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Abstract

The genetic code encodes the same amino acid with multiple codon choices, but in

a biased fashion. This phenomenon is called the codon usage bias (CUB). There

have been significant research e↵orts trying to quantify codon usage bias and probe

into its origins. Understanding CUB is important for at least two reasons. Firstly,

it is connected with gene expression, and thus of fundamental importance for our

understanding of life. Secondly it is important for the optimisation of heterologous

gene expression in industrial bioproduction including the pharmaceutical indus-

try. This thesis makes three main contributions to the understanding of CUB: (1)

It proposes a novel measure of codon usage bias which does not require any con-

text information other than the nature of the coding sequences themselves. The

proposed measure is capable of quantifying codon usage bias at di↵erent levels of

an individual sequence, a particular amino acid type, and a whole genome, and

also capable to provide comprehensive and desired CUB information for the corre-

lation study about specific CUB related factors by constructing high dimensional

CUB feature spaces. (2) It derives a stochastic thermodynamic based model to

investigate what the evolutionary drivers of codon usage bias are from a macro-

scopic perspective. (3) It applies the proposed methods to extensive genomic data.

Our main conclusions derived from the applications to real organisms include (a)

codon usage bias and gene lengths cooperate together to satisfy di↵erent protein

requirements in the cells; (b) codon usage bias correlates with phylogenetic dis-

tances among remote groups of species; (c) codon usage bias cannot be explained

solely by selection pressures that act on the genome-wide codon frequencies, but

also includes pressures that act at the level of individual genes.
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Chapter 1

Introduction

During the expression from genes to proteins, most amino acids are encoded by

more than one nucleotide triplet or codon. Despite encoding the same amino acid,

such synonymous codons are not biologically equivalent and there are usually large

di↵erences in their usage frequency. This phenomenon is called codon usage bias

(CUB). Understanding CUB is the main topic of this work.

CUB has been attracting much research interest, and there are 3240 articles

in 2018 alone according to Google Scholar. CUB has fundamental significance for

understanding the principles of protein synthesis in biology, and is practically im-

portant in the context of heterologous gene expression in industrial bioproduction

including pharmaceutical industry.

Research into CUB is mainly divided into two classes, one is construction and

application of algorithms to quantify and also simulate CUB, the other is the

investigation of the origins of CUB.

Existing CUB measures often require external reference information besides

gene sequences such as tRNA abundances.This makes these measures di�cult to

use especially for poorly characterised organisms, which are the majority. There

is thus a need for new measures that do not require any reference information.

Among the studies for understanding the evolutionary origins of codon usage

bias, many putative evolutionary drivers for codon usage bias have been proposed,

which involve broad range of factors from intrinsic features of genomes to elements

playing key roles at di↵erent stages of the gene expression procedure. However as

of yet there is no agreement in the community as to how to combine all the CUB

driving forces together in a reasonable way to analyse CUB, and there may be

1



many undiscovered drivers still awaiting discovery.

In our work we made the following contributions:

1. We propose a novel set of CUB measures:

(a) Sn measures CUB for a particular amino acid type in a specific se-

quence. It reflects the strength of forces to drive a codon sequence

deviating from the state of random codon usage.

(b) MD measures CUB for a particular amino acid type at the whole

genome level. It combines Sn values for a type of amino acid in all the

genes within the genome.

(c) MD is a genome wide CUB measure which combines CUB information

for all the genes and all the amino acids throughout the genome. It

takes the form of a vector containing MD values of all the amino acids.

2. We apply the proposed measures to fungal species and have the following

findings:

(a) CUB and gene length cooperate to satisfy the demand of protein pro-

duction in cells.

(b) Sequence specific CUB patterns among orthologs correlate with gene

functions.

(c) Amino acid specific CUB patterns correlate to amino acid chemistry.

(d) Genome wide CUB patterns correlate to phylogenetic distances be-

tween species.

3. We propose a novel model based on concepts from statistical mechanics to

explore CUB origins.

4. We apply the proposed CUB model to real genomes of three kingdoms (fungi,

bacteria and protist) and find that there must be significant selection pres-

sures on codon usage bias at the level of individual gene sequences. Our

SLS model captures not only the genome-wide frequency features of codon

usage but also the distribution of CUB across the genome.
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The structure of this thesis is shown as follows:

1. Chapter Introduction: introduces the main topic of this work, and demon-

strates the significance of this work by summarising previous research in that

field.

2. Chapter Literature Review: summarises current available CUB measures

and assumptions of CUB origins in a systematic way.

3. Chapter A Novel Codon Usage Bias Measure: describes the concepts

and algorithms which our sequence specific and amino acid specific CUB

measure Sn is built on, also its application to fungal species regarding cor-

relation study between protein abundance and CUB, and CUB patterns in

homologous genes.

4. Chapter Genome Wide Codon Usage Bias Analysis: describes the

concepts and algorithms which our genome wide CUB measures MD and

MD are based on, also its application to fungal species assisted by machine

learning techniques.

5. Chapter Stochastic Thermodynamics Based Model to Simulate Genome-

wide CUB Pattern: describes the concepts and algorithms which our

’Beanbag Model’ and ’Sequence Selection Model’ are based on, and their

application to investigate whether there exists sequence level selection in

species across fungi, bacteria and protist kingdoms.

6. Chapter Conclusion: summaries our contributions.
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Chapter 2

Literature Review

To better understand codon usage bias, the main topic of this work, we first review

relevant biological background.

2.1 Understanding Protein Synthesis Steps

Protein synthesis is a process whereby the genetic information is decoded from

genome to proteome. Coding regions (exons) of genome are important for gener-

ating protein sequences. Noncoding regions of genome contain regulatory regions,

introns (transcribed into mRNA but not expressed into protein), repetitive DNAs.

Noncoding regions take up various proportions in eukaryotic genomes for example

98% in human genome, and almost 25% of the yeast genome (Parker et al. (2018)).

There are two key stages of protein synthesis: transcription and translation.

In prokaryotes transcription and translation occur almost simultaneously on the

freely floating DNAs in the cell cytoplasm. Here we mainly discuss eukaryotic

protein synthesis.

2.1.1 Transcription

Transcription is a process whereby a mRNA chain is generated based on a DNA

template. The DNA double helix in the genome is unzipped, and one strand acts as

the template for RNA synthesis. This process is regulated by transcription factors

(TF) and coactivators, where nucleoside triphosphates (NTPs) serve as the mRNA

building materials and provide energy (NTPs to build mRNA include ATP, GTP,
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CTP and UTP). A schematic diagram briefly demonstrates transcription in Figure

1.

Figure 1: Transcription, diagram reference: Principles of cell biology (BIOL2060):
Extracellular structures

mRNA is a copy of DNA genetic information, and then works as a template for

assembling amino acids. mRNA is a single sequence of ribonucleotides. Ribonu-

cleotide is composed of phosphate, ribose and base (include adenine [A], guanine

[G], cytosine [C], uracil [U]). Each 3’ carbon atom of ribonucleotide connects to

5’ carbon atom of adjacent ribonucleotide by phosphorus ester bond to form the

final mRNA. The two ends of the final mRNA are called 3’ (3-prime, with a free

hydroxyl group) and 5’ (5-prime, with a free phosphate group). mRNA primary

structure is shown in Figure 2.

Primary structure of DNA is very similar to mRNA but di↵ers in two as-

pects: using deoxyribose rather than ribose (no hydroxyl attaches to 2’ carbon in

deoxyribose); and using base pair thymine [T] rather than uracil [U].

Transcription proceeds in the following general steps:

(1) Initiation: RNA polymerase is the main transcription enzyme during tran-

scription. RNA polymerase together with necessary transcription factors (TF)

correctly identify and combine to the specific sequence (called ’promoter’) on a

DNA template.

(2) Elongation: RNA polymerase ”walks” along one strand of DNA as the

template while new RNA strand is built. DNA double helix sequentially open
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Figure 2: mRNA structure

to accept the new complementary mRNA base pairing and then re-close back to

the original double-stranded structure. General RNA synthesis rate is 25 to 50

nucleotides/sec in prokaryotic, compared to 45 to 100 nucleotides/sec in eukaryotic

(Uzman (2003)).

(3)Termination: Transcription terminates when RNA polymerase gets the stop

signal (terminator) and detaches from template DNA while synthetic RNA are

released. In prokaryotes, the terminator usually ends with a specific termination

sequence which assists mRNA forming a G-C-rich hairpin loop and then causing

polymerase to stall. Eukaryotic genes have the terminator as a sequence with

some specific patterns at the 3’ end. Such patterns are rich in AT (AATAA (A)

or ATTAA (A), etc) and followed by TTTT (usually 3 to 5 T) at the distance of

0 ˜ 30 base pairs away (Lykke-Andersen and Jensen (2007)).

(4)Post-transcription modification: In eukaryotes, one more step is required

to achieve functional mRNA. Primary eukaryotic mRNA (transcript precursor)

eventually processes into the mature mRNA in four steps (1) Adding methylation
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cap at the 5’ end. (2) Adding poly A tail at the 3’ end. (3) Introns are spliced

and exons are connected. Exons contain specific sequences called exonic splicing

enhancers and exonic splicing silencers in order to enhance or depress splicing at

the splice site. (4) Some parts of the mRNA are methylated.

2.1.2 Translation

Translation produces proteins using mRNAs as templates. One or more polypep-

tides constitute the protein and a polypeptide is a string of amino acids. Adjacent

amino acids connect to each other by the covalent chemical bond formed between

the carboxyl group of one amino acid and the amino group of the other amino

acid.

The mRNA is read in its 5’ to 3’ direction, meanwhile the encoded polypeptide

is made from its amino end (N-terminus) towards its carboxyl end (C-terminus).

mRNAs, ribosomes, tRNAs, amino acids are involved in translation. A schematic

diagram briefly illustrates transcription as Figure 3

Figure 3: Translation, diagram reference: Principles of cell biology (BIOL2060):
Extracellular structures.
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A ribosome is composed of the ribosomal protein and the ribosomal RNA

(rRNA), and it has ’A’, ’P’, ’E’ three sites to accommodate tRNAs during trans-

lation.

The mRNA template is read by the unit of three adjacent nucleotides, which

is called a codon. Genetic information carried by a mRNA is displayed as codon

sequences. AUG is called the start codon where the translation starts, and UAA,

UAG, UGA are called the stop codon where the translation terminates.

A tRNA is responsible for carrying an amino acid to the ribosome. Before inter-

acting with the mRNA, the tRNA undergoes aminoacylation (a process covalently

linking an amino acid to the 3’ end of the tRNA) and becomes an aminoacyl-tRNA.

A translation speed model states that global translation speed is enhanced by the

amino acyl-tRNA competitors for ribosomes rather than tRNAs (Chu, Barnes and

von der Haar (2011)).

Now we look into the process of translation in detail. Translation includes the

following phases:

(1) Initiation: Initiation complex forms and scans the mRNA to locate the

start codon. Initiation complex formation is a complicated procedure involving

initiation factors, GTP, ribosomal small and large unites and the aminoacyl-tRNA

which carries amino acid Met (Met-tRNA).

There are three initiation factors in prokaryotes, IF-1, IF-2 and IF-3, while

eukaryotes have more. However the basic steps are the same: including formation

of a ribosome small subunit (40S) initiation complex, finding the start codon

(Met-tRNA matches the start codon at the P-site of the ribosome), and final

formation of a big subunit (80S) initiation complex. The main di↵erence between

prokaryotes and eukaryotes lies in whether the small ribosomal subunit combines

to the mRNA before it combines to the Met-tRNA (Berg, Tymoczko and Stryer

(2002)).

When the first ribosome moves away from the start codon about 40 nucleotides,

a second ribosome can attach to the start codon and begin another protein trans-

lation.

(2) Elongation: Ribosomes slide along the mRNA templates and connect the

amino acids. The ribosome emerging from the initiation pathway undergoes a

cyclical series of reactions. Each cycle includes the following three steps (Sesma

and Von der Haar (2014)):
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• A new aminoacyl-tRNA bind to A-site by hydrogen bonds according to

codon and anti-codon pairing rules;

• The A-site tRNA takes over the peptide from the P-site tRNA, then the

P-site tRNA moves to the E-site and the A-site tRNA to the P-site.

• The aminoacyl-tRNA loses amino acid and leaves the ribosome from E-

site. The ribosome moves one codon distance along the mRNA towards the

mRNA 3’ end.

During elongation once the first two positions of codon are paired with anti-

codon, exact base pairing of the third codon position is less critical. Such non-

Watson-Crick base pairs without impacting aminoacyl-tRNA binding to mRNA

is called ’wobble base pair’ (Crick (1968)). Most organisms have fewer than 45

species of tRNAs (Chan and Lowe (2008)), and wobble pairings between the

aminoacyl-tRNA and the mRNA guarantee all the codons can be recognised by

available tRNAs. However tRNAs only wobble to match a codon if there is

no better tRNA for that codon (Percudani, Pavesi and Ottonello (1997)). All

the aminoacyl-tRNA can belong to any one of the following three groups. (1)

Non-cognate tRNAs which have anticodon that is not compatible with the A-site

codon, and these tRNAs rapidly leave the ribosome. (2) Near-cognante tRNAs

whose base-pairing properties enable them to undergo part of the reactions and

occupy the A-site a bit longer before dissociation. (3) Cognate tRNAs which have

anticodon that forms Watson-Crick basepairs or wobble-base pairs (Sesma and

Von der Haar (2014)).

In the process of elongation, when the first ribosome moves away from the

start codon about 40 nucleotides, the second ribosome attaches to the start codon

and begin another protein translation.

(3) Termination: When the ribosome slides along the mRNA and its ’A’ site

meets triplet UAA, UAG or UGA (stop codon), the release factor attaches to the

stop codon. The polypeptide chain and tRNA release from the ribosome. The

ribosome is disassembled from the mRNA and becomes free for the next round of

initiation.

Proteins begin to fold within the polypeptide once they are located within
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the exist tunnel of the ribosome, which is called co-translational protein fold-

ing (Thommen, Holtkamp and Rodnina (2017)). Protein folding structure in-

clude: Secondary structure ↵ helix or � pleated sheet, a repeating pattern caused

by hydrogen bondings between peptide backbones; Tertiary structure formed by

side chain hydrophobic interactions; Quaternary structure is grouped by multiple

polypeptide chains.

In bacteria, translation occurs in the cell’s cytoplasm. In eukaryotes, transla-

tion occurs in the cytosol or on the endoplasmic reticulum (ER) (an organelle in

eukaryotic cells). In many instances, the entire ribosome/mRNA complex binds

to the outer membrane of the rough ER; the newly created polypeptide is stored

inside the ER for later vesicle transport and secretion.

(4) Post-translation Modification: The protein precursor translated from the

mRNA is usually biologically inactive. Precursor modifications generally include:

Remove methionine (in eukaryotic); Cleavage of unnecessary peptides; Disulfide

bonds formation which is necessary for most functional proteins and ect.

Only properly folded and assembled proteins are transported from the rough

ER to the Golgi complex (an organelle in eukaryotic cells) and ultimately to

the cell surface or other final destination. Unfolded and misfolded proteins are

transported back into the cytosol and degraded by proteasomes.

2.2 Understanding Codon Usage Bias

After elaborating protein biosynthesis, we review terms relevant to codon usage

bias: genetic code, codon degeneracy, synonymous codon, codon usage bias.

Each mRNA sequence is read from its 5’ to 3’ direction, from an initial nu-

cleotide triplet to a stop nucleotide triplet. Each triplet between the position of

initiation and termination is mapped to an amino acid. Such triplet nature was

revealed by Nirenberg who received the Nobel prize for this discovery in 1968

(Nirenberg et al. (1965)). The mapping relationships between those triplets and

amino acids can be displayed as DNA/RNA tables (Shu (2017)).

There are 20 naturally occurring amino acids (see Table 1), whose existence

was investigated as early as 1952 in the Miller-Urey experiment (Johnson et al.

(2008)).
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Table 1: 20 Standard Amino Acids and Standard Abbreviations

Amino Acid 3-Letter-Abbreviation 1-Letter-Abbreviation

Arginine Arg R
Serine Ser S

Leucine Leu L
Glycine Gly G
Valine Val V
Alanine Ala A

Threonine Thr T
Proline Pro P

Isoleucine Ile I
Aspartic acid Asp D

Lysine Lys K
Asparagine Asn N
Cysteine Cys C
Tyrosine Tyr Y

Phenylalanine Phe F
Glutamine Gln Q
Histidine His H

Glutamic acid Glu E
Methionine Met M
Tryptophan Trp W

The mappings between codons and the 20 amino acids in the majority organ-

isms is called standard genetic code, displayed in Figure 4. There exist genetic

code variants in some organisms, for example UGA encodes tryptophan in My-

coplasma species, and CUG encodes serine rather than leucine in yeasts (Fitz-

patrick et al. (2006), Santos and Tuite (1995)). In addition special code is used to

encode two important proteinogenic amino acids pyrrolysine and selenocysteinein,

and expanded genetic code is used for unnatural amino acids in synthetic biology

(Wang, Parrish and Wang (2009)). In this work we aim to explore the universal

principles across species therefore we focus on the standard genetic code.
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Figure 4: The standard genetic code. Amino acids can be grouped into families
depending on how many codons encode them: One codon (Met, Trp), two codons
(Phe, Tyr, His, Gln, Asn, Lys, Asp, Glu, Cys), three codons (Ile), four codons
(Val, Ala, Pro, Thr, Gly) and six codons (Leu, Ser, Arg).

Along mRNA the triplet grouped by three adjacent nucleotides decoding a

particular amino acid is called a codon (which has been introduced in section

1.1). Four bases constitutes mRNA (A, U, C, G), and hence there exist 64 di↵erent

codons, including the start codon (AUG, encoding amino acid methionine), and

the stop codon (UAA, UAG, UGA).

The multiplicity of three-base pair combinations in a codon that specifies the

same amino acid is called codon degeneracy. Codon degeneracy results in the

redundancy of the genetic code.

Codons encoding the same amino acid are called synonymous codons. All

amino acids, except methionine and tryptophan, can be encoded by two to six

synonymous codons.

Based on this one would expect that all synonymous codons are equally used.

However biologically synonymous codons are not equally used within an organism

and di↵erent organisms have their own preference to certain synonymous codons,

as discovered five decades ago (Clarke (1970)).This phenomenon is called codon
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usage bias (CUB for short). For example in human genome, there are two syn-

onymous codons CAA and CAG to encode amino acid glutamine (Glu), whose

frequencies are 0.27 for CAA and 0.73 for CAG individually. When it comes to

bacteria Acidobacteria the ratio is 0.12 for CAA and 0.88 for CAG, compared to

fungi Candida auris the ratio between CAA and CAG is 0.46 to 0.53 (informa-

tion from codon usage database 1, whose resource data is from NCBI-GeneBank).

Various methods are proposed to measure such bias and also possible factors re-

sponsible for such bias are widely investigated.

2.3 Current Measures for Codon Usage Bias

In the previous sections we introduced the biological background pertinent to

codon usage bias. In this section we summarize achievements from current re-

searches in two aspects: measures of codon usage bias, and hypothesis for the

codon usage bias origins.

There is a rich diversity of CUB measures serving for di↵erent purposes adopt-

ing di↵erent methodologies. Some of the measures aim to quantify CUB of a single

gene, while others are interested in CUB of a whole genome; Some of the measures

take into consideration of environmental situations the genome lies in such as the

tRNA pool, while some focus on intrinsic attributes of the genome such as genomic

spatial shape. The investigated perspectives range from biology, medicine, statis-

tics, phylogenetics to physics. Therefore which CUB measure to choose depends

on both the purpose of the study and the feasibility of the methodology.

For a systematical understanding, we classify these measures into two cate-

gories not according to their historical similarities but their application limitations:

(1) Measures requiring external biological information besides gene sequences; (2)

Measures based on the intrinsic sequence composition.

Quantification parameters of CUB are at di↵erent levels such as codon level,

amino acids level, sequence level and genome level. If the approaches first compute

the contribution to codon usage bias of each codon type or each amino acid type,

there exists necessity to discuss how the basic quantified unit can be combined

properly to assess CUB at the level of the whole gene or genome. This aspect has

not been clearly summarised in previous references and hence we contribute such

1https://www.kazusa.or.jp/codon/
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descriptions in our CUB measures summarisation.

2.3.1 Measures Requiring External Biological Information

In this category we introduce widely used methods which require external refer-

ences depending on biological assumptions. Generally speaking these measures

mainly di↵er in the standards of choosing reference sets.

Codon adaption index (CAI) shows codon usage bias of a gene, which is a

long used and widely understood measurement first proposed in 1987 (Sharp and

Li (1987)). It uses a reference set of highly expressed genes which are assumed

to be under strong translation selection. For CAI calculation one first needs to

calculate the relative adaptiveness (wi) for each synonymous codon according to

wi = fi/fmax, where fi is the frequency of codon i in the observed gene and fmax is

the highest frequency among synonymous codon family of codon i in the reference

set. After having all the wi, the combination of wi for quantification of a whole

gene is CAI = (
QL

i=1

wi)(

1

L

) (where L is the length of the gene sequence) the

geometric mean of all the wi.

Later improvements to CAI include: taking into consideration of the irregular

cases which cause errors such as amino acid encoded by only one codon (Xia

(2007)); Relative codon adaption index (rCAI) is proposed to better discriminate

between highly biased and unbiased regions (Lee et al. (2010)). rCAI adjusts

relative adaptiveness of each codon ( wrel
c ) by normalising two reading frames (+1

and +2 reading frames) as wrel
c = w0

cp
w+1

c

p
w+2

c

, where wc = fc/fmax, and fmax is

the value derived from di↵erent reading frames.

Frequency of optimal codons (Fop) was first proposed in 1981 (Ikemura (1981)).

It reflects the codon usage bias of a sequence of interest. It is the ratio between

the optimal codon occurrence to the total number of codons under investigation:

Fop= O
opt

O
tot

, where Oopt =
P

c2C
opt

Oc (Oc represents di↵erent codon families). The

set of the optimal codons (Copt) can be defined according to di↵erent standards

such as nucleotide chemistry or tRNA availability (Ikemura (1985)).

Codon bias index (CBI) (Bennetzen and Hall (1982)) reflects codon usage

bias of a sequence and is similar to Fop. But CBI defines optimal codons as

codons cognate to the major tRNA species. It is calculated as CBI = O
opt

�e
rand

O
tot

�e
rand

,

erand =
P

a2A Oa
nopt

a

k
a

, where O
opt

is the count of optimal codons, O
tot

is the total
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number of codons, Oa is the occurrence of amino acid a, nopt

a is the optimal codon

occurrence for amino acid a, ka is the codon redundancy. Introducing e
rand

for

normalisation results in CBI values ranging between -1 and 1 and convenient for

comparisons.

tAI (Reis, Savva and Wernisch (2004)) works by specially taking into account

intracellular abundance of tRNA molecules and codon-anticodon reaction and

hence it reflects codon usage bias of a gene taking into account tRNA influences.

The absolute adaptiveness value Wi for the i-th codon is defined as Wi =
Pn

i

j=1

(1�
sij)CNij, where ni is the count of cognate tRNA types for the ith codon, CNij

is the copy number of the jth cognate tRNA type matching the ith codon, and

sij is a weight representing selective constraint on the codon-anticodon coupling.

Normalising Wi to wi: wi = Wi/Wmax. By combining all wi, we obtain CUB

for a gene: tAI = (
Ql

g

i=1

wi)
1

l

g , where i is the i-th position in the gene and lg

is the gene length. A�nity di↵erences among nucleotide base pair result from

physiochemical properties of nucleotides. sij represents the a�nity between the

i-th codon and the j-th anticodon considering Crick’s wobble rules, and its value is

derived from biological experiments (Reis, Savva and Wernisch (2004), Watanabe

and Osawa (1995)). According to tAI value we can assess the adaption of a gene

to its genomic tRNA pool.

There are more tRNA interaction focused measures such as P1 index and P2

index (Gouy and Gautier (1982)). P1 index takes into account codon-anticodon

interactions at the ribosome A-site: P1 =
P

c2C
f

c

p
c

, where 1/pc is the mean num-

ber of tRNA-mRNA interactions at the A-site, fc is the codon frequency in the

sequence, C is the codon type space of the sequence. While P2 index accounts

for codon-anticodon interactions along the whole sequence: P2 = O
wwc

+O
ssu

O
wwy

+O
ssy

, where

w represents A or T, s represents G or C. The underlying validation of P2 index

is that pyrimiding-ending codons have intermediate strength compared to purine-

ending codons, and hence the third position of nucleotide has stronger bias for G

or C if the first two nucleotides have weak binding with A or T.

Codon usage bias (B) (Karlin, Mrázek and Campbell (1998)) is a parameter to

assess codon usage bias of a gene. It compares the test gene set to a reference set

where the reference can be composed of a gene class, an entire genome, or a single

gene. Its value is based on the distance between codon frequency vectors, and is

adjusted by a weight representing amino acid frequency: B =
P

a2A Fad(fa, f ref

a ),
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where Fa is the frequency of the amino acid a in the test set, fa and f ref

a are codon

frequency vectors for such amino acid a in the test and reference set respectively,

d is the norm distance between the two codon frequency vectors. Later analogous

measures adopt di↵erent forms of distance between codon frequency vectors, such

as using square distance instead of normal distance (Gladitz et al. (2005)) and

adopt combined reference set such as linear combination of genes (Karlin and

Mrázek (2000)).

Codon-enrichment correlation (CEC) (Ghaemmaghami et al. (2003)) indicates

linear correlation between the investigated sequence and the reference set. It was

originally developed for distinguishing bona fide coding regions, whereby the refer-

ence set contains real coding sequence with high confidence. The linear correlation

coe�cient between an interested open reading frame (ORF) and a reference set is

calculated as CEC = corr(Eorf, Eref), where E is a vector containing elements

of Ec for di↵erent codon types. Ec is calculated as Ec = f
c

e
c

, ec = b
1

b
2

b
3

, where fc

is the codon frequency in the investigated ORF, bi (i = 1, 2, 3) are the nucleotide

frequencies under a certain nucleotide distribution.

2.3.2 Measures Based on Intrinsic Sequence Composition

In this category we introduce widely accepted methods based on intrinsic sequence

composition.

E↵ective number of codons (ENc) (Wright (1990)) is a simple but an e↵ective

quantification for codon usage bias of a sequence, which is independent of the gene

length and the amino acid composition: ENc = NcAla +NcArg + ...+NcV al. ENc

is a summation based on CUB of each amino acid type, and its final value ranges

from 20 to 61. In the extreme bias when only one particular codon is exclusively

used for each amino acid ENc value is 20. On the contrary ENc value is 61 if all

the codons are adopted by the sequence. Several improvements to the original

ENc have the general idea of introducing adjustment weights to minimise noises

resulting from di↵erent synonymous codon family size (Marashi and Najafabadi

(2004), Fuglsang (2005)).

GC content at silent sites (GC3) (Shields et al. (1988)) is a prevalent measure-

ment of codon usage bias for a sequence. It is calculated as GC3 = O
nns

O
tot

, where

O
nns

is the number of codons ending with G and C, O
tot

is the total codon count.
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Similar to P2 index in the first category this method also accepts that G-C pair

has stronger binding than A-T pair, and hence G-C pair is more influential in the

codon usage.

Improved CAI accepts that reference set can be the expression system (such

as the whole genome the investigated gene exists), therefore it does not require

the complete biological information of highly expressed genes (Puigbò, Bravo and

Garcia-Vallve (2008)).

Relative synonymous codon usage (RSCU) (Sharp and Li (1986)) displays the

bias for a single synonymous codon type, which is the ratio between observed

codon frequency and expected frequency of this codon family. It is calculated

as rac = O
ac

1

k

a

P
c2C

a

O
ac

, where Oac is the frequency of one synonymous codon type,

ka is the size of synonymous codon family for the amino acid a. In this way

rac e↵ectively diminishes the impact caused by di↵erent sizes of codon families.

