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Abstract. TS2Polar holes were observed in the high-latitude
ionosphere during a series of multi-instrument case studies
close to the Northern Hemisphere winter solstice in 2014
and 2015. These holes were observed during geomagneti-
cally quiet conditions and under a range of solar activities5

using the European Incoherent Scatter Scientific Association
(EISCAT) Svalbard Radar (ESR) and measurements from
Global Navigation Satellite System (GNSS) receivers. Steep
electron density gradients have been associated with phase
scintillation in previous studies; however, no enhanced scin-10

tillation was detected within the electron density gradients at
these boundaries. It is suggested that the lack of phase scin-
tillation may be due to low plasma density levels and a lack
of intense particle precipitation. It is concluded that both sig-
nificant electron density gradients and plasma density levels15

above a certain threshold are required for scintillation to oc-
cur.

1 Introduction

The F region ionosphere is a weakly ionised plasma in the
Earth’s atmosphere extending from an altitude of ∼ 15020

to ∼ 500 km, above which it merges with Earth’s plasma-
sphere. Large-scale plasma structures with a horizontal ex-
tent of tens to hundreds of kilometres are routinely observed
in the F region high-latitude ionosphere (Tsunoda, 1988).
One type of structure commonly observed are polar cap25

patches, also referred to as patches, which are enhancements
of plasma density with at least twice the background value
and a horizontal spatial extent of 100 km or more (Crowley,
1996). Buchau et al. (1983) observed such patches of en-
hanced ionisation drifting anti-sunward with the background 30

plasma flow in the central region of the polar cap at Thule,
Greenland: 77.5◦ N, 69.2◦W; 85.4◦MLAT (magnetic lati-
tude), 32.4◦MLON (magnetic longitude)CE1 . The patch den-
sities were larger than could be produced due to the observed
flux of precipitating particles, and it was concluded that the 35

patches were not produced locally by precipitation. Weber
et al. (1984) suggested that the patches were produced on
the dayside at auroral or sub-auroral latitudes and then con-
vected anti-sunward to higher, polar latitudes. A comparison
of average maps of the electron density and the high-latitude 40

convection pattern suggested that solar-produced plasma was
drawn into the polar cap as a continuous density enhance-
ment known as the “tongue of ionisation” (TOI; Foster et
al., 1984TS3 ). Several mechanisms have been proposed to
break a TOI into a series of patches, including variations in 45

the high-latitude convection pattern moving flux tubes in and
out of sunlight (Anderson et al., 1988), expansion and con-
traction of the high-latitude convection pattern in response
to transient bursts of reconnection drawing in plasma from
different latitudes (Cowley and Lockwood, 1992; Lockwood 50

and Carlson, 1992; Carlson et al., 2002, 2004, 2006), vari-
ations in the y component of the interplanetary magnetic
field (IMF) drawing in plasma from different magnetic local
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2 L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes

times (MLT; Sojka et al., 1993), variation in the z compo-
nent of the IMF altering whether plasma could be drawn in
to the polar cap (Valladares et al., 1998), erosion of plasma
densities due to enhanced recombination during a flow chan-
nel event (Rodger et al., 1994; Valladares et al., 1994), and5

modification of the density of the photoionised plasma trans-
ported into the polar cap by particle precipitation (Walker
et al., 1999; Millward et al., 1999). Patches have been ob-
served travelling thousands of kilometres across the polar
regions (Weber, 1986TS4 ; Oksavik et al., 2010; Nishimura10

et al., 2014), and they are primarily associated with times
when the z component of the IMF is negative (Buchau and
Reinisch, 1991).

Blobs are also plasma density enhancements; however,
unlike patches, they occur outside the polar cap. They are15

further categorised into boundary blobs, sub-auroral blobs,
and auroral blobs (Rino, 1983TS5 ; Jin et al., 2016). Bound-
ary blobs are found near the equatorward auroral bound-
ary, neighbouring the ionospheric trough’s poleward wall.
Parkinson et al. (2002) observed patches leaving the polar20

cap, slowing in the anti-sunward direction and then begin-
ning to move zonally. It was suggested that these patches
would form boundary blobs; this was later confirmed by
Pryse et al. (2006), who compared the plasma density in a
polar cap patch to that within a boundary blob that the patch25

subsequently formed. Sub-auroral blobs have a similar ap-
pearance to boundary blobs; however, they are found in the
ionospheric trough. Auroral blobs are found within the au-
roral oval and seem to be longitudinally restricted. The most
likely mechanism for their creation is particle precipitation30

