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Abstract 

A number of recent papers have proposed a time-varying-coefficient (TVC) 
procedure that, in theory, yields consistent parameter estimates in the presence 
of measurement errors, omitted variables, incorrect functional forms, and 
simultaneity. The key element of the procedure is the selection of a set of driver 
variables. With an ideal driver set the procedure is both consistent and efficient. 
However, in practice it is not possible to know if a perfect driver set exists. We 
construct a number of Monte Carlo experiments to examine the performance of 
the methodology under (i) clearly-defined conditions and (ii) a range of model 
misspecifications. We also propose a new Bayesian search technique for the set 
of driver variables underlying the TVC methodology. Experiments are performed 
to allow for incorrectly specified functional form, omitted variables, 
measurement errors, unknown nonlinearity and endogeneity. In all cases except 
the last, the technique works well in reasonably small samples. 
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1. Introduction 

A series of papers have proposed the use of time-varying coefficient (TVC) 

models to uncover the bias-free estimates of a set of model coefficients in the 

presence of omitted variables, measurement error and an unknown true 

functional form.1 There have also been a reasonably-large number of successful 

applications of the technique.2 However, it is difficult to establish the usefulness of 

a technique strictly through applications since we can never be certain of the 

accuracy of the results. This paper attempts to bridge the gap between the 

asymptotic theoretical results of the theoretical papers and the apparently good 

performance of the applied papers by constructing a set of Monte Carlo 

experiments to examine (1) how well the technique performs under clearly-

defined conditions and (2) the limits on the technique’s ability to perform 

successfully under a broad range of model misspecifications. 

The technique is motivated by an important theorem that was first proved by 

Swamy and Mehta (1975) and has recently been confirmed by Granger (2008) who 

quoted a proof that he attributed to Hal White. This theorem states that any 

nonlinear function may be exactly represented by a linear relationship with time-

varying parameters. The importance of this theorem is that it allows us to capture 

an unknown true functional form in this framework. The parameters of this time-

varying-coefficient model are, of course, not consistent estimates of the true 

functional form since they will be contaminated by the usual biases due to omitted 

variables, measurement error and simultaneity. The technique being investigated 

here allows us, in principal, to decompose the TVCs into two components; we 

associate the first component with the true nonlinear structure, which we interpret 

as the derivative of the dependent variable with respect to each of the independent 

variables in the unknown, nonlinear, true function; we associate the second 

component with the biases emanating from misspecification, and which we then 

1 Swamy, Chang, Mehta and Tavlas (2003), Swamy, Tavlas, Hall and Hondroyiannis (2010), Swa-
my, Hall and Tavlas (2012), Swamy, Hall and Tavlas, (2014), Swamy, Mehta, Tavlas and Hall 
(2014). 
2 Empirical applications include Hall, Hondroyiannis, Swamy, and Tavlas (2009), Hall, Hondroy-
iannis, Swamy and Tavlas (2010), Tavlas, Swamy, Hall and Kenjegaliev (2013), Hondroyiannis, 
Kenjegaliev, Hall, Swamy and Tavlas (2013), Kenjegaliev, Hall, Tavlas and Swamy (2013), Hall, 
Swamy, and Tavlas (2017). 
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remove from the TVC to give us our consistent estimates. Potentially, this technique 

offers an interesting way forward in dealing with model misspecification. It has 

generally been applied in a time series setting but it can equally well be interpreted 

as a cross section3 or panel estimation technique.  

The remainder of this paper is structured as follows. Section 2 outlines the basic 

(TVC) theoretical framework. Section 3 discusses some computational issues 

associated with estimating the model. Section 4 reports on a series of Monte Carlo 

experiments. Section 5 concludes. An Appendix provides details on the 

computational methods used in the Monte Carlo simulations. 

