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On the capacity and optimum signal constellations
for VLC system

Linqiong Jia, Ming Chen, Nuo Huang, Feng Shu, and Jiangzhou Wang, , Fellow, IEEE

Abstract—In this paper, the capacity of the point-to-point VLC
system is investigated by means of functional analysis subject
to amplitude constraint (and average intensity constraint). It is
proved that the capacity can be reached by a unique probability
density function (PDF). Two sets of necessary and sufficient
conditions for the optimum PDF are derived. Moreover, the
capacity-achieving PDF are proved to be discrete and finite. Given
that the capacity can be achieved by a set of discrete and finite
constellations, the capacity-achieving constellation optimization
problems under amplitude constraint (and average intensity con-
straint) are formulated and algorithms are proposed to solve the
corresponding problem. Since digital implementation is applied in
most practical VLC systems, constellation optimization problem
maximizing the mutual information subject to an additional equal
probability constraint are put forward and analyzed.

Index Terms—Visible light communication, capacity-achieving
PDF, constellation optimization, amplitude constraint, average
intensity constraint.

I. INTRODUCTION

Visible light communication (VLC) using light-emitting
diodes (LEDs) has draw great attention to VLC from its
first birth due to the unauthorized frequency spectrum, high
transmission rate, electromagnetic radiation-free property and
reusability of LED lighting infrastructures [1]. VLC has been
widely recognized as one of the important solutions for the
future indoor wireless communication in the 5th-generation
(5G) and beyond 5th-generation (B5G) wireless mobile com-
munications [2], [3].

In indoor VLC system with intensity modulation and direct
detection (IM/DD), additive white Gaussian noise (AWGN)
channel model is applied [4]. Unlike conventional radio fre-
quency (RF) channels, the optical intensity (optical power) in
VLC system is represented by the amplitude of the transmit
signal. Moreover, the interior brightness is determined by the
average intensity which can be adjusted in accordance with
users’ illumination demand. Thus, the transmit signal has to
meet the non-negative constraint, peak intensity constraint and
adjustable average intensity constraint.

It is well known that the capacity-achieving distribution
is Gaussian for a scalar additive Gaussian noise channel
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subject to an average power constraint [5]. However, it is
infeasible to derive an analytic expression for the capacity of
VLC system because of the amplitude and average intensity
constraint. Thus, the capacity bounds of VLC and other
similar optical wireless communication (OWC) system has
been investigated in many literatures. For instance, [6] deduced
the capacity bounds subject to both non-negativity constraint
and an average optical power constraint in band-limited op-
tical wireless channels using sphere-packing method, which
ignored the peak intensity constraint, though. A more tight
lower bound and analytical upper bound of PAM wireless
optical intensity channels was developed in [7]. The lower
bound in [7] was derived by maximizing the input source
entropy of a family of discrete non-uniform distributions with
equally spaced mass points and an analytical upper bound
was derived based on a sphere packing argument. In [8],
closed-form upper and lower bounds for the channel capacity
of dimmable VLC systems were investigated considering the
non-negativity constraint and the average transmitted optical
intensity constrained. The capacity bounds were obtained by
optimizing the input pulse amplitude modulated input wave-
form ensemble for band-limited optical intensity channel [9],
[10]. Besides, the capacity-approaching equally-spaced non-
uniform signalling distribution was proposed by maximizing
the entropy of input distribution subject to peak and average
optical power constraints in optical Gamma-Gamma channel
in [11].

While the most aforementioned capacity analysis focused on
the capacity bounds, J. Smith analyzed the channel capacity of
a scalar Gaussian channel subject to a peak power constraint
and an average electric power constraint directly and came
to the conclusion that the capacity-achieving distribution was
discrete, with a finite number of probability mass point [12].
By means of [12], it was shown that the capacity-achieving
PDFs were discrete for many other channels such as Possion
channels, quadrature Gaussian channels and Rayleigh-fading
channels [13]–[16]. [17] concluded the previous works with
specified channel input constraint and put forward a serious
of universal propositions.

To the best of our knowledge, there is so far no compre-
hensive investigation focused on the capacity analysis and the
capacity-achieving input distribution of the point-to-point VLC
system. In this paper, we lay emphasis on the capacity and the
capacity-achieving distribution of the point-to-point VLC sys-
tem subject to the amplitude constraint (including non-negative
constraint and peak intensity constraint) and adjustable average
intensity constraint. As a preliminary research, the channel
capacity problem only considering the amplitude constraint
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is analyzed. Thereafter, the average intensity constraint is
included. The main contributions are summarized as follows:

1) The channel capacity of the VLC system only consid-
ering the amplitude constraint is analyzed based on the
functional analysis and optimization theory by means
of [12]. The channel capacity is written as a concave
functional optimization problem of the input probability
density function (PDF) in the convex feasible region,
which leads to the conclusion that a unique optimal
solution exists and a set of necessary and sufficient
conditions is obtained in terms of the optimization
theorem. Moreover, another usable set of necessary and
sufficient conditions is provided to verify the optimality
of the distribution of the input signal. It is further
proved that the capacity-achieving PDF of the input
signal is combined of a finite number of discrete points.
Based on the properties above, the capacity-achieving
constellation optimization problem is formulated and
an algorithm to solve this problem is put forward.
Unlike the other constellation optimization works [18]–
[25] which emphasize on improving symbol error rate
(SER) performance, the pragmatic mutual information
or the power efficiency, our constellation optimization
algorithm aims to maximize the mutual information to
access capacity-achieving constellations.
Besides, to accommodate digital implementation easi-
ly, constellation optimization problem maximizing the
mutual information subject to an additional equal prob-
ability constraint is formulated and a corresponding
algorithm is provided to solve it.

2) The channel capacity considering both the amplitude
constraint and average intensity constraint is investigat-
ed. Since it is modeled as a functional optimization
problem with an equality constraint, it can be trans-
formed into a new unconstrained concave functional
optimization problem with convex feasible domain by
Lagrangian multiplier theorem. Thus, it also has a u-
nique optimal solution. The necessary and sufficient con-
ditions for the optimal PDF can be obtained accordingly.
Likewise, it can be proved that the capacity-achieving
PDF is also combined of a finite number of discrete
points. So the parallel capacity-achieving constellation
optimization problem and the constellation optimization
problem maximizing the mutual information with equal
probability constraint are formulated and solved.
In addition, constellation optimization problem maxi-
mizing the mutual information subject to an additional
equal probability constraint are put forward and solved
as well.