(Jones et al., 1997).
Not all ionospheric structures are enhancements of the

background plasma; polar ionospheric holes are regions of
low plasma density. Brinton et al. (1978) observed a deple-
tion of this kind under low solar activity (F10.7= 71 sfu)35

and low magnetic activity (Kp= 2) conditions. This deple-
tion was also associated with a minimum of electron tem-
peratures, indicating the absence of local particle precipita-
tion. Polar holes are generally located between 21:00 and
06:00 MLT and between 70 and 80◦MLATCE2 and typically40

have steep plasma density gradients at their boundaries. They
are believed to be produced when plasma in the high-latitude
convection pattern circulates in perpetual darkness. Plasma
loss by recombination in the absence of a plasma source
causes density levels to drop. This idea is supported by the45

conditions under which polar holes have generally been ob-
served, namely quiet geomagnetic activity (Kp 2 or less)
when the contribution to the plasma densities from particle
precipitation is low (Brinton et al., 1978). The electron den-
sities inside of the polar holes are seen to reach a minimum in50

the range of 108–1011 electronsm−3 (Obara and Oya, 1989;
Benson and Grebowsky, 2001) and, while there is variation
between holes, inside of a singular polar hole the density
level is very consistent.

Smaller-scale structures can arise at steep plasma den- 55

sity gradients due to instability processes such as the gra-
dient drift instability (GDI) (Keskinen and Ossakow, 1983)
and the velocity-shear-driven instability (Kelvin–Helmholtz
instability, KHI). Carlson et al. (2008) proposed that the
real process involves both mechanisms acting on different 60

timescales. The smaller-scale (tens of metres to tens of kilo-
metres) plasma density structures that arise cause variations
in the refractive index of the ionosphere. As a GNSS sig-
nal passes through this region, refraction and/or diffraction
of the radio wave causes fluctuations in the phase and am- 65

plitude of the signal. Ionospheric scintillation is the rapid
fluctuation of the received signal which can disrupt appli-
cations using GNSS, as thoroughly reviewed by Hapgood
(2017). Since the Second World War, large numbers of stud-
ies have shown the effect of ionospheric irregularities on ra- 70

dio signals, as reviewed by Aarons (1982). The morphology
of these irregularities has been extensively studied at high
latitudes (e.g. Kersley, 1972TS6 ), along with the effects upon
the propagation of radio signals in this region (e.g. Kersley
et al., 1995). 75

More recently studies have focused on Global Naviga-
tion Satellite System (GNSS) frequencies, where scintilla-
tion poses a substantial threat to the integrity, availability, and
accuracy of GNSS positioning, leading to positioning errors
and service outages due to signal tracking problems at the 80

GNSS receiver. A direct connection between gradients in the
total electron content (TEC) at the edge of a plasma stream
with both phase and amplitude scintillation has been ob-
served (Mitchell et al., 2005), and plasma structuring caused
by auroral precipitation has been linked to the loss of sig- 85

nal lock by a GNSS receiver (Elmas et al., 2011; Smith et
al., 2008; Oksavik et al., 2015). A statistical study has shown
an agreement between both phase and amplitude scintilla-
tion with the asymmetric distribution of polar cap patches
around magnetic midnight (Spogli et al., 2009) and that au- 90

roral emissions correlate with GNSS signal phase scintil-
lation (Kinrade et al., 2013; van der Meeren et al., 2015).
Phase and amplitude scintillation can be associated with the
larger spatial structures related to polar cap patches (Alfonsi
et al., 2011). The climatology of ionospheric scintillation at 95

polar latitudes in the Northern Hemisphere was determined
over almost two solar cycles, and the dependence upon solar
cycle, geomagnetic activity, and solar wind conditions was
shown by De FranchesciTS7 et al. (2019). Phase scintillation
is usually the dominant process at high latitudes (Spogli et 100

al., 2009; Prikryl et al., 2015), and this is the focus of the
present study.