 

2. The Theoretical Framework 

We follow Swamy, Tavlas, Hall and Hondroyiannis (2010) who set the 

groundwork for uncovering causal economic laws. We assume 

* * *
t t ty f( , )= x e  ,                                                                      (1) 

where * *
t t,x e   are the true determinants of ty . Alternatively we can represent this 

relationship by 

′ ′= α + +* * *
t 0t 1t t 2t ty α x α e    (2) 

We have the auxiliary equations: 

* * *
t t t t= +e Ψ x v   (3) 

Substituting (3) into (2) gives: 

( ) ( )′ ′ ′= α + + +* * *
t 0t 2 t 1t 2t tt ty α v α α Ψ x  .                                              (4) 

To deal with errors in variables we assume: 

*
t t ty y v ,= +                                                                 (5) 

3 Time varying coefficients are meaningless in a cross section setting; in such a setting the coeffi-
cients vary across the individual units in the cross section. We simply re-interpret the t-subscript 
as i-subscripts. 
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*
t t t .= +x x w                                                                               (6) 

Substituting into (4), we obtain: 

( ) ( )( )−′ ′ ′= α + + + + − =
′ ′β + ≡

* 1
t 0t 2 t t 1t 2t t wt xt t

0t xt t et t

ty v ) D D
,

α v α α Ψ x
β x x β

     (7) 

where ′β = α + +*
0 0t 2tt t tvα v ,  ( )( )1

xt 1t 2t t wt xt) D D−′ ′ ′= + −β α α Ψ , et t1, ′′ =  x x , 

t 0t xt, ′′ = β β β     and wt xtD ,D   are diagonal containing tw   and tx  , respectively, 

along the diagonal. Finally, we assume there exists a vector tz   of drivers such 

that 

t et t ,= +β Πz ε                                                              (8) 

where et t1, ′′ =  z z . Under the assumption: 

( )t ~ )N ,ε 0 Σ .                                                                (9) 

It is straightforward to obtain the following 

( ) ( ) ( )′ ′= ⊗t t t teteE y | , ve⊗x z z x Π   (10) 

In matrix notation we have 

( ) ( ) ( )= = σ 2
z z z aE | vec ,cov |y X X Π y X Ω                                      (11) 

where  

( )z e1 e1 eT eTX ,..., ′= ⊗ ⊗z x z x  , ( ) ′σ = ⊗σ2 2
a x T a x)Ω D Σ D  ,  

and x e1 eTdiag ,...,′ ′ =  D x x  . A restrictive version of (7) is 

( )′= + σ2
t et t t t uy u ,  u ~ )N 0,x β ,                                          (12) 

where  0tβ   is redefined as α +0t tv  and  tβ  is independent of ′2 tt
*α v  = tu    

 

and (8) as 
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= +t r et trβ Π z ε                                                        (13) 

where the first row of rΠ  post-multiplied by etz  does not contain the mean of 

′2 tt
*α v , and the first element of trε  is independent of ′2 tt

*α v . The error vectors tε  

and trε  are introduced in (8) and (13). Substituting we have  

 ( ) ( )t t te r e e r e e rt t t t t t te rty u z x vec u .x Π z x ε Π x ε′ ′ ′ ′ ′= + + = c + +                                       (14) 

Defining et et tz x⊗ = X , and ( )=r rvecπ Π , we have:  

′ ′= + +t t r t et rty u .X π x ε                                                    (15) 

By assumption, ( )′+ =e trt tE u 0x ε  and ( )′ ′+ = σ + σ2 2
t et rt u et r r etvar u x ε x Σ x . 

 
3 Computational aspects  
 
Under a normality assumption in both tu  and trε  the likelihood function is 

( ) ( )
( )

−

==

 ′− ′θ ∝ σ + − 
′σ +  

∑∏
2

1/2T T ∏∏  r2 1
u e∏ r e∏ 2 ∏ 1∏ 1 2

u e∏ e e∏

y
L( ;Y) exp

X π
x Σ x

x Σ x
           (16) 

where the parameter vector is ′′ ′ θ = σ σ r r u r, , ,vech( )π Σ . Coupled with a prior, 

( )p θ , by Bayes’ theorem we get the kernel posterior distribution: 

Θ∈∝ θθθθ ),();()|( pYLYp                         (17) 

 We assume a standard non-informative prior: 

( 1)/ 2( ) | | d
r rp − +Σ ∝ Σ   

where d  is the dimensionality of rΣ . The prior of π  will be detailed below. 