The rest of the paper is organized as follows. In Section
II, the system model of point to point VLC system is intro-
duced and the channel capacity is modeled as a functional
optimization problem. In Section III, the channel capacity
and capacity-achieving distritution only considering the am-
plitude constraint are analyzed based on functional analysis
and optimization theory. In Section IV, the parallel channel
capacity and capacity-achieving distritution considering both

Signal
VLC

Channel

LED PD

X Y

Transmitter Receiver

Fig. 1. System model of a point-to-point VLC system.

the amplitude constraint and average intensity constraint are
investigated based on Section III and Lagrangian multiplier
theorem. The constellation optimization problems subject to
amplitude constraint and average intensity constraint are put
forward and worked out. The numerical results of constellation
optimization problems in Section III and Section IV are
displayed and discussed. Finally, the paper is concluded in
Section VI.

Notations: Boldface lower and upper case letters represent
vectors and matrices, respectively. Lowercase non-boldface
letters stand for scalars. Uppercase non-boldface letters stand
for random variables or constants. The field of real numbers
and complex numbers are denoted by R and C, respectively.
The transpose operator is denoted by (·)T.

II. SYSTEM DESCRIPTION

A. System Model

Consider a typical point-to-point VLC system employing
IM/DD modulation as depicted in Fig.1. The received signal
Y , measured by the photo-detector (PD) at the receiver, can
be expressed as:

Y = rgX + Z (1)

where X denotes the transmit signal; Z ∈ R is the independent
zero-mean additive Gaussian noise with variance σ2, i.e.,
Z ∼ N (0, σ2) [4]; r represents optoelectronic conversion
factor of the PD, which is normally a constant; g represents
the channel gain between the LED and the PD, which is
assumed to be deterministic and can be calculated according
to a specific formula in [4] if a Lambertian emission pattern
of LED is adopted and only light-of-sight link between the
LED and PD is considered. Without loss of generality, r and
g can be normalized to 1 since they scale the SNR only.

The transmit signal X is emitted by directly modulating the
light intensity of the LED. Generally speaking, the following
constraints for X are taken into consideration due to illumi-
nation requirement:

1) Amplitude Constraint: X is non-negative since it rep-
resents the instantaneous emitting intensity of the LED
[4] and peak-intensity bounded because of the physical
limitation of the LED [26], i.e.,

0 ≤ X ≤ A (2)

where A denotes the peak intensity of the LED.
2) Adjustable average intensity constraint: The brightness

of LED light, determined by the average amplitude of
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the transmit signal, should be adjustable in terms of
users’ demand, i.e.,

mX , E [X] = ξA (3)

where ξ ∈ [0, 1] is also called dimming coefficient,
representing the illuminating brightness.

B. Channel Capacity of VLC system

Let fX(x), fY (y) and fZ(z) represent the PDF of X , Y
and Z, respectively. FX denotes the set of all the possibilities
for fX(x) with constraint (2), which means any fX(x) in FX
satisfies the following conditions:

fX(x) = 0, x /∈ [0, A]

fX(x) ≥ 0, x ∈ [0, A]∫ A
0
fX(x)dx = 1

(4)

As Z ∼ N (0, σ2), fZ(z) is given by:

fZ(z) =
1√
2πσ

exp

(
− z2

2σ2

)
(5)

Therefore fY (y) can be calculated by:

fY (y) = fX(y) ∗ fZ(y) =

∫ ∞
−∞

fZ(y − x)fX(x)dx (6)

According to (6), fY (y) can be regarded as a functional of
fX(x). For notational convenience, let ψ[y; fX(·)] = fY (y)
represent the functional from the space R×FX into the real
line R:

ψ : R×FX 3 [y, fX(x)] 7→ fY (y) ∈ R (7)

Since x in fX(x) is an integral dummy variable in (6), it is
represented by · to avoid confusion.

The mutual information I(X;Y ) of the VLC system can
be formulated as [27]:

I(X;Y ) =

∫ ∞
−∞

∫ A

0

fX(x)fZ(y − x) log2

fZ(y − x)

fY (y)
dxdy

= H(Y )−H(Y |X) (8)
= H(Y )−H(Z)

where H(Y ) is the entropy of Y , which is defined as

H(Y ) = −
∫ ∞
−∞

fY (y) log2 fY (y)dy (9)

The entropy of Z is a constant related to σ2, which can be
calculated by:

H(Z) = −
∫ ∞
−∞

fZ(z) log2 fZ(z)dz =
1

2
log2(2πeσ2) (10)

It can be seen from (8) that I(X;Y ) is a functional of fX(x)
, too. Let φ[fX(·)] = I(X;Y ) denote the functional from the
space FX into the real line R:

φ : FX 3 fX(x) 7→ I(X;Y ) ∈ R (11)

where the variable x of fX(x) is denoted by · since it is an
integral dummy variable. Furthermore, define a new functional
ζ[fX(·)] on FX as:

ζ[fX(·)] =

∫ A

0

xfX(x)dx− ξA (12)

It turns out that constraint (3) is written as ζ[fX(·)] = 0.
As a consequence, the channel capacity of the point-to-

point VLC system can be defined as a functional optimization
problem:

C(A, σ, ξ) , max
fX(x)∈FX

ζ[fX(·)]=0

φ[fX(·)] (13)

Define a new system model of Y ′ = X ′ + Z ′ and
assume that Z ′ is an additive Gaussian noise variable with
unite variance and X ′ is a non-negative input variable with
peak intensity constraint A′ = A/σ. It can be verified
that I(X;Y ) = I(X ′;Y ′), where I(X ′;Y ′) is the mutual
information of Y ′ = X ′ + Z ′. Thus, σ is normalized to one
and A represents A/σ for notational simplicity. Besides, it is
obvious that ξ has nothing to do with the normalization.

So later in this literature, the channel capacity of VLC
system is expressed as:

C(A, ξ) , max
fX(x)∈FX

ζ[fX(·)]=0

φ[fX(·)] (14)

where A denotes A/σ.

C. Supplementary Knowledge
As the capacity of VLC system is modeled as a func-

tional optimization problem, some supplementary knowledge
of functional analysis and optimization theory that will be
used later is introduced in Appendix A [12]. The concepts of
weak differentiability and concavity for a functional are given
to prove whether a functional is concave or not. The basic
Optimization Theorem (Theorem 1), described in Appendix A,
is of vital important when the concave functional optimization
problem subject to the amplitude constraint only is considered
in Section III. As for the functional optimization problem
subject to an additional equality constraint in Section IV, the
Lagrangian Multiplier Theorem (Theorem 2) can be applied
[28].

