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Abstract

We compare three different ways of checking the Jacobi identity
for weakly nonlocal Poisson brackets using the theory of distributions,
of pseudodifferential operators and of Poisson vertex algebras, respec-
tively. We show that the three approaches lead to similar computa-
tions and same results.
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1 Introduction

An autonomous system of evolutionary PDEs

up = il ul,,. ), hj=1,..n (1)

I x? xx)

in two independent variables ¢, x and n dependent variables (u/) is said to
be Hamiltonian with respect to a local Hamiltonian structure if it can be
written as

i i 0H
uj =PI, (2)




where

H:/h(uj ul ol ) de

» Yxy Txx)

is a local functional called the Hamiltonian functional, 6/du’ are the varia-
tional derivatives and

P = ZPij"(uk ub uk )00

7 x? xTax?
o>0

is a Hamiltonian operator. This means that the bilinear map on the space
of local functionals defined by

oF .. 0G
PY— dx, (3)

out ow

{Fv G}P =

satisfies the following properties
o skew-symmetry: {G, F'}p = —{F,G}p.
e Jacobi identity: {{F,G}, H} +{{H,F},G}+{{G,H},F}=0.

We point out that in this infinite dimensional framework the Leibniz prop-
erty cannot be required since the product of local functionals is not a local
functional. If the Hamiltonian operator satisfies the conditions above the lo-
cal functional {F,G}p is called the Poisson bracket of F and G. The above
definitions were proposed at the end of the '60 in order to mimick the widely
known finite-dimensional Hamiltonian formalism for systems of ODEs and
to introduce the notion of integrability for Hamiltonian PDEs by analogy.

Famous examples of Hamiltonian evolutionary PDEs come from the the-
ory of solitons. The prototype of such equations is the Korteweg-de Vries
(KdV) equation, that was shown to be a completely integrable Hamiltonian
system in [40, 25]. We refer to the book [33] and to [16] for a general intro-
duction to this subject and the books [17, 32] for an account of the role played
by Hamiltonian formalism in the study of evolutionary PDEs integrable via
the inverse scattering transform (see also [1]).

In the case of first order quasilinear systems of evolutionary PDEs (sys-
tems of hydrodynamic type)

uy = Vi (u")yul, i=1,...,n, (4)

the relevant class of Hamiltonian operators was introduced by Dubrovin and
Novikov in [14]. Since the right hand side of the system (4) are differential
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polynomials of degree 1 it is natural to consider homogeneous differential
operators of the same degree, i.e. operators of the form

P = gi(uM)o, — g“(uh)f‘{k(uh)ui. (5)
Assuming that g is non degenerate and imposing the skew symmetry and
the Jacobi identity, Dubrovin and Novikov proved that ¢ must be the con-
travariant components of a flat (pseudo)-metric and F{k the Christoffel sym-
bols of the associated Levi-Civita connection. Hamiltonian operators of the
form (8) are called local Hamiltonian operators of hydrodynamic type.

The Hamiltonian formalism can be extended to nonlocal brackets defined
by pseudo-differential operators. We refer to [38, 39] for a list of equations
admitting nonlocal Poisson brackets.

In this paper we focus on the class of weakly nonlocal Hamilonian oper-
ators introduced in [29]. They are Hamiltonian operators of the form

P = local differential operator + Z w0, wl (6)
where w! = w! (u/,ul,ul_,...) and ¢* are constants. The operator 9;' is
defined as

81—1/xd 1/+Ood (7)

Due to the presence of the nonlocal ‘tail’ the Poisson bracket of two local
functionals in general is not a local functional. For this reason a rigorous
definition of the associated Poisson bracket requires a suitable extension of
the space of allowed functionals (see [34] for a detailed discussion of this
point).

The first examples of weakly nonlocal Hamiltonian operator appeared in
[36] in the study of Krichever-Novikov equation:

~1
P = u,0, u,.

Multi component generalizations of this operator have been studied in [31,
22]. Further examples of weakly nonlocal Poisson brackets arise in the study
of evolutionary systems of PDEs like KdV equation, the AKNS equation,
Nonlinear Schrodinger equation, the Sine-Gordon and the Liouville equations
written in laboratory coordinates [4, 28, 38, 39].

In the case of systems of hydrodynamic type the nonlocal extension of
Dubrovin-Novikov Hamiltonian operators was introduced by Ferapontov and
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Mokhov in [18] in the special case of metrics of constant curvature, and
further generalized by Ferapontov in [19, 20]. The Ferapontov class is defined
by operators P of the form

P = g9, — ¢"T uk + Zc w' ut o ul (8)
where ¢ are constants and other coefficients are functions of the field vari-
ables (u'); g is assumed to be non degenerate. Like in the local case the
conditions coming from skew symmetry and Jacobi identity have a nice geo-

metric interpretation. For instance, considering for simplicity a nonlocal tail
containing a single term, one obtains the conditions

g7 =4g", (9a)

gk = FU Fi:i? (9b)

g"TI = T (90)

giswi = ¢*w, (9d)

V] = kaf, (9e)

R;c]h = wkwh wiwi- (91)

where V is the linear connection with Christoffel symbols I'};, Ty = —g'Ty,

and th = g”RJ w15 the Riemannian curvature. The above conditions,
first obtained in [19] (for details of computations see [20, 34]), admit the
following interpretation: the first three equations appear also in the local
case and allow us to regard the functions g” as the contravariant compo-
nents of a (pseudo)-euclidean metric and T as the Christoffel symbols of
the corresponding Levi-Civita connection, Whlle the remaining equations co-
incide with the classical Gauss-Peterson-Mainardi-Codazzi equations for sub-
manifolds with a flat normal connection in (pseudo)-Euclidean space. The
(pseudo)-metric g and the affinor w can be identified with the induced metric
and the Weingarten operator respectively.

Many examples of systems of PDEs that admit nonlocal Hamiltonian op-
erators of the type (8) have been found so far: besides the simplest examples
of the AKNS system and the Nonlinear Schrédinger equation [38, 39], we
recall the Riemann invariant forms of the shallow water equation and of the
chromatography equation [20, 21].

Hamiltonian operators of the form (8) are called weakly nonlocal Hamil-
tonian operators of hydrodynamic type.



It was conjectured in [20] that every diagonalizable first order quasilin-
ear system of PDEs of the form (4) which fulfills an integrability property
(semi-Hamiltonianity, that implies the existence of infinitely many general-
ized symmetries) is Hamiltonian with respect to a suitable weakly nonlocal
Poisson bracket of hydrodynamic type (8) (with possibly an infinite sum in
the nonlocal tail). A strategy to prove this conjecture based on inverse scat-
tering techniques was proposed by V.E. Zakharov in [41]. In the case of first
order quasilinear systems obtained as reductions of dispersionless KP and 2D
Toda hierachies an explicit formula of the weakly nonlocal Poisson bracket
in terms of the conformal maps defining the reductions was found in [22] and
[5] respectively.

Since the dispersionless limit of a large class of evolutionary systems of
PDESs consists in a system of first order quasilinear PDEs, it is natural to ex-
pect that weakly nonlocal Poisson brackets of hydrodynamic type and their
deformations will play an important role in their description. This notwith-
standing, the study of weakly nonlocal Poisson brackets has been quite lim-
ited so far, especially if compared to local Poisson brackets of hydrodynamic
type and their dispersive deformations. The main reason is probably the
much higher computational difficulties with respect to the local case.

In the literature one can find (at least) three approaches to the Hamilto-
nian formalism for PDEs:

1. the approach with distributions [14, 15, 16];
2. the approach with differential operators [3, 10, 33];

3. anew algebraic approach based on Poisson Vertex Algebras, introduced
in [2] for local Poisson brackets and later extended to nonlocal Poisson
brackets in [9].

The aim of this work is to illustrate an algorithmic procedure to com-
pute the Jacobi identity for weakly nonlocal Poisson brackets in the three
formalisms above. We hope in this way to make it accessible to the widest
possible audience, ranging from theoretical physicsts to pure mathematicians.

In the case of distributions, the algorithm has been introduced in [28§]
in order to study the bi-Hamiltonian structure of the Liouville and sine-
Gordon PDEs. In the case of differential operators, the algorithm is shown
here for the first time thanks to the explicit correspondence between the
languages of distributions and differential operators. In the case of Poisson



Vertex Algebra, the algorithm is obtained observing that the infinitely many
conditions coming from Jacobi identity appearing in [9] reduce to a finite set
(at least) in the case of weakly nonlocal operators. A nontrivial application
of this procedure can be found in [7].

In all cases, the algorithm consists in the reduction of the Jacobi identity
for weakly nonlocal operators to a canonical form: this is practically achieved
by means of identities between distributions, or integration by parts, or al-
gebraic manipulations. The dictionary between the three formalisms shows
that there is a bijective correspondence between the canonical forms in the
three formalism, and that the computations that are performed in order to
reduce the Jacobi identity to the canonical form are the same (6).

In order to illustrate the algorithm and the correspondence between the
different formalisms we will consider the case of weakly nonlocal Poisson
brackets of hydrodynamic type.

The paper is organized as follows. In Sections 2,3 and 4 we explain the
algorithm to check Jacobi identity in the three formalisms and we write a
sort of dictionary between the three approaches. The remaining sections are
devoted to illustrate the algorithm in the case of weakly nonlocal Poisson
brackets of hydrodynamic type. We consider the case where the nonlocal tail
contains a single term but the computations can be performed in the same
way in the general case.