Markov Chain Monte Carlo (MCMC) techniques can be used to obtain a sample 
(s){ ,s 1,...,S}θ =  that converges in distribution to the posterior p( |Y)θ . One 

efficient MCMC strategy is the following. 

(i) Obtain rπ  from its conditional distribution: 
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(ii)  ( )σ σr r u r r
ˆ| , , , ~ N ,π Σ Y π V                                                (18) 

where ( ) ( )− −
− − −′ ′ ′= =

1 11 1 1
r

ˆ ,  π X Ω X X Ω y V X Ω X ,  ( )′= σ + =2
u et r etdiag ,t 1,...,TΩ x Σ x . 

(iii) Reparametrize rΣ  using C  where ′=r r rΣ C C , ( )σ ∝u 0exp c  and 

00exp( )r Cσ ∝  . Assuming that different non-zero elements of  rC  are 

1 pc ,...,c  the new parameter vector is rπ  and +′= ∈� p 2
0 00 1 p[c ,c ,c ,...,c ]c . 

Drawings from the conditional posterior distribution of r| ,c π Y  can be 

realized using the Girolami and Calderhead (2012) Metropolis Adjust-

ed Langevin Diffusion method described in the Appendix.  

 

If we define ( ) ( )12 1 2 1
t t t t t t

ˆ y
−

− −′= +σ +σβ x x Σ x Σ Πz  and ( ) 12 1
t t t

−
−

β
′= +σV x x Σ  we 

obtain:  

( )t t t
ˆ| , ,Y ~ N , βσβ Σ β V .                                             (19) 

In this form we can avoid a possibly inefficient Gibbs sampler which relies on 

drawing Π  and Σ  from (13), t{ ,t 1,...,T}=β  from (19) and σ  from (12). 

 
Selecting the drivers 
 
 
Suppose we have (12) and instead of (13) we have 
 

(m) (m)
t m t t , m 1,...,M= + ∀ =β Π z ε ,                                            (20) 

where (m)
tz is a potential set of drivers (subset) from a universe { }t1 tG,...,= z zZ . 

Equations (12) and (20) define different models indexed by m . As searching 

through all possible combinations of variables in Z is infeasible, we follow the 

Stochastic Search Variable Selection (SSVS) approach of George, Sun and Ni 

(2008).4 The SSVS involves a specific prior of the form: 

| ~ N( , )π δ 0 D                                                           (21) 

4 See also Jochmann, Koop and Strachan (2010). 
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where δ  is a vector of unknown parameters and its elements can be j {0,1}δ ∈  . 

Also 2 2
1 Gdiag d ,...,d =  D : 

2 2 2 2
j 0j j j 1j jd ,  if  0,  and d ,  if  1.= κ δ = = κ δ =                                   (22) 

The prior implies a mixture of two normals: 

2 2
j j j 0j j 1j| ~(1 )N(0, ) N(0, )π δ −δ κ +δ κ                                     (23) 

If 0jκ  is “small” and  1jκ  is “large”, then, when j 0δ =  chances are that variable j 

will be excluded from the model while if j 1δ =  chances are that variable j will be 

included in the model. The prior for the indicator parameter δ  is: 

j j j jP( 1) q ,  P( 0) 1 qδ = = δ = = −                                       (24) 

and we set 1
j 2q = . For 0jκ  and 1jκ , George, Sun and Ni (2008) propose a semi-

automatic procedure based on ( )2
0j 0 j

ˆc vκ = π  and ( )2
1j 1 j

ˆc vκ = π  for 1
0 110c ,  c 10= =  

and ( )jv̂ π is any preliminary estimate of the variance of jπ . 

 

For the elements of c  we follow a similar approach. If jc  corresponds to a diago-

nal element it is always included in the model.   If not, we use a mixture-of-

normals SSVS approach as above.  

 
4 Monte Carlo results 

In all cases below γ = γ = γ =0 1 2 0.1 . The number of Monte Carlo simulations is set 

to 10,000. All )1,0(~ iidNtjε . In case IV, we set 0.3εσ = .  