RSCU is 1 which indicates no bias for such codon, while greater than 1 means

more frequent usages and less than 1 means infrequent usage of such codon.

Codon preference (P) (Gribskov, Devereux and Burgess (1984)) can reflect

codon usage bias of a sequence. It was originally designed to use a sliding window

of length L to locate genes and detect frameshift mutations. Later window size L

is assigned the length the same as investigated sequence length. It is calculated

as P = (
QL

i=1

wp
c (i))

1

L , wP
c = f

c

e
c

, ec = b
1

b
2

b
3

, where L is the sequence length, i is

the codon position, fc is the frequency of the i-th codon, ec is the multiplication

of nucleotide usage probabilities of the 3 nucleotide bases of the i-th codon.

Relative codon usage bias (RCB) (Roymondal, Das and Sahoo (2009)) and rel-

ative codon adaption (RCA) (Fox and Erill (2010)) share the same idea with codon

preference (P). They all calculate theoretical codon frequency (ec) by multiplica-

tion of the three nucleotide base frequencies (b
1

b
2

b
3

): ec = b
1

b
2

b
3

, which assumes

nucleotide distributions as underlying influence in CUB. However RCB obtains

nucleotide distributions based on the expected nucleotide frequencies while RCA

obtains nucleotide distributions based on randomly generated sequences which

have the same GC percentage as the original sequence.

Codon-preference bias (CPB) (McLachlan, Staden and Boswell (1984)) reflects

codon usage bias of a sequence and is one member of measures adopting devia-

tions from theoretical distributions. CPB measures the degree of deviation of

observed codon usage from the theoretical mean. It is calculated as CPB = U� ¯U
�

U

,
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U = � log M(o), M(o) = O
tot

!Q
c2C

(O
c

!)

Q
c2C fO

c

c , fc =
(

P
c2SC

O
c

)/O
tot

sc , where Oc is the

observed codon count, Otot is the total codon count, fc is the expected frequqency,

SC is the synonymous codon family which codon c belongs to, sc is the size of the

synonymous codon family. Distribution of U (Ū and �U) are obtained by way of

generating random sequences of length Otot and the same amino acids composition

as the original sequence. To obtain distribution of U is time costing especially for

large values of length Otot.

Maximum likelihood codon bias (MCB) (Urrutia and Hurst (2001)) borrows

the same idea as CPB to compare the observance to expected distribution, but

di↵er both in ways of expected value calculation and comparison procedure. It is

calculated as MCB =
P

a2A
B

a

logO
a

O
tot

, Ba =
P

c2C
a

(O
c

�e
c

)

2

e
c

, where Oa is the occur-

rence of amino acid a, Otot is the total count of amino acids, Oc is the observed

codon count and ec is the expected codon count. It computes the expected value

based on nucleotide frequencies and the final form of MCB is a weighted sum over

all the amino acids. The weights aim to compensate the frequently used amino

acids. Ba is a �2-test statistic which evaluates the observance deviations from the

expected value, which can be used to make the judgement whether observance

is equivalent to the case of expected codon usage with an underlying nucleotide

distribution.

Intrinsic Codon Bias Index (ICDI) (Uddin (2017)) is used to assess CUB of a

sequence. It ranges from 0 to 1 where 0 signify no bias and 1 for extremely high

bias. It is calculated as: ICDI =
P

a2A FaSa, Sa = 1

K
a

(K
a

�1)

P
c2C

a

(rac � 1)2,

where rac is the synonymous codon usage frequency, Ka is the degeneracy of

amino acid a in the sequence, Sa reflects the CUB assessment at each amino acid

level, and Fa is an equal weight 1/18 for all the amino acid.

Weighted sum of relative entropy (Ew) (Suzuki, Saito and Tomita (2004))

is a sequence CUB assessment parameter originating from information theory.

It measures the deviation of observances from equal codon usage cases. It is

calculated as Ew =
P

a2A FaEa, Ea = H
a

max(H
a

)

, Ha = �
P

c2C
a

faclog2

fac, where Fa

is the relative frequency of amino acids in the sequence, Ha is the entropy defined

in information theory, fac is the frequency of each codon. Ew first computes unit

assessing parameter Ea and then sum Ea over all the amino acids. Weights Fa

work as adjustments considering di↵erent amino acid frequencies.
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Synonymous codon usage order (SCUO) (Wan et al. (2004)) is also an infor-

mation theory based CUB measurement. It is similar to Ew, but di↵ers in how

the entropy of each amino acid is calculated shown as Ea = max(H
a

�H
a

)

max(H
a

)

.

Kullback-Leibler codon information bias (KL-CIB) is another sequence CUB

measurement based on conditional entropy. It evaluates departure of obser-

vance from assumption of uniform synonymous codon usage. It is calculated

as K(µ | ⌫) =
P

i2I µ(i) log
�
µ(i)/⌫(i)

�
, where i is ith codon, ⌫(i) is the observed

codon entropy distribution, µ(i) is the assumed codon entropy distribution which

is derived from sampled sequences (Comeron and Aguadé (1998)).

Codon pair score (CPS) (Coleman et al. (2008)) shows codon usage bias con-

sidering context in the neighbourhood, namely codon context bias. It is calculated

as CPS = F (AB)

F (A)F (B)

F (X)F (Y )

F (XY )

, where AB is the codon pair coding the amino acid pair

XY, F is the counts for the corresponding element in the parenthesis. Arithmetic

mean of CPS is used to reflect codon context bias in a quiry gene .

2.3.3 Comparisons among Di↵erent Measures

Without exception each measurement first obtains codon counts under certain

standards. After codon counts are prepared, all the methods need to resolve two

common issues ’normalisation’ and ’combination’.

’Normalisation’ makes the CUB assessment parameters comparable, and ’com-

bination’ transforms unit CUB assessment parameters at codon level or amino acid

level to the level of the whole sequence or genome. For ’normalisation’, one way is

choosing reference sets which require external biological knowledge (Sharp and Li

(1987), Reis, Savva and Wernisch (2004), Karlin, Mrázek and Campbell (1998),

Bennetzen and Hall (1982)); the other way is comparing with theoretical distri-

butions, some based on given nucleotide distributions (Gribskov, Devereux and

Burgess (1984)), some based on the statistics derived from randomly generated

sequences (Roymondal, Das and Sahoo (2009), McLachlan, Staden and Boswell

(1984), Urrutia and Hurst (2001)). For ’combination’, some adopt weighted sum-

mation (Uddin (2017), Suzuki, Saito and Tomita (2004)), some adopt geometric

mean (Sharp and Li (1987), Reis, Savva and Wernisch (2004)), some adopt dis-

tance between vectors (Karlin, Mrázek and Campbell (1998), Ghaemmaghami

et al. (2003)), and some adopt di↵erences between distributions (McLachlan,
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Staden and Boswell (1984), Comeron and Aguadé (1998)). These procedures

aim to diminish impact caused by sequence lengths, amino acid compositions,

and synonymous codon family sizes.

Herein we compare previously introduced measures according to their di↵erent

specifics, utilities and their procedures of ’normalisation’ and ’combination’.

• Reference from biological information: Codon adaption index (CAI) uses

highly expressed genes as the reference set. Codons adopted by highly ex-

pressed genes are considered as optimal codons, because highly expressed

genes are assumed under stronger selection for desired translation e�ciency.

The reference set selection standard renders CAI the capability to evaluate

CUB from the perspective of translation e�ciency. Frequency of optimal

codons (Fop) and Codon bias index (CBI) define reference set and optimal

codons according to certain principles such as nucleotide chemistry, tRNA

availability. By way of choosing particular reference sets, Fop and CBI are

appropriate to analyse relationships between CUB and interested factors.

tAI, P1 index, and P2 index are competent in evaluation between CUB and

tRNA related factors because their reference set selections refer to tRNA

copies, cognate tRNAs, mRNA copies, codon-anticodon a�nity, and tRNA

interaction with ribosome ’A’ position, which are important elements in

translation initiation and translation elongation. These measures are capa-

ble of analysing concrete biological factors by choosing pertinent reference

sets, however due to incompleteness of available biological information, the

reference set selection has inevitable restrictions when it comes to analysing

the large number of emerging genomes from poorly studied organisms. To

enhance their usage flexibility such measures add ways of selecting reference

sets, for example codon adaption index (CAI) not only accept the highly

expressed gene as a reference set but also accept the whole genome the

investigated gene exists as the reference set.

• Reference from theoretical calculations. There are generally two classes of

theoretical distributions: one is the expected distribution based on randomly

generated sequences, and the other is based on intrinsic nucleotide distri-

bution of the organism. Codon-preference bias measure (CPB), informa-

tion theory based weighted sum of relative entropy (Ew) and synonymous
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codon usage order (SCUO) measure codon usage pattern deviation from

expected distribution assuming codon usage are completely random. How-

ever if sequence length is too long it is di�cult to get the accurate codon

usage distribution. Codon preference (P) and maximum-likelihood codon

bias (MCB) take another hypothetic distribution calculated based on the

given nucleotide frequencies, which supposes CUB has an underlying depen-

dance on nucleotide composition. There are mixtures of these two classes

such as relative codon usage bias (RCB), which uses multiplication of the

three nucleotide frequencies of a codon as the expected distribution, how-

ever the nucleotide frequencies are the expected values calculated basing on

quantities of randomly generated sequences. Any assumptions a CUB mea-

surement take could enhance the capability of evaluating a particular factor

(such as nucleotide composition in this case), but meanwhile undermine

the capability to spot other potential correlated factors. These measures

without references from concrete biological information are more flexible

to use and contain more information about potential influential factors in

CUB, however convincing mechanisms are required to explain and validate

results from such measures. They often make comparisons with measures of

clear biological indications such as codon adaption index (CAI), in order to

demonstrate their strengths in analysing biological events.

• Sequence length: Sequence length is an important issue which should be

tackled properly in all the measures. Short sequences prone to have large

variance due to stochastic sampling e↵ects which appear in codon adaption

index (CAI), frequency of optimal codons (Fop), codon bias index (CBI) and

e↵ective number of codons (ENc) (Behura and Severson (2013)). Weighted

sum of relative entropy (Ew), synonymous codon usage order (SCUO), and

codon-preference bias (CPB) all have a problem to achieve the accurate

distributions to calculate the expected value when the sequence lengths are

too long.

• Amino acid composition: Intrinsic codon bias index (ICDI) assesses CUB of

the whole sequence by summing over all the amino acids with an equal weight

1/18, but it has taken into account amino acid degeneracy when assessing

CUB for each amino acid type. Codon usage bias (B), weighted sum of
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relative entropy (Ew), and synonymous codon usage order (SCUO) apply

amino acid frequencies in the query set as the adjustment against di↵erent

amino acid compositions for CUB assessment of the whole sequence.

• Synonymous codon family size: E↵ective number of codons (ENc) is popular

because of its simple calculation and easy interpretation. Unlike other meth-

ods it avoids complex normalisation, however it doesn’t take into account

di↵erent sizes of synonymous codon families. Relative synonymous codon

usage (RSCU) adopts a weight to diminish the a↵ect from the synonymous

codon family size, whereas it has no proposal to combine the unit CUB

assessment at the codon level for the whole sequence CUB quantification.

• Combination method: Codon adaption index (CAI) and codon preference

(P) use geometric mean to combine unit CUB assessment parameter, and

sequence length L is involved in the root to diminish length impact. Codon-

enrichment correlation (CEC) and codon usage bias (B) choose the dis-

tance between codon frequency vectors as the final assessment parameter

for a whole sequence, which is a good way to reduce dimensions and avoid

improper linear combination of basic CUB assessment parameters. E↵ec-

tive codon numbers (ENc), maximum-likelihood codon bias (MCB), and

weighted sum of relative entropy (Ew) resort to weighted sum as the combi-

nation method, where weights are used to counteract noises caused by amino

acid composition.

From the above discussion of current popular CUB measures, we could see the

weakness of each individual measure from the perspective of the convenience and

computational cost of its application, and information loss during its calculation

procedure. In this work we aim to propose a new computationally e�cient measure

which only relies on the intrinsic feature of the genome without external references,

and furthermore maintains as complete CUB information as possible at levels of

genes, amino acids and the whole genome.
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2.4 Hypotheses for the Origins of Codon Usage

Bias

In the last section, we introduced the measures for codon usage bias, which provide

the tool to discover correlation between codon usage patterns and their potential

causative factors. In this section, we discuss hypotheses about the origins of codon

usage bias.

Underlying mechanisms responsible for codon usage bias have been widely

studied but no unanimous agreement has been reached (Duret (2002)).

Codon evolution starts from nucleotide mutations, such mutations could be

totally random or have certain directions. After the new mutated variants arise,

the destination of the mutants are determined by two forces, which are ’genetic

drift’ or ’natural selection’. ’Genetic drift’ is a random, directionless process, and

it causes the mutants to a stochastic loss or fix in a population during reproduc-

tions between generations (Duret (2008)) (When the frequency of a new mutant

in the population reaches 100%, the mutant is fixed, and 0% means the mutant is

lost). Such stochastic fix or loss roots from the way of o↵spring reproductions in

a finite population. ’Natural selection’ only act on mutants which can contribute

to fitness. Fitness is a relative rate of proliferation or reproduction, if the fitness

of a mutant is greater than the average of the population, it will tend to increase

in frequency, otherwise if less than average it will tend to decrease (Stearns and

Hoekstra (2000)).

There is a widely accepted hypotheses that on a mechanistic level, two kinds

of e↵ects impacting codon usage bias are ’natural selection’ and ’mutational bias’

(Hershberg and Petrov (2008), Behura and Severson (2013), Yang and Nielsen

(2008), Zeng and Charlesworth (2009)). We classify findings about CUB origins

into two categories ’natural selection’ and ’mutational bias’ which are elaborated

in the following sections.

2.4.1 Natural Selection

’Natural selection’ states that codon usage undergoes positive selection. Possible

selection pressures on CUB are discussed as follows:
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2.4.1.1 Selection Pressure Arising from Translation

Translation e�ciency is highly correlated with codon usage bias. Conversions

of abundant codons to their rare synonymous counterpart in several highly ex-

pressed genes shows a reduction of both the cellular fitness and the translation

e�ciency, which supports the assumption in natural selection that codon usage

of highly expressed genes was selected in evolution to maintain the e�ciency of

global protein translation e�ciency (Frumkin et al. (2018), Jeacock, Faria and

Horn (2018), Tuller et al. (2010), Nakahigashi et al. (2014)). Optimal and rare

codons impact translation e�ciency, however there is controversy about whether

rare codons undergo selection. Some state that selection favours optimal codons

over rare codons, mutational pressure and genetic drift allow the rare codons to

persist (Hershberg and Petrov (2008)), while some state that rare codons can

contribute to the accuracy of translation although at the expense of speed (Gin-

gold and Pilpel (2011), Cope, Hettich and Gilchrist (2018)). Translation has a

trade-o↵ between speed and accuracy (Thompson and Karim (1982), Lovmar and

Ehrenberg (2006)), which suggests that optimal speed may not be reached if this

generates an unacceptable accuracy price.

Codon usage bias influences the translation initiation rate by shaping mRNA

secondary structure ((Liu et al. (2017))). CUB in the 5’ terminal of coding se-

quences can result in profound e↵ects on gene expression, because 5’ end secondary

structure of mRNA considerably a↵ect translation initiation rate by controlling

ribosome binding to mRNA. Besides mRNA secondary structure, codon usage

largely shapes mRNA abundance by controlling mRNA decay (Erben and Clayton

(2018)). Di↵erent mRNA abundances influence translation initiation rate. The

translational e�ciency of an AUG, CUG, GUG, or UUG start codon is measured

in the naturally leaderless mRNA (the mRNA lacking 5’ untranslated regions)

from bacteriophage, and it suggests that the start codon is an important deter-

minant of ribosome binding strength to mRNA (O’Donnell and Janssen (2001)).

Codon usage bias is correlated to factors involved in translation elongation such

as tRNA pools, cognate tRNA abundance, aminoacyl-tRNA synthetases and ri-

bosomes. Highly expressed genes in the C.elegans genome show that translation

elongation rates are faster along transcripts if codons highly adapt to the tRNA

pools (Duret (2000)).The relative abundance of cognate tRNA is correlated with

optimal codons and rare codons, which demonstrates as a common principle in a

24



wide range of organisms (Behura and Severson (2011), Fluitt, Pienaar and Viljoen

(2007),Roy et al. (2015)). When it comes to the ribosome, another important fac-

tor engaging in translation elongation, ribosome profiling technique is adopted to

detect the translation elongation velocity at the codon-level by spotting ribosome

location, and it reveals that codon usage controls ribosome pausing and tra�c on

mRNA (Agashe et al. (2012)).

Dynamic changes to protein structure during synthesis are related to CUB.

Protein folding in vivo happens simultaneously with the translation elongation,

and the protein kinetic folding is e↵ectively manipulated at the codon level (Thom-

men, Holtkamp and Rodnina (2017)). Synonymous codon usage impacts the speed

when polypeptides emerge from the ribosome and control protein dynamic struc-

ture to avoid unwanted interactions between chemical groups (Angov (2011)).

Substitutions of rare synonymous codons to mRNA templates when keeping the

similar mRNA and protein abundance levels, yields altered protein conformations

between the wild type and mutant protein products, which is the e↵ect of CUB

on protein kinetic folding (Kimchi-Sarfaty et al. (2007)).

2.4.1.2 Selection Pressure Arising from Transcription

mRNA is produced at the transcription stage, therefore more studies extend their

interests into CUB correlated factors involved in transcription.

NTPs (reference to section 1.1 transcription) serve as resources and energy

for transcription, their abundances impact transcription e�ciency. The most fre-

quently used ribonuclectide at the third codon position in mRNA are the same

as the most abundant NTPs in the cellular matrix where mRNA is transcribed,

which provides the evidence that transcription e�ciency shape codon usage (Xia

(1996)).

Exonic splicing enhancers (reference to section 1.1 post-transcription modifi-

cation) are parts of exons, and are responsible for proper identifications of splice

sites in a primary mRNA. Large parts of functional exonic splicing enhancers are

composed of codons with 4-fold degenerate sites (if a base yields the same amino

acid no matter of A,U,C,G in the third codon position, such base is called 4-fold

degenerate site). Exonic splice regulation imposes strong selection at synonymous

sites (Savisaar and Hurst (2018)).

Transcription factors footprinting (a technique to study interactions between
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nucleotide sequences and proteins) across the human exome in 81 diverse cell

types, shows there are highly conserved dual-use codons which simultaneously

specify both amino acids and TF recognition sites. TF-imposed constraint appears

to be a major driver of codon usage bias (Stergachis et al. (2013),Goz, Zafrir and

Tuller (2018)).

2.4.1.3 Selection Pressure from the Environment

Viruses express their protein by combining their genetic information into hosts,

therefore viruses are ideal subjects to study codon evolution in particular environ-

ments. The study of 2625 di↵erent viruses and 439 corresponding host organisms

uncovered that long substrings of nucleotides in the coding regions of viruses often

repeat in the corresponding hosts from all domains. The host-repeating strings

in the viruses resulted from the evolutionary pressure enable viruses to e↵ectively

interact with host’s intracellular factors and e�ciently escape from the hosts’ im-

mune system (Goz, Zafrir and Tuller (2018)). The investigation of translation

kinetics and capsid folding in hepatitis A virus (HAV) showed that codon usage

in HAV is highly biased and deoptimized with respect to its host, for the reason

that HAV avoids using abundant host cell codons and hence eludes competition

for the corresponding tRNAs (Pintó et al. (2018)).

Not only viral genomes show codon usage adaptions to their hosts, also bacteria

have their codon usage strategies. Acidophilic bacteria preferentially have low

CUB, which is consistent with their slow growth rate and their capacity to live in

a wide range of habitats. Their codons which encode proteins to resist extreme

conditions (such as metal and oxidative stress) have particular low CUB. Such

results uncovered codon adaptations to environmental conditions in an acidophilic

consortium (Hart et al. (2018)).

Codon optimization in fungal parasites at the genome scale correlates with

their host range. The longer proteins encoded by broad host range fungi prone

to have a stronger codon optimization. By contrast to the specialist species, gen-

eralist species tend to have the virulence genes which are highly codon-optimized

(A generalist species is able to thrive in a wide variety of environmental condi-

tions, while a specialist species can only thrive in a narrow range of environmental

conditions) (Badet et al. (2017)).
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2.4.1.4 Selection Pressure Arising from Pathways

Amino acids that share the same biosynthetic pathway tend to have the same first

base in their codons, and also amino acids with similar steric, chemical and phys-

ical properties tend to have similar codons (Wong (1975)). Amino acid properties

correlate to nucleotide base type and base positions within the codon (Taylor and

Coates (1989)). These scenarios convey that codon co-evolved with amino acid

metabolic pathway.

In bacteria kingdom, at least two groups of functionally distinct genes are

characterised by di↵erent levels of conservation and CUB. The first group is mainly

related to cellular information processing, and it retains a limited synonymous

codon usage repertoire under the purifying conservative selection. The other group

is mainly related to metabolism and has less conserved codon usage (Dilucca,

Cimini and Giansanti (2018)).

In the mammalian peripheral neurons, genes involved in the DNA damage re-

pair pathway are codon-biased, and their misregulation is correlated with elevated

levels of DNA damage (Go↵ena et al. (2018)).

2.4.1.5 Selection Pressure Arising from Codon Spatial Location in the

Genome

Codon location within the genome influences codon usage bias. An intra-genic

variation of codon usage indicates codon usage bias is position-specific (Behura

and Severson (2013)), which is to say the magnitude and direction of codon bias

can vary along the gene. Nearly symmetric M-shaped spatial pattern of CUB

exists among the genes of the fruit fly, with relative less CUB in the middle and

the ends of the gene (Qin et al. (2004)). Slow codons are chosen at the start

of the coding regions aiming to slowly load ribosomes and to avoid congestion

(Tuller et al. (2010)). Codons at the intron-exon junctions have di↵erent selection

pattern of codon usage compare to other exon regions (Parmley, Chamary and

Hurst (2005)).

Codon context patterns and codon usage bias in a genome-wide manner anal-

ysis among insect species showed that specific codons are frequently used near

the 3’ prime and 5’ prime in the context of the start and the stop codon (Behura

and Severson (2012)). Similarly genomic and transcriptomic data of a red yeast
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species reveals that independent of the culture conditions, the highly expressed

genes show a strong bias in the 3’ context (Baeza et al. (2015)). Comparison

between a key enzyme-coding gene in a bacterial wild-type and its synonymous

variants, indicates that an individual gene can either select for or against partic-

ular synonymous codons depending on their local context (Agashe et al. (2012)).

Adjacent codon usage patterns demonstrate that two consecutive rare codons are

generally avoided, for the reason that it could increase the probability of ribosome

drop-o↵ (Cruz-Vera et al. (2004)).

Factors belonging to Natural selection responsible for CUB are not isolated to

each other, for example codon usage bias is related to mRNA secondary struc-

ture, mRNA secondary structure influences translation initiation rate, translation

initiation contributes to protein synthesis speed (protein abundances), and func-

tional protein expression is vital for the organism fitness (survival and replication).

Bacteria fitness depending on codon usage bias is frequently confirmed in many

microbiological experiments (Hauber, Grogan and DeBry (2016),Yannai, Katz and

Hershberg (2018)).

2.4.2 Mutational Bias

’Mutational bias’ favours certain types of mutations, which can be caused by

the chemical properties of the nucleotide bases (Knight, Freeland and Landweber

(2001)), non-uniform DNA repair (Kaufmann and Paules (1996)), non-random

replication errors (Lobry (1996)) etc.. Types of mutational bias include GC bias;

transition-transversion bias; strand-specific bias; insertion-deletion bias, among

which GC bias is the most widely discussed as a driver for CUB. All kinds of

mutational variants are assumed to arise randomly and provide the raw materials

for evolution (Whitehead and Crawford (2006)). Further more mutational bias

could potentially cause codon bias.

2.4.2.1 GC Bias

GC (guanine-plus-cytosine) bias leads to directional mutations. GC pairs has a

higher thermostability compared to AU/AT pairs, because the GC pair has three

hydrogen bonds while the AU/AT pair has two. Besides GC pairs have more favor-

able stacking energies (Yakovchuk, Protozanova and Frank-Kamenetskii (2006)).

28



DNAs/RNAs appear to be biased towards the preferential fixation of AT/AU to

GC mutations, and hence GC content is considered as a mutational bias force driv-

ing codon usage (Birdsell (2002)). Supportive viewpoint states that a guanine-

and cytosine-rich genome is preferred from an evolutionary standpoint (Nabiy-

ouni, Prakash and Fedorov (2013)). GC bias puts a directional pressure on the

genome to evolve towards a preferred GC content, and these directional changes

happen more in neutral parts of the genome than in functionally significant parts

(Sueoka (1988)).

GC bias shapes the codon usage at the global level in the genome. AT to GC

mutations sculpt nucleotide compositions, and the GC content correlates with non-

coding, exon, intron, tRNA and rRNA sequences, all parts of the genome (Muto

and Osawa (1987)). GC1, GC2, GC3, and the whole GC content (1,2,3 represent

the nucleotide position within the codon) are often taken into consideration sep-

arately in studies (Du et al. (2018), Mondal et al. (2016)). Such global mutation

force results in nucleotide-composition-shaped codon usage bias, which is more

likely determined by global genome-wide processes rather than selective forces

acting specially on gene sequences (Knight, Freeland and Landweber (2001),Guo,

Bao and Fan (2007), Agashe et al. (2012)).

An concrete investigation into genes involved in the central nervous system

(CNS) adopted e↵ective number of codons (ENc) and relative synonymous codon

usage (RSCU) to measure CUB. The measures reveal that the most frequently

occurring codons had G or C at the third position, and GC-rich genes are a↵ected

by mutation pressure (Uddin and Chakraborty (2018)). In human the expression

level of oncogenes (genes of the potential to induce cancer) is determined by codon

usage bias. Highly expressed oncogenes had rich GC contents with a strong codon

usage bias (Mazumder, Chakraborty and Paul (2014)).

2.4.2.2 Transition-transversion Bias

Nucleotide transition means purine to purine or pyrimidine to pyrimidine muta-

tions; nucleotide transversion means purine to pyrimidine mutations or vice versa.

It is generally assumed that there is a universal bias in favour of transitions

over transversions, possibly as a result of the underlying chemistry of mutations

and conservative mutational e↵ects on proteins (Stoltzfus and Norris (2015)).

Methylation e↵ect (a process of adding methyl groups to the nucleic acid molecule)
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is considered as the significant factor contributing to di↵erences between transition

and transversion rates. Part of the higher transition rate in vertebrates can be

attributed to the e↵ect of methylation (Keller, Bensasson and Nichols (2007)).

2.4.2.3 Strand-specific Bias

Vertebrate mitochondria have circular DNAs. The circular DNA consists of two

strands which have di↵erent masses because of di↵erent proportions of heavier

nucleotides. Codons ending in T and G are preferentially used for heavy strand-

encoded genes, and tRNAs encoded by heavy strands contain more G-U base pairs

in their possible secondary structures. Accumulation of G and T on one strand,

as well as A and C on the other is considered being driven by the strand-specific

bias (Asakawa et al. (1991)).

2.4.2.4 Insertion-deletion Bias

Deletions of nucleotides occur more frequently than insertions, which can be ex-

plained by the thermodynamics of DNA replication slippage. An insertion requires

the melting and replication of a segment of previously duplicated bases, by con-

trast deletions only involve a skipping of unreplicated bases (Petrov (2002)).

Patterns of deletion and insertion inferred from bacterial pseudogenes demon-

strate a pervasive bias towards deletions not insertions. Further more the size

of deletions is biased towards the multiples of 3 nucleotides (03n0). This 03n0

deletion pattern is explained by the alternative end-joining repair, which is a

recombination-independent double strand break DNA repair mechanism (Dan-

neels, Pinto-Carbó and Carlier (2018)).

