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ABSTRACT In this paper, a tightly coupled dipole reflectarray antenna as well as a variant-coupling-
capacitance method to improve the antenna aperture efficiency is presented. Tightly coupled elements and
true-time-delay lines are employed in the design of a wideband reflectarray. The proposed reflectarray can
operate from 2 GHz to 5 GHz with the gain varying from 11.3 dBi to 21 dBi. Moreover, we propose a
variant-coupling-capacitance method to improve the reflectarray aperture efficiency at lower frequency.
By changing the coupling capacitance between neighboring elements according to their positions in the
reflecting surface, a more linear equivalent distance delay line is achieved. Hence, phase error is reduced.
According to measurement, the reflectarray gain in 2 GHz using the proposed method is increased by 3 dBi
compared with the previous design. Aperture efficiency in 2 GHz is improved by 21.6%.

INDEX TERMS Reflectarray, tightly coupled antenna, wideband, variant coupling capacitance.

I. INTRODUCTION

Reflectarray (RA) antennas are a new generation of high-gain
antennas thanks to their distinguishable electrical and
mechanical characteristics. RA antennas combine merits of
both reflectors and printed arrays as well as offering alterna-
tive design with low profile and low mass features [1], [2].In
comparison with reflector antennas, RA antennas are easy
to manufacture and install due to their flat structures. Com-
pared with printed arrays, RA antennas eliminate the loss
from feedline networks and phase adjustment networks as
reflectarray has usually one feed antenna, and the elements
embed phase altering structures to achieve plane wave on the
aperture surface [3].

Although RA antennas outweigh many kinds of anten-
nas in terms of various favorable features, they suffer from
the disadvantage of narrow bandwidth. The main factors
that restrain bandwidth are the bandwidth of the reflectarray
elements and the differential spatial phase delay [4]. Many
approaches have been adopted to broaden the bandwidth.
In terms of improving the unit cell bandwidth performance,
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multi-resonant elements [5], [6], multilayer elements [2], [7],
spline shaped unit cell [8], and subwavelength element [9]
are employed. In order to compensate the differential spa-
tial phase delay caused by different paths from the feed
to different elements, true-time-delay techniques are used
in [10], [11]. Besides these methods, a phase synthesis
approach is developed to increase bandwidth independent of
the element frequency behavior [12].

Recently another approach proposed by [13] utilizes
tightly coupled dipole reflectarray elements to increase band-
width to a great extent. Tightly coupled antenna is first pro-
posed by Ben Munk [14] based on Wheeler’s current sheet
theory [15]. The coupling capacitance between elements is
exploited to improve bandwidth performance. Researchers
from Kent University firstly applied tightly coupled theory
into reflectarray design and achieved the bandwidth of 103%.
Besides reflectarray, tightly coupled elements are also uti-
lized to design transmittarrays [16].

In this paper, we present a tightly coupled dipole reflec-
tarray antenna (TCDRA). Section II demonstrates the design
basis of a TCDRA. The proposed TCDRA operates from
2 GHz to 5 GHz with the gain varying from 11.3 dBi
to 21 dBi. However, though the reflectarray has a wider
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FIGURE 1. Configuration of the reflectarray element.

bandwidth than most of the existed reflectarrays, in lower
frequency the gain is relatively low. This is because in lower
frequency the behaviors of the reflecting elements deviate
from the designed value and phase error becomes greater.
Therefore, in Section III we propose a variant-coupling-
capacitance (VCC) method to increase the gain in lower
frequency. By changing the coupling capacitance between
neighboring unit cells according to their positions in the
reflecting surface, the linearity of phase delay line improves
in the objective frequency. And the difference between the
objective frequency design line and the ultimate design line
is reduced. As a result, the objective frequency gain is
increased. The model is simulated and fabricated to verify
the design. Measurement results in Section IV show that the
variant-coupling-capacitance tightly coupled dipole reflectar-
ray antenna (VTCDRA) gain is increased by 3 dBi in 2 GHz.
The modified antenna gain varies from 14.4 dBi to 21.9 dBi
within the working frequency of 2 GHz to 5 GHz. The cross
polarization discrimination is higher than 20 dB.

