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Abstract 28 

To test whether high circulating insulin concentrations influence the transport of β-alanine into skeletal 29 

muscle at either saturating or sub-saturating β-alanine concentrations, we conducted two experiments 30 

whereby β-alanine and insulin concentrations were controlled. Experiment 1: 12 men received 31 

supraphysiological amounts of β-alanine intravenously (0.11g·kg·min-1 for 150min), with or without insulin 32 

infusion. β-alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples 33 

were taken throughout the infusion protocol for plasma insulin and β-alanine analyses. β-alanine content in 34 

24-h urine was assessed. Experiment 2: 6 men ingested typical doses of β-alanine (10 mg·kg-1) before 35 

insulin infusion or no infusion. β-alanine was assessed in muscle before and 120 min following ingestion. In 36 

experiment 1, no differences between conditions were shown for plasma β-alanine, muscle β-alanine, 37 

muscle carnosine and urinary β-alanine concentrations (all p>0.05). In experiment 2, no differences between 38 

conditions were shown for plasma β-alanine or muscle β-alanine concentrations (all p>0.05). 39 

Hyperinsulinemia did not increase β-alanine uptake by skeletal muscle cells, neither when substrate 40 

concentrations exceed the Vmax of β-alanine transporter TauT, nor when it was below saturation. These 41 

results suggest that increasing insulin concentration is not necessary to maximise β-alanine transport into 42 

muscle following β-alanine intake. 43 

 44 

Keywords: β-alanine; hyperinsulinemia; human skeletal muscle; carnosine; Taurine transporter. 45 

 46 
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 49 

 50 
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 52 

 53 

 54 
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Introduction 55 

Carnosine (β-alanyl-L-histidine) is an intracellular dipeptide abundantly found in human skeletal 56 

muscle – content ranges from ~10 to ~40 mmol·kg-1 of dry muscle (40) – where it has important 57 

physiological roles, such as maintenance of acid-base homeostasis during high-intensity exercise (1, 4, 17), 58 

regulation of Ca2+ handling and sensitivity during muscle contraction (20, 26, 28), and scavenging of toxic 59 

products of lipid peroxidation (11). The rate-limiting factor for carnosine synthesis in skeletal muscle is the 60 

low availability of β-alanine (27), with β-alanine supplementation increasing muscle carnosine content by 61 

~40 to 100% (5, 40). 62 

Although β-alanine supplementation is the most effective known strategy to increase muscle 63 

carnosine content, previous studies showed that only ~6% of the total dose is used to synthesize carnosine in 64 

the skeletal muscle (9, 40). Despite the low efficiency in the use of β-alanine for carnosine synthesis, there is 65 

evidence to suggest that this can be improved when circulating insulin levels are elevated (42). A potential 66 

explanation for the enhanced carnosine synthesis is a putative increase in the efficiency of β-alanine 67 

transport into skeletal muscle.  68 

β-Alanine is thought to be transported into skeletal muscle cells via two different systems: 1) a 69 

saturable process undertaken by TauT (Taurine transporter - SLC6A6), which is a  Na+ and Cl- dependent 70 

transmembane transporter driven by transmembrane Na+ flux (30) whose Km (determined in primary cell 71 

culture of embryonic chick pectoral muscle) is ~40 µmol·L-1 (6); and 2) by PAT1 (SLC36A1),  which is a 72 

Na+-independent, H+-dependent transporter, whose activity is stimulated by the Na+/H+ exchanger (Km for a 73 

β-dipeptidemimetic is ~40 mmol·L-1) (22).         74 

 The Na+/K+/ATPase pump, Na+ influx and Na+/H+ exchanger are stimulated by insulin (13, 32, 39, 75 

44), although the stimulating effect appears to be tissue-specific (34). The transport of other small nitrogen-76 

containing molecules (i.e., creatine and carnitine) that, like β-alanine, are transported into skeletal muscle 77 

cells through Na+ flux driven mechanisms, is increased by elevated insulin concentrations (41, 43). Such an 78 

improvement in transport efficiency mediated by insulin may occur either via reduced Km (14) or increased 79 

Vmax (34). Due to the similarity in transport mechanisms between β-alanine, creatine and carnitine, it has 80 

been postulated that β-alanine transport into skeletal muscle could be further stimulated by hyperinsulinemia 81 
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(42).             82 

 Chronic supplementation of carnitine in combination with high loads of high glycemic-index 83 

carbohydrates increased muscle carnitine retention (43), whilst hyperinsulinemia also stimulates creatine 84 

transport into skeletal muscle (41). As yet, however, no study has directly examined the influence of insulin 85 

on β-alanine transport into skeletal muscle, although Stegen et al. (42) showed that ingesting β-alanine along 86 

with meals over a period of 46 days (3.2 g·d-1 split into 4 daily doses of 800 mg) resulted in superior 87 

carnosine accretion in the m. soleus in comparison with the group that ingested β-alanine in between meals 88 

(i.e., low insulin condition). These data led to authors to speculate that an elevation in insulin concentrations 89 

induced by meal ingestion could mediate intramuscular β-alanine/carnosine accumulation (42), although 90 

they did not show the same effect in a different muscle (m. gastrocnemius) in the same study, causing 91 

uncertainty as to whether insulin truly enhaces β-alanine uptake. To test the hypothesis that insulin levels 92 

influence β-alanine transport into skeletal muscle, we conducted two human studies using the 93 

hyperinsulinemic-euglycemic clamp technique, whereby both β-alanine and insulin concentrations were 94 

tighly controlled.  95 

 96 

Methods 97 

 98 

Ethical Approval 99 

 100 

The study was approved by the Ethics Committee of the School of Medicine of the University of Sao 101 

