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Abstract 23 

Abundance and density are vital metrics for assessing a species’ conservation status and for 24 

developing effective management strategies. Remote-sensing cameras are being used increasingly as 25 

part of citizen science projects to monitor wildlife, but current methodologies to monitor densities 26 

pose challenges when animals are not individually recognisable. We investigate the use of camera 27 

traps and the Random Encounter Model (REM) for estimating the density of West European 28 

hedgehogs (Erinaceus europaeus) within a citizen science framework. We evaluate the use of a 29 

simplified version of the REM in terms of the parameters’ estimation (averaged versus survey-specific) 30 

and asses it’s potential application as part of a large-scale, long-term citizen science project. We 31 

compare averaged REM estimates to those obtained via Spatial Capture-Recapture (SCR) using data 32 

from nocturnal spotlight surveys. There was a high degree of concordance in REM-derived density 33 

estimates from averaged parameters versus those derived from survey-specific parameters. Averaged 34 

REM density estimates were also comparable to those produced by SCR at 8 out of 9 sites; hedgehog 35 

density was 7.5 times higher in urban (32.3 km-2) versus rural (4.3 km2) sites. Power analyses indicated 36 

that the averaged REM approach would be able to detect a 25% change in hedgehog density in both 37 

habitats with >90% power. Furthermore, despite the high start-up costs associated with the REM 38 

method, it would be cost-effective in the long term. The averaged REM approach is a promising 39 

solution to the challenge of large-scale and long-term species monitoring. We suggest including the 40 

REM as part of a citizen science monitoring project, where participants collect data and researchers 41 

verify and implement the required analysis.  42 



Introduction 43 

Information about animal abundance and density, and how these are affected by biotic and/or abiotic 44 

factors, are important when developing management strategies and allocating conservation efforts 45 

(Fryxell, Sinclair and Graeme, 2014). However, the range of methods available for estimating animal 46 

density is substantial (Williams, Nichols and Conroy, 2002), such that it can be a challenge to decide 47 

which method is best for specific species in different contexts. Ideally, the chosen method should be 48 

the one best suited to answering the research question, but factors such as accuracy, precision, cost-49 

effectiveness and suitability across different landscapes, are often key considerations (Gitzen, 50 

Millspaugh and Cooper, 2012; Hayward et al., 2015). Consequently, researchers may produce 51 

estimates that are not directly comparable across space or time. This can, in turn, hamper efforts to 52 

estimate national and international population sizes, which are useful for identifying rates of decline 53 

on large spatial scales, and critical to estimating a species’ overall conservation status (e.g., Schipper 54 

et al., 2008, Croxall et al., 2012; Magera et al., 2013; Mathews et al., 2018). 55 

Finding suitable methods for large-scale, long-term monitoring of abundance is challenging. For 56 

example, distance sampling (e.g., Buckland et al., 2001; Giunchi, Gaggini and Baldaccini, 2007; Durant 57 

et al., 2011) and capture-recapture methods (e.g., Ruell et al., 2009; Garrote et al., 2011; Lampa et al., 58 

2015;) are often expensive, time-consuming, can be restricted to certain habitats or seasons (Hubert 59 

et al., 2011), and may require licenced surveyors if direct capture is necessary (Prange et al., 2014). 60 

Furthermore, surveying human-dominated landscapes, such as residential urban areas, is problematic 61 

due to access restrictions to private land. One solution to large scale monitoring across urban areas is 62 

to involve citizen scientists in scientific research to monitor urban wildlife (Scott et al., 2014, 2018; 63 

Hof and Bright, 2016; Croft, Chauvenet and Smith, 2017). 64 

A method that circumvents many of the challenges associated with estimating abundance is the use 65 

of remote-sensing camera traps (hereafter cameras). Using cameras to estimate abundance and 66 

density from individually-identifiable species has been used successfully across many different species 67 

and habitats (see reviews in Burton et al., 2015; Caravaggi et al., 2017), and can involve citizen 68 

scientists (e.g. Swanson et al., 2015; McShea et al., 2016). However, estimating density/abundance is 69 

more problematic where individual animals are not distinguishable, e.g. based on pelage or other 70 

characteristics. Consequently, Rowcliffe et al. (2008) proposed the Random Encounter Model (REM), 71 

whereby population density is estimated by modelling the rate of contact between animals and 72 

camera traps, without the need for individual recognition. To date, the REM has been used for a 73 

limited range of species and habitats (e.g., Rahman, Gonzalez and Aulagnier, 2017; Rowcliffe et al., 74 

2008; Rovero and Marshall, 2009; Manzo et al., 2012; Zero et al., 2013), and has not been validated 75 



on small mammals or used in urban landscapes. Furthermore, only a few studies have attempted to 76 

validate the accuracy and precision of the method through comparisons either with populations of 77 

known density (e.g., Rowcliffe et al., 2008) or with other well-established methods such as spatial 78 

capture-recapture methods (but see Anile et al., 2014). 79 

Camera traps are being used increasingly as part of citizen science projects to monitor wildlife at 80 

global, national and local scales (e.g., van der Wal et al., 2016; Steenweg et al., 2017; Hsing et al., 81 

2018), allowing data collection to take place in areas that would otherwise be difficult to access 82 

(Parsons et al., 2018). One significant potential obstacle for the inclusion of citizen scientists in REM 83 

studies is the requirement of the camera detection zone and animal parameters to be measured. 84 