Acknowledgments. We thank E. Ferapontov, J. Krasil’shchik, M. Pavlov,
D. Valeri, A. Verbovetsky, Y. Zhang for useful discussions. M. C. is supported
by EPSRC grant EP/P012698/1. P.L. is supported by MIUR - FFABR funds
2017, by MSCA RISE 778010 IPaDEGAN and by research funds of the Uni-
versity of Milano - Bicocca. P.L is grateful to the Department of Mathematics
and Physics “E. De Giorgi” of the Universita del Salento for the kind hos-
pitality and for supporting his visit. R.V. acknowledges the support of the
Department of Mathematics and Physics “E. De Giorgi” of the Universita del
Salento and of the Istituto Nazionale di Fisica Nucleare, Sezione di Lecce,
[S-CSN4 Mathematical Methods of Nonlinear Physics. Finally, we thank
GNFM for supporting activities that contributed to the research reported in
this paper.



2 Jacobi identity and distributions

Here we briefly introduce weakly nonlocal Poisson brackets as distributions
and describe the algorithm for bringing the Jacobi identity to a reduced
canonical form.

2.1 The Jacobi identity
Following [29], we consider weakly nonlocal Poisson brackets of the form

{u'(z). @ (y)}p =Y B (u",up)d® (@ —y)

k>0
+ewg (u, ug)v(@ — y)wl (u ug)  (10)

where v(z — y) = 3 sgn(z — y).
The Jacobi identity

{w' (@), @ ()} p,u ()} p + {u" (), u' (@) }p, o’ (y) e
+{w (y),u"(2)}p,u'(2)}p =0 (11)

can be written as [16]

ij iJ ki
gk _ an{y o plk 4 apx{y o plk 4 apzx aa'Plj_'_
T Gl () () Bl (o)
) ) OP*

UPl] Y,z 80Plz Y,z aaPlz =0 12
au (et G B e g (e 0 (1)

where P = {u'(x),u/(y)}p. The vanishing of the distribution .JJ" means

TYz

that for any choice of the test functions p;(z), ¢;(y), r(z) the trlple integral

/ / / 5k () () (2) dedyd (13)

2.2 The algorithm

should vanish.

Following [28], we present a procedure to collect together all terms which are
related by a distributional identity. We call the result of this procedure the
reduced form of the Jacobi identity.



1. Using the identity
v(iz—y)o(z —x) =v(z —y)d(z — 2) (14)

and its two obvious analogues obtained by a cyclic permutation of the
variables, together with their differential consequences, we can elimi-
nate all terms containing v(z —y)0™ (z — ), v(y — )™ (y — 2), v(z —
2)6(™ (x — y) producing nonlocal terms containing v(z — y)d™ (x — 2),
v(z —2)6M (2 — ), v(y — 2)6"™ (y — z) and additional local terms.

2. Using the identity

n

10 =2 =3 ()@ -0 )

(and its cyclic permutations) we can eliminate the dependence on z in
the coefficients of the terms containing v(z — y)§™ (z — 2), the depen-
dence on y in the coefficients of the terms containing v(z —z)6™ (z —y)
and the dependence on x in the coefficients of the terms containing
v(y — 2)0"™ (y — x). After the first two steps the nonlocal part of Jgﬁ
has the form

ar(z,y, 2)v(x — y)v(z — z) + cyclic(x, y, 2)
+ Z b (, y)v(z — 4)6™ (2 — 2) + cyclic(z,y, 2).  (16)

n>0

3. The local part of Ji% (which contain also some additional terms coming

from the nonlocal part) can be treated as usual and reduced to the form
> emn(@)6" (2 — )5 (2 - 2) (17)

using the identities (and their differential consequences)
0(z—2)0(z —y) =6y —2)d(y — 2) = 6(x —y)é(x —2)  (18)
and the identities (15).

It is easy to check that no further simplifications are possible. We will see
later that the fulfillment of the Jacobi identity turns out to be equivalent to
the vanishing of each coefficient in the reduced form.
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3 Jacobi identity and differential operators

3.1 The Jacobi identity

The conditions under which the bracket (3) is a Poisson bracket can be
written as requirements on the differential operator P (6). We recall that
the operator P is a variational bivector [3, 10, 33|, hence it is defined up
to total divergencies. We consider Poisson brackets defined by differential
operators of the form P¥ = B9, + e*w' d; 'w’ (6). Then, it is well-known
that

e the skew-symmetry of {, }, is equivalent to the formal skew-adjointness
of P, P* = —P;

e the Jacobi identity for {, } p is equivalent to the vanishing of the Schouten
bracket [P, P] = 0.

Note that the Schouten bracket of two variational bivectors is a variational
three-vector, i.e., it is a skew-symmetric differential operator with three ar-
guments whose value is defined up to total divergencies.

In coordinates, the formal adjoint P* of the operator P is

Py = (=1)10,(B974;) — e*wl. 0yt (wiaby); (19)

here and in what follows 1 = (v;) is a covector of differential functions

Wy = (W ul,ul,,...) We stress that the non-local summand of weakly

Y x xax)?
nonlocal operators is skew-adjoint by construction: we have (9, !)* = -0, !.

Let us denote by £p,(¢) the linearization of the (coefficients of the) op-
erator P. We have the following coordinate expressions:

. QB ow’, Y
lpy(p) = Waa%l@rsﬁk + e"‘w "0, (wiah))

J
ow?,

+ et w0, ( " Tso%) . (20)

where we used (106) and the fact that ;! commutes with linearization.
Then, we have the following expression for the Schouten bracket:

[P, Y, 0%, 4°) = 2[lpyr (P(47)(V°) + eyelic(y’, &% ¢%)],  (21)

10



where square brackets denote the fact that the expression is calculated up to
total divergencies. We observe that the expression of the Schouten bracket
of two operators can be written in different ways, which differ up to total
divergencies. In the Appendix we wrote two more expressions that are more
commonly used in the formalism of differential operators, together with a
proof of their equivalence.

3.2 Dictionary: distributions and differential opera-
tors

Here we present a dictionary between the language of operators and the
language of distributions for the reader’s convenience. The calculus with
distributions is defined in [16, Subsect. 2.3].

The following notation for a local multivector coincide:

P —piviz i (ui($1)7 Ul (561)) 5(02)(561 _ a:2) e 5(%)(3;1 — x’f)) (22)

090 o
1119 1 1 qo2,/2 oL .k
P:/B 2l ey gk g (23)

In particular the value of the multivector in the distributional notation is
obtained by evaluating it on test vector functions of the arguments z!, ...,
2¥. The above correspondence can easily be extended between the nonlocal
multivectors (10) and (6). Then, it is clear that the expressions (12) and (21)
coincide up to the evaluation on test vector functions.

3.3 The algorithm

The result of the Schouten bracket [P, P] (21) is a three-vector and has the
following coordinate expression:

[P, P)(¢', 4%, %) = T(¥', 4%, ¢°) = / T2 00,7, Oy U5, dae (24)

T1i2028393 g defined up to total divergencies: this means that three-vectors of
the type 0, (11912725930, ! 9,12 O,,0¢ ) are zero. It immediately follows
that a local three-vector which is of order zero in one of its arguments is zero
if and only if its coefficients are zero.

The algorithm in Section 2.2 translates into the language of differential
operators as follows. Let us introduce the notation

G = 0 (wig), (25)

11



where a refers to the particular argument of the operator. Then, the vector
functions 9!, 2, 13 play the role of test vector functions of the variables x,
Y, z in the language of distributions.

1. The first step in Section 2.2 is not needed in the differential operator
formalism, as it boils down to a change in the variable of integration
(and its differential consequences).

2. The second step aims at bringing the nonlocal part of the three-vector
in the reduced form (16). To this aim, we remark that the reduced
form of the distributions implies that there is no distribution of the
type v(xz —y) acting on two vector test functions. This means effecting
the following substitution (up to total divergencies)

J
ow?,

e“w’ 9! (Guk 8T(ka"(901pz + eawfﬂ/?g)kwj) R

a,la awZv kpo b a, k 7b\k, |c
—¢€ wa 87'(B P aa@Dp +e wawo) QZJJ (26)

k
ouk

After such a substitution, we observe that the generic summands of (20)
are of three types:

CoPF gy, (27)
G 0, (), (28)
CH7T 0 (47) D (15 %, (29)

where C’s are functions of (u’,u’). The reduced form of the three-
vector in the formalism of differential operators amounts at bringing
the operator to a canonical form where the arguments 1?, ¥, ¥¢ are
a fixed sequence of integers (say, 1, 2, 3) or its cyclic permutations (in
the previous example, 3, 1, 2 and 2, 3, 1). This task can always be
achieved by integration by parts that will produce the required terms
plus extra terms.

3. The third step of the algorithm amounts at bringing the local part into
areduced form. This is achieved with the usual procedure of integrating
by parts the three-vector with respect to one distinguished argument
(say v¥?) in such a way that the result will be of order zero in that
argument.

12



4 Jacobi identity and Poisson Vertex Alge-
bras

4.1 The Jacobi identity

Following [9] we introduce the notion of (nonlocal) Poisson vertex algebra.

Definition 1. A (nonlocal) Poisson vertex algebra (PVA) is a differen-
tial algebra (A,0) endowed with a derivation 0 and a bilinear operation
{3y} AR A= R(A1) ® A called a (nonlocal) A-bracket, satisfying the
following set of properties:

1. {0frg} = =M frg} (left sesquilinearity),

2. {\dg} = A+ 0){fog} (right sesquilinearity),

3. {rght ={/frg}th + {f h}g (left Leibnitz property),

4. {foxh} = {faroh}g + {grroh} f (right Leibnitz property),

5. {9/} = —{f-r_gg} (PVA skew-symmetry),

6. {f{g.h}} — {9u{fih}} = ({/rg}rsuh} (PVA-Jacobi identity).