Paulo (#1185971) and complies with the standards established by the Declaration of Helsinki.  102 

 103 

Experiments 104 

In experiment 1, β-alanine was intravenously infused to reach supraphysiological concentrations of 105 

β-alanine in plasma to test whether insulin could stimulate β-alanine uptake when TauT was saturated. In 106 

order to confirm whether insulin could stimulate β-alanine uptake when both β-alanine transporters were not 107 

saturated, we then performed experiment 2, in which typical doses of β-alanine were ingested to reach 108 
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physiological concentrations of β-alanine in plasma, allowing us to better assess the effects of insulin on the 109 

Km of the transporters.  110 

 111 

Experiment 1: β-alanine infusion to reach saturating concentrations 112 

 113 

Participants 114 

Physically active male omnivores aged 18 to 35 years were eligible. Exclusion criteria were: use of 115 

dietary supplements containing β-alanine in the past 6 months, diagnosis of type I or type II diabetes 116 

mellitus, diagnosis of glucose intolerance, and the use of drugs known to interfere with insulin sensitivity or 117 

insulin secretion. We determined a priori that a sample size of 6 participants would be sufficient to detect a 118 

significant effect (alpha=0.05; 1-beta=0.8) of insulin on muscle β-alanine content, assuming an effect size > 119 

0.8 in a within-subject, repeated measures model (G*Power 3.1.9.2). Forty-eight individuals were screened 120 

for eligibility, 24 of whom met all criteria. Fourteen of these agreed to participate in the study. Two 121 

individuals did not complete the study as they were unwilling to undertake muscle biopsies. Thus, 12 122 

participants completed the entire study (age: 27±5 years, body mass: 79.6±7.4 kg, height: 1.80±0.06 m, 123 

habitual β-alanine intake in diet: 482±377 mg·day-1). 124 

 125 

Experimental design 126 

This was a counterbalanced, crossover study. Participants attended the laboratory on two different 127 

days, at least 10 weeks apart (i.e., sufficient time to allow complete washout of the β-alanine infused), for 128 

the main trials. On each trial, β-alanine was intravenously infused for 150 min with circulating insulin 129 

concentrations being kept high in one trial (HI), and low in the other trial (LI). Neither the researchers nor 130 

the participants were blinded to the conditions, due to the required experimental set-up, although all samples 131 

were analysed blinded to the condition by the use of unique identifying codes. Skeletal muscle samples were 132 

collected before and 30 min after the infusion period for the determination of muscle β-alanine and 133 

carnosine concentrations. Blood samples were collected before, throughout and after the infusion period for 134 

the analyses of plasma insulin, glucose and β-alanine. A midstream urine sample was collected before the 135 
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infusion period, and a 24 h total urine collection was carried out starting from the first urination after the 136 

beginning of the infusion period and ending 24 hours after the first urination.  137 

 138 

Main trials 139 

Participants arrived at the laboratory following a 12 h overnight fast, having not consumed any meat, 140 

fish or poultry for the last 24 h. On the first day, body mass and height were measured to calculate body 141 

surface area, a required parameter for calculating insulin and glucose infusion rates. Prior to infusion, the 142 

participants were asked to void their bladders and to collect a midstream urine sample, which was stored at -143 

80°C for further β-alanine analysis. Participants were then accommodated in a hospital bed for the insertion 144 

of cannulas. In the HI trial, two cannulas were inserted into different right arm veins for the infusion of 145 

insulin and β-alanine, whereas two cannulas were inserted into different veins of the left arm for glucose 146 

infusion and blood collection. In the LI trial, only β-alanine was infused; therefore, only one cannula was 147 

inserted into the right arm for the infusion of β-alanine and one cannula in the left arm for blood collection. 148 

The blood collection system was kept patent with the infusion of a saline solution, and a 55o C hand-149 

warming blanket was placed on the left arm for venous blood arterialization (23). 150 

After cannula insertion, a muscle sample was taken from the m. vastus lateralis by means of 151 

percutaneous needle muscle biopsy for β-alanine and carnosine determination. Following the biopsy, β-152 

alanine was infused with/without insulin and glucose for 150 min, a sufficient amount of time for tissue 153 

uptake of β-alanine (27). Blood samples were taken for β-alanine and insulin analyses at the following time 154 

points: before, 10, 30, 60, 90, 120, and 150 min after the beginning of the infusion, and 30 min after the end 155 

of the infusion. Subjective assessment of paraesthesia was performed using a 0-to-3-point scale at the same 156 

time points. A post-infusion muscle biopsy was performed 30 min after the end of the infusion, in order to 157 

allow time for the infused β-alanine to be incorporated into bodily tissues. In the HI trial, insulin and glucose 158 

infusion were maintained for 30 min after the end of β-alanine infusion, in order to allow insulin to play its 159 

putative role to stimulate β-alanine uptake by the skeletal muscle.     160 

Upon leaving the laboratory, all participants received a container and were requested to collect urine 161 

during the next 24 h and not to consume any type of meat during this period, with compliance being verbally 162 
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confirmed with all participants. On the next day, total urine volume was measured with the aid of glass 163 

measuring cylinders, the urine was homogenized and two 50 mL-aliquots were stored at -80o C until 164 

analysis. Figure 1 (left panel) illustrates the experimental design. 165 

 166 

 167 

 168 

Insulin and glucose infusion 169 

Insulin and glucose were only infused in the HI trials, following the same procedures described by 170 