Il. TIGHTLY COUPLED REFLECTARRAY ELEMENT DESIGN
A. ELEMENT DESIGN

The tightly coupled reflectarray element in [13] is consisted
of a wideband dipole (bowtie dipole) and a pair of true-time-
delay (TTD) lines. Following this design guideline, we use
elliptical dipole and TTD lines as wideband array element
and spatial phase distribution structure respectively. The con-
figuration of the element is shown in Fig. 1. The dipole
element is printed on both sides of the substrate with a TTD
line connected to each dipole arm. The element is placed
perpendicular to the ground plane.

Firstly, we choose suitable geometry of the elliptical dipole
which in this design the long axis of the dipole is 0.11x
(A is center frequency wavelength). The TTD line width is
designed to match the impedance of the dipole. The distance
between the element and ground plane is the main factor
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that decides the bandwidth and we optimize h; to obtain
maximum bandwidth. However, some of the elements require
large spatial phase delay which means that the corresponding
TTD line is longer than the distance between the elements and
ground plane. So we open a hole on the ground to let the line
go through and add a second ground plane. In tightly coupled
phase array, the mutual coupling is achieved by compact
configuration or inter-element capacitance. In this paper the
coupling strength is controlled by adjusting the overlapping
distance of the dipole arms. We investigate the element reflec-
tion phase versus frequency of different coupling capacitance
(Ip) in Fig. 2. When the TTD line is relatively short (I =
1), the reflection phase hardly changes as Ip increases. When
the TTD line is in a medium range (! = 13), with the same
increment of Ip, the delayed phase is mildly enlarged. When
I reaches relatively big value (I = 20), the amount of delayed
phase is increased greatly in lower frequency whilst staying
nearly unchanged in higher frequency.

-200

-400

ReflectionPhase/deg

—— p=0(I=1) —#— 1p=0.5(1=1) —— Ip=1.5(I=1)
600 —® 1p=0(1=13)~8— Ip=0.5(I=13)—@— Ip=1.5(1=13
—A— Ip=0(1=20)—4&— Ip=0.5(1=20)—A— Ip=1.5(I=20;

T T T T T T T
1 2 3 4 5
Frequency/GHz

FIGURE 2. The effect of Ip (unit: mm) on the reflection phase of different
TTD line length (unit: mm).

Eventually we optimize Ip as well as other parameters to
obtain a maximum operating bandwidth. All parameters of
the element are shown in table 1. Fig. 3 illustrates element
reflection coefficients of different TTD line length. The fairly

0.0 T T
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—— Mag.at I=17mm
Mag.at [=25mm | -200
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FIGURE 3. Reflection coefficients of different I.
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FIGURE 4. Configuration of reflectarray antenna.

linear reflection phase in a wide frequency range indicates
wideband property.

B. EQUIVALENT DISTANCE DELAY DESIGN
The sketch of the reflectarray is shown in Fig. 4. In a reflec-
tarray, the phase delay equation is described as follows:

Qe; (Xi, i) = —kosinty (xicosgp + yisingp) + koR; (1)

e; is the ith element, (x;,y;) is the position of in the
reflecting surface, (0p, ¢p) is the direction of the beam, ¢,
is the required phase delay of ¢;, R; is the distance between
the phase center of the feed and e;, ko is space propagation
constant. Let (1) be divided by k¢ and let ¢, /ko = d;, then

de; = —sinfp (xjcos¢p + yisingp) + R; 2

i

di = d¢; — de, 3

In (3), d; is the equivalent distance delay of e; [13]. If one
reflectarray element is able to keep its equivalent distance
delay unchanged in a frequency band, it means the reflec-
tarray element can precisely compensate differential spatial
phase delay in this frequency band. Equivalent distance delay
as a function of TTD line length [ of different frequencies is
obtained through simulation and is shown in Fig. 5 in solid
line with asterisks. dr (/) denotes equivalent distance delay
versus [/ at frequency f.d (I) denotes the designed equivalent
distance delay in all frequencies. Using d (/) derived from (4)
to design reflectarray element can minimize phase error over-
all [14].