Phase scintillation is commonly quantified by the standard
deviation of the signal phase, σϕ , which is usually computed
over 60 s. The refractive component of the signal is usually 105

assumed to be slowly varying and associated with frequen-
cies of less than 0.1 Hz. Therefore, by only considering fre-
quencies greater that 0.1 Hz, the diffractive effects (usually
referred to as scintillation) can be distinguished (Fremouw et
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L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes 3

al., 1978). However, the 0.1 Hz cutoff can give spurious ob-
servations of phase scintillation as a result of erroneous data
detrending (Forte and Radicella, 2002). When a GNSS satel-
lite is observed at low elevation angles, the σϕ index cannot
distinguish between phase scintillation and background noise5

for weak to moderate phase scintillation (Forte, 2005). Wang
et al. (2018) showed that rapid variations in the phase of a
trans-ionospheric signal can arise as a result of plasma struc-
tures moving rapidly relative to an observer at ground level
and can therefore give the appearance of phase scintillation.10

Rapid changes in the spatial distribution of electron density
can also introduce similar effects, as the GNSS satellite-to-
receiver ray path can sweep through these irregularities at
high speed, resulting in high-frequency refractive variations
(McCaffrey and Jayachandran, 2019).15

The presence or absence of scintillation effects on trans-
ionospheric radio signals have been extensively studied for
electron density enhancements in the high-latitude iono-
sphere; however, the effect of the steep plasma density gra-
dients at the edge of depletions, such as polar holes, has not20

been as comprehensively considered. The purpose of this pa-
per is to report on the effects of such steep density gradi-
ents on GNSS signals, observed in three multi-instrument
case studies close to northern winter solstice, and to pro-
vide observational evidence that supports the work of Aarons25

(1982).

2 Instrumentation

The European Incoherent Scatter Scientific Associa-
tion (EISCAT) operates the EISCAT Svalbard Radar
(ESR) at Longyearbyen (78.2◦ N, 16.0◦ E; 15.2◦MLAT,30

112.9◦MLON) on Svalbard (Wannberg et al., 1997). The site
consists of two antennas, a 32 m parabolic dish, and a 42 m
parabolic dish. The 42 m dish is fixed along the direction of
the local geomagnetic field lines (azimuth −179◦; elevation
81.6◦), whereas the 32 m dish is steerable with respect to both35

azimuth and elevation. Observations of the electron density,
electron temperature, ion temperature, and ion drift line of
sight velocity in the ionosphere from this incoherent scatter
radar (ISR) are used in this study.

The Super Dual Auroral Radar Network (SuperDARN) is40

a network of high-latitude coherent scatter radars (Green-
wald et al., 1995; Chisham et al., 2007; Nishitani et al., 2019)
that observe line-of-sight plasma velocities in the F region.
These measurements are assimilated using the map potential
technique (Ruohoniemi and Baker, 1998TS8 ), which uses an45

ionospheric convection model to map the electrostatic poten-
tial pattern. Electrostatic equipotential lines are streamlines
of ionospheric convection flows. As the plasma drift velocity
is perpendicular to both the electric and magnetic fields in
the F region (E×B TS9 drift), the plasma convection pattern50

can be directly inferred from the electric potential maps.

Figure 1. The y and z components of the IMF, and the clock angle
observed by the ACE spacecraft between 12:00 and 23:59 UT on
17 December 2014. The data have been time-shifted to the nose of
the Earth’s bow shock.

GNSS signals detected by NovAtel GPStation-6 receivers
at the Kjell Henriksen Observatory (KHO; 78.2◦ N, 16.0◦ E;
15.2◦MLAT, 112.9◦MLON) can be used to infer the ef-
fects of the ionosphere on radio waves travelling though this 55

medium. Amplitude scintillation is measured using the S4
index, which is the square root of the variance of received
power divided by the mean value of the received power
(Briggs and Parkin, 1963). Phase scintillation is measured
using the σφ index, which is the standard deviation of the 60

detrended carrier phase φ in radians (Fremouw et al., 1978)
over 60 s.

The IMF was observed by the Advanced Composition Ex-
plorer (ACE), which is a NASA spacecraft orbiting the L1
Lagrangian point of the Earth–Sun system, roughly 1.54× 65

106 km from the Earth (Zwickl et al., 1998)CE3 . In addition
to the x, y, and z components of the IMF, the clock angle,
given by arctan |By |

|Bz|
, is also considered. When the clock an-

gle is greater than 45◦ either |By |> |Bz| or Bz < 0; in ei-
ther case a two-cell convection pattern is expected with anti- 70

sunward flow drawing plasma from day to night across the
polar cap (Thomas and Shepherd, 2018).

Total electron content (TEC) maps are used to put these
measurements into context. These were obtained from the
Madrigal database at the MIT Haystack Observatory (Rid- 75

outTS10 and Coster, 2006; Vierinen et al., 2016). Two other
indices are used within this study: the Kp index is used as
a proxy for disturbances to the geomagnetic field, and the
F10.7 cm solar flux is used as a proxy for solar activity. These
indices were both obtained from the UK Solar System Data 80
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4 L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes

Figure 2. TEC maps for 17 December 2014 extrapolated from TEC collected by a network of GNSS receivers at 3-hourly intervals between
12:00 and 21:00 UT.