DeFronzo et al. (16) for the hyperinsulinemic-euglycemic clamp. Insulin and glucose infusion rates were 171 

calculated according to individual body surface area. Insulin was then infused at a constant rate of 172 

40mU·m2·min-1 to reach the target concentration of ~100µU·mL-1.  The infusion of 10% glucose started 173 

concomitantly with insulin infusion and was adjusted every 5 min to maintain blood glucose concentrations 174 

between 70-100 mg·dL-1. 175 

 176 

 177 

 178 

β-alanine infusion 179 

Commercially available β-alanine in powder form (>99% purity) was obtained from Sigma-Aldrich. 180 

Before commencing the study, β-alanine powder was sterilized with gamma radiation (60Co multipurpose 181 

irradiator - IPEN-CNEN/SP, Brazil) in order to ensure safety and functionality of β-alanine, as previously 182 

described (24). Sterile β-alanine was diluted in 500 mL of saline solution. Infusion rates of β-alanine were 183 

adjusted according to individual’s body mass, totalling 0.11 g·kg-1 during the entire 150 min infusion period. 184 

This was determined to be the near the maximal tolerable amount for infusion within 150 min during pilot 185 

testing. These high amounts were chosen to elicit supraphysiological β-alanine concentrations and saturate 186 

TauT, so we could test whether insulin stimulates β-alanine transport when its concentration is above the 187 

Vmax of TauT. β-alanine was infused at increasingly high rates during the first 20 min; infusion rates were 188 

increased every 5 min, as follows: 0.25, 0.50, 0.60 and 0.70 mg·kg-1·min-1 until they reached 0.80 mg·kg-189 
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1·min-1, which was kept constant for the remaining 130 min of infusion. Mean±SD β-alanine infusion rate 190 

was 60.6 ± 5.7 mg·min-1, and mean±SD total β-alanine infusion was 9.16 ± 0.78 g. 191 

 192 

Muscle biopsies 193 

Muscle samples (~70-150 mg) were collected from the middle portion of the vastus lateralis using 194 

the percutaneous needle biopsy technique (8) with suction (37). A 1-cm wide incision was made on the skin 195 

and fascia under local anesthesia (3 mL, 2% xylocaine) to make muscle tissue acessible. Post-infusion 196 

biopsies were performed in an adjacent location, ~1 cm apart in the lateral axis, and at a similar depth. 197 

Immediately after sample collection, blood, fat and connective tissue were removed. The samples were snap 198 

frozen and stored in liquid nitrogen for further analyses. 199 

 200 

 201 

 202 

Sample collection and insulin determination 203 

Blood samples were collected in vacuum tubes (BD Vacutainer®) containing clot activator for 204 

plasma insulin determination, and K-EDTA for β-alanine determination. The samples for insulin were kept 205 

at room temperature until the end of the infusion procedure and then immediately taken to the Central 206 

Laboratory of the Clinical Hospital for processing and analysis using an immunofluorometric method. The 207 

samples for β-alanine determination were immediately centrifuged, and plasma was stored at -80°C for 208 

further analysis. 209 

 210 

Determination of β-alanine in plasma, muscle and urine, and carnosine in muscle by HPLC-ESI+-211 

MS/MS 212 

Twenty micro-liters of plasma were extracted in 980 μLof cold extraction buffer 213 

(methanol:acetonitrile:water 5:3:2 v/v). The extracts were then vortexed for 10 min (30-s bursts interspersed 214 

with 30s periods on ice) and centrifuged at 10,000g for 10 min at 4°C (36). The supernatants were 215 

subsequently submitted to analysis. 216 
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Approximately 3-4 mg of lyophilized muscle was powdered and deproteinized with 0.5M HClO4, 217 

vortexed for 15 min and centrifuged at 5,000 g at 4°C for 3 min (19). Samples were neutralized with 2.1M 218 

KHCO3, centrifuged at 5,000 g at 4°C for 3 min, and the supernatant stored at -80°C for further analysis. 219 

Pure urine samples were diluted in water (1:100 v/v) for subsequent analysis. Plasma, muscle and 220 

urine samples and standards were quantified in duplicate and analyzed by on-line HPLC-ESI+-MS/MS using 221 

CAR-d4 as internal standard (11). Analysis was conducted in the positive mode and detection was realized 222 

on a triple quadrupole mass spectrometer API 6500 (Sciex, Washington D.C, WA), using selected reaction 223 

monitoring (SRM). For sample injection and cleanup, we used an Agilent HPLC system (Agilent 224 

Technologies, Santa Clara, CA) equipped with an autosampler (1200 High performance), a column oven set 225 

at 45°C (1200 G1216B), an automated high pressure flow switching valve, a 1200 Binary Pump SL and a 226 

Shimadzu10-AVp Isocratic Pump (Shimadzu, Tokyo, Japan) on two columns: Kinetex C18 column 227 

(100×4.6mm; particle diameter of 2.6 μm (Phenomenex, Torrance, CA) and Kinetex C18 column 228 