III. CAPACITY S.T. AMPLITUDE CONSTRAINT

In this section, the channel capacity subject to the amplitude
constraint (2) only is analyzed:

C(A) , max
fX(x)∈FX

φ[fX(·)] (15)

where the average intensity constraint (3) is ignored temporar-
ily.

The properties of optimal solution for optimization problem
(15) is firstly discussed. Then the capacity-achieving distribu-
tion can be obtained by solving the constellation optimization
problem using the proposed algorithm. Due to the fact that
the capacity-achieving distribution is neither equally-spaced
nor equiprobable, it is inconvenient for digital implementation.
Therefore, constellation optimization problem maximizing the
mutual information subject to an additional equiprobable con-
straint is formulated and solved.
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A. Capacity Analysis s.t. Amplitude Constraint

Since problem (15) is almost the same with the first capacity
problem in [12], except for the interval of the amplitude, the
propositions for the optimal solution are alike. Thus, we are
going to make descriptions of the propositions and the rough
proof sketch. For the detailed proof, please refer to [12] and
[17].

Proposition 1 makes the point that an optimal input PDF
exists and provides the corresponding necessary and sufficient
condition based on Theorem 1. Proposition 2 puts forward a
more usable set of necessary and sufficient conditions. More-
over, it can be concluded from Proposition 2 and Proposition
3 that the optimal input is discrete, taking on a finite number
of values in [0, A].

Proposition 1: C is achieved by a unique probability dis-
tribution function f0

X(x) ∈ FX , i.e.

C = max
fX(x)∈FX

φ[f0
X(·)] (16)

for some unique f0
X(x) in FX .

In addition, a necessary and sufficient condition for f0
X(x)

to be optimal is for all fX(x) in FX∫ A

0

fX(x)i(x; f0
X(·))dx ≤ φ[f0

X(·)] (17)

where i(x; f0
X(·)) is the marginal information density function

defined as:

i(x; f0
X(·)) =

∫ ∞
−∞

fZ(y − x) log2

fZ(y − x)

fY (y)
dy (18)

where the variable x of f0
X(x) is also an integral dummy

variable denoted by ·.
Proof: Obviously, FX is a convex and compact set. The

functional φ[fX(·)] is proved to be strictly concave, continuous
and weakly differentiable in FX by definition 1, 2 and Lemma
1 in Appendix B. In addition, the necessary and sufficient
conditions is derived in terms of Theorem 1.

Proposition 2: Let f0
X(x) be an arbitrary PDF in FX .

Assume that E0 is the set of all points with nonzero values
of f0

X(x), i.e., E0 = {x ∈ [0, A]|f0
X(x) 6= 0}. Then f0

X(x) is
optimal if and only if

1) For all x ∈ [0, A],

i(x; f0
X(·)) ≤ φ[f0

X(·)] (19)

2) For all x ∈ E0,

i(x; f0
X(·)) = φ[f0

X(·)] (20)

Proof: (Proof of Necessity:) Clearly, if (19) and (20) are
both true, the necessary and sufficient conditions in Proposi-
tion 1 are satisfied, which makes f0

X(x) the optimal.
(Proof of Sufficiency:) The sufficiency can be proved by

contradiction. Assuming that f0
X(x) is optimal but (19) is not

true will lead to a contradiction of Proposition 1. If f0
X(x)

is optimal but (20) is not true, an impossible inequations of
φ[f0

X(·)] > φ[f0
X(·)] comes out. Hence, if f0

X(x) is optimal,
both (19) and (20) are valid.

Proposition 3: E0 is a finite set of points. In other words,
the optimal PDF of X can be expressed as the summation of
a finite number of scaled impulse functions.

Proof: The proof lies on Proposition 2 and the identity
theorem of complex functions [29]. Assuming E0 is not finite
leads to the conclusion that fY (y) is a real constant, which is
obviously impossible. Therefore, E0 is finite.

B. Constellation Optimization s.t. Amplitude Constraint

Now that it has been proved that the optimal input random
variable X for optimization problem (15) takes on a finite
number of values, the PDF of X can be written as:

fX(x) =
N∑
i=1

piδ(x− xi) (21)

where N denotes the constellation number; xi and pi represent
the position and probability of the i-th (i = 1, · · · , N )
constellation, respectively; δ(·) is the unit impulse function.

Define a new probability vector ppp = (p1, p2, · · · , pN )T

and a new position vector xxx = (x1, x2, · · · , xN )T for the N
constellations. The mutual information I(X;Y ) can be treated
as a function of vector ppp, xxx and the constellation number N
as shown in (23).

As a result, the capacity of the point-to-point VLC system
only subject to the amplitude constraint can be achieved by
the optimal solution of the following optimization problem:

max
ppp,xxx,N

φ̄(ppp,xxx,N)

s.t. 0 ≤ x1 < x2 < · · · < xN ≤ A (24)
0 ≤ pi ≤ 1, i = 1, · · · , N
N∑
i=1

pi = 1

where constraint (2) becomes 0 ≤ xi ≤ A; 0 < pi < 1 and∑N
i=1 pi = 1 are imposed because pi is the probability for the

i-th constellation.
The optimization problem is a mixed non-convex optimiza-

tion problem with 3N+1 inequality constraints and 1 equality
constraint, where N is also an optimized variable confined to
be a positive integer. Therefore, it is impracticable to get the
analytical solution. However, it is known that the unique opti-
mal solution of (24) definitely exists according to Proposition 1
and Proposition 2 provides an optimality verification method.
Thus, the Constellation Optimization Algorithm (Algorithm
1) is developed to solve (24) and get the optimal PDF of X .
In Algorithm 1, the constellation number is initialized to be

φ[fX(·)] = −
∫ ∞
−∞

N∑
i=1

pi
1√
2π

exp

[
−(y − xi)2

2

]
log

 N∑
j=1

pj
1√
2π

exp

[
−(y − xj)2

2

] dy − 1

2
log2(2πe) , φ̄(ppp,xxx,N) (23)
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Algorithm 1 Constellation Optimization Algorithm
s.t. Constraint (2)

Input: A: peak intensity of LED
Initialize: N = 2, x1 = 0, x2 = A, p1 = p2 = 1/2.
While: 1

if:
i(x; f0

X(·)) ≤ i(x∗i ; f0
X(·)),∀x ∈ [0, A] &

i(x∗1; f0
X(·)) = · · · = i(x∗N ; f0

X(·)),∀x∗i ∈ E0

Break;
else:

N = N + 1

Calculate the new optimal ppp∗ and xxx∗ by interior
point algorithm

endif
End While
Return: N∗ = N , ppp∗, xxx∗

2 with p1 = p2 = 1/2, x1 = 0 and x2 = A according to
Proposition 4.