These parameters need to be extracted from the footage obtained by the camera traps as they need 85 

to be specific to each survey, and any biased measurements can affect accuracy and precision of the 86 

density estimates markedly (Rowcliffe et al., 2008). Training is required to extract and measure these 87 

parameters from the footage; however, such technical tasks may not be suitable for all citizen 88 

scientists, which could impact data quality and accuracy (Newman, Buesching and Macdonald, 2003). 89 

Furthermore, time-consuming and repetitive activities could increase participant drop-out (Eveleigh 90 

et al., 2014). One way around this problem is conducting pilot studies, whereby researchers estimate 91 

all required parameters for the focal species. By taking measurements from a representative sample 92 

of habitats, the averaged parameters can be used to calculate densities across other surveys, where 93 

only camera deployment would be needed. Such an approach would allow the participation of citizen 94 

scientists and reduce the pitfalls associated with the methodology. 95 

This study aims to assess the effectiveness of the REM for estimating the density of a focal animal 96 

species within a citizen science framework and asses its potential application as part of a large-scale, 97 

long-term citizen science project across different landscapes. The West European hedgehog 98 

(Erinaceus europaeus) was selected as a model species, as hedgehogs are currently of conservation 99 

concern in the United Kingdom (UK) (Joint Nature Conservation Committee, 2010) where populations 100 

have declined markedly since the 1950s (Wembridge, 2011; Roos, Johnston and Noble, 2012) in both 101 

rural and urban environments (Wembridge, 2011; Williams et al., 2018a; b; Yarnell et al., 2014). 102 

However, there is a paucity of information about hedgehog densities in different habitats because of 103 

the lack of a suitable method for estimating density on both small and large spatial scales. Specifically, 104 

we will: (1) compare hedgehog densities using the REM based upon survey-specific versus averaged 105 

parameters; (2) compare density estimates derived from the REM to those generated using Spatial 106 

Capture-Recapture (SCR) methods applied to nocturnal spotlight counts; and (3) assess the suitability 107 

of the REM for large-scale, long-term species monitoring based on costs and power to detect 108 



population changes. These findings are discussed in the context of the REM’s suitability for the long-109 

term, large-scale monitoring of wildlife within a citizen science framework.  110 

Methods 111 

Three rural and five urban sites across England were selected based on where researchers were 112 

currently studying hedgehogs or where hedgehog conservation officers were located (Figure 1; Table 113 

1). One site (Brackenhurst) was surveyed in both 2017 and 2018, but these were considered 114 

temporally independent (e.g. Tinker et al. 2017), creating a total of nine density surveys. Populations 115 

were assumed closed, as study areas were bound by barriers that should limit hedgehog movements 116 

(e.g. major roads; Rondinini and Doncaster, 2002), and surveys were carried out over a short period 117 

of time. All data were collected under licence from Natural England; ethical approval was granted by 118 

Nottingham Trent University’s Animal, Rural and Environmental Science Ethical Review Group. 119 

Land cover of the study areas was mapped using OS Mastermap Topography Layers and high 120 

resolution (25cm) Vertical Aerial Imagery (https://digimap.edina.ac.uk/; EDINA Digimap Ordnance 121 

Survey Service, 2017). Following Benza et al. (2016), urban and rural sites were defined as areas with 122 

>25% and <25% of built land cover, respectively (Table S1). Built land cover was calculated as the area 123 

of buildings, roads and pavements divided by the total area of the study site. Urban sites were 124 

dominated by residential housing; rural sites consisted of mixtures of arable, pasture and amenity 125 

land, woodland and streams. 126 

Camera trapping 127 

Trapping effort required to obtain an adequate sample size and improve the precision of REM density 128 

estimation depends on the density and day range of the focal species (Rowcliffe et al., 2008). 129 

Therefore, based on the expected hedgehog density (4-36 individuals/km2; Dowding, 2007; Hubert et 130 

al., 2011; Parrott, Etherington and Dendy, 2014) and daily movement range (0.68 km; Dowding et al., 131 

2010), 100-1000 camera nights would be needed (Rowcliffe et al., 2008). To achieve this, four sets of 132 

30 camera trap locations (CTLs) that covered the whole study area were randomly generated for each 133 

survey using Geospatial Modelling Environment (GME) (Version 0.7.4.0; Beyer, 2015). To ensure an 134 

even distribution of cameras across each study area, the minimum spacing between cameras was 135 

calculated using the inverse of the square root of the number of camera positions per week (30), 136 

divided by the size of each study area (Bartolommei, Manzo and Cozzolino, 2012; Balestrieri et al., 137 

2016). Thirty cameras (Bushnell 119537 Trophy Cam 8MP Night Vision; Bushnell Outdoor Products, 138 

Overland Park, KS, USA) were deployed within each study site simultaneously and moved to new 139 

locations four times. Cameras were moved to maximise the number of camera placements (Rowcliffe 140 

https://digimap.edina.ac.uk/


et al., 2008) and ensure good coverage of the entire study area. Each camera remained in one location 141 

for at least five consecutive nights (mean = 6.2 ± 0.04 SE) before being moved.  142 

Community engagement took place to obtain permission to place camera traps in urban gardens, 143 

targeting the houses closest to the randomly-generated CTLs. Where the householder did not grant 144 

permission, the next nearest garden to the random point was targeted until permission was obtained. 145 