 

4.1 Model I: Incorrect Functional Form 

 The true model is = γ + γ + γ , = , ,21
t 0 1 t 2 t2y x x t 1 … T  and we have omitted the 

nonlinear term. The driver is ttt xz εα += . We have t ~ iidN(0,1)ε  
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and tx ~ iidN(1,1) . In this case the correlation between tz and 2
tx  is 

( )
α

ρ =
α +2

3

3 3 1
.  

If the correlation were equal to 1, then this would be a perfect driver as it exactly 

recreates the missing quadratic term. The estimation procedure would then be 

unbiased and efficient. If the correlation were zero, then zt would contain no 

information about the missing nonlinearity. We are, therefore, interested in 

varying this correlation and seeing how low the correlation can fall before the 

estimator ceases to be useful. 

In this case the true effect is γ + γ1 2 tx , that is, the derivative of y  with respect 

to x .  There are no omitted variables or other misspecifications other than the 

nonlinearity so the set S2 is empty and the estimate of the derivative is given 

by tεβγγ −=+ 1t21 x .  

Table 1 gives the results of this set of Monte Carlo experiments for sample sizes 

of 50, 100, 200 and 1000. When the correlation between z and x is very high, 

then even for small samples the bias is very small and the standard deviation of 

the results is also small at around 1%. As the sample size grows, both the bias 

and the standard deviation fall, and the estimator is clearly consistent and 

efficient. As we look across the table, where the correlation between the driver 

and the true x variable falls the estimation procedure still does very well until 

the correlation falls to about 0.5; at that point the bias and the standard error 

begins to rise quite substantially. This happens even more clearly with the very 

large sample size of T=1000 where both the bias and standard error are very 

small until the correlation falls below 0.5. 

 

4.2 Model II: Omitted Variables 

 The second model focuses on omitted variables. The true model is 
= γ + γ + γt 0 1 t1 2 t2y x x . The t1 t2x ,x  are correlated: t2 t1 t t t1x x ,  ,x ~ iidN(0,1)= γ + ξ ξ  . 
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The squared correlation between the two variables is 
2

2
12 2 1

γ
ρ =

γ +
. We set 2γ =  so 

that this is 0.80.  

We estimate the TVC model =β +βt 0t 1t t1y x  and again use a driver =α + εt t2 tz x  

and we see how well the estimator performs as the correlation between tz  and 

t2x  falls.  The correlation between tz  and t2x  is α
ρ=

α +2 1
.  

In this case, the true effect is γ1  and the bias free estimate is β −π −1t 1 t tz e . 

The results of this experiment are given in Table 2. The results show a similar 

picture to case 1 above. Both the bias and the standard deviation clearly decrease 

as the sample size increases. Even for the smallest sample size both the bias and 

the standard deviation are quite small while the correlation between the driver 

and the misspecification is above 0.5. Again, as the correlation falls below 0.5 the 

bias and standard deviation rise quite quickly. 

 

4.3 Model III: Measurement Error  

The third model deals with measurement error, so we generate data from 
= γ + γt 0 1 ty x  then create ∗ = + εt t t1y y  and ∗ = + εt t t2x x  then we estimate the TVC 

model ∗ ∗=β +βt 0t 1t ty x  and use two z ’s as drivers =α ε + εt1 1 t1 t3z  and 

=α ε + εt2 2 t2 t 4z  and again see how things change as α  gets bigger.  

The results of this experiment are reported in Table 3. The results are entirely 

consistent with the results in the earlier two cases. The technique is clearly 

consistent, as the sample rises the bias falls considerably. Even for a small 

sample the bias is quite low for correlations between the driver and the 

measurement error which is 0.5 or above. 

 

4.4 Detecting Irrelevant Drivers 
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Next, we examine whether the SSVS5 procedure, which we have not applied so 

far, can correctly identify the drivers t1 t2z ,z . To this end, we construct ten other 

drivers, say t2 t ,12z ,...,z  from a multivariate normal distribution with zero means 

and equal correlations of 0.70. In Table 4 we report the equivalent of Table 3 

plus the proportion of cases, say Π* , in which SSVS has correctly excluded 

t2 t ,12z ,...,z  from the set of possible drivers6.  