Proposition 4: Provided that the constellation number N
is fixed to be 2, the optimal constellation probability vector
and position vector are ppp∗ = (1/2, 1/2)T and xxx∗ = (0, A)T ,
respectively, which means, the two optimal constellation points
are equiprobable and located at the double ends of the signal
interval [0, A].

Proof: See Appendix C

C. Constellation Optimization s.t. Amplitude Constraint and
Equal Probability Constraint

In order to make digital implementation easier, the constel-
lation points are set to be equally distributed. Therefore, the
constellation optimization problem subject to equal probability
constraint is formulated and solved by the proposed algorithm.
Numerical results show that the optimal distributions make the
mutual information very close to the channel capacity over a
wide range of A and the constellations are equally spaced,
which is preferred in practical implementation.

As the equal probability constraint is imposed, the probabil-
ity for each constellation is 1/N , i.e., p1 = · · · = pN = 1/N .
Hence, it leaves the constellation number N and the position
vector xxx = (x1, · · · , xN )T the optimization variables. The
PDF of X is written as:

fX(x) =
1

N

N∑
i=1

δ(x− xi) (25)

Define the mutual information as a function of xxx and N
denoted by ¯̄φ(xxx,N):

¯̄φ(xxx,N) = φ̄(ppp,xxx,N)|ppp=( 1
N ,··· ,

1
N ) (26)

The optimization problem subject to equal probability con-
straint is written as:

max
xxx,N

¯̄φ(xxx,N) (27)

s.t. 0 ≤ x1 < x2 < · · · < xN ≤ A

The optimization problem (27) can be solved by the interior
point method when N is given. However, N is also an
optimization variable, thus, an algorithm (Algorithm 2) is
proposed to find the optimal constellation number N by
comparing the mutual information of the optimal constellation
for every N started from N = 2 till the terminal condition is
meet.

Algorithm 2 Constellation Optimization Algorithm
s.t. Constraint (2) & Equal Probability Constraint

Input: A: peak intensity of LED
Initialize: N = 2, x1 = 0, x2 = A.

Calculate CN = ¯̄φ(xxx,N)

While: 1

N = N + 1

Calculate the optimal xxx∗N by interior point method
Calculate CN = ¯̄φ(xxx∗N , N)

if:
CN−1 ≤ CN︸ ︷︷ ︸

aaa

&0.1 <
x∗i − x∗i−1

x∗j − x∗j−1

< 10,∀i, j ∈ [2, N ]︸ ︷︷ ︸
bbb

Continue;
else:

Break;
endif
End While
Return: N∗ = N − 1, xxx∗N−1

In Algorithm 2, the initial value of xxx = (0, A)T for N = 2
is optimal according to Proposition 4. Then the constellation
number is increased by 1. The new optimal solution xxx∗N is
worked out by interior point method (or other algorithms) and
the new mutual information CN = ¯̄φ(xxx∗N , N) is computed
accordingly. If aaa and bbb are both true, the while loop is
continued, or else, the while loop is breaked and xxx∗N−1 is
the optimal solution. The judgement statement bbb is applied to
guarantee that the mutual information is not increased because
of some overlapped constellations.

Since the constellation probability are fixed to be 1/N , the
constellation distribution obtained by solving (27) must be a
lower capacity bound for (24). According to the numerical re-
sults in Section IV, the constellations subject to the additional
equal probability constraint happen to be equally spaced in this
scenario. Besides, we realize that the optimal constellations
distribution for (27) can be termed as capacity-approaching
by numerical analysis.

IV. CAPACITY S.T. AMPLITUDE & AVERAGE INTENSITY
CONSTRAINT

In this section, the original channel capacity (14) consider-
ing both amplitude constraint and average intensity constraint
is investigated. Parallel to Section III, the optimal solution for
optimization problem (14) is firstly analyzed. Then, capacity-
achieving constellation optimization problem is put forward
and worked out using the proposed algorithm. Moreover,
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constellation optimization problem maximizing the mutual
information subject to the additional equiprobable constraint
is formulated and solved to make practical implementation
easier.

A. Capacity Analysis s.t. Amplitude & Average Intensity Con-
straint

It can be proved that the optimization problem (14) is a
concave functional with an equality constraint imposed by
the illumination requirement of VLC systems. Therefore, the
following propositions are raised on the basis of propositions
1-3 and Theorem 2 in the Appendix.

Proposition 5: The value C(A, ξ) is achieved by a unique
PDF f0

X(x) ∈ FX satisfying constraint (3), i.e.,

C(A, ξ) = max
fX∈FX

[φ[fX(·)]− νζ[fX(·)]]

= φ[f0
X(·)]− νζ[f0

X(·)]
(28)

A necessary and sufficient condition for C(A, ξ) = φ[f0
X(·)]

being optimal is that for some constant ν,∫ A

0

[fX(x)i(x; f0
X(·))−νxfX(x)]dx ≤ φ[f0

X(·)]−νξA (29)

where fX(x) is any PDF in FX .
Proof: It is already known by Proposition 1 that FX is a

convex and compact set and that functional φ[fX(·)] is strictly
concave, continuous and weakly differentiable in FX .

In terms of the definition, the weak derivative of functional
ζ[fX(·)] is given by:

ζ ′f0
X(x)[gX(·)] = lim

θ→0+

ζ[(1− θ)f0
X(·) + θgX(·)]− ζ[f0

X(·)]
θ

= ζ[gX(·)]− ζ[f0
X(·)] (30)

In addition, letting f1
X(x) = (1− ξ)δ(x) + ξδ(x−A) implies

that ζ[f1
X(x)] = 0. Thus, functional ζ[fX(·)] is linear, bounded

and weakly differentiable in FX and there exists at least
one f1

X(x) ∈ FX such that ζ[f1
X(x)] = 0. As a result,

functional φ[fX(·)]−νζ[fX(·)] is strictly concave, continuous
and weakly differentiable. By Theorem 1 and Theorem 2, (14)
is equivalent to optimization problem (28) for some constant
ν and there exists a unique PDF f0

X(x) ∈ FX satisfying
constraint (3) such that

C(A, ξ) = φ[f0
X(·)]− νζ[f0

X(·)] = φ[f0
X(·)] (31)

for some constant ν, which means, (28) holds.
In terms of Theorem 1, the necessary and sufficien-

t condition for f0
X(x) being optimal is φ′

f0
X(·)[fX(·)] −

νζ ′
f0
X(·)[fX(·)] ≤ 0 for all fX(x) ∈ FX , which is expanded as

φ′f0
X(·)[fX(·)]− νζ ′f0

X(·)[fX(·)]

=

∫ A

0

[−f0
X(x) + fX(x)]i(x, f0

X(·))dx (32)

− ν
∫ A

0

xfX(x)dx+ ν

∫ A

0

xf0(x)dx ≤ 0

Since
∫ A

0
xf0

X(x)dx = ξA, (29) is proved.