Centre (UKSSDC) at the Rutherford Appleton Laboratory,
UK.

3 Results

3.1 Case study: 17 December 2014

The 3-hourly Kp values observed on 17 December 2014 be-5

tween 12:00 and 23:59 UT ranged between 1− and 1+, in-
dicating quiet conditions. The F10.7 cm solar flux was rel-
atively high; the value of 198.5 sfu is typical of solar max-
imum. The IMF observed by the ACE spacecraft between
12:00 and 23:59 UT (Fig. 1) was characterised by a positive10

value for the IMF By (mean value 3.9 nT). IMF Bz was more
variable but generally showed smaller values (mean value of
1.7 nT). The clock angle was generally greater than 45◦ from
14:00 to 19:00 UT, and the corresponding SuperDARN plots
(discussed later in this section) show that a two-cell convec-15

tion pattern dominated until at least 20:00 UT.
Total electron content (TEC) maps (Fig. 2) show the

overall plasma density throughout the high-latitude regions.
The TEC maps at 12:00 and 15:00 UT display values of
∼ 2 TECu (dark blue) in the polar cap. At 18:00 UT and20

21:00 UT larger electron densities can be observed crossing
the polar cap in a two-cell convection pattern, with values
of ∼ 15 TECu (yellow), indicating that plasma produced by
photoionisation on the dayside is being drawn into the polar
cap. This plasma is being drawn into the polar cap during 25

relatively quiet conditions (Kp∼ 1) and is consistent with a
two-cell convection patternCE4 .

The electron densities and temperatures observed by the
field-aligned 42 m dish of the EISCAT Svalbard Radar (ESR)
between 12:00 and 23:59 UT are shown in Fig. 3. The scales 30

for this plot have been chosen to enable a clear comparison
with other figures presented in this paper. A clear depletion
in the electron densities is observed between approximately
16:00 and 18:00 UT at all altitudes. The electron and ion tem-
peratures are not elevated at this time with values of approxi- 35

mately 1000 K, suggesting that this depletion is void of parti-
cle precipitation and did not arise from enhanced recombina-
tion due to Joule heating. The ESR does not show a substan-
tial plasma velocity aligned with the radar beam. This radar
observed at an elevation of 81.6◦, which is aligned with the 40

magnetic field line in the F region. There was no substan-
tial component of velocity observed along the magnetic field
line. In order to further investigate the electron density de-
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L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes 5

Figure 3. CE5Electron densities, electron temperatures, ion temperatures, and ion drift line of sight velocity measured by the 42 m dish of
the ESR observing at an azimuth of 184.5◦ and an elevation of 81.6◦ between 12:00 and 23:59 UT on 17 December 2014.

Figure 4. Maximum electron density between 90 and 400 km for the ESR 42 m observation on the 17 December 2014 at a 1 min resolution.
A five point running mean was applied to these data. The upper horizontal line is the average value, and the lower horizontal line is 35 % of
the average. A hole can be seen between 16:29 and 18:00 UT.

www.ann-geophys.net/38/1/2020/ Ann. Geophys., 38, 1–16, 2020



6 L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes

Figure 5.
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L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes 7

Figure 5. Electric potential patterns inferred from the SuperDARN radars for 16:28, 17:14, and 17:48 UT on 17 December 2014 as a function
of geomagnetic latitude and magnetic local time. Magnetic noon is shown in panels (c) and (e); dusk is shown in panels (a), (d), and (g); and
dawn is shown in panels (b), (c), (e), (f), (h), and (i)CE6 . Magnetic latitude is indicated by the grey dashed circular lines at 10.0◦ increments.
The grey lines show the location of satellite passes from GNSS satellites, assuming an ionospheric intersection of 350 km. The SuperDARN
plot from 16:28 UT includes satellite passes from 16:00 to 16:58 UT, the 17:14 UT plot includes satellite passes from 16:58 to 17:28 UT,
and the 17:48 UT plot includes satellite passes from 17:28 to 18:02 UT. These time intervals were chosen as the inspection of the whole
SuperDARN data set at a 2 min resolution indicated that the convection patterns were relatively stable during these intervals. Panels (b), (c),
(e), (f), (h), and (i) show the area around the satellite passes in more detail. Colours represent phase scintillation (b, e, h) and TEC (c, f, i).
The thick black line indicates the position of the polar hole observed using the 42 m dish of the EISCAT Svalbard Radar.

pletion, a line plot of the maximum detected electron density
from 90 to 400 km is shown (Fig. 4). In addition to the maxi-
mum density, two other values are present on the plot: the av-
erage value for the whole day and 35 % of the average value.
The depletion was defined as the time when the electron den-5

sity dropped below the 35 % line; in this case, the depletion
was defined as starting at 16:29 UT and ending at 18:00 UT.