When random points were located on roads or inaccessible areas, they were moved to the closest 146 

garden. Access to rural sites was obtained by contacting the landowners. 147 

Unbaited cameras were attached to posts, fences, wooden stakes, or trees, approximately 0.2m above 148 

the ground so that passing hedgehogs would be detected. In urban areas, cameras were placed in 149 

back gardens, enclosed front gardens, school grounds, or in discreet locations in recreational parks to 150 

reduce the chances of theft. Cameras were set to work on night mode (dusk till dawn), and to record 151 

30-second video clips with a 1-minute interval between each. The 1-minute delay was chosen to 152 

provide a balance between punctuated sampling and continuous monitoring, minimising the risk of 153 

missing independent detections whilst reducing battery wastage through multiple recordings of the 154 

same individual (Henschel and Ray, 2003; Rowcliffe et al., 2008). The choice of videos over photos was 155 

made to allow researchers to extract  animal speed more accurately by considering the path followed 156 

by the individual while in front of the camera, rather than measuring the distance between the first 157 

and last position recorded using photographs (Rowcliffe et al., 2016). All other functions were left on 158 

the default settings. Some householders indicated that they regularly placed supplementary food in 159 

their gardens; these houses (Brighton, n = 4; Ipswich West, n = 1; Ipswich East, n = 2) were included in 160 

the analyses as they represented the a priori availability of food that the hedgehogs would likely 161 

encounter. Conversely, if evidence was found that food was provided as a consequence of 162 

involvement in the study, these houses (Reading, n = 3; Ipswich West, n = 3) were excluded to avoid 163 

violating the assumption of independent movement in relation to the cameras (Rowcliffe et al. 2008).  164 

Camera-trapping rates were converted to density estimates (individuals km-2) using independent 165 

videos only (Rowcliffe et al. 2008). Specifically, density (D) was estimated as:  166 

𝐷𝐷 =
𝑦𝑦
𝑡𝑡

 
𝜋𝜋

𝑣𝑣𝑣𝑣(2 + 𝜃𝜃)
 167 

where y = number of detections of the focal species, t = survey effort, v = daily movement range, and 168 

r and θ are the radius and arc of the camera trap detection zone, respectively (see Rowcliffe et al., 169 

2008). Survey effort (t, hours) was calculated as the number of trapping nights per site multiplied by 170 

the number of hours the cameras were active per night; the latter was calculated as the period 171 

between the earliest and latest hedgehog recording on that site. When a camera was moved or turned 172 



off by homeowners, knocked down by livestock, ran out of battery, or if memory cards or cameras 173 

malfunctioned, survey effort was reduced by subtracting the total number of affected days from the 174 

trapping effort. Camera detection parameters were obtained for each video on-site when the cameras 175 

were collected (Rowcliffe et al., 2011); by playing the videos on a laptop, surveyors were able to use 176 

landmarks (e.g. buildings, trees, edges, rocks) as reference points to determine the exact location of 177 

the hedgehog with respect to the camera, and to take measurements of the detection arc (θ, radians) 178 

and distance (r, metres) using a compass and tape measure (see Rowcliffe et al., 2011). 179 

Animal speed was also extracted from videos to calculate the daily movement range (v, km h-1). This 180 

was calculated by multiplying travel speed (µ) by the proportion of time spent active (p), where travel 181 

speed (µ) was determined by dividing the distance travelled while in the detection zone, by the time 182 

the animal was seen on the video (see Rowcliffe et al., 2016 for detailed description). The proportion 183 

of time spent active (p), and its variance, was obtained using the R package activity (Rowcliffe et al., 184 

2014). All videos (including non-independent videos) were included in the speed calculation at each 185 

site. 186 

Ideally, to avoid bias, the REM parameters should be obtained for each specific survey (Rowcliffe et 187 

al., 2008), but obtaining these data is difficult and time-consuming. Therefore, we compared REM 188 

density estimates for each survey based on survey-specific parameters (ssREM) and mean parameter 189 

estimates averaged across all surveys (aveREM) as in Cusack et al. (2015), Pfeffer et al., 2017 and 190 

Rahman, Gonzalez and Aulagnier (2017). The aveREM approach is evaluated as a way to overcome the 191 

pitfalls associated with the measurement of the REM parameters and to evaluate its utility as part of 192 

a programme involving citizen scientists. The parameters that were averaged across surveys included 193 

daily movement range (v) and the camera detection parameters: angle (θ) and distance (r). Survey 194 

effort was calculated independently for each site. Variance and 95% confidence limits were estimated 195 

by non-parametric bootstrapping (Rowcliffe et al., 2008). All analyses were performed in R 3.2.2 (R 196 

Core Team, 2017) using the package remBoot (Caravaggi et al., 2016). 197 

Spotlight surveys and Spatial Capture-Recapture models  198 

As the true densities at each site were unknown, reference densities were calculated by analysing 199 

individual encounter history data from nocturnal spotlight surveys using spatial capture-recapture 200 

(SCR: Efford, 2004) models. SCR is an extension of traditional (non-spatial) capture-recapture that 201 

estimates population density from spatially-referenced detections by incorporating information such 202 

as movement, spatial organisation of detectors, and space use by individuals (Royle, Fuller and 203 

Sutherland, 2018). Hedgehogs were surveyed at night along pre-defined transects across publicly-204 

accessible land (Dowding et al., 2010). Transects were placed on main and secondary roads, footpaths, 205 



and across fields, so that the entire study area was surveyed. For each site, the pre-defined transects 206 

were surveyed with uniform intensity on each night. Survey effort varied from 6-20 nights per site. All 207 

hedgehogs found during the spotlight surveys were approached on foot and captured by hand, 208 

weighed (g) using an electronic balance (Salter 1035 platform scale) and sexed (Morris, 2006). Animals 209 

were classified as adults if they weighed >600g (Young et al., 2006; Haigh 2011; Hubert et al., 2011). 210 