Proposition 6: Let f0
X(x) be an arbitrary PDF in FX satis-

fying constraint (3). Assume that E0 is the set of all points with
nonzero values of f0

X(x), i.e., E0 = {x ∈ [0, A]|f0
X(x) 6= 0}.

Then, f0
X(x) ∈ FX is optimal if and only if, for some ν,

1) For all x ∈ [0, A],

i(x; f0
X(·)) ≤ φ[f0

X(·)]− ν(ξA− x) (33)

2) For all x ∈ E0

i(x; f0
X(·)) = φ[f0

X(·)]− ν(ξA− x) (34)

Proof: The proof parallels that of Proposition 2.
(Proof of Necessity:) If conditions (33) and (34) both

hold, f0
X(x) is optimal because the necessary and sufficient

condition of Proposition 5 is satisfied.
(Proof of Sufficiency:) Sufficiency is proved by contradic-

tion.
Assume that f0

X(x) is optimal but (33) is not true. Then,
there exists at least one x1 ∈ [0, A] such that i(x1; f0

X(·)) >
φ[f0

X(·)]−ν(ξA−x1). Let fX(x) = δ(x−x1) (a unit impulse
function at x1), then∫ A

0

fX(x)i(x; f0
X(·))dx = i(x1; f0

X(·))

> φ[f0
X(·)]− ν(ξA− x1)

(35)

which contradicts Proposition 5. Hence, if f0
X(x) is optimal,

(33) is valid.
Similarly, We assume that f0

X(x) is optimal but (34) is not
true. Suppose there exists a nonempty subset E1 of E0 in
which (34) is not true, i.e. ,

∫
E1
f0
X(x)dx = ρ > 0 and

i(x; f0
X(·)) > φ[f0

X(·)] − ν(ξA − x) for x ∈ E1. Since
(34) is true for all x ∈ E0 − E1, we have i(x; f0

X(·)) =
φ[f0

X(·)]− ν(ξA− x) and
∫
E0−E1

f0
X(x)dx = 1− ρ.

Rewrite φ[f0
X(·)] as (36). Clearly, when ρ 6= 0, φ[f0

X(·)] >
φ[f0

X(·)] is a contradiction. Thus, ρ = 0 and (34) is true.
Proposition 7: The value of E0 is a finite set of points.

Proof: The proof parallels the proof of Proposition 3 with
some difference.

Define the marginal entropy density function

h(x; fX(·)) , −
∫ ∞
−∞

fZ(y − x) log2 fY (y)dy (37)

Then we have

i(x; fX(·)) = h(x; fX(·))− 1

2
log2 (2πe) (38)

Assuming that f0
X(·) is optimal, (34) and (38) are true for all

x ∈ E0. Thus, for all x ∈ E0, h(x; f0
X(·)) satisfies

h(x; f0
X(·))− νx = φ[f0

X(·)] +
1

2
log2(2πe)− νξA = c (39)

Obviously, the right side is a constant which can be denoted
by c. Consequently, h(x; f0

X(·))−νx = c holds for all x ∈ E0.
Let h(x; f0

X(·)) − νx extend to the entire complex plane.
Then it can be proved that h(x; f0

X(·))−νx is analytic. E0 can
be treated as a bounded set on the real line R in the complex
plane. If E0 is infinite, then h(x; f0

X(·))−νx = c holds on the
entire complex plane in accordance with the Identity Theorem
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of complex functions. In particular, h(x; f0
X(·)) − νx = c is

true for all x ∈ R, i.e.,

−
∫ ∞
−∞

fZ(y − x) log2 fY (y)dy = c+ νx (40)

This is possible if and only if fY (y) = 2−c−νx. Since
fZ(y−x) is Gaussian and the input amplitude is constrained,
fY (y) being exponential on the real line as fY (y) = 2−c−νx

is obviously impossible. Therefore, E0 must be finite.

B. Constellation Optimization s.t. Amplitude & Average In-
tensity Constraint

It has been proved that the optimal input random variable
X for optimization problem (14) also takes on a finite number
of values in Proposition 5-7. Thus the PDF of X in the
form of (21) is a function of the constellation number N ,
the position of i-th constellation xi and the probability of the
i-th constellation pi with i = 1, · · · , N .

Since constraint (3) is considered, xi and pi have to satisfy

ζ[fX(·)] =

∫ A

0

xfX(x)dx− ξA =

N∑
i=1

xipi − ξA = 0 (41)

As before, the mutual information φ[fX(·)] = I(X;Y ) is
written as a function denoted by φ̄(ppp,xxx,N) with variables ppp,
xxx and N as shown in (23).

The constellation optimization problem subject to (2) and
(3) achieving the channel capacity is formulated as:

max
ppp,xxx,N

φ̄(ppp,xxx,N)

s.t. 0 ≤ x1 < x2 < · · · < xN ≤ A
0 ≤ pi ≤ 1, i = 1, · · · , N (42)
N∑
i=1

pi = 1

N∑
i=1

pixi = ξA

An analytic expression for optimization problem (42) is dif-
ficult to acquire as problem (24). However, Algorithm 3 is
put forward to achieve the optimal solution of (42) for any A
and ξ based on Proposition 5-7. The algorithm starts from
N = 2 with xxx and ppp initialized to be xxx = (0, A)T and
ppp = (1 − ξ, ξ)T , respectively. The initialization is imposed
because they are optimal when A is not large based on the
numerical results. In cases of a large A, the optimal ppp and xxx
for N = 2 can be computed by the interior point method at
first in the while loop. Then, Proposition 6 provides optimality
verification of (ppp,xxx,N). If the test is valid, the program is

terminated. Otherwise, let N = N + 1 and the while loop
continues. This procedure is repeated until the optimal solution
is found.