Figure 5 shows the high-latitude convection pattern in-
ferred from the SuperDARN radars for three representative
times during the period that the electron density depletion10

was observed by the ESR. These clearly show a two-cell con-
vection pattern, with plasma drawn anti-sunward across the
polar cap. The ESR observes at a given location, which ro-
tates under the convection pattern. The depletion, identified
in Fig. 4, is indicated by a black line. At midwinter, Svalbard15

is in perpetual darkness. On 14 December, the ground-level
terminator is at a maximum latitude of 68◦ N, which corre-
sponds to a maximum magnetic latitude CE7of 76◦MLAT at
21:00 UT. This depletion is nightward of the terminator, and
the SuperDARN convection patterns suggest that this plasma20

is circulating in perpetual darkness. It is interpreted as a polar
hole.

The data collected by the GNSS receiver were from the
GPS, Galileo, and GLONASS systems, and the receiver pro-
vided the azimuth and elevation of the satellite with respect 25

to the receiver. This was converted into a latitude and lon-
gitude using the radio wave path and assuming that the data
correspond to 350 km in altitude, in line with previous studies
(e.g. Cervera and Thomas, 2006; Forte and Radicella, 2002).
At low elevation angles, the GNSS TEC and scintillation data 30

can become unreliable due to multi-path issues; thus, obser-
vations at an elevation of less than 30◦ were discarded. This
cutoff has been used in previous studies, such as Mitchell
et al. (2005). Signal lock times below 240 s were also dis-
carded, in line with previous studies (e.g. van der Meeren 35

et al., 2015). The satellite tracks were overlaid onto Super-
DARN plots (Fig. 5).

TEC and phase scintillation data from GNSS receivers
were taken during times when the polar hole was observed.
This hole is observed for 1.5 h, and several satellite paths 40

are present during this time window. The GNSS TEC data
clearly show lower TEC levels at and around the area marked
by the ESR as a hole, and, on some of the satellite trajecto-
ries, sharp changes can be seen with the edge of the hole.
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8 L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes

Figure 6. The y and z components of the IMF as well as the clock
angle observed by the ACE spacecraft between 12:00 and 23:59 UT
on 10 December 2015, shown in the same format as Fig. 1. The data
have been time-shifted to the nose of the Earth’s bow shock.TS11

A one-to-one correspondence between the GNSS TEC data
and the EISCAT data is neither expected nor observed. It
is highly likely that the polar hole will evolve during the
time for which it is observed; therefore, the plots in Fig. 5
include both spatial and temporal variation. The ESR ob-5

serves the polar hole for 91 min, and the plasma velocity sur-
misedCE8 from the electric potential patterns inferred from
the SuperDARN radars (Fig. 5) at this location is of the order
of 150 ms−1; this indicates that the polar hole has a horizon-
tal extent of some 800 km in a direction parallel to the plasma10

flow. In summary, the combination of the EISCAT and GNSS
TEC measurements indicate that the polar hole is present for
an extended period of time (of the order of hours) over a large
spatial scale (hundreds of kilometres).

Panels showing the location of phase scintillation on the15

satellite tracks are also displayed in Fig. 5. A threshold of
0.2 rad was used to identify phase scintillation. Different
authors have used different thresholds for phase scintilla-
tion, including 0.2 rad (e.g. van der Meeren, 2015), 0.25 rad
(e.g. Alfonsi et al., 2011), and 0.3 rad (e.g. Kinrade et al.,20

2013). The purpose of using a low threshold within the
present study was to ensure that any possible indication
of phase scintillation was included. As TEC and scintilla-
tion are collected simultaneously, comparing the two might
be expected to show increased scintillation where there are25

changes in TEC. No scintillation was observed on the edges
of the holes.