2.5 Models to Investigate the Origin of Codon

Usage Bias

In the previous section, we described main hypotheses about CUB origins. In this

section we introduce models which are used to investigate CUB origins from the

perspective of simulating dynamic codon evolution through time under assumed

conditions. The current popular methods normally postulate a time frame in

which the codon usage attribute changes. Various algorithms adopted to express
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such change include: constitution of the transition matrix which contains param-

eters representing all kinds of CUB driving forces; or exploration for a function

whose input domain contains codon usage frequencies and possible CUB drivers.

These methods have advantages to investigate particular CUB driving forces in

interest however it is di�cult even impossible to enumerate all the possible in-

fluential factors in the model. Throughout the thesis I developed an approach

based on statistical mechanics, which summarizes the e↵ect of large number of

forces which do not need to be defined in detail. This therefore addresses the

shortcomings in the existing approaches.

2.5.1 Model Based on Dynamic Codon Frequencies in Codon

Sequences

If we consider dynamic codon frequencies at a time as the evolving events, a model

can construct Markov Chains to investigate mutational bias and natural selection.

Markov chain is a mathematical system where the probability of events depend

only on current states. The equilibrium status at a time of the Markov Chain

depends on a codon substitution probability matrix (P , of size 61*61) (stop codon

excluded).

The codon substitution probability matrix P is changes with time and derived

from codon instantaneous substitution rate matrix (Q of size 61*61). At the start

point P (0) is the identity matrix the same size as Q, then at time t: P (t) = Qt

for the discrete time, and P (t) = eQt for the consecutive time (’t’ represents the

evolution duration or iteration).

Codon equilibrium frequency matrix (⇧) can be calculated according to the

original codon frequency matrix ⇧
0

and the codon substitution probability matrix

at time t (P(t)): ⇧ = ⇧
0

P (t), ⇧
0

is the original codon frequency distribution.

The key procedure of deriving codon instantaneous substitution rate matrix

(Q) adopts some typical parameters as follows:

• Multiplication of involved nucleotide base mutation rates. To calculate the

synonymous codon mutation rates, most models only consider one base mu-

tation (Yang and Nielsen (2008), Pouyet et al. (2016)), while some accept
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di-base mutations (Cannarozzi and Schneider (2012)). Among the four dif-

ferent nucleotides ’A, T, C, G’ , the mutual pair mutation rates form a ’nu-

cleotide mutation rate matrix’ (N of size 4*4). In a computational model

the pair mutation rates can be equal to each other under a total random mu-

tation assumption. Based on the matrix N, synonymous codon substitution

rates solely depending on directional nucleotide mutations are obtained.

• Parameters rooted in biological considerations and principles such as: 0!0

, the ratio between the rate of synonymous mutations (dS) and the non-

synonymous mutations (dN); 0k0, the ratio between the rate of nucleotide

transitions and the rate of nucleotide transversions (Nucleotide transition

means purine to purine or pyrimidine to pyrimidine mutations; nucleotide

transversion means purine to pyrimidine mutations or vice versa); 0d40: the

rate at the 4-fold degenerate sites (if a base yields the same amino acid no

matter of A,U,C,G in the third codon position, such base is called 4-fold

degenerate site) (Zoller and Schneider (2012)).

• Selected eigenvectors of Q matrix in previous principal component analysis

(PCA) (Jolli↵e and Cadima (2016)). Eigenvectors of Q matrix constitute

the principal dimensions of codon substitution probability, and they retain

the most principal information conveyed by matrix Q.

• Parameters specially adjusted for certain purposes such as phylogenetic tree

branch length (Gil et al. (2013)), translation e�ciency: codon fitness decided

by ribosome and tRNA abundance (Bulmer (1991)).

To be specific this model could serve for the two general purposes:

(1) Probe whether mutational bias or natural selection shapes the codon us-

age bias of an organism. For example compare a mutational bias only model and

a model containing natural selection parameters. When one only considers pa-

rameters of nucleotide substitution rate to generate synonymous codon mutation

rate matrix Q1, the corresponding equilibrium frequency matrix ⇧1 is obtained.

If one considers not only nucleotide substitution rate to form synonymous codon

mutation rate matrix Q2, the corresponding equilibrium frequency matrix ⇧2

is obtained. Apply �2 independence test (Yang and Nielsen (2008)) to the two
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multilevel variables ⇧1 and ⇧2, with the Null Hypothesis: ⇧1 and ⇧2 are to-

tally independent, namely reputing the null hypothesis means: the synonymous

codon evolution is not caused by mutational bias only. When we apply the model

to the real phylogenetic frame, orthologous groups are normally selected from

species with undisputed phylogenetic trees (Cannarozzi and Schneider (2012)).

Nucleotide mutation rates and all the parameters involved in the model should be

retrieved from the real orthologous data.

(2) Parameter estimation for CUB drivers. First a likelihood function (L) is

written algebraically or numerically in the terms of parameters (such as nucleotide

mutation rate, 0k0 the rate ratio between nucleotide transitions and transversions,

or tree branch length. For convenience we name the set of all the variables as ✓,

and hence Q is the function of ✓). On the condition of observing the sequence data

⇧ in the consecutive time, the maximum likelihood function is built: L(✓|⇧) =

P (t) = eQ(✓)t, where t corresponds to status ⇧. If t is not given, but initial

⇧
0

is given, then ⇧ = ⇧
0

P (t) = ⇧
0

eQ(✓)t. By introducing Lagrange Multiplier

�, the maximum likelihood function is L(✓, t, �|⇧, ⇧
0

) = eQt � �(⇧ � ⇧
0

eQt) (in

discrete time Qt should replace eQt). Finally maximum Likelihood Theory is used

to estimate these parameters given the observable sequence data (Cannarozzi and

Schneider (2012)).

Because the likelihood to see the real sequence data should have the maxi-

mum value among the parameters space, thus parameters corresponding to such

maximum likelihood can be calculated by rendering the first derivative of L to 0

or computationally searching the maximum value of L among the whole available

parameter space of ✓.

2.5.2 Model Based on Dynamic Allele Frequencies in a

Population

Compared to the model based on dynamic compositions of a codon sequence,

another type of model borrows the concept of ’genetic drift’ in population genetics.

Codon usage bias is investigated from the perspective of allele frequency variations

through generations among a population of interest. The fitness of an allele takes

into account of codon usage such as how many optimal codons are used in the

allele.
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Nucleotide mutations in a gene yields its variations which are called alleles.

An observable physical trait of an organism (phenotype) is decided by alleles

(genotype). If two alleles together decide the phenotype of the organism, such

organism is called a diploid organism (like humans). The same naming principle

applies to haploid (one allele), triploid (three alleles) or polyploid (many alleles).

A allele stochastically fixed or lost roots in the way the organism reproductions

in the population.

Two classic models to describe allele dynamics are typically built upon the

Wright-Fisher model and Moran model (Lange (2003)) under particular popula-

tion genetic settings.

Wright-Fisher model assumes a gene with two alleles, A or B. The assumption

is: in diploid populations of N individuals, each individual can have two copies

of the same allele or two di↵erent alleles. For each generation genes contained in

each individual are drawn independently at random from all gene in the parent

generation. After a certain iterations frequencies of A and B can be simply calcu-

lated by binomial distribution. The probability of observing m copies of allele A is

calculated as : P {X(t + 1) = m|X(t) = Np} =

 
N

m

!
pm(1 � p)N�m, where X(t)

denotes the number allele A at the the time t, p is the frequency of allele A at the

time t. Approximation (di↵usion) can be made by assuming the population size N

is large and any terms in the formula of higher order of N�1 are neglected (Tian

(2007)). If there is only ’genetic drift’ acting on the population, the expected

time to fix an allele is: T̄
fixed

= �4N(1�p) ln(1�p)

p ; the expected time to loss an allele

is: T̄
lost

= �4Np
1�p ln p (Hartl, Clark and Clark (1997)).

Similarly the Moran model has the same idea as Wright-Fisher model, only

di↵ers in the aspect that it assumes overlapping generations, and at each itera-

tion, one individual is chosen to reproduce and one individual is chosen to die

(Moran (1958)). Computational simulations are usually easier to perform using

the Wright-Fisher model, because fewer time steps need to be calculated (Ferrer-

Admetlla et al. (2016)).

The advanced models to study codon usage bias are built on those Wright-

Fisher or Moran models such as the reversible mutation model (Crow, Kimura

et al. (1970)).

The general procedures of reversible mutation model to investigate mutation
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or selection strength are explained as follows:

(1) Assume two types of variants, A and B can occur among a population of

size N . Mutation is assumed to be reversible: the mutation rate from A to B is

kµ, and that in the reverse direction is µ; mutation is said to be unbiased when

k = 1. The fitnesses of the three genotypes AA, AB, BB are 1, 1-s, and 1-2s.

(2) The system’s equilibrium distribution fx is obtained using di↵usion theory

(Kimura (1964)): f(x) = Cx✓�1(1 � x)k✓�1e�x, where x = i/(2N), ✓ = 4Nµ,

� = 4Ns, C is the constant to guarantee
R

1

0

f(x) = 1.

(3) When allele A is fixed in the population, the likelihood of randomly choos-

ing the allele A is approximated as: L = 1

1+ke��

(Zeng and Charlesworth (2009)).

(4) To test the e↵ects of various covariates of codon usage in a real dataset,

such as whether highly expressed genes are under stronger selection on codon us-

age bias in an organism, a likelihood ratio test (LRT ) is performed (LRT here is a

�2 statistic used for comparing the two likelihood variables). Find fitness values of

genes from the real data to form the likelihood function. The fitness value is often

referred by the codon occurrences. Assign genes with high and low expression

levels to have di↵erent fitnesses of �h and �l, then generate corresponding likeli-

hood functions Lh and Ll. Finally calculate the likelihood ratio LR = �2log(Lh

L
l

),

and p-value statistics corresponding to LR in �2 distribution is adopted to judge

whether the likelihood are the same, namely whether the fitness of high expres-

sion (a high optimal codon proportion) influences the allele frequencies (codon

frequencies or codon usage pattern) in the population (Cannarozzi and Schneider

(2012)).

2.5.3 Model Based on Information Channel

A rate-distortion model based on information theory investigates how the genetic

code evolved. It considers process of translating the RNA/DNA into correspond-

ing amino acids as an error-prone information channel (Tlusty (2007)).

The information channel is featured with genetic code as its transition func-

tion. Then the error-load (HED) is the sum over all the average chemical dif-

ferences between the desired amino acid (↵) and observed output (�): HED =
P

↵,j,j,� P↵E↵iRijDj�C↵� (where ↵ is the desired amino acid, � is the observed

amino acid, P↵ is the probability of requiring amino acid ↵, E↵i is the probability
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of codon i encoding amino acid ↵, Rij is the probability of misreading j instead

of i, Dj� is the probability of codon j encoding amino acid �, and C↵� is the

chemical distance between amino acid ↵ and �). In this sense, error-load serves

as the fitness measure for the reliability of a genetic code in the channel. Ideally

the smallest error-load scheme is the optimal genetic code.

In order to find the maximum amino acids corresponding to a codon topology,

the topology coloring problem theorem is applied: the codon space is portrayed

as a graph with vertices as the codons. Two codons i and j are linked by an edge

if they di↵er only in one base. Vertex colouring results demonstrate that for 64-

codons topology the maximum amino acids is 25, and for the 48-codons topology

this limit is 20.

The information transition model explains how the genetic code evolves once a

new amino acid emerges: the genetic code tries to use minimum codons to encode

maximum amino acids meanwhile guarantee codon discernibility. Investigation

into how a genetic code withstands inherent noise suggests that the three con-

flicting evolutionary forces interplay together to shape genetic code: the needs for

diverse amino acids, error-tolerance, and minimal resource cost (Tlusty (2008)).
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Chapter 3

A Novel CUB Measure

In the literature review, we showed that codon usage along mRNA is non-random

and various measures are provided to quantify CUB. All the CUB measures start

from calculating codon counts under predefined notions. Normalization aims to

adopt internal or external references to normalize the measure in a comparable

manner among di↵erent sequences. Combination aims to combine CUB measure

at per sequence and per amino acid level into a measure at the whole genomic

level which contains information of all the sequences and all the amino acids. In

this chapter we will propose a novel CUB measure with multilevel normalizations

and combinations, which diminishes impact by sequence lengths and minimizes

the loss of CUB information carried by the whole genome during dimensionality

deductions.

First we introduce a novel measure Sn to analyse sequence specific codon usage

bias for di↵erent amino acids. We applied Sn measure to 462 sequenced fungal

genomes and found that the sequence specific CUB correlates to the sequence

length and they two cooperate to meet the requirement of the protein production

in the cell. In addition we analysed CUB in homologs where sequences have

specific relationships, and we found that CUB is broadly stronger in real genes

than in genes simulated to have no codon usage bias, CUB becomes stronger with

increasing choices of synonymous codons to encode that amino acid and CUB

patterns are related to gene functions.

The basic core concept of our work is illustrated in Figure 5, and the main

symbols adopted are listed in Table 2.
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Figure 5: Basic core concepts. An mRNA sequence can be divided into di↵er-
ent subsequences where each subsequence encodes only one amino acid type and
hence is composed of one synonymous codon family. If we list the counts of di↵er-
ent synonymous codons in the subsequence as a vector, the vector will represent
synonymous codon usage pattern of such subsequence. We annotate this vector
as codon occurrence configuration. Take a subsequence encoding Glu of length 4
as an example, such subsequence only contains synonymous codons ’GAG’ and
’GAA’, and all the possible codon occurrence configurations defined by ’GAG’
and ’GAA’ contained in such subsequence are illustrated above.

3.1 Mathematical Algorithm for CUB Measure

3.1.1 Subsequence

Each mRNA sequence can be divided into 20 subsequences, and each subsequence

is responsible to encode one amino acid type. Subsequence of length L encoding

the amino acid AA is denoted as SL,AA.

Consider an mRNA chain as ’GAG UUU GAA GAG UUC AUA AUU GAG

AUA’ which can be divided into 3 subsequences:

(1) subsequence 1 ’GAG GAA GAG GAG’ of length 4, which encodes amino

acid GLU.

(2) subsequence 2 ’UUU UUC’ of length 2, which encodes amino acid PHE.
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Symbol Meaning
CAA

i i-th codon type of amino acid AA
|CAA| 2 {1, 2, 3, 4, 6} The number of codons encoding amino acid AA
nAA,g

i , nAA
i , ni The number of codons of type i for amino acid AA in gene g.

N := [n
1

, n
2

, ..., n|CAA|] Codon occurence configuration of a subsequence
LAA,g :=

P
i n

AA,g

i Subsequence length encoding amino acid AA in gene g.
PAA := [P

1

, P
2

, ..., P|CAA|] Underlying codon usage probability for amino acid AA
PL,AA

N Multinomial distribution probability for a configuration N

PLAA,g

max

Maximum multinomial distribution probability for length LAA,g

Sn Measure of codon usage bias per sequence per amino acid
Sn Expected Value of all the possible Sn for a length

Table 2: Symbols adopted throughout this work

(3) subsequence 3 ’AUA AUU AUA’ of length 3, which encodes amino acid

ILE.

3.1.2 Codon Occurrence Configuration

It is di�cult to describe the exact spacial pattern of codons in a gene with the

mathematical language based on original subsequence compositions, however it

is much easier to depict SL,AA and quantify codon usage pattern based on codon

occurrence configuration NL,AA := [n
1

, n
2

, ..., n|CAA|], where ni is the quantity

of the i-th synonymous codon type in SL,AA, |CAA| means how many types of

synonymous codons are able to encode AA,
P|CAA|

i=1

ni = L, L is the subsequence

length and also the number of amino acid AA in a gene.

Consider an mRNA chain ’GAG UUU GAA GAG UUC AUA AUU GAG

AUA’ which can be divided into three subsequences:

(1) subsequence 1 ’GAG GAA GAG GAG’ of length 4, which encodes amino

acid GLU. There are 3 ’GAG’ and 1 ’GAA’ in this subsequence, and hence the

codon occurrence configuration is represented as a vector [3,1].

(2) subsequence 2 ’UUU UUC’ of length 2, which encodes amino acid PHE.

There is 1 ’UUU’ and 1 ’UUC’ in this subsequence, and hence the codon occurrence

configuration is represented as a vector [1,1].

(3) subsequence 3 ’AUA AUU AUA’ of length 3, which encodes amino acid

ILE. There is 2 ’AUA’ ,1 ’AUU’ and 0 ’AUC’ and hence the codon occurrence

configuration is represented as a vector [2,1,0].
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For subsequence 1, codon usage pattern of ’GAG’ and ’GAA’ is reflected by

the codon occurrence configuration NGlu
1

= [3, 1].

There are two kinds of system states when describing subsequences: micro

states and macro states as illustrated in Figure 5. The micro state refers to the

original codon sequence along mRNA, and the macro state refers to the codon

occurrence configuration of that original codon sequence. This work will further

build a mathematical model based on macro states to describe CUB.

3.1.3 Multinomial Distribution Probability

Rather than depicting individual copy number of each synonymous codon type in

a codon occurrence configuration, it is simpler to adopt one single value to sum-

marise a particular macro state NL,AA: the multinomial distribution probability

PL,AA
N of observing NL,AA.

For a synonymous codon family size of m, the number of codons encoding the

same amino acid AA (|CAA|), to construct a subsequence SL,AA is like performing

L individual trials where each trial leads to obtaining one codon from m choices.

If Pi is the probability to choose the i-th synonymous codon for any trial of L, the

probability PL,AA
N to observe ni copies of the i-th codon follows the multinomial

distribution:

PL,AA
N =

L!

n
1

!n
2

!...nm!
P n

1

1

P n
2

2

...P n
m

m

mX

i=1

ni = L

mX

i=1

Pi = 1

m = |CAA|

(1)

where PAA = [P
1

, P
2

, ...Pi, ..., Pm](m = |CAA|) is the underlying codon usage prob-

ability for each synonymous codon in its family, |CAA| is the size of synonymous

codon family, NL,AA=[n
1

, n
2

, ..., nm] is the codon occurrence configuration for the

subsequence, PL,AA
N is the probability to observe such NL,AA.

However PL,AA
N largely depends on subsequence length L, it can not o↵er a

comparable quantification when the subsequence length di↵ers largely, therefore
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we propose a normalisation by way of using PL,AA
max

.

3.1.4 The Maximum Multinomial Distribution Probabil-

ity

Among a group of subsequences which encode the same amino acids and have the

same length, there is the maximum probability PL,AA
max

to observe the most likely

codon occurrence configuration, denoted as NL,AA
max

=[nmax

1

, nmax

2

, ...nmax

m ] (m = |CAA|).
To obtain the maximum probability PL,AA

max

corresponding to the most likely

codon occurrence configuration, rather than list all the PL,AA
N values for all the

possible configurations, we put forward a time e�cient method to get PL,AA
max

by

applying Maximum Likelihood theory.

We adopt maximum log-likelihood as stated in Equation 2, which is actually

to solve a optimization problem of maximising function ln(PL,AA
N ) subject to a

constrain
Pm

i=1

Pi = 1. By constructing Lagrange function L

L(n
1

, n
2

, ..., nm, �) = ln(PNL,AA) + �(1 �
mX

i=1

ni

L
) (2)

and then rendering the first derivative of L over � and ni to zero (i 2 [1, m]),

we obtain the most likely configuration [nmax

1

, nmax

2

, ...nmax

m ], where nmax

i = LPi.

In our case codon occurrence nmax

i can only be integers, and hence we perform

following calculation:

• Find configuration N0 = [n0

1

, n0

2

, ..., n0

i , ...n
0

m], (N0 =
Pm

i=1

n0

i ), where n0

i =

PiL. If all elements in N0 are integers, N0 is the desired configuration for

maximum PL,AA
max

.

• Otherwise round each decimal n0

i down to integer n1

i , and we get vector

N1 = [n1

1

, n1

2

, ..., n1

i , ...n
1

m].

• Let Lrm=L�
Pm

i=1

n1

i , and partition Lrm into m categories N2 = [n2

1

, n2

2

, ..., n2

i , ...n
2

m],

where Lrm =
Pm

i=1

n2

i .

• Let ni = n1

i + n2

i , we get vector N = [n
1

, n
2

, ..., ni, ...nm]. According to all

the possible configuration N resulted from N2, we spot the maximum value
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as PL,AA
max

.

By this e�cient approach the heaviest calculation for 6 synonymous codon

families is to distribute 5 into 6 categories such as [4,1,0,0,0,0], for 4 synonymous

codon families is to distribute 3 to 4 categories, for 3 synonymous codon families is

to distribute 2 to 3 categories, and for 2 synonymous codon families is to distribute

1 to 2 categories. To assist explanation we quote MATLAB code as follows.

1 function [Pmax,X] = EforMore ( cLeng , subSleng , c fPar t )

2 P=cfPar t ;

3 X=subSleng .⇤ c fPar t ;

4 Xtest=mod(X, 1 ) . ⇤ 1 0 ;

5 %decimal part , ⇤10 , i f not d i v i s a b l e , != 0

6 i f isempty ( find ( Xtest , 1 ) )

7 Pmax=mnpdf (X,P) ;

8 %ca l c u l a t e maximum p r o b a b i l i t y

9 else

10 Xpre=subSleng .⇤ c fPar t ;

11 rmv=subSleng�sum( f loor (Xpre ) ) ;

12 %remainer va lue

13 % [Pmax,X] = getPmax ( cLeng , c fPart , f l o o r (Xpre ) , rmv) ;

14 Pmax=getPmax ( cLeng , c fPart , f loor (Xpre ) , rmv) ;

15 % to save time only output Pmax

16 end

17 end

1 % func t i on [Pmax,Xmax] = getPmax ( cLeng , c fPart , Xpre , rmv)

2 function Pmax = getPmax ( cLeng , c fPart , Xpre , rmv)

3

4 pcount=1;

5 switch cLeng

6 case 2

7 for i =0:rmv

8 j=rmv�i ;

9 i f j>=0

10 mnvect=[ i , j ] ;

11 %% mnvect : a l l t he p o s s i b l e rmv ( remain va l u e s ) p a r t i t i o n s
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12 X{pcount}=Xpre+mnvect ;

13 p( pcount )=mnpdf (X{pcount } , c fPar t ) ;

14 pcount=pcount+1;

15 end

16 end

17

18

19 case 3

20 for i =0:rmv

21 for j =0:rmv

22 k=rmv�i�j ;

23 i f k>=0

24 mnvect=[ i , j , k ] ;

25 X{pcount}=Xpre+mnvect ;

26 p( pcount )=mnpdf (X{pcount } , c fPar t ) ;

27 pcount=pcount+1;

28 end

29 end

30 end

31

32 % 4 and 6 codons use the same l o g i c

33 end

34 [Pmax, idMAX]=max(p) ;

35 % Xmax=X{idMAX} ;
36

37 end

It remains a challenge for current CUB measures to find a non-heuristic statis-

tical reference for normalisation (McLachlan, Staden and Boswell (1984), Suzuki,

Saito and Tomita (2004), Wan et al. (2004)), but our computationally e�cient

method of calculating PL,AA
max

renders the ratio of PL,AA
N /PL,AA

max

as an e↵ective nor-

malisation especially for a long codon sequence encoding the amino acid with

more synonymous codon choices. We define our sequence level CUB measure Sn

as follows:

Sn =
1

L
ln
⇣
PL,AA

N /PL,AA
max

⌘
(3)
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where 1

L aims to normalise against the sequence length variation. Taking the

logarithm aims to improve the sensitivity of the measure. We will first show that

it captures relevant biological information about CUB.

3.1.5 Statistical Power of Sn

The overall approach we use is to assume as a null hypothesis that there is no

overall CUB acting in genomes. In this case we would expect, from the basic

considerations, that the overall distribution of particular codons obeys the multi-

nomial distribution with Pi = 1/m for (i 2 [1, m]). Any systematic and significant

deviation from this equal probability multinomial distribution signifies a CUB.

In our measure we calculate PL,AA
N based on observed macro states and pos-

tulated equal underlying codon usage probabilities (PAA with equal elements

Pi = 1/m). If there exists CUB, PL,AA
N should locate outside the confidence

interval of the postulated multinomial distribution, which is equivalent to saying

that the di↵erence between PL,AA
N and PL,AA

max

should not be explained only by

chance.

To test whether such di↵erence between PL,AA
N and PL,AA

max

arises by chance

or not, we could apply two sample �2 test between these two macro states to

see whether they comply with the same multinomial distribution, or simply using

Pearson’s �2 test to testify whether observed macro state have the postulated

underlying codon usage probability.

Assuming PL,AA
N corresponds to the macro state NL,AA

n = [N1

n, N2

n,...Nm
n ] and

hence the empirical codon usage ratio PAA
n = [N1

n

L , N2

n

L , N1

n

L , ...Nm

n

L ], the postulated

underlying codon usage probability is PAA = [P
1

, P
2

, ...Pm] where P
1

= P
2

=

...Pm = 1/m.

Null hypothesis H0 is that the observed macro state complies with the under-

lying codon usage probability, namely PAA
n = PAA. The alternative hypothesis

Ha is that the observed macro state does not comply with the underlying codon

usage probability, namely there exists unequal entry between PAA
n and PAA. Test

Statistic �2 =
Pm

i=1

(N i

n

�L/m)

2

L/m , degree of freedom is m-1, significance level ↵ =

0.05.

If the null hypothesis test is rejected, we state that Sn has the statistical power

to quantify CUB of the subsequence at the significance level ↵ = 0.05. If the null
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hypothesis is accepted we state that Sn evaluates codon usage deviation of the

observed macro state from the most probable macro state but can not exclude the

reason by chance.

3.1.6 Theoretical Sn Distribution and Expected Sn

To better understand Sn properties we investigate expected value of Sn and its

distribution. The deviation of observed Sn from the expected value (Sn) provides

a standard reference to investigate CUB of a subsequence.

For the subsequences with length L, suppose the j-th configuration Nj has the

multinomial distribution probability PN
j

, P
max

is the maximum value among all

the PN
j

, thus Sn of the whole population is shown in Equation 4.

Sn =
1

L

X

j

(PN
j

ln
P

max

PN
j

) (4)

where Sn is the normalised expected Sn for subsequences of length L. PN
j

is

the probability to observe the subsequence in the state Nj, Pmax is the maximum

probability corresponding to the most probable macro state, and thus ln P
max

P
N

j

reflects the di↵erence of probabilities between the most probable macro state and

the macro state of Nj.

Figure 6 depicts how to obtain Sn for the group of subsequences encoding an

amino acid type.

Next we apply the above proposed algorithm for CUB measure to biological

genome datasets, aiming to find CUB patterns based on Sn.

3.2 Generation of Datasets for CUB Measure

3.2.1 Processing Resource Genome Data from FASTA Files

The main data source for this project was ENSEMBL database1. ENSEMBL

database contains genomic data and gene models from the International Sequence

Database Collaboration, a collaboration that includes the National Centre for

Biotechnology Information (NCBI, USA), the European Bioinformatics Institute

1http://fungi.ensembl.org/index.html
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Figure 6: Expected Sn calculation. Theoretically speaking, codon sequences could
be analyzed directly based on transcriptoms. However in this work, the down-
loaded genomic sequences only include the codon coding DNAs, therefore we per-
form operations on transcriptom-equivalent genomes based on watson crick base
pairing. A whole genome is divided into 18 subsequence groups, each of which
encodes one amino acid type. Assuming in the plotted subsequence group the
j-th subsequence has the length Lj and Sj. For the j-th subsequence, there is a
corresponding Sj. Sj depends on all the possible subsequence configurations Nr

for length Lj.

(EBI, UK) and the DNA Databank of Japan (DDBJ, Japan).