(100×2.1mm; particle diameter 2.6 μm (Phenomenex, Torrance, CA). The mobile phase consisted of 5mM 229 

ammonium acetate pH 5.5 (A) and acetonitrile (≥99.9% HPLC grade, Sigma-Aldrich) (B). Both solutions 230 

were filtered through a 0.22 μm PVDF membrane (Millipore, Bedford, MA). The separation condition was 231 

as follows: from 0 to 6 min, 10% acetonitrile and 150 μl/min; from 6 to 10 min, 10–90% acetonitrile and 232 

150–300 μL/min; from 10 to 15 min, 90% acetonitrile and 300 μL/min; from 15 to 20 min, 90–10% 233 

acetonitrile and 300–150 μL/min allowing the first column to re-equilibrate until 30 min. A high-pressure 234 

flow switching valve composed of 2-positions and 6-ports was inserted between the two columns. The 235 

eluent from the first column was discarded by the valve up to the 3rd min of the run while keeping the 236 

second column supplied with a solution of water:acetonitrile (9:1, v/v) at a constant flow rate of 100 μL·min-237 

1 (Shimadzu 10-AVp Isocratic Pump). After 3 min of the run, the valve switched position and the eluent of 238 

the first column entered the second column. Then, the samples were injected into the mass spectrometer. 239 

The valve returned to the starting position after 14 min of the run and both columns were rebalanced. 240 

Electrospray ionization (ESI) in the positive mode was used, and detection was made using selected 241 

reaction monitoring (SRM) on a triple quadrupole mass spectrometer. The Turbo Ionspray Voltage was kept 242 

at 5500 V, curtain gas at 15 psi and the nebulizer and auxiliary gas at 50 psi. The temperature was set to 243 
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500°C, and the pressure of nitrogen in the collision cell was adjusted to high. The signal to noise ratio (S/N) 244 

of  ≥7 was used as the quantification criteria. S/N transitions for β-alanine, carnosine and CARd4 were 245 

monitored using a dwell time of 150 ms. 246 

β-alanine was not derivatized prior to analysis and the SRM transitions monitored were m/z 90→72 247 

(quantification transition), m/z 90→45 and m/z 90→30 (confirmation transition). The quantification 248 

transition m/z 90→72 is unique to β-alanine and can be used to differentiate the α- from the β-isomer (38). 249 

SRM transitions monitored for carnosine were m/z 227→110 (quantification transition) and m/z 227→210 250 

(confirmation transition). SRM transitions monitored for CARd4 were m/z 231→110 (quantification 251 

transition) and m/z 231→214 (confirmation transition). Representative chromatograms of plasma, urine and 252 

muscle samples are displayed in figure 2. 253 

 254 

Paraesthesia evaluation scale 255 

Because paraesthesia is a major side-effect of elevated plasma β-alanine concentrations (27), we 256 

monitored its occurence and intensity as a safety measure at the following time points: before infusion, 10, 257 

30, 60, 90, 120, 150 min following the start of infusion, and 30 after the end of infusion, using a 0-3 scale 258 

adapted from Lingjaerde et al. (33), where zero means "I don`t feel paraesthesia or I'm not sure what I feel”, 259 

one means "I feel slight paraesthesia that hardly bothers me”, two means "I feel moderate paraesthesia, 260 

which clearly bothers me", and three means “I feel intense paraesthesia, which bothers me a lot". 261 

 262 

Dietary β-alanine intake assessment 263 

Participants completed food diaries on 3 non-consecutive days (two weekdays and one weekend day) 264 

following the instructions of a registered nutritionist. β-alanine intake through consumption of fish, poultry 265 

and meat was estimated from the data of Jones et al. (31). 266 

 267 

 268 

Experiment 2: β-alanine ingestion to reach sub-saturating concentrations 269 

 270 
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Participants 271 

Six male omnivores (age: 25±3 years, body mass: 78.7±10.1 kg, height: 1.76±0.03 m, habitual β-272 

alanine intake in diet: 636±196 mg·day-1) were recruited to participate in this experiment, all of whom 273 

completed the entire study protocol. One of the participants also participated in experiment 1. Inclusion and 274 

exclusion criteria were the same of the experiment 1, as detailed above.  275 

 276 

Experimental design 277 

The experimental design is essentially the same as that used in the experiment 1, except for the oral 278 

ingestion of β-alanine (rather than infusion), the smaller amount of β-alanine provided, the shorter washout 279 

period, the shorter time-course, and the ommision of urine collection. The shorter washout period is justified 280 

by the low total β-alanine administration, which is assumed to have little or no noticieable impact on muscle 281 

carnosine concentrations. The time-course was defined based on the pharmacokinetics of β-alanine 282 

appearance and disappearance from plasma after ingestion (Harris et al., 2006). In this counterbalanced, 283 

crossover study, participants attended the laboratory on two different days, 7 days apart (i.e., sufficient time 284 

to allow complete washout of the β-alanine ingested). On each trial, 10 mg·kg-1 BM of pure powdered β-285 

alanine was ingested, dissolved in 200 mL of tap water. Upon ingestion, circulating insulin concentrations 286 

was kept high in one trial (HI), and low in the other trial (LI) for 120 min, with trial order being 287 

counterbalanced. Neither the researchers nor the participants were blinded to the conditions, due to the 288 

required experimental set-up, although all samples were analysed blinded to the condition by the use of 289 

unique identifying codes. Skeletal muscle samples were collected before and after 120 min of insulin 290 

infusion (or no infusion) following β-alanine ingestion. Blood samples were collected before, throughout 291 

and after the infusion period for the analyses of plasma insulin, glucose and β-alanine. Figure 1 (right panel) 292 

illustrates the experimental design. 293 

All procedures of the main trials, including blood collection, muscle biopsy, hyperinsulinemic-294 

euglycemic clamp, sample processing and analyses were identical to those described in the experiment 1. 295 