3.2 Case study 2: 10 December 2015

The F10.7 cm solar flux for this case was lower than in the
first study, with a value of 108.5 sfu. The Kp index was 30

higher, with a value of 3 from 12:00 to 18:00 UT and a value
of 4 at 21:00 and 24:00 UT, indicating an active state, but not
storm levels. Once again the IMF was variable, with Bz tak-
ing positive and negative values. By was consistently larger
than Bz and was dominantCE9 . As in the previous case study, 35

a two-cell convection pattern was observed.
The TEC maps at 18:00 and 21:00 UT are shown in Fig. 7.

As in the previous case study, these maps indicate higher den-
sity plasma produced at lower latitudes being drawn across
the polar cap within the high-latitude convection pattern, 40

with this effect maximising at 21:00 UT.
The 42 m ESR observations (Fig. 8) for this day show an

electron density depletion that contains all of the previously
discussed markers, with no significant velocity in the field-
aligned direction. 45

Using the same method as in the previous case, the hole
was identified, with the start and end times given as 15:15
and 16:43 UT respectivelyCE10 . The 32 m ESR observations
(Fig. 15) show a depletion at around 15:00 UT.

The high-latitude convection pattern was inferred from the 50

SuperDARN radars (Fig. 11), with the location of the polar
hole observed in the 42 m ESR observations and GNSS TEC
and phase scintillation measurements overlaid as in the previ-
ous case study. The 32 m ESR observations (Fig. 9) were di-
rected poleward, indicating that this is a polar hole rather than 55

the ionospheric trough, which would be located equatorward
of the radar. A substantial plasma velocity of some 300 ms−1

towards the radar was observed at 16:00 UT, indicating cross-
polar flow in the equatorward direction. The high-latitude
convection pattern inferred from the SuperDARN radars also 60

shows anti-sunward cross-polar flow but with a more asym-
metric convection pattern than was observed on 17 Decem-
ber 2014. On 10 December 2015 there was a clear dominant
dusk cell, drawing plasma across the polar cap from the pre-
noon sector. The polar hole observed with the 42 m dish of 65

the ESR was in the sunward return flow in the dusk convec-
tion cell.

CE11The phase scintillation plot for 15:16 to 16:14 UT
(Fig. 11b) has some satellite trajectories passing through the
hole boundary but displays no significant scintillation on any 70

of the paths. The later plot (Fig. 11e) does contain phase scin-
tillation, although none of the elevated scintillation matches
up to hole boundaries; instead, the scintillation is seen in re-
gions of high and elevated electron density.

4 Discussion 75

A series of polar ionospheric holes have been detected in
the high-latitude nightside ionosphere in case studies close
to winter solstice, under varying solar intensities and geo-
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L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes 9

Figure 7. TEC maps for 10 December 2015 extrapolated from TEC collected by a network of GNSS receivers at 3-hourly intervals between
12:00 and 21:00 UT.

Table 1. The electron density gradient at each edge of the polar hole,
and the average electron density inside the hole at 350 km observed
by the ESR 42 m.

Date First edge Second edge Average hole
(1Ne m−3 h−1) (1Ne m−3 h−1) (Ne m−3)

17 Dec 2014 1.0× 1011 0.91× 1011 0.40× 1011

10 Dec 2015 3.5× 1011 1.6× 1011 0.22× 1011

12 Dec 2015 0.79× 1011 1.0× 1011 0.18× 1011

magnetic disturbance levels. The first study on 17 Decem-
ber 2014 was characterised by high levels of solar activ-
ity (198.5 sfu) and quiet geomagnetic conditions. The sec-
ond case study on 10 December 2015 also had lower lev-
els of solar activity of (108.5 sfu) but had more active geo-5

magnetic conditions (Kp= 3) than in the previous study. A
third case study conducted under quiet geophysical condi-
tions (Kp≤ 2) and moderate solar activity (F10.7 cm solar
flux= 116.7 sfu) on 12 December 2015 showed similar re-
sults (not shown).10

Ionospheric polar holes contain much lower electron den-
sities than those detected during the rest of the day. This
study used the point when the maximum density at a given
time dropped 35 % below the daily average maximum den-
sity to identify these holesCE12 . The changes in electron 15

density are associated with large electron density gradients.
Table 1 shows the electron density gradients and the aver-
age hole electron density, based on observations from the
ESR 42 m. The average polar hole density observed in this
study is comparable to those previously reported of 108– 20

