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Abstract

We compare three different ways of checking the Jacobi identity
for weakly nonlocal Poisson brackets using the theory of distributions,
of pseudodifferential operators and of Poisson vertex algebras, respec-
tively. We show that the three approaches lead to similar computa-
tions and same results.
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1 Introduction

An autonomous system of evolutionary PDEs

uit = f i(uj, ujx, u
j
xx, . . .), i, j = 1, . . . , n (1)

in two independent variables t, x and n dependent variables (uj) is said to
be Hamiltonian with respect to a local Hamiltonian structure if it can be
written as

uit = P ij δH

δui
, (2)
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where

H =

∫
h(uj, ujx, u

j
xx, . . .) dx

is a local functional called the Hamiltonian functional, δ/δui are the varia-
tional derivatives and

P ij =
∑
σ≥0

P ijσ(uk, ukx, u
k
xx, . . .)∂

σ
x

is a Hamiltonian operator. This means that the bilinear map on the space
of local functionals defined by

{F,G}P =

∫
δF

δui
P ij δG

δuj
dx, (3)

satisfies the following properties

• skew-symmetry: {G,F}P = −{F,G}P .

• Jacobi identity: {{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0.

We point out that in this infinite dimensional framework the Leibniz prop-
erty cannot be required since the product of local functionals is not a local
functional. If the Hamiltonian operator satisfies the conditions above the lo-
cal functional {F,G}P is called the Poisson bracket of F and G. The above
definitions were proposed at the end of the ’60 in order to mimick the widely
known finite-dimensional Hamiltonian formalism for systems of ODEs and
to introduce the notion of integrability for Hamiltonian PDEs by analogy.

Famous examples of Hamiltonian evolutionary PDEs come from the the-
ory of solitons. The prototype of such equations is the Korteweg–de Vries
(KdV) equation, that was shown to be a completely integrable Hamiltonian
system in [40, 25]. We refer to the book [33] and to [16] for a general intro-
duction to this subject and the books [17, 32] for an account of the role played
by Hamiltonian formalism in the study of evolutionary PDEs integrable via
the inverse scattering transform (see also [1]).

In the case of first order quasilinear systems of evolutionary PDEs (sys-
tems of hydrodynamic type)

uit = V i
j (uk)ujx, i = 1, . . . , n, (4)

the relevant class of Hamiltonian operators was introduced by Dubrovin and
Novikov in [14]. Since the right hand side of the system (4) are differential
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polynomials of degree 1 it is natural to consider homogeneous differential
operators of the same degree, i.e. operators of the form

P ij = gij(uh)∂x − gil(uh)Γjlk(u
h)ukx. (5)

Assuming that g is non degenerate and imposing the skew symmetry and
the Jacobi identity, Dubrovin and Novikov proved that gij must be the con-
travariant components of a flat (pseudo)-metric and Γjlk the Christoffel sym-
bols of the associated Levi-Civita connection. Hamiltonian operators of the
form (8) are called local Hamiltonian operators of hydrodynamic type.

The Hamiltonian formalism can be extended to nonlocal brackets defined
by pseudo-differential operators. We refer to [38, 39] for a list of equations
admitting nonlocal Poisson brackets.

In this paper we focus on the class of weakly nonlocal Hamilonian oper-
ators introduced in [29]. They are Hamiltonian operators of the form

P ij = local differential operator +
∑
α

cαwiα∂
−1
x wjα, (6)

where wiα = wiα(uj, ujx, u
j
xx, . . .) and cα are constants. The operator ∂−1

x is
defined as

∂−1
x =

1

2

∫ x

−∞
dy − 1

2

∫ +∞

x

dy. (7)

Due to the presence of the nonlocal ‘tail’ the Poisson bracket of two local
functionals in general is not a local functional. For this reason a rigorous
definition of the associated Poisson bracket requires a suitable extension of
the space of allowed functionals (see [34] for a detailed discussion of this
point).

The first examples of weakly nonlocal Hamiltonian operator appeared in
[36] in the study of Krichever–Novikov equation:

P = ux∂
−1
x ux.

Multi component generalizations of this operator have been studied in [31,
22]. Further examples of weakly nonlocal Poisson brackets arise in the study
of evolutionary systems of PDEs like KdV equation, the AKNS equation,
Nonlinear Schrödinger equation, the Sine-Gordon and the Liouville equations
written in laboratory coordinates [4, 28, 38, 39].

In the case of systems of hydrodynamic type the nonlocal extension of
Dubrovin-Novikov Hamiltonian operators was introduced by Ferapontov and
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Mokhov in [18] in the special case of metrics of constant curvature, and
further generalized by Ferapontov in [19, 20]. The Ferapontov class is defined
by operators P of the form

P ij = gij∂x − gilΓjlku
k
x +

∑
α

cαwiαku
k
x∂
−1
x wjαhu

h
x, (8)

where cα are constants and other coefficients are functions of the field vari-
ables (ui); g is assumed to be non degenerate. Like in the local case the
conditions coming from skew symmetry and Jacobi identity have a nice geo-
metric interpretation. For instance, considering for simplicity a nonlocal tail
containing a single term, one obtains the conditions

gij = gji, (9a)

gij,k = Γijk + Γjik , (9b)

gisΓjks = gjsΓiks , (9c)

giswjs = gjswis (9d)

∇iw
j
k = ∇kw

j
i , (9e)

Rij
kh = wikw

j
h − w

j
kw

i
h. (9f)

where ∇ is the linear connection with Christoffel symbols Γkij, Γijk = −gilΓjlk
and Rij

kh = gisRj
skh is the Riemannian curvature. The above conditions,

first obtained in [19] (for details of computations see [20, 34]), admit the
following interpretation: the first three equations appear also in the local
case and allow us to regard the functions gij as the contravariant compo-
nents of a (pseudo)-euclidean metric and Γijk as the Christoffel symbols of
the corresponding Levi-Civita connection, while the remaining equations co-
incide with the classical Gauss-Peterson-Mainardi-Codazzi equations for sub-
manifolds with a flat normal connection in (pseudo)-Euclidean space. The
(pseudo)-metric g and the affinor w can be identified with the induced metric
and the Weingarten operator respectively.

Many examples of systems of PDEs that admit nonlocal Hamiltonian op-
erators of the type (8) have been found so far: besides the simplest examples
of the AKNS system and the Nonlinear Schrödinger equation [38, 39], we
recall the Riemann invariant forms of the shallow water equation and of the
chromatography equation [20, 21].

Hamiltonian operators of the form (8) are called weakly nonlocal Hamil-
tonian operators of hydrodynamic type.
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It was conjectured in [20] that every diagonalizable first order quasilin-
ear system of PDEs of the form (4) which fulfills an integrability property
(semi-Hamiltonianity, that implies the existence of infinitely many general-
ized symmetries) is Hamiltonian with respect to a suitable weakly nonlocal
Poisson bracket of hydrodynamic type (8) (with possibly an infinite sum in
the nonlocal tail). A strategy to prove this conjecture based on inverse scat-
tering techniques was proposed by V.E. Zakharov in [41]. In the case of first
order quasilinear systems obtained as reductions of dispersionless KP and 2D
Toda hierachies an explicit formula of the weakly nonlocal Poisson bracket
in terms of the conformal maps defining the reductions was found in [22] and
[5] respectively.

Since the dispersionless limit of a large class of evolutionary systems of
PDEs consists in a system of first order quasilinear PDEs, it is natural to ex-
pect that weakly nonlocal Poisson brackets of hydrodynamic type and their
deformations will play an important role in their description. This notwith-
standing, the study of weakly nonlocal Poisson brackets has been quite lim-
ited so far, especially if compared to local Poisson brackets of hydrodynamic
type and their dispersive deformations. The main reason is probably the
much higher computational difficulties with respect to the local case.

In the literature one can find (at least) three approaches to the Hamilto-
nian formalism for PDEs:

1. the approach with distributions [14, 15, 16];

2. the approach with differential operators [3, 10, 33];

3. a new algebraic approach based on Poisson Vertex Algebras, introduced
in [2] for local Poisson brackets and later extended to nonlocal Poisson
brackets in [9].

The aim of this work is to illustrate an algorithmic procedure to com-
pute the Jacobi identity for weakly nonlocal Poisson brackets in the three
formalisms above. We hope in this way to make it accessible to the widest
possible audience, ranging from theoretical physicsts to pure mathematicians.

In the case of distributions, the algorithm has been introduced in [28]
in order to study the bi-Hamiltonian structure of the Liouville and sine-
Gordon PDEs. In the case of differential operators, the algorithm is shown
here for the first time thanks to the explicit correspondence between the
languages of distributions and differential operators. In the case of Poisson
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Vertex Algebra, the algorithm is obtained observing that the infinitely many
conditions coming from Jacobi identity appearing in [9] reduce to a finite set
(at least) in the case of weakly nonlocal operators. A nontrivial application
of this procedure can be found in [7].

In all cases, the algorithm consists in the reduction of the Jacobi identity
for weakly nonlocal operators to a canonical form: this is practically achieved
by means of identities between distributions, or integration by parts, or al-
gebraic manipulations. The dictionary between the three formalisms shows
that there is a bijective correspondence between the canonical forms in the
three formalism, and that the computations that are performed in order to
reduce the Jacobi identity to the canonical form are the same (6).

In order to illustrate the algorithm and the correspondence between the
different formalisms we will consider the case of weakly nonlocal Poisson
brackets of hydrodynamic type.

The paper is organized as follows. In Sections 2, 3 and 4 we explain the
algorithm to check Jacobi identity in the three formalisms and we write a
sort of dictionary between the three approaches. The remaining sections are
devoted to illustrate the algorithm in the case of weakly nonlocal Poisson
brackets of hydrodynamic type. We consider the case where the nonlocal tail
contains a single term but the computations can be performed in the same
way in the general case.

Acknowledgments. We thank E. Ferapontov, J. Krasil’shchik, M. Pavlov,
D. Valeri, A. Verbovetsky, Y. Zhang for useful discussions. M. C. is supported
by EPSRC grant EP/P012698/1. P.L. is supported by MIUR - FFABR funds
2017, by MSCA RISE 778010 IPaDEGAN and by research funds of the Uni-
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pitality and for supporting his visit. R.V. acknowledges the support of the
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Salento and of the Istituto Nazionale di Fisica Nucleare, Sezione di Lecce,
IS-CSN4 Mathematical Methods of Nonlinear Physics. Finally, we thank
GNFM for supporting activities that contributed to the research reported in
this paper.
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2 Jacobi identity and distributions

Here we briefly introduce weakly nonlocal Poisson brackets as distributions
and describe the algorithm for bringing the Jacobi identity to a reduced
canonical form.

2.1 The Jacobi identity

Following [29], we consider weakly nonlocal Poisson brackets of the form

{ui(x), uj(y)}P =
∑
k≥0

Bij
k (uh, uhσ)δ(k)(x− y)

+ eαwiα(uk, ukσ)ν(x− y)wjα(uk, ukσ) (10)

where ν(x− y) = 1
2

sgn(x− y).
The Jacobi identity

{ui(x), uj(y)}P , uk(z)}P + {uk(z), ui(x)}P , uj(y)}P
+ {uj(y), uk(z)}P , ui(x)}P = 0 (11)

can be written as [16]

J ijkxyz =
∂P ij

x,y

∂ulσ(x)
∂σxP

lk
x,z +

∂P ij
x,y

∂ulσ(y)
∂σyP

lk
y,z +

∂P ki
z,x

∂ulσ(z)
∂σz P

lj
z,y+

∂P ki
z,x

∂ulσ(x)
∂σxP

lj
x,y +

∂P jk
y,z

∂ulσ(y)
∂σyP

li
y,x +

∂P jk
y,z

∂ulσ(z)
∂σz P

li
z,x = 0, (12)

where P ij
x,y = {ui(x), uj(y)}P . The vanishing of the distribution J ijkxyz means

that for any choice of the test functions pi(x), qj(y), rk(z) the triple integral∫∫∫
J ijkxyzpi(x)qj(y)rk(z) dxdydz (13)

should vanish.

2.2 The algorithm

Following [28], we present a procedure to collect together all terms which are
related by a distributional identity. We call the result of this procedure the
reduced form of the Jacobi identity.
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1. Using the identity

ν(z − y)δ(z − x) = ν(x− y)δ(x− z) (14)

and its two obvious analogues obtained by a cyclic permutation of the
variables, together with their differential consequences, we can elimi-
nate all terms containing ν(z− y)δ(n)(z−x), ν(y−x)δ(n)(y− z), ν(x−
z)δ(n)(x− y) producing nonlocal terms containing ν(x− y)δ(n)(x− z),
ν(z − x)δ(n)(z − y), ν(y − z)δ(n)(y − x) and additional local terms.

2. Using the identity

f(z)δ(n)(x− z) =
n∑
k=0

(
n

k

)
f (n−k)(x)δ(n−k)(x− z), (15)

(and its cyclic permutations) we can eliminate the dependence on z in
the coefficients of the terms containing ν(x− y)δ(n)(x− z), the depen-
dence on y in the coefficients of the terms containing ν(z−x)δ(n)(z−y)
and the dependence on x in the coefficients of the terms containing
ν(y − z)δ(n)(y − x). After the first two steps the nonlocal part of J ijkxyz
has the form

a1(x, y, z)ν(x− y)ν(x− z) + cyclic(x, y, z)

+
∑
n≥0

bn(x, y)ν(x− y)δ(n)(x− z) + cyclic(x, y, z). (16)

3. The local part of J ijkxyz (which contain also some additional terms coming
from the nonlocal part) can be treated as usual and reduced to the form∑

m,n

emn(x)δ(m)(x− y)δ(n)(x− z) (17)

using the identities (and their differential consequences)

δ(z − x)δ(z − y) = δ(y − x)δ(y − z) = δ(x− y)δ(x− z) (18)

and the identities (15).