In the notation for the bracket, the symbol separating the two arguments
is the formal parameter of the expansion. We denote

{fg} =) Culf. 9N,

s<S

with Cs(f,g) € A; the argument signals that each of the coefficients of the
expansion depends on the two elements f and g in A. Such an expansion is
bounded by 0 < s < S for local PVAs and is not bounded from below for
nonlocal PVAs.

The special notation used on the RHS of Property 4 is to be understood
as

(g = ¥ Clhp)n+ 0= 3 (7 ) Cul ot

s<S

Similarly, the RHS of Property 5 (the skewsymmetry) reads
Afacagl =D (A= 0)Cif,9).

S

13



For a nonlocal A bracket, the three terms of PVA-Jacobi identity do not
necessarily belong to the same space, because of the double infinite expansion
of the brackets (in terms of (A, u), (u, A) and (A, A + p), respectively). A
bracket is said to be admissible if all the three terms can be (not uniquely)
expanded as

(P93 = D0 )0 g NN+ )

m<M n<N p<0

Only admissible brackets can define a nonlocal PVA. We denote the space
where the PVA-Jacobi identity of admissible brackets takes values by V) .
This space can be decomposed by the total degree d in (A, 1, A+ p); elements

of each homogeneous component Vk(,du) can be uniquely expressed in the basis
[11]

Nepd= 1 €7,
AN 4 )™ i={1,2,...}.

This filtration in the total degree d and the subsequent choice of a basis plays

a crucial role in obtaining the normal form for the PVA-Jacobi identity.
The main result used to perform most of the computations is the so

called master formula. Under the hypothesis that the differential algebra A

is generated by the elements (u'), the A-bracket between any two elements

of A is explicitly given by

af

A+ 0)7 {uh ot} (~A = 0) 22 (30)

9g

{f)\g} augf

Thus, the structure of a PVA is defined by the matrix of the A brackets
between the generators {ufu’} = P7*()).

In the nonlocal case, expressions such as (A + 9)P for p < 0 arise in

P7*(A+9) from the master formula (30). In such cases, the rigorous approach

— working for any kind of nonlocality — is to expand the negative powers of

(A+0) as
- _ P\ pkak
(A+0) —kE>0(k)/\ 0%, p>0 (31)

In the weakly nonlocal case this can be avoided, relying only on Properties
(1)-(4) of the lambda bracket. More details on this will be provided in Section
7.2.

14



4.2 Dictionary: Poisson Vertex Algebras and differen-
tial operators

The connection between the theory of PVA and Hamiltonian operator is
given by Theorem 4.8 in [11, pag. 261]. In short, there is a 1-1 correspondence
between A-brackets of a (nonlocal) PVA and (pseudo)differential Hamiltonian
operators; the entries of the matrix P7*(\) correspond to the differential
operator P (6) after the formal replacement of \ by 0.

More precisely, the equivalence between the expression of the Poisson
bracket (3) and the expression of a A-bracket according with the master
formula (30) is

5f 5g
F.G}, = Piicg, 2 dy
(F.G}, /51 O

/898 (Pz]TaT<_a)e af
oul

) = /{fkg}ho dr, (32)

using (30). The PVA-Jacobi identity for a triple of generators (u, u?, u¥) can
also be expressed by means of differential operators. First of all, we compute
the PVA-Jacobi identity using the master formula; we have

3P’”( )

{ui{uju}} = (A+0)7P"(N) (33)

f)
o,

[ b} = P+ i+ ) (<A — = D)7

(n+ 0)7 P (1) (34)

IPT(N)
oul,

{ul {uyu*}} =

(35)

The PVA-Jacobi identity is J” (P, P) (33) — (34) — (35) = 0. We evaluate
the expression on three covectors h w Y3, and regard each power of A\ as
derivations acting on 1!, and each power of i as derivations acting on 2.
Then, the three summands correspond to

(W%, Lpyr (PU?)), (36)
(U7, Lpya (PYY)), (37)
(U, Pl ya (%)), (38)

respectively, and the PVA-Jacobi identity is the vanishing of the Schouten
bracket [P, P] in the form of (110).

15



4.3 The algorithm

For the local case, the expression of the PVA-Jacobi identity is a polynomial
in A and p, and the vanishing of the coefficients of \?u? corresponds to the
vanishing of the coefficients for 0P(¥})07(¢3) 3.

In the nonlocal case, the PVA-Jacobi identity is a Laurent series in A7!,
ptand (A+p) 7! living in the space V), defined in Section 4.1: in the weakly
nonlocal case, these coefficients come, respectively, from the expansion of
A+9) L (u+9)™, A +pu+0)" L.

From the computation of the PVA-Jacobi identity we obtain seven types
of terms including one or two nonlocal factors, together with the pure local
terms; each of them corresponds to the types of summands in the three-vector
of the Schouten identity in (24), as detailed in (27) and following. They are

1. AJFXPt with p,q > 0, corresponding to 07 (1} )07 (3 )13

2. wF(\+ p+ 9) LAY NP with p > 0, corresponding to 3p(1/)i1)1/@24;3;
3. wh(\ + p+ 0) LAY P with p > 0, corresponding to w%ap(?ﬂ?)&%
4. [N+ 0)~tw'] AT* P with p > 0, corresponding to &18”(@&?)@/}2;

5. (11 + 0)~'w]AM AP with p > 0, corresponding to 9P (¢} )ih2e;

6. wF(A+p+ 0)"tAI (A + 9)"1w', corresponding to &11@&3;

7. WA+ p 4 0) " A + 9)'w!, corresponding to 1 )3

8. [(A+0)"w]A¥[(n+ 9)~'wi], corresponding to ¢y

The square brackets denote that the differential operators obtained by the
expansion of the pseudodifferential operator do not act outside them.

Note that the expansion of the terms 3 and 7 is not expressed in the basis
for V), we have chosen; on the other hand, terms 3 and 5 do not correspond
to the choice of coefficients for the normalization algorithm of the previous
Sections (when one takes the cyclic ordering roP (°)ap°).

We give a different treatment of the terms including at most one nonlocal
expression and of the ones with two: in the first case, we bring them to a
form whose expansion is automatically expressed in our chosen basis for V) ,;
in the second case, we show that the vanishing of the term 7, together with
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the other ones, is equivalent to the vanishing of the corresponding terms in
the expansion on the basis.

Finally, we comment on the equivalence between the vanishing of the
PVA-Jacobi identity on our chosen basis and as a result of the normalization
algorithm of the previous Sections.

Proposition 2. The terms of type w*(\+ pu+0) LAY uP can be brought to a
combination of terms of type AY* NP with p,q > 0 and w¥(\+pu+0)"LAYNP,
reducing the PVA-Jacobi identity to the expansion of seven terms.

Proof. From the expansion (A+u+0)? = 37, (") P~ (A+0)" we can rewrite
a term of the form w*(\ + p + 9) LAY P as

p—1
WA+ p+0) 7 (A p+0)PAT = G}) pA+o)ptAT]

=0

which gives

p—1

WO\ + 40P TAT —wF AN+ p+0)7! [ (];)) pH (X 4 )Pt AY

=

The expression in the square bracket has top degree p — 1 in . Repeating
the operation we obtain only local terms or terms of the type 2. O]

Theorem 3. The PVA-Jacobi identity, expressed using terms of the type 1,
2, 4 — 8 as above, can always be expressed in the space V/\(i). This latter
expression vanishes if and only if the former does.

Proof. Expressing the PVA-Jacobi identity in the space V;j?, for all for d <
D, means expanding it on the basis N’u?=?, p € Z and (A + u) PATP, p > 0.
Terms of type 1 do not need to be expanded, as they are already expressed
in the basis for V/\(Z), d > 0.

For the types with one nonlocal term, namely 2, 4 and 5 in the previous
list, the expansions of the pseudodifferential operators give the series

D (D) (A 4 p) A9 AT (39)
t>0
> (=1 Ak A (40)
t>0
Z(_l)tAki)\p,u—t—latwj (41)
t>0
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which are in our chosen basis of V)\(i), for d < p—1. The vanishing of the t = 0
term in the expansion is a sufficient and necessary condition for the vanishing
of the whole series: all the subsequent terms in the expansion vanish if the
first one does, and it must vanish because that is the only one in V)\(’Tl)
containing the factor (A + u)™! (resp. A~' and p!). It is hence enough to
check (or impose) the vanishing of the coefficients A or w. However, the
vanishing of the w terms coincides with the dropping of the nonlocal part of
the A bracket, so the condition is only on A’s.

A similar point can be made for the types 6 and 8 with the double non-
locality: their expansion is expressed in our chosen basis and starts, respec-
tively, with (A + p)7!A7! and A~'p~! in V;f). The expansion of the term
7 starts with A%w*w?(\ + p)~'p~!, which is not an element in the basis of

-2 . . . .
V/\( B ), However, this is a term we can rearrange as an infinite series

AlwFu? (Alul —(A+p) P+ Z Cm(A + u)Qm)\m>

m>0

for some fixed constants c¢,,.

Note that elements in V;j) could be obtained by the expansions (for ¢t =
1) of the previous terms with only one nonlocality. However, the vanishing
of the elements in V)\(Ll) implies their vanishing, too, and hence we can focus
on the terms arising from the expansion of double nonlocalities only.

It is straightforward to see that we get only one expression in front of
(A + p)7'A7! (from type 6) and (A + u)~2 (from our rearrangement of type
8); on the other hand, there could be two sources of terms of the form A\=!x~!.
The vanishing of either A or w for all 4, j, k in the first two cases is a necessary
and sufficient condition; once that this has been imposed or checked, the only
surviving class of terms of the form A~'x~! comes from the expansion of 7.