1011 electronsm−3 (Obara and Oya, 1989; Benson and Gre-
bowsky, 2001). Steep electron density gradients are observed
at the edges of the holes, and these are expressed in units of
1Ne m−3 h−1 CE13 . Although these gradients are expressed
in units of per hour (h−1), they were calculated from suc- 25

cessive observations by the ESR 42 m (these measurements
are typically 1 min apart). The spatial extent of these holes
was at least several hundred kilometres, as inferred from the
GNSS TEC measurements (all studies) and the ESR 32 m
observations (case study from 17 December 2014). Polar 30

holes are usually associated with quiet geomagnetic condi-
tions (Kp< 2). It is notable that, on 10 December 2015, a
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Figure 8. Electron densities, electron temperatures, ion temperatures, and ion drift line of sight velocity measured by the 42 m dish of the
ESR observing at an azimuth of 184.5◦ and an elevation of 81.6◦ between 12:00 and 23:59 UT on 10 December 2015.

Figure 9. As in Fig. 4 but for 10 December 2015. A polar hole can be seen between 15:24 and 16:25 UT.

Ann. Geophys., 38, 1–16, 2020 www.ann-geophys.net/38/1/2020/
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Figure 10. Electron densities and ion drift line of sight velocities observed by the 32 m dish of the ESR at−43◦ azimuth and 30◦ elevation (a,
b) and at −14◦ azimuth and 30◦ elevation (c, d) between 12:00 and 23:59 UT on 10 December 2015.TS12

polar hole was observed under more active geomagnetic con-
ditions (Kp= 3).

The IMF conditions during the time when the polar
holes were observed, and for several hours beforehand,
were appropriate for anti-sunward cross-polar convection.5

The ground-level solar terminator for winter is only above
70◦MLAT between 15:00 UT and slightly after 21:00 UT,
reaching a maximum latitude of just under 76◦MLAT on
the dayside at around 21:00 UT, creating the possibility that
plasma within the high-latitude convection pattern could cir-10

culate in perpetual darkness; thus, the plasma undergoes
recombination whilst simultaneously being insulated from
photoionisation, or precipitation, creating a polar holeCE14 .

Phase scintillation has previously been observed to coin-
cide with large plasma gradients such as on the edge of iono-15

spheric enhancements, including polar cap patches (Jin et
al., 2017), the tongue of ionisation (van der Meeren et al.,
2014), plasma structures associated with the aurora (Kin-
rade et al., 2013; Oksavik et al., 2015; van der Meeren et
al., 2015), and the mid-latitude trough (Pryse et al., 1991).20

The structures that cause scintillation arise due to the gra-
dient drift instability and/or the Kelvin–Helmholtz instabil-
ity (Keskinen and Ossakow, 1983; Carlson et al., 2008). In
the present study, once the boundaries and the large electron
density gradients associated with them were identified, these25

boundaries were investigated for elevated levels of phase
scintillation. A threshold of 0.2 rad was used; the purpose of
this low value was to ensure that any possible indication of
phase scintillation was included. Across all of the observed
GNSS points coinciding with the polar hole boundaries, no30

such levels of phase scintillation were detected. Phase scin-
tillation usually dominates at high latitudes (e.g. Prikryl et
al., 2015), although amplitude scintillation has also been ob-
served (e.g. Mitchell et al., 2005). The present study focuses
upon phase scintillation as no amplitude scintillation, defined35

as when the S4 index was greater than 0.2, was observed on
any of the TEC gradients at the boundaries of the polar holes.

This is not the first time a plasma density enhancement
has been observed without corresponding phase scintillation.
Van der Meeren et al. (2016) observed a Sun-aligned polar 40

cap arc under quiet geomagnetic conditions without corre-
sponding scintillation. In the present study, some phase scin-
tillation was observed; however, these points coincide with
increases in TEC and the edges of spikes in electron densi-
ties at other locations. In the second case study (10 Decem- 45

ber 2015), phase scintillation was observed at a point asso-
ciated with elevated TEC (Fig. 11e, fCE15 ), but this was not
associated with the assumed boundary of the polar hole.