It is easy to check that no further simplifications are possible. We will see
later that the fulfillment of the Jacobi identity turns out to be equivalent to
the vanishing of each coefficient in the reduced form.
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3 Jacobi identity and differential operators

3.1 The Jacobi identity

The conditions under which the bracket (3) is a Poisson bracket can be
written as requirements on the differential operator P (6). We recall that
the operator P is a variational bivector [3, 10, 33], hence it is defined up
to total divergencies. We consider Poisson brackets defined by differential
operators of the form P ij = Bijσ∂σ + eαwiα∂

−1
x wjα (6). Then, it is well-known

that

• the skew-symmetry of {, }J is equivalent to the formal skew-adjointness
of P , P ∗ = −P ;

• the Jacobi identity for {, }P is equivalent to the vanishing of the Schouten
bracket [P, P ] = 0.

Note that the Schouten bracket of two variational bivectors is a variational
three-vector, i.e., it is a skew-symmetric differential operator with three ar-
guments whose value is defined up to total divergencies.

In coordinates, the formal adjoint P ∗ of the operator P is

P ∗(ψ)j = (−1)|σ|∂σ(Bijσψi)− eαwjα∂−1
x (wiαψi); (19)

here and in what follows ψ = (ψi) is a covector of differential functions
ψi = ψi(u

j, ujx, u
j
xx, . . .) We stress that the non-local summand of weakly

nonlocal operators is skew-adjoint by construction: we have (∂−1
x )∗ = −∂−1

x .
Let us denote by `P,ψ(ϕ) the linearization of the (coefficients of the) op-

erator P . We have the following coordinate expressions:

`P,ψ(ϕ)i =
∂Bijσ

∂ukτ
∂σψ

1
j∂τϕ

k + eα
∂wiα
∂ukτ

∂τϕ
k∂−1

x (wjαψj)

+ eαwiα∂
−1
x

(
∂wjα
∂ukτ

∂τϕ
kψj

)
, (20)

where we used (106) and the fact that ∂−1
x commutes with linearization.

Then, we have the following expression for the Schouten bracket:

[P, P ](ψ1, ψ2, ψ3) = 2[`P,ψ1(P (ψ2))(ψ3) + cyclic(ψ1, ψ2, ψ3)], (21)
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where square brackets denote the fact that the expression is calculated up to
total divergencies. We observe that the expression of the Schouten bracket
of two operators can be written in different ways, which differ up to total
divergencies. In the Appendix we wrote two more expressions that are more
commonly used in the formalism of differential operators, together with a
proof of their equivalence.

3.2 Dictionary: distributions and differential opera-
tors

Here we present a dictionary between the language of operators and the
language of distributions for the reader’s convenience. The calculus with
distributions is defined in [16, Subsect. 2.3].

The following notation for a local multivector coincide:

P =Bi1 i2
σ2
···
···
ik
σk

(ui(x1), uiσ(x1)) δ(σ2)(x1 − x2) · · · δ(σk)(x1 − xk), (22)

P =

∫
Bi1 i2

σ2
···
···
ik
σk
ψ1
i1
∂σ2i2 ψ

2 · · · ∂σkik ψ
k dx. (23)

In particular the value of the multivector in the distributional notation is
obtained by evaluating it on test vector functions of the arguments x1, . . . ,
xk. The above correspondence can easily be extended between the nonlocal
multivectors (10) and (6). Then, it is clear that the expressions (12) and (21)
coincide up to the evaluation on test vector functions.

3.3 The algorithm

The result of the Schouten bracket [P, P ] (21) is a three-vector and has the
following coordinate expression:

[P, P ](ψ1, ψ2, ψ3) = T (ψ1, ψ2, ψ3) =

∫
T i1i2σ2i3σ3ψ1

i1
∂σ2ψ

2
i2
∂σ3ψ

3
i1
dx (24)

T i1i2σ2i3σ3 is defined up to total divergencies: this means that three-vectors of
the type ∂x

(
T i1σ1i2σ2i3σ3∂σ1ψ

1
i1
∂σ2ψ

2
i2
∂σ3ψ

3
i1

)
are zero. It immediately follows

that a local three-vector which is of order zero in one of its arguments is zero
if and only if its coefficients are zero.

The algorithm in Section 2.2 translates into the language of differential
operators as follows. Let us introduce the notation

ψ̃aα = ∂−1
x (wiαψ

a
i ), (25)
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where a refers to the particular argument of the operator. Then, the vector
functions ψ1, ψ2, ψ3 play the role of test vector functions of the variables x,
y, z in the language of distributions.

1. The first step in Section 2.2 is not needed in the differential operator
formalism, as it boils down to a change in the variable of integration
(and its differential consequences).

2. The second step aims at bringing the nonlocal part of the three-vector
in the reduced form (16). To this aim, we remark that the reduced
form of the distributions implies that there is no distribution of the
type ν(x− y) acting on two vector test functions. This means effecting
the following substitution (up to total divergencies)

eαwiα∂
−1
x

(
∂wjα
∂ukτ

∂τ (B
kpσ∂σψ

b
p + eαwkαψ̃

b
α)kψcj

)
ψai =

− eαψ̃aα
(
∂wjα
∂ukτ

∂τ (B
kpσ∂σψ

b
p + eαwkαψ̃

b
α)kψcj

)
(26)

After such a substitution, we observe that the generic summands of (20)
are of three types:

Cαβkψ̃aαψ̃
b
βψ

c
k, (27)

Cαkjσψ̃aα∂σ(ψbj)ψ
c
k, (28)

Ckjσiτ∂τ (ψ
a
i )∂σ(ψbj)ψ

c
k, (29)

where C’s are functions of (ui, uiσ). The reduced form of the three-
vector in the formalism of differential operators amounts at bringing
the operator to a canonical form where the arguments ψa, ψb, ψc are
a fixed sequence of integers (say, 1, 2, 3) or its cyclic permutations (in
the previous example, 3, 1, 2 and 2, 3, 1). This task can always be
achieved by integration by parts that will produce the required terms
plus extra terms.

3. The third step of the algorithm amounts at bringing the local part into
a reduced form. This is achieved with the usual procedure of integrating
by parts the three-vector with respect to one distinguished argument
(say ψ3) in such a way that the result will be of order zero in that
argument.
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4 Jacobi identity and Poisson Vertex Alge-

bras

4.1 The Jacobi identity

Following [9] we introduce the notion of (nonlocal) Poisson vertex algebra.

Definition 1. A (nonlocal) Poisson vertex algebra (PVA) is a differen-
tial algebra (A, ∂) endowed with a derivation ∂ and a bilinear operation
{·λ·} : A ⊗ A → R((λ−1)) ⊗ A called a (nonlocal) λ-bracket, satisfying the
following set of properties:

1. {∂fλg} = −λ{fλg} (left sesquilinearity),

2. {fλ∂g} = (λ+ ∂){fλg} (right sesquilinearity),

3. {fλgh} = {fλg}h+ {fλh}g (left Leibnitz property),

4. {fgλh} = {fλ+∂h}g + {gλ+∂h}f (right Leibnitz property),

5. {gλf} = −→{f−λ−gg} (PVA skew-symmetry),

6. {fλ{gµh}} − {gµ{fλh}} = {{fλg}λ+µh} (PVA-Jacobi identity).

In the notation for the bracket, the symbol separating the two arguments
is the formal parameter of the expansion. We denote

{fλg} =
∑
s≤S

Cs(f, g)λs,

with Cs(f, g) ∈ A; the argument signals that each of the coefficients of the
expansion depends on the two elements f and g in A. Such an expansion is
bounded by 0 ≤ s ≤ S for local PVAs and is not bounded from below for
nonlocal PVAs.

The special notation used on the RHS of Property 4 is to be understood
as

{fλ+∂g}h =
∑
s≤S

Cs(f, g)(λ+ ∂)sh =
∑
s,t

(
s

t

)
Cs(f, g)∂thλs−t.

Similarly, the RHS of Property 5 (the skewsymmetry) reads

→{f−λ−∂g} =
∑
s

(−λ− ∂)sCs(f, g).
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For a nonlocal λ bracket, the three terms of PVA-Jacobi identity do not
necessarily belong to the same space, because of the double infinite expansion
of the brackets (in terms of (λ, µ), (µ, λ) and (λ, λ + µ), respectively). A
bracket is said to be admissible if all the three terms can be (not uniquely)
expanded as

{fλ{gµh}} =
∑
m≤M

∑
n≤N

∑
p≤0

am,n,pλ
mµn(λ+ µ)p.

Only admissible brackets can define a nonlocal PVA. We denote the space
where the PVA-Jacobi identity of admissible brackets takes values by Vλ,µ.
This space can be decomposed by the total degree d in (λ, µ, λ+µ); elements

of each homogeneous component V
(d)
λ,µ can be uniquely expressed in the basis

[11]

λiµd−i i ∈ Z,
λd+i(λ+ µ)−i i = {1, 2, . . .}.

This filtration in the total degree d and the subsequent choice of a basis plays
a crucial role in obtaining the normal form for the PVA-Jacobi identity.

The main result used to perform most of the computations is the so
called master formula. Under the hypothesis that the differential algebra A
is generated by the elements (ui), the λ-bracket between any two elements
of A is explicitly given by

{fλg} =
∂g

∂ujσ
(λ+ ∂)σ {uiλ+∂u

j} (−λ− ∂)τ
∂f

∂uiτ
(30)

Thus, the structure of a PVA is defined by the matrix of the λ brackets
between the generators {uiλuj} = P ji(λ).

In the nonlocal case, expressions such as (λ + ∂)p for p < 0 arise in
P ji(λ+∂) from the master formula (30). In such cases, the rigorous approach
– working for any kind of nonlocality – is to expand the negative powers of
(λ+ ∂) as

(λ+ ∂)−p =
∑
k≥0

(
−p
k

)
λ−p−k∂k, p > 0 (31)

In the weakly nonlocal case this can be avoided, relying only on Properties
(1)-(4) of the lambda bracket. More details on this will be provided in Section
7.2.
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4.2 Dictionary: Poisson Vertex Algebras and differen-
tial operators

The connection between the theory of PVA and Hamiltonian operator is
given by Theorem 4.8 in [11, pag. 261]. In short, there is a 1-1 correspondence
between λ-brackets of a (nonlocal) PVA and (pseudo)differential Hamiltonian
operators; the entries of the matrix P ji(λ) correspond to the differential
operator P ij (6) after the formal replacement of λ by ∂.

More precisely, the equivalence between the expression of the Poisson
bracket (3) and the expression of a λ-bracket according with the master
formula (30) is:

{F,G}J =

∫
δf

δui
P ijσ∂σ

δg

δuj
dx

=

∫
∂g

∂uiσ
∂σ

(
P ijτ∂τ (−∂)ε

∂f

∂ujε

)
dx =

∫
{fλg}

∣∣
λ=0

dx, (32)

using (30). The PVA-Jacobi identity for a triple of generators (ui, uj, uk) can
also be expressed by means of differential operators. First of all, we compute
the PVA-Jacobi identity using the master formula; we have

{uiλ{ujµuk}} =
∂P kj(µ)

∂ulσ
(λ+ ∂)σP li(λ) (33)

{ujµ{uiλuk}} =
∂P ki(λ)

∂ulσ
(µ+ ∂)σP lj(µ) (34)

{{uiλuj}λ+µu
k} = P kl(λ+ µ+ ∂)(−λ− µ− ∂)σ

∂P ji(λ)

∂ulσ
(35)

The PVA-Jacobi identity is J ijkλ,µ(P, P ) = (33) − (34) − (35) = 0. We evaluate
the expression on three covectors ψ1

iψ
2
jψ

3
k, and regard each power of λ as

derivations acting on ψ1, and each power of µ as derivations acting on ψ2.
Then, the three summands correspond to

〈ψ3, `P,ψ1(Pψ2)〉, (36)

〈ψ3, `P,ψ2(Pψ1)〉, (37)

〈ψ3, P `∗P,ψ1(ψ2)〉, (38)

respectively, and the PVA-Jacobi identity is the vanishing of the Schouten
bracket [P, P ] in the form of (110).
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4.3 The algorithm

For the local case, the expression of the PVA-Jacobi identity is a polynomial
in λ and µ, and the vanishing of the coefficients of λpµq corresponds to the
vanishing of the coefficients for ∂p(ψ1

i )∂
q(ψ2

j )ψ
3
k.

In the nonlocal case, the PVA-Jacobi identity is a Laurent series in λ−1,
µ−1 and (λ+µ)−1 living in the space Vλ,µ defined in Section 4.1: in the weakly
nonlocal case, these coefficients come, respectively, from the expansion of
(λ+ ∂)−1, (µ+ ∂)−1, (λ+ µ+ ∂)−1.

From the computation of the PVA-Jacobi identity we obtain seven types
of terms including one or two nonlocal factors, together with the pure local
terms; each of them corresponds to the types of summands in the three-vector
of the Schouten identity in (24), as detailed in (27) and following. They are

1. Aijkλpµq with p, q ≥ 0, corresponding to ∂p(ψ1
i )∂

q(ψ2
j )ψ

3
k;

2. wk(λ+ µ+ ∂)−1Aijλp with p ≥ 0, corresponding to ∂p(ψ1
i )ψ

2
j ψ̃

3;

3. wk(λ+ µ+ ∂)−1Aijµp with p > 0, corresponding to ψ1
i ∂

p(ψ2
j )ψ̃

3;

4. [(λ+ ∂)−1wi]Ajkµp with p ≥ 0, corresponding to ψ̃1∂p(ψ2
j )ψ

3
k;

5. [(µ+ ∂)−1wj]Akiλp with p ≥ 0, corresponding to ∂p(ψ1
i )ψ̃

2ψ3
k;

6. wk(λ+ µ+ ∂)−1Aj(λ+ ∂)−1wi, corresponding to ψ̃1ψ2
j ψ̃

3;

7. wk(λ+ µ+ ∂)−1Ai(µ+ ∂)−1wj, corresponding to ψ1
i ψ̃

2ψ̃3;

8. [(λ+ ∂)−1wi]Ak[(µ+ ∂)−1wj], corresponding to ψ̃1ψ̃2ψ3
k.