Algorithm 3 Constellation Optimization Algorithm
s.t. Constraint (2) & (3)

Input:
A: peak intensity of LED

ξ: the dimming coefficient
Initialize: N = 2, x1 = 0, x2 = A, p1 = 1− ξ, p2 = ξ.
While: 1

Calculate the new optimal ppp∗ and xxx∗ by interior point
algorithm

if:
∃ν, i(x; f0

X(·)) ≤ φ[f0
X(·)]− ν(ξA− x),∀x ∈ [0, A]

& i(x∗i ; f
0
X(·)) = φ[f0

X(·)]− ν(ξA− x∗i ),∀x∗i ∈ E0

Break;
else:

N = N + 1

endif
End While
Return: N∗ = N , ppp∗, xxx∗

In practical VLC system subject to constraint (2) and (3),
channel capacity is related to not only A but also the dimming
coefficient ξ. The next proposition shows the relationship of
the optimal constellation distributions for ξ and 1− ξ when A
is fixed.

Proposition 8: Suppose the optimal constellation number,
location and probability for the given A and ξ, are N ,
xxx = (x1, · · · , xN )T and ppp = (p1, · · · , pN )T , respectively.
If the dimming coefficient becomes 1 − ξ while A remains
unchanged, we have

C(A, ξ) = C(A, 1− ξ) (43)

Besides, the optimal constellation number, location and prob-
ability, denoted by N ′, xxx′ = (x′1, · · · , x′N )T and ppp′ =
(p′1, · · · , p′N )T can be obtained by

N ′ = N (44)

xxx′ = (A− xN , A− xN−1 · · · , A− x1)T (45)

ppp′ = (pN , pN−1, · · · , p2, p1)T (46)

Proof: Under the assumption that the constellation num-
ber N , location xxx = (x1, · · · , xN )T and probability ppp =
(p1, · · · , pN )T are optimal, the channel capacity is expressed

φ[f0
X(·)] =

∫
E1

f0
X(x)i(x; f0

X(·))dx+

∫
E0−E1

f0
X(x)i(x; f0

X(·))dx

>

∫
E1

f0
X(x)[φ[f0

X(·)]− ν(ξA− x)]dx+

∫
E0−E1

f0
X(x)[φ[f0

X(·)]− ν(ξA− x)]dx

=ρφ[f0
X(·)] + (1− ρ)φ[f0

X(·)] = φ[f0
X(·)] (36)
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as:
C(A, ξ) = −

∫ ∞
−∞

Λ(y)dy − 1

2
log2(2πe) (47)

where, the integrand is given by

Λ(y) =

N∑
i=1

pifZ(y − xi) log2

 N∑
j=1

pjfZ(y − xj)

 . (48)

In addition, N , xxx and ppp satisfy conditions (33) and (34).
If the dimming coefficient becomes ξ′ = 1 − ξ while A

remains unchanged, xxx′ = (A− xN , A− xN−1 · · · , A− x1)T

and ppp′ = (pN , pN−1, · · · , p2, p1)T are feasible because they
meet all the constraints in (42). The optimality of N ′, ppp′ and
xxx′ can be proved by by verifying that xxx′ and ppp′ satisfy the
necessary and sufficient condition of (33) and (34) based on
the fact that xxx and ppp satisfy (33) and (34).

We assume that the integrand in C(A, 1− ξ) is denoted by

Λ′(y) =
N∑
i=1

pifZ(y−(A−xi)) log2

 N∑
j=1

pjfZ(y − (A− xj))


(49)

Obviously, Λ(y) and Λ′(y) are axial symmetry about y = A/2.
Therefore, the integrals of Λ(y) and Λ′(y) in (−∞,+∞) are
the same. C(A, ξ) = C(A, 1− ξ) is proved.

C. Constellation Optimization s.t. Amplitude & Average In-
tensity Constraint & Equal Probability Constraint

As constellations are preferred to distributed with equal
probability to make implementation easier in practice, con-
stellation optimization problem subject to constraints (2) and
(3) is investigated when each constellation is confined to be
equally distributed.

When the constellation number is N , the PDF of input
variable X is in expression of (25) as before. The average
intensity constraint (41) subject to equal probability constraint
is expressed as:

E[xi] =
1

N

N∑
i=1

xi = ξA (50)

The mutual information is a function of N and xxx, which
remains to be denoted by ¯̄φ(xxx) = φ̄(ppp,xxx)|ppp=( 1

N ,··· ,
1
N ) as

in (26). As a result, the constellation position optimization
problem is given by

max
xxx

¯̄φ(xxx)

s.t. 0 ≤ x1 < x2 < · · · < xN ≤ A (51)

1

N

N∑
i=1

xi = ξA

Algorithm 2 for (27) can also be used to solve (51) with
the linear constraint as stated in (50). Hence, the details are
omitted here.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the optimal distributions for optimization
problem (24), (27), (42) and (51) are illustrated and discussed,
respectively.

A. Optimal Distributions s.t. Amplitude Constraint
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Fig. 2. Optimal constellation distribution at selected values of A

The optimal constellation distributions of optimization prob-
lem (24) at values of A = 3, 5, 7, 9, 11 are shown in Fig. 2. The
optimal number N∗ and the optimal probability and location
of the constellations at each A are obtained by Algorithm 1.
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Fig. 3. Optimal constellation distribution for different N when A = 9

It is known that the optimal N∗ is 5 when A = 9 according
to Fig. 2. Since N will start from 2 in Algorithm 1, thus the
optimal constellation distributions are recorded and shown in
Fig. 3 from N = 2 to N = 6. It can be seen that when N = 6,
5 of the optimal constellations located at the same place as the
optimal case for N = 5 with one other constellation distributed
elsewhere with probability tending to zero. In this way, the
mutual information for N = 6 is almost capacity-achieving.
According to other simulation results for different ‘A’s with
various ‘N ’s, in the case of N > N∗, N∗ of the optimal
constellations are located on the same point as the optimal case
whereas the other N−N∗ constellations lie in other point with
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probabilities being almost zero. Beside, it is worth noting that
all the optimal constellation positions and probabilities satisfy
(19) when N ≤ N∗. However, (20) is not qualified when
N < N∗, which is used to verify the global optimality for the
optimal distribution of N = N∗.

Besides, Hypothesis 1 is concluded from Fig. 2 and
Fig. 3 that all the optimal constellation distributions xxx∗ =
(x∗1, x

∗
2, · · · , x∗N )T and ppp∗ = (p∗1, p

∗
2, · · · , p∗N )T meet when

N ≤ N∗.
Hypothesis 1: As long as N ≤ N∗, xxx∗ and ppp∗ follow the

laws below.
1) The elements of vector xxx∗ = (x∗1, x

∗
2, · · · , x∗N )T in

[0, A] are symmetric about the center A/2, i.e.,

x∗n + x∗N+1−n
2

=
A

2
, n = 1, · · · , N (52)

2) The elements of vector ppp∗ = (p∗1, p
∗
2, · · · , p∗N )T are even

symmetric:

p∗n = p∗N+1−n, n = 1, · · · , N (53)

3) On the left of the center A/2, the space between con-
stellations is strictly decrease monotonically, whereas it
is strictly increase monotonically on the right of A/2.
Define

d1 =x∗2 − x∗1 = x∗N − x∗N−1

d2 =x∗3 − x∗2 = x∗N−1 − x∗N−2 (54)
...

dbN2 c
=x∗bN2 c+1

− x∗bN2 c = x∗dN2 e+1
− x∗dN2 e

We have d1 > d2 > · · · > dbN2 c
.