At the time of data preparation, ENSEMBL had available 811 genomes from

523 species in the fungi kingdom, 189 genomes from 119 species in the protist king-

dom, and 44,046 genomes from 8244 species in the bacteria kingdom. In order

to cover species with a wide phylogenetic range within a kingdom and diminish

undesired sample aggregation influences, we selected species based on the level of

taxonomy of phyla (phylum is the first taxonomic rank below kingdom) (Hibbett

et al. (2007), Woese, Kandler and Wheelis (1990), Adl et al. (2012)). Take the

bacteria kingdom for example, we retrieved all the available species names below

each of the 28 major phyla of the bacteria kingdom (Ni is the available sample
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Table 3: Genomes from Fungi Kingdom

Phylum Available Genome Amounts Selected Genome Amounts
Blastocladiomycota 2 2
Chytridiomycota 10 10
Glomeromycota 8 8
Microsporidia 30 30

Neocallimastigomycota 4 4
Ascomycota 725 195

Basidiomycota 212 194
Entomophthoromycotina 2 2

Mucoromycotina 17 17

size of the i-th phylum, i 2 [1, 28]). To enhance the comparability between king-

doms, we predefined the optimal overall sample size Nopt to be between 400 to

500, meaning the optimal sample size for each of the 28 bacterial phyla (N opt
p ) is

approximately Nopt/28. If the available Ni is smaller than N opt
p , we reserve all the

available species in the i-th phylum for investigation. If Ni is larger than N opt
p ,

we need to select N opt
p species for investigation. The whole species list of the i-th

phylum directly retrieved from ENSEMBL rank in the alphabetic order in which

way the phylogenetically close species tend to gather together. In order to avoid

selected species aggregating in a narrow phylogenetic range, we selected species

at the interval of Lspan
i through the whole species list of the i-th phylum. Lspan

i is

an integer by rounding the ratio Ni/N opt
p .

Finally we downloaded locally the CDS (protein-coding sequence) FASTA files

for all the selected species. In total we chose 462 genomes from the Fungi kingdom

(release 36 in August 2017), 441 genomes in Bacteria kingdom (release 40 in July

2018), and 143 genomes in Protista kingdom (release 40 in July 2018). All the

investigated species are listed in the appendix ’speciesList.xlsx’. The amounts of

available genomes and selected genomes for all the 3 kingdoms are listed in detail

in Table 3, Table 4 and Table 5.

Based on downloaded protein coding sequences, we generated valid codon se-

quences. For a clearer explanation, we take species Saccharomyces cerevisiae as

an example. The original FASTA sequences begin with a single line description

followed by lines of protein-coding DNA data, showing as follows:
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Table 4: Genomes from Bacteria Kingdom

Phylum Available Genome Amounts Selected Genome Amounts
Acidobacteria 2 2

Aquificae 18 18
Armatimonadetes 5 5

Bacteroidetes 815 28
Caldiserica 1 1
Chlamydiae 228 28

Chlorobi 16 16
Chloroflexi 9 9

Chrysiogenetes 1 1
Cyanobacteria 228 28
Deferribacteres 5 5

Deinococcus Thermus 39 28
Dictyoglomi 2 2

Elusimicrobia 1 1
Fibrobacteres 2 2
Firmicutes 15650 28

Fusobacteria 76 28
Gemmatimonadetes 3 3

Lentisphaerae 1 1
Nitrospirae 17 17

Planctomycetes 21 21
Proteobacteria 19212 28
Spirochaetes 332 28
Synergistetes 17 17
Tenericutes 192 28

Thermodesulfobacteria 6 6
Thermotogae 40 28

Verrucomicrobia 24 24
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Table 5: Genomes from Protist Kingdom

Phylum Available Genome Amounts Selected Genome Amounts
Rhodophyta 3 3

Stramenopiles 38 38
Alveolata 90 58
Rhizaria 6 6

Euglenozoa 20 20
Amoebozoa 15 15
Apusozoa 1 1
Choanozoa 2 2

> YHR055Ccdschromosome : R64 � 1 � 1...[Source : SGD; Acc : S000001097]

ATGTTCAGC...GGGAAATGA

> YPR161Ccdschromosome : R64 � 1 � 1 : ...[Source : SGD; Acc : S000006365]

ATGAGTGATAAT...GATCTATATTAG

......

As shown in the above example, we transformed protein-coding gene sequences

into codon sequences for the codon level analysis, by way of grouping adjacent

nucleotide triplets sequentially from the start codon to stop codon. If the gene

length between the start codon and the stop codon is not a multiple of 3, it conveys

the codon sequence contains wrong Open Reading Frame. We deleted such genes

from the raw genome. The number of genes under investigation and excluded are

listed as Table 6.

Table 6: Genes excluded from our analysis

Kingdom Total Gene Number Excluded Gene Number
Fungi 4554328 35748

Bacteria 1286467 6384
Protist 1439975 25142

We processed the original contents in the above example (the CDS FASTA file

of Saccharomyces cerevisiae) into the format as a single line of gene name followed

by a single line of codon sequences, which is convenient to retrieve gene name and

process sequence data at the codon level :
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Table 7: Format of Datasets for Codon Occurrence Configuration

geneNeme GAG GAA sublength
> Y HR055C 1 5 6
> Y PR161C 14 23 37
> Y OL138C 24 59 83

... ... ... ...

YHR055C;

’ATG’ ’TTC’ ’AGC’...’GGG’ ’AAA’ ’TGA’

YPR161C;

’ATG’ ’AGT’ ’GAT’ ’AAT’...’GAT’ ’CTA’ ’TAT’ ’TAG’

......

All the genes are reserved as the valid codon sequences for the species of Sac-

charomyces cerevisiae after genome clearance procedure.

3.2.2 Generating Datasets of Codon Occurrence Config-

urations

Next we process the amino acid sequences. We split every gene into 18 subse-

quences each of which encodes one amino acid type. For each gene, we then

obtained 18 codon occurrence configurations corresponding to 18 di↵erent subse-

quences individually.

Take the genome of the fungal species Saccharomyces cerevisiae as an example,

codon occurrence configurations of subsequences encoding amino acid GLU in each

gene are produced in the following format in Table 7. Information for each gene

corresponds to an individual line. Each line includes gene name, number of copies

of each synonymous codon type, and the subsequence length.

For example in Table 7 the row ’> Y HR055C 1 5 6’ means that the gene

’YHR055C’ has 1 codon of ’GAA’, 5 codons of ’GAG’, and hence the subsequence

coding amino acid GLU in the gene ’YHR055C’ has the length of 6. Similarly the

row ’> Y PR161C 14 23 37’ means that the gene ’YHR055C’ has 14 codons of

’GAG’ and 23 codons of ’GAA’ , and hence the subsequence coding GLU in the

gene YHR055C has the length of 37.
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Matlab code to produce the codon occurrence configuration for each gene of

all the genomes from Fungi kingdom is generalised as follows:

1 {% ca l c u l a t e and wr i t e syno r a t i o f o r each gene wi th in genome

2 % se t the synonymous codon usage t a b l e as f o l l o w s

3 ctE={ ’GAG’ , ’GAA’ } ; %%Glu

4 ctH={ ’CAT’ , ’CAC’ } ; %%His

5 ctQ={ ’CAG’ , ’CAA’ } ; %%Gln

6 ctF={ ’TTT’ , ’TTC’ } ; %%Phe

7 ctY={ ’TAT’ , ’TAC’ } ; %%Tyr

8 ctC={ ’TGT’ , ’TGC’ } ; %%Cys

9 ctN={ ’AAT’ , ’AAC’ } ; %%Asn

10 ctK={ ’AAG’ , ’AAA’ } ; %%Lys

11 ctD={ ’GAT’ , ’GAC’ } ; %%Asp

12 c t I={ ’ATA’ , ’ATT’ , ’ATC’ } ; %%I l e

13 ctP={ ’CCG’ , ’CCA’ , ’CCT’ , ’CCC’ } ; %%Pro

14 ctT={ ’ACG’ , ’ACA’ , ’ACT’ , ’ACC’ } ; %%Thr

15 ctA={ ’GCG’ , ’GCA’ , ’GCT’ , ’GCC’ } ; %%Ala

16 ctV={ ’GTG’ , ’GTA’ , ’GTT’ , ’GTC’ } ; %%Val

17 ctG={ ’GGG’ , ’GGA’ , ’GGT’ , ’GGC’ } ; %%Gly

18 ctL={ ’TTG’ , ’TTA’ , ’CTG’ , ’CTA’ , ’CTT’ , ’CTC’ } ; %%Leu

19 ctS={ ’AGT’ , ’AGC’ , ’TCG’ , ’TCA’ , ’TCT’ , ’TCC’ } ; %%Ser

20 ctR={ ’AGG’ , ’AGA’ , ’CGG’ , ’CGA’ , ’CGT’ , ’CGC’ } ; %%Arg

21

22 text={ctE , ctH , ctQ , ctF , ctY , ctC , ctN , ctK , ctD , ct I , ctP , ctT , ctA , ctV ,

ctG , ctL , ctS , ctR } ;

23

24 f i leName0=’ fungiNameList . csv ’ ;

25 f i l e ID0=fopen ( f i leName0 , ’ r ’ ) ;

26 speciesNamep=text scan ( f i l e ID0 , ’%s ’ , ’ De l im i t e r ’ , ’ \n ’ ) ;

27 speciesName=speciesNamep {1 ,1} ;

28 fc lose ( f i l e ID0 ) ;

29

30 for tP=1: length ( speciesName )

31 f i leName=[ speciesName{tP} , ’ . f a ’ ] ;%%%fung i

32 geneName=getSequenceName ( f i leName ) ;

33 pasteCodon=getCodonSequence ( f i leName ) ;
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34

35 fmt1=( ’%s ,%u,%u,%u\n ’ ) ;

36 fmt2=( ’%s ,%u,%u,%u,%u\n ’ ) ;

37 fmt3=( ’%s ,%u,%u,%u,%u,%u\n ’ ) ;

38 fmt4=( ’%s ,%u,%u,%u,%u,%u,%u,%u\n ’ ) ;

39

40 f i l e ID e=fopen ( [ speciesName{tP} , ’ GluEratioFg . txt ’ ] , ’ a ’ ) ;

41 fpr intf ( f i l e IDe , ’%s ,%s ,%s ,%s \n ’ , ’ geneNeme ’ , ’GAG’ , ’GAA’ , ’

sub length ’ ) ;

42

43 f i l e IDh=fopen ( [ speciesName{tP } , ’ HisHratioFg . txt ’ ] , ’ a ’ ) ;

44 fpr intf ( f i l e IDh , ’%s ,%s ,%s ,%s \n ’ , ’ geneNeme ’ , ’CAT’ , ’CAC’ , ’

sub length ’ ) ;

45

46 . . . . . . % se t f i l e ID fo r a l l the 18 amino ac id s

47 f i l e L i s t ={ f i l e IDe , f i l e IDh , f i l e IDq , f i l e ID f ,

f i l e IDy , f i l e IDc , f i l e IDn , f i l e IDk , f i l e IDd ,

f i l e ID i , f i l e IDp , f i l e ID t , f i l e IDa , f i l e IDv ,

f i l e IDg , f i l e I D l , f i l e ID s , f i l e I D r } ;

48 fmList={fmt1 , fmt1 , fmt1 , fmt1 , fmt1 , fmt1 , fmt1 , fmt1 , fmt1 , fmt2 ,

fmt3 , fmt3 , fmt3 , fmt3 , fmt3 , fmt4 , fmt4 , fmt4 } ;

49

50 for CTcount=1:18

51

52 synoEle=text{CTcount } ; %%lo c a t e synonymous codon fami l y

53

54 for countCd=1: length ( pasteCodon )

55

56 for synoCount=1: length ( synoEle )

57 SYNO( synoCount )=length ( find ( ismember (

pasteCodon{countCd } , synoEle { synoCount })

) ) ;

58 end

59

60 fpr intf ( f i l e L i s t {CTcount} , fmList {CTcount} , geneName{
countCd } ,SYNO,sum(SYNO) ) ;
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61

62 end

63

64 fc lose ( f i l e L i s t {CTcount}) ;

65

66 end

67

68

69 end

70 }

3.2.3 Preparing Global Codon Usage Table

Adopting codon occurrence configuration N of each subsequence (symbols refer

to Table 2), we generated global codon usage table for each species of a kingdom.

Global codon usage pattern of a species is obtained by adding up occurrences

of each type of codon dispersed in genes throughout the whole genome, namely

consider the genome as a very long sequence, and the global codon usage pattern of

one synonymous codon family is the codon occurrence configuration corresponding

to the whole genome sequence Nw = [nw
1

, nw
2

, ...nw
|CAA|], where

P|CAA|
i=1

nw
i = Lw

AA,

Lw
AA is the codon sequence length encoding amino acid AA within the whole

genome. The global codon usage table contains species names in the first column,

followed by columns for synonymous codon usage ratios for all the synonymous

codon families. Global codon usage ratio ⇢i
j of the i-th synonymous codon in the

j-th synonymous codon family is calculated as ⇢i
j = nw

i

P|CAA

j

|
i=1

nw

i

, where CAA
j is the

j-th synonymous codon family, i 2 [1, CAA
j ], j 2 [1, 18].

For example, the global codon usage of amino acid GLU(E) in fungal species

Candida auris is produced with the following format:

speciesName, E(GAG, GAA)

candida auris, 0.5587102719662976, 0.4412897280337024

This means that in the species Candida auris, at the whole genome level to

encode amino acid GLU(E), the global codon usage of codon ’GAG’ and codon
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’GAA’ has the ratio of 0.5587102719662976 over 0.4412897280337024.

3.2.4 Datasets Prepared For Sn Calculation

We have introduced that Sn can be derived from three terms: the multinomial

distribution probability of a subsequence PAA,g
N , the maximum probability corre-

sponding to the subsequence length PAA,L
max

, and the subsequence length L. There-

fore to obtain Sn values we prepared datasets containing PAA,g
N , PAA,L

max

and L for

each subsequence within genes throughout the whole genome.

Take the species Saccharomyces cerevisiae as an example, the obtained datasets

for Sn calculation is shown in Table 8:

Table 8: Format of Datasets for Sn Calculation

AA LAA,g PAA,g
N PAA,L

max

GeneId

E 1 5.000000e-01 5.000000e-01 10

E 1 5.000000e-01 5.000000e-01 16

... ... ... ... ... ...

E 2 5.000000e-01 5.000000e-01 30

E 2 2.500000e-01 5.000000e-01 52

... ... ... ... ... ...

E 4 3.750000e-01 3.750000e-01 476

... ... ... ... ... ...

E 316 9.203490e-09 4.484902e-02 156

E 435 3.331582e-26 3.818984e-02 4881

H 1 5.000000e-01 5.000000e-01 1

H 1 5.000000e-01 5.000000e-01 6

... ... ... ... ... ...

This table contains information about all the subsequences (with di↵erent

lengths) encoding 18 di↵erent amino acids within each gene throughout the whole

genome. Symbols in the header sequentially represent ’amino acid type’, ’sub-

sequence length’, ’multinomial distribution probability to observe the codon oc-

currence configuration for such subsequence’, ’maximum multinomial distribution

probability of such subsequence length’, ’gene index within the genome’
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For example the line ’E, 2, 2.500000e � 01, 1, 5.000000e � 01, 52’ means:

(1) The index for this gene is 52. The 52nd gene in the genome has 2 codons

to encode amino acid GLU(E), namely the length of the subsequence to code E

in this gene is 2;

(2) Assuming the global underlying codon usage probability is [1/2, 1/2], then

the probability to observe the codon occurrence configuration of the subsequence

encoding GLU in the 52nd gene is 2.500000e-01.

(3) Among all the PAA,g
N for subsequence of length 2 encoding amino acid GLU,

the maximum probability to observe the most likely subsequence is 5.000000e-01.

(4) Based on the PAA,g
N , PAA,L

max

and L, each gene obtains 18 corresponding

SnAA,g values for 18 di↵erent amino acids: SnAA,g =
⇣
ln P AA,L

max

P AA,g

N

⌘
/L.

3.2.5 Two Types of Control Genomes

We produced two types of control genomes to compare with the actual genome

data. One control group is the equally substituted artificial genome where each

codon is replaced by synonymous codons with the same probability |CAA|/LAA,g.

The other control group is biased substituted artificial genome where each codon

is replaced by synonymous codons with the weighted probability according to a

global codon usage preference. Again take the species Candida auris global codon

usage ’GAG’ and ’GAA’ encoding amino acid GLU as an example. For the equally

substituted genome, we chose codon ’GAG’ with the probability of 0.5, and chose

codon ’GAA’ also with the probability of 0.5. For biased substituted genome,

global codon usage table for amino acid GLU in species Candida auris is [0.5587,

0.4412], thence we chose codon ’GAG’ with the probability of 0.5587, while chose

codon ’GAA’ with the probability of 0.4412.

Substituted genomes are created as below in detail:

(1) Equally replaced codon sequence: each codon is replaced by synonymous

codons with the same probability. For example for the subsequence of length 10

and encoding amino acid isoleucine (Ile) which is encoded by 3 synonymous codons

ATA, ATT, ATC, we randomly sample 10 integers Di under a discrete uniform

distribution, where Di has the value of 1, 2 or 3, i 2 [1, 10], 1,2,3 represent

synonymous codons ATA, ATT, ATC individually. If sampled number is 1, we

choose ATA for the codon position, if 2 we choose ATT, and if 3 we choose ATC.
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(2) Biased replaced codon sequence: each codon is replaced by its synonymous

codons with a weighted probability according to the global codon usage table. To

construct such control group: firstly find synonymous codon usage ratio in the

global codon usage table for an interested genome. Secondly replace each codon

within the genome with the synonymous codons with the weighted probability ac-

cording to the found synonymous codon usage ratio. Take subsequences encoding

Ile of length 10 for example, if the global codon usage ratio among ATA, ATT,

ATC is 0.1:0.3:0.6, we randomly sample 10 decimals Di under the continuous uni-

form distribution, where Di 2 [0, 1], i 2 [1,10] . If Di  0.1 we choose ATA for

the codon position, if 0.1 < Di  0.4 we choose ATT, otherwise we choose ATC.

When artificial genome is generated, we perform the same calculation as the real

observed genome.

3.2.6 Three Types of Datasets for Sn Calculation

Datasets containing PAA,g
N , PAA,L

max

and L are generated based on real and substi-

tuted genomes. As introduced in section 3.1.3, multinomial distribution probabil-

ity PAA,g
N depends on two parameters which are the underlying global codon usage

probability PAA and the codon occurrence configuration N of the subsequence.

There is no universal rule defining what the underlying codon usage probability

PAA should be. Sn as the proposed measure of CUB, as long as each subsequence

is assessed under the same assumption and consistent standard, the values of

Sn of di↵erent subsequences should be comparable and meaningful. Thence we

assume PAA (PAA = [P
1

, P
2

, ...Pi, ...Pm], i 2 [1, m]) has the equal entry 1/|CAA|
for convenience, for example for the 3 synonymous codon family, the underlying

codon usage probability for each synonymous codon is 1/3.

In this work, we will analyse three di↵erent datasets. Firstly, the dataset of

Sn values derived from the actual genomes. We call this the dataset ’T’. We will

then compare this with two di↵erent control datasets. These have been generated

so as to implement two di↵erent hypotheses about the CUB.

To generate these control datasets we created two artificial genomes (detailed

procedures refer to section 3.2.5 ’Two Types of Control Genomes’). The first

one consists of the same sequences that we consider in the original dataset, but

we replaced each codon by a random codon. By construction, this dataset has
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no codon usage bias and should follow the multinomial distribution with all syn-

onymous codons being equally chosen. The second artificial genome is also an

artificial version of the actual sequences, and again we replaced all codons by

random ones, but now the random substitution was done such that the codon

replacement reflected the empirically determined global codon usage bias of the

species. By construction, this latter dataset implements a codon usage bias that

follows the multinomial distribution with unequal underlying synonymous codon

usage.

From these two artificial datasets we then calculated the Sn values as we did

for the real genomes, thus obtaining two control datasets ’Ta’ and ’Tba’ which we

could compare against the dataset ’T’.

Three types of datasets prepared for Sn calculation are displayed as Table 9,

’T’ represents ’table’, ’a’ represents ’artificial’, ’b’ represents ’biased’):

Table 9: Datasets for Sn Calculation

Dataset Genome Type PAA

T Real Genome Equal Synonymous Codon Usage

Ta Equally Substituted Artificial Genome Equal Synonymous Codon Usage

Tba Biased Substituted Artificial Genome Equal Synonymous Codon Usage

(1) T: PAA,g
N are calculated based on the real genome, and the underlying codon

usage probability PAA has equal entries, to be specific PAA = [P
1

, P
2

, ..., Pm] where

P
1

= P
2

= ... = PM .

(2) Ta: PAA,g
N are calculated based on the artificial genome, and the under-

lying codon usage probability PAA has equal entries. The artificial genome is

constructed by replacing codon with its synonymous codons with equal probabil-

ity.

(3) Tba: PAA,g
N are calculated based on the artificial genome, and the under-

lying codon usage probability PAA has equal entries. The artificial genome is

constructed by replacing codon with its synonymous codons with biased proba-

bility according to global codon usage table.
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3.2.7 Expected Sn Dataset

Sn is the expected values of Sn for subsequences of the same length. We prepared

codon occurrence configuration tables for 2, 3, 4, 6 synonymous codon family of

lengths from 1 to 400, and based on the configuration tables we further prepared

Sn table for lengths from 1 to 400.

For each length we generated a table which contains all the possible NAA,L
j

and corresponding Snj, based on which we obtain Sn.

For example, for 2 synonymous codon family, we prepared 400 tables, each

table corresponds to one length. For the table of length=2, it displays as the

following:

configuration, Sn

[0, 2], 0.3465735902799726

[2, 0], 0.3465735902799726

[1, 1], 0

Sn = 0.1732867951399863 for 2 synonymous codon family of length 2. It is cal-

culated as Sn =
P

j PN
j

Snj = 0.25·0.3465735902799726+0.25·0.3465735902799726+

0.5 · 0 = 0.1732867951399863

In summary for CUB measure, we prepared (1) Codon occurrences configu-

ration datasets; (2) Global codon usage table for all the species in 3 kingdoms;

(3) Sn datasets for both observed genome and substituted genome under the

assumption of uniform PAA; (4) Sn datasets.

3.3 Hypothesis Test Results for Sn Across Species

We applied hypothesis test for Sn to each gene in species S.cerevisiae adopting

the method introduced in section 3.1.5 (Statistical Power of Sn). There are 6692

genes in S.cerevisiae, among which we count the genes for which Sn have the

statistical power to indicate that the observed distribution of codon sequences

are significantly di↵erent from the theoretical multinomial distribution of codon

sequence when there is no CUB (significance level ↵ = 0.05). Finally across the

whole genome we calculate the proportion of the genes which are significantly

di↵erent from cases of no CUB, as shown in Table 10.

58



Table 10: Hypothesis Test for Sn in S.cerevisiae

Amino Acid Reject H0 Accept H0 Proportion of Genes Rejecting H0
E 1842 4850 2.752540e-01
H 254 6438 3.795577e-02
Q 978 5714 1.461447e-01
F 439 6253 6.560072e-02
Y 247 6445 3.690974e-02
C 85 6607 1.270173e-02
N 687 6005 1.026599e-01
K 743 5949 1.110281e-01
D 1143 5549 1.708010e-01
I 1153 5539 1.722953e-01
P 1311 5381 1.959056e-01
T 934 5758 1.395696e-01
A 1094 5598 1.634788e-01
V 1075 5617 1.606396e-01
G 1713 4979 2.559773e-01
L 2314 4378 3.457860e-01
S 1224 5468 1.829050e-01
R 3374 3318 5.041841e-01

Null hypothesis H0 is: the observed codon sequence has the same multinomial

distribution with the case with no codon usage bias. Rejection to H0 means that

there exists codon usage bias in the observed codon sequence.

Next we apply the hypothesis test for Sn to 16 species (species name and

abbreviation shown in Table 11), and obtained the result shown in Figure 7.

There are clear di↵erence between amino acids but also between species in which

proportion of genes have significant codon usage bias.

3.4 Sequence Specific Measure Adopting Sn val-

ues

Sn measures CUB of a sequence encoding a particular type of amino acid. Be-

cause protein abundance is assumed to be an important driver of CUB, we adopt

Sn to investigate relationships between protein abundance per cell and CUB in

S.cerevisiae. 1341 genes in S.cerevisiae have available protein abundance data
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Figure 7: This heatmap summarises the hypothesis test results for Sn across 16
species where x axis displays the species name and y axis displays the amino acids.
Each chess of the heatmap shows that among the whole genome of such species
the proportion of Sn which have statistical power to indicate that the values of
Sn imply the strength of CUB. Darker color suggests that larger proportion of
genes in the species have codon usage bias.
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Table 11: 16 Species for Hypothesis Test on Sn

Species Name Abbreviation
Saccharomyces cerevisiae sc

Saccharomyces arboricola h 6 sah6
Saccharomyces eubayanus saeu

Saccharomyces kudriavzevii saku
Aspergillus clavatus ac
Aspergillus flavus af

aspergillus lentulus al
Aspergillus niger an

Fusarium fujikuroi ↵
Fusarium graminearum fg
Fusarium oxysporum fo

Fusarium poae fp

from Protein Abundance Online Database: PaxDb, where each protein entity is

enumerated relative to all other protein molecules in the cell. Compared to ’molar

concentration’ or ’molecules per cell’ such way to describe protein abundance has

the advantage of being independent of cell-size (Wang et al. (2012)). We analyse

these 1341 genes aiming to explore relationships between protein abundance and

CUB.

3.4.1 Relationship Analysis between Protein Abundance

and Sequence-specific CUB Adopting Sn

Each gene is composed of 18 subsequences which correspond to 18 subsequence

lengths and 18 Sn values. The literature reports an established relationship be-

tween translation e�ciency and codon usage. To validate Sn as a measure of

codon usage bias, we wished to explore whether this widely acknowledged rela-

tionship is also apparent in the Sn values. In addition, an inverse relationship

between length and expression levels has also been reported, and we therefore in-

cluded gene length data in our analysis. For all the genes in S.cerevisiae, we plot

Sn values and subsequence lengths against protein abundances separately, aim-

ing to find the relationship among Sn values, subsequences lengths and protein

abundances.

Results are shown in Figure 8 where we display 4 example plots of amino acids
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Phe(F), Ile(I), Pro(P) and Arg(R) as the representatives for 18 amino acid types.

There are consistent trends: in the low protein abundance region, subsequence

lengths tend to reach the large values, whereas in the high protein abundance

region subsequence lengths decrease. In contrast Sn values show the opposite

trend, strongly avoiding low Sn values for highly expressed proteins. This conveys

that gene length and CUB act together: high expression requires high Sn and short

length. In order to achieve high protein expression levels, genes cannot exceed a

maximum size as well requiring a minimal Sn value.

From the online database, the protein abundance distribution in S.cerevisiae

is shown in Figure 9. To further testify our above conclusion derived from Sn that

gene length and CUB act together to satisfy high protein expression, we extracted

genes from the lowest protein abundance region (< 5) and the highest abundance

region (>10000) to form two groups, then plot their subsequence lengths against

their corresponding Sn values.

Results shown in Figure 10 confirm the consistent pattern with Figure 8 that

is: (1) for the genes of the high protein abundance group, Sn values tend to be

high and meanwhile subsequence lengths tend to be short; (2) for genes of the

low protein abundance group Sn values tend to be low and subsequence lengths

tend to be long. Our finding strongly supports the reported cases which state that

highly expressed genes are more biased, and are shorter (Duret and Mouchiroud

(1999), Moriyama and Powell (1998), Song et al. (2017)). Our way of treating the

data comes to the same conclusions as previous evidences in literatures.

3.4.2 Application of Sn in Homologous Genes

Next we apply Sn measure in groups of genes which possess specific phylogenetic

properties.