The square brackets denote that the differential operators obtained by the
expansion of the pseudodifferential operator do not act outside them.

Note that the expansion of the terms 3 and 7 is not expressed in the basis
for Vλ,µ we have chosen; on the other hand, terms 3 and 5 do not correspond
to the choice of coefficients for the normalization algorithm of the previous
Sections (when one takes the cyclic ordering ψ̃a∂p(ψb)ψc).

We give a different treatment of the terms including at most one nonlocal
expression and of the ones with two: in the first case, we bring them to a
form whose expansion is automatically expressed in our chosen basis for Vλ,µ;
in the second case, we show that the vanishing of the term 7, together with
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the other ones, is equivalent to the vanishing of the corresponding terms in
the expansion on the basis.

Finally, we comment on the equivalence between the vanishing of the
PVA-Jacobi identity on our chosen basis and as a result of the normalization
algorithm of the previous Sections.

Proposition 2. The terms of type wk(λ+µ+∂)−1Aijµp can be brought to a
combination of terms of type Aijkλpµq with p, q ≥ 0 and wk(λ+µ+∂)−1Aijλp,
reducing the PVA-Jacobi identity to the expansion of seven terms.

Proof. From the expansion (λ+µ+∂)p =
∑p

l=0

(
p
l

)
µp−l(λ+∂)l we can rewrite

a term of the form wk(λ+ µ+ ∂)−1Aijµp as

wk(λ+ µ+ ∂)−1

[
(λ+ µ+ ∂)pAij −

p−1∑
l=0

(
p

l

)
µl(λ+ ∂)p−lAij

]
,

which gives

wk(λ+ µ+ ∂)p−1Aij − wk(λ+ µ+ ∂)−1

[
p−1∑
l=0

(
p

l

)
µl(λ+ ∂)p−lAij

]
.

The expression in the square bracket has top degree p − 1 in µ. Repeating
the operation we obtain only local terms or terms of the type 2.

Theorem 3. The PVA-Jacobi identity, expressed using terms of the type 1,
2, 4 – 8 as above, can always be expressed in the space V

(d)
λ,µ . This latter

expression vanishes if and only if the former does.

Proof. Expressing the PVA-Jacobi identity in the space V
(d)
λµ , for all for d ≤

D, means expanding it on the basis λpµd−p, p ∈ Z and (λ+ µ)−pλd+p, p > 0.
Terms of type 1 do not need to be expanded, as they are already expressed
in the basis for V

(d)
λ,µ , d ≥ 0.

For the types with one nonlocal term, namely 2, 4 and 5 in the previous
list, the expansions of the pseudodifferential operators give the series∑

t≥0

(−1)twk(λ+ µ)−t−1λp∂tAij (39)∑
t≥0

(−1)tAjkµpλ−t−1∂twi (40)∑
t≥0

(−1)tAkiλpµ−t−1∂twj (41)
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which are in our chosen basis of V
(d)
λ,µ , for d ≤ p−1. The vanishing of the t = 0

term in the expansion is a sufficient and necessary condition for the vanishing
of the whole series: all the subsequent terms in the expansion vanish if the
first one does, and it must vanish because that is the only one in V

(p−1)
λ,µ

containing the factor (λ + µ)−1 (resp. λ−1 and µ−1). It is hence enough to
check (or impose) the vanishing of the coefficients A or w. However, the
vanishing of the w terms coincides with the dropping of the nonlocal part of
the λ bracket, so the condition is only on A’s.

A similar point can be made for the types 6 and 8 with the double non-
locality: their expansion is expressed in our chosen basis and starts, respec-
tively, with (λ + µ)−1λ−1 and λ−1µ−1 in V

(−2)
λ,µ . The expansion of the term

7 starts with Aiwkwj(λ + µ)−1µ−1, which is not an element in the basis of

V
(−2)
λ,µ . However, this is a term we can rearrange as an infinite series

Aiwkwj

(
λ−1µ−1 − (λ+ µ)−2 +

∑
m>0

cm(λ+ µ)−2−mλm

)

for some fixed constants cm.
Note that elements in V

(−2)
λ,µ could be obtained by the expansions (for t =

1) of the previous terms with only one nonlocality. However, the vanishing

of the elements in V
(−1)
λ,µ implies their vanishing, too, and hence we can focus

on the terms arising from the expansion of double nonlocalities only.
It is straightforward to see that we get only one expression in front of

(λ + µ)−1λ−1 (from type 6) and (λ + µ)−2 (from our rearrangement of type
8); on the other hand, there could be two sources of terms of the form λ−1µ−1.
The vanishing of either A or w for all i, j, k in the first two cases is a necessary
and sufficient condition; once that this has been imposed or checked, the only
surviving class of terms of the form λ−1µ−1 comes from the expansion of 7.

Since the vanishing of w is equivalent to simply dropping the nonlocal
term of the operator, the condition we need to consider is only the vanishing
of the expressions A’s.

Remark 4. The above theorem has two important consequences.

1. This algorithm always yields a divergence-free form of the Jacobi iden-
tity; this means that the Jacobi identity holds if and only if the coeffi-
cient of the Laurent series in the spaces V

(d)
λ,µ vanish.
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2. There is no need to expand in Laurent series: indeed, the expansion is
always ruled by the zeroth-order coefficients, which are just the coeffi-
cients of the terms 2, 4 – 8.

Remark 5. Writing the PVA-Jacobi identity on our chosen basis of V
(d)
λ,µ for

d ≥ −2 yields a different result than the one obtained with the algorithm
described in Section 3.3. For the terms with one nonlocality, indeed, the
PVA-Jacobi identity produces the coefficients corresponding to ∂p(ψ1

i )ψ
2
j ψ̃

3,

∂p(ψ2
j )ψ

3
kψ̃

1 and ∂p(ψ1
i )ψ

3
j ψ̃

2, while the latter is replaced by ∂p(ψ3
i )ψ

1
j ψ̃

2 in
Section 3.3.

Nevertheless, the sets of condition given by the vanishing of the coeffi-
cients in front of the terms obtained with the two different algorithms are
equivalent. Let us demonstrate it assuming that the terms of type 5 are

A2 λ
2(µ+ ∂)−1w + A1 λ(µ+ ∂)−1w + A0 (µ+ ∂)−1w, (42)

corresponding to

A2 ψ̃
2∂2(ψ1)ψ3 + A1ψ̃

2∂(ψ1)ψ3 + A0 ψ̃
2ψ1ψ3. (43)

This latest expression is equivalent, up to total derivatives, to

A2ψ̃
2ψ1∂2(ψ3) + (2∂A2 − A1) ψ̃2ψ1∂(ψ3) +

(
A0 + ∂2A2 − ∂A1

)
ψ̃2ψ1ψ3

+ local terms. (44)

The vanishing of expression (44) at top degree implies the vanishing of the
lower degree coefficients, being hence equivalent to the vanishing of (42).

The same result can be obtained in the framework of Poisson vertex
algebras introducing the symbol ν = −λ − µ − ∂, representing derivations
acting on ψ3 [12, Section 4.1].

5 Weakly nonlocal PBHT and distributions

5.1 Calculation of the Jacobi identity

In this section we will consider, as an example, weakly nonlocal Poisson
bracket of hydrodynamic type, of the form (8). In the language of distribution
it has the form

P ij
x,y = gij(u(x))δ′xy + Γijk (u(x))ukxδxy + wis(u(x))usxνxyw

j
t (u(y))uty (45)
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(we will use only one ‘tail summand’ to make calculations simpler) where
δxy = δ(x− y) e νxy = ν(x− y). We assume g to be non degenerate. In what
follows, an index after a comma denotes a partial derivative with respect to
the corresponding field variable, e.g. gij,k = ∂gij/∂uk.

From the skew-symmetry the two conditions (9a), (9b) follow, namely:
gij = gji and gij,k = Γijk +Γjik . We apply now the reducing procedure explained

in Section 2.2. Since P ij
xy depend only on u(x) and ux each sum in (12)

contains only two terms. The Jacobi identity can be rewritten as

∂P ij
x,y

∂ul(x)
P lk
x,z +

∂P ij
x,y

∂ul(y)
P lk
y,z +

∂P ki
z,x

∂ul(z)
P lj
z,y +

∂P ki
z,x

∂ul(x)
P lj
x,y+

+
∂P jk

y,z

∂ul(y)
P li
y,x +

∂P jk
y,z

∂ul(z)
P li
z,x +

∂P ij
x,y

∂ulx
∂xP

lk
x,z +

∂P ij
x,y

∂uly
∂yP

lk
y,z+

∂P ki
z,x

∂ulz
∂zP

lj
z,y +

∂P ki
z,x

∂ulx
∂xP

lj
x,y +

∂P jk
y,z

∂uly
∂yP

li
y,x +

∂P jk
y,z

∂ulz
∂zP

li
z,x = 0 (46)

5.2 Calculation of the reduced form

The first summand in (46) is

∂P ij
x,y

∂ul(x)
P lk
x,z =

(
gij,l δ

′
xy + Γijs,lu

s
xδxy + wis,lu

s
xνxyw

j
t u

t
y

)
·

·
(
glk(x)δ′xz + Γlkt u

t
xδxz + wlsu

s
xνxzw

k
t u

t
z

)
(47)

The coefficients of the reduced form are listed below.

• The coefficient of δ′xyδ
′
xz is glkgij,l .

• The coefficient of νxyνxz is wis,lw
l
mu

m
x u

s
xw

j
tu

t
yw

k
nu

n
z .

• The coefficient of δ′xyδxz is gij,l Γ
lk
t u

t
x.

• The coefficient of δxyδ
′
xz is glkΓijs,lu

s
x.

• The coefficient of δxyδxz is Γijs,lΓ
lk
t u

t
xu

s
x − g

ij
,l w

l
su

s
xw

k
t u

t
x.

• The coefficient of δyxνyz is −∂y(gij,l wlsusy)wkt utz + Γijs,lw
l
ru

r
xu

s
xw

k
t u

t
z.

• The coefficient of δxzνxy is wis,lΓ
lk
r u

r
xu

s
xw

j
tu

t
y.
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• The coefficient of δ′yxνyz is −gij,l wlsusywkt utz.

• The coefficient of δ′xzνxy is glkwis,lu
s
xw

j
tu

t
y.

The second summand in (46) is

∂P ij
x,y

∂ul(y)
P lk
y,z = wisu

s
xνxyg

lkwjt,lu
t
yδ
′
yz+

+ wisu
s
xνxyw

j
t,lΓ

lk
mu

m
y u

t
yδyz + wisu

s
xνxyw

j
t,lw

l
mu

m
y u

t
yνyzw

k
nu

n
z . (48)

The coefficients of the reduced form are listed below:

• The coefficient of δxyδxz is wisu
s
xg

lkwjt,lu
t
x.

• The coefficient of νxzδ
′
zy is −wisusxglkw

j
t,lu

t
z.

• The coefficient of νxzδzy is −wisusx∂z
(
glkwjt,lu

t
z

)
+ wisu

s
xw

j
t,lΓ

lk
mu

m
y u

t
y.

• The coefficient of νxyνyz is wisu
s
xw

j
t,lw

l
mu

m
y u

t
yw

k
nu

n
z .

The third summand in (46) is

∂P ki
z,x

∂ul(z)
P lj
z,y = gljgki,l δ

′
zxδ
′
zy + gki,l Γljt u

t
zδ
′
zxδzy + gljΓkis,lu

s
zδzxδ

′
zy

+ Γkis,lΓ
lj
t u

t
zu

s
zδzxδzy + gki,l w

l
su

s
zδ
′
zxνzyw

j
tu

t
y + Γkis,lw

l
ru

r
zu

s
zδzxνzyw

j
tu

t
y

+ gljwks,lu
s
zδ
′
zyνzxw

i
tu
t
x + wks,lΓ

lj
t u

t
zu

s
zδzyνzxw

i
tu
t
x

+ wks,lw
l
mu

m
z u

s
zνzxw

i
tu
t
xνzyw

j
nu

n
y . (49)

The coefficients of the reduced form are listed below.

• The coefficient of δ′′xyδxz is −gljgki,l .

• The coefficient of δ′xyδ
′
xz is −gljgki,l .

• The coefficient of δ′xyδxz is −∂x
(
gljgki,l

)
− gki,l Γljt u

t
x + gljΓkis,lu

s
x.

• The coefficient of δxyδ
′
xz is −gki,l Γljt u

t
x.

• The coefficient of δxyδxz is −∂x
(
gki,l Γljt u

t
x

)
+ Γkis,lΓ

lj
t u

t
xu

s
x− gki,l wlsusxw

j
tu

t
x.
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• The coefficient of δxzνxy is −∂x
(
gki,l w

l
su

s
x

)
wjtu

t
y + Γkis,lw

l
ru

r
xu

s
xw

j
tu

t
y.

• The coefficient of δzyνzx is wks,lΓ
lj
t u

t
zu

s
zw

i
tu
t
x.

• The coefficient of δ′zyνzx is gljwks,lu
s
zw

i
tu
t
x.

• The coefficient of δ′xzνxy is −gki,l wlsusxw
j
tu

t
y.

• The coefficient of νzxνzy is wks,lw
l
mu

m
z u

s
zw

i
tu
t
xw

j
nu

n
y .

The fourth summand in (46) is

∂P ki
z,x

∂ul(x)
P lj
x,y = wksu

s
zνzxg

ljwit,lu
t
xδ
′
xy

+ wksu
s
zνzxw

i
t,lΓ

lj
mu

m
x u

t
xδxy + wksu

s
zνzxw

i
t,lw

l
mu

m
x u

t
xνxyw

j
nu

n
y . (50)

The coefficients of the reduced form are listed below:

• The coefficient of δxyδxz is wksu
s
xg

ljwit,lu
t
x.

• The coefficient of νzyδ
′
yx is −wksuszgljwit,luty.