S

> [dr () —d O] = min (4)
f=f

Ill. VARIANT-COUPLING-CAPACITANCE METHOD

A. METHOD DEMONSTRATION

The equivalent distance delay lines in 3 GHz, 4 GHz and
5 GHz have good linearity, and are close to the designed
line d(l). But dygn;(l) gradually deviates from d(/) as [

37316
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FIGURE 5. Equivalent distance delay line comparison between traditional
reflectarray (d () and improved reflectarray using VCC (Dy (/).

grows which means the phase error in 2 GHz is becoming
larger. From section II we know that the overlapping distance
Ip affects the reflection phase in lower frequency. As the
coupling strength attenuates, the delayed phase diminishes.
So we develop a variant-coupling-capacitance method in
which we change the value of Ip of each element according
to its position to attain a more linear equivalent distance
delay. Using this method the gain in lower frequency can
be improved without deteriorating higher frequency perfor-
mance. The method is explained in detail below.

Regarding the invariant-coupling-capacitance TCDRA,
the space between neighboring elements is invariant. So s;,
the distance from e;(x;, y;) to the center, is

s; = sqrt (xlz + y,z) Q)

In this paper, we aim to improve the linearity of dagn;(l)
to improve gain in 2 GHz. It is found that by decreasing Ip
the amount of delayed phase is decreased in lower frequency
while stays mainly unchanged in higher frequency. Thus,
we let coupling distance /p decreases as [ increases. As a
result, the delayed phase decreases and dogh;(I) becomes
closer to the designed line d (/). The equation to calculate Ip
of elements of different positions is shown below.

e () = — L D e P ©)

max — ‘min

In (6), I (i) is the original TTD line length of e;, /4y is the
maximum value of / which is 28mm, and Ip is the origi-
nal coupling distance which is 1.5mm. We put the original
value of [ (7) into this equation, and then the new coupling
parameter Ip,.,, (i) of each element ¢; is attained. The updated
distance between e; and its neighboring element nearer to the
center is

interval (i) = gap + 2a — Ippew (i) ©)

The y coordinate of e; is unchanged. The x coordinate, xlf and
the distance from e; to the center, s (i) are shown respectively

n

X; = Zinterval ) (8)

i=1
s’ (i) = sqrt [(xl’)2 + y,z] 9)
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5 10 15 20

(a) Traditional method (b) VCC method

FIGURE 6. The phase error of the two reflectarrays in 2 GHz (unit: deg).

FIGURE 7. The length of phase delay line in the VCC reflectarray
(unit: mm).

In (8), n is the number of elements between e; and the
center element which is in the same row with e;. The updated
equivalent distance delay for elements with variant cou-
pling capacitance is shown in Fig. 5 in line with dots.
Compared with the situation of fixed coupling capacitance,
D3Gu:(D), Dagr(1), Dsgr,(1), and D(I) have little variation
while Dgp;(I) becomes closer to our designed line D(/)
which means smaller phase error in 2 GHz but nearly invari-
able reflection phase in other frequencies. The phase error
in 2 GHz before and after using VCC method is shown
in Fig. 6. As can be seen, the phase error is reduced. Addi-
tionally, the phase delay line length of different elements in
the VTCDRA is shown in Fig. 7.

IV. FEED ANTENNA AND REFLECTARRAY DESIGN
A. FEED ANTENNA
In this paper, a log-periodic dipole array (LPDA) is employed
as the feed antenna. Though phase center of this antenna is
not as stable as it of horn antenna, the flat structure causes
less blockage and is easier fabricate. The LPDA is printed on
a substrate (Rogers RO4350B) with the thickness of 0.8mm.
The antenna is fed by a coaxial cable connected to the left end.
The LPDA scaling factor is calculated in (10). The number of
elements is 20. The parameters of the feed antenna is shown
in table 1.
S fwl

Tl
As the phase center of the feed antenna changes along with
frequency, we take phase centers of six different frequency
points sampled equidistantly from 2.5 GHz to 5 GHz and

(10)
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TABLE 1. Parameters of the element and the feed antenna.

Parameter Value (mm)
4 0.5
t 1
hy 19.5
h, 17.9
a 4
b 4.8

gap 1
xI 1
Ip 1.5
d 6
dy 16.4
wl 1.9
fm 0.7
fll 443

fwl 7.8
T 0.85

TABLE 2. Coordinate of phase center.

Frequency/GHz Phase Center Coordinate (x,y) /mm
2.5 (-58.9,0)
3 (-45.2,0)
3.5 (-36.3,0)
4 (-34.8,0)
4.5 (-25,0)
5 (-19.1,0)

fl2

Lol |
Amm o

fil

FIGURE 8. Feed antenna layout.

average the coordinate to obtain the equivalent phase center.
The coordinate of phase center is shown in table 2. The layout
of LPDA is shown in Fig. 8. Results in Fig. 9 show that the
simulated and measured |S;;| are both below —10 dB in the
frequency range of 2 GHz to 5 GHz.