There is again a remarkable cut off at the correlation level of 0.5. Above this level 

the true driver set is correctly identified in around 60% of cases and for the 

largest sample in over 90% of cases, even for small samples. Once the correlation 

falls below 0.5, however, the proportion of correct identifications falls 

dramatically. An obvious conclusion here is that when we have drivers that are 

effective enough so that we will get reasonably good parameter estimates, the 

SSVS algorithm is very effective at detecting them. 

 

4.5 Model IV: A More Complex Nonlinearity 

The true model is ( )2
t 0 1 t t ty x exp x t 1 … T= γ + γ + −δ + ε , = , ,  and we have omitted the 

nonlinear term. The drivers form a Fourier basis { }t tcos(jx ),sin(jx ), j 1,...,J=  after 

transforming all series to lie in ( ),−π π  . We have t ~ iidN(0,1)ε  and tx ~ iidN(0,1)  

ordered from smallest to largest. The drivers, that is powers of tx  are selected 

through the SSVS procedure. We set the maximum value of J to 10.  

5 An alternative to using the SSVS procedure would be the LASSO prior. The procedures are simi-
lar in terms of timing and purpose. There is some evidence that both perform well (Pavlou, Am-
bler, Seaman, De Lorio and Omar(2016)) and in a similar manner but further work is needed in 
this area. 
6 There is an issue here as to whether we need to start from a superset of drivers which includes 
the true ones. Clearly, if we do this then this is an ideal situation and the Monte Carlo tells us how 
well the procedure performs. However, from a theoretical point of view what we need is that the 
superset includes variables be highly correlated with the true drivers. In a data rich environment 
this would not be a strong restriction. Bai and Ng (2010) prove that common factors which drive 
all the variables in a system are valid instrumental variables. By the same reasoning, we could 
construct a set of factors from a large set of variables which would work well as drivers. 
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We again estimate the TVC model =β +βt 0t 1t t1y x  and this time the derivative of 

y with respect to x is )xexp(x2 2
tt1 δδγ −− . Our estimate of this is again given 

by t1 e−tβ   

The results for this exercise are given in Table 5. In this case for δ  in the range 

0.1 to 5 the bias remains very small, as does the standard deviation. There is also 

a noticeable reduction in both bias and standard deviation as the sample size 

increases. 

4.6 Model V: An Endogeneity Experiment 

In this experiment we have: t 1 2 t1 3 t2 ty x x u= γ + γ + γ + .  The correlation between 

tu  and tjx  is 0.80 ( 1,2j =  ) so that endogeneity is quite strong in this model. 

Our drivers are four variables t5 t8z ,...,z  orthogonal to the error tu  and four 

drivers t1 t 4z ,...,z  which are correlated with the error tu  but they are orthogonal 

to each other as well as orthogonal to the other four drivers. The degree of 
correlation between the drivers and tu is ρ .  We are interested in *Π , the 

proportion of cases where all the drivers t1 t 4z ,...,z are included in the model and 

the drivers t5 t8z ,...,z are all excluded. Of course, we do not force the correct 

drivers in final estimation. 

The results for this experiment are given in Table 6. Here the table has some 

rather different results than the earlier tables. The bias remains quite high, even 

for quite high correlations for the sample size of 50 or 100. It is only for much 

larger sample sizes that the bias becomes negligible. For larger sample sizes the 

bias remains small again for correlations above 0.5 and the SSVS selection 

procedure works reasonably well. 

 

6. Conclusions 

This paper has investigated the performance of the TVC estimation procedure in 

a Monte Carlo setting. The key element of TVC estimation is the identification 

and selection of a set of driver variables. With an ideal driver set, it is 

straightforward to show that the procedure is both consistent and efficient. 
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However, in practice it is not possible to know if we have a perfect driver set. 

Therefore, we need to know how the procedure performs when the driver set is 

less than perfect. In this paper, we dealt with this issue in a Monte Carlo setting. 