• The coefficient of νzyδxy is −wksusz∂y
(
gljwit,lu

t
y

)
− wksuszwit,lΓljmumx utx.

• The coefficient of νzxνxy is wksu
s
zw

i
t,lw

l
mu

m
x u

t
xw

j
nu

n
y .

The fifth summand in (46) is

∂P jk
y,z

∂ul(y)
P li
y,x = gligjk,l δ

′
yzδ
′
yx + gjk,l Γlit u

t
yδ
′
yzδyx + gliΓjks,lu

s
yδyzδ

′
yx

+ Γjks,lΓ
li
t u

t
yu

s
yδyzδyx + gjk,l w

l
su

s
yδ
′
yzνyxw

i
tu
t
x + Γjks,lw

l
su

s
yu

s
yδyzνyxw

i
tu
t
x

+ gliwjs,lu
s
yδ
′
yxνyzw

k
t u

t
z + +wjs,lΓ

li
t u

t
yu

s
yδyxνyzw

k
t u

t
z

+ wjs,lw
l
mu

m
y u

s
yνyzw

k
t u

t
zνyxw

i
nu

n
x. (51)

The coefficients of the reduced form are

• The coefficient of δ′xyδ
′
xz is −gligjk,l .

• The coefficient of δxyδ
′′
xz is −gligjk,l .
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• The coefficient of δxyδ
′
xz is −∂x

(
gligjk,l

)
+ gjk,l Γlit u

t
y − gliΓ

jk
s,lu

s
x.

• The coefficient of δ′xyδxz is −gliΓjks,lusx.

• The coefficient of δxyδxz is −∂x
(
gliΓjks,lu

s
x

)
+ Γjks,lΓ

li
t u

t
xu

s
x− g

jk
,l w

l
su

s
xw

i
tu
t
x.

• The coefficient of δzyνzx is −∂z
(
gjk,l w

l
su

s
z

)
witu

t
x + Γjks,lw

l
su

s
yu

s
yw

i
tu
t
x.

• The coefficient of δ′zyνzx is −gjk,l wlsuszwitutx.

• The coefficient of δ′yxνyz is gliwjs,lu
s
yw

k
t u

t
z.

• The coefficient of νyzνyx is wjs,lw
l
mu

m
y u

s
yw

k
t u

t
zw

i
nu

n
x.

The sixth summand in (46) is

∂P jk
y,z

∂ul(z)
P li
z,x = wjsu

s
yνyzg

liwkt,lu
t
zδ
′
zx

+ wjsu
s
yνyzw

k
t,lΓ

li
mu

m
z u

t
zδzx + wjsu

s
yνyzw

k
t,lw

l
mu

m
z u

t
zνzxw

i
nu

n
x. (52)

The coefficients of the reduced form are listed below

• The coefficient of δxyδxz is wjsu
s
xg

liwkt,lu
t
x.

• The coefficient of νxyδ
′
xz is wjsu

s
yg
liwkt,lu

t
x.

• The coefficient of νxyδxz is +wjsu
s
y∂x
(
gliwkt,lu

t
x

)
− wjsusywkt,lΓlimumx utx.

• The coefficient of νyzνzx is +wjsu
s
yw

k
t,lw

l
mu

m
z u

t
zw

i
nu

n
x.

The seventh summand in (46) is

∂P ij
x,y

∂ulx
∂xP

lk
x,z =(

Γijl δxy + wilνxyw
j
t u

t
y

)
∂x
(
glk(x)δ′xz + Γlkt u

t
xδxz + wlsu

s
xνxzw

k
t u

t
z

)
. (53)

The coefficients of the reduced form are listed below:

• The coefficient of δxyδ
′′
xz is glkΓijl .
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• The coefficient of δ′′xzνxy is wilg
lkwjr u

r
y.

• The coefficient of δxyδ
′
xz is Γijl Γlkt u

t
x + Γijl g

lk
,su

s
x.

• The coefficient of δxyδxz is Γijl Γlkt,su
s
xu

t
x + Γijl Γlkt u

t
xx + Γijl w

l
su

s
xw

k
t u

t
x.

• The coefficient of δyxνyz is Γijl w
l
s,mu

m
x u

s
xw

k
t u

t
z + Γijl w

l
su

s
xxw

k
t u

t
z.

• The coefficient of δxzνxy is

wilΓ
lk
t,su

s
xu

t
xw

j
r u

r
y + wilΓ

lk
t u

t
xxw

j
ru

r
y + wilw

l
su

s
xw

k
t u

t
xw

j
r u

r
y.

• The coefficient of δ′xzνxy is wilg
lk
,su

s
xw

j
r u

r
y + wilΓ

lk
t u

t
xw

j
r u

r
y.

• The coefficient of νxzνxy is wilw
l
s,mu

m
x u

s
xw

k
t u

t
zw

j
r u

r
y +wilw

l
su

s
xxw

k
t u

t
zw

j
r u

r
y.

The eighth summand in (46) is

∂P ij
x,y

∂uly
∂yP

lk
y,z = wisu

s
xνxyw

j
l ∂y
(
glkδ′yz + Γlkt u

t
yδyz + wlsu

s
yνyzw

k
t u

t
z

)
.

The coefficients of the reduced form are listed below:

• The coefficient of δxyδxz is wisu
s
xw

j
l g
lk
,mu

m
x −wisusx∂x(w

j
l g
lk)+wisu

s
xw

j
lΓ

lk
t u

t
x.

• The coefficient of νxzδ
′
zy is

−wisusxw
j
l g
lk
,mu

m
z + 2wisu

s
x∂z(w

j
l g
lk)− wisusxw

j
lΓ

lk
t u

t
z.

• The coefficient of νxzδ
′′
zy is wisu

s
xw

j
l g
lk.

• The coefficient of νxzδzy is

wisu
s
x

(
∂2
z (w

j
l g
lk)− ∂z

(
wjl g

lk
,mu

m
z

)
+ wjlΓ

lk
t,mu

m
z u

t
z

+ wjlΓ
lk
t u

t
zzδzy − ∂z(w

j
lΓ

lk
t u

t
z) + wjlw

l
ru

r
zw

k
t u

t
z

)
.

• The coefficient of νxyνyz is wisu
s
xw

j
lw

l
r,mu

m
y u

r
yw

k
t u

t
z + wisu

s
xw

j
lw

l
ru

r
yyw

k
t u

t
z.

• The coefficient of δxyδ
′
xz is wisu

s
xw

j
l g
lk.

• The coefficient of δ′xyδxz is −wisusxw
j
l g
lk.
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The ninth summand in (46) is

∂P ki
z,x

∂ulz
∂zP

lj
z,y = Γkil

∂glj

∂us
uszδzxδ

′
zy + gljΓkil δzxδ

′′
zy

+ Γkil Γljt,su
s
zu

t
zδzxδzy + Γkil Γljt u

t
zzδzxδzy + Γkil Γljt u

t
zδzxδ

′
zy

+ Γkil w
l
s,mu

m
z u

s
zδzxνzyw

j
tu

t
y + Γkil w

l
su

s
zzδzxνzyw

j
tu

t
y

+ Γkil w
l
su

s
zδzxδzyw

k
t u

t
y + wkl g

lj
,su

s
zδ
′
zyνzxw

i
r u

r
x

+ wkl g
ljδ′′zyνzxw

i
r u

r
x + wkl Γ

lj
t,su

s
zu

t
zδzyνzxw

j
r u

r
x

+ wkl Γ
lj
t u

t
zzδzyνzxw

i
r u

r
x + wkl Γ

lj
t u

t
zδ
′
zyνzxw

i
r u

r
x

+ wkl w
l
s,mu

m
z u

s
zνzyw

j
tu

t
yνzxw

i
r u

r
x + wkl w

l
su

s
zzνzyw

j
tu

t
yνzxw

i
r u

r
x

+ wkl w
l
su

s
zδzyw

j
tu

t
yνzxw

i
r u

r
x.

(54)

The coefficients of the reduced form are listed below

• The coefficient of δ′′xyδxz is gljΓkil .

• The coefficient of δ′xyδxz is Γkil g
lj
,su

s
x + Γkil Γljt u

t
x.

• The coefficient of δxyδxz is Γkil Γljt,su
s
xu

t
x + Γkil Γljt u

t
xx + Γkil w

l
su

s
xw

j
tu

t
x.

• The coefficient of δxzνxy is
(
Γkil w

l
s,mu

m
x u

s
x + Γkil w

l
su

s
xx

)
wjtu

t
y.

• The coefficient of δzyνzx is
(
wkl Γ

lj
t u

t
zz+wkl Γ

lj
t,su

s
zu

t
z+wkl w

l
su

s
zw

j
tu

t
z

)
wjr u

r
x.

• The coefficient of δ′zyνzx is wkl g
lj
,su

s
zw

i
r u

r
x + wkl Γ

lj
t u

t
zw

i
r u

r
x.

• The coefficient of νzyνzx is wkl w
l
s,mu

m
z u

s
zw

j
tu

t
yw

i
r u

r
x+wkl w

l
su

s
zzw

j
tu

t
yw

i
r u

r
x.

• The coefficient of δ′′zyνzx is wkl g
ljwir u

r
x.

The tenth summand in (46) is

∂P ki
z,x

∂ulx
∂xP

lj
x,y = wksu

s
zνzxw

i
lg
lj
,mu

m
x δ
′
xy + wksu

s
zνzxw

i
lg
ljδ′′xy

+ wksu
s
zνzxw

i
lΓ
lj
t,mu

m
x u

t
xδxy + wksu

s
zνzxw

i
lΓ
lj
t u

t
xxδxy + wksu

s
zνzxw

i
lΓ
lj
t u

t
xδ
′
xy

+ wksu
s
zνzxw

i
lw

l
r,mu

m
x u

r
xνxyw

j
tu

t
y + wksu

s
zνzxw

i
lw

l
ru

r
xxνxyw

j
tu

t
y

+ wksu
s
zνzxw

i
lw

l
ru

r
xδxyw

j
tu

t
y. (55)

The coefficients of the reduced form are listed below:
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• The coefficient of δxyδxz is wksu
s
xw

i
lg
lj
,mu

m
x +wksu

s
xw

i
lΓ
lj
t u

t
x+∂x(w

k
su

s
x)w

i
lg
lj.

• The coefficient of νyzδ
′
yx is wksu

s
zw

i
lg
lj
,mu

m
y +wksu

s
zw

i
lΓ
lj
t u

t
y−2wksu

s
z∂y(w

i
lg
lj).

• The coefficient of νzyδyx is

− wksusz
(
∂y(w

i
lg
lj
,mu

m
y ) + ∂2

y(w
i
lg
lj) + wilΓ

lj
t,mu

m
y u

t
y

+ wilΓ
lj
t u

t
yy − ∂y(wilΓ

lj
t u

t
y) + wilw

l
ru

r
yw

j
tu

t
y

)
.

• The coefficient of νzxνxy is wksu
s
zw

i
lw

l
r,mu

m
x u

r
xw

j
tu

t
y + wksu

s
zw

i
lw

l
ru

r
xxw

j
tu

t
y.

• The coefficient of δ′xyδxz is 2wksu
s
xw

i
lg
lj.

• The coefficient of δxyδ
′
xz is wksu

s
xw

i
lg
lj.

• The coefficient of νzyδ
′′
yx is wksu

s
zw

i
lg
lj.

The eleventh summand in (46) is

∂P jk
y,z

∂uly
∂yP

li
y,x = Γjkl g

li
,su

s
yδyzδ

′
yx + gliΓjkl δyzδ

′′
yx + Γjkl Γlit,su

s
yu

t
yδyzδyx

+ Γjkl Γlit u
t
yyδyzδyx + Γjkl Γlit u

t
yδyzδ

′
yx + Γjkl w

l
s,mu

m
y u

s
yδyzνyxw

i
tu
t
x

+ Γjkl w
l
su

s
yyδyzνyxw

i
tu
t
x + Γjkl w

l
su

s
yδyzδyxw

i
tu
t
x + wjl g

li
,su

s
yδ
′
yxνyzw

k
r u

r
z

+ wjl g
liδ′′yxνyzw

k
r u

r
z + wjlΓ

li
t,su

s
yu

t
yδyxνyzw

k
r u

r
z + wjlΓ

li
t u

t
yyδyxνyzw

k
r u

r
z

+ wjlΓ
li
t u

t
yδ
′
yxνyzw

k
r u

r
z + wjlw

l
s,mu

m
y u

s
yνyxw

i
tu
t
xνyzw

k
r u

r
z

+ wjlw
l
su

s
yyνyxw

i
tu
t
xνyzw

k
r u

r
z + wjlw

l
su

s
yδyxw

i
tu
t
xνyzw

k
r u

r
z.

(56)

The coefficients of the reduced form are listed below

• The coefficient of δxyδ
′
xz is −Γjkl g

li
,su

s
x + 2∂x(g

liΓjkl )− Γjkl Γlit u
t
x.

• The coefficient of δ′xyδxz is 2∂x(g
liΓjkl )− Γjkl g

li
,su

s
x − Γjkl Γlit u

t
x.

• The coefficient of δxyδxz is

− ∂x(Γjkl g
li
,su

s
x) + ∂2

x(g
liΓjkl ) + Γjkl Γlit,su

s
xu

t
x

+ Γjkl Γlit u
t
xx − ∂x(Γ

jk
l Γlit u

t
x) + Γjkl w

l
su

s
xw

i
tu
t
x.
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• The coefficient of δxyδ
′′
xz is gliΓjkl .

• The coefficient of δ′xyδ
′
xz is 2gliΓjkl .

• The coefficient of δ′′xyδxz is gliΓjkl .

• The coefficient of δyzνzx is (Γjkl w
l
s,mu

m
z u

s
z + Γjkl w

l
su

s
zz)w

i
tu
t
x.

• The coefficient of δyxνyz is (wjlΓ
li
t,su

s
yu

t
y +wjlΓ

li
t u

t
yy +wjlw

l
su

s
yw

i
tu
t
y)w

k
r u

r
z.