 296 

Statistical Analysis 297 
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 Mixed model (proc mixed, SAS v. 9.3) procedure was used to compare muscle β-alanine and 298 

carnosine content between conditions, as well as plasma β-alanine and insulin concentrations and 299 

paraesthesia ratings between conditions. Condition (HI and LI) and time were included as fixed factors and 300 

participants were included as random factors. Tukey-Kramer adjustment for multiple comparisons was 301 

performed whenever a significant F-value was obtained. The area under the curve (AUC) was calculated 302 

using the linear trapezoidal method. Paired t-tests were used to compare the AUC of plasma insulin and 303 

plasma β-alanine, and β-alanine in the 24-h urine samples. Statistical significance was accepted at p≤0.05. 304 

Data are presented as mean ± 1 standard deviation. 305 

 306 

Results 307 

 308 

Experiment 1: Effect of insulin on β-alanine transport at saturating concentrations 309 

 310 

Plasma insulin 311 

Insulin concentrations were significantly higher in HI than in LI (condition-by-time interaction: 312 

p<0.0001) at all time-points (pairwise analyses: all p<0.0001), with the exception of baseline (p=0.8) 313 

(Figure 3, panel A). A significantly higher insulin AUC was shown in HI than in LI (p<0.0001; 314 

95%CI=8596-13112). These data confirm that the clamp technique was able to sustain physiological 315 

hypersulinemia throughout the entire procedure. 316 

  317 

Plasma β-alanine 318 

Plasma β-alanine concentrations increased following β-alanine infusion and remained elevated 319 

throughout the infusion period (main effect of time: p=0.0001). Although a significant condition-by-time 320 

interaction was shown (p=0.03), no significant differences between LI and HI were shown at any time point 321 

(pairwise comparisons: all p>0.05). Similarly, no significant differences between conditions were shown for 322 

the area under the plasma β-alanine curve (p=0.34; 95%CI=-177130 – 67097) (figure 4, panel A). 323 

 324 

Downloaded from journals.physiology.org/journal/ajpcell at Univ Col London (144.082.238.225) on March 18, 2020.



13 
 

Muscle β-alanine 325 

β-alanine infusion resulted in a ~2.5 to 3.0-fold increase in muscle β-alanine content (main effect of 326 

time: p<0.0001), with no significant differences between HI and LI conditions (condition-by-time 327 

interaction: p=0.85) (figure 4, panel B). 328 

 329 

Muscle carnosine 330 

Muscle carnosine concentrations did not significantly change following the infusion of β-alanine, 331 

irrespective of condition (main effect of time: p=0.08; main effect of condition: p=0.75; condition-by-time 332 

interaction: p=0.18) (figure 4, panel C). 333 

 334 

 335 

 Urinary β-alanine  336 

β-alanine concentrations were below the limit of detection in all midstream urine samples collected 337 

before infusion in both trials (therefore, data are not shown). Large amounts of β-alanine were, however, 338 

detected in the 24 h urine samples following infusion, but no significant differences between conditions 339 

were shown (p=0.95; 95%CI=-3.1 – -2.9) (figure 4, panel D). 340 

 341 

  Paraesthesia 342 

A significant main effect of time (p<0.0001) was shown for self-reported ratings of paraesthesia 343 

throughout the main trials, indicating that β-alanine infusion elicited some degree of paraesthesia. No 344 

significant differences between conditions were, however, shown (main effect of condition: p=0.68; 345 

condition-by-time interaction: p=0.06) (figure 5). 346 

 347 

Experiment 2: Effect of insulin on β-alanine transport at sub-saturating concentrations 348 

 349 

Plasma insulin 350 
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Insulin concentrations were significantly higher in HI than in LI (condition-by-time interaction: 351 

p<0.0001) at all time-points (pairwise analyses: all p<0.001), except at baseline (p>0.999) (Figure 3, panel 352 

B). A significantly higher AUC was shown in HI than in LI (p=0.004; 95%CI=-17260 – -6214). These data 353 

confirm that the clamp technique was able to sustain physiological hypersulinemia throughout the entire 354 

procedure. 355 

 356 

 357 

Plasma β-alanine 358 

Plasma β-alanine concentrations rapidly increased following β-alanine ingestion and tended to return 359 

to pre-ingestion levels towards to the end of the 120 min period (main effect of time: p<0.0001). No 360 

differences were shown between LI and HI (condition-by-time interaction: p=0.58; pairwise analyses: all 361 

p>0.05) and there were no significant differences between conditions for the β-alanine AUC (p=0.23; 95% 362 