We construct a number of Monte Carlo experiments to examine the performance 

of the methodology under (i) clearly-defined conditions and (ii) a range of model 

misspecifications. We also propose a new Bayesian search technique for the set 

of driver variables underlying the TVC methodology. Experiments are performed 

to allow for incorrectly specified functional form, omitted variables, 

measurement errors, unknown nonlinearity and endogeneity. Our broad 

conclusion is that, even for relatively small samples, the technique works well so 

long as the correlation between the driver set and the misspecification in the 

model is greater than about 0.5. Both the bias and the efficiency of the estimators 

also improve as the sample size grows, but again a correlation of over 0.5 seems 

to be required. The only caveat to this result is that if we are considering strong 

simultaneity bias; in that case the sample size needs to be quite large (over 500) 

before the technique works reasonably well. Finally, we find that the SSVS 

technique also seems to perform well in finding an appropriate driver set from a 

much larger set of possible drivers. 
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APPENDIX 

This Appendix provides details on the computational methods used in the Monte 

Carlo simulations. Following Girolami and Calderhead (2011) we utilize 

Metropolis-adjusted Langevin and Hamiltonian Monte Carlo sampling methods 

defined on the Riemann manifold, since we are sampling from target densities 

with high dimensions that exhibit strong degrees of correlation.  Consider the 

Langevin diffusion: 

( ) ( )( ) ( )1
2 log ;d t p t dt d t= ∇ +θ θ BY , 

where B  denotes the D-dimensional Brownian motion. The first-order Euler 

discretization provides the following candidate generation mechanism: 

( )* 21
2 log ;o opε ε= + ∇ +θ θ θ zY , 

where ( )~ ,Dz 0 IN , and 0ε >  is the integration step size. Since the 

discretization induces an unavoidable error in approximation of the posterior, a 

Metropolis step is used, where the proposal density is  

( ) ( )( )* 2 21
2| log ; ,  = + ∇o o o

Dq pε εθ θ θ θ IN Y , 

 with acceptance probability ( ) ( ) ( )
( ) ( )

* *
*

*

| |
, min 1,  

| |

  =  
  

o
o

o o

p q
a

p q

θ θ θ
θ θ

θ θ θ

Y
Y

. Here 

Y denotes the available data. The Brownian motion of the Riemann manifold is 

given by: 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
1/ 2 1/ 21 1

1

d

i ij ij j

d t t t t dt t d t
− − −

=

∂    = +      ∂∑B G θ G θ G θ G θ B
θ

 ,  
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for 1,...,=i D . 

         The discrete form of the above stochastic differential equations is: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( )

* 2 1 2 1 11
2

1

2 1 1 1

1

1

log ;

            

                            , .

od
o o o o o

i i i j j
ij

od
o o

ij ij j

o

i i

p

tr t

t

ε ε

ε ε

ε ε

− − −

=

− − −

=

−

 ∂
   = + ∇ − +  ∂  

 ∂    +   ∂  
 +   

∑

∑

G θ
θ θ G θ θ G θ G θ

θ

G θ
G θ G θ G θ z

θ

μ θ G θ z

�

Y

 

The proposal density is ( ) ( )( )* 2 1| ~ , ,  −o o o
d ε εθ θ μ θ G θN  and the acceptance 

probability has the standard Metropolis form:  

( ) ( ) ( )
( ) ( )

* *
*

*

| |
, min 1,  

| |

  =  
  

o
o

o o

p q
a

p q

θ θ θ
θ θ

θ θ θ

Y
Y

. 

The gradient and the Hessian are computed using analytic derivatives. All 

computations are performed in Fortran 77 making extensive use of IMSL 

subroutines. 

The Metropolis-Hastings procedure we use is a simple random walk whose 

candidate generating density is a multivariate Student-t distribution with 5 

degrees of freedom7 and covariance equal to a scaled version of the covariance 

obtained from the Langevin Diffusion MCMC. The scale parameter is adjusted so 

that approximately 25% of the draws are accepted.  