Since the vanishing of w is equivalent to simply dropping the nonlocal
term of the operator, the condition we need to consider is only the vanishing
of the expressions A’s. n

Remark 4. The above theorem has two important consequences.

1. This algorithm always yields a divergence-free form of the Jacobi iden-
tity; this means that the Jacobi identity holds if and only if the coeffi-
cient of the Laurent series in the spaces V/\(fg vanish.
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2. There is no need to expand in Laurent series: indeed, the expansion is
always ruled by the zeroth-order coefficients, which are just the coeffi-
cients of the terms 2, 4 — 8.

Remark 5. Writing the PVA-Jacobi identity on our chosen basis of VA(fg for
d > —2 yields a different result than the one obtained with the algorithm
described in Section 3.3. For the terms with one nonlocality, indeed, the
PVA-Jacobi identity produces the coefficients corresponding to 8”(1/1})1/1?1;3,
OP (Y2t and 0P(y})v3)?, while the latter is replaced by 07(¢?)vl? in
Section 3.3.

Nevertheless, the sets of condition given by the vanishing of the coeffi-
cients in front of the terms obtained with the two different algorithms are
equivalent. Let us demonstrate it assuming that the terms of type 5 are

AN (p+0) w4+ Ay M+ 0)'w + Ag (u+ 9) M, (42)
corresponding to
Ay 207 (VM) + AP ) + Ag PP . (43)
This latest expression is equivalent, up to total derivatives, to
Agp? 1 0% (%) + (2045 — A P2 O(WP) + (Ao + 9% Az — OA)) 1P
+local terms. (44)

The vanishing of expression (44) at top degree implies the vanishing of the
lower degree coefficients, being hence equivalent to the vanishing of (42).

The same result can be obtained in the framework of Poisson vertex
algebras introducing the symbol v = —\ — i — 0, representing derivations
acting on 13 [12, Section 4.1].

5 Weakly nonlocal PBHT and distributions

5.1 Calculation of the Jacobi identity

In this section we will consider, as an example, weakly nonlocal Poisson
bracket of hydrodynamic type, of the form (8). In the language of distribution
it has the form

P, = g7 (u(x))dL, + T} (u(z))ubds, + w(u(@))ulve,w] (u(y))u,  (45)
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(we will use only one ‘tail summand’ to make calculations simpler) where
dpy = 0(x —y) € vy = v(z —y). We assume ¢ to be non degenerate. In what
follows, an index after a comma denotes a partial derivative with respect to
the corresponding field variable, e.g. gij = 0g" |OuF.

From the skew-symmetry the two conditions (9a), (9b) follow, namely:
9" = ¢’ and gy —= T/ +T'. We apply now the reducing procedure explained
in Section 2.2. Since P} depend only on u(z) and u, each sum in (12)
contains only two terms. The Jacobi identity can be rewritten as

P, oPY, oPk. opPk

Pul(n) - e T du(y) V: Dd(z) ? 2t aul(;;) St
+ apig,]z Pli + 8P]k Plz a a apﬂvya Plk
o (y) e T Ba(ey et g 0o T, :
oPk - gpki apﬂk aPJk
8;éxazpzl{y+ 8% 20, PY, + o l —220,Pr, + 2= oy l — 225, Pl =0 (46)

5.2 Calculation of the reduced form

The first summand in (46) is

aPl % i s ) j
Pul(x )P”“ = ( ljéfvy + T3 0y 4 we s Vaywy uZ) .
(9™ ()8, + Tl 6, + wiudvwil)  (47)
The coefficients of the reduced form are listed below.

e The coefficient of & ¢’ _ is g”“gflj.

zy zz

: S t,k
The coefficient of vyyv,, 1s wg jwy,uy'u; sl Uy W

The coefficient, of 07,0, is g” [yl

The coefficient of §,,6!, is glkl’i{lu

: : iy plk,t,,s tJ, 0,8, 0k, t
The coefficient of 0,y0,. is I'; ;I u uy — g7 wiuzwiuy,.

The coefficient of 0,41y, is —0, (g7 whuf)wful + T ]lwlu uSwiul.

The coefficient of 0g. vy is w] T ulufw]ul,.
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: / ; l kot
e The coefficient of 0,,v,. is —g" i Twhu SWE U

e The coefficient of &)1y, is g*w! jujwlul,.

The second summand in (46) is

1]
anyP”“ = wius vy, gt w! ulo! +
xT
E)ul( ) Y t,l "y yz
3 k. m,_ t i .8 7 1l m k n
+ wiu vy wy lquy Uy Oy + WU VW, Wy, Uy U V. (48)

The coefficients of the reduced form are listed below:

e The coefficient of d,,0,. is wiu glkwilu

e The coefficient of v,.07, is — Iglkwglu
e The coefficient of v,,0,, is —wlus0, (g”“wilui) + wiuiw] TRurul

J ool o mot n
e The coefficient of v,,v,. is wiuiw] whuy ulwiu?.

x>

The third summand in (46) is

5’Pki ) o
Dul(= )P b, =g"gh6L,0L, + N T ulS,, 6. + gV T us6.00,,
+ Fkllfl] Lus,.0,, +g wsu§5/zwuzywtu + Fk wruzuzdmuzywt v

lj / lj t
+ gwk ol vawiud, + wk TP ul

z7zy 5zy szwt

k.l J.n
+ wh wh uluSvgwiulvwlur. (49)

The coefficients of the reduced form are listed below.

e The coefficient of d7, 6, is —g QT

e The coefficient of 4,4}, is —gljgff

e The coefficient of (5;y(5xz is —0, (gljgl ) — gﬁirfgjué + gljrgflus

o The coefficient of §,,6! , is —gl’FJ L.

e The coefficient of 8,0, is —0, (g’?rfﬂui) +T% T ubus — ghtwlusw]ul,.
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3 : kiygl, s Jot LT D S A
The coeflicient of 0,1, is —0, (g,l wsux) wyu, + Udhwuguzwy .

; sq ank Tt s, it
The coefficient of 9,1, is wg, Iy ujuiwius,.

The coefficient of 07, 1., is g wk uswiul,.

The coefficient of 0,14, is —ghwluiw]ul,.

: : k ., o m, s, i
The coefficient of v, is w§ yw;, ul uiwiulw)uy

Yy

The fourth summand in (46) is

OPr.
oul(x)

I k, s 7 !
Pw{ = w,u Vmg wtjluxéxy

l

k, s i plj, m,t k, s ) m, t J.n
+ wiulv.wh U w0y + wiuSvapwy jwy, ul v, Veywiug . (50)

The coefficients of the reduced form are listed below:

e The coefficient of 8,0, is whusg"w] jul,.
e The coefficient of v.,d;, is —wlusg"w; ul.
e The coefficient of 1,04y is —wkusd, (¢7w] ul) — whuiw] T ulul.
e The coefficient of V.44 is wiuw] w!, uulwlul.
The fifth summand in (46) is
0P, — L2 pr, 600 4 g T UL 0y + 9" Tl 6,20,
3ul() ggl Yz yx+g,l uy Yz yw+g lu Yyz¥yx
+ FiﬁriiuZuzdyzéyx + g wsuyéézyyxwfut + ij whudus b, vy wil,

li, J . 8§/ li s
+g ws7luy5yzyyzwtu + +w i u U 5y$1/yzwtu
+w wl um us v wiul vy whuy. (51)
s,0m ™y yz "t yx T
The coefficients of the reduced form are

e The coefficient of ¢’ 4" i g“g]lk.

Y xZ

e The coefficient of §,,6", is —gligik.
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o The coefficient of d,,0,, is —0, (g“g]k> + gikI’?u g“FSlu
e The coefficient of 97, d,. is — “Fslu

e The coefficient of d,,0, is —0, <g“FS us > + Fé%f‘?uiu; — g’jlkwl

sTYTY

Spyia,t
UL Wil

e The coefficient of 0,,v,, is —0, (gjl wéui) wiu! + Fslw uSuswiul.

e The coefficient of &,,v., is —g’ wiuswju

; / k,t
e The coefficient of d],v,. is ¢ i’ LUy WU

3 ; J ol k,t n
e The coefficient of vy,vy, is wg wy, u ugwiu; whul.

The sixth summand in (46) is

opik

Y2

du'(z) ~

lz g /
P = wlu; Vyzg w“uzézm

k0

li , m, t .S m, t i, n
+ wlus Vyzw”F UZMUL0 2+ WU Yy W0 W WUV W U

The coefficients of the reduced form are listed below

e The coefficient of 8,0, is wlugg"wy ul.

e The coefficient of 1,0}, is wiujg"wf ul,.

e The coefficient of 140, is +wlusd, (¢"wful) — wiudwy T ul
e The coefficient of vy.v., is +wludwf wh, ululw) .

The seventh summand in (46) is

oPd, .
6 lz a P(EZ:

(F;jdmy + wfyxwa uZ) 0, (g”“(:z:)(sgz 4+ Tyl §,, +wlu szwfut) )

The coefficients of the reduced form are listed below:

e The coefficient of 8,,0", is g"*T'.
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: " : 1,0k, ]
The coefficient of d;, vy, is wjg™w] uy.
: 1o TRt
The coefficient of 0,07, is I'/T'ul, + T
; o T, 8,,t ik, t ) 108,k
The coefficient of d,,0,. is T} T uju, + U T g, + T wauiwiu

: T
The coefficient of 0,1, is I'}w,

r

,m

The coefficient of 0,1, is

wffg’;u;u;wﬁ Uy + w;T iku;xwﬁu; + wjw
. ! : ik, 8,07 0T ik, t ]
The coefficient of d;,v,, is wjg'gusw uy + w T uw] uy.