4) For any N ≥ 2, the element of ppp∗ = (p∗1, p
∗
2, · · · , p∗N )T

is strictly decrease monotonically when n ≤ dN/2e and
strictly increase monotonically if n ≥ dN/2e.

The laws are summarized from numerical results and have not
been proved yet.

B. Optimal Constellation Distribution s.t. Amplitude Con-
straint and Equal Probability Constraint

The optimal constellation distributions of (27) at values of
A = 3, 5, 7, 9, 11 are shown in Fig. 4. It is worth mentioning
that the optimal constellation distribution are equally spaced
subject to the constraint of equal probability.

In Fig. 4, the optimal N is 4 for A = 9. As N begins with
2 in Algorithm 2, we investigate the optimal constellation
distributions from N = 2 to N = 5 as given in Fig. 5. It is
shown that when N ≤ 4, the optimal constellations are equally
spaced. When N = 5, though the constellations are also
equally spaced, the mutual information is smaller than N = 4.
Under the condition of N = 6, the constellations are not
equiprobable since the first two constellations are overlapped,
which means that there are actually 5 non-equiprobable con-
stellations. That’s why condition bbb is deployed in Algorithm 2.
As a matter of fact, as N →∞, the constellation distributions
with overlapped constellations are tending to the optimal
distributions obtained by Algorithm 1.
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Fig. 4. Optimal constellation distribution at selected values of A with equal
probability constraint
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Fig. 5. Optimal constellation distributions at A = 9 s.t. equal probability
constraint

The capacity lines of optimization problem (24) and (27)
versus A are shown in Fig. 6 in bits/symbol. It can be seen
that the optimal solution for (27) is a very tight lower bound
of the channel capacity subject to constraint (2). Therefore, the
optimal distribution of (27) is actually a capacity-approaching
constellation distribution, which is very meaningful and useful
in practice since digital implementation prefers equiproba-
ble and equal-spaced constellations. Besides, the information
rate of uniformly distributed input is a asymptote of C(A)
for large A according to the information theory [27], i.e.,
H(Y ) ∼= H(X) as A increases:

C̃ = log2A−
1

2
log2(2πe) (55)
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Fig. 6. Capacity (s.t. equal probability constraint) and asymptote

C. Optimal Distribution s.t. Amplitude & Average Intensity
Constraint

The optimal constellation distributions of (42) at values of
A = 3, 5, 7, 9, 11 for ξ = 0.5 are the same as the optimal
solution for (24) in Fig. 2. This coincides with the condition
that the mean of the optimal constellations in Fig. 2 equals to
0.5A. The optimal constellation distribution of (42) at values
of A = 3, 5, 7, 9, 11 for ξ = 0.3 is shown in Fig. 7. The
optimal constellation number N and the optimal probabilities
and positions at each A are determined by Algorithm 3. It
can be seen in Fig. 7 that more weight is assigned to the
constellation points located in left side of 0.5A since ξ < 0.5.
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9=0.3

Fig. 7. Optimal constellation distributions at selected values of A for ξ = 0.3

Fig. 8 shows the optimal constellation distributions with
different values of ξ for A = 7. It can be seen that ξ has
impact on both constellation number and distribution. Besides,
the symmetry of optimal constellation distribution for ξ and
1− ξ in Proposition 8 is verified according to Fig. 8 as well.
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Fig. 8. Optimal constellation distributions at different values of ξ for A = 7

D. Optimal Distribution s.t. Amplitude & Average Intensity
Constraint & Equal Probability Constraint

Fig. 9 shows the optimal equiprobable constellation distribu-
tion for (51) when ξ = 0.3. The optimal constellation number
is decided by Algorithm 2. More constellations are located
near zero since ξ = 0.3 < 0.5.
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Fig. 9. The optimal constellation distribution s.t. equiprobable constraint for
ξ = 0.3

The optimal constellation distributions with the equal prob-
ability constraint for different ξ when A = 11 are shown
in Fig. 10. The optimal constellation distribution is the same
with the optimal solution for optimization problem (27) when
ξ = 0.5.When ξ 6= 0.5, the constellations are not equally
spaced any more. They are concentrated on the zero side if
ξ < 0.5 and on the A side if ξ > 0.5. It can be seen from Fig.
10 that the symmetry of optimal constellation for ξ and 1−ξ is
still true when the equal probability constraint is considered.

The capacity lines with ξ = 0.5, 0.4, 0.3, 0.2 of optimization
problem (42) and (51) versus A are plotted in Fig. 11 in
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Fig. 10. The optimal constellation distribution for different ξ when A = 11

bits/symbol. Since the capacity is symmetric about ξ = 0.5,
the capacity lines with ξ = 0.6, 0.7, 0.8 should be the same
as the ones with ξ = 0.4, 0.3, 0.2 according to Proposition 8,
thus are omitted here. It can be seen that the channel capacity
achieves the maximum when ξ = 0.5 and declines with the
increase of |ξ − 0.5|. This is because the deviation of ξ from
0.5 confines the constellation positions to the 0’s end or the A’s
end. Furthermore, the maximized mutual information subject
to the equal probability constraint is capacity-approaching in
the case of ξ = 0.5. It deviate from the capacity when ξ 6= 0.5.
The gap between the capacity and the maximized mutual
information subject to the equal probability constraint goes
larger as |ξ − 0.5| increases.
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Fig. 11. Capacity (s.t. equal probability constraint) for different ξ

VI. CONCLUSION

In this paper, the capacity of the point to point VLC system
considering the amplitude constraint and an adjustable average

intensity constraint has been investigated by means of func-
tional analysis. It was proved that a unique optimal PDF of the
input variable for the functional optimization problem exists
and the necessary and sufficient conditions were obtained. In
addition, it was further proved that the capacity-achieving PDF
was combined of a finite number of discrete points. Therefore,
the constellation optimization problems to reach the channel
capacity were put forward and algorithms were proposed to
work out the optimization problems. Besides, the capacity-
approaching constellation optimization problems subject to
additional equal probability constraint were investigated to
make digital implementation easier.