 

7 This guarantees the existence of moments up to order four. 
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Table 1. Monte Carlo results for Model I 

Corr ρ   0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

T=50            

Bias .017 .017 .025 0.028 .035 .048 .071 .098 .117 .125 .205 

s.d. .011 .011 .012 .019 .041 .057 .091 .120 .144 .189 .265 

T=100            

Bias .007 .007 .009 .017 .022 .035 .077 .114 .135 .181 .235 

s.d. .008 .008 .007 .014 .035 .052 .128 .140 .192 .272 .301 

T=200            

bias .004 .004 .007 .012 0.011 .070 .101 .177 .186 .244 .293 

s.d. .006 .006 .005 .007 .012 .044 .177 .186 .281 .316 .387 

T=500            

bias .003 .003 .005 .008 .011 .079 .136 .218 .222 .271 .332 

s.d. .004 .004 .006 .007 .032 .055 .190 .277 .334 .389 .415 

T=1000            

bias .001 .001 .003 .005 .007 .065 .225 .280 .345 .381 .414 

s.d. .003 .003 .005 .009 .041 .062 .217 .305 .376 .414 .520 

Notes: Corr ρ  is the degree of correlation between the true driver and the driver 
used. T is the sample size, Bias is the percent absolute bias; s.d. is the standard 
deviation of the bias. 
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Table 2. Monte Carlo results for Model II 

Corr ρ   0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

T=50            

bias .021 .021 .029 .032 .038 .041 .058 .069 .082 .098 .125 

s.d. .013 .013 .015 .019 .022 .033 .066 .083 .102 .128 .155 

T=100            

bias .014 .014 .021 .028 .032 .055 .067 .091 .122 .144 .171 

s.d. .009 .009 .012 .017 .019 .028 .077 .107 .135 .176 .193 

T=200            

bias .009 .009 .017 .022 .027 .051 .083 .129 .142 .185 .215 

s.d. .007 .008 .010 .015 .017 .020 .154 .196 .226 .287 .303 

T=500            

bias .007 .008 .011 .018 .022 .049 .124 .155 .189 .212 .288 

s.d. .006 .007 .008 .013 .016 .022 .187 .234 .288 .317 .355 

T=1,000            

bias .005 .006 .008 .010 .017 .047 .171 .222 .287 .334 .345 

s.d. .004 .005 .007 .011 .014 .020 .199 .276 .302 .344 .381 

Notes: Corr ρ  is the degree of correlation between the true driver and the driver 
used. T is the sample size, Bias is the percent absolute bias; s.d. is the standard 
deviation of the bias. 
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Table 3. Monte Carlo results for Model III, ρε1,z 1=0.50 

Corr ρ   0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

T=50             

bias .022 .024 .031 .036 .041 .055 .062 .077 .085 .097 .105 

s.d. .011 .011 .015 .019 .022 .037 .055 .071 .080 .092 .101 

T=100             

bias .018 .019 .022 .029 .035 .050 .071 .082 .091 .108 .117 

s.d. .009 .009 .015 .021 .030 .047 .077 .093 .105 .120 .146 

T=200             

bias .009 .009 .015 .021 .031 .047 .087 .095 .119 .126 .141 

s.d. .007 .008 .012 .019 .027 .045 .090 .101 .138 .155 .188 

T=500             

bias .007 .008 .011 .016 .027 .040 .090 .122 .139 .155 .196 

s.d. .004 .005 .009 .017 .020 .039 .115 .137 .152 .188 .217 

T=1,000             

bias .005 .005 .007 .009 .016 .032 .117 .144 .162 .196 .213 

s.d. .003 .003 .006 .010 .016 .030 .141 .166 .195 .225 .255 

Notes: Corr ρ  is the degree of correlation between the true driver and the driver 
used. T is the sample size, Bias is the percent absolute bias; s.d. is the standard 
deviation of the bias. 
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Table 4. Monte Carlo results for Model III, ρε1,z 1=0.50, SSVS 