3.4.2.1 Introduction of Homologous Genes

In biology homology means the existences who share ancestry between a pair of

structures in di↵erent taxa (Hall (2007)). Species taxon is a term in classification,

which is identified by taxonomists by observing from morphological, behavioural,

or genetic aspects. S.cerevisiae at the taxonomy level of fungi kingdom is shown

in Table 12.
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Figure 8: Sn values and subsequence length against protein abundance in
S.cerevisiae. x axis represents the protein abundance. Azure left y axis is the
gauge for Sn values. Orange right y axis is the gauge for subsequence length.
Each Blue dot represents a variable pair of the protein abundance and its corre-
sponding Sn value. Each red dot represents a variable pair of the protein abun-
dance and its corresponding subsequence length. In the low protein abundance
regions, Sn distribution is random and subsequence reaches relative long length
compared to the high protein abundance regions. In the high protein abundance
region subsequence lengths are strikingly short but Sn values are distinguishably
high.
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Figure 9: Protein abundance histogram in S.cerevisiae. Image resource: PaxDb:
Protein Abundance Database

Table 12: Scientific Classification of S.cerevisiae

Domain Eukaryota
Kingdom Fungi
Phylum Ascomycota

Subphylum Saccharomycotina
Class Saccharomycetes
Order Sacchromycetales
Family Saccharomycetaceae
Genus Saccharomyces
Species S.cerevisiae
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Figure 10: Subsequence lengths against Sn values. x axis represents Sn values.
Azure left y axis is the gauge for the subsequence lengths of genes in the high
protein abundance region displayed as azure dots. Red right y axis is the gauge
for the subsequence lengths of genes in the low protein abundance region displayed
as red dots. Red dots aggregate in the Sn regions of small values < 0.2 while Azure
dots aggregate in the regions of short subsequence lengths. By contrary, red dots
reach much longer length than blue dots, and blue dots reach much higher Sn
values than red dots.
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Figure 11: Ancestral species has two genes A and B which are paralogs. After
speciation happens, ancestral species developed two descendent species. Within
descendent species 1, gene A1 and gene B1 are paralogs; within descendent species
2, gene A2 and gene B2 are paralogs. Meanwhile A1 and A2 are orthologs, B1
and B2 are orthologs, A1 and B2 are orthologs, A2 and B1 are orthologs.

When it comes to homology among gene sequences, we define homologies ac-

cording to sequence alignments technique, which typically infer DNA homology

according to the sequence similarity, and significant similarity o↵ers strong ev-

idence that two gene sequences are related by divergent evolution from a com-

mon ancestor (Koonin and Galperin (2013)). Sequence alignment include various

algorithms, we will introduce in general how Ensemble online database defines

homolgos in the next subsection.

Two segments of DNA have shared ancestry because of either a speciation

event (orthologs) or a duplication event (paralogs). Orthologs exist in di↵erent

species by vertical descent from a single gene of the last common ancestor, while

paralogs are duplicated genes occupying di↵erent positions in the same genome

(Koonin (2005)). Meanings of Orthologs and paralogs are depicted in the Figure

11.

Homologous genes have specific phylogenetic relationships and hence are useful

objects for CUB analysis.

3.4.2.2 Retrieving Homologs from Ensemble Database

Homologs for all genes within S.cerevisiae among 462 species can be retrieved

from ENSEMBL online database.
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Ensemble homology database use systematic sequence comparison approaches

to generate homology information. To be specific the pipeline has 7 basic steps:

Step 1: Load annotated sequences in Ensembl Genome Database.

Step 2: Run NCBI Blast between each paired genes (include self) in a genome-

wise manner, and the measure of sequence similarity adopted by NCBI blast is

E-value (Pearson and Lipman (1988)).

Step 3: Generate gene hierarchical clusters based on Blast results, where dis-

tance among genes are calculated based on E-values.

Step 4: Hierarchical clusters are split recursively and each recursive split is to

find a branch roughly holds half of the nodes. Splitting stops until each cluster

size is below a predefined cluster size (Howe, Bateman and Durbin (2002)).

Step 5: Perform multiple protein sequences alignment within each cluster.

Multiple alignment is a sequence alignment technic for three or more sequences

which are assumed to have an evolutionary relationship.

Step 6: Build a phylogenetic tree based on protein multiple alignment results.

This complex procedure produces di↵erent trees adopting di↵erent algorithms

then uses ’tree merging’ algorithm to generate a consensus ’protein’ phylogenetic

tree. The purpose to adopt di↵erent algorithms is to take into account of species

tree topology based on the NCBI taxonomy and also the results from multiple

protein sequences alignment.

Step 7: From each gene tree, infer gene pairwise relations of ortholog and

paralogy types.

By taking the above steps, homologous genes produced by Ensembl takes into

account of gene sequence similarity, codon sequence similarity and species taxon-

omy.

MATLAB is capable to abstract homology information from Ensembl database

for any given gene via Ensembl’s Representation State Transfer (REST) API.

Code is shown as follows, which produces the lists ’homoSpecies’ and ’homoGene’

special for the target gene ’stringName’:

1 function [ homoSpecies , homoGene , l ] = getHomoInfor ( stringName )

2

3 webl ink=[ ’ http : // r e s t . ensemblgenomes . org /homology/ id / ’ ,

stringName , ’ . . .
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4 ?compara=fung i&content�type=app l i c a t i o n / j son&sequence=cdna&type

. . .

5 =or tho logue s&format=condensed ’ ] ;

6 opt ion=weboptions ( ’ Timeout ’ ,120) ;

7 t ry

8 s t r u t=webread ( weblink , opt ion ) ;

9

10 l=length ( s t r u t . data . homologies ) ;

11 homoSpecies=c e l l ( l , 1 ) ;

12 homoGene=c e l l ( l , 1 ) ;

13

14 for fdID=1: l

15 homoSpecies{ fdID}=s t ru t . data . homologies ( fdID ) . s p e c i e s ;

16 homoGene{ fdID}=s t ru t . data . homologies ( fdID ) . id ;

17 end

18

19 catch % avoid computing pausing

20 f i d=fopen ( ’ webreadFai l . tx t ’ , ’ a ’ ) ; %s to r e webread f a i l u r e

s p e c i e s

21 fpr intf ( f i d , ’%s , ’ , stringName ) ;

22 fc lose ( f i d ) ;

23 homoSpecies={}; %i f webread f a i l r e turn empty va lue to

avoid error

24 homoGene={};

25 l =0;

26

27 end

28

29 end

3.4.2.3 CUB Patterns in Orthologs

For each gene in S.cerevisiae, we retrieved orthologous information among 461

species in fungi kingdom. Based on retrieved ’homoSpecies’ and ’homoGene’, we

searched our prepared Sn datasets of orthologs for 5818 genes in S.cerevisiae.

We studied 50 genes grouped according to their function as Table 13 and
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Table 13: Grouped 30 genes

Ribosomal Protein Transcription Factor (DNA binding) Glucose Metabolic Process

RPL28 YGL103W ACM1 YPL267W GLK1 YCL040W
RPL25 YOL127W AIM20 YIL158W HXK1 YFR053C
RPL10 YLR075W BIK1 YCL029C PKP2 YGL059W
RPL32 YBL092W BNI5 YNL166C HXK2 YGL253W
RPL3 YOR063W BUB3 YOR026W TDH3 YGR192C
RPP0 YLR340W BUD3 YCL014W DOG1 YHR044C
RPS12 YOR369C CBF5 YLR175W FBP26 YJL155C
RPS13 YDR064W CDC10 YCR002C PGM1 YKL127W
RPS15 YOL040C CDC123 YLR215C PRM15 YMR278W
RPS2 YGL123W CDC16 YKL022C ZWF1 YNL241C

Table 14. Based on Sn values derived from the real genome and artificial genome

without any bias, we obtain the result displayed as Figure 12.

Table 14: Grouped 20 genes

Amino Acid Biosynthetic Process Cell Cycle

ACO2 YJL200C CDC14 YFR028C
ADE3 YGR204W YCS4 YLR272C
CYS3 YAL012W CKS1 YBR135W
HIS5 YIL116W CLN1 YMR199W
ILV2 YMR108W CLN3 YAL040C
LEU3 YLR451W TPK1 YJL164C
LYS20 YDL182W DOC1 YGL240W
MET2 YNL277W YOX1 YML027W
TRP1 YDR007W SPC19 YDR201W
PRO2 YOR323C SSD1 YDR293C

In Figure 12 we displayed heatmaps based on Sn values for subsequences en-

coding amino acids Ile, Asp, Gly, and Arg within 50 genes in S.cerevisiae. The four

amino acids are randomly chosen to display from 2, 3, 4, 6 synonymous codon

families. The real codon sequences universally have darker colors compared to

the random replaced artificial codon sequences, which illustrates that real genes

broadly have higher Sn values than artificial ones without any bias. Di↵erences

between real and artificial genes become stronger when more choices of synony-

mous codons are available to encode the amino acid. In addition seen from the

perspective of the gene functional groups, genes in the cell cycle group display the
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slightest di↵erences between the real and artificial genomes, which indicates that

the genes have less codon usage bias in this group than other functional groups.

Hitherto we have introduced Sn as an amino acid specific and sequence specific

measure of CUB. When we applied Sn to real sequences in S.cerevisiae, we found

that with the increasing demand of protein in cell genes decrease their lengths

and guarantee high level of CUB. When we applied Sn to the homology analysis,

we found that CUB is stronger in real sequences than artificial ones, and also

stronger in bigger sized synonymous codon families, in addition CUB patterns are

related to gene functions.

If quantifying CUB at the whole genome level with one measure which includes

CUB information of all the subsequences and 18 amino acids, Sn needs to be

combined in a validated way, which tackles with di↵erent subsequence lengths

and 18 amino acids throughout the genome. Next chapter we will propose the

method to combine Sn for the genome-wide CUB analysis.
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Figure 12: Sn based CUB measure of orthologs across 461 species corresponding
to 50 genes in S.cerevisiae for 4 amino acids (Asp, Ile, Gly and Arg); along x
axis are grouped 50 genes; along y axis 461 species containing the ortholog for the
individual 50 genes. The 461 species are ordered according to phylogenetic tree
of Fungi kingdom. The smaller Sn value is, The lighter its red shade shows; Grey
means no such homology found or no such codon existed decoding such amino
acid. Above half are patterns of real genomes, and the lower half are patterns of
equal replaced artificial genomes.
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Chapter 4

Genome Wide Codon Usage Bias

Analysis

In the previous chapter, we introduced Sn which quantifies the codon usage bias

for each individual amino acid type in a gene. Next we wish to extend this to a

global analysis of the genome. A feasible and valid method to combine all the Sn

values is required to perform such genome wide CUB analysis.

In section 2.3.3 of the literature review, we introduced various CUB measures,

all of which first count synonymous codon occurrences in a predefined sequence

context as the basic measure, then adopt di↵erent methods to combine these basic

measures into one measure capable of quantifying CUB at the level of genome.

Combination of all the Sn values is obliged to consider the length di↵erences and

amino acid compositions.

In this chapter, we first propose the method to summarising 0Sn0 into a genome

wide CUB measure: MD, which contains CUB information of each gene through

the whole genome. Then we apply the measure MD to the real genomes of 462

fungal species. We find that there exists correlation between CUB and phyloge-

netic distances among species under certain scenarios.

4.1 Method for Summarising Sn Within Genomes

One way in which Sn can be characterised in a genome-wise manner is by quan-

tifying the di↵erences between observed Sn and expected Sn (Sn) values. Sn

is defined as the expected value of available Sn values for a certain length (see
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section 2.1.6), therefore if the Sn is calculated based on all the possible Sn values

corresponding to a length, we denote it as theoretical Sn. If the Sn is the mean

value calculated based on the observed Sn values in a genome, we denote it as

empirical Sn.

4.1.1 Attributes of Sn Distributions Under Specific As-

sumptions

If the subsequence composition is subject to a systematic bias, then the sum

of absolute di↵erences between the empirical Sn values and the theoretical Sn

values through the whole genome will depend on the magnitude of that bias. This

is illustrated in Figure 13, which compares the distribution of Sn values in the

real genome to those in the two types artificial genomes (see section 2.2.4). We

randomly chose one amino acid type from each synonymous codon family, and

displayed the four types of amino acid as the representatives.

In Figure 13 it is apparent that the Sn distribution of real genomes and that

of artificial genomes without any bias is di↵erent, which confirms the view that

the codon composition in real organisms is subject to systematic bias. Further to

explore whether the di↵erence between observed and expected Sn in real genomes

is due to the acknowledged global codon usage bias, we compared the real genome

to the artificial genome in which the average global codon usage bias is the only

acting force. Such comparison reveals that treating all the genes with the same

global codon usage bias averages away variations of di↵erent CUB patterns of

individual genes.

Sn distribution is closely correlated to length, therefore to quantify genome

wide CUB we include the information of subsequence length by plotting the the-

oretical Sn and the empirical Sn against their subsequence lengths separately.

We define the curve depicting the relationship between subsequence lengths and

the theoretical Sn as Q (see Figure 14), while define the scatter plot depicting

the relationship between subsequence lengths and the empirical Sn as P. Q is

derived from the theoretical calculation and is independent of the empirical CUB

in the real genomes, and hence we adopt Q as the reference to evaluate di↵erent

P derived from di↵erent genomes. As shown in Figure 15 the red P was derived

from the real genome, the yellow P was derived from the artificial genome with
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Figure 13: Sn distribution overview: example of Sn values of all the subsequence
encoding Glu, Ile, Gly and Arg in S. cerevisiae; along x axis are observed Sn
values, along y axis are corresponding theoretical Sn values, and the blue diagonal
presents dots with the same Sn value as corresponding Sn. Comparison between
observed and random generated artificial sequences: red dots represent values for
the real genome, which are prone to take up the high Sn value region and deviate
from the blue diagonal; yellow dots represent values for artificial genome with
random codon usage, which are spread symmetrically around blue diagonal in the
low Sn value region; green dots represent values for artificial genome with random
but weighted codon usage according to observed global codon usage frequencies,
whose performance rank between yellow and red dots.
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no codon usage bias, and the azure P was derived from the artificial genome with

a unified global codon usage bias.
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Figure 14: Reference curve Q: Relationship between theoretical Sn and its cor-
responding length for di↵erent synonymous codon families. X axis represents
sequence length and Y axis represents theoretical Sn. Curve Q takes into account
exhaustive Sn values for Sn calculation at any subsequence length.

Figure 15 compares the bias strengths in the real S. cerevisiae genome among

observed sequences and artificial sequences while adopting curve Q as the refer-

ence. The yellow P is the closest one to the reference Q. By contrast, the red

P has the largest deviation from the reference Q. In addition the azure P ranks

between the one for real genome and reference Q. Comparisons among di↵erent P

reveal that in the real genome, there exists codon usage bias but such bias does

not follow a unified pattern at the whole genome level.

4.1.2 Sn Based Genome Wide Measure

By comparing real genome and artificial genomes, we can see that summing ab-

solute di↵erences between theoretical and empirical Sn values at each individual

length can be an option to present CUB within the genome. Next we specify a

new genome wide measure of CUB as follows:
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Figure 15: 4 example amino acids in S. cerevisiae genome. Blue dots represent the
reference curve Q. Red dots represent the P in the real genome, which deviated
most from curve Q; Yellow dots represent the P in the artificial genome with
equal random codon usage, which spread systematically close to curve Q; Azure
dots represent the P in the artificial genome whose codon usage probabilities are
consistent with the observed global codon usage frequencies, which ranks between
red and yellow P.
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(1) Calculate the amino acid specific measure MD at the whole genome level.

Supposing the vector P is composed of the empirical Sn values for each subse-

quence length Li across the investigated genome, and the vector Q is composed

of theoretical Sn corresponding to Li. LL is the count of di↵erent Li within the

genome. MD reflects the distance between P and Q.

The distance between P and Q can be calculated adopting di↵erent algorithms.

The most widely accepted is the Minkowski distance as follows:

D(P,Q) = (
nX

i=1

(|Pi � Qi|)p)1/p (5)

where the Euclidean distance (p = 2) and Manhattan distance (p = 1) are specific

instances.

Manhattan distance is less sensitive to one dimension of an extremely high

di↵erence between P and Q (Aggarwal, Hinneburg and Keim (2001)). In our

study, each dimension of P and Q contain useful information about CUB for

each length, and hence our measure prefers to maintain as many attributes of

dimensions as possible rather than one particular attribute of that dimension.

Therefore we chose Manhattan distance (p=1) for MD calculation and defined the

MD value as the Manhattan distance between P and Q with further normalisation

by LL:

MD :=

 
L

LX

i=1

|Pi � Qi|
!

/LL (6)

where Pi is the empirical Sn for the length Li and Qi is the theoretical Sn for

the length Li.

The measure MD makes CUB comparable in genomes with varied gene lengths.

Further normalisation by LL diminishes the impact from the gene length diversi-

ties.

(2) We further define MD, a genome wide CUB measure as MD : = [MDE,

MDH , MDQ, MDF , MDY , MDC , MDN , MDK , MDD, MDI , MDP , MDT ,

MDA, MDV , MDG, MDL, MDS, MDR]. The subscripts of MD are the amino

acid abbreviations. MD contains CUB information for all the 18 amino acids

among all genes through a genome.

Hitherto we have proposed the sequence specific CUB measure Sn, amino acid
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specific CUB measure MD, and genome wide CUB measure MD. In chapter 2

we have demonstrated the application of Sn for sequence specific CUB analysis,

next we introduce the application of MD for CUB analysis in the genome-wise

manner.

4.1.3 Results of MD Application

We applied MD measure to the S. cerevisiae genome and obtained the results in

Figure 16. MD values for the 18 amino acids with more than one codon choice in

real S. cerevisiae genomes are higher than the artificial genome generated by ran-

dom codon replacement, which confirms that synonymous codons are not equally

randomly spread in real genome. Furthermore, the real S. cerevisiae genome also

has higher MD values compared to the artificial genome where codons are replaced

randomly with weights corresponding to the global codon usage bias. A poten-

tial explanation for this e↵ect is that codon usage bias drive individual sequences

in di↵erent directions. For the majority of sequences, codons that are preferred

on a genome-wide scale are also preferred for the individual sequence. However,

for a minority of sequences, codons may be preferred that are non-preferred on

a genome-wide scale (Neafsey and Galagan (2007)). Because of the way global

codon usage bias is calculated, these opposing e↵ects would be averaged away. In

contrast, MD method treats each gene individually based on Sn, which avoids

averaging away CUB driving forces acting on genes in di↵erent directions.

After demonstrating how the MD method quantifies CUB across a genome,

we apply it to 462 species in the Fungi kingdom. A heatmap obtained as Figure

17 displays bias magnitude of each species and shows di↵erent trends for di↵erent

amino acids within one genome and also the same amino acid among di↵erent

genomes. There is a general trend for higher MD values with higher synony-

mous codon choices, for example, average MD value is higher for the amino acids

encoded by six di↵erent synonymous codons compared to amino acids encoded

by only two di↵erent synonymous codons. There is also variation between amino

acids encoded by the same number of codons. For example, cysteine (C) has lower

MD values than other amino acids encoded by 2 codons, whereas leucine(L) show

high MD values compared to the other six-codon amino acids, implying that its

usage is very non-random.
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Figure 16: MD values for 18 amino acids in species S. cerevisiae. MD value for
each amino acids, is summarised from di↵erences between vector P and vector Q,
articulates codon usage bias strength for each amino acid in the genome. MD
values of red dots for real genome are higher than azure dots which represents
artificial genome with a unified global codon usage. At the lowest level the yellow
dots represent the artificial genome with equal synonymous codon usage.
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Figure 17: MD values for 18 amino acids of 462 species among Fungi kingdom.
Sizes of synonymous codon families are labelled in the parentheses behind each
amino acid abbreviations. Y axis corresponds to the analysed 462 species ordered
according to Phylogenetic tree. The darker the shade of red, the higher the MD
value.

80



4.2 Self-Organising Map for Genome Wide CUB

Analysis Based on MD

The heatmap in Figure 17 based on MD values shows amino acid specific and

species specific patterns of codon usage bias. We now define the genome wide

CUB measure for a species ’sp’ as: MDsp = [MDsp
E , MDsp

H , MDsp
Q , MDsp

F , MDsp
Y ,

MDsp
C , MDsp

N , MDsp
K , MDsp

D , MDsp
I , MDsp

P , MDsp
T , MDsp

A , MDsp
V , MDsp

G , MDsp
L ,

MDsp
S , MDsp

R ].

If the CUB measure considers all the 18 amino acids as one whole attribute,

previous work used the ’weighted sum’ to combine each amino acid specific mea-

sure into a single value as a measure of the genome wide CUB (Suzuki, Saito and

Tomita (2004), Urrutia and Hurst (2001)), where weights are chosen considering

the amino acid composition in the genome. However the simple linear combina-

tion lacks a concrete mathematical validation and may lose amino acid specific

information for the genome wide CUB analysis.

In the following two sections, we apply two unsupervised machine learning

technics ’Self Organising Map’ and ’Hierarchical Cluster’ to study CUB driven

factors adopting the high dimensional variable MD.

First we explain how to use ’Self Organising Map’ adopting MD to analyse

CUB pattern across species.

4.2.1 Self Organising Map Approach

If we have a high dimensional input feature space where the input variables live,

and we have little knowledge of what correlation to expect, then it is extremely

di�cult to identify the feature relationships among the input variables. Our CUB

datasets of MD among species constitute such high dimensional CUB feature

space with unknown relationships between inputs. To explore such input feature

space Self Organising Maps (SOM for short) is a feasible way.

SOM borrows ideas from biological models of neural systems and are widely

accepted as an unsupervised learning technique based on competitive learning

algorithms. The aim of SOM is to map from a high dimensional input space to a

two dimensional output space, where the topology of the input space is reflected

and visualised in the two dimensional output space. Such transformation makes
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it possible to explore the relationships among high dimensional variables. To be

specific in our case SOM provides a way to visualize the original high dimensional

CUB features on a two dimensional plane based on which it is easy to make further

calculations to compare input CUB information of species. The process of this

transformation is called training process based on the input variables. The result

of SOM can be thought of the combination of the dimensionality deduction and

clustering of the inputs.

SOM projects high-dimensional data information onto two-dimensional flat

maps which are composed of nodes. All the nodes are arranged in a regular shaped

grid like rectangle or hexagon, and each node is defined by a weight vector which

represents this node’s position in the input space and can be used to calculate

distance to input variables shown in Figure 18(a). The purpose of such projection

is to form the two-dimensional map with nodes who maintain the original input

topology which process is illustrated in Figure 18(b).

The workflow of SOMs to form the two dimensional map is generalised as

follows:

Step 1: Initialisation. We choose to initialise the nodes with weight vectors of

random small values (Akinduko and Mirkes (2012)).

Step 2: Competition. This step consists of a number of sub-steps. (1) Choose

one input variable, calculate its distances to all the nodes on the two dimensional

map, and then find the nearest node and its predefined neighbours as the winning

nodes to be updated. (2) The selected nodes are updated by adjusting their

weights and hence moving towards the input variable according to equation:

wnew
i = wold

i + ↵ik�wold
i = wold

i + ↵ik✓(x � wold
i ), i = 1, 2, ..., m

↵ik =

8
<

:
1, dik < T.

0, otherwise.

(7)

where ↵ik is the neighbourhood function which defines only neighbours of distance

less than T are active neighbours to be altered weights, wi is the node weight, x is

the input variable, ✓ is the learning rate. The neighbourhood distance calculation

adopts the nodes position coordinate on the two dimensional map rather than

nodes weight vectors. T and ✓ gradually reduce at a predefined rate, because

when the nodes are adjacent to the input variables, the finer nudge of nodes’
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(a) ~Xn is the input variable. Each node possess two kinds of position vectors. One is
the weight vector (wij) which represent its spatial position in the input feature space
and is used for calculating its distance to the input variables. The other is a coordinate
vector which represents node location in the two-dimensional map and is used to find
the nearest neighbour nodes for updating weights.

(b) The nodes on the two dimensional map have their corresponding spatial topology (the
mask) in the same space as input topology (the purple area). When nodes are trained, in
each iteration the selected node (yellow spot) is moved towards to the input variable (white
spot) by adjusting its weight. The final ideal result is the mask resembles the purple area.

Figure 18: Illustration of how SOM works. Through training, topology of the
input space are reflected by the two dimensional map. We then classify input
variables according to their geographical distance to nodes on the map.
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weights is required with shrinking learning rates and neighbourhoods.

Step 3: Termination. Repeat step 2 for a pre-defined number of iterations. The

iteration is selected as 500 times the number of nodes, because two dimensional

map is fine tuned and comes to provide an accurate statistical quantification of

the input space when the iterations reach this value (Polani (2002)). Results are

illustrated on the ’sample plane’ and ’neighbourhood distances’. Sample plane

displays the distances between input variables to all the nodes on the two di-

mensional map, by which we can compare the feature similarity between input

variables. The neighbourhood distances display the node geometry in the feature

space trained by the input variables, by which we can cluster the input variables

and visualise the input space topology.

4.2.2 Results of Self Organising Map Application

For SOM analysis, the input variables are species, and each input variable has

MD as its 18 dimensional features [MDsp
E , MDsp

H , MDsp
Q , MDsp

F , MDsp
Y , MDsp

C ,

MDsp
N , MDsp

K , MDsp
D , MDsp

I , MDsp
P , MDsp

T , MDsp
A , MDsp

V , MDsp
G , MDsp

L , MDsp
S ,

MDsp
R ]. We selected 20 species listed in Table 15 as input variables.

We selected these 20 species because they form two phylogenetic groups where

members of each group are closely related in the phylogenetic tree, but are not

closely related between groups (see the phylogenetic tree in Figure 19). The

pattern of the species relationship makes it possible to evaluate how CUB changes

over both short and long distances in evolution. To assist visual inspection, we

generated the corresponding phylogenetic tree based on the phylogenetic distance

of these 20 species. The phylogenetic tree is created using online tool 1.

Figure 20(a) illustrates the distances between input variables to the nodes on

the two dimensional map. Imagine that two input variables have very similar

features, then they tend to position in a very close location in the input feature

space, equivalently the pattern of distances between nodes to these two variables

tend to be similar. Therefore patterns evident on the sample plane reveal how

similar the input variables are based on the considered features. To be specific,

our input variables are 20 species and each species has the feature of CUB rep-

resented by MD, and the sample plane indicates the similarity between species

1https://phylot.biobyte.de/
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Table 15: 20 species for SOM analysis

Group Name Species Name Abbreviation

Saccharomycetales

Saccharomyces arboricola h 6 S.arboricola
Saccharomyces eubayanus S.eubayanus

Saccharomyces kudriavzevii S.kudriavzevii
Ashbya gossypii A.gossypii

Yarrowia lipolytica Y.lipolytica

Schizosaccharomycetales
Schizosaccharomyces pombe S.pombe

Schizosaccharomyces japonicus S.japonicus
Schizosaccharomyces octosporus S.octosporus

Eurotiales

Aspergillus clavatus A.clavatus
Aspergillus flavus A.flavus

Aspergillus nidulans A.nidulans
Aspergillus niger A.niger
Aspergillus oryzae A.orizae
Aspergillus terreus A.terreus

Aspergillus fumigatus A.fumigatus

Hypocreales

Fusarium fujikuroi F.fujikuroi
Fusarium graminearum F.graminearum
Fusarium oxysporum F.oxysporum

Fusarium verticilloides F.verticilloides
Trichoderma reesei T.reesei

based on the feature of CUB. From Figure 20(a) CUB patterns clearly reproduce

some features of the phylogenetic relationship between species, for example, the

three Saccharomyces species display a minimum value (bright yellow hexagon)

in the bottom right hand corner of the plot, whereas the other two species in

the Saccharomycetales order which are more distantly related to the three saccha-

romyces species display a more centrally located minimum. Interestingly however,

this pattern does not always hold. For example, the three Schizosaccharomyces

species display stronger variation in the SOM patterns.

Figure 20(b) display the spatial distances between nodes in the feature space

which resemble the input variables. If the nodes on the two dimensional map

highly resemble the input feature space, the clustering property displayed by these

nodes should convey the clustering property of the input feature space. Because

nodes are arranged in a two dimensional plane, the pattern of distances between

nodes are more convenient for visualisation. To be specific in our case, from the
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Figure 19: Phylogenetic tree of 20 species

two dimensional map we can see 2 distinct regions which convey that based on

the CUB pattern the input 20 species should be divided into two groups.

SOM makes it possible to consider MD as a whole attribute of individual

input species, without combining di↵erent MD values into a single number.