• The coefficient of δ′yxνyz is wjl g
li
,su

s
yw

k
r u

r
z + wjlΓ

li
t u

t
yw

k
r u

r
z.

• The coefficient of νyxνyz is wjlw
l
s,mu

m
y u

s
yw

i
tu
t
xw

k
r u

r
z +wjlw

l
su

s
yyw

i
tu
t
xw

k
r u

r
z.

• The coefficient of δ′′yxνyz is wjl g
liwkr u

r
z.

The twelfth (and last) summand in (46) is

∂P jk
y,z

∂ulz
∂zP

li
z,x = wjsu

s
yνyzw

k
l g

li
,mu

m
z δ
′
zx + wjsu

s
yνyzw

k
l g

liδ′′zx

+ wjsu
s
yνyzw

k
l Γ

li
t,mu

m
z u

t
zδzx + wjsu

s
yνyzw

k
l Γ

li
t u

t
zzδzx + wjsu

s
yνyzw

k
l Γ

li
t u

t
zδ
′
zx

+ wjsu
s
yνyzw

k
l w

l
r,mu

m
z u

r
zνzxw

i
tu
t
x + wjsu

s
yνyzw

k
l w

l
ru

r
zzνzxw

i
tu
t
x

+ wjsu
s
yνyzw

k
l w

l
ru

r
zδzxw

i
tu
t
x. (57)

The coefficients of the reduced form are listed below

• The coefficient of δxyδxz is

wjsu
s
xw

k
l g

li
,mu

m
x − ∂x(wjsusx)wkl gli + wjsu

s
xw

k
l Γ

li
t u

t
x − 2wjsu

s
x∂x(w

k
l g

li).

• The coefficient of νyxδ
′′
xz is wjsu

s
yw

k
l g

li.

• The coefficient of νyxδ
′
xz is 2wjsu

s
y∂x(w

k
l g

li)−wjsusywkl Γlit utx−wjsusywkl gli,mumx .

• The coefficient of δxyδ
′
xz is −2wjsu

s
xw

k
l g

li.

• The coefficient of δ′xyδxz is −wjsusxwkl gli.

• The coefficient of νyxδxz is

wjsu
s
y

(
wkl Γ

li
t,mu

m
x u

t
x + wkl Γ

li
t u

t
xx + ∂2

x(w
k
l g

li)

− ∂x(wkl Γlit utx) + wkl w
l
ru

r
xw

i
tu
t
x − ∂x(wkl gli,mumx )

)
.

• The coefficient νyzνzx is wjsu
s
yw

k
l w

l
r,mu

m
z u

r
zw

i
tu
t
x + wjsu

s
yw

k
l w

l
ru

r
zzw

i
tu
t
x.
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5.3 The conditions

Collecting all similar terms we get the following conditions

• The coefficients of δ′′xyδxz, δ
′
xyδ
′
xz and δxyδ

′′
xz vanish iff (9c) holds, namely

gliΓjkl = gljΓikl . Combining this condition with skew-symmetry of the
bracket (9b) we obtain that Γijk = −gjlΓlik are the Christoffel symbols
of the Levi-Civita connection of g.

• The coefficients of products of step functions vanish.

• The coefficients of δ′′xzνxy, δ
′′
zyνzx and δ′′yxνyz vanish iff (9d) holds, namely

gikw
k
j = gjkw

k
i .

• Using the above conditions the coefficient of usxxδxyδxz can be written
as

gliΓjkl,s − g
liΓjks,l + Γijl Γlks − Γikl Γljs + gli(wksw

j
l − w

j
sw

k
l ) =

Rijk
s + gli(wksw

j
l − w

j
sw

k
l ), (58)

where Rijk
s is Riemann tensor (in upper indices). This yields the con-

dition (9f).

• The coefficient of utxxνxyδxz (up to a common factor) is

gli(wkt,l + Γklmw
m
t − wkl,t − Γkmtw

m
l ) = gli(∇lw

k
t −∇tw

k
l ), (59)

which yields the condition (9e).

• The coefficient of δ′xyδxz is a linear combination of the coefficient (58)
repeated two times.

• The coefficients of urxu
s
xδxyδxz vanish using the x-derivative of the con-

dition (58). Indeed, the coefficient reduces to

(Γijs,l − Γijl,s + wisw
j
l )Γ

lk
t + (Γkis,l − Γkil,s + wksw

i
l)Γ

lj
t

+ (Γjks,l − Γjkl,s + wjsw
k
l )Γ

li
t + wksg

lj(wit,l − wil,t + Γilmw
m
t )

+ wisg
lk(wjt,l − w

j
l,t + Γjlmw

m
t ) + wjsg

li(wkt,l − wkl,t + Γklmw
m
t ).
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Using the condition (9e) we obtain

(Γijs,l − Γijl,s + wisw
j
l )Γ

lk
t + (Γkis,l − Γkil,s + wksw

i
l)Γ

lj
t

+ (Γjks,l − Γjkl,s + wjsw
k
l )Γ

li
t + wksg

lm(Γitmw
j
l )

+ wisg
lm(Γjtmw

k
l ) + wjsg

lm(Γktmw
i
l).

Using again (58) we obtain

(Γijs,l − Γijl,s + wisw
j
l − w

j
sw

i
l)Γ

lk
t + (Γkis,l − Γkil,s + wksw

i
l − wiswkl )Γ

lj
t +

(Γjks,l − Γjkl,s + wjsw
k
l − wksw

j
l )Γ

li
t = Γlkt (−ΓilmΓmjs + ΓjlmΓmis )+

Γljt (−ΓklmΓmis + ΓilmΓmks ) + Γljt (−ΓjlmΓmks + ΓklmΓmjs ) = 0

• The coefficient of utyu
r
xu

s
xνxyδxz vanishes due to the previous conditions.

Indeed

usxu
r
xw

j
tu

t
y

(
wls(Γ

ki
r,l − Γkil,r + wilw

k
r − wkl wir)− (Γkil + Γikl )∂rw

l
s

+ (Γlir + Γilr )(wks,l − wkl,s)− Γikl,rw
l
s + gli(wks,l − wkl,s),r

+ Γlir (wkl,s − wks,l) + wilΓ
lk
s,r + Γkil w

l
s,r + Γlks w

i
r,l

)
=usxu

r
xw

j
tu

t
y

(
wls(Γ

ki
r,l − Γkil,r + wilw

k
r − wkl wir)− (Γkil + Γikl )wls,r+

− Γikl,rw
l
s + (Γikl w

l
s − Γlks w

i
l),r + Γlir (wkl,s − wks,l)

+ wilΓ
lk
s,r + Γkil w

l
s,r + Γlks w

i
r,l

)
=usxu

r
xw

j
tu

t
y

(
wms (ΓkrlΓ

li
m − ΓirlΓ

lk
m)− Γlks w

i
l,r

+ Γlir (Γklmw
m
s − Γkmsw

m
l ) + Γlks w

i
r,l

)
=usxu

r
xw

j
tu

t
y

(
wms ΓkrlΓ

li
m − Γlks (wil,r + Γimrw

m
l ) + Γlks w

i
r,l

)
= 0.

Similar computations hold for the coefficients of νyzδyx and νxzδzy.

• The coefficient of usyu
t
xδ
′
xzνxy is

wjt

(
glkwis,l − gki,l wls + gliwks,l + wilg

lk
,s

+ wilΓ
lk
s − 2(wkl g

li),s + wkl Γ
li
s + wkl g

li
,s

)
= usxu

t
y

(
glk(∇lw

i
s −∇sw

i
l) + gli(∇lw

k
s −∇sw

k
l )
)
,

which vanishes upon (9e).
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6 Weakly nonlocal PBHT and differential op-

erators

Here we will just show the main steps of the algorithm in Section 3.3.
We assume that

P = gij∂x + Γijk u
k
x + wiku

k
x∂
−1
x wjhu

h
x (60)

where det(gij) 6= 0 and εα ∈ R.
We will compute the conditions of Hamiltonianity of the operator P of

the type (60) using formula (84) and the Algorithm 3.3. Let us set:

P = L+N where L = gij∂x + Γijk u
k
x, N = wiku

k
x∂
−1
x wjhu

h
x. (61)

The conditions of skew-adjointness are obvious.

6.1 Calculation of the Jacobi identity

From now on we will assume L to be skew-adjoint (N is skew-adjoint by
construction).

Lemma 6. We have

1

2
[P, P ] =

1

2
[L,L] + [L,N ] +

1

2
[N,N ]

=[`L,ψ1(L(ψ2))(ψ3) + `L,ψ1(N(ψ2))(ψ3)+

`N,ψ1(L(ψ2))(ψ3) + `N,ψ1(N(ψ2))(ψ3) + cyclic(ψ1, ψ2, ψ3)]
(62)

We begin by computing the linearization of L and N . Let us introduce
the new non-local scalar functions

ψ̃k = ∂−1
x (wilu

l
xψ

k
i ), k = 1, 2, 3. (63)

Lemma 7. The linearization of L and N have the following expressions:

`L,ψ1(ϕ)i =
(
gij,k∂xψ

1
j + Γijh,ku

h
xψ

1
j

)
ϕk + Γijh ψ

1
j∂xϕ

h (64)

`N,ψ1(ϕ)i =(wik,lu
k
xϕ

l + wik∂xϕ
k)ψ̃1

+ wiku
k
x∂
−1
x

(
(wjh,lu

h
xϕ

l + wjl ∂xϕ
l)ψ1

j

)
(65)
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We compute the first summand of (62):

`L,ψ1(L(ψ2))(ψ3) = gij,kg
kp∂xψ

1
j∂xψ

2
pψ

3
i + gij,kΓ

kp
h u

h
x∂xψ

1
jψ

2
pψ

3
i

+
(

Γijh,ku
h
xg

kp + Γijh ∂x(g
hp) + Γijh Γhpk u

k
x

)
ψ1
j∂xψ

2
pψ

3
i

+ Γijh g
hpψ1

j∂
2
xψ

2
pψ

3
i +

(
Γijh,ku

h
xΓ

kp
h u

h
x + Γijh ∂x(Γ

hp
k u

k
x)
)
ψ1
jψ

2
pψ

3
i .

(66)

We compute the second summand of (62):

`L,ψ1(N(ψ2))(ψ3) = gij,kw
k
mu

m
x ∂xψ

1
j ψ̃

2ψ3
i

+
(

Γijh,ku
h
xw

k
mu

m
x + Γijk ∂x(w

k
hu

h
x)
)
ψ1
j ψ̃

2ψ3
i + Γijk w

k
hu

h
xw

p
l u

l
xψ

1
jψ

2
pψ

3
i . (67)

We compute the third summand of (62). Here we integrate non-local ex-
pressions by parts in order to concentrate integrals in expressions of the
form (63):

`N,ψ1(L(ψ2))(ψ3) = (wil,ku
l
xg

kp + wik∂x(g
kp) + wikΓ

kp
mu

m
x )ψ̃1∂xψ

2
pψ

3
i

+ (wil,ku
l
xΓ

kp
mu

m
x + wik∂x(Γ

kp
mu

m
x ))ψ̃1ψ2

pψ
3
i + wikg

kpψ̃1∂2
xψ

2
pψ

3
i

+ (−wjh,ku
h
xg

kp − wjk∂x(g
kp)− wjkΓ

kp
mu

m
x )ψ1

j∂xψ
2
pψ̃

3

+ (−wjh,ku
h
xΓ

kp
mu

m
x − w

j
k∂x(Γ

kp
mu

m
x ))ψ1

jψ
2
pψ̃

3 − wjkg
kpψ1

j∂
2
xψ

2
pψ̃

3.

(68)

We compute the fourth summand of (62). Here we integrate non-local ex-
pressions by parts in order to concentrate integrals in expressions of the
form (63):

`N,ψ1(N(ψ2))(ψ3) = (wik,lu
k
xw

l
hu

h
x + wik∂x(w

k
mu

m
x ))ψ̃1ψ̃2ψ3

i

+ wikw
k
mu

m
x w

p
hu

h
xψ̃

1ψ2
pψ

3
i + (−wjh,lu

h
xw

l
ku

k
x − w

j
l ∂x(w

l
mu

m
x ))ψ1

j ψ̃
2ψ̃3

− wjlw
l
mu

m
x w

p
hu

h
xψ

1
jψ

2
pψ̃

3.

(69)

The three-vector (62) can be written, after adding the cyclically permuted
summands, as the sum Tl + Tn, where Tl is the local part and Tn is the
non-local part.

