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Abstract 
 

Pancreatic cancer has historically been characterised by its poor prognosis, with 

very little increase in 5-year expectancy relative to other, comparable cancer-

types. This clinical observation is largely due to existing difficulties in identifying 

therapeutics effective in managing metastasised disease, a task compounded by 

the heterogeneity associated with pancreatic cancers. Concentrated efforts have 

been made in recent times to mitigate this issue, with the emergence of a range of 

subtyping strategies allowing for the stratification of patients. This categorisation 

of patients into workable groups thus serves to limit the degree of heterogeneity 

found within subgroups, with hypothetical, and otherwise unobservable, 

vulnerabilities shared between subtypes. This thesis aims to explore these 

potential therapeutically exploitable vulnerabilities by describing the extensive 

characterisation of pancreatic cancer subtypes via a diverse collection of patient 

derived cell-lines. This characterisation was achieved by profiling of the 

transcriptome via RNA-seq analyses, the proteome via mass-spectrometric 

approaches, and activation status of metabolic processes associated with 

oncogenesis in pancreatic cancer via functional assays. This work therefore 

facilitates the identification of vulnerabilities by utilising the profiles of subtypes 

generated in this manner and devising therapeutic strategies effective in treating 

the disease by interrogating dysregulated pathways. 

 

Within PDCLs, two pancreatic cancer subtypes were first identified which aligned 

with those described in patients: the squamous and classical subtypes. Preliminary 

profiling efforts highlighted a dysregulation of genes involved in metabolism across 

these subtypes in vitro, with active glycolysis associated with the aggressive 

squamous subtype and fatty acid biosynthesis and metabolism upregulated in the 

classical subtype. Further proteomic characterisation then validated this 

observation, providing further evidence for the existence of distinct metabolic 

profiles associated with these subgroups. Follow-up experimentation which 
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focused on metabolic outputs then generated metabolic profiles for each subtype, 

with in vitro phenotypes reflecting findings at the transcriptome and proteome 

level and demonstrating enhanced glycolysis