. . ’L
The coefficient of v,,v,, is wjw

l
s,

The eighth summand in (46) is

oP4

m,,s tog 0T %
m Uy Ug Wy U Wy Uy + Wy W

l k
s

T

k l

s xrx

ij lk, s
g5 u;.
t
o
My, S,k t tj, 0,8 kot
upujwiuy, + U wous wiu,.

s t, J,T
U, Wy U, W Uy.

k

z,Y lk _ ,,i,s J lk st lk, t L, s k,t
—aypy,z = WUy Voy Wy ay (g 6yz + Ft uyéyz T+ WUy Vy Wy uz) :

!
(9uy

Y

The coefficients of the reduced form are listed below:

- i : G AR g5 g Uk,
The coefficient of 6,0, is wiudw] g' ull —wiu 0y (w] g™ ) +wiudw] TFul.

J Uk ,,m

The coefficient of v,.6’, is

lk, m

| i .8 7 lk i.5 Ik t
—wiuywy g ul + 2wiu 0, (w]g™) — wiuiw] I u,.

: "o iS00 Alk
The coefficient of v,.d7, is wiugw; g™.

The coefficient of v,.d., is

i,,8 2
Wiy (az (w

7 1k
19

) — 0. (w) g ul") +wiT

Jpilk, t Jik, t J
+w T uz 02y — 0. (w T u?) + wjw

J ol

The coefficient of v,,v,, is wiuiw/w!, u

Ty

J Ak

: ’ i,,8
The coefficient of d0,,07, is wiujw/g™.

: / : i0,80,00 lk
The coefficient of 4,0, is —wuzw;g™.
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r

J
l

r, k,t
UL WU
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ruyyw

)-

k

LU

s tod 0T
u wtuzwruy.
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The ninth summand in (46) is

oPFi ) 89
Z,x 82Plj — sz
ou =Y ou?’

r’“rt usu g(szmazy + TFT P U606, + TFTY U0,

i t
+ I 'w ”

ki s k lj, s st
+ Tl dmézywtu +wlg uzézyl/wa uy (54)

U36..0%, + gV} 0,407,

l
z

us t ki
W U (5Z$szw + TFwhus 0,y wiu

lj s s, t VIS
—|—wlg 7, szw uy —|—wlF USUL Oy VW) U,
kmlj, t i, T lj, t st i,r
w; Ty uzzézyuzxw ul, + w T uzézyymwr u,

l

i J,t
VoW, Uy, + wl WUV oy WY (%

gt
—i—wl (T T szwtuy

i,
s,m =z VZIwrux

+ wiwlus . wlut

yymw u

The coefficients of the reduced form are listed below

e The coefficient of 87,0, is g"T'}".
o The coefficient of &/, 3, is [¥g%us + TFTul.
e The coefficient of d,,0, is F’“Ft asul + TRl + TFwluswlul,

5+ F’“w us

smm s TxXT

e The coefficient of §,,vy, is (F"“ ) w! ug

' ' y , ,
e The coefficient of 0., v, is (wfTPul, +wiT{usul +wfwludw]ut ) wl ul.
e The coefficient of &, 1., is w}gluswi ul, + wfTy ubw! ul,.

kol

e The coefficient of v, v, is wjw, !

U uSwut wl ul + whwlud wlul wi .
e The coefficient of 67, v., is w} g w}. ul,.
The tenth summand in (46) is

ki
ou z

+ w U l/mwlf

lj — 5k, 1l]m/ k,,s v/
=0, Py, = wiuiv.,wi gl ul'o,, + wiuiv.,wig? o,

t k. s iyt k, s lj t g/
tm T x(siﬂy_’_wsuzyzxwlrt umx5$y+wsqu2$wF ua:é;ry

l

S
+ ws U szwl w,.

r gt k, s 1,1
m Uy U Vay Wiy, + Wou szwlwruml/xywtu

Y
+ whui v wiwl 5xywt . (5B)

The coefficients of the reduced form are listed below:
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o The coefficient of 0,0, is wrudwighd u +wkudwilyul +0, (whus )wigh.
e The coefficient of v,,.0,,, is wiuiwjg", uy+wlu swil' ! —2wkus 0, (wigh).
e The coefficient of v,,0,, is

— wbuz (0, (wighuy) + 02(wig?) + wiT

+wiTPul, — 9, (wiT{u!) + wjwlu wiué)

7,.

kS win! k ! gt

e The coefficient of v.,v,, is w{uiwjw, ,ui'u; wtu + whuwjwiul,wlul.
: ! : ko, S,,,0 Al7
e The coefficient of 0;,0,. is 2wiusw;g”.

e The coefficient of d,,0,, is wruswigh.
e The coefficient of v.,d;, is wiuiwig”

The eleventh summand in (46) is

jk:
li ]k li / lipgk 1" Jkpli | s, t
Gul “0,P), = Uy0yz0y, + g 170,20, + T Ty ugu 0,20y,

Jkli, t Jkli, t ! ]k m, s it
+ 17 Ty, 0420y + 17 Ty, 0,20, + T wyg muy uyéyzuyxwtux
ik i, t Jjk, 1, s li, s kT
+ 1Y wsuyyéyzuymwtu + I wgug 0, Oyewinl, + wy gy uyéyxyyzwr u’
li gn kT li r li
+wlg Oy Vyz W0y UL + W I‘ts yuyéyxyyzwr ul + wjT! uy, 5yzz/yzw u
Jli ! k_ r l s it k
+wy I uyéyxuyzw U, +wlw u Uy Vg Wy Uy, Uy W,. u
+ 7.1 U U + 55 3 tV k_r
wjwyy, Wit vy wk ul wlw Uy Oy Wy U, Vo Wy U

(56)
The coefficients of the reduced form are listed below
o The coefficient of d,,6!, is — Jkghug + 20, (g"TI*) — TJF Dt
e The coefficient of 07,4, is 20,(¢"T{") — I{*glus — T{* Tl

e The coefficient of ;0. is

_ 8 (nggl;um) —|—82( lzrjk) +1"jk1—\lz 54

tsxac

Jkli jkli, t gk, 1, s, i t
+Fl Ft ua:a: _8$(Fl Ft um)+rl WUy Wyl
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e The coefficient of 8,,8", is g"TI".
e The coefficient of &5, is 2¢""T7".

e The coefficient, of §7,0,. is g1y k

3 3 gk, 1 m,, s gk, 1, s i,,t
o The coefficient of d,,v,, is (I w, ,,uTui + I wiud, Jwpul.

s,;mz s
; ; Jli ,,8,,t Jli, t Jord 0180in t \o ko7
e The coefficient of d,,v,. is (wy T uguy, +wi Ty, +wiwu, wiu, )w; ul.
e The coefficient of 8], 1. is w]g'tuswk ul 4+ w]Tulw} u.
3 sa ardanl M S0 ia bk 0T JoidnyS aniot ok ,m
e The coefficient of vy, 1y, Is w)w; , uy"uy Wi, Wy w7 + Wy Wiy, Wit, W, uy.
e The coefficient of d;,,,. is w] giwkur.
The twelfth (and last) summand in (46) is
e ! k1 k1
Y, i 00,8 i, mg/ 3,8 v/
B 1 aZPz,m - wsuyyyzwl g,muz 5,2:1: + wsuyyyzwl g 6zx
uZ’
Ja,S kpli , m, t 7,8 kpli, t Jn,S kpli, t ¢/
+ wiug vy wi Tyl a0 + wiugyy wi' T v, 0. + wivg vy wi T ud,
7S k.l m, T it TS k L. T i, .t
T WUy Vy Wy Wy, Uy U Vg Wi Uy, + WUy Vg, Wy Wy U, Vg Wy Uy

+ wlud vy wiwhul dpwiul.  (57)
The coeflicients of the reduced form are listed below
e The coefficient of ;0. is

JoSak i, m 7., k Ui J0,8,,kle, t Ja.S k Ui
WU, Wy g,mux a’f(wsux>wlg +wsuxwl Ft Uy 2wsux8$(wlg )

: /A T 1S ak AlT
e The coefficient of v,,0;, is wiujwyg".
. (A G0, S kUGN 0G0, Son kT i, t 00 da0,S,,,k A0t ,m
e The coefficient of v,,d,, is 2wlu; 0, (w;'g" ) —wlug wi T ul, —wlugwi g’ ui.
: i T0,S 0k LT
e The coefficient of 0,,0,, is —2wluw;g".
. ! ta —andarSaonk Ali
e The coefficient of 4,0, is —wluzw;g".
e The coefficient of v,,0,., is
s, kpli o om t kyli, t 2.k _li
wsuy (wl Ft,muz Uy + w Ft Uy + a:c (wl g )
kyli, t ky L, it k Ui, m
- aJU(U)I Ft ux) + W W, U, Wity — a$<wl g,muaz )) :
: ta andarSonkonyl o mp v, it Ty Sanko Lo oin,t
e The coeflicient v, v,, is wiujw;w, , ul"ulwiu, + wiu,w;w,ul wi,.
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5.3 The conditions

Collecting all similar terms we get the following conditions

e The coefficients of 07, d,., 0,0, and d,,,, vanish iff (9c) holds, namely
¢"TJ* = ghTi*. Combining this condition with skew-symmetry of the
bracket (9b) we obtain that I, = —g; '} are the Christoffel symbols

of the Levi-Civita connection of g.

e The coefficients of products of step functions vanish.

i

e The coefficients of 0, v, 67, V.. and 0,1, vanish iff (9d) holds, namely

k_ k
GikW; = gjkW;

e Using the above conditions the coefficient of uj_ 0,,0,. can be written
as
ST T T DT g utf — ) =
RY* + ¢ (wiw] —wlwy), (58)
where RY* is Riemann tensor (in upper indices). This yields the con-
dition (9f).
e The coefficient of u! v,,0,. (up to a common factor) is
9" (wiy + T} — wiy = D) = g (Vowy = Vawp),  (59)
which yields the condition (9e).

e The coefficient of §},0,. is a linear combination of the coefficient (58)
repeated two times.

e The coefficients of ulufdz,0,. vanish using the a-derivative of the con-
dition (58). Indeed, the coefficient reduces to
(DY) = Ty + wiaw] )T + () = TF, + wiw)) T
+ (P2 = T + wlwf)TY + whg (w); — wi, + T, w}")
k

i kg j j j ,m il k ko om
+weg " (wi; —wj, + Ty, w") + wig™ (wyy — wp’y + Tpwi™).
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Using the condition (9e) we obtain
(T = T+ wiw] )T + (T3 = Ti + wiw)TY
+ (T = T+ wlwp)TE + whg™ (T, w))
+wig" (Dwp) + wlg™ (T, ).