Healthy adult hedgehogs (few visible parasites, no injuries and normal ball-curling anti-predator 211 

behaviour) were marked uniquely with five coloured heat-shrink tubes (10mm in length) attached to 212 

the dorsal spines using a portable soldering iron. All hedgehogs were released at the point of capture 213 

and were observed from a distance until they moved off. The locations of all individuals were recorded 214 

using a handheld GPS device (Garmin GPS 60). 215 

For analysis, each transect was divided into 50m ‘trap’ sections to ensure that the effective trap size 216 

was small enough in relation to the home range size of the hedgehogs to allow detection in multiple 217 

traps, but also large enough for computational tractability relative to a continuous space model (Fuller 218 

et al., 2015; Sutherland et al., 2018). To create spatial encounter histories, the location of each 219 

hedgehog’s capture/recaptures were transposed to the midpoint of the closest ‘trap’ and to a 220 

sampling occasion (defined as the whole study area being surveyed). Data from two consecutive 221 

sampling nights were pooled if the whole study area was not surveyed on a single night. The creation 222 

of ‘traps’ and spatial queries were performed in ArcGIS 10.3.1 (ESRI, 2015). Only adult individuals were 223 

included in the analysis.  224 

In total, eight SCR models were fitted: the null model (no covariates) and all additive combinations of 225 

constant and session-specific density (D), sex-specific detection (p) and sex-specific space use (σ). 226 

Models were ranked according to the Akaike’s Information Criterion (AIC) value (Burnham and 227 

Anderson, 2004) and fitted in R (R Core Team, 2017) using the package oSCR (version 0.42.0; 228 

Sutherland, Royle and Linden, 2016). 229 

Bland-Altman plots, also called Tukey mean difference plots, were used to compare the densities 230 

estimated by the ssREM and aveREM, and the aveREM and the most parsimonious SCR model (Bland 231 

and Altman, 1999; Giavarina, 2015) at each site. The Bland-Altman plot is a method for quantifying 232 

the difference between two quantitative measurements by calculating the difference for each pair of 233 

values, plotting these differences against the corresponding means, and constructing limits of 234 

agreement. Limits of agreement (LoA) are calculated from the mean (𝑑̅𝑑) and standard deviation (s) of 235 

the differences. We expected 95% of the differences to lie within 𝑑̅𝑑 ± 1.96𝑠𝑠. 236 

All figures cited in the Results are mean ± SE unless stated otherwise. 237 

Future population monitoring using REM 238 



The suitability of the aveREM for long-term monitoring was assessed based on its power to detect 239 

10%, 25% and 50% changes in population density with statistical power of 0.80, 0.95 and 0.99, and on 240 

the sample size (number of CTLs) required in future surveys. Power (defined as 1-β, where β is the 241 

probability of a Type II error: Steidl, Hayes and Schauber, 1997) was calculated using two-tailed paired-242 

sample t-tests. Analyses were implemented in the R package pwr (version 1.2-2; Champely, 2018). 243 

The costs associated with the REM were estimated from start-up costs (equipment purchases), human 244 

resources and survey length (number of days from recruiting members of the public to the collection 245 

of the last camera traps) for urban and rural landscapes. Although only 30 cameras were used each 246 

week, equipment costs were calculated for the purchase of 40 cameras to account for damage and 247 

malfunction. Human resources were quantified in terms of the hours of labour required to conduct 248 

the survey, including community engagement, fieldwork (i.e., deployment/collection of cameras, 249 

measurements of parameters) and data analyses. Hours of labour were not available for two study 250 

areas (Hartpury and Reading). Labour costs were calculated using the 2018 minimum national UK 251 

wage (7.83£/hour; GOV.UK, n.d.) only for reference purposes. 252 

Results 253 

Hedgehogs were detected by camera trapping and spotlight surveys at all sites. However, the REM 254 

could not be fully implemented (i.e., no confidence intervals associated with the density estimate 255 

were generated) at one site (Sutton Bonington) due to a small sample size (only one camera recorded 256 

hedgehogs). Camera trapping surveys were associated with a trapping effort of 47,507 hours and 802 257 

independent hedgehog videos (Table 2). Video clips of other species recorded included domestic cats 258 

Felis catus (n = 1058), foxes Vulpes vulpes (n = 550), rabbits Oryctolagus cunniculus (n = 549) and 259 

badgers Meles meles (n = 44). Spotlight surveys were associated with a trapping effort of 613 hours 260 

over 1,415 km of walked transects; 111 individual hedgehogs were captured, of which 45 (41%) were 261 

recaptured (Table 3). 262 

There was a high degree of concordance in the density estimates derived from ssREM and aveREM 263 

(Figure 2, Figure 3). The greatest disparity was evident in Reading, with densities being much higher 264 

when estimated using ssREM than aveREM; however, the estimates were within the Limits of 265 