Now consider if the input variable is any entity which possess the property of

MD, SOM results are able to reveal CUB patterns among the input variables.

To be specific, consider the 18 amino acids as input variables, and each amino

acid has 20 features formed by 20 species. For example for amino acid E, its 20

features are displayed as [MDsp
1

E , MDsp
2

E , MDsp
3

E , ..., MDsp
i

E , ..., MDsp
19

E , MDsp
20

E ]

(i 2 [1, 20]). In this case the SOM results are able to show amino acid specific

patterns among 20 species, and further reveal whether amino acids coevolve with

each other among di↵erent species.

As shown in Figure 21(a), the sample plane conveys the similarity among input

variables here as 18 amino acids. A number of amino acids show similar patterns

(Glu, Gln, Tyr, Asn, Pro, Thr, Ala, and Ser) other amino acids di↵er strongly

from this main pattern. Some of these patterns seem unique to individual amino

acids (His, Phe, Cys). Interestingly, the chemically related branched-chain amino

acids Leu, Val, and Ile show patterns that are more similar between these amino

acids than to other amino acids. This indicates that the di↵erent CUB patterns

may reflect chemical relationship between amino acids.
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(a) Sample plane. The sample plane is composed of 20 subplots and titled by abbreviations
of species name. Each hexagon is a node whose color reflects how far such node is away
from the the titled species. Distance from near to far display colour as light yellow to dark
red. As shown in the color bar, yellow represents small values and dark red represents large
values. Similar color patterns indicate high similarity between species.

(b) Node neighborhood distance. In this figure the blue hexagons are nodes on the two
dimensional map. The red lines indicate the distance between nodes whose magnitude is
displayed by the colors around the red lines. Neighbour distance shows distance between
nodes in the feature space, where distances from near to far display colour as light yellow to
dark red. As shown in the color bar, yellow represents small values and dark red represents
large values. Nodes neighbour distance conveys information about how many clusters input
species may divide into, and here we can see 2 distinct codon usage bias pattern groups are
divided by the dark red curve which vertically passes through the middle of the map.

Figure 20: 20 species as input variables, each input variable has 18 dimensions
(18 MD values corresponding to 18 amino acids).
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Nodes neighborhood distance shown in Figure 21(b) conveys the clustering

property of the input variables based on the investigated features, to be specific

in our case, Figure 21(b) suggests how the 18 amino acids can be clustered based

on amino acid specific CUB features from 20 species. There is a distinct cluster

divided by dark red curves in the left middle part of the map, and also a distinct

cluster in the right upper corner of the map.

To sum up, by selecting input variable and variable features, SOM is able to

reveal codon usage bias pattern for the specific purposes.

4.3 Hierarchical Clustering for Genome Wide

CUB Analysis Based on MD

Next we introduce the concept of ’hierarchical cluster’ to perform CUB analysis,

which will reveal patterns of underlying relationships not directly visible in nu-

merical data. When the hierarchical cluster tree is constructed based on some

features of a set of species, such cluster tree will represent relationships among

these species based on the input features. We built the hierarchical cluster tree

based on MD values and taxonomy of species, and then the cluster tree derived

from MD values represent the CUB relationships among species and the clus-

ter tree derived from the taxonomy represent phylogenetic relationships among

species. By comparing similarity between these two types of cluster trees, we

found that CUB prone to correlate to phylogenetic distances for remote groups of

species, equivalently phylogenetic distance correlates to CUB from the perspective

of a wide evolutional span.

Now we will introduce how to construct the hierarchical trees and compare

their similarity in the next two sections.

4.3.1 Hierarchical Clustering Approach

The aim of Hierarchical Clustering is to create a dendrogram with multilevel hier-

archy (Maimon and Rokach (2009)). The basic idea of Hierarchical Clustering is

to sequentially pair and join nodes with the closest proximity to form a new clus-

ter, which serves as a new node to participate in the following merging procedure

until all the nodes are involved to create the hierarchical cluster tree.
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(a) Sample plane. The sample plane is composed of 18 subplots and titled by amino acids.
Each hexagon is a node on the two dimensional map, whose colour reflects how far the
titled amino acid is away from such node. Distance from near to far display colour as light
yellow to dark red. Similar colour patterns indicate high similarity between amino acids.

(b) Node neighbourhood distance. The blue hexagons represent nodes on the two dimen-
sional map. The red lines within a color region represents distances between connected
nodes in the feature space. Distances from near to far display colour as light yellow to
dark red. Nodes neighbour distance conveys how many clusters the input amino acids may
divide into.

Figure 21: 18 amino acids as input variables, each has 20 dimensions (20 amino
acid specific MD values corresponding to 20 species).
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The Hierarchical Clustering workflow can be summarised as follows:

Step 1: Distance calculation. Compare the similarity between each pair of

input nodes by calculating the Euclidean distance between them. Based on all

the input nodes, we obtained the original distance matrix whose entries are the

distances between paired nodes.

Step 2: Forming a new cluster. Initially consider each input as a single cluster.

In each iteration, a pair of clusters which have the closest distance are joined

together to form a new cluster. The new formed cluster participates in the next

merging procedure.

There are many algorithms to calculate the distance between two clusters p

and q. Here we determine the cluster distance by choosing the smallest distance

between the nodes separated in the two clusters:

d(p, q) = min(dist(x
pi

, x
qj

)), i 2 p, j 2 q (8)

here p and q are two clusters, i is the i-th node in cluster p and j is the j-th node

in cluster q.

Each iteration distance matrix updates distances between newly formed cluster

and other existing clusters. Steps 1 and 2 are repeated until a hierarchical tree is

formed.

Step 3: Pruning the hierarchical tree. Merge nodes below a predefined thresh-

old into one single cluster. The threshold can be the nodes height, or maximum

cluster numbers and ect. We use maximum cluster numbers as the threshold to

prune hierarchical trees.

4.3.2 Cluster Similarity Quantification

Here we use an approach to quantify the similarity between cluster trees based on

the algorithm recommended by E.B.Fowlkes in 1983(Fowlkes and Mallows (1983)).

The workflow is as follows:

Step 1: Obtain two hierarchical cluster trees based on di↵erent features of

input variables.

Step 2: Cut the two cluster trees individually so that they have the same

cluster numbers n. Count the same input variable amounts within each paired
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clusters and form the matching matrix M as follows:

M = [mij](i = 1, ..., k; j = 1, ..., k; k = 2, ..., n � 1) (9)

where the element mij represents the number of common entries (namely the

same input variables) between the i-th cluster in the first cluster tree and the j-th

cluster in the second cluster tree.

Step 3: Using M to calculate the similarity score Bk which represents the

similarity between clusters:

Bk =
Tkp

(Pk)(Qk)

Tk =
kX

i=1

kX

j=1

m2

ij � n

Pk =
kX

i=1

m2

i. � n

Qk =
kX

j=1

m2

.j � n

mi. =
kX

j=1

mij

m.j =
kX

i=1

mij

(10)

Step 4: Calculate the confidence interval under the null hypothesis of inde-

pendent clusterings. Fix cluster tree structures and label entry node according to

bivariate normal distributed random values, under which setting the two cluster

trees should have no similarity. Based on randomly generated sample trees, we

calculate the expected value E(Bk) and variance var(B
k

) according to Equation
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11:

E(Bk) =
p

PkQkn(n � 1)

var(B
k

) =
2

n(n � 1)
+

4P0
k

Q0
k

n(n � 1)(n � 2)P
k

Q
k

+

(Pk � 2 � 4P 0
k/Pk)(Qk � 2 � 4Q0

k/Qk)

n(n � 1)(n � 2)(n � 3)
�

PkQk

n2(n � 1)2

P 0
k =

kX

i=1

mi.(mi. � 1)(mi. � 2)

Q0
k =

kX

j=1

m.j(m.j � 1)(m.j � 2)

(11)

Based on E(Bk) and var(B
k

), we deduce the confidence interval of Bk (confi-

dence level ↵=0.05) for two independent trees: E(Bk) ± 2
p
var(B

k

).

Step 5: Based on the obtained Bk value which suggests the similarity strength

of the investigated trees, and also the confidence interval E(Bk) ± 2
p
var(B

k

)

where the Bk values suggest no correlation. We make the judgement whether

we can accept there are correlation between investigated trees, in addition we

measure the similarity according to the magnitude of Bk.

To better explain the meaning of the matching matrix M and cluster similarity

score Bk, we give an example in Figure 22.

Matlab code to implement the cluster comparison is shown below:

1 function [ ClusterSam ,BoundUpLow ] = c lu s t e r i ng compar i s on (ZZ1 ,

ZZ2 , kClust , spCount )

2

3 %%ZZ1 , ZZ2 are the dendrogram matr ices f o r i n d i v i d u a l c l u s t e r

de r i v ed from MATLAB c l u s t e r i n g package

4

5 ClusterSn1=c l u s t e r (ZZ1 , ’ maxclust ’ , kClust ) ;

6 ClusterSn2=c l u s t e r (ZZ2 , ’ maxclust ’ , kClust ) ;

7 %% ClusterSn : c l u s t e r l a b e l f o r each s p e c i e s in i n d i v i d u a l

c l u s t e r

8

9 Cbase=(1: spCount ) ; %% spCount : how many s p e c i e s
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Figure 22: Dendrograms of two hierarchical cluster trees and the formation of
matching mij matrix for k=2. Figure (a) shows two identical hierarchical cluster
trees and Bk = 1. In Figure (b), cut two clusters at the level of branches of 2.
Compare the first two branches, there is no same element, therefore m

11

= 0.
Compare the first branch of the tree on the left and the second branch of the
tree on the right, there are two same elements ’4’ and ’5’, therefore the entry in
the first row and the second column of the matching matrix m

12

is 2. According
to Equation 10, we calculate Bk=0.25. (Figure resource: Fowlkes and Mallows
(1983))
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10

11 for kClustCount=1: kClust

12 GrpClust1{kClustCount}=Cbase ( ClusterSn1==kClustCount ) ;

13 GrpClust2{kClustCount}=Cbase ( ClusterSn2==kClustCount ) ;

14 end

15

16 M=zeros ( kClust , kClust ) ; %% kClus t dec i de s where to prune the

t r e e s

17 for M1count=1: kClust

18 for M2count=1: kClust

19 M(M1count , M2count )=length ( find ( ( ismember ( GrpClust1{
M1count} , GrpClust2{M2count}) ) ) ) ;

20 %%ev l u a t e matrix : en try conta ins counts o f common elements in

two branches in GrpClust1 and GrpClust2

21 end

22 end

23

24 Mi=sum(M, 2 ) ;

25 Mj=sum(M, 1 ) ;

26 n=sum(M( : ) ) ;

27

28 T=sum(M( : ) . ˆ 2 )�n ;

29 P=sum(Mi ( : ) . ˆ 2 )�n ;

30 Q=sum(Mj ( : ) . ˆ 2 )�n ;

31 ClusterSam= T/sqrt (P⇤Q) ;

32 PP=sum(Mi ( : ) . ⇤ (Mi ( : ) �1) . ⇤ (Mi ( : ) �2) ) ;

33 QQ=sum(Mj ( : ) . ⇤ (Mj ( : ) �1) . ⇤ (Mj ( : ) �2) ) ;

34

35 meanB=sqrt (P⇤Q) /(n⇤(n�1) ) ;

36 %% the mean and s t d : random unre l a t ed c l u s t e r t r e e s .

37 varB=2/(n⇤(n�1) )+4⇤PP⇤QQ/(n⇤(n�1)⇤(n�2)⇤P⇤Q)+(P�2�4⇤PP/P) ⇤(Q

�2�4⇤QQ/Q) /(n⇤(n�1)⇤(n�2)⇤(n�3) )�P⇤Q/(n . ˆ2⇤ ( n�1) . ˆ 2 ) ;

38

39 BoundUpLow=[meanB�2⇤sqrt ( varB ) ,meanB+2⇤sqrt ( varB ) ] ;

40 %% when Bk l o c a t e ou t s i d e t h i s area , means s im i l a r i e s i s

s i g n i f i c a n c e
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41

42 end

It has been argued that the E.B.Fowlkes method takes into account topologies

of individual trees, but does not consider the heights of internal nodes within

individual tree (Wagner and Wagner (2007)). However our cluster trees are formed

based on di↵erent types of data sets, therefore internal cluster heights cannot be

meaningfully compared. In this sense putting aside the heights of internal nodes

within the tree is reasonable and this quantification method satisfies our purpose

well.

4.3.3 Results of Hierarchical Clustering Application

After introducing the algorithms to perform the correlation study between CUB

and phylogenetic distance, we apply the algorithms to real genome data from

Fungi kingdom when adopting MD as the genome wide CUB measure and tax-

onomy as the measure of phylogenetic distance. First we generate hierarchical

clusters based on MD and species taxonomy separately (taxonomy information

are retrieved from the NCBI taxonomy online tool 2); secondly we quantify the

similarity between the CUB cluster tree and phylogenetic cluster tree. If the sim-

ilarity between these two trees is high, then this means that CUB has a high

correlation with the phylogenetic distance among the investigated species set.

4.3.3.1 Hierarchical Cluster Trees Based on MD and Species Taxon-

omy

Beginning with a small set of species, we chose 10 species in Table 15 as the in-

put variables, where Saccharomyces arboricola (sahib), Saccharomyces eubayanus

(sea), Saccharomyces cerevisiae (sc), Saccharomyces kudriavzevii (saku), Saccha-

romyces sp (sp) are phylogenetic close species in the Saccharomycetales order, and

Fusarium fujikuroi (↵), Fusarium oxysporum (of), Fusarium verticillioides (fv),

Fusarium graminearum (fg), Fusarium poae (fp) are phylogenetic close species in

the Hypocreales order (abbreviations of species are displayed in the parenthesis

after each species name). These 10 species are in 2 distant phylogenetic groups,

and species within each group are close to each other.

2https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax identifier.cgi
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Figure 23: Two hierarchical cluster trees of 10 species based on MD (left) and
taxonomy(right). Either cluster tree has the x-axis of the species names with
abbreviations, and y-axis of the distances between nodes. Comparison between
these two cluster trees we can find similar structure patterns such as S.arboricola,
S.eubayanus, S.cerevisiae group together in both trees, and F.fujikuroi, F.poae
and F.graminearum stay in the closest group in both trees.

First we generated the CUB cluster tree based on MD of these 10 species,

and then generated phylogenetic tree based on the taxonomy of these 10 species.

Under this setting, CUB cluster tree has 10 input variables, and each variable

has 18 attributes represented by MD; phylogenetic tree has 10 input variables

and each variable has 1 attribute represented by taxonomy. MD represents the

CUB attributes of species, and taxonomic ID represents the evolutionary distance

between species. Comparison between these two cluster trees aims to investigate

the correlation between CUB and phylogenetic distance among these 10 species.

Figure 23 shows great similarity between these two trees, for example in both trees

S.arboricola, S.eubayanus, S.cerevisiae group together , and F.fujikuroi, F.poae

and F.graminearum group together. These indicate that for these 10 species their

CUB tree and phylogenetic tree resemble to some extent.

4.3.3.2 Similarity between CUB Cluster Tree and Phylogenetic Tree

To further explore our findings about the visual similarity between CUB cluster

tree and phylogenetic tree, we compare the obtained two hierarchical clusters in

Figure 23 by the comparison method detailed in section 3.3.2.
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Table 16: Cluster Similarity Between CUB Cluster Tree and Phylogenetic Tree of
10 species in orders of Saccharomycetales and Hypocreales

Cluster Number Similarity Dissimilarity Confidence Interval (↵=0.05)

2 0.6390 [0.3508, 0.6229]
4 0.5547 [0.0258, 0.4550]
5 0.4558 [-0.0299, 0.4199]
6 0.4243 [-0.0812, 0.3954]

Results are shown in Table 16, where k is the cluster numbers, Bk is the sim-

ilarity score, E(Bk) and var(B
k

) are the expected value and the variance of Bk

for independent clusters. If a Bk value is not in the range of E(Bk) ± 2
p
var(B

k

),

it means the compared trees have similarity and the obtained Bk has statistical

significance. Bk=1 means the compared trees are exactly the same, while Bk=0

means no similarity between the cluster trees, and a higher Bk value represents

higher similarity between cluster trees. To be specific in our case, when we chose

k=2, we got Bk=0.6390. Based on the E(Bk) and var(B
k

) for the two uncor-

related trees, we obtain the dissimilarity confidence interval [0.3508, 0.6229] at

the significance level ↵=0.05. This means that if dividing the 10 species into 2

groups, cluster trees are similar based on the CUB and taxonomy features of the

species. When we chose k=4, we got Bk=0.5547, and corresponding dissimilar-

ity confidence interval is [0.0258, 0.4550] at the significance level ↵=0.05, which

means the two cluster trees also have statistical significance in similarity when

each tree has 4 clusters. We investigated cluster numbers up to 10, and there

are statistical significant similarity between the two types of cluster trees also for

k=5 and 6. Results in Table16 demonstrates that the investigated species tend to

take on similar cluster performance based on MD and taxonomy. Such finding

suggests that for certain clustering numbers there are high correlation between

codon usage bias and phylogenetic distance.

To explore whether the correlation revealed by the above 10 species from or-

ders of saccharomycetales and Hypocreales is a universal principle among Fungi

kingdom, we randomly chose 10 species spread among the 462 species in Fungi

kingdom, and perform the same analysis. The similarity comparison showed that

for any chosen cluster numbers there are no correlation between CUB cluster tree

and phylogenetic tree.
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Table 17: 10 Species with Specific Taxonomy ID

species taxonomy ID

Absidia glauca 4829
Cyberlindnera jadinii 4903
Pichia kudriavzevii 4909

Torulaspora delbrueckii 4950
Zygosaccharomyces rouxii 4956

Leucoagaricus sp 1714833
Phialophora attae 1664694
Emmonsia sp 1658172

Pseudogymnoascus sp 24mn13 1622150
Pseudogymnoascus sp 05ny08 1622149

However correlation between CUB and phylogenetic distance showed up when

we chose the 10 species as Table 17. Under this setting the phylogenetic dis-

tance between the two species groups is large, while within each species group the

distance among species are close. After comparing the CUB cluster tree and phy-

logenetic tree of these 10 species, we find high similarity when k=3, Bk=0.7500

has statistical significance, which is judged from the confidence interval [0.0163,

0.5508] (↵=0.05) for uncorrelated trees.

Further we expand our input nodes to 462 species in the Fungi kingdom. We

built cluster tree based on CUB feature and phylogenetic distances, then applied

the cluster comparison method to the two types of cluster trees. The results

are illustrated in Figure 24, from which we can see that there exist Bk values

with statistical significance which reveals that CUB and phylogenetic distances

are correlated.

In Figure 24, Bk values take on a descending trend with increasing cluster

k numbers. However this is an intrinsic attribute of the Fowlkes method that

for small numbers of clusters, the value is high even for independent clusterings

(Wagner and Wagner (2007)).

To examine the exact value of Bk with statical significance, we list them in

Table 18. We find that when k=15, 16, 19, 20, the two types of cluster trees

have statistical significant similarity, and the highest absolute values of similarity

scores is for k=15 among all the cases, however 0.3455 is not very high. The
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Figure 24: Similarity score of Bk values between CUB cluster tree and phylogenetic
tree corresponding to di↵erent cluster numbers among 462 fungal species. X-axis
labels the cluster numbers of trees, y-axis labels the Bk values. The red dots
are similarity score between CUB cluster tree and phylogenetic tree for di↵erent
cluster numbers from 1 to 200. The green and blue dots are the lower and upper
boundaries of confidence intervals (↵=0.05) for Bk values of two independent
cluster trees. When a red dot is outside the range of lower boundary and upper
boundary, it means such red Bk value has the statistical significance at ↵=0.05,
where the red circles mark the cases corresponding to the significant Bk values
representing existed similarity between trees.
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Table 18: Clusters Similarity Between CUB Cluster Tree and Phylogenetic Tree
of 462 species in Fungi

Cluster Number Similarity Dissimilarity Confidence Interval (↵=0.05)

15 0.3455 [0.3462, 0.3604]
16 0.3415 [0.3421,0. 3573]
19 0.3136 [0.3146, 0.3335]
20 0.3125 [0.3136, 0.3327]
162 0.0619 [0.0402, 0.0613]
163 0.0616 [0.0402, 0.0621]
189 0.0589 [0.0353, 0.0576]
190 0.0587 [0.0349, 0.0573]
194 0.0579 [0.0336, 0.0564]
195 0.0579 [0.0334, 0.0562]
198 0.0564 [0.0324, 0.0553]
200 0.0566 [0.0321, 0.0552]

reason for this may be that when large quantities of species involved in cluster-

ing, their CUB feature classification must depend on more complicated factors

rather than one dominant factor of phylogenetic distance. Combining our find-

ings among 10 species with specific phylogenetic settings, we deduce that CUB

tends to correlate to phylogenetic distances for featured groups of species, where

group phylogenetic distance in between is far apart while distances within groups

phylogenetic distances are close.

Here we need to notice that stating Bk is considered to have statistical sig-

nificance is not equivalent to stating the cluster trees have high similarity. For

example Bk=0 (where Bk with great statistical significance) means that no sim-

ilarity exists between the cluster trees and such dissimilarity is not happened by

chance at the statistical significance level ↵ = 0.05 based on randomly generated

uncorrelated trees.

Cluster comparison demonstrates its advantage for the correlation study be-

tween high dimensional data sets, where we have little knowledge about what

correlation to be expected.

Hitherto we have introduced genome wide measure MD and machine learning

technics for CUB correlation analysis adopting MD, and demonstrated their ap-

plication to the real fungal genomes. From the results of di↵erences between real
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genomes and artificial genomes, we confirmed the validation of MD for it reveal-

ing stronger CUB in real species than artificial ones. From the results of SOM

for input species, we found CUB patterns reproduce some features of phyloge-

netic relationship. From the results of SOM for input amino acids, CUB patterns

to some extent reflect chemical relationship between amino acids. In addition

from the results of Hierarchical Clustering we found that for remote phylogenetic

groups of species their CUB features correlate to their phylogenetic distances.

101



Chapter 5

Stochastic Thermodynamics

Based Model to Simulate

Genome-wide CUB Pattern

In the previous three chapters we introduced a novel CUB measure. In this

chapter we propose a model based on stochastic thermodynamics to investigate

CUB origins.

While there is evidence for a large number of possible evolutionary drivers

for CUB as stated in section 1.4, it remains unclear how the various mechanisms

interact and how much they contribute to overall CUB relative to one another.

Instead, a macroscopic description of the system may provide more insight. There

are many precedents in science, notably in statistical physics, where simple, useful

and universal laws emerge from intractable microscopic interactions. Examples,

include the ideal gas law that relates macroscopic quantities to one another while

ignoring individual positions and momenta of molecules, scaling laws in biology

(West, Brown and Enquist (2000)), word frequencies in texts (Zörnig and Altmann

(1995)), spatial structures of genomes (Cristadoro, Degli Esposti and Altmann

(2018)), all of which abstract away from microscopic detail in order to arrive at

robust macroscopic laws.
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5.1 Codon Usage Bias Distribution

As shown in Figure 5, each mRNA sequence can be divided into 20 subsequences,

and each subsequence is composed of synonymous codons encoding one amino acid

type. The subsequence of length L encoding the amino acid (AA) is symbolised

as SL,AA.

Assuming the number of genes in the genome is Ng, then the j-th gene Gj

(j 2 [1, Ng]) has a subsequence SAA
j to encode the amino acid AA and SAA

j has

the length LAA
j (j 2 [1, Ng]). We use the codon occurrence configuration NAA

j

to describe the codon usage patten of the subsequence SAA
j in gene Gj. Further

we adopted NL,AA
j distribution across the genome as the representation for amino

acid specific CUB distribution across the genome.

To assist a better understanding of the meanings of the CUB distribution

across the genome, we make a simple example with assumptions of short sequence

lengths and a small genome size.

Consider a gene within a genome as ’GAG UUU GAA GAG UUC AUA AUU

GAG AUA’ . Then this gene contains the subsequence encoding amino acid GLU

as ’GAG GAA GAG GAG’, whose codon occurrence configuration is [3,1] and

whose length is 4. Assuming searching through the genome, in total we find 4

subsequences of length 4 encoding GLU separately contained in 4 genes, and all

the corresponding codon configurations are further assumed to be NGlu
1

= [3, 1],

NGlu
2

= [1, 3], NGlu
3

= [0, 4], NGlu
4

= [3, 1]. Then NGlu
1

, NGlu
2

, NGlu
3

, NGlu
4

together

reveal the CUB pattern special for amino acid chain of GLU with length 4 in

the genome. When we expand the investigation of subsequence length to all the

available values in the genome, all the available N distributions display the codon

usage pattern for amino acid GLU through out the genome.

5.2 Models Under Specific Selection Pressure As-

sumptions

To build models to explore CUB distribution, we consider codon evolution as a

random walk. If seen from the perspective of codon evolution, a subsequence

can be considered as a random walk system, correspondingly a codon occurrence

configuration can be considered as a system state or a random walk site, thence
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all the available codon occurrence configurations form the whole system states or

equivalently the whole random walk space. Figure 25 illustrates random walks

of a subsequence with length of 4 which belongs to 2 synonymous codon family

and 3 synonymous codon family separately as examples. Each random walk site

corresponds to a codon occurrence configuration for the subsequence.

For simplicity, we first focus exclusively on 2 synonymous codon family, where

codon evolution can be represented as a 1D random walk in discrete space and

continuous time. Each site in the discrete space is a distinguished codon occur-

rence configuration N of subsequence length L. For example (n, L � n) defines a

site in the walking space and a single synonymous codon change is su�cient to

change from one site to another.

When it comes to synonymous codon families whose sizes are larger than 2,

each site is connected to more than two sites in the random walk space.

When a transition from one site to another happens, only one codon is mutated

for each site transition. A single codon decays with rate rc, and then if there are

nc codons they decay with rate rcnc, equivalently to say that the transition rate

r is proportional to nc.

The rate of transition r satisfies r = rcnc, where rc is the transition constant

corresponding to the codon mutation rate, nc is the number of codons which are

available to mutate. We assume that the rate of transitions where codon type 2 is

converted to codon type 1 is proportional to the number of codons of codon type

2 n
2

.

r(n
1

, n
2

, . . . ! n
1

+ 1, n
2

� 1, . . .) ⇠ n
2

(12)

where ni is the count of the i-th codon type.

In equilibrium, which is characterised by no net flows of probabilities, proba-

bilities of two connected states satisfy the detailed balance condition:

⇡(n
1

, n
2

, . . .)r(n
1

, n
2

, . . . ! n
1

+ 1, n
2

� 1, . . .)

= ⇡(n
1

+ 1, n
2

� 1, . . .)r(n
1

+ 1, n
2

� 1, . . . ! n
1

, n
2

, . . .)
(13)

Here ⇡ is the occupation probability of a particular site (which means the

probability to observe the system in this configuration), r(n
1

, n
2

, . . . ! n
1

+1, n
2

�
1, . . .) is the rate of a mutation from any of the n

2

codons of type 2 to codon type
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Figure 25: Illustration of the random walk for a subsequence of length 4 which
belongs to 2 synonymous codon family and 3 synonymous codon family, respec-
tively. When considering the subsequence as a system, each random walk site or
system state S = [s

1

, s
2

, ..., sm] corresponds to a codon occurrence configuration
N = [n

1

, n
2

, ..., nm], where m is the size of the synonymous codon family. Each
entry si in S is equivalent to ni in N , where i 2 [1, m].

1, similarly r(n
1

+ 1, n
2

� 1, . . . ! n
1

, n
2

, . . .) is the rate of a mutation from any

of the n
1

codons of type 1 to codon type 2. This implies that:

r(n
1

+ 1, n
2

� 1, . . . ! n
1

, n
2

, . . .)

r(n
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, n
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, . . . ! n
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� 1, . . .)
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+ 1)
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2
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We assume that each codon has a fixed rate of mutation to a synonymous

codon. From this it follows that the rate of mutation of n
2

codons is proportional

to n
2

.
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Next we postulate the local detail balance (Crooks (1998)):

�E = �T ln

✓
r
+

r�

◆
, (15)

where r
+

and r� are the forwards and backwards transition rates respectively,

�E is the abstract energy di↵erence between the two states. This relationship

then implies a dependence between the two rates, namely:

r� = r
+

exp

✓
�E

T

◆
(16)

If we assume the energy of the initial state is E
0

= 0, the energy of any state

can be expressed by the transition rates.