Using again (58) we obtain

ij ij i g izlk ki ki k. i i, kT
(F - Fl + w wy — wswl)rt + (Fs,l - Fl,s T W w; — ww, )Ft +

s,l ,S
(N2 = T+ wlwf —wiw])TY = D (=T}, 00 + T, )+

e The coefficient of utyu;uiuxy&u vanishes due to the previous conditions.

Indeed
s, v, J. t ! ki ki i,k k, ki ik !
U, Uy W uy <ws(rr,l - Fl,r + ww, —w wr) - (Fl + Fl )aTws

li il k k ik 1 li k k
+ (Fr + Fr )(ws,l - wl,s) - 1—‘l,ru}s +9g (ws,l - wl,s)ﬂ”
li k k ik ki, 1 Ik, i
+ Fr (wl,s - ws,l) + wlrs,r + Fl Wy + Fs wr,l)
.8, 7T, gt L (ki ki i,k k, i ki ik l
UL U, W Uy, <ws(r7‘,l - Fl,r + ww, —ww ) - (Fl + Fl )ws,r+

I %r
= D, + (Tfwy = Tfwy) , + Ty (wfy — wy))
4l 4 Thul 4 T
st (wl (CHTY, = DT — T,
sl (W THTS, — T, + Th, i) + T, ) = 0.
Similar computations hold for the coefficients of v,,0,, and v;,0.,.
e The coefficient of uju’d,, vy, is
w] (g”“wi,z — ghiwl + g"wk; + wigh
4 wfT% = 2y, + wfTY -+ ufgh)
= uju,, (g”“(Vlwi — Vo)) + ¢"(Viwk — szlk)),

which vanishes upon (9e).
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6 Weakly nonlocal PBHT and differential op-
erators

Here we will just show the main steps of the algorithm in Section 3.3.
We assume that

= ¢90, + TVuf + wiuko; wlul (60)

where det(g¥) # 0 and ¢, € R.
We will compute the conditions of Hamiltonianity of the operator P of

the type (60) using formula (84) and the Algorithm 3.3. Let us set:

P=L+N where L=g"0, +Tu

x?

N = wiubo  wlul. (61)

The conditions of skew-adjointness are obvious.

6.1 Calculation of the Jacobi identity

From now on we will assume L to be skew-adjoint (N is skew-adjoint by
construction).

Lemma 6. We have

SIP,P)=3[L, I] + [L, N + 5N, N
=[lr,yr (L)) (%) + Loy (N (%)) (%) +

U (LW*) (%) + by (N (%)) (007) + eyelic(y', %, 47)]

We begin by computing the linearization of L and N. Let us introduce
the new non-local scalar functions

(62)

O = o (wiul k), k=1,2,3. (63)

Lemma 7. The linearization of L and N have the following expressions:

Cun(0)' = (90,0 + Tl adb} ) o + Tp}0, 6" (64)
€N,¢1(90> (wkluxSO + w0, )wl
+ wwfﬁx ((wh zUxSO + w; axSD )W) (65)
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We compute the first summand of (62):
L (L)) = glg™ 0,050,050} + giTy w0, 0500}
+ (F?f’,kuh 4 T0,(g") + TRk ) 610,0207 (66)
P rulozvzul + (T Tl + Do, (Tirul) vz
We compute the second summand of (62):

lrpr (N(0) (%) = glwk ul' 0,1y}
+ (Fﬁfkugwfnu? + F?@x(’whu ))w ¥ 22 + F”whu wlu "gb (s 202, (67)

We compute the third summand of (62). Here we integrate non-local ex-
pressions by parts in order to concentrate integrals in expressions of the

form (63):

2))(¢3) (w] yulo g™ + wi0,(g") + wpTplu )¢13x¢§¢?
wj U ub TR0 + )0, (TRl ) )ob! Y2} +wk9kp¢la§¢§¢§
(—wh g™ — wl0, (") — wilFPul )} 0, p*
(—wh g Ui — wl O, (D) )t — wig"™ 5,

We compute the fourth summand of (62). Here we integrate non-local ex-
pressions by parts in order to concentrate integrals in expressions of the

form (63):
Inyr (N (W))(W) (W ugwyug + w0, (wy, m))?ﬁ%%?’
+ wkw whuh¢ @/J @Z)g + (= whluhwiu —w 10 ( ?))1/};@;21;3 (69)
wlw whuh1/1 (s 243
The three-vector (62) can be written, after adding the cyclically permuted

summands, as the sum 7; + T},, where T; is the local part and T, is the
non-local part.

(68)

6.2 Calculation of the reduced form

Now, we fix the indices 1, 2, 3 and we bring the nonlocal part to the normal
form with respect to the three ordered indices. This means that the terms
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which are quadratic in the nonlocal expressions (63) shall be preserved, while
terms which are linear in the nonlocal expressions should be brought to one
of the following forms by integrating by parts:

Doyl PPkl DO (70)

For example, gziwﬁlu;" ~2w5’8xw} must be replaced by —9 (g Twk umy 208) )
(of course, up to a total divergence). After the above computational step we
can write the final form of the nonlocal part of the three-vector. Note that
T, acquired some local terms at the end of the first step of the algorithm.
We introduce the notation T, = Ty + T, where Ty is the non-local part
and T, is the local part of T}, after the first step of the algorithm. We have,
after collecting like terms:

Ty =
( -0, (gl,iw ) + F”kux kum™ 4 Fgﬁx(w,’iuh)

+ wljku Try™ 4wl d, (M m))

— 836( wj,, kngk] w a,c( ) iijum) (71)

+ wkwk ulMwiul — wiw uMwlul )77/1 @DB@D

( — glwp ! + w] ol g™ + w8, (g") + wilpul!

+wj pulg™ + w0, (g%) + wi Ty (72)
+20,(—wig¥) ) 920,000
+ (wlg" — wig" )PP Ol (73)

plus a cyclic permutation of the above terms. Moreover:

TnL =
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< — gfgwk urwiu gjkpwk u™wiul — gkw umwul
+-0Uhkuggm’+“wk5 (9") + wil il wjul,
— 20, (wkg Pwjul, — wl g* o, (wiu')
+ (wh upg" + w0, (") + wil i w]u
+20, ( — whg")wiul + (—whg")0, (wiu
+ (wh iz g™ + w0, (g%) + Wi uy)
+ (—uwhg)o, (wful) + 20, — wig)uful )
Vi

(— Zwigkpwl’ul - wkg wl )8 w (O 202 (75)

plus a cyclic permutation of the last summand.

Let us introduce the notation 1Ty, = 1; + T,.. We shall bring each sum-
mand of T} to the canonical form

P Oy, (76)

where /P! are coefficient functions, using integration by parts on summands
that contain dL43 with [ > 0. We have:

T, =
(99" = gkg™ + 2009 — 919" ) 0,00, 020
+ (Qfgrﬁpuz _ F%pkngk’ Fjpé? (g hi) _ Fjprhiuk
+20,(0}' ") — 0 (gpkzgk]) ijuh +1, wuzg"
+ Fpia (ghj) + szFhJuk
— 2w} g"Pwjul, — whgMwlul + wlg"Pwiul + 2w gMwlu )
0p 5ty
+ (T3 g™ + T0,(g") + T — 0, (g9
+ gjprkZ Fi”w';g'” F{Lpax(ghi> - F?zprk g
+20, (TP g") — ngij h

+ wlg"Pwiul, + 2w g wlul, — 2wl g w w,igkjwlpufp)
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;0,1
+ (g™ = g™ + g™ wlo2uzes?
+ (nguhl’kpul + Fﬁf@x(I’Zpu’;)
— 0, (TJFulg" + T3P0, (g h) DIPT k) + 02 (TP ™)
+ PPl Tl + TP, (Tpuk) — 0, (g7 Ty ul)
+ Fﬁzkuhl“k] LT, (Thuk)

T

ij h Jjp h, il pi, k. h, 7,1
+ T wiul wlu + TPwiulwiul, + TP whu wj U,

ij k jp. k., m,_ i |l Tl
— ghwy,uy Wi, — ghwy uwyu, —gkw Ul W) Uy

+ (wh kngkp + wi@ (g Py + wjf‘kpu )wlué
— 20, (wkg )w}ul wigkpa (w}ul)
+ (wh ulg™ + who, (g") + wiTEul w] ),
+ 20, ( —wlyg )wl ul, 4 (—wP g0, (wul)
+ (wh pun g™ + w0, (%) + wplHul wiul,
+ (—wipg")o, (wiul,) + 20, ( — wig™)wiu,
= 0,( - wlg"wiu, - 2uigul )
Wl
(I“]P hi ng kj pl h]>a2¢ w wd

6.3 The conditions

The vanishing of coefficients of the 3-vector 1" yields the conditions on P to be
Hamiltonian. Below we list the basic elements of T and the conditions that
arise from their coefficients. We assume the condition of skew-adjointness of

P.
Y0227 the coefficient is

F;l]ghp g]kI:)ng 4 Fipghi (77>

and corresponds to the coefficient of 97 ,0z- and similar terms in Sec-
tion 5.3. Its vanishing is equivalent to the condition TPgh = TP g
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8x¢;8$¢§¢5’: the coefficient vanish on account of the above condition.

zz)l@i@/}ggbfz the coefficient is
wig"” — wig" (78)
and corresponds to the coefficients of ¢!, v,, and similar terms in Sec-
tion 5.3.