Agreement (Figure 3). Hedgehog densities were higher within urban (averaged REM = 32.3 km-2) 266 

versus rural (4.3 km-2) areas. Mean camera detection arc (θ) and distance (r) were 0.240 ± 0.038 267 

radians and 1.97 ± 0.44 metres, respectively; and they were not significantly different across urban 268 

and rural landscapes (Mann-Whitney U test: Wθ=2196; Wr=2267.5; p-value>0.05). Mean daily 269 

movement range was 0.52 ± 0.14 km h-1(Table 5), significantly higher in rural (0.63 ± 0.06) than in 270 

urban landscapes (0.46 ± 0.06; Mann-Whitney U test: W=34615; p-value <0.05). 271 



The most parsimonious SCR model included the combination of session-specific density (D), constant 272 

detection (p) and sex-specific space use (σ) (Table S2). As with the aveREM, hedgehog densities 273 

derived using the SCR method were higher in urban versus rural locations (Figure 2; Table 4). Densities 274 

estimated by the aveREM and SCR models were comparable for each site, with both methods 275 

producing estimates with overlapping 95% CIs (Figure 2). In addition, the mean difference of the 276 

densities estimated by the two methods was within the LoA at eight sites (Figure 3). However, the 277 

aveREM was more precise than the SCR at seven out of the eight sites; the exception was Ipswich 278 

West, where a very high density with an extremely large 95% CI was estimated by the aveREM in 279 

relation to both the corresponding SCR estimate for that site, and to all other urban sites.  280 

Power analyses 281 

Using a paired approach, all surveys conducted in this study would have been able to detect a 25% 282 

change in hedgehog density with >90% power (Table 6). Therefore, following our study design of 283 

deploying cameras for 6 nights (± 0.04) in an area of 0.68km2 (± 0.03), 51 and 34 CTLs would be needed 284 

in rural and urban areas, respectively, to detect a 25% change in population density with 90% power 285 

(Table 7). 286 

Resource costs  287 

The REM had high start-up costs, principally due to the initial purchase of cameras (£6,400; Table 8). 288 

Higher start-up costs are also required in urban (£10,630) versus rural (£8,532) areas because of the 289 

difference in labour costs: human resources required to carry out urban surveys (468 hours) were, on 290 

average, 2.3 times higher than in rural sites (200 hours) due to the need to carry out community 291 

engagement and to process a higher number of videos. However, as camera traps are reusable, any 292 

subsequent site survey would only need to cover labour costs, decreasing expenditure per site to 293 

£3,664 and £1,566 in urban and rural areas, respectively. Survey length in urban sites (46 ± 1 days) 294 

was higher than in rural sites (23 ± 5 SE) due to the need to enlist the help of householders.  295 

Discussion 296 

The three methods used in this study (nocturnal capture-recapture data analysed using SCR, camera 297 

trap data analysed using survey-specific parameters within a random encounter model (ssREM), and 298 

camera trap data analysed using averaged REM parameters (aveREM)) generated similar estimates of 299 

hedgehog density in both urban and rural landscapes. Our results show that using a simpler approach 300 

(aveREM) does not compromise the quality of the estimate. Furthermore, only the aveREM is 301 

potentially amenable for inclusion as part of any future citizen science national survey of hedgehogs, 302 

as nocturnal spotlight and SCR require animals to be caught, marked and re-caught, requiring training 303 

and licensing. However, the implementation of ssREM is laborious and repetitive, which could 304 



compromise data-quality and accuracy (Newman, Buesching and Macdonald, 2003), and cause 305 

participants to drop out (Eveleigh et al., 2014) if citizen scientists were to be involved in the 306 

measurement of all parameters. Furthermore, all participants would need to partake in additional 307 

training which adds costs and complexity to the project. However, an aveREM approach, where citizen 308 

scientists only collect data, would circumvent these issues, while being capable of detecting 309 

population changes with a high degree of power.  310 

Here, we suggest that the aveREM could be implemented as part of a large-scale, long-term citizen 311 

science project based on a ‘contributory model’ (sensu Shirk et al., 2012) in which the project is 312 

designed by scientists, and members of the public contribute primarily with data (Supporting 313 

Information 2, Figure S1). Such an approach would help to reduce labour costs, which is one of the 314 

main limitations of large-scale monitoring studies (Lindenmayer et al., 2012), and will also provide 315 

valuable outcomes for science, local communities and social-ecological systems (Table 9). Our 316 

proposed framework will require researchers to carry out a pilot study (following the methodology of 317 

this study) to obtain specific REM parameters and the corresponding ssREM densities for the focal 318 

species across a range of habitat types. Once enough REM parameter measurements have been taken 319 

(i.e., densities estimated by the ssREM and aveREM are comparable), their average can be used for 320 

other surveys, of the same focal species and on similar landscapes, as part of a citizen science 321 

monitoring programme. Under this framework, citizen scientists would be involved during the data 322 

collection (i.e., community engagement and camera trapping surveys; Table 9), which could take on 323 

average 418 and 160 hours (per survey) in urban and rural areas, respectively. However, for the long-324 

term implementation of the project, time resources in urban areas could be reduced further (down to 325 

268 hours) on successive repeated surveys as community engagement will not be needed (i.e., same 326 

gardens/locations will be re-sampled). The framework we suggest requires a significant commitment 327 

on the part of the citizen scientist, although a recent national survey of hedgehogs in England and 328 

Wales demonstrated that surveyors oblige, despite the large commitment (Williams et al., 2018a). 329 