In order to derive the model to simulate CUB patterns, we now have a con-

ceptual leap: (1) Each site of the random walk has an energy Ej which can be

derived based on transition rates. (2) Transition rates reflect driven forces acting

on codon sequences. We construct the models with di↵erent CUB driven forces

by manipulating transition rates r
+

and r�. (3) We posit that the random walker

that moves between the sites is in contact with a large heat-bath that remains at

a fixed temperature T. This temperature bath exchanges energy with the walker,

thus enabling it to transit to sites with higher energy or lower energy by adding

or extracting energy. We stress here that this idea of energy and temperature are

merely conceptual devices and should not be confused with the actual physical

temperature that is experienced by organisms.

We consider two models based on above concepts:

(1) ’Beanbag Model’ : codon usage is selected for at the level of the whole

genome. In a random walk site, selecting which codon to mutate can be thought

of as selecting beans from a bag and the probability of picking up a certain codon

type is fixed independent of previous choices, thus mutation rate of any codon

type is a constant.

(2) ’Sequence Level Selection Model’ : selection pressure acts at the level of the

individual gene sequences. In a random walk site, mutation rate of any codon

type is no longer a constant.
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5.2.1 Beanbag Model

First we propose a ’Beanbag Model’ which simulates CUB pattern under the as-

sumption that global codon usage favors certain types of synonymous codons

regardless of codon positions. If each codon position has no preference for any

synonymous codon type at all, we call it Unbiased Beanbag Model ; and if there is

a global codon usage preference among synonymous codon types, we call it Biased

Beanbag Model.

Unbiased Beanbag Model assumes all codons have the same probability of being

chosen, which means during the random walk mutation rates of all codons are the

same.

To calculate the energy EN of the current state N = [n, L � n] (where L is

the subsequence length), we start from a subsequence which has the lowest energy

E
0

= 0 for the sake of easy calculation. For a 2 synonymous codon family, the first

codon count n in the codon occurrence N has the same strength to define a random

walk site or system state as N , thence En is equivalent in description to EN where

n is the quantity of the first codon type in N . Although any configuration can

be selected as an initial state, we assume that in the initial state all L codons are

of type 1 for the sake of easy description. A mutation can reach the next state

(n = L�1) by changing one of the L codons of type1 to a codon of type 2. When

there are no selection forces, transition rate constants are equal for every codon,

then this transition happens with a forward transition rate (r
+

) proportional to

the quantity of codon type 1 (L). From this state (n = L�1) the system can then

move further to state (n = L�2) with a forward transition rate (r
+

) proportional

to L � 1. Alternatively, with a backward transition rate (r�) proportional to 1 it

can move back to state (n = L). Altogether, the following transitions are possible:

(L, 0)
L
*)
1

(L � 1, 1)
L�1

*)
2

· · ·
L�n+1

*)
n

(L � n, n)
L�n
*)
n+1

(L � n � 2, n + 2) · · ·
1

*)
L

(0, L)(17)

According to Equation 15, the energy di↵erence �Ei between state (n =

i) and state (n = i � 1) is given by �Ei = Ei � Ei�1

= �T ln(r
+

/r�) =

�T ln ((L � i + 1)/i). Given E
0

= 0 the energy of state (N) is :
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En =
nX

i=1

�Ei = �T ln

 
nY

i=1

L � i + 1

i

!
=

= �T ln

✓
L!

(L � n)!n!

◆
= �T ln

✓
L

n

◆
. (18)

The Biased Beanbag Model assumes that there is an underlying bias to the

mutations, namely for a random walk site which has N copies of codon type 2

and L � n copies of codon type 1, there exists a probability of q (q 6= 1/2) to

choose codon type 2 for mutating to type 1, and hence probability of (1 � q) to

choose codon type 1 for mutating to type 2. Therefore the transition rate constant

for codon type 1 is q, as well as the transition rate constant for codon type 2 is

1 � q. At such state [L � n, n], the forward transition rate (r
+

) is proportional to

the probability of choosing the codon type 1 (q) as well as the current quantity of

codon type 1 (L � n). Similarly r� = (1 � q)n. The random walk is detailed as

follows:

(L, 0)
Lq
*)

1(1�q)
(L � 1, 1)

(L�1)q
*)

2(1�q)
· · ·

(L�n+1)q
*)

n(1�q)
(L � n, n) · · ·

1·q
*)

L(1�q)
(0, L) (19)

Adopting Equation 15 and following the same reasoning above, we can estab-

lish the energy di↵erences:

Ê
0

= 0

�Ê
1

= �T ln

✓
Lq

1(1 � q)

◆

�Ê
2

= �T ln

✓
(L � 1)q

2(1 � q)

◆

�Ên = �T ln

✓
(L � n + 1)q

n(1 � q)

◆
(20)

108



Ên = �T ln

✓
L!

(L � n)!n!
· qn

(1 � q)n

◆

= �T ln

✓
L

n

◆
+ T ln

✓
(1 � q)n

qn

◆

= En + T ln

✓
(1 � q)n

qn

◆
(21)

5.2.2 Sequence Level Selection (SLS) Model

We now further propose a model assuming that there is additional selection pres-

sures on the individual sequence beyond the global bias q, which is the ’Sequence

Level Selection Model’ (SLS). Compared to the ’Beanbag Model’ where the transi-

tion rates are proportional to corresponding codon quantities, the transition rates

in SLS no longer have the linear relationship with codon quantities.

To be specific, for the 2 synonymous codon family, if the pressure on an indi-

vidual sequence acts on synonymous codons with a uniform format, the rate with

which codon type 2 mutates to codon type 1 is proportional to a power of the

quantity of codon type 2, and vice versa. This random walk is as follows:

(L, 0)
L�

*)
1

�

(L � 1, 1)
(L�1)

�

*)
2

�

· · ·
(L�n+1)

�

*)
n�

(L � n, n) · · ·
1

�

*)
L�

(0, L) (22)

The energies then become:

Ẽn =
nX

i=1

�Ẽi = �T ln

 
nY

i=1

(L � i + 1)�

i�

!
=

= �T� ln

✓
L!

(L � n)!n!

◆
= �En (23)

which shows that if the transition rates are defined as the same exponent to

the corresponding quantities, the energy format of such a model has a linear

correlation with an Unbiased Beanbag Model.

Finally, we consider the most general model with di↵erent exponents assigned
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Table 19: Summary of Random Walkers (2 synonymous codon family) and Cor-
responding Energy

System Type States Energy (Ei) Parameters
Unbiased Beanbag Model En = �T ln

�
L
n

�
none

Biased Beanbag Model Ên = En + T ln
⇣

(1�q)n

qn

⌘
q

Sequence Level Selection Full Model (SLS) Ēn = ⇠En + (� � ⇠) ln(n!) �, ⇠

to di↵erent synonymous codons to arrive at the full model ’Sequence Level Selec-

tion Model’ (SLS). The random walk of SLS is as follows:

(L, 0)
L⇠

*)
1

�

(L � 1, 1)
(L�1)

⇠

*)
2

�

· · ·
(L�n+1)

⇠

*)
n�

(L � n, n) · · ·
1

⇠

*)
L�

(0, L) (24)

This changes the energy in the following way:

Ēn =
nX

i=1

�Ēi = �T ln

 
nY

i=1

(L � i + 1)⇠

i�

!

= �T ⇠ ln

✓
L

n

◆
+ T (� � ⇠) ln(n!)

= ⇠En + T (� � ⇠) ln(n!) (25)

5.2.3 Biological Meaning of Beanbag Model and Sequence

Level Selection Model

We summarise the ’Beanbag Model’ and ’Sequence Level Selection Model’ in Table

19. Before proceeding, we discuss special choices for the ad-hoc parameters ⇠, �

so as to clarify their biological meaning:

5.2.3.1 The Special Case of SLS Model

For ⇠ = � = 1 the full model Equation 25 reduces to the Unbiased Beanbag Model

exactly, representing no selection pressure and no codon usage bias at all.

Any deviation of the data from ⇠ = 1 and � = 1 conveys there exists biased

codon usage due to some driving forces.
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5.2.3.2 Multinomial Distribution of Random Walk Sites in the Bean-

bag Model

We know that Boltzmann distribution connects the probability and the energy of

system states by positing that a system will be in a certain state as a function of

that state’s energy and the temperature of the system, shown as Equation 26.

P (Ei) =
exp

⇣
� E

i

k
B

T

⌘

P
i exp

⇣
� E

i

k
B

T

⌘ (26)

According to Equation 26 we obtain that the relationship between the occupa-

tion probability of a random walk site ⇡(n
1

, n
2

, . . .) and the energy at such state

E(n
1

, n
2

, . . .) in equilibrium as Equation 27:

⇡j =
1

Z
exp

✓
�Ej(n1

, n
2

, . . .)

kBT

◆

Z =
S

NX

j=1

exp

✓
�Ej(n1

, n
2

, . . .)

kBT

◆ (27)

where SN is the number of possible macro states the system could possess, ⇡j

corresponds to the probability to observe the system in the macro state Nj.

From here on we set the Boltzmann constant kB = 1 for convenience.

If the distribution of the codon occurrence configuration follows the multi-

nomial distribution, the probability of observing a particular codon occurrence

configuration N ([n
1

, . . . , nm]) of length L is calculated as Equation (Equation

28).

PN =
L!

n
1

! · · · nm!
P n

1

1

· · · P n
m

m (28)

where ni is the occurrence of the i-th codon in configuration N , Pi is the underlying

probability to choose i-th codon for a codon position.

In the special case for the subsequences composed of 2 synonymous codon

families, the probability of observing the codon occurrence configuration [n, L-n]
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follows the binomial distribution as Equation 29

Pn =

✓
L

n

◆
qn(1 � q)L�n, q 6= 1/2

Pn =
1

2L

✓
L

n

◆
, q = 1/2

(29)

We have derived that in the Unbiased Beanbag Model En = �T ln
�

L
n

�
. Ac-

cording to Boltzmann distribution (Equation 26) the probability to observe such

energy En complies with Equation 30.

P (En) =
exp

�
�E

n

T

�
P

i exp
�
�E

i

T

� =

�
L
n

�

Z

Z =
X

i

exp

✓
�Ei

T

◆ (30)

P (En) in Equation 30 shows the probability of observing the energy corre-

sponding to the system state defined by n derived from the random walk in the

Unbiased Beanbag Model, and Pn in Equation 29 shows the probability of ob-

serving the system state defined by n directly calculated from the binomial dis-

tribution (q=1/2). Comparing the results from the two equations, we found the

same state-related-term
�

L
n

�
, which reveals the binomial distribution property of

the Unbiased Beanbag Model. This is consistent with the notion that without

any selection pressure, the codon occurrence configuration follows a binomial dis-

tribution q=1/2; meanwhile if seen from the perspective of the random walk the

codon transition rate constants are equal to each synonymous codon type.

Similarly we have derived that in the Biased Beanbag Model the system energy

Ên = �T ln
h�

L
n

�
( q

1�q )
n
i

corresponds to the system state defined by n. According

to Boltzmann distribution (Equation 26) the probability of observing such energy

Ên is calculated as Equation 31

P (Ên) =
exp

⇣
� ˆE

n

T

⌘

P
i exp

⇣
� ˆE

i

T

⌘ =

�
L
n

�
( q

1�q )
n

Z

Z =
X

i

exp

 
�Êi

T

! (31)
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P (Ên) derived from Biased Beanbag Model has the state-related-term
�

L
n

�
( q

1�q )
n

which is the same as Pn in Equation 29 (q 6= 1/2). This reveals that the ran-

dom walk sites in the Biased Beanbag Model comply with binomial distribution

(q 6= 1/2).

In the Beanbag Model, the codon selection procedure leads to a multinomial

distribution of NL,AA of subsequences. Whereas in the SLS model, selection of

a certain codon type no longer has a consistent underlying probability among

di↵erent genes, and NL,AA of subsequences do not follow multinomial distribution.

5.3 Methods of Investigation in CUB Origins

Adopting Beanbag Model and SLS model

Next we describe how we fit the models to the prepared data to explore CUB

origins. First we introduce how to prepare the data for fitting, then we describe

fitting itself.

Datasets for fitting use the same resources as CUB measures, which include

the same genome FASTA files, datasets of codon occurrence configurations, global

codon usage tables (reference to section 3.2).

5.3.1 Datasets Generated to Fit the Models

For a subsequence of a particular length LAA, accessible codon occurrence con-

figurations constitute a space N . Assuming Nj is the j-th element in N , when

the frequency of Nj is derived based on the observations in real genome, we call

this ’empirical frequency’. If Nj follows a multinomial distribution, the empirical

frequency of Nj should match the multinomial distribution probability PAA,g
N of

observing such Nj.

For each genome, we produced the dataset containing multinomial distribution

probability and empirical frequency of observing the corresponding codon occur-

rence configuration for each subsequence. Empirical frequencies are displayed in

groups of amino acids, and within each amino acid group they rank in the order

of increasing subsequence lengths.

Take the species Saccharomyces cerevisiae as an example, the multinomial
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Table 20: Format of Datasets for Multinomial Distribution Probability and Em-
pirical Frequency

AA LAA,g PAA,g
N Empirical Frequency GeneId Codon1

E 1 5.766008e-01 28 275 1
E 1 5.766008e-01 28 298 1
E 1 4.233992e-01 25 323 0
... ... ... ... ... ...
E 2 4.882646e-01 37 6665 1
E 2 4.882646e-01 37 6731 1
E 3 7.590147e-02 15 85 0
E 3 4.223007e-01 33 130 2
E 3 7.590147e-02 15 364 0
... ... ... ... ... ...
E 290 2.098576e-02 1 2886 178
E 395 4.059443e-02 1 3972 228
H 1 6.099647e-01 152 29 0
H 1 6.099647e-01 152 54 0
... ... ... ... ... ...

distribution probabilities and empirical frequencies of observing the codon occur-

rence configurations in the real genome are displayed with the format in Table

20:

This table contains information about all the subsequences (with di↵erent

lengths) encoding 18 di↵erent amino acids within each gene throughout the whole

genome. Symbols in the header sequentially represent ’amino acid type’, ’sub-

sequence length’, ’multinomial distribution probability to observe the codon oc-

currence configuration for such subsequence’, ’empirical occurrence of such codon

occurrence configuration within the genome’, ’gene index within the genome’, ’the

first synonymous codon quantity according to the codon occurrence configuration’.

For example the line ’E, 3, 7.590147e � 02, 15, 85, 0’ means:

(1) The 85th gene in the genome has 3 codons to code amino acid GLU(E)

(namely the length of the subsequence to code E in this gene is 3);

(2) The first codon ’GAG’ has 0 copy thus the the second codon ’GAA’ has 3

copies, correspondingly the codon occurrence configuration for this subsequence

is [0,3]. In the procedures to produce datasets, synonymous codon types have

consistent display order in their own synonymous codon families;
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(3) We searched the underlying global codon usage pattern of ’GAG’ and

’GAA’ in Saccharomyces cerevisiae from the codon usage table for Fungi king-

dom, and found the synonymous codon usage ratio between ’GAG’ and ’GAA’ is

0.2996:0.7004, which serve as P
1

= 0.2996 and P
2

= 0.7004 in Equation 32;

(4) Based on the underlying codon usage probability [0.2996,0.7004] and the

codon occurrence configuration [0,3], the multinomial distribution probability for

such configuration [0,3] is 7.590147e-02 calculated according to Equation 32;

(5) We searched for subsequences coding GLU(E) which has the same codon

occurrence configuration [0,3] throughout the genome of Saccharomyces cerevisiae,

and found 85 cases of [0,3].

Next we introduce how we obtain multinomial distribution probability for each

observed codon occurrence configuration.

Di↵erent from our CUB measurement which assumes that the underlying syn-

onymous codon usage probabilities are uniform, datasets adopted to fit our model

were generated under the assumption that the underlying synonymous codon us-

age probabilities are consistent with the global codon usage table.

When accepting global codon usage table PAA = [P
1

, P
2

, ...Pi, ..., Pm] as the

underlying probabilities to select synonymous codons to possess a codon position,

each codon occurrence configuration N = [n
1

, n
2

, ...nAA,g
i , ...nm] has a correspond-

ing multinomial distribution probability PAA,g
N , calculated as Equation 32.

PAA,g
N =

LAA,g!

n
1

!n
2

!...nm!
P n

1

1

P n
2

2

...P n
m

m

mX

i=1

ni = LAA,g

mX

i=1

Pi = 1

m = |CAA|

(32)

If the underlying Pi 6= Pj for any i 6= j, PAA,g
N and N = [n

1

, . . . , n|CAA|] have

one-to-one correspondence, the distribution of N and the distribution of PAA,g
N

are functionally equivalent to describe the CUB distribution.
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Table 21: Dataset Contain Multinomial Distribution Probability and Empirical
Frequency

Dataset Genome Type PAA

Tb Real Genome Biased Synonymous Codon Usage
Tab Substituted Control Genome Biased Synonymous Codon Usage

5.3.2 Two Types of Datasets

Datasets containing multinomial distribution probability and empirical frequency

are generated based on real and control genomes under assumptions of di↵erent

underlying global codon usage preferences PAA. Displayed as Table 21, there are

two kinds of datasets for fitting which are Tb, and Tab (’T’ represents ’table’, ’a’

represents ’artificial’, ’b’ represents ’bias’ ):

(1) Tb: PAA,g
N are calculated based on the real genome, and the biased under-

lying PAA is consistent with global codon usage table.

(1) Tab: PAA,g
N are calculated based on the artificial genome, and the biased

underlying PAA is consistent with global codon usage table. The artificial genome

is obtained by replacing codon with its synonymous codons with biased probability

according to codon usage table (detailed procedure refers to section 3.2.5).

PAA,g
N and PAA have the meanings explained by Equation 32. By the ap-

proaches of construction, the artificial genomes have the property that codon

occurrence configuration of the subsequences complies with multinomial distribu-

tion.

All the ’Tb’ and ’Tab’ have the same structure of data, which means regression

approaches are the same for these two types of genomes.

5.3.3 Empirical Energy

For each set of subsequences corresponding to a particular length and amino acid,

we next define an empirical energy E as Equation 33

En
1

,...,n|CAA|
:= T ln

✓nn
1

,...,n|CAA|

SN

◆
, (33)

where nn
1

,...,k|CAA|
is the occurrence of configuration N ([n

1

, . . . , n|CAA|]) in the

genome, SN is the number of subsequences encoding amino acid AA with length

L in the genome where L =
P|CAA|

i=1

ni .
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Our global codon usage table contains synonymous codon usage proportions

for each investigated amino acid in all the investigated species. After automatic

searching through all the elements of the global codon usage table, we did not find

any case of Pi = Pj (i 6= j), therefore PAA,g
N distribution is a monotone function

(Alam (1970)) and is equivalent to present the distribution of macro states N in

the investigated genomes. This means that we can obtain the empirical energy

according to Equation 34.

En
1

,...,n|CAA|
:= T ln

✓nP AA,g

N

SN

◆
(34)

where nP AA,g

N

is the count of a certain multinomial distribution probability value

of PAA,g
N within the genome. PAA,g

N is calculated according to Equation 32 based

on codon occurrence configuration N ([n
1

, . . . , n|CAA|]) for amino acid AA.

The empirical energy calculation depends on obtaining the occurrence of each

particular macro state across the whole genome, however counting the macro

states becomes computational onerous as the sequence length and synonymous

codon choices increase. To overcome such di�culty, we found that when the

underlying probability vector has no equal entries, the multinomial distribution

probability is a monotone function (Alam (1970)) mapping from macro states to

their corresponding probabilities, therefore counting the same multinomial distri-

bution probability is equivalently counting the same macro state.

If there is no sequence level selection, the distribution of codon occurrence

configurations within the observed genome should comply with a multinomial

distribution, and hence EL
n

1

,n
2

,...,n|CAA|
and ÊL

n
1

,n
2

,...,n|CAA|
should have a linear re-

lationship (Ê corresponds to the Biased Beanbag Model with the attribute that

codon occurrence configuration follows multinomial distribution).

5.3.4 Variable Pairs to be Fitted

Equation 32 and 34 demonstrate that each subsequence corresponds to a pair of

variables [n
1

, Ek
1

,...,k|CAA|
], where n

1

is the copy number of the first codon type in

its configuration N = [n
1

, n
2

, ..., n|CAA|]. Here we focus on the family of amino

acid AA that are encoded by 2 synonymous codon. Thus all the subsequences

which encode the same amino acid and have the same length in all the genes of a

genome form the paired variable space.
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Models will be fitted to the paired domains of the two variables n
1

and

En
1

,...,n|CAA|
. The independent variable n

1

is the first synonymous codon occur-

rence of a codon occurrence configuration N , and the response variable E is the

empirical energy corresponding to such N ([n
1

, . . . , n|CAA|]).

5.3.5 Nonlinear Regression Functions to Fit the Paired

Variable Domains

We have proposed two models to simulate codon usage distribution by way of

depicting the relationship between the state energy and the state of codon oc-

currence configuration. The Biased Beanbag Model assumes there is only global

codon usage selection happening at the codon type level, which is represented

by parameter ’q’ as the preference for the first codon type. The full SLS Model

assumes that besides a global selection preference for a certain codon type, there

is also sequence level selection pressure influencing codon usage pattern, which

are represented by parameters ’⇠’, and ’�’, where ’⇠ = 1, � = 1’ describes a special

case that there is no selection pressure at all.

When fitting the Biased Beanbag Model to variable domains of [n
1

, Ek
1

,...,k|CAA|
]

derived from Tb’ and ’Tab’ datasets, the nonlinear regression function is Ên =

�T ln
�

L
n

�
+ T ln

⇣
(1�q)n

qn

⌘
. To perform the regression, n

1

is the independent vari-

able, E(n
1

) is the response variable, Ê
(

n
1

) is the predicted variable, and ’q’ is the

parameter required for estimation.

When fitting the SLS Full Model to variable domains [n
1

, Ek
1

,...,k|CAA|
] de-

rived from ’Tb’ and ’Tab’ datasets, the nonlinear regression function is Ēn =

�T ⇠ ln
�

L
n

�
+ T (� � ⇠) ln(n!). To perform the regression, n

1

is the independent

variable, E
(

n
1

) is the response variable, Ē
(

n
1

) is the predicted variable, and ’⇠, �’

are the parameters required for estimation.

5.3.6 Nonlinear Regression Procedure

Mean residual (MR) is taken as the goodness assessment for a nonlinear fitting,

which is calculated as MR=
PS

N

i=1

⇣
Ė(ni

1

) � E(ni
1

)
⌘
, where n

1

is the independent

variable (first codon count in configuration N), Ė(n
1

) is the predicted variable

(predicted energy), E(n
1

) is the response variable (empirical energy), SN is the
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number of fitted variable pairs. We perform nonlinear regression by Maple’s non-

linear fit as follows:

(1)We fitted the Biased Beanbag Model function to the empirical data [n
1

,

En
1

,...,n|CAA|
] and estimate the parameters q; also fitted the SLS full model to the

empirical data [n
1

, En
1

,...,n|CAA|
] and estimate parameters [⇠, �].

(2)For each species, we did this for all available genes and each amino acid

separately for groups of subsequences of length 5-15.

(3) The nonlinear fit requires an initial guess for the parameters to be esti-

mated. For Biased Beanbag Model, we use q
0

matching global codon usage table

as the starting point; for SLS full model, we use (⇠
0

, �
0

) as the starting point,

where ⇠
0

= 1 and �
0

= 1.

(4)After fitting we evaluated the mean residual as a quality measure of the fit.

If this value was above the threshold of 0.000999 then we repeated the fit with a

random initial guess for the initial parameters up to 100 times until the residual

value is lower than the threshold.

(5)We then record the fitting parameters and MR thus obtained.

5.4 Results of Regression Adopting Beanbag Model

and SLS Model

We selected subsequences with lengths 5  LAA,g  15, for the reason that there

are very few di↵erent codon occurrence configurations to consider for subsequences

of length < 5, and statistical errors become overly large due to distinguished

available subsequence sample reduces quickly with increasing subsequence length

> 15.

Considering the complexity of random walk model for more than 2 synonymous

codon families, we first focus on nine amino acids encoded by 2 synonymous

codons.

5.4.1 Biased Beanbag Model can be fitted to Tb Datasets

Variable paris [n
1

, En
1

,...,k|CAA|
] in Tb dataset can be fitted to the Biased Beanbag

Model shown in Figure 26(a). Doing this for all subsequences results in a distri-

bution of mean residual between exp(�4) and exp(�9) peaking at about exp(�7).
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The only fitting parameter in the model is the global codon usage bias q.

5.4.2 SLS Model Fits Tb Datasets Better

As a comparison we also fitted the full model to the variable pairs [n
1

, En
1

,...,k|CAA|
]

in the Tb datasets, thus obtaining mean residual and estimated values for the

parameters ⇠ and �.

For all our datasets, the typical values of the parameters � and ⇠ are small

and positive with 96.39% of the fits resulting in 0 < �, ⇠ < 2. The quality of the

fits can be quantified by comparing the MR obtained from fitting the SLS full

model with those obtained from fitting the Biased Beanbag Model. See Figure

26 for a comparison of the MR distributions. This indicates that the former is a

better description of the data in the sense that the distribution of MR is shifted

to the left towards smaller values. The median for the residuals of the full model

is 0.0002850, about 3 times smaller than the corresponding value for the Biased

Beanbag Model fits, which is 0.000845.

5.4.3 Meaning of the Better Fit of SLS Model to Tb Datasets

The better fit of the SLS full model to Tb dataset could be merely a reflection

of the fact that it has more parameters than the Biased Beanbag Model. We

therefore prepared a control set of MR distributions.

The random substituted genome performs as the control group representing the

genome only with the global preference for certain codon types, without sequence

level selection pressure. Because of the way this control genome was constructed,

it should comply with the Biased Beanbag Model exactly.

Fitting both the SLS full model and the Biased Beanbag Model to the control

datasets Tab, results in MR that are visually indistinguishable from one another

as shown in Figure 26a. This conveys that the SLS full model can be equivalent

to Biased Beanbag Model.

The quality of the fit of the Biased Beanbag Model to the the control-set can be

viewed as a benchmark for the best MR that can be obtained given the statistical

error inherent in the dataset. An inspection of the histogram in Figure 26a reveals

that the distribution of MR obtained from fitting the full model to the real data

only minimally shifts to the right of this optimal benchmark, which demonstrates
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a good fit. MR obtained from fitting the Biased Beanbag Model to the real

data obviously shifts to the right of the optimal benchmark. This leads to the

conclusion that the SLS full model captures almost all of the underlying variations

of the real data. The Biased Beanbag Model is not su�cient to explain how codons

are distributed across the genomes in fungi kingdom. Instead, it is necessary to

postulate sequence-level selection in order to account for the distribution of CUB

across genomes.

5.4.4 Defining Distance as a Measure of Selection Pressure

A di↵erent perspective of looking at parameters ⇠, � space (see Figure 27b) reveals

that the fits of control data concentrate in a smaller part of parameter space than

the fits to the real data.

Based on the full model we now propose Euclidean distance between the ob-

served case and the no-selection case in ⇠, � space. This no-selection case corre-

sponds to ⇠ = � = 1 exactly and any deviation from that indicates a selection

pressure.

D :=
p

(1 � ⇠)2 + (1 � �)2 (Selection pressure)

To apply D to characterise selection pressure at the sequences level, both in

Tb datasets and Tab datasets for fungi kingdom, distributions of D are shown in

Figure 29. Real genomes universally have larger D values compared to control

groups, which again proves that global selection pressure is not su�cient enough

to explain CUB patterns in real genomes.