When phase scintillation was observed, it was always as-
sociated with electron density gradients; however, the con- 50

verse is not always true. Therefore, it appears that some min-
imum level of overall electron density is needed for phase
scintillation to occur. Given that it is the presence of small-
scale structures that cause scintillation, this suggests that
these small-scale structures have not arisen. 55

Figure 12 shows phase scintillation as a function of TEC
and the TEC rate of change. This figure also includes data
from a third study (using data from 12 December 2015) that
were consistent with the interpretation presented here but
have been omitted in the interest of concision. Low scintil- 60

lation can be seen at all TEC levels and for a majority of the
range of TEC rates of change. Conversely, elevated scintilla-
tion levels are only seen above approximately 6 TECU, sug-
gesting that a minimum electron density is required. This is
not a new idea, in a review paper Aarons (1982) commented 65

“if the ionosphere is perturbed on a percentage basis, change
in N in the trough will be small since N is low; scintilla-
tions will then be low.” The current paper provides observa-
tional evidence to support this suggestion that a minimum
electron density is required. The current paper is also con- 70

sistent with suggestions made by Prikryl et al. (2015), where
the strongest phase scintillations were found to be highly co-
locatedCE16 with regions that are ionospheric signatures of
the coupling between the solar wind and magnetosphere. Po-
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12 L. A. Jenner et al.: Plasma density gradients at the edge of polar ionospheric holes

Figure 11. Electric potential patterns inferred from the SuperDARN radars for 15:42 and 16:38 UT on 10 December 2015, with data from
GNSS satellites overlaid in the same format as in Fig. 5. The intervals for which the satellite passes were plotted are from 15:16 to 16:14 UT
(15:42 UT plot) and from 16:14 to 17:04 UT (16:38 UT plot).

Ann. Geophys., 38, 1–16, 2020 www.ann-geophys.net/38/1/2020/
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Figure 12. Phase scintillation as a function of TEC and the TEC rate of change per minute for 17 December 2014, 12 December 2015, and
10 December 2015.

lar holes appear to be areas of weak coupling, and, hence,
less scintillation.

In this study, the phase scintillation index (σφ) has been
calculated across a 60 s interval, which is in line with com-
mon practice within this field. However, if this index was5

computed across a shorter time interval, it is possible that el-
evated values of σφ may be associated with the edge of the
polar hole. This would be an interesting topic for a future pa-
per. Further developments upon this work would expand the
observations of the polar holes discussed to a larger number10

of examples under a wider range of geophysical conditions.
Polar ionospheric holes could be tracked by making observa-
tions with a higher temporal resolution at a large number of
regularly spaced locations. The advent of EISCAT-3D (Mc-
Crea et al., 2015), which will give unprecedented temporal15

and spatial coverage, will enable such studies in the Euro-
pean sector of the high-latitude ionosphere. The ability to
observe the evolution of polar holes over time will give a
new, deeper understanding of these features and how they in-
fluence practical radio systems such as GNSS.20

5 Conclusions

Polar ionospheric holes are regions of electron density de-
pletions containing large electron density gradients at their
boundaries. This paper reports case study observations of po-
lar ionospheric holes conducted using the ESR and GNSS25

receivers. These holes were observed during both quiet and
moderately disturbed geomagnetic conditions, under a range
of solar activities. Steep electron density gradients have been

associated with phase scintillation at GNSS frequencies in
previous studies; however, no enhanced scintillation was de- 30

tected upon the electron density gradients at these bound-
aries. Phase scintillation was only observed when electron
density levels were elevated above 6 TECU. Aarons (1982)
suggested that a minimum density level may be required for
scintillation to occur, and the present study provides support- 35

ing observational evidence. We conclude that both a mini-
mum electron density level and a sharp gradient in the elec-
tion density must be present for instability mechanisms to
produce scintillation structures.

Data availability. The data used in this paper are publicly avail- 40

able at https://www.eiscat.se (last access: TS13 ). Data for TEC
processing are provided from the following organisations: UN-
AVCO; Scripps Orbit and Permanent Array Center; Institut Ge-
ographique National, France; the International GNSS Service; the
Crustal Dynamics Data Information System (CDDIS); the National 45

Geodetic Survey; the Instituto Brasileiro de Geografia e Estatís-
tica, RAMSAC CORS of the Instituto Geográfico Nacional de la
República Argentina; the Arecibo Observatory; the Low-Latitude
Ionospheric Sensor Network (LISN); Topcon Positioning Systems,
Inc.; the Canadian High Arctic Ionospheric Network; the Centro di 50

Ricerche Sismologiche; the Système d’Observation du Niveau des
Eaux Littorales (SONEL); RENAG: REseau NAtional GPS perma-
nent; GeoNet – the official source of geological hazard information
for New Zealand; the GNSS Reference Networks; the Finnish Me-
teorological Institute; and SWEPOS – Sweden. Access to these data 55

is provided by the Madrigal network: http://cedar.openmadrigal.org/
(last access: TS14 ). The Kp index and F10.7 cm solar flux were ob-
tained from the UK Solar System Data Centre at Rutherford Apple-
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