B. REFLECTING SURFACE

We design two reflecting surface using traditional method
and VCC method respectively. Both TCDRA and VTCDRA
are consist of 21x21 elements as shown in Fig. 10. From
Fig. 10 (b) we can see that the VTCDRA has the shape of
a lantern with marginally larger physical aperture area than
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—=— simulation
—=— measurement

204
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-30 4

-40 T T T 1
1 2 3 4 5

Frequency/GHz

FIGURE 9. |Sqy | of the feed antenna.

(a) Invariant-coupling-capacitance reflecting surface

(b) Variant-coupling-capacitance reflecting surface

FIGURE 10. Layout of the reflecting surfaces.

the traditional TCDRA. We let F/D ratio equals 1. The side
length of the reflectarray in Fig. 10 (a) is 350mm, so the
distance between the equivalent phase center of feed antenna
and reflecting surface is also 350mm. In order to control
variables, the distance between the equivalent phase center
of feed antenna and the reflecting surface of VTCDRA is
kept the same. The physical aperture area of the VTCDRA is
120743mm? while the physical aperture area of the TCDDRA
is 113360mm?>.

V. SIMULATION AND EXPERIMENT VERIFICATIONS

The reflectarray element was simulated using floquet mode
and the reflectarray radiation results were obtained using
full wave EM simulation. The measurement of the radiation
patterns was carried out using nearfield measurement shown
in Fig. 11. Simulation and measurement results of radiation
patterns in both E plane and H plane are shown in Fig. 12.
Good agreement in radiation patterns is observed between the
simulation and measurement results. The cross polarization

37318

FIGURE 11. Nearfield measurement.

TABLE 3. Comparison of reflectarray antenna properties in references.

Maximum Method to
Ref. Bandwidth Aperture achieve wide
Efficiency bandwidth
[5] 1.18:1 66% Multi-resonance
element
[9] 1.5:1 56.5% Subwavelength
element
[8] 1.45:1 64.7% Spline element
[2] 1.5:1 not given True-time-delay
element
[13] 3.12:1 38% Tightly coupled
element & true-
time-delay line
VTCDRA 2.5:1 47.5% variant-coupling-
capacitance
method

discrimination is larger than 20 dB across the entire band
which is smaller than simulation. This is because the instal-
lation is not perfectly accurate, resulting that feed antenna
polarization is not strictly parallel with the reflectarray polar-
ization. The measured antenna gain are given in Fig. 13. The
VTCDRA gain varies from 14.4 dBi to 22 dBi. In 2 GHz,
the gain is larger than the traditional TCDRA’s by 3 dBi.
Figure 13 also shows the measured aperture efficiencies of
both TCDRA and VTCDRA. The VTCDRA aperture effi-
ciency varies from 33.3% to 47.5%, peaking at 2.2 GHz.
The aperture efficiency in the designed frequency, 2 GHz,
is increased from 19.3% to 40.9%. The increment in other
frequencies is due to the truncation effect in arrays. However,
the increment in 2 GHz is 21.6% which is much higher than
other frequency, which is able to demonstrate the effective-
ness of the method. To state the good property of the proposed
antenna, the performance of some recent wideband reflectar-
ray antennas reported in the literature and the VTCDRA in
this paper are summarized in table 3.

VI. CONCLUSION
In this paper, a tightly coupled dipole reflectarray antenna
is presented. A variant-coupling-capacitance method is also

VOLUME 8, 2020
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FIGURE 13. Measured gain and aperture efficiency of TCDRA and VTICDRA
respectively.

proposed to improve the designed tightly coupled dipole
reflectarray antenna gain in lower frequency by changing
the coupling capacitance between elements according to
their different positions in the reflecting surface. The tradi-
tional reflectarray and the modified reflectarray using variant-
coupling-capacitance method are both studied and measured
to verify the theory respectively. The two reflectarrays can
both work from 2 GHz to 5 GHz. But the modified antenna
gain is improved by 3 dB in 2 GHz with corresponding
aperture efficiency increased by 21.6%.
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