APPENDIX A
SUPPLEMENTARY KNOWLEDGE

Definition 1: φ[fX(·)] is weakly differentiable at f0
X(x) ∈

FX if there exists a map φ′
f0
X(·)[gX(·)] : FX 7→ R such that

[12]:

φ′f0
X(·)[gX(·)] = lim

θ→0+

φ[(1− θ)f0
X(·) + θgX(·)]− φ[f0

X(·)]
θ

(56)
where f0

X(x) is a fixed element in FX and θ a number in
[0, 1]. φ[fX(·)] is said to be weakly differentiable in FX as
long as φ[fX(·)] is weakly differentiable at all f0

X(·) in FX .
Definition 2: On the basis that FX is a compact, convex,

topological space, φ[fX(·)] is said to be concave (convex-cap
in some references) if for all fX(x), gX(x) ∈ FX and all
θ ∈ [0, 1]

φ[(1−θ)fX(·)+θgX(·)] ≥ (1−θ)φ[fX(·)]+θφ[gX(·)] (57)

Theorem 1: Let φ[fX(·)] be a continuous, weakly differen-
tiable strictly concave map from a compact, convex, topolog-
ical space Ω to R. Define

C , max
fX(x)∈Ω

φ[fX(·)] (58)

Then

• C = φ[f0
X(x)] for some unique f0

X(x) in Ω;
• A necessary and sufficient condition for φ[f0

X(·)] = C is
φ′
f0
X(·)[gX(·)] ≤ 0 for all gX(x) ∈ Ω.

Theorem 2: Let Ω be a convex set, φ[fX(·)] and ζ[fX(·)]
concave functionals on Ω to R. Assume that there exists at
least a f1

X(x) ∈ Ω such that ζ[f1
X(·)] = 0 and let

C ′ = max
fX(x)∈Ω
ζ[fX(·)]=0

φ[fX(·)] (59)

Then there exists a constant ν such that

C ′ = max
fX(x)∈Ω

φ[fX(·)]− νζ[fX(·)] (60)

Furthermore, if the maximum in (59) is achieved by f0
X(x)

in Ω and ζ[f0
X(x)] = 0, it is achieved by f0

X(x) in (60) and
νζ[f0

X(x)] = 0.
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APPENDIX B
LEMMA FOR PROPOSITION 1

Lemma 1: Supposing that f(x) is a function in FX , let
βf(x)[g(x)] be a functional on FX defined as:

βf(x)[g(x)] =

∫ A

0

f(x) log g(x)dx (61)

Then, if and only if g(x) = f(x), βf(x)[g(x)] is maximized,
i.e., ∫ A

0

f(x) log g(x)dx ≤
∫ A

0

f(x) log f(x)dx (62)

which means the equality is true if and only if g(x) = f(x).
Proof: Assume that βf(x)[g(x)] is maximized by g(x) =

g0(x). Define a new function of θ:

β̄(θ) =

∫ A

0

f(x) log[(1− θ)g0(x) + θg(x)]dx (63)

where g(x) is any function in FX .
Obviously, β̄(θ) is maximized when θ = 0. Therefore, the

derivative of β̄(θ) at θ = 0 is zero, i.e.,

β̄′(θ)|θ=0 =

∫ A

0

f(x)
−g0(x) + g(x)

g0(x)
dx = 0 (64)

(64) can be simplified as:∫ A

0

g(x)
f(x)

g0(x)
dx = 1 (65)

where g(x) represent any PDF with
∫ A

0
g(x)dx = 1. As a

consequence, only f(x)/g0(x) ≡ 1 guarantees that (65) is
always true, which means g0(x) = f(x).

Besides, it can be verified that the second derivative of β̄(θ)
with respect to θ is negative. Thus, g0(x) = f(x) maximizes
βf(x)[g(x)].

APPENDIX C
PROOF FOR PROPOSITION 4

Assuming that the PDF of X is fX(x) = p1δ(x − x1) +
p2δ(x− x2) when N = 2, the PDF of Y can be written as:

fY (y) = p1fZ(y − x1) + p2fZ(y − x2) (66)

The entropy of Y is expressed as:

H(Y ) = −
∫ ∞
−∞

[p1fZ(y − x1) + p2fZ(y − x2)] (67)

× log[p1fZ(y − x1) + p2fZ(y − x2)]dy

Due to p1 + p2 = 1, substitute p2 = 1 − p1 into H(Y ) and
then take the partial derivative of H(Y ) respect to p1,

dH(Y )

dp1
=−

∫ ∞
−∞

[fZ(y − x1)− fZ(y − x2)]

{log [p1fZ(y − x1) + (1− p1)fZ(y − x2)] + 1} dy

,−
∫ ∞
−∞

Λ(y; p1, x1, x2)dy (68)

It can be verified that if p1 = 1/2, the independent variable of
the integrand Λ(y; p1, x1, x2) is odd-symmetric with respect
to the point y = x1+x2

2 , i.e.,

Λ(y; p1, x1, x2) = −Λ(x1 + x2 − y; p1, x1, x2) (69)

Thus dH(Y )
dp1

= 0 when p1 = 1/2. p1 = 1/2 is an extreme
point of H(Y ).

Then, taking the second partial derivative of H(Y ) with
respect to p1, we have:

d2H(Y )

d2p1

= −
∫ ∞
−∞

[fZ(y − x1)− fZ(y − x2)]
2

p1fZ(y − x1) + (1− p1)fZ(y − x2)
dy

(70)

It can be seen that d2H(Y )
d2p1

is negative for all p1. Thus H(Y )

is concave and p1 = 1
2 the maximum.

Now that we have p1 = p2 = 1
2 , H(Y ) can be expressed

as:

H(Y ) = −1

2

∫ ∞
−∞

[fZ(y − x1) + fZ(y − x2)]

× log

[
1

2
fZ(y − x1) +

1

2
fZ(y − x2)

]
dy

(71)

Let z = y − x1 and t = x2 − x1, H(Y ) turns into:

H(Y ) = −1

2

∫ ∞
−∞

[fZ(z) + fZ(z − t)]

× log

[
1

2
fZ(z) +

1

2
fZ(z − t)

]
dz

(72)

Then take the partial derivative of H(Y ) with respect to t, we
have (73). It can be verified that dH(Y )

dt > 0 for all t > 0,
so H(Y ) is a monotone increasing function of t. Therefore,
t = A is the maximum for H(Y ), which means x1 = 0,
x2 = A is the optimal constellation position.

Proposition 4 is proved.
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