CI=-935 – 3070) (figure 6, panel A). 363 

 364 

 365 

Muscle β-alanine 366 

β-alanine ingestion resulted in a ~1.5-fold increase in muscle β-alanine content (main effect of time: 367 

p=0.0003), with no significant differences between HI and LI (main effect of condition: p=0.37; condition-368 

by-time interaction: p=0.32) (figure 6, panel B). 369 

 370 

Discussion 371 

This study aimed to test the hypothesis that hyperinsulinemia could stimulate β-alanine transport to 372 

skeletal muscle. Our experimental setup allowed tight control over blood insulin concentrations (figure 3) 373 

while testing different concentrations of plasma β-alanine. Our findings provide compelling evidence that 374 

hyperinsulinemia does not increase β-alanine uptake by muscle cells, neither when substrate concentrations 375 

exceeded the Vmax of TauT, nor when it was at a level below the saturation of β-alanine transporters. β-376 

alanine transport across membranes can occur through three different protein transporters, namely TauT 377 
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(SLC6A6), PAT1 (SLC36A1) and ATB0,+ (SLC6A14) (3). However, only the genes encoding TauT and 378 

PAT1 have been shown to be expressed in human skeletal muscle (21), with only the former being 379 

characterised in terms of physical-chemical properties in skeletal muscle cells (7). Thus, very little is 380 

currently known about their specific mechanisms in human skeletal muscle.  381 

TauT is a high-affinity, low-capacity transporter that carries β-alanine and taurine across membranes 382 

in a Na+ and Cl- dependent manner in a ratio of 1:1:2 (3, 30). Due to this ionic dependency, TauT operates as 383 

a secondary active transport system, whereby the transporting energy is obtained through an electrochemical 384 

gradient of Na+, which is maintained by the activity of the Na+/K+/ATPase pump (25). PAT1 is a Na+-385 

independent, H+-dependent, low-affinity, high-capacity transport system of zwitterionic amino acids, 386 

including β-alanine, taurine and GABA (10, 12). Although the PAT1 transporter is not dependent on Na+, 387 

evidence indicates that Na+ can stimulate PAT1 activity (2). This suggests that optimal PAT1 activity is 388 

coupled to the activity of the Na+/H+ exchanger, since the Na+/H+ exchanger increases the H+ gradient across 389 

the membrane, thereby increasing the driving force for PAT1 (29). 390 

Studies using the m. sartorius of frog (35) and the m. soleus of rat (14) suggest that insulin stimulates 391 

Na+/K+/ATPase pump activity by increasing intracellular Na+ affinity. In human fibroblasts, Longo (34) 392 

showed that insulin increased pump activity and Na+/K+/Cl- co-transport by increasing the Vmax of the 393 

transporters without affecting their Km. Because the activity of the Na+/K+/ATPase pump (13, 39, 44) and 394 

the Na+/H+ exchanger are stimulated by insulin (32), it has been hypothesised that hyperinsulinemia could 395 

stimulate the transport of β-alanine into human skeletal muscle, ultimately leading to increased muscle 396 

carnosine accrual in response to β-alanine supplementation (42). From an applied standpoint, higher 397 

amounts of β-alanine could be transported into skeletal muscle if the Vmax of TauT were increased, which 398 

could potentially increase the β-alanine-to-carnosine conversion inside the muscle cells over a β-alanine 399 

supplementation period. This, at least in theory, would mean that either a) the individual could attain a 400 

greater increase in muscle carnosine stores during any given supplementation period (optimising its effects) 401 

or b) the individual could reduce the required supplementation time (making β-alanine supplementation 402 

more user friendly). 403 
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Mechanisms of transport can be enhanced by increasing either the maximum velocity of the 404 

transporter (Vmax) or the affinity between the transporter and its substrate (decreased Km). Increased transport 405 

capacity is observable when substrate concentrations are above the saturation limit of the transporter, 406 

whereas increased affinity is observable when substrate concentrations are below transporter saturation. In 407 

our first experiment, the rate of β-alanine infusion was virtually the maximum tolerable, considering the 408 

degree of paraesthesia elicited. The elevation in plasma β-alanine concentrations (~3000-4000 µmol·L-1) 409 

have certainly exceeded the maximum capacity of TauT (whose Km is reported to be ~100-fold lower), but 410 

were probably below the saturation of PAT1 (whose Km for a β-dipeptidemimetic is ~10-fold higher) (22). 411 

Thus, it seems impossible to create an experimental condition that would allow the determination of whether 412 

insulin could further increase the already high capacity of the PAT1 transporter. Attaining larger 413 

concentrations of β-alanine in plasma is too far from any physiological condition and, therefore, of little 414 

practical relevance. Since we did not show any evidence of the stimulatory effect of insulin on β-alanine 415 

transport in experiment 1, it seems safe to conclude that insulin does not increase the Vmax of TauT, or the Km 416 

of PAT1.   417 

Although experiment 1 quite conclusively showed no effect of insulin on the Km of PAT1 or the Vmax 418 

of TauT, it does not rule out the possibility of insulin enhancing transport when β-alanine concentrations are 419 

below the saturation of TauT. The hypothesis in this case was that insulin could increase the affinity 420 

between β-alanine and TauT, thereby decreasing its Km. To test this remaining hypothesis, we then 421 

conducted experiment 2, where the experimental approach was essentially the same, but the β-alanine 422 

concentrations were much lower. This was attained using a typical dose of orally ingested β-alanine; one 423 

advantadge of this design is to test the stimulatory effects of insulin under conditions that are similar to 424 

typical physiological conditions. The results of experiment 2 further confirmed the lack of an effect of 425 

insulin on β-alanine transport. 426 

Collectively, the results of this in vivo human study suggest that insulin does not decrease the Km of 427 