The REM method is, however, associated with significant start-up costs through the purchase of 330 

camera traps, memory cards, batteries and other ancillary equipment, and also community 331 

engagement costs. While we acknowledge that the costs associated with the REM were very broadly 332 

estimated here, we suggest that future REM studies should consider more detailed cost estimations, 333 

as suggested by Gálvez et al., (2016). Yet, many of these are one-off costs: by “recycling” cameras 334 

between successive survey locations, the survey cost per site is diminished. For example, hedgehogs 335 

can be surveyed from April-October inclusive (Williams et al., 2018a), and given that 51 and 34 CTLs 336 

are required in urban and rural areas, respectively, to detect population changes, a set of 30 cameras 337 



deployed on average 6 nights, could allow  14 sites to be surveyed a year, and for cameras to  re-used 338 

over multiple years. 339 

The hedgehog densities estimated in this study in both urban (13.9-25.9 km-2; Ipswich West excluded 340 

– see below) and rural landscapes (1.2-6.8 km-2) are comparable to those from other studies in the UK 341 

and Europe. For example, Dowding (2007) and Hubert et al. (2011) recorded densities of 17 km-2 and 342 

36.5 km-2 in urban sites in England and France, respectively, whilst Parrott, Etherington and Dendy 343 

(2014), Hubert et al. (2011) and Young et al. (2006) recorded densities in rural locations of 4 km-2, 4.4 344 

km-2 and 9 km-2, respectively. Whilst this concordance is potentially reassuring, one important caveat 345 

is that because of the inherent difficulties associated with studying wild hedgehog populations, true 346 

population size in all of these studies is not known. What these data do indicate clearly, however, is 347 

that densities are much higher in urban sites that have been surveyed, likely due to favourable 348 

environmental conditions such as higher food availability including supplementary feeding (Hubert et 349 

al., 2011; Pettett et al., 2018) and decreased risk of predation by badgers (Young et al., 2006; Trewby 350 

et al., 2014; Pettett et al., 2017).  351 

Although this study focused on one species, the approach taken here could also be used for multiple 352 

species monitoring over a large number of sites (Burton et al., 2015;  Caravaggi et al. 2016). All that is 353 

required is that the parameters for each species detected are recorded. Consequently, the REM has 354 

potential for future monitoring, not only of hedgehog populations but of a wide range of other species. 355 

Limitations and recommendations 356 

Despite its apparent potential, the REM methodology may be associated with some constraints that 357 

need to be considered and addressed. First, based on results of this study, the REM could not be 358 

implemented at one site (Sutton Bonington) as the population was very low (only two animals were 359 

captured during nocturnal spotlight surveys), and only one camera recorded hedgehogs. However, 360 

this could be resolved by deploying cameras for longer, expanding the area of survey sites and/or 361 

increasing camera density to achieve Rowcliffe et al.'s (2008) recommendation of a minimum of 10 362 

independent captures. The first two options would potentially impact the assumption that 363 

populations are closed as hedgehogs may breed throughout much of the year, with males making 364 

exploratory movements in search of females, and juvenile animals being recruited (Morris, 2006). 365 

However, if densities change during the survey, the REM will estimate densities averaged across the 366 

trend (Rowcliffe et al., 2008), so these approaches are likely to be viable.   367 

Second, our findings indicate that the density and behaviour of hedgehogs in urban areas are likely 368 

influenced by differences in housing density, as shown in urban red foxes (Harris and Rayner, 1986). 369 

For example, despite both the aveREM and SCR producing high densities with large confidence interval 370 



in Ipswich West, the aveREM produced densities two times greater than the corresponding SCR 371 

estimate. The difference between the aveREM and SCR estimates could be due to habitat structure 372 

and hedgehog behaviour as Ipswich West was a highly urbanised area, containing the greatest 373 

proportion of built-up land and the smallest proportion of gardens (Table S1), which were mainly back 374 

gardens. The preference of hedgehogs for back gardens in urban areas (Dowding et al., 2010) could 375 

have made the difference in the areas surveyed by both methods more prominent in highly urbanised 376 

areas: data analysed by SCR was mainly collected on roads and front gardens, while the REM data was 377 

mainly collected in back gardens. In our study design, cameras were mainly placed in back gardens to 378 

avoid theft and damage, and this has probably affected the random placement of cameras. This 379 

limitation is likely to be encountered in any camera trapping study in urban areas. We trust that the 380 

study design used here is robust and can work across a range of rural/urban landscapes, and with 381 

different housing densities in urban areas. However, understanding landscape structure and habitat 382 

preference will allow researchers to evaluate the impact of these features when estimating densities 383 

using the REM. 384 

Remote sensing techniques are being used increasingly as part of citizen science projects to monitor 385 

wildlife at large spatial scales. This study is the first to use the Random Encounter Model (REM) to 386 

study small mammals across a range of landscapes, and its application as part of a citizen science 387 

framework. Our results indicate that an approach based upon averaged parameters (aveREM) is a 388 

potential suitable method for estimating hedgehog density across both urban and rural habitats, and 389 

one that is capable of detecting a 25% change in population size with high statistical power. 390 

Furthermore, it is a method that could be implemented as part of a contributory citizen science 391 

project, once pilot studies have been carried out to obtain the required parameters. The use of 392 

motion-activated cameras would also enable the monitoring of multiple species in both landscapes. 393 

However, further studies on a wider range of species are required across the broad range of urban 394 

and rural habitats/landscapes to derive suitable average parameters for inclusion in any national 395 

monitoring program.  396 
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673 
Figure 1. Location of study sites in England, UK. Rural study sites (n = 3) are represented by triangles; 674 
urban sites (n = 5) are represented by circles. 675 