Yi2d: This coefficient is a differential polynomial; the coefficient of uf,
reduces to

(D9, = T98)g" + TP — TETY + g (wjwh — whwd) (79)

using (78). This corresponds to the coefficient of u% d,,0,. in Sec-
tion 5.3.

2521/1?1#]1-: This coefficient is a differential polynomial; the coefficient of u™.
reduces to

—gwy, + Tiwy, +wilh + w16 — w9, (80)
and corresponds to the coefficient of ul1v,,0,. in Section 5.3. The
coefficient is equal to g*(Viw! — V,wi).

The correspondence between the coefficients of the three-vector in the lan-
guage of operators and of distributions extends to all remaining terms; there
is no need to repeat the computation that shows that all other coefficients
vanish on account of the above conditions.

7 Weakly nonlocal PBHT and Poisson Ver-
tex Algebras

In this section we will use the master formula to compute the skewsymmetry
condition and the PVA-Jacobi identity for the \ bracket

{uf\uj}p =g\ + Fg’ui + wfnu;"()\ + 6)_1wflu;‘, (81)

corresponding to the weakly non-local Hamiltonian operator (61). As before,
we split the operator in the local and nonlocal parts
{uiw/} = "' N+ T8, (82)
{uhul}y = wiad (A + ) il (83)

7
n
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Enforcing Property 5 of Section 4.1 on the two A brackets (82) and (83)
gives the conditions for the corresponding operator to be skewsymmetric.
Indeed, for the local part, we have

{uf\uj}L = ¢\ + nguf: = —H{ufk_aui}L = g\ + 8sgijufc — Fijuj;, (84)

which implies the conditions (9a), (9b), and it is easy to prove that the
nonlocal part is skewsymmetric by construction.

7.1 Computations with the master formula

For convenience, we split the PVA-Jacobi identity on the generators — defined
in Section 4.2 — in the four parts

TP, P) = J2L(L, L)+ JYL(N,N) + TN, L) + J(L, N),

A

where the last two terms correspond to the Schouten bracket [L, N].
The purely local part J;\]ﬁ(L, L) is a straightforward application of the
master formula:
{u&{uiuk}L}L = ¢ 0" A+ Oy g™ T uE p + g oI s
+ VAT uiul, + g A% + 0,9 T u A (85)

+ TPTUusA + TP 0,0 ulus, + T T

{u {u,u" Y} = g0 " Mu+ 08" T I N + g7 0TS

+ DO usul, + g T 1 + 0,97 T us (86)
+ TP TYubp + TP 0T ubul + TFTYus,

{usw'} 3,0} = gMag" ' N + g™ O A+ ¢ Dag” A
+ gklalfgiui)\ + gklalfgiui,u + gklaslfiiufcu;
+ gklalrgzu;x . gklrgl)\Q o gkll—\gl”2
— 2gkl1"{i)\u — Qle(?SFZiu;)\ — 2gkl881"{iu§,u (87)
— gkl&sf‘{iuix — gklastf‘{iu;ui + TH g7 us A
+ THOT uiul, — T u A — THT ulp
— Fljlatffu;ui

where all the monomials are of the form M\ u? with p,q > 0.
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Computing the expressions with nonlocal terms is more complicated.
However, it is possible to rely on Leibniz’s and sesquilinearity properties
of the \ brackets to split the problem into smaller chunks. The basic obser-
vation, that can be proved by expanding the (X + 9)~! expression, is that

{fuA+0) g} = A+ u+0)"{fug}-

Let us start with Jf\ij(N , L). Combining this with the left and right Leibnitz
properties we get
{us {u PV = {ujwiul (14 0) wul
= {uywhul Y [( + 0) " whu] + whup{ul (n + 0) " wul }r
= {uywhul Y [(p + 0) " whup] + whup (A + p+ 0)” H{ujwlup
= [(n+0) "whup] (¢"wfA?
+ glialw’;u;)\ + wlkasg”ui)\ + walsiu;/\
+ F?@lwfuiu; + wf@tf‘?u;u; + wlkl“?ufw)
+ wﬁlu?()\ +pu+0)t (wljg“)\2
+ g oI Ui\ + wl B,g" us A 4w Tl A
+8lwgl“fuiutw + wf@tl“lsiuiutx + wljfl;uix) , (88)
{3 {usu" IV = (A + 0) wiul] (g w)p’
+ g”@lwf

lj k, s, t k lj, s, t kmlj, s
+IY owiuil, + wi oY uiul, + wiTHul,)

S

ul g+ wr g ud i+ wi Tl

+wEu( A+ p+0)t (&wifijufcu;
+g"wind p +wj(p+ 0) (g7 + ), (89)
{{udu 131"y = {whug (A + 0) 7wy uag
= {wl u s\ rou" (N + 0)hwl u
+{wpupagprou Y (X = X — = 0) " wj,
= g™\ + p+ 0)ow? u™ (N 4 0) rwlul
+ T dpwlul (X + 0) M’ u”
— "N+ g+ 0)2w] (N4 0) Ml u”
— TR (N + p + O)w! (A + ) w

—(i(—)j,)\<—>u>

n
u:r

K3
n
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= gklé?lwguiu; — gklwljwiu;)\ — gklwljwiu;u

— gowfuwu) — gMufuius — g a0+ 0) ]

— MO.fus (A + 0) i) — g Ofuwfuul

— MO.ful (A + 0) i) — 0P (A + 0) i

— TSl + M Opwdus (A + 0) i)

+ M0, [0+ 0) ] + Tl (A +0) i)
— TR l(\+ 0) ) — TR Dafusuit [0+ 0) )

—(iHj,)x(—),u). (90)

The notation (z 4N & ,u) we used in Equation (90) means that all the
terms are to be replaced with the ones obtained by switching the corre-
sponding indices and parameters. The expressions of the form [(A + 9) ' A]
enclosed within square brackets denote terms on which derivation operators
“from outside” do not act and containing derivations which do not act “on
the outside”.

The computation of the terms of J;{ﬁ(L, N) is straightforward for the first
two addends

{uy {wd "} = {ud g™} i+ {uy TP Y
= O wiu p[(X + 0) wyul] + T ubwiul, [(A + ) w;,ul]
+ TR\ + 9)whus (N 4+ 0) " w! u”
= 09w p[(X + 0) " wiul] + O ubwiul [(A + ) wjul]
+ FfjwinUfEu; + Ffjﬁtwiujut[()\ +0)twiu?]
+ TP whul, (A + 0) wiull], (91)
{ud {ud Y = {ul g" PN+ {u TE s}
= 09" Wil A[( + 0) ' whul] + O E uSwinl [(p + 0) " wlul]
+ PP wlwugul, + TP Owiuiu’ [(n + 0) whul]

+ TFwlus, (14 0)twl ul]. (92)

ST xXx

In the computation of the third one, we exploit the identity (A+9) ' B(A+
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9)C' = (A+0)"Y(A+8)BC — (A +0)~'[9B|C

{{uﬂuj}fw = {QH;L k}NAJr {0 Ut}
=whu!(A+p+9)"! SalgﬁA +wku (A + p+ 0) rwlut ol
—wu(/\—i—,u+(9) whud (A + p+ )y’
—IVwkwlusul,
+wnux()\+u+3) YO wiui A + O wiuul,

+OwiT ubud + wili'us,) . (93)
We compute now the expression for Jf\J:j(N , V). We have

{ud{ulu" P = {udwp (i + 0) " wl i}
= wyuy (A + p+0) " {uywlu }N Hlur o wy ”]{uxw P
=whu ;”(A+u+a) ' (Owlvdwyul, (A 4 0)'w
+w] (A + O)whul (X + 8) fw!ul)
+ [(p+ 0) M) Oy [(Hé‘) fw, i)
+ [(u+a) wlulwf (A+8) us(A+0)7!
= whu( A+ p+0)” (wlwlwzutus) +
+ wku” (/\ + 0+ 0) 7 ((Olwiuiul, + wi Ogwiuiul
+wjwius,) (A +0) M wiul) + (1 + 0) M wlulwf wiwjuiul,
+ [(p 4+ 0) 'l ul] (N + (9) Ywlul] (Owlkwiudul,
+wy Opwludu’ + wiwlul,) (94)
{u, {ug\uk}N}N =whul A+ p+0)" (wjw wlut, ul) +
+  whul A+ p+0) ((Qulwiudul + widswiudul,
i) s 0) ) + [0+ O kel utwugd,

+ [(p + 0) wlul (A + 0)tw! u] ((9lwk lusut
+w, 8twl Sut + wfwéufm) (95)
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{{up w30 Y = {whul (A + 9)  wpul g
= {w)ul xpprot™ YN (A + 0) ')
+{(A 4+ 9) Ml u s ot Y wd u
= {wl i o™} (A +0) i u
- {wiuzxwwuk}N(M +0) " w,
=wrlu™ N+ p+0)? 8lwt ()\—{—0)
—wh ()\+u+8) ()\+/L+8)wl()\+(9) Lk ul?
—wk U™ (N + p+0)” lw us Opwinl, (p+ 0)wd u”
+whul (A + p+9) " w (A+u+8)wl(n+8) Ll
= wlu™ (AN + p+0) 1(( 8lwtu + Oyl udul wl +
+wlud, wl) (A +0) " wlhul)
—wFkum( A+ p+0)” (( Lt opwint, + Opwludul wi+
+wlud w)) (p+ ) wl, ”)
b0+ 0) kol
+ wrwhwiuiul [(p + 0) " wlul). (96)

Note that in the last passage we have used the same identity as in Equation
(93) to simplify the terms of the form (A + pu+ 9)*A(N + u+ 9)B

7.2 Projection onto the basis

The Jacobi identity lives in the previously defined space V) ,. The partial
results of our computation are not all expressed in such a form that, after the
expansion of the nonlocal terms, will produce elements on the basis \Ppd=?
and (X + p) "9\ for p € Z, ¢ > 0 for all d € Z.