To apply D to spot selection pressure at the sequence level, we selected all

subsequences where the global codon usage bias towards codon 1 is between 0.495

and 0.5 in the fungi kingdom. The distribution of D is shown in Figure 30. The

Biased Beanbag Model would predict that these subsequences have a distance of

0. It is apparent that there are many examples of subsequences that have no

global bias, but at the same time subject to a SLS pressure, as evidenced by a

distance that is di↵erent from 0.
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Figure 26: (a) Histogram for the MR obtained from fitting the Biased Beanbag
Model and the SLS full model to both the Tb real data and Tab control data. The
x-axis is shown on a logarithmic scale. The distribution of the MR of the Biased
Beanbag Model fitted to real data is clearly shifted to the right compared to the
fit of the full model, suggesting that the latter is a better fit on the whole. On the
other hand, the fitting results of control data display that the MR distribution
of the full model overlap with the Biased Beanbag Model. (b) Comparing the
MR from the full model to those of the Biased Beanbag Model, the plot shows
the density of points for the Tab datasets. The area above the diagonal indicates
subsequences where the full model is a better fit than the Biased Beanbag Model.
Points on the diagonal indicate that both models fit the subsequence equally well.
(c) Same comparison, but for Tb real datasets. The contour lines indicate the
density of the control data in (b) for comparison.
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Fig. 3: (a) The density of fitted parameters � and � for each of the 2-codon amino acids for all 462 fungal
species in our dataset. We are limiting ourselves to fits with mean-residuals < 0.0009999. The
fitted values largely concentrate into the interval of [0, 1.5]. (b) Comparing the fitted parameters
obtained from the full model (red) to the fitted parameters obtained from the control (blue).
The plot shows actual points rather than density. (c) Distribution of inverse temperature in the
fungal dataset showing all sub-length and all species. The control data peaks around an inverse
temperature of 1, whereas the real data is distributed around a lower inverse temperature. (d)
Distribution of inverse temperature for two di�erent species. This shows the temperature for two
species including all amino acids and is a subset of (c).3e The distribution of distances D. The
control data clearly has a smaller distance on the whole than the non-selection model, indicating
that considering only the global codon usage bias underestimates the selection pressure. (f) Same
data, but for two species only.

(a)

2 Results 7

−0.5

0.0

0.5

1.0

1.5

2.0

−0.5 0.0 0.5 1.0 1.5 2.0

20
40
60
80

count

�

�

(a)

−0.5

0.0

0.5

1.0

1.5

2.0

−0.5 0.0 0.5 1.0 1.5 2.0

type

Fungi
Control

�

�

(b)

(c) (d)

(e) (f)

Fig. 3: (a) The density of fitted parameters � and � for each of the 2-codon amino acids for all 462 fungal
species in our dataset. We are limiting ourselves to fits with mean-residuals < 0.0009999. The
fitted values largely concentrate into the interval of [0, 1.5]. (b) Comparing the fitted parameters
obtained from the full model (red) to the fitted parameters obtained from the control (blue).
The plot shows actual points rather than density. (c) Distribution of inverse temperature in the
fungal dataset showing all sub-length and all species. The control data peaks around an inverse
temperature of 1, whereas the real data is distributed around a lower inverse temperature. (d)
Distribution of inverse temperature for two di�erent species. This shows the temperature for two
species including all amino acids and is a subset of (c).3e The distribution of distances D. The
control data clearly has a smaller distance on the whole than the non-selection model, indicating
that considering only the global codon usage bias underestimates the selection pressure. (f) Same
data, but for two species only.
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Figure 27: (a) The density of fitted parameters ⇠ and � for each of 2 synonymous
codon family for all the 462 fungal species in our dataset. We are limiting ourselves
to fits with MR < 0.0009999. The estimated parameters largely concentrate in the
interval of [0, 1.5]. (b) Comparison between the estimated parameters obtained
from the Tb real genome datasets (red) and estimated parameters obtained from
Tab the control genome datasets (blue). The plot shows actual points rather than
density.
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Fig. 8: (a)-(c) The fitted values of parameters � and � for each of the 2-codon amino acids for bacteria,
fungi and protists. The graphs show heatplots that summarise the density of points in the area.
Red indicates a high density of points. We are limiting ourselves to those amino acid subsequences
that have a sub-length of 15. (d) The distribution of inverse temperatures of protists and fungi.
There is considerable overlap between the two groups. Density estimates for each group are
overlayed on the graph to aid the eye. It appears that fungi are somewhat cooler than protists.
Bacteria would lie in-between protists and fungi, but are omitted to aid graph readability.
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Fig. 8: (a)-(c) The fitted values of parameters � and � for each of the 2-codon amino acids for bacteria,
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Red indicates a high density of points. We are limiting ourselves to those amino acid subsequences
that have a sub-length of 15. (d) The distribution of inverse temperatures of protists and fungi.
There is considerable overlap between the two groups. Density estimates for each group are
overlayed on the graph to aid the eye. It appears that fungi are somewhat cooler than protists.
Bacteria would lie in-between protists and fungi, but are omitted to aid graph readability.

(b)

Figure 28: The fitted values of parameters ⇠ and � for each of the 2-codon amino
acids for bacteria and protists. The graphs show heatplots that summarise the
density of points in the area. Red indicates a high density of points. We are
limiting ourselves to those amino acid subsequences that have a sub-length of 15.
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Figure 29: The distribution of distances D. D calculated from the control data
(red) clearly has a smaller distance on the whole than from the real data (blue),
indicating that considering only the global codon usage bias underestimates the
selection pressure in real genomes.

5.4.4.1 D reveals amino acid-specific patterns of codon selection pres-

sure

An advantage of using D over other measures of codon usage bias is that it lends

itself to detecting di↵erences in selection pressure in di↵erent subsequence sets.

By way of example, we compared how D di↵ers for di↵erent amino acids in the

fungal kingdom. Initial visual inspection of the dataset revealed that, as a general

pattern, most amino acids in the same organism behave similarly in terms of D,

suggesting that they experience similar selective forces. There are, however, also

exceptions to this pattern. Fig. 31 reveals that atypically stronger or weaker

selection for particular amino acids is an evolutionary feature that is linked to

taxonomic groups. In this analysis, we defined atypical selection as a D value

that is more than 2 standard deviations above or below the average D value for

that organism.

Particularly notable patterns include the Sordariomycetes group where the

amino acid phenylalanine (F) shows atypically strong codon selection (higher than
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Figure 30: Distribution of distances D in genomes that have no global CUB. D
value di↵erent from 0 is the evidence that sequence level selection exists in the
genomes although with no global codon usage bias.

average D values) in most species. Interestingly, the pattern is reversed in the

Agaricomycotina group where selective pressure on phenylalanine codon usage

is weaker than for other codons, and in the Leotiomycetes group the selection

force on phenylalanine codon usage is similar to that of other codons. Some of

the observed patterns are highly interesting. For example glutamic acid (E) and

aspartic acid (D) are physically very similar, negatively charged amino acids that

can frequently be substituted in evolution. Nevertheless in these analyses they

show quite distinct behaviour in terms of codon usage selection. The fact that

these patterns have remained hidden throughout decades of analysis illustrates

the usefulness of D as a measure of selection acting on codon usage bias.
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Figure 31: Amino acid-specific patterns of codon usage bias in fungal genomes.
Average D values were calculated for all subsequences for each amino acid and
each genome. Amino acids are highlighted if their D value was more than 2� above
(green) or below (red) the median D for that species. In other words, red and
green highlights indicate amino acids that are under atypical selection compared
to other amino acids in the same species. Species were ordered according to the
taxonomic hierarchy in NCBI taxonomy, and taxonomic groups represented with
larger numbers of genomes are indicated.
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Chapter 6

Conclusion

We proposed novel methods for CUB analysis and also applied them to in total

1047 organisms among 3 kingdoms of Fungi, Bacteria and Protist, and our results

reveal hidden CUB patterns across species.

6.1 Contributions of the Novel CUB Measure

Our CUB measure does not require any external biological reference dataset but

only the nature of the codon sequences themselves, and hence it is applicable to

any genome regardless of the degree of the required knowledge available. Further-

more it conceptualises codon evolution in a mathematical algorithm and has high

computational e�ciency.

Our CUB measures Sn, MD and MD quantify CUB at di↵erent levels of a

sequence, an amino acid and a genome.

Sn measures CUB for a particular amino acid in a specific sequence. It demon-

strates the deviation of a codon sequence from the observed state to the most

probable state. It is reasonable to assume that without any driving force codon

usage configuration should distribute around the maximum likely state, therefore

Sn has the meaning to represent the force which drives codon sequences deviating

from the total random usage. CUB patterns of Sn derived from orthologs for

functional grouped genes revealed relationship between CUB and gene functions.

Protein abundance and CUB correlation study adopting Sn demonstrated that

with the increasing demand for protein abundance in cell, genes decrease their

lengths but keep their CUB at a high level, and highly expressed genes tend to
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be short but highly biased.

MD measures CUB for a particular amino acid type at the whole genome

level. By way of comparing Sn with theoretical expected value of Sn (Sn) for

each individual length, MD combined Sn values into a genome wide amino acid

specific CUB assessment parameter, which maintains di↵erent CUB information

carried by individual gene and also tackles well with the intrinsic variations of

empirical Sn resulting from di↵erent sequence lengths.

MD is a genome wide CUB measure which combines CUB information for all

the genes and all the amino acids throughout the genome. It takes the form of a

vector containing MD values of all the amino acids. Self Organising Map and Hi-

erarchical Cluster treat the high dimensional CUB assessment parameter MD as

a whole feature for a species, by which way it minimises the CUB information loss

or distortion if by simple linear combination of amino acid specific or sequence

specific CUB measures. Results of Self Organising Map analysis revealed that

CUB patterns at amino acid level relate to chemical properties of amino acids

and also CUB patterns among species reproduce some features of phylogenies.

Similarity quantification derived from comparison between CUB cluster tree and

phylogenetic tree of grouped species revealed that CUB has correlation with phy-

logenetic distances when phylogenetic distance between groups is large but within

groups species are close.

The proposed CUB measure does not require external reference sets, has val-

idated meaning of strength of driving forces at the sequence level, and has rea-

sonable combinations of sequence specific and amino acid specific measures into

a parameter in a genome wise manner. It diminishes the sequence length impact

on CUB measure, maintains di↵erent CUB information carried by individual gene

and individual amino acid type, and makes the correlation analysis between high

dimensional features possible. None of the published CUB measures possess all

these advantages at the same time.
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6.2 Contributions of Sequence Selection Model

of CUB

Among the published results about CUB origins, many di↵erent drivers of codon

selection have been described ranging from intrinsic genomic features to elements

involved in the key stages of protein synthesis, but perhaps many remain to be

discovered. However at present there is no consensus on the evolutionary drivers

of codon usage bias.

Listing all the driving forces of CUB and disentangling how they act and in-

teract is probably an intractable task, but collectively these forces seem to behave

in a simple way, leading to a macroscopic description of codon usage bias. Our

sequence selection model o↵ered a new perspective on this issue based on a par-

simonious expression for codon distributions across the whole genome based on

concepts from statistical physics. Our work refrained from committing to a par-

ticular selection mechanism, but focused on the aggregate e↵ect of all selection

forces which are summarised by a parsimonious mathematical model with only 2

parameters. The two parameters can be directly interpreted in terms of selection

forces namely as the exponents modifying the rate of synonymous mutations from

one codon to another one.

Based on the 2 parameters, we derived a distance from the no-selection case,

which takes into account not only the global codon usage preference but also the

CUB distribution across the genome. In the special case of no global codon usage

bias, however, we showed that in fact even those subsequences do show signatures

of selection .

We apply the model to genomic data across 3 kingdoms and find that it cap-

tures almost all aspects of the empirical data, and that it allows new insights

about the evolutionary pressures that shaped codon usage. An immediate conclu-

sion we draw from our results is that there must be significant selection pressures

on codon usage bias at the level of individual gene sequences. This insight will

provide an immediate impetus to new research on what these sequence-level pres-

sures could be. There are no statistical di↵erences of CUB distribution among

fungi, bacteria and protist kingdoms, but our model makes it applicable to inves-

tigate and compare CUB distribution in higher life organisms such as plants and

animals.
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We limited our analysis currently to the 2 synonymous codon families. In prin-

ciple, there is no theoretical di�culty to extend the model to other synonymous

codon families. The binomial distribution needs to be replaced with a multinomial

distribution and the full model needs to be adapted to include an extra parameter

for each additional synonymous codon type. In practice, the analysis becomes

problematic because based on available codon occurrence configurations from the

genome data, observed sample size is not large enough to retrieve a reasonable

empirical energy. With more codons the number of possible subsequence compo-

sitions grow quickly, but the number of available observed subsequences does not.

As a consequence, there are fewer examples per configuration which increases the

statistical error.

6.3 Potential Applications

We have performed correlation analysis between CUB and protein abundances in

cells based on Sn. This demonstrates an example for correlation analysis based

on Sn between sequence specific CUB and other factors of interest. Such factors

can be tRNA abundances, ribosome binding rates, tRNA aminoacylation rates

etc..

In addition we used Self Organising Map and Hierarchical Clustering based

on MD and MD to perform correlation analysis between high dimensional CUB

features and phylogenetic distances. This illustrated a feasible method to make

correlation study between any high dimensional CUB features and any interested

factors, and the interested factors can also be high dimensional vectors.

By constructing feature space based on our multilevel CUB measures, and

the other feature space based on any combination of interested factors, the clus-

ter similarity quantification is competent to explore correlations between CUB

and any high dimensional features. This means, if the constructed feature space

has specific study purpose, the results of tree comparison could convey specific

correlation information.

Potential applications of our proposed measure could be studies on fungal

pathogens infecting human at the species level, and gene related diseases resulting

from synonymous codon usage mutation at the sequence level. We can adopt

Hierarchical Clustering to probe into possible causes of diseases related to codon
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usage bias. Accumulation of abundant and pertinent information is necessary

for the construction of features spaces, for example which species or genes to be

investigated, what common or unique properties they have, such as temperature,

humidity, nutrients of the species habitats; duplication rate, expression e�ciency

of genes causing disease and etc.. Although loads of information are required to be

prepared, making contributions to health of human beings must be a meaningful

and promising application of our proposed CUB measure.
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Appendix A

Major Programs for This Work

All the datasets are available online1. Detailed structure of the data files is ex-

plained in ReadMe.txt.

Programs required to achieve the above databases are summarised in Table

22.

1https://www.cs.kent.ac.uk/projects/statthermcub/
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Table 22: Main programs list and relevant function explanation

program function
kingdomDownload create downloading list from Ensemble database

chopSeq python script to preprocess genome files

getCodonSequence
Read genes from genome files
transformed them into codon

sequences
getGeneName Read gene names from genome files
geneSynoRatio codon occurrence configurations in each gene

synoTable2 global codon usage table for all the species

SetSynonymouCodonTable
set underlying codon usage probability

equal or biased

*AminoAcidH
18 programs for 18 amino acids individually

obtain multinomial distribution
probability

EforMore
find maximum multinomial distribution

probability for a certain length

ForT*
4 types of datasets for further analysis

T,Ta,Tb,Tab refers to Table 21
getHomoInfor retrieve homology information online
clusterComp similarity quantification between cluster trees
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Appendix B

Supplement Figures to the Main

Contents

B.1 Relationships among Protein Abundance, Sn

and subsequence Length in S.cerevisiae

B.2 Cooperation between Sn and Gene Length

for Protein Production

B.3 Sn Distribution for Di↵erent Amino Acids

in S.cerevisiae
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Figure 33: Sn against subsequence length in two groups, supplement to Figure 9.
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Figure 34: Sn distribution overview: supplements to Figure12
.
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Figure 35: Sn distribution against length: supplement to Figure14
.
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Appendix C

Byproducts

C.1 Methods to Combine Sn into a Genome-

wide Measure

We made a lot of e↵orts to find a reasonable and feasible way to combine Sn into

a genome wide measure, among which KLvalue is a good choice but finally we did

not adopt it when taking into consider of the computing time (10 times slowly

than MD measure). Here we briefly display our results using this approach, which

is time cost but with high accuracy.

KL divergence (short for ’KL’ value) is a measure of similarity between two

probability distributions, shown as Equation 35.

D
KL

(PkQ) =
X

i

P (i) log
P (i)

Q(i)
(35)

CUB of the whole genome KLvalue: in per genome P is the distribution of

observed Sn values of genes, while Q is the theoretical distribution which is ob-

tained as follows: Supposing in the interested genome, there are N sequences, the

i-th sequence is length Li (i 2 [ 1, N] ). For the certain length Li, all the possible

configurations constitute reference Sn distribution annotated as ’DistributionOi’.

Thus for all the N sequences, we obtain N distributions of ’DistributionsOi’. Nor-

malise all the N distributions to the same scale by standardise bin size and adding

’0’ of Sn values to short lengths (Sn value should be x axis in plot), and then
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Figure 36: KLvalue Method explanation: example of CUB for amino acid Gly in
species S.arboricola; along x axis are Sn values: green curve is the Sn distribution
reference Q, y axis is the probability of such Sn value in the whole genome. Final
KLvalue of Gly in S.arboricola is calculated based on KL divergence between
observed Sn distribution P and reference Sn distribution Q.

add up all the probability density values in each bin among N distributions, fi-

nally normalising the unit summations by dividing N, then the final theoretical

distribution Q is achieved.

An example result based on KL divergence is shows in Figure 35.

C.2 Hierarchical Clustering Based on Sn

C.2.1 Comparisons Between CUB Cluster Trees Between

Species

We perform hierarchical clustering analysis for 18 amino acids within one genome

based on Sn datasets. Analysis of 6 species with certain phylogenetic relationships

are shown in Figure 37. Visually the shape of CUB cluster trees at the amino acid

level seem to resemble according to phylogenetically close related species, further
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we verified such similarity with quantification by Fowlks method.

Figure 37: CUB cluster trees of 18 amino acids in 6 species S.arboricola,
S.eubayanus, S.pombe, S.japonicus, F.fujikori, F.graminearum. X axis represents
amino acids and Y axis shows cluster distances. Meanwhile inspecting Phyloge-
netic relationships refer to Table 15, we visually spot that similar cluster structures
tend to exist between phylogenetically intimate species. This suggests that codon
usage bias of amino acids tends to correlate with species phylogenetic taxonomy.

The results of similarity quantification between species are shown in Table 23,

from which we see CUB clusters of S.arboricola and S.eubayanus have similarity

of high significance at confidence level ↵=0.05, and the same case is as species

pair F.fujikori and F.graminearum. Further more, species pairs S.pombe and

S.japonicus have a smaller similarity value compared to other two pairs. Referring

to phylogenetic tree as Figure 19, it is conveyed that if species are more closely
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Table 23: Clusters Similarity Quantification of Codon Usage Bias between Species

Species Pair Similarity Dissimilarity Confidence Interval

S.arboricola and S.eubayanus 1 0.3073, 0.7123
S.arboricola and F.fujikuroi 0.5501 0.2421,0.6371

F.fujikuroi and F.graminearum 1 0.1846,0.5736
S.arboricola and S.pombe 0.7051 0.3073, 0.7123
S.pombe and S.japonicus 0.8462 0.3073, 0.7123

related in phylogenetic terms, the relationship between their amino-acid specific

codon usage patterns is more similar than if species are less closely related, which

agrees with our SOM analysis as stated in section 3.3.1.

In 1972 King and Hare suggested that amino acid composition could be simi-

larly used as a taxonomic character. Our CUB analysis supports this suggestion

in a way that: the relationship similarity of CUB among amino acids are re-

lated to the phylogenetic relationships between these species and that amino acid

composition could indeed play a role as a taxonomic character in the study of

phylogenetic relationships.

C.2.2 Comparison Between CUB Cluster Trees and Clus-

ter Tree Derived from Amino Acid Properties

Further more, we explore correlation between CUB and amino acid physical prop-

erties. Hierarchical cluster trees of physical properties of amino acids in species

S.arboricola are shown as Figure 38. By way of comparing amino acid physical

property hierarchical cluster tree and codon usage bias hierarchical cluster tree in

interested species, we are able to discover which amino acid physical properties

may impact codon usage evolution.

When we perform cluster similarity quantification between codon usage bias

and amino acid physical properties, an example species Sporisorium Reilianum

shows result as Table 24. In this table, Bk values in rows of Hydrophobicity Index

and Conservation Index are located outside the corresponding dissimilarity confi-

dence intervals, and hence we judge that there exists significant similarity between

clusters of CUB and clusters of such amino acid physical properties. To be specific,

at the statistical significance level ↵=0.05, CUB of species Sporisorium Reilianum
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correlate with amino acid Hydrophobicity Index and Conservation Index.

Table 24: Clusters Similarity between CUB and Amino Acids Physical Properties
in species Sporisorium Reilianum

Physical Properties Similarity Dissimilarity Confidence Interval (↵=0.05)

Molecular Weight 0.3615 0.1669, 0.4839
NH2 pKA 0.3326 0.1793, 0.4889

COOH pKA 0.2611 0.1866, 0.4642
Side Chain pKA 0.2292 0.1686, 0.5727

pI 0.2751 0.1970, 0.6108
No. Atoms 0.3176 0.1705, 0.3645

Volume 0.3491 0.1600, 0.3641
Hydrophobicity Index 0.4537 0.1652, 0.4110
Conservation Index 0.4608 0.1552, 0.4406

rel C cost 0.2269 0.1652, 0.4110
rel N cost 0.3963 0.1982, 0.5274
rel S cost 0.3873 0.2675, 0.6775
rel glucose 0.4819 0.1382, 0.4857

Synthesis Steps 0.3511 0.1822, 0.4136

We select disease related fungal species to perform the same analysis as Sporiso-

rium Reilianum, aiming to find correlation between CUB and amino acid proper-

ties in those species. We refer to KEGG database to retrieve information about

disease related fungal species. Results are shown in Table 38.

For disease related fungal species, the results of tree comparisons reveal inter-

esting information: normally fungal pathogen infect skin and lung, and the species

infect neither skin nor lung such as nervous system, CUB values are correlated to

amino acid volume (molecular weight) and relative glucose cost, however not corre-

lated to hydrophobicity index which shows correlation in skin and lung infectious

species. For each species, 14 impact factors are investigated which are Molec-

ular weight, NH2-pKA, COOH�pKA, Side Chain pKA, PI, No.of Atoms, Vol-

ume, Hydrophobicity index, Conservation index, rel c cost, rel N cost, rel S cost,

rel glucose, and synthesis steps.

157



T S N F E K C H Y Q D R A P I L V G
amino acid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

di
st

an
ce

influencial factor: Conservation index

I L N D C P T V S E Q K H F Y R A G
amino acid

0

2

4

6

8

10

12

14

16

di
st

an
ce

influencial factor: Molecular Weight

N D Q E H K R Y P T S G F C A I V L
amino acid

0

0.5

1

1.5

2

di
st

an
ce

influencial factor: Hydrophobicity index

I L K R E V Q H F Y C N P D T A S G
amino acid

0

5

10

15

20

25

di
st

an
ce

influencial factor: volume

Figure 38: We obtain hierarchical cluster trees exploring amino acids
physical properties in species S.arboricola, which include Molecular Weight,
NH2 pKA, COOH pKA, side chain pKA , pI, Number of atoms, volume,
Hydrophobicity index, Conservation index, rel C cost, rel N cost, rel S cost,
rel glucose, synthesis steps. And here we display hierarchical cluster trees of
conservation index, molecular weight, hydrophobicity index and volume as an
example.
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Disease&Name& Fungal&Pathogen& Clinical&Symptoms& Influence&Factor&has&Significance(Bk)&

Candidiasis&

candida_albicans_wo_1-

oral%or%vaginal%thrush%

none&

candida_dubliniensis_cd36& Hydrophobicity&index:0.45097;&&
synthesis&steps:0.43618;&

candida_tropicalis_mya_3404% none&
_candida_glabrata% none&
meyerozyma_guilliermondii_atcc_626
0%

Hydrophobicity&index:0.54759;&&
synthesis&steps:0.39722;;&

clavispora_lusitaniae_atcc_42720% none&

_candida_auris% Hydrophobicity&index:0.52178;&&
Conservation&index:0.54856;&

Aspergillosis&
aspergillus_fumigatus% inhalation&pulmonary&

infections&

Hydrophobicity&index:0.46257;&&
Conservation&index:0.50841&

aspergillus_flavus% Hydrophobicity%index:0.46257;%%
Conservation%index:0.54908%

Histoplasmosis- histoplasma_capsulatum_nam1% pneumonitis&in&tropical&
climates& Hydrophobicity%index:0.46257%

Blastomycosis& blastomyces_dermatitidis_er_3% pulmonary&infection& Hydrophobicity%index:0.46257%

Coccidioidomycosis-
coccidioides_immitis_rs% bronchitisor&

pneumonia,warm&arid&
regions&&

Hydrophobicity%index:0.46257%

coccidioides_posadasii_str_silveira% Hydrophobicity%index:0.46257%

Paracoccidioidomycos
is-

paracoccidioides_brasiliensis_pb18% lung&hemoptysis,&
lesions&on&face&

Hydrophobicity%index:0.46257%
paracoccidioides_sp_lutzii_pb01% Hydrophobicity%index:0.46257%

Dermatophytosis-

trichophyton_verrucosum_hki_0517%

ringworm,%itchy%skin%

Hydrophobicity%index:0.46257%
trichophyton_rubrum_cbs_118892% Hydrophobicity%index:0.46805%
trichophyton_tonsurans_cbs_112818% Hydrophobicity%index:0.43889%
trichophyton_interdigitale_mr816% Hydrophobicity%index:0.46257%

Chromomycosis& fonsecaea_pedrosoi_cbs_271_37%

skin elevation, 
develop to lymph 
stasis and elephantia
sis.  

NH2%pKA:0.5258;%%
Hydrophobicity%index:0.46257;%
Conservation%index:0.54908%

Sporotrichosis- Sporothrix_schenckii_atcc_58251%

roses-spread-
disease.-fixed-
and-
lymphocutaneous-

Hydrophobicity%index:0.46257;%%
Conservation%index:0.50841;%
rel%N%cost:0.6177;%

Pneumocystis%pneumonia% pneumocystis_jirovecii_ru7% Pneumocystis-
pneumonia%in%human- none&

Cryptococcosis-

cryptococcus_neoformans%

mainly&infects&central&
nervous&system&and&
cause&meningitis&

volume:0.41603;%
rel%glucose:0.62139%

cryptococcus_gattii_ca1873% volume:0.39291;%
rel%glucose:0.58255;%

cryptococcus_gattii_vgii_mmrl2647%

Molecular&Weight:0.52121;&
no&atoms:0.40762;&
volume:0.41603;&&
rel&glucose:0.58255&

cryptococcus_gattii_vgiv_ind107%

Molecular&Weight:0.52121;&
no&atoms:0.40762;&
volume:0.41603;&&
rel&glucose:0.58255&

Tinea-versicolor- malassezia_pachydermatis% dandruff and seborrh
oeic dermatitis &none&

Encephalitozoon -

encephalitozoon_cuniculi_gb_m1% lifeVthreatening&chronic&
diarrhea&and&systemic&
disease&

%volume:0.39291,%
rel%glucose:0.56313%

encephalitozoon_intestinalis_atcc_50
506%

volume:0.39291;&
rel&N&cost:0.65109;&
rel&glucose:0.56313;&

Zygomycosis-

mucor_circinelloides_f_circinelloides_
1006phl%%

gastrointestinal&tract&or&
the&skin,&&thrombosis&
and&tissue&necrosis&

volume:0.39291;&
Hydrophobicity&index:0.46257;&
Conservation&index:0.50841;&
rel&glucose:0.58255&

conidiobolus_coronatus_nrrl_28638%%% Entomophthoramycosi
s&

Molecular&Weight:0.52121;&
no&atoms:0.40762;&
volume:0.41603;&
rel&glucose:0.58255&

%

Figure 39: Fungal pathogen study
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