 676 

677 



Figure 2. Hedgehog density (km-2) estimates derived from averaged Random Encounter Model 678 
parameters (aveREM), site-specific Random Encounter Model parameters (ssREM), and Spatial 679 
Capture-Recapture (SCR) method in urban (n = 5) and rural (n = 4) environments. Error bars represent 680 
95% confidence intervals. 681 
 682 

 683 

 684 

 685 
686 



Figure 3. Bland-Altman plot of log-transformed difference [aveREM -SCR] against log-transformed 687 
mean density [(SCR+REM)/2] and limits of agreement between the SCR and averaged REM estimates 688 
of hedgehog density (km-2) at each site: (a) Sutton Bonington, (b) Brackenhurst 2017, (c) Brackenhurst 689 
2018, (d) Hartpury, (e) Ipswich East, (f) Reading, (g) Brighton, (h) Southwell and (i) Ipswich West. The 690 
dashed lines represent the log-transformed upper and lower 95% CI of agreement limits. 691 
 692 
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 694 



Table 1. Description of urban and rural study sites, survey timing and surveyed area.  695 

 696 
697 

Habitat 
  

Urban Rural 

Year surveyed 
  

2016 2017 2018 2017 2018 

Survey name Southwell Reading Ipswich 
West Ipswich East Brighton Hartpury Brackenhurst 

2017 
Brackenhurst 

2018 
Sutton 

Bonington 
Survey period 
  

May-June Sept-Oct April-May April-May May-June June-July Sept-Oct April-May July-August 

Percentage of 
built-up land 
cover 

40% 47% 56% 32% 34% 14% 12% 11% 20% 

Area surveyed 
(km2)  0.67 0.79 0.53 0.85 0.62 0.63 0.65 0.61 0.77 

Centroid 
coordinates 
(Lat/Long) 

53°04′32.40″N 51°25′42.50″N 52°03′57.88″N 52°04′08.52″N 50°51′02.45″N 51°54′26.89″N 53°03′47.63″N 53°03′47.63″N 52°49′53.09″N 

0°57′53.95″W 0°54′42.89″W 1°07′59.83″E 1°11′28.94″E 0°12′10.34″W 2°18′34.15″W 0°57′22.63″W 0°57′22.63″W 1°14′51.55″W 



Table 2. Summary of camera trapping surveys. CTs= camera traps  698 

 699 

700 

Habitat  Urban  Rural 

TOTAL Year surveyed  2016 2017 2018 2017 2018 

Survey name  Southwell Reading Ipswich 
West 

Ipswich 
East Brighton Hartpury Brackenhurst 

2017 
Brackenhurst 

2018 
Sutton 

Bonington 
Camera trap locations  112 120 118 118 109 120 117 59 101 974 
Trapping nights  746 632 711 774 708 660 723 308 754 6016 
Trapping effort (hours)  5222 6952 5688 5418 4956 3960 6507 2772 6032 47,507 
% of CTs with footage 
of hedgehogs 32% 23% 56% 24% 14% 13% 9% 7% 1% 21% 

No. videos of 
hedgehogs 110 89 409 77 56 22 21 12 6 802 



Table 3. Summary of nocturnal spotlight surveys. 701 

Habitat  
  

Urban Rural  

TOTAL Year surveyed 
  

2016 2017 2018 2017 2018 

Survey name Southwell Reading Ipswich 
West 

Ipswich 
East Brighton Hartpury Brackenhurst 

2017 
Brackenhurst 

2018 
Sutton 

Bonington 
No. survey sessions 
  

11 8 6 15 10 10 13 17 20 90 

Survey effort (hours) 
  

40 42 42 124 37 59 27 40 202 613 

Total transects length 
(km) 7.3 10.7 5.6 12 7.2 8.8 5.2 5 7.3 69.1 

Total km walked 
  

141 110 88 372 116 169 88 111 220 1,415 

No. hedgehogs captured 
  20 16 14 19 19 8 5 8 2 111 

% of hedgehogs 
recaptured 35% 6% 29% 21% 58% 63% 80% 100% 50% 41% 

702 



Table 4. Hedgehog density (individuals per km-2) at urban and rural sites estimated using the averaged Random Encounter Model parameters (aveREM), 703 
survey-specific Random Encounter Model parameters (ssREM), and Spatial Capture-Recapture (SCR) method. Figures in parentheses are 95% confidence 704 
intervals. 705 
 706 

Habitat  Urban Rural 
Year surveyed 2016 2017 2018 2017 2018 

Survey name Southwell Reading Ipswich 
West 

Ipswich 
East Brighton Hartpury Brackenhurst 

2017 
Brackenhurst 

2018 
Sutton 

Bonington 
aveREM density estimate 25.9 15.7 88.6 17.5 13.9 6.8 3.9 5.3 1.2 
(95% CI) (19.1-33.3) (10.1-23.3) (56.9-134.5) (11.3-24.5) (6.9-24.1) (5.6-8.1) (1.8-7.1) (2.6-8.8) * 
ssREM density estimate 27.0 32.7 85.2 29.6 13.4 4.3 5.6 4.9 4.7 
(95% CI) (20.9-35.5) (19.4-53.2) (54.4-133.3) (18.8-42.7) (6.6-24.1) (3.2-5.6) (2.6-10.1) (2.2-8.8) * 
SCR density estimate 31.5 23.2 43.9 16.7 31.6 12.5 9.4 12.9 2.7 
(95% CI) (18.8-52.9) (13.2-40.6) (24.1-79.9) (9.9-27.9) (18.6-53.7) (5.9-26.2) 3.7-23.4) (6.1-27.2) (0.7-10.9) 