Corr ρ   0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

T=50             

bias .025 .026 .033 .038 .044 .059 .067 .079 .091 .099 .109 

s.d. .012 .012 .016 .020 .023 .039 .057 .075 .086 .095 .114 

*Π  60.5% 60.0% 58.2% 57.3% 51.3% 33.3% 12.2% 8.3% 4.5% 0.0% 0.0% 

T=100             

bias .019 .020 .024 .031 .038 .053 .075 .087 .096 .112 .120 

s.d. .009 .011 .017 .023 .034 .049 .079 .098 .114 .126 .151 

*Π  71.2% 71.0% 62.3% 64.8% 58.2% 55.4% 9.3% 7.5% 3.3% 0.0% 0.0% 

T=200             

bias .012 .012 .019 .027 .035 .049 .089 .099 .121 .127 .148 

s.d. .008 .008 .015 .021 .029 .047 .082 .103 .140 .159 .192 

*Π  87.3% 87.0% 77.3% 71.2% 61.5% 59.2% 8.2% 3.7% 0.0% 0.0% 0.0% 

T=500             

bias .009 .009 .014 .019 .029 .043 .094 .128 .140 .162 .200 

s.d. .005 .006 .012 .019 .023 .040 .119 .141 .158 .193 .232 

 *Π   97.3% 96.5% 93.4% 85.5% 79.3% 62.7% 4.4% 1.0% 0.0% 0.0% 0.0% 

T=1,000             

bias .006 .006 .009 .015 .019 .035 .121 .147 .168 .201 .217 

s.d. .004 .004 .007 .015 .018 .034 .144 .169 .198 .230 .266 

*Π  99.5% 98.3% 97.7% 91.2% 85.2% 77.7% 2.1% 0.0% 0.0% 0.0% 0.0% 

Notes: Corr ρ  is the degree of correlation between the true driver and the driver 
used. T is the sample size, Bias is the percent absolute bias; s.d. is the standard 
deviation of the bias. *Π  is the proportion of times the correct driver set is 
selected 
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Table 5. Monte Carlo results for Model IV, nonlinearity, SSVS / Fourier basis 

 δ   0.1 0.3 0.5 1.00 5.00 

T=50       

bias 0.022 0.025 0.028 0.031 0.035 

s.d. 0.014 0.015 0.016 0.019 0.023 

T=100       

bias 0.017 0.022 0.025 0.029 0.032 

s.d. 0.011 0.012 0.014 0.017 0.020 

T=200       

bias 0.013 0.015 0.017 0.019 0.021 

s.d. 0.008 0.009 0.011 0.012 0.017 

T=500       

bias 0.009 0.010 0.012 0.014 0.018 

s.d. 0.005 0.007 0.009 0.010 0.014 

T=1,000       

bias 0.005 0.006 0.007 0.011 0.013 

s.d. 0.003 0.004 0.006 0.009 0.011 

Notes: δ  is the degree of missing nonlinearity given as in Section 4.5 above. T is 
the sample size. Bias is the percent absolute bias; s.d. is the standard deviation of 
the bias. 
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Table 6. Monte Carlo results for Model V, Endogeneity, SSVS  

corr ρ         0.1 0.3 0.5 0.7 0.9 

T=50 bias 0.491 0.401 0.387 0.266 0.212 

s.d. 0.716 0.710 0.688 0.644 0.601 

*Π  0.044 0.081 0.225 0.447 0.617 

T=100 bias 0.386 0.316 0.303 0.201 0.138 

s.d. 0.355 0.350 0.281 0.277 0.252 

*Π  0.051 0.128 0.315 0.517 0.645 

T=200 bias 0.300 0.216 0.287 0.181 0.101 

s.d. 0.314 0.310 0.277 0.201 0.196 

*Π  0.081 0.201 0.403 0.615 0.717 

T=500 bias 0.295 0.290 0.101 0.087 0.071 

 s.d. 0.201 0.200 0.096 0.061 0.055 

 *Π   0.091 0.261 0.462 0.687 0.775 

T=1,000 bias 0.282 0.280 0.047 0.031 0.028 

 s.d. 0.195 0.193 0.032 0.027 0.016 

 *Π  0.101 0.316 0.518 0.784 0.801 

T=10,000 bias 0.190 0.190 0.039 0.001 0.001 

 s.d. 0.182 0.182 0.030 0.011 0.008 

 *Π  0.115 0.320 0.615 0.813 0.917 

Notes: Corr ρ  is the degree of correlation between the true driver and the driver 

used.  *Π is the proportion of cases where all the drivers t1 t 4z ,...,z are included in 

the model and the drivers t5 t8z ,...,z are all excluded. T is the sample size. Bias is 

the percent absolute bias; s.d. is the standard deviation of the bias.  
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