6.2 Calculation of the reduced form

Now, we fix the indices 1, 2, 3 and we bring the nonlocal part to the normal
form with respect to the three ordered indices. This means that the terms
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which are quadratic in the nonlocal expressions (63) shall be preserved, while
terms which are linear in the nonlocal expressions should be brought to one
of the following forms by integrating by parts:

ψ̃1∂kxψ
2
pψ

3
i , ψ̃2∂kxψ

3
pψ

1
i , ψ̃3∂kxψ

1
pψ

2
i . (70)

For example, gij,kw
k
mu

m
x ψ̃

2ψ3
i ∂xψ

1
j must be replaced by −∂x

(
gij,kw

k
mu

m
x ψ̃

2ψ3
i

)
ψ1
j

(of course, up to a total divergence). After the above computational step we
can write the final form of the nonlocal part of the three-vector. Note that
Tn acquired some local terms at the end of the first step of the algorithm.
We introduce the notation Tn = TN + TnL, where TN is the non-local part
and TnL is the local part of Tn after the first step of the algorithm. We have,
after collecting like terms:

TN =(
− ∂x

(
gij,kw

k
mu

m
x

)
+ Γijh,ku

h
xw

k
mu

m
x + Γijk ∂x(w

k
hu

h
x)

+ wjl,ku
l
xΓ

ki
mu

m
x + wjk∂x(Γ

ki
mu

m
x )
)

− ∂x
(
− wih,kuhxgkj − wik∂x(gkj)− wikΓkjmumx

)
− wih,kuhxΓkjmumx − wik∂x(Γkjmumx ) + ∂2

x

(
− wikgkj

)
+ wjkw

k
mu

m
x w

i
hu

h
x − wilwlmumx w

j
hu

h
x

)
ψ̃2ψ3

iψ
1
j

(71)

(
− gij,kw

k
mu

m
x + wjl,ku

l
xg

ki + wjk∂x(g
ki) + wjkΓ

ki
mu

m
x

+ wih,ku
h
xg

kj + wik∂x(g
kj) + wikΓ

kj
mu

m
x

+ 2∂x
(
− wikgkj

))
ψ̃2∂xψ

3
iψ

1
j

(72)

+ (wjkg
ki − wikgkj)ψ̃2∂2

xψ
3
iψ

1
j (73)

plus a cyclic permutation of the above terms. Moreover:

TnL =
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(
− gij,kw

k
mu

m
x w

p
l u

l
x − g

jp
,kw

k
mu

m
x w

i
lu
l
x − g

pi
,kw

k
mu

m
x w

j
l u

l
x

+ (wjh,ku
h
xg

kp + wjk∂x(g
kp) + wjkΓ

kp
mu

m
x )wilu

l
x

− 2∂x
(
wjkg

kp
)
wilu

l
x − w

j
kg

kp∂x(w
i
lu
l
x)

+ (wph,ku
h
xg

ki + wpk∂x(g
ki) + wpkΓ

ki
mu

m
x )wjl u

l
x

+ 2∂x
(
− wpkg

ki
)
wjl u

l
x + (−wpkg

ki)∂x(w
j
l u

l
x)

+ (wih,ku
h
xg

kj + wik∂x(g
kj) + wikΓ

kj
mu

m
x )wpl u

l
x

+ (−wikgkj)∂x(w
p
l u

l
x) + 2∂x

(
− wikgkj

)
wpl u

l
x

)
ψ1
jψ

2
pψ

3
i

(74)

(
− 2wjkg

kpwilu
l
x − w

p
kg

kiwjl u
l
x

)
∂xψ

1
jψ

2
pψ

3
i (75)

plus a cyclic permutation of the last summand.
Let us introduce the notation TL = Tl + TnL. We shall bring each sum-

mand of TL to the canonical form

cjpi∂kxψ
1
j∂

h
xψ

2
pψ

3
i , (76)

where cjpi are coefficient functions, using integration by parts on summands
that contain ∂lxψ

3
i with l > 0. We have:

TL =(
gij,kg

kp − gjp,k g
ki + 2Γjph g

hi − gpi,kg
kj
)
∂xψ

1
j∂xψ

2
pψ

3
i

+
(
gij,kΓ

kp
h u

h
x − Γjph,ku

h
xg

ki − Γjph ∂x(g
hi)− Γjph Γhik u

k
x

+ 2∂x
(
Γjph g

hi
)
− ∂x

(
gpi,kg

kj
)
− gpi,kΓkjh u

h
x + Γpih,ku

h
xg

kj

+ Γpih ∂x(g
hj) + Γpih Γhjk u

k
x

− 2wjkg
kpwilu

l
x − w

p
kg

kiwjl u
l
x + wjkg

kpwilu
l
x + 2wikg

kjwpl u
l
x

)
∂xψ

1
jψ

2
pψ

3
i

+
(

Γijh,ku
h
xg

kp + Γijh ∂x(g
hp) + Γijh Γhpk u

k
x − ∂x

(
gjp,k g

ki
)

+ gjp,k Γkih u
h
x − Γjph,ku

h
xg

ki − Γjph ∂x(g
hi)− Γjph Γhik u

k
x

+ 2∂x
(
Γjph g

hi
)
− gpi,kΓkjh u

h
x

+ wjkg
kpwilu

l
x + 2wikg

kjwpl u
l
x − 2wpkg

kiwjl u
i
x − wikgkjw

p
l u

l
x

)
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ψ1
j∂xψ

2
pψ

3
i

+
(

Γijh g
hp − gjp,k g

ki + Γjph g
hi
)
ψ1
j∂

2
xψ

2
pψ

3
i

+
(

Γijh,ku
h
xΓ

kp
l u

l
x + Γijh ∂x(Γ

hp
k u

k
x)

− ∂x
(
Γjph,ku

h
xg

ki + Γjph ∂x(g
hi) + Γjph Γhik u

k
x

)
+ ∂2

x

(
Γjph g

hi
)

+ Γjph,ku
h
xΓ

ki
l u

l
x + Γjph ∂x(Γ

hi
k u

k
x)− ∂x

(
gpi,kΓkjh u

h
x

)
+ Γpih,ku

h
xΓ

kj
l u

l
x + Γpih ∂x(Γ

hj
k u

k
x)

+ Γijk w
k
hu

h
xw

p
l u

l
x + Γjpk w

k
hu

h
xw

i
lu
l
x + Γpik w

k
hu

h
xw

j
l u

l
x

− gij,kw
k
mu

m
x w

p
l u

l
x − g

jp
,kw

k
mu

m
x w

i
lu
l
x − g

pi
,kw

k
mu

m
x w

j
l u

l
x

+ (wjh,ku
h
xg

kp + wjk∂x(g
kp) + wjkΓ

kp
mu

m
x )wilu

l
x

− 2∂x
(
wjkg

kp
)
wilu

l
x − w

j
kg

kp∂x(w
i
lu
l
x)

+ (wph,ku
h
xg

ki + wpk∂x(g
ki) + wpkΓ

ki
mu

m
x )wjl u

l
x

+ 2∂x
(
− wpkg

ki
)
wjl u

l
x + (−wpkg

ki)∂x(w
j
l u

l
x)

+ (wih,ku
h
xg

kj + wik∂x(g
kj) + wikΓ

kj
mu

m
x )wpl u

l
x

+ (−wikgkj)∂x(w
p
l u

l
x) + 2∂x

(
− wikgkj

)
wpl u

l
x

− ∂x
(
− wjkg

kpwilu
l
x − 2wikg

kjwpl u
l
x

)
ψ1
jψ

2
pψ

3
i

+
(

Γjph g
hi − gpi,kg

kj + Γpih g
hj
)
∂2
xψ

1
jψ

2
pψ

3
i

6.3 The conditions

The vanishing of coefficients of the 3-vector T yields the conditions on P to be
Hamiltonian. Below we list the basic elements of T and the conditions that
arise from their coefficients. We assume the condition of skew-adjointness of
P .

ψ1
j∂

2
xψ

2
pψ

3
i : the coefficient is

Γijh g
hp − gjp,k g

ki + Γjph g
hi (77)

and corresponds to the coefficient of δ′′xyδxz and similar terms in Sec-

tion 5.3. Its vanishing is equivalent to the condition Γjph g
hi = Γiph g

hj.
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∂xψ
1
j∂xψ

2
pψ

3
i : the coefficient vanish on account of the above condition.

ψ̃1∂2
xψ

2
pψ

3
i : the coefficient is

wikg
kp − wpkg

ki (78)

and corresponds to the coefficients of δ′′xzνxy and similar terms in Sec-
tion 5.3.

ψ1
jψ

2
pψ

3
i : This coefficient is a differential polynomial; the coefficient of ukxx

reduces to

(Γjph,k − Γjpk,h)g
hi + Γijh Γhpk − Γiph Γhjk + ghi(wjhw

p
k − w

p
hw

j
k) (79)

using (78). This corresponds to the coefficient of ukxxδxyδxz in Sec-
tion 5.3.

ψ̃2ψ3
iψ

1
j : This coefficient is a differential polynomial; the coefficient of umxx

reduces to

−gij,kw
k
m + Γijk w

k
m + wjkΓ

ki
m + wim,kg

kj − wik,mgkj, (80)

and corresponds to the coefficient of umxxνxyδxz in Section 5.3. The
coefficient is equal to gkj(∇kw

i
m −∇mw

i
k).

The correspondence between the coefficients of the three-vector in the lan-
guage of operators and of distributions extends to all remaining terms; there
is no need to repeat the computation that shows that all other coefficients
vanish on account of the above conditions.

7 Weakly nonlocal PBHT and Poisson Ver-

tex Algebras

In this section we will use the master formula to compute the skewsymmetry
condition and the PVA-Jacobi identity for the λ bracket

{uiλuj}P = gjiλ+ Γjis u
s
x + wjmu

m
x (λ+ ∂)−1winu

n
x, (81)

corresponding to the weakly non-local Hamiltonian operator (61). As before,
we split the operator in the local and nonlocal parts

{uiλuj}L = gjiλ+ Γjis u
s
x, (82)

{uiλuj}N = wjmu
m
x (λ+ ∂)−1winu

n
x. (83)
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Enforcing Property 5 of Section 4.1 on the two λ brackets (82) and (83)
gives the conditions for the corresponding operator to be skewsymmetric.

Indeed, for the local part, we have

{uiλuj}L = gjiλ+ Γjis u
s
x = −→{uj−λ−∂u

i}L = gijλ+ ∂sg
ijusx − Γijs u

s
x, (84)

which implies the conditions (9a), (9b), and it is easy to prove that the
nonlocal part is skewsymmetric by construction.

7.1 Computations with the master formula

For convenience, we split the PVA-Jacobi identity on the generators – defined
in Section 4.2 – in the four parts

J ijkλ,µ(P, P ) = J ijkλ,µ(L,L) + J ijkλ,µ(N,N) + J ijkλ,µ(N,L) + J ijkλ,µ(L,N),

where the last two terms correspond to the Schouten bracket [L,N ].
The purely local part J ijkλ,µ(L,L) is a straightforward application of the

master formula:

{uiλ{ujµuk}L}L = gli∂lg
kjλµ+ ∂lg

kjΓlis u
s
xµ+ gli∂lΓ

kj
s u

s
xλ

+ Γlis ∂lΓ
kj
t u

s
xu

t
x + gliΓkjl λ

2 + ∂sg
liΓkjl u

s
xλ

+ Γkjl Γlis u
s
xλ+ Γkjl ∂sΓ

li
t u

t
xu

s
x + Γkjl Γlis u

s
xx

(85)

{ujµ{uiµuk}L}L = glj∂lg
kiλµ+ ∂lg

kiΓljs u
s
xλ+ glj∂lΓ

ki
s u

s
xµ

+ Γljs ∂lΓ
ki
t u

s
xu

t
x + gljΓkil µ

2 + ∂sg
ljΓkil u

s
xµ

+ Γkil Γljs u
s
xµ+ Γkil ∂sΓ

lj
t u

t
xu

s
x + Γkil Γljs u

s
xx

(86)

{{uiλuj}Lλ+µu
k}L = gkl∂lg

jiλ2 + gkl∂lg
jiλµ+ gkl∂slg

jiusxλ

+ gkl∂lΓ
ji
s u

s
xλ+ gkl∂lΓ

ji
s u

s
xµ+ gkl∂slΓ

ji
t u

s
xu

t
x

+ gkl∂lΓ
ji
s u

s
xx − gklΓ

ji
l λ

2 − gklΓjil µ
2

− 2gklΓjil λµ− 2gkl∂sΓ
ji
l u

s
xλ− 2gkl∂sΓ

ji
l u

s
xµ

− gkl∂sΓjil u
s
xx − gkl∂stΓ

ji
l u

s
xu

t
x + Γkls ∂lg

jiusxλ

+ Γkls ∂lΓ
ji
t u

s
xu

t
x − Γkls Γjil u

s
xλ− Γkls Γjil u

s
xµ

− Γkls ∂tΓ
ji
l u

s
xu

t
x

(87)

where all the monomials are of the form λpµq with p, q ≥ 0.
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Computing the expressions with nonlocal terms is more complicated.
However, it is possible to rely on Leibniz’s and sesquilinearity properties
of the λ brackets to split the problem into smaller chunks. The basic obser-
vation, that can be proved by expanding the (λ+ ∂)−1 expression, is that

{fµ(λ+ ∂)−1g} = (λ+ µ+ ∂)−1{fµg}.