*not enough data available to estimate 95% CI 707 
 708 
 709 
Table 5. Summary of the independent variables required to calculate animal density from camera traps using the Random Encounter Model. Parameters from 710 
Sutton Bonington were not included in the average due to the small sample size (n=6) and its impact on the averaging the activity levels. 711 

Habitat Urban Rural 

Mean SD SE Year surveyed 2016 2017 2018 2017 2018 

Survey name Southwell Reading Ipswich West Ipswich East Brighton Hartpury Brackenhurst 
2017 

Brackenhurst 
2018 

Average speed 
(µ, km/h) 0.77 0.40 0.55 0.52 0.64 1.04 0.50 0.74 0.65 0.20 0.07 

Activity level (p) 0.83 0.73 0.79 0.84 0.75 0.61 1.05 1.00 0.83 0.14 0.05 
Daily movement range 
(v, km/h) 0.64 0.29 0.43 0.44 0.48 0.63 0.53 0.74 0.52 0.14 0.05 

Detection distance 
(r, m) 1.81 2.01 2.59 1.53 2.23 2.53 1.56 1.50 1.97 0.44 0.16 

Detection arc  
(ɵ, radians) 0.244 0.209 0.209 0.262 0.262 0.314 0.209 0.209 0.240 0.038 0.013 

712 



Table 6. Statistical power of the averaged Random Encounter Model to detect 10%, 25% and 50% of population change between two surveys. Sample size 713 
refers to the number of camera trap locations at each site. 714 

Habitat Survey name Sample size Power to detect the stated change in density 
 10% 25% 50% 

Urban 

Southwell 110 0.99 1 1 
Reading 120 0.97 1 1 
Ipswich West 115 0.90 1 1 
Ipswich East 118 0.98 1 1 
Brighton 109 0.66 0.99 1 

Rural 
Hartpury 120 1 1 1 
Brackenhurst 2017 117 0.51 0.99 1 
Brackenhurst 2018 59 0.43 0.99 1 

 715 

716 



Table 7. Number of camera trap locations (CTLs) needed to detect 10%, 25% and 50% population change with 0.80, 0.90 and 0.95 statistical power in future 717 
surveys. Sites arranged by coefficient of variation (CV) values. 718 
 719 

Survey  
Hedgehog 
density (km-2) CV (%) % change in 

density 

No of CTLs required to achieve stated 
level of statistical power 

0.80 0.90 0.95 

Hartpury 6.8 9 

10 14 18 22 

25 4 4 5 

50 2 3 3 

Southwell 25.9 14 

10 34 44 55 

25 7 8 10 

50 3 4 4 

Ipswich East 17.5 19 

10 61 81 100 

25 11 14 17 

50 4 5 6 

Reading 15.7 20 

10 67 89 109 

25 12 15 19 

50 4 5 6 

Ipswich West 88.6 23 

10 87 116 143 

25 15 20 24 

50 5 6 7 

Brackenhurst 
2018 5.3 30 

10 144 193 238 

25 24 32 39 

50 7 9 11 

Brighton 13.9 31 

10 152 202 250 

25 26 34 41 

50 8 10 12 

3.9 38 10 234 312 386 



Brackenhurst 
2017 

25 39 51 63 

50 11 14 17 
 720 

721 



Table 8. Resources required to estimate hedgehog densities in urban and rural sites using camera trapping with the Random Encounter Model (REM) and 722 
spotlight surveys with the Spatial Capture-Recapture (SCR). Hours of labour are average values obtained from rural (n=3) and urban (n=4); associated costs 723 
are based on the national minimum UK wage (£7.83/hour) as a benchmark. 724 
 725 

Method Category Description 
Urban Rural 

Units Cost (£) Units Cost (£) 

REM 

Equipment 

Camera traps 40 6400 40 6400 
Memory cards/batteries 40 354 40 354 
Padlocks/chains 40 212 40 212 
Subtotal £6,966 £6,966 

Labour (hours) 

Community engagement 150 1175 ----- ----- 
Fieldwork 268 2098 160 1253 
Data analysis 50 392 40 313 
Subtotal £3,664 £1,566 

TOTAL £10,630 £8,532 

SCR 

Equipment 
Spotlights 2 300 2 300 
Marking equipment set 2 418 2 418 
Subtotal £718 £718 

Labour (hours) 
Fieldwork 184 1441 62 485 
Data analysis 30 235 25 196 
Subtotal £1,676 £681 
TOTAL £2,394 £1,399 

 726 

 727 

 728 



Table 9. Summary of the expected outcomes of implementing the Random Encounter Model as part of a citizen science project and the activities required by 729 
the citizen scientists and researchers. 730 

 731 

Outcomes for: Details 

Individuals 
Conservation awareness 

Development of new monitoring skills 

Species’ ecological knowledge 
Spatial and temporal large-scale data to monitor population trends, distributions and diversity of species 

Access to data from private land (i.e. urban areas)  

Social-ecological system Stewardship action and behavioural changes (i.e., enhancement of wildlife habitat in urban landscape) 

Involvement of: Main Activities 

Citizen scientists 

Community engagement (i.e., recruitment and retention of participants) 

Camera traps deployment/collection 

Data reporting 

Researchers 
Provision of camera trapping training  

Data analysis, interpretation and dissemination 

 732 


