounds of
ζ from t = t0 (when phase point is far from the resonance
and moves towards the resonance) to t = tN ; the last
round is sufficiently far from the resonance and θ ≈ ζ
in the leading approximation. The last round ends at
ζ = ζc mod 2π (see Fig. 8 for the definition of ζc). Then

ζcN = ζ0 +

tN∫
t0

(ω0 + εω1) dt mod 2π (20)

where ζcN is ζc value at t = tN . We introduce t∗ as the
time of crossing the resonance, i.e. ω0(J, P,Q)|t=t∗ = 0,

FIG. 8: Schematic of phase portrait.

and rewrite Eq. (20):

ζcN = ζ0 +

t∗∫
t0

(ω0 + εω1) dt−
t∗∫

tN

(ω0 + εω1) dt mod 2π

(21)

Because t∗ − tN � 1/ε we can use Q̇ = ε∂H0/∂P , Ṗ =
−ε∂H0/∂P and Q ≈ q, P ≈ p in the last integral in
Eq. (21). We also assume that ζcN ≈ ζc∗ = ζc|t=t∗ .
To describe system dynamics for t ∈ [tN , t∗] we use the
expansion of the Hamiltonian around the resonance: H =
Λ + F and

F =
1

2
g (I − IR)

2
+εH1, g =

∂2H0

∂I2

∣∣∣∣
I=IR

≈ const (22)

The Hamiltonian in new variables (J, θ, P,Q) can be ex-
panded as

H = Λ +
1

2
g (J − IR)

2
+ εH̄1 (23)

We introduce e = g(J − IR)2/2 and write

ė = εg (J − IR) r, r = −{IR,Λ} ≈ const

ω0 =
∂H

∂J
= g (J − IR) (24)

Using dt = de/(de/dt) we rewrite integral

t∗∫
tN

(ω0 + εω1) dt ≈ 1

ε

0∫
eN

ω0de

g (J − IR) r
=

1

ε

0∫
eN

de

r
= −eN

εr

(25)
where eN is the value e along the trajectory at t = tN ,
and we omit εω1 because t∗−tN � 1/ε. Using e+εH̄1 =
F , we write

eN = FN − εH̄1 ≈ FN − εH̄1∗ (26)



10

where FN is the value F along the trajectory at t = tN ,
and H̄1∗ is the resonant value of H̄1. Substituting Eqs.
(25, 26) to Eq. (21), we obtain

ζc∗ = ζ0 +

t∗∫
t0

(ω0 + εω1) dt+
FN − εH̄1∗

εr
mod 2π (27)

or

FN
2πεr

=
H̄1∗

2πr
− 1

2π

ζ0 − ζc∗ +

t∗∫
t0

(ω0 + εω1) dt

 mod 1

(28)
We define Flast as the value of F along the trajectory
at the last crossing of the line ζ = ζc before crossing
the resonance. Thus, Flast = FN mod 2πεr, because the
change of F for one round of ζ equals 2πεr. We introduce
ξ = (Flast− εH1c∗)/(2πεr), where H1c∗ is value of H1 at
ζ = ζc, t = t∗ and write

ξ = Frac

H̄1∗ −H1c∗

2πr
− ζ0 − ζc∗

2π
− 1

2πε

τ∗∫
τ0

(ω0 + εω1) dτ


(29)

Here τ = εt, τ∗ = εt∗. Note that ξ can be written as

ξ =
Flast − εH1c∗

2πεr
=
Flast − εrζc∗ − (εH1c∗ − εrζc∗)

2πεr

=
Elast − Ec∗

2πεr
(30)

where

E =
1

2
g (I − IR)

2 − εrζ + εH1, (31)

and Ec∗ is value of E at ζ = ζc, t = t∗, Elast is the value
of E at the last crossing of the line ζ = ζc before crossing
the resonance.

Let us use Eq. (29) to consider two successive reso-
nance crossings (note there is only one resonant interac-
tion for one period of slow motion, i.e. two successive
resonance crossings are separated by one slow period).
Far from the resonance the improved adiabatic invariant
J can be considered as a constant. Denote τ− and τ+
slow time moments of the resonance crossings (τ = εt).
Let ξ± be values of the variable ξ corresponding to these
two crossings. We are looking for a relation between ξ+
and ξ−. Due to periodicity of the slow motion, values of
ζc∗, H1c∗, H̄1∗, r are the same at τ = τ+ and τ = τ−.

We consider value ξ− for the first of the resonance
crossings, and the corresponding value E = Elast−. At
τ = τ− the phase point is on the line ζ = ζc∗ with I < IR
at the position indicated by the symbol I− in Fig. 8. We
assume that this phase point crosses the resonance with-
out trapping. Thus, at some τ = τ ′ it arrives again to
the line ζ = ζc = ζ ′c∗ with the value E = E′ and I > IR.
The phase point position is indicated by the symbol I ′

in Fig. 8. We denote ξ′ = (E′ − Ec∗)/(2πεr). We have
E′ ≈ Elast−, ξ′ ≈ ξ−.

At some moment of the slow time τ0 ∈ (τ−, τ+) the
phase point is far from the resonance and has ζ = ζ0.
Then Eq. (29) gives

ξ+ = Frac

H̄1∗ −H1c∗

2πr
− ζ0 − ζc∗

2π
− 1

2πε

τ+∫
τ0

(ω0 + εω1) dτ


(32)

Similarly, considering the backward motion on the time
interval from τ0 to τ ′ we get

ξ′ = Frac

H̄1∗ −H1c∗

2πr
− ζ0 − ζc∗

2π
+

1

2πε

τ0∫
τ ′

(ω0 + εω1)dτ


(33)

In this expression we can replace in the leading approxi-
mation ξ′ with ξ− and τ ′ with τ− (note that

1

2πε

τ ′∫
τ−

(ω0 + εω1) dτ

is small, because ω0 vanishes on the resonant surface).
Thus for the value ∆ξ = ξ+ − ξ− we get

∆ξ = ξ+− ξ− = − 1

2πε

τ+∫
τ−

(ω0 + εω1)dτ mod 1 (34)

and this is the phase ζ gain between two resonance cross-
ings (between moments τ− and τ+) normalized on 2π and
taken with the minus sign. In the main text H̄1 = 0 and
thus ω1 = ∂H̄1/∂J = 0.
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