Let us start with J ijkλ,µ(N,L). Combining this with the left and right Leibnitz
properties we get

{uiλ{ujµuk}N}L = {uiλwkmumx (µ+ ∂)−1wjnu
n
x}L

= {uiλwkmumx }L[(µ+ ∂)−1wjnu
n
x] + wkmu

m
x {uiλ(µ+ ∂)−1wjnu

n
x}L

= {uiλwkmumx }L[(µ+ ∂)−1wjnu
n
x] + wkmu

m
x (λ+ µ+ ∂)−1{uiλwjnunx}L

= [(µ+ ∂)−1wjnu
n
x]
(
gliwkl λ

2

+ gli∂lw
k
su

s
xλ+ wkl ∂sg

liusxλ+ wkl Γ
li
s u

s
xλ

+ Γlis ∂lw
k
t u

s
xu

t
x + wkl ∂tΓ

li
s u

s
xu

t
x + wkl Γ

li
s u

s
xx

)
+ wkmu

m
x (λ+ µ+ ∂)−1

(
wjl g

liλ2

+ gli∂lw
j
su

s
xλ+ wjl ∂sg

liusxλ+ wjlΓ
li
s u

s
xλ

+∂lw
j
sΓ

li
t u

s
xu

t
x + wjl ∂tΓ

li
s u

s
xu

t
x + wjlΓ

li
s u

s
xx

)
, (88)

{ujλ{u
i
λu

k}N}L = [(λ+ ∂)−1winu
n
x]
(
gljwkl µ

2

+ glj∂lw
k
su

s
xµ+ wkl ∂sg

ljusxµ+ wkl Γ
lj
s u

s
xµ

+Γljs ∂lw
k
t u

s
xu

t
x + wkl ∂tΓ

lj
s u

s
xu

t
x + wkl Γ

lj
s u

s
xx

)
+ wkmu

m
x (λ+ µ+ ∂)−1

(
∂lw

i
sΓ

lj
t u

s
xu

t
x

+glj∂lw
i
su

s
xµ+ wil(µ+ ∂)

(
gljµ+ Γljs u

s
x

))
, (89)

{{uiλuj}Nλ+µu
k}L = {wjmumx (λ+ ∂)−1winu

n
xλ+µu

k}L

= {wjmumx λ+µ+∂u
k}L(λ+ ∂)−1winu

n
x

+ {winunxλ+µ+∂u
k}L(��λ−��λ− µ− ∂)−1wjmu

m
x

= gkl(λ+ µ+ ∂)∂lw
j
mu

m
x (λ+ ∂)−1winu

n
x

+ Γkls u
s
x∂lw

j
tu

t
x(λ+ ∂)−1winu

n
x

− gkl(λ+ µ+ ∂)2wjl (λ+ ∂)−1winu
n
x

− Γkls u
s
x(λ+ µ+ ∂)wjl (λ+ ∂)−1winu

n
x

−
(
i↔ j, λ↔ µ

)
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= gkl∂lw
j
su

s
xu

t
x − gklw

j
lw

i
su

s
xλ− gklw

j
lw

i
su

s
xµ

− gkl∂(wjlw
i
su

s
x)− gklw

j
lw

i
su

s
xµ− gklw

j
l µ

2[(λ+ ∂)−1winu
n
x]

− gkl∂swjl u
s
xµ[(λ+ ∂)−1winu

n
x]− gkl∂swjlw

i
tu
s
xu

t
x

− gkl∂swjl u
s
xµ[(λ+ ∂)−1winu

n
x]− gkl∂2wjl [(λ+ ∂)−1winu

n
x]

− Γkls w
j
lw

i
tu
s
xu

t
x + gkl∂lw

j
su

s
xµ[(λ+ ∂)−1winu

n
x]

+ gkl∂(∂lw
j
mu

m
x )[(λ+ ∂)−1winu

n
x] + Γkls ∂lw

j
tu

s
xu

t
x[(λ+ ∂)−1winu

n
x]

− Γkls w
j
l u

s
xµ[(λ+ ∂)−1winu

n
x]− Γkls ∂tw

j
l u

s
xu

t
x[(λ+ ∂)−1winu

n
x]

−
(
i↔ j, λ↔ µ

)
. (90)

The notation
(
i ↔ j, λ ↔ µ

)
we used in Equation (90) means that all the

terms are to be replaced with the ones obtained by switching the corre-
sponding indices and parameters. The expressions of the form [(λ + ∂)−1A]
enclosed within square brackets denote terms on which derivation operators
“from outside” do not act and containing derivations which do not act “on
the outside”.

The computation of the terms of J ijkλ,µ(L,N) is straightforward for the first
two addends

{uiλ{ujµuk}L}N = {uiλgkj}Nµ+ {uiλΓkjs usx}N

= ∂lg
kjwlsu

s
xµ[(λ+ ∂)−1winu

n
x] + ∂lΓ

kj
s u

s
xw

l
tu
t
x[(λ+ ∂)−1winu

n
x]

+ Γkj(λ+ ∂)wlsu
s
x(λ+ ∂)−1winu

n
x

= ∂lg
kjwlsu

s
xµ[(λ+ ∂)−1winu

n
x] + ∂lΓ

kj
s u

s
xw

l
tu
t
x[(λ+ ∂)−1winu

n
x]

+ Γkjl w
l
sw

i
tu
s
xu

t
x + Γkjl ∂tw

l
su

s
xu

t[(λ+ ∂)−1winu
n
x]

+ Γkjl w
l
su

s
xx[(λ+ ∂)−1winu

n
x], (91)

{ujµ{uiλuk}L}N = {ujµgki}Nλ+ {ujµΓkis u
s
x}N

= ∂lg
kiwlsu

s
xλ[(µ+ ∂)−1wjnu

n
x] + ∂lΓ

ki
s u

s
xw

l
tu
t
x[(µ+ ∂)−1wjnu

n
x]

+ Γkil w
l
sw

j
tu

s
xu

t
x + Γkil ∂tw

l
su

s
xu

t[(µ+ ∂)−1wjnu
n
x]

+ Γkil w
l
su

s
xx[(µ+ ∂)−1wjnu

n
x]. (92)

In the computation of the third one, we exploit the identity (A+ ∂)−1B(A+
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∂)C = (A+ ∂)−1(A+ ∂)BC − (A+ ∂)−1[∂B]C

{{uiλuj}Lλ+µu
k}N = {gjiλ+µu

k}Nλ+ {Γjis usxλ+µu
k}

= wknu
n
x(λ+ µ+ ∂)−1wlsu

s
x∂lg

jiλ+ wknu
n
x(λ+ µ+ ∂)−1wlsu

s
x∂lΓ

ji
t u

t
x

− wknunx(λ+ µ+ ∂)−1wlsu
s
x(λ+ µ+ ∂)Γjil

= −Γjil w
k
sw

l
tu
s
xu

t
x

+ wknu
n
x(λ+ µ+ ∂)−1

(
∂lg

jiwlsu
s
xλ+ ∂lΓ

ji
s w

l
tu
s
xu

t
x

+∂sw
l
tΓ
ji
l u

t
xu

s
x + wlsΓ

ji
l u

s
xx

)
. (93)

We compute now the expression for J ijkλ,µ(N,N). We have

{uiλ{ujµuk}N}N = {uiλwkmumx (µ+ ∂)−1wjnu
n
x}N

= wkmu
m
x (λ+ µ+ ∂)−1{uiλwjnunx}N + [(µ+ ∂)−1wjnu

n
x]{uiλwkmumx }N

= wkmu
m
x (λ+ µ+ ∂)−1

(
∂lw

j
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s
xw

l
tu
t
x(λ+ ∂)−1winu

n
x

+wjl (λ+ ∂)wltu
t
x(λ+ ∂)−1winu

n
x

)
+ [(µ+ ∂)−1wjnu

n
x]∂lw

k
su

s
xw

l
tu
t
x[(λ+ ∂)−1winu

n
x]

+ [(µ+ ∂)−1wjnu
n
x]wkl (λ+ ∂)wlsu

s
x(λ+ ∂)−1winu

n
x

= wkmu
m
x (λ+ µ+ ∂)−1

(
wjlw

l
sw

i
tu
t
xu

s
x

)
+

+ wkmu
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x (λ+ µ+ ∂)−1

((
∂lw

j
sw

l
tu
s
xu

t
x + wjl ∂sw

l
tu
s
xu

t
x

+wjlw
l
su

s
xx

)
(λ+ ∂)−1winu
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x

)
+ [(µ+ ∂)−1wjnu

n
x]wkl w

l
sw

i
tu
s
xu
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x

+ [(µ+ ∂)−1wjnu
n
x][(λ+ ∂)−1winu

n
x]
(
∂lw

k
sw

l
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s
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t
x

+wkl ∂tw
l
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s
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t + wkl w
l
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)
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{ujµ{uiλuk}N}N = wkmu
m
x (λ+ µ+ ∂)−1

(
wilw

l
sw

j
tu

t
xu

s
x

)
+

+ wkmu
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x (λ+ µ+ ∂)−1

((
∂lw

i
sw
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tu
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t
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l
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x

+wilw
l
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xx
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x]wkl w
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x
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t + wkl w
l
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s
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)
(95)
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{{uiµuj}Nλ+µu
k}N = {wjmumx (λ+ ∂)−1winu

n
xλ+µu

k}N

= {wjmumx λ+µ+∂u
k}N(λ+ ∂)−1winu

n
x

+ {(λ+ ∂)−1winu
n
xλ+µ+∂u

k}Nwjmumx
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n
x
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m
x

= wkmu
m
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s
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j
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t
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n
x
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s
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t
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i
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x
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s
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n
t

= wkmu
m
x (λ+ µ+ ∂)−1

((
wlsu

s
x∂lw

j
tu

t
x + ∂tw

l
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j
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+wlsu
s
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x∂lw
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l
su
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+wlsu
s
xxw

i
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)
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)
− wkswltw

j
l u

s
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t
x[(λ+ ∂)−1winu

n
x]

+ wksw
l
tw

i
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s
xu

t
x[(µ+ ∂)−1wjnu

n
x]. (96)

Note that in the last passage we have used the same identity as in Equation
(93) to simplify the terms of the form (λ+ µ+ ∂)−1A(λ+ µ+ ∂)B.

7.2 Projection onto the basis

The Jacobi identity lives in the previously defined space Vλ,µ. The partial
results of our computation are not all expressed in such a form that, after the
expansion of the nonlocal terms, will produce elements on the basis λpµd−p

and (λ+ µ)−qλd+q for p ∈ Z, q > 0 for all d ∈ Z.
All the double nonlocal terms in J ijkλ,µ(N,N) cancel out, leaving with a

simplified expression

J ijkλ,µ(N,N) = wkmu
m
x (λ+ µ+ ∂)−1

(
wjlw

l
sw

i
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t
xu

s
x − wilwlsw

j
tu

t
x

)
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(
wkl w
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(
−wkl wlsw
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s
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t
x + wksw

l
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j
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s
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t
x

)
.

(97)

There are terms which would not expand in the chosen basis in the last
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line of Equation (89). We have

wkmu
m
x (λ+ µ+ ∂)−1(glj∂lw

i
su

s
xµ) =

=wkmu
m
x (λ+ µ+ ∂)−1((λ+ µ+ ∂)glj∂lw

i
su

s
x − (λ+ ∂)glj∂lw

i
su

s
x)

=glj∂lw
i
sw

k
t u

s
xu

t
x − wkmumx (λ+ µ+ ∂)−1

(
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i
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s
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lj∂lw
i
su

s
xu

t
x

+ glj∂tlw
i
su

s
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t
x + glj∂lw

i
su

s
xx

)
(98)

and

wkmu
m
x (λ+ µ+ ∂)−1wil(µ+ ∂)(gljµ+ Γljs u

s
x) =

=wkmu
m
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s
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k
su

s
xµ+ Γljs w

k
t u
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t
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)
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(
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i
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t
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i
lu
t
x)
)

=gljwilw
k
su

s
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s
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t
x − gljwilwksusxλ− glj∂swilwkt usxutx

+ wkmu
m
x (λ+ µ+ ∂)−1

(
gljwilλ

2 + ∂sg
ljwilu

s
xλ+ 2glj∂sw

i
lu
s
xλ

−Γljs w
i
lu
s
xλ+ glj∂stw

i
lu
s
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x + ∂sg

lj∂tw
i
lu
s
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x − Γljs ∂tw

i
lu
s
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x

+glj∂sw
i
lu
s
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)
. (99)

The full PVA-Jacobi identity can be then obtained in terms of the previ-
ously computed expressions, provided that we replace the last line in Equa-
tion (89) with the expression (98) + (99). The full form of J ijkλ,µ is then

J ijkλ,µ(P, P ) = J ijkλ,µ(L,L) + J ijkλ,µ(L,N) + J ijkλ,µ(N,L) + J ijkλ,µ(N,N)

= ((85)− (86)− (87))

+ ((91)− (92)− (93)) + ((88)− (89)− (90))

+ ((94)− (95)− (96)) .

7.3 The conditions

Assuming the skewsymmetry of the bracket P , the PVA-Jacobi equation is
symmetric for cyclic permutations of (i, λ), (j, µ), (k, ν = −λ − µ − ∂), and
it is fulfilled if and only if all the coefficients in the basis of Vλ,µ we have
chosen vanish. We report here the coefficients corresponding to the elements
of Section 6.3, under the condition of skewsymmetry for the bracket.
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• The coefficient of λ2 is

gliΓkjl − g
klgji,l + gklΓjil (100)

whose vanishing, given the skewsymmetry of the bracket, is equivalent
to gilΓkjl = gklΓijl .

• The coefficient of λµ would be

gilgkj,l − g
ljgki,l − gklg

ji
,l + 2gklΓjil (101)

which vanishes on account of the previous condition.

• The coefficient of ((µ+ ∂)−1wjnu
n
x)λ2 is

gilwkl − gklwil (102)

• The expression that is obtained when λ0µ0 = 1 is a differential polyno-
mial. The coefficient multiplying usxx is

gkl
(
∂sΓ

ji
l − ∂lΓ

ji
s

)
+ Γkjl Γlis − Γkil Γljs + gkl

(
wjlw

i
s − wilwjs

)
, (103)

where the two summands with ww come from (90).

• The expression ((µ+ ∂)−1wjnu
n
x) is a differential polynomial. The coef-

ficient multiplying usxx is

wkl Γ
li
s − wlsΓkil + gkl

(
∂lw

i
s − ∂swil

)
(104)

which is equal to Equation (80) (after the exchange of the free indices
(j,m)↔ (k, s)).

8 Concluding remarks

In this paper we have considered three different approaches to the problem
of verifying Jacobi identity for weakly nonlocal Poisson brackets of hydrody-
namic type, and we have showed their equivalence. While the equivalence
between the formalism based on distributions and the one based on (pseudo)-
differential operators is quite straightforward, the equivalence between them
and the formalism of Poisson vertex algebras is more subtle and requires
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additional work (Proposition 2 and Theorem 3). The final result is an algo-
rithmic procedure for each different case. It is also clear that the procedure
can be used to check the compatibility of two different Poisson brackets.

We point out that the algorithm presented in this paper can be easily
programmed in a computer algebra system generalizing existing packages for
local structures (see for instance the package CDE [37] that is available for
REDUCE [35] or the package MasterPVA [8] that is available for Wolfram
Mathematica). We plan to do this in a future work. We also remark that
the ideas outlined in the present work could be extended to weakly nonlocal
symplectic operators [30] and to recursion operators.

A comprehensive differential-geometric theory of nonlocal integrability
operators (i.e., Hamiltonian operators, symplectic operators and recursion
operators for symmetries and conserved quantities) for partial differential
equations, including weakly nonlocal operators, already exist [24], but it does
not include Schouten brackets, the formulation of the symplectic property
and the formulation of the hereditary property for recursion operators (the
variational Nijenhuis bracket). However, this seems to be a possible goal and
at the moment it is in development, see [23] for latest advances.