PAT1, increase the Vmax of TauT, or decrease the Km of TauT. Although the effects on the Vmax of PAT1 428 

remain untested, the physiological plausibility of such a high β-alanine concentration in plasma is virtually 429 

non-existent, so that it has very little practical relevance. The lack of effects on PAT1 transport activity can 430 
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be explained based upon the fact that Na+ increases PAT1 activity via an increased proton gradient only 431 

when intracellular pH is acidic, ranging from 5.5 to 6.0 (10, 12, 15, 29). Since these conditions are one order 432 

of magnitude away from the physiological pH of resting muscle (pH ~7.0), we speculate that any putative 433 

effect of insulin on the Na+/H+ exchanger, and ultimately on PAT1 activity, would not be observable under 434 

physiological conditions. Although it is difficult to provide a clear explanation for the lack of effects of 435 

insulin on TauT activity, we can only speculate that TauT could be less sensitive to increases in the 436 

intramembrane Na+ gradient, brought about by increased Na+/K+/ATPase activity, than other transporters, 437 

which might be a consequence of the high-affinity and the rapid saturation of TauT. Alternatively, any 438 

effects of insulin on TauT activity at the molecular level could be so minor that they do not translate into 439 

physiological effects that are observable in whole-body fully integrated systems. Therefore, despite the use 440 

of highly sensitive methods in this study, no stimulatory effects of insulin were detected, meaning that they 441 

are either non-existent or too small to be of any physiological significance.  442 

Our findings contradict those by Stegen et al. (42), who showed that supplementation of 3.2 g·d-1 of 443 

β-alanine (4 daily doses of 800 mg) for 46 days significantly increased muscle carnosine concentration in the 444 

group that supplemented β-alanine along with meals when compared to the group that consumed β-alanine 445 

in between meals. Although this study was not designed to assess β-alanine transport or the effects of insulin 446 

directly, the increased muscle carnosine accretion led to the suggestion that insulin could stimulate β-alanine 447 

transport into skeletal muscle. This effect was, however, only shown in the m. soleus and not in the m. 448 

gastrocnemius, casting some doubt upon this purported effect. The current study provides clear experimental 449 

support to show that there is no stimulatory effect of insulin on β-alanine transport into skeletal muscle. One 450 

alternative explanation for the findings by Stegen et al. (41) is that, instead of an effect of hyperinsulinemia,  451 

food intake might have increased the availability of substrates for the enzymes that degrade β-alanine (4-452 

aminobutyrate-2-oxoglutarate transaminase and alanine-glyoxylate transaminase), which would have 453 

increased the competition for the binding site of the enzymes, thereby resulting in greater β-alanine 454 

availability for synthesising carnosine. This hypothesis, however, remains highly speculative and requires 455 

experimental confirmation.  456 
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It is interesting to note that a large increase in muscle β-alanine was shown 2-3 hours following β-457 

alanine administration in both experiments. Although this rapid increase points to the efficiency of the 458 

transport systems, the administration of ~10-fold larger doses in experiment 1 vs. experiment 2 resulted in 459 

muscle β-alanine accretion of comparable magnitudes, thereby suggesting a saturation in β-alanine transport. 460 

The excess of β-alanine that does not enter the muscle seems to be, at least in part, eliminated in the urine, as 461 

indicated by the high amount (~50% of the total administered) of β-alanine appearing in the urine in 462 

experiment 1. In the experiment 2, we did not collect 24-h urine samples to measure β-alanine losses, but 463 

Harris et al. (2006) (27) showed a much smaller (~3% of total administered) β-alanine loss in urine with the 464 

same dose (800 mg) of β-alanine (taken orally) as we used in experiment 2. These results appear to be 465 

consistent with a high-affinity, low-capacity transporting system, and might suggest that TauT (high-466 

affinity, low-capacity) is the major β-alanine transporter in the skeletal muscle whilst PAT1 (low-affinity, 467 

high-capacity) might play a secondary role. Further studies are needed to precisely characterise the specific 468 

roles of TauT and PAT1 on muscle β-alanine uptake. 469 

The saturation of β-alanine transport appears to occur at plasma concentrations close to those elicited 470 

by typical supplemental doses of β-alanine, which indicates that the ingestion of larger doses will probably 471 

not result in substantial increases in β-alanine uptake by the skeletal muscle but, instead, will likely result in 472 

larger losses in urine. The rapid and marked increase in muscle β-alanine in only 2-3 hours 473 

following/alongside β-alanine administration constrasts with the lack of increase in muscle carnosine in the 474 

same period.  475 

One possible explanation for the mismatch between β-alanine transport (rapid) and carnosine 476 

synthesis (slow) could be related to the β-alanine transport systems, which, despite being saturable, appear to 477 

be relatively more efficient than the carnosine synthase enzyme. This could suggest that β-alanine transport 478 

is not the limiting factor for carnosine synthesis, at least when ample β-alanine is available. Under these 479 

circumstances, the activity of carnosine synthase, rather than β-alanine availability, could be limiting for 480 

carnosine synthesis. This notion is supported by a cell culture study where an excess of β-alanine availability 481 

led to the saturation of carnosine synthase, making it the rate-limiting factor for β-alanine-to-carnosine 482 

conversion (6), and by chronic β-alanine supplementation studies showing that carnosine saturation may not 483 
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occur even after 24 weeks of supplementation (40). This is also in line with pharmacokinectic studies that 484 

showed elevated whole-body retention rates (~97%) when typical doses of β-alanine were orally ingested, 485 