All the double nonlocal terms in J;JS(N , N) cancel out, leaving with a
simplified expression

J”k(N N) =wFu™ N+ p+0)” (wlwlwiutus —wfwlwgut)
+ [(p 4 0) M wlul] (wiwlwiudul, — whwjwiuiul) (97)
+ (A + 0) whul] (—wfwlwludul, + whwlholuiul) .

There are terms which would not expand in the chosen basis in the last
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line of Equation (89). We have

wy, ’”(Aww) Y(gH it ) =
=t (A + 4+ 0) (A + e+ 0)g” Owius, — (A + 0)g” Owius)
=g" Onwiwyuil, —wp (A + o+ 0) (g7 0wiui  + OrgV Onwusu,
+ 97 Ouwui s, + 9" s, (98)
and

wy m(A + -+ 0) wj(p+ ) (g + Tus) =
=whul A+ p+0) (A + pu+ O)wj (¢ +Tus)
—wFkul N+ p+0)” ()\wf(glju +Tul) + duwjul (¢ + THus))
=g wl’wkusu + Dwiudul, — whu (A + p+ 0) ™" (wiTYui A + dyw T uiul)
—wk A+ p+9) 7 (A + p+ 9)(gYwiA + g dpwjul)
—(A+0)(w]g" X + g" Bywiul))
=g wiwtud p + T wkusul
+ wk u™(O\ + e+ 8) (gljwf)\Q + 05 g wiui X 4 2¢Y Ogwius N
—TYwiui N + ¢¥0gwiusul, + 0,9" Oywiuiu’, — TY 0wiusnl,
+g" O wjul,) - (99)
The full PVA-Jacobi identity can be then obtained in terms of the previ-

ously computed expressions, provided that we replace the last line in Equa-
tion (89) with the expression (98) + (99). The full form of J;\JS is then

— gwiwtui N — g¥ o wiwkuiul,

JIE(P.P) = JIH(L, L) + JE(L,N) + JIE(N, L) + JZN(N, N)
= ((85) — (86) — (87))
+((91) — (92) — (93)) + ((88) — (89) — (90))
+ ((94) — (95) — (96)) .

7.3 The conditions

Assuming the skewsymmetry of the bracket P, the PVA-Jacobi equation is
symmetric for cyclic permutations of (i, A), (4, 1), (k,v = =X — u — 9), and
it is fulfilled if and only if all the coefficients in the basis of V), we have
chosen vanish. We report here the coefficients corresponding to the elements
of Section 6.3, under the condition of skewsymmetry for the bracket.
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8

The coefficient of \? is
glirfj _gklgﬁi _i_gklrg'z’ (100)

whose vanishing, given the skewsymmetry of the bracket, is equivalent
to gilrgf] _ gle?.

The coefficient of A\ would be

gz‘lgirj _ gljgﬁi _ gklgii i ngzrgi (101)
which vanishes on account of the previous condition.
The coefficient of ((p+ 9) twiu®) A? is

g'uf - ui (102)

The expression that is obtained when \°u® = 1 is a differential polyno-
mial. The coefficient multiplying «?, is

g" (O, — o) + |l R N0 L (wjw! —wjw?),  (103)
where the two summands with ww come from (90).

The expression ((u + 9) 'wiu?) is a differential polynomial. The coef-
ficient multiplying u, is

wi T — Wy + g* (Ol — d.w)) (104)
which is equal to Equation (80) (after the exchange of the free indices
(7,m) < (k,s))-

Concluding remarks

In this paper we have considered three different approaches to the problem
of verifying Jacobi identity for weakly nonlocal Poisson brackets of hydrody-
namic type, and we have showed their equivalence. While the equivalence
between the formalism based on distributions and the one based on (pseudo)-
differential operators is quite straightforward, the equivalence between them
and the formalism of Poisson vertex algebras is more subtle and requires
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additional work (Proposition 2 and Theorem 3). The final result is an algo-
rithmic procedure for each different case. It is also clear that the procedure
can be used to check the compatibility of two different Poisson brackets.

We point out that the algorithm presented in this paper can be easily
programmed in a computer algebra system generalizing existing packages for
local structures (see for instance the package CDE [37] that is available for
REDUCE [35] or the package MasterPVA [8] that is available for Wolfram
Mathematica). We plan to do this in a future work. We also remark that
the ideas outlined in the present work could be extended to weakly nonlocal
symplectic operators [30] and to recursion operators.

A comprehensive differential-geometric theory of nonlocal integrability
operators (i.e., Hamiltonian operators, symplectic operators and recursion
operators for symmetries and conserved quantities) for partial differential
equations, including weakly nonlocal operators, already exist [24], but it does
not include Schouten brackets, the formulation of the symplectic property
and the formulation of the hereditary property for recursion operators (the
variational Nijenhuis bracket). However, this seems to be a possible goal and
at the moment it is in development, see [23] for latest advances.

To conclude let us mention that one of the main challenge in the theory
of integrable systems is the problem of classification of Hamiltonian inte-
grable PDEs. The results obtained so far concern deformations of local bi-
Hamiltonian structures of hydrodynamic type (see [6, 13, 27] and references
therein). We hope that the results of the present paper will contribute to the
study of the weakly nonlocal case.

9 Appendix: three different recipes for the
Jacobi identity

In this section we will show that the expression of the Jacobi identity can be
written in three different ways up to total divergencies.
We recall that the formal adjoint is defined by the equality

(A7), ?) — (i, A™(*)] = 0, (105)

where (,) is the pairing between vectors and covectors and square brackets
mean that the result is an equivalence class up to total divergencies. In what
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follows we will need the standard facts [3, 26]:

Caw)(9) = lay(p) + Ao ly(p), (106)

and
E(W, 0)) = L(9) + L), (107)
where £ is the Euler-Lagrange operator. If P* = — P, then it is easy to prove
26] that
£},¢1(¢2) = E}*,wwl) = _E},W (¢1)- (108)

Theorem 8. Let P, Q) be skew-adjoint variational bivectors. Then, the fol-
lowing formulae for the Schouten bracket coincide up to total divergencies:

[P7 Q] (1/}17 1/}27 1/}3) <£Pw1( ¢3> + Cydidwla wza wS)

2

’@

),
(g (PO, 07 + eyclic’ 02,07y 10
[P, QUM 02 %) =Lt Q) ) — (£pga (Q()), )
F llgu (PW). 0P — (lgue (PO, 0%  (110)
P (D)) — QL (1)), )
P QU 0%, 0%) =(PLECQU ). ) + cyelic? 020
FLQIEWPWY), 02). 0% + eyclic(', 02, 4)

Proof. The equivalence between (109) and (110) is given by the following
formulae (all equalities are up to total divergencies!):

(Cpy2 (Q()), 4°) =(Q(1), p e (1))
(QUY), Cpe s (V7))
— Q") 6 s (%)
— (Lpys(Q(Y)), ¥?)
—(Qlp 2 (W), 14%) = = (€52 (V1) Q" (¥7))
= (05,2 (¥1), QW)
=", Lpy2 (Q(Y7))

The equivalence between (109) and (111) is given by the following formu-
lae:

(PEQMWNW), ¥7) = =(EQEN[¥), P(?))

o~ o~ N/

~ ~—
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— (o) (%)) + C2(QY), P(47))
— (W Lo (P(¥%))) — (¥, Q(ly: (P(7)))) + <¢1 Q(ly2(P(¥7))))
(W Lo (P(¥%))) — (%, Q (%1( W) + (W1, QL= (P(¥*)))
(1, Lo (P(¥%))) + (Q(W7), £y (P(Y7))) — (Q ( D) Ly (P(47)))

In the cyclic sum in (111) all terms of the form (Q(¢*), £ys (P(¢*)) cancel if
the computation is restricted to covector-valued densities ¢ that lie in the
image of the Euler-Lagrange operator £: ¢ = E(F), where F = [ fdz. In
that case, we have £, = £}. The proof is completed by the remark that
multivector identities hold true in general even if they are proved on the
image of € only [26]. O

Remark 9. The expression (111) was used in [20] in order to check the Jacobi
identity. The expressions (109) and (110) are more commonly used (see e.g.
(3, 10, 33]). In particular, the expression (109) is the formula that we use
throughout this paper. The three expressions do not exhaust all possibilities;
see the above references for more exotic expressions of the Jacobi identity.
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