To conclude let us mention that one of the main challenge in the theory
of integrable systems is the problem of classification of Hamiltonian inte-
grable PDEs. The results obtained so far concern deformations of local bi-
Hamiltonian structures of hydrodynamic type (see [6, 13, 27] and references
therein). We hope that the results of the present paper will contribute to the
study of the weakly nonlocal case.

9 Appendix: three different recipes for the

Jacobi identity

In this section we will show that the expression of the Jacobi identity can be
written in three different ways up to total divergencies.

We recall that the formal adjoint is defined by the equality

[〈A(ψ1
i ), ψ

2〉 − 〈ψ1
i , A

∗(ψ2)〉] = 0, (105)

where 〈, 〉 is the pairing between vectors and covectors and square brackets
mean that the result is an equivalence class up to total divergencies. In what
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follows we will need the standard facts [3, 26]:

`∆(ψ)(ϕ) = `∆,ψ(ϕ) + ∆ ◦ `ψ(ϕ), (106)

and
E(〈ψ, ϕ〉) = `∗ψ(ϕ) + `∗ϕ(ψ), (107)

where E is the Euler–Lagrange operator. If P ∗ = −P , then it is easy to prove
[26] that

`∗P,ψ1(ψ2) = `∗P ∗,ψ2(ψ1) = −`∗P,ψ2(ψ1). (108)

Theorem 8. Let P , Q be skew-adjoint variational bivectors. Then, the fol-
lowing formulae for the Schouten bracket coincide up to total divergencies:

[P,Q](ψ1, ψ2, ψ3) =〈`P,ψ1(Q(ψ2)), ψ3〉+ cyclic(ψ1, ψ2, ψ3)

+ 〈`Q,ψ1(P (ψ2)), ψ3〉+ cyclic(ψ1, ψ2, ψ3)
(109)

[P,Q](ψ1, ψ2, ψ3) =〈`P,ψ1(Q(ψ2)), ψ3〉 − 〈`P,ψ2(Q(ψ1)), ψ3〉
+ 〈`Q,ψ1(P (ψ2)), ψ3〉 − 〈`Q,ψ2(P (ψ1)), ψ3〉
− 〈P (`∗Q,ψ2(ψ1)), ψ3〉 − 〈Q(`∗P,ψ2(ψ1)), ψ3〉

(110)

[P,Q](ψ1, ψ2, ψ3) =〈P (E(〈Q(ψ1), ψ2〉), ψ3〉+ cyclic(ψ1, ψ2, ψ3)

+ 〈Q(E(〈P (ψ1), ψ2〉), ψ3〉+ cyclic(ψ1, ψ2, ψ3)
(111)

Proof. The equivalence between (109) and (110) is given by the following
formulae (all equalities are up to total divergencies!):

〈`P,ψ2(Q(ψ1)), ψ3〉 =〈Q(ψ1), `∗P,ψ2(ψ3)〉
=〈Q(ψ1), `∗P ∗,ψ3(ψ2)〉
=− 〈Q(ψ1), `∗P,ψ3(ψ2)〉
=− 〈`P,ψ3(Q(ψ1)), ψ2〉

−〈Q(`∗P,ψ2(ψ1)), ψ3〉 =− 〈`∗P,ψ2(ψ1), Q∗(ψ3)〉
=〈`∗P,ψ2(ψ1), Q(ψ3)〉
=〈ψ1, `P,ψ2(Q(ψ3))〉

The equivalence between (109) and (111) is given by the following formu-
lae:

〈P (E(Q(ψ1)(ψ2)), ψ3〉 = −〈E(Q(ψ1)(ψ2)), P (ψ3)〉
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=− 〈`∗Q(ψ1)(ψ
2)) + `∗ψ2(Q(ψ1)), P (ψ3)〉

=− 〈ψ2, `Q,ψ1(P (ψ3))〉 − 〈ψ2, Q(`ψ1(P (ψ3)))〉+ 〈ψ1, Q(`ψ2(P (ψ3)))〉
=〈ψ1, `Q,ψ2(P (ψ3))〉 − 〈ψ2, Q(`ψ1(P (ψ3)))〉+ 〈ψ1, Q(`ψ2(P (ψ3)))〉
=〈ψ1, `Q,ψ2(P (ψ3))〉+ 〈Q(ψ2), `ψ1(P (ψ3))〉 − 〈Q(ψ1), `ψ2(P (ψ3))〉

In the cyclic sum in (111) all terms of the form 〈Q(ψi), `ψj(P (ψk)) cancel if
the computation is restricted to covector-valued densities ψ that lie in the
image of the Euler–Lagrange operator E : ψ = E(F ), where F =

∫
f dx. In

that case, we have `ψ = `∗ψ. The proof is completed by the remark that
multivector identities hold true in general even if they are proved on the
image of E only [26].

Remark 9. The expression (111) was used in [20] in order to check the Jacobi
identity. The expressions (109) and (110) are more commonly used (see e.g.
[3, 10, 33]). In particular, the expression (109) is the formula that we use
throughout this paper. The three expressions do not exhaust all possibilities;
see the above references for more exotic expressions of the Jacobi identity.

References

[1] M.J. Ablowitz, P. Clarkson Solitons, nonlinear evolution equations and in-
verse scattering, London Mathematical Society Lecture Note Series no. 149,
Cambridge Univ. Press 1991.

[2] A. Barakat, A. De Sole, V.G. Kac, Poisson vertex algebras in the theory of
Hamiltonian equations, Jpn. J. Math. (2009) 4: 141. https://doi.org/10.
1007/s11537-009-0932-y

[3] A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor’kova, I. S.
Krasil’shchik, A. V. Samokhin, Yu. N. Torkhov, A. M. Verbovetsky and A.
M. Vinogradov, Symmetries and Conservation Laws for Differential Equa-
tions of Mathematical Physics, I. S. Krasil’shchik and A. M. Vinogradov eds.,
Translations of Math. Monographs 182, Amer. Math. Soc. (1999).

[4] M. Boiti, J. Leon, and F. Pempinelli, A recursive generation of local higher-
order sine- Gordon equations and their Backlund transformation, J. Math.
Phys. 25(6) (1984).

45



[5] G. Carlet, P. Lorenzoni and A. Raimondo Reductions of the dispersionless
2D Toda hierarchy and their Hamiltonian structures. Journal of Physics A,
Mathematical and Theoretical, 43(4), 045201 (2010).

[6] G. Carlet, H. Posthuma and S. Shadrin, Deformations of semisimple Pois-
son pencils of hydrodynamic type are unobstructed, J. Differential Geom. 108
(2018), no. 1, 63–89.

[7] M. Casati, E.V Ferapontov, M.V. Pavlov, R.F. Vitolo, On a class of third-
order nonlocal Hamiltonian operators, J. Geom. Phys. (2019), in press.

[8] M. Casati, D. Valeri, MasterPVA and WAlg: Mathematica packages for Pois-
son vertex algebras and classical affine W -algebras, Boll Unione Mat Ital
(2018) 11: 503. https://doi.org/10.1007/s40574-017-0146-9.

[9] A. De Sole, V.G. Kac, Non-local Poisson structures and applications to the
theory of integrable systems, Jpn. J. Math. (2013) 8: 233. https://doi.org/
10.1007/s11537-013-1306-z

[10] I. Dorfman, Dirac structures and integrability of nonlinear evolution equa-
tions, John Wiley & Sons, England, 1993.

[11] A. De Sole, V.G. Kac, Non-local Poisson structures and applications to the
theory of integrable systems, Jpn. J. Math. 8, no. 2 (2013) 233-347.

[12] A. De Sole, V.G. Kac The variational Poisson cohomology, Jpn. J. Math. 8,
(2013) 1-145.

[13] B. Dubrovin, S.-Q.Liu and Y. Zhang, On Hamiltonian perturbations of hyper-
bolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian per-
turbations. Comm. Pure Appl. Math. 59 (2006), no. 4, 559-615.

[14] B.A. Dubrovin, S.P. Novikov, Hamiltonian formalism of one-dimensional sys-
tems of hydrodynamic type and the Bogolyubov-Whitham averaging method,
Soviet Math. Dokl. 27 No. 3 (1983) 665–669.

[15] B.A. Dubrovin, S.P. Novikov, Poisson brackets of hydrodynamic type, Soviet
Math. Dokl. 30 No. 3 (1984), 651–2654.

[16] B.A. Dubrovin, Y. Zhang, Normal forms of integrable PDEs, Frobenius man-
ifolds and Gromov-Witten invariants, math.DG/0108160.

[17] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of soli-
tons, Classics in Mathematics, Springer, Berlin, 2007 , x+592 pp.

46



[18] E.V. Ferapontov, O.I. Mokhov, Non-local Hamiltonian operators of hydrody-
namic type related to metrics of constant curvature, Uspekhi Math. Nauk 45
no. 3 (1990), 191–192, English translation in Russ. Math. Surv. 45 (1990),
281–219.

[19] E.V. Ferapontov, Hamiltonian systems of hydrodynamic type and their re-
alization on hypersurfaces of a pseudoeuclidean space, Geom. Sbornik 22
(1990), 59–96, English translation in J. Sov. Math. 55 (1991), 1970–1995.

[20] E.V. Ferapontov, Differential geometry of nonlocal Hamiltonian operators of
hydrodynamic type, Funkts. Anal. i Prilozhen. 25 no. 3 (1991), 37–49; English
translation in Funct. Anal. Appl. 25 (1991).

[21] E.V. Ferapontov, Nonlocal Hamiltonian Operators of Hydrodynamic Type:
Differential Geometry and Applications, Amer. Math. Soc. Transl. Vol. 170
no. 2 (1995), 33–58.

[22] J. Gibbons, P. Lorenzoni and A. Raimondo, Purely nonlocal Hamiltonian
formalism for systems of hydrodynamic type, J. Geom. Phys. 60 (2010), no.
9, pp 1112–1126.

[23] J. Krasil’shchik, A. Verbovetsky, Toward a geometry of nonlocal Hamiltonian
structures, talk presented at the conference “Local and nonlocal geometry of
PDEs and integrability” in honour of J. Krasil’shchik’s 70th birthday, SISSA,
Trieste (Italy), October 2018. Available at http://gdeq.org.

[24] J. Krasil’shchik, A. Verbovetsky, R. Vitolo, The symbolic computation of in-
tegrability structures for partial differential equations, Texts and Monographs
on Symbolic Computations, Springer 2018.

[25] C. S. Gardner. Korteweg–de Vries equation and generalizations. IV. The
Korteweg–de Vries equation as a Hamiltonian system. J. Math. Phys., 12
(1971), 1548–1551.

[26] S. Igonin, A. Verbovetsky, R. Vitolo: On the Formalism of Local Vari-
ational Differential Operators, Faculty of Mathematical Sciences, Univer-
sity of Twente, The Netherlands, 2002, http://www.math.utwente.nl/

publications/2002/1641abs.html, Memorandum 1641.

[27] S.-Q. Liu, Y. Zhang, Bihamiltonian cohomologies and integrable hierarchies
I: A special case. Comm. Math. Phys. 324 (2013), no. 3, 897-935.

47



[28] P. Lorenzoni A bi-Hamiltonian approach to the sine-Gordon and Liouville
hierarchies, Lett. Math. Phys. 67 (2004), pp 83-94.

[29] A.Ya. Maltsev, S.P. Novikov, On the local systems Hamiltonian in the weakly
non-local Poisson brackets, Physica D 156 (2001), 53–80.

[30] A.Ya. Maltsev, Weakly-nonlocal Symplectic Structures, Whitham method,
and weakly-nonlocal Symplectic Structures of Hydrodynamic Type, Journal of
Physics A: General Physics 38 (3) 2004, DOI:10.1088/0305-4470/38/3/007

[31] O. I. Mokhov Nonlocal Hamiltonian Operators of Hydrodynamic Type with
Flat Metrics, Integrable Hierarchies, and the Associativity Equations, Func-
tional Analysis and Its Applications, Vol. 40, No. 1, pp. 11–23, 2006 Trans-
lated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 40, No. 1, pp.
14–29, 2006.

[32] S.P. Novikov, S.V. Manakov, L.P. Pitaevsky and V.E. Zakharov, Theory
of solitons: The Inverse Scattering Method Nauka, Moscow (1980); English
transl., Plenum, New York (1984).

[33] P.J. Olver, Applications of Lie groups to differential equations, 2nd ed.,
Springer-Verlag, New York, 1993.

[34] R. Ontani, Some Remarks on the Operators’ Formalism for Nonlocal Poisson
Brackets, arXiv:1912.09284.

[35] REDUCE, a computer algebra system; freely available at Sourceforge: http:
//reduce-algebra.sourceforge.net/

[36] V.V. Sokolov, Hamiltonian property of the Krichever–Novikov equation, Dokl.
Akad. Nauk SSSR 277 (1984), 48–50; Soviet Math. Dokl. 30 (1984), 44-46.

[37] R. Vitolo, CDE: a Reduce package for computations in integrable systems,
included in the official Reduce distribution with user guide and examples.
Also freely available at http://gdeq.org.

[38] J.P. Wang, Symmetries and Conservation Laws of Evolution Equations. PhD
thesis, Vrije Universiteit/Thomas Stieltjes Institute, Amsterdam (1998).

[39] J.P. Wang, A List of 1+1 Dimensional Integrable Equations and Their Prop-
erties, J. Nonlinear Math. Phys. Volume 9, Supplement 1 (2002), 213–233.

48



[40] V. E. Zakharov and L. D. Faddeev, The Korteweg-de Vries equation is a fully
integrable Hamiltonian system. Funkcional. Anal. i Prilozhen., 5 no. 4 (1971),
18–27.

[41] V. E. Zakharov, Application of Inverse Scattering Method to Problems of
Differential Geometry, Contemporary Mathematics Volume 301, 2002.

49