along with only minimal losses in urine (27), and with the low rate of β-alanine-to-carnosine conversion in 486 

the skeletal muscle (typically <6% of the total β-alanine ingested) (9, 40). This temporal mismatch would 487 

result in free β-alanine accumulation in muscle, which would fit with the findings of Blancquaert et al. (9) 488 

who showed that the excess of β-alanine becomes available to transaminases that degrade β-alanine in the 489 

muscle and liver, ultimately directing β-alanine towards oxidation (9). If the activity of carnosine synthase 490 

was the rate-limiting factor for carnosine synthesis when β-alanine is largely available in the skeletal muscle, 491 

it would be questionable whether increasing β-alanine uptake into skeletal muscle would result in more 492 

carnosine synthesis unless this were accompanied by an increase in the activity of carnosine synthase. If we 493 

assume this hypothesis to be correct, then it would make sense to find ways to increase carnosine synthase 494 

activity, rather than β-alanine availability, as a means to maximise carnosine accretion in the skeletal 495 

muscle. 496 

 On the other hand, the experimentally determined Km of carnosine synthase, which is 90 µmol·l-1 497 

(18) is far in excess of the muscle β-alanine concentrations (~5-8 µmol·l-1) attained following β-alanine 498 

administration in our study. This means that much larger β-alanine concentrations would be required to 499 

significantly elevate the activity of carnosine synthase, which somewhat contradicts the idea that further 500 

increased β-alanine availability is not limiting for carnosine synthesis when β-alanine is already elevated. As 501 

such, we cannot rule out the possibility that other strategies to increase β-alanine transport to skeletal muscle 502 

could result in further increased muscle carnosine synthesis. Our study clearly demonstrates that 503 

hyperinsulinemia is not one of these strategies. It also seems that increasing plasma β-alanine concentrations 504 

above those already achieved with currently used supplemental doses have little potential to further enhance 505 

carnosine synthesis. Future studies could, however, focus upon other ways to maximise carnosine accretion 506 

and the molecular mechanisms underlying such effects should they exist.    507 

In conclusion, the present study showed that high insulin concentrations do not stimulate β-alanine 508 

transport into skeletal muscle, neither does it increase whole-body β-alanine retention. The lack of effect 509 

was demonstrated under both physiological and supraphysiological β-alanine concentrations, suggesting that 510 
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insulin has no physiologically relevant effect on any of the β-alanine transporters. From an applied 511 

perspective, our findings suggest that β-alanine ingestion does not need to be accompanied by a high-512 

carbohydrate meal; therefore, β-alanine supplementation strategies that manipulate insulin concentrations 513 

seem not to be required. 514 

 515 

 516 
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Figure 1. Experimental design and representation of the main trials in both experiments 682 

where supraphysiological β-alanine concentrations were attained with intravenous 683 

infusion (Experiment 1, left panel) and physiological concentrations were attained with 684 

the ingestion of typical doses of β-alanine (Experiment 2, right panel). HI=high insulin. 685 

 686 

Figure 2. Representative chromatograms displaying monitored transitions of β-alanine, 687 

carnosined4, and carnosine in plasma, urine and skeletal muscle extracts.  688 

 689 

Figure 3. Plasma insulin concentrations during 180 min of intravenous insulin infusion 690 

(HI) or basal fasting insulin (LI) in experiment 1 (panel A) and during the 120 min of 691 

insulin infusion or basal fasting in experiment 2 (panel B).  692 

AUC: area under the curve (p<0.0001). 693 

 694 

Figure 4. Panel A: Plasma β-alanine concentrations during the 180 min β-alanine 695 

infusion period in both high (HI) and low insulin (LI) conditions (left chart), and area 696 

under the β-alanine curve (AUC) in both conditions (right chart). No differences 697 

between LI and HI were shown at any time point (all p>0.05). Panels B and C: 698 

Intramuscular concentrations of β-alanine and carnosine in muscle extracts obtained 699 

before and after β-alanine infusion in both HI and LI conditions. Panel D: Total β-700 

alanine recovered in the 24-h urine samples collected after infusion in both HI and LI 701 

conditions. All results refer to data obtained in the experiment 1. 702 

p-values on panels B and C refer to condition-by-time interaction. 703 

Two participants were assessed per trial, meaning that a total of 12 independent 704 

experiments were conducted, totalising 24 observations. 705 
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 706 

 707 

Figure 5. Subjective ratings of paraesthesia reported before and throughout β-alanine 708 

infusion in experiment 1. All participants reported no paraesthesia in experiment 2 at 709 

any time point following β-alanine ingestion (therefore, data are not shown). No 710 

significant differences between conditions were shown. 711 

 712 

Figure 6. Panel A: Plasma β-alanine concentrations during the 120 min after β-alanine 713 

ingestion in both high (HI) and low insulin (LI) conditions (left chart), and area under 714 

the β-alanine curve (AUC) in both conditions (right chart). No differences between LI 715 

and HI were shown at any time point (all p>0.05). Panel B: β-alanine concentrations 716 

measured in muscle extracts obtained before and after β-alanine ingestion in both HI 717 

and LI conditions. All results refer to data obtained in the experiment 2. 718 

p-values on panel B refer to condition-by-time interaction (above) and Tukey-Kraemer 719 

adjusted pairwise comparison vs. before ingestion. 720 

Two participants were assessed per trial, meaning that a total of 6 independent 721 

experiments were conducted, totalising 12 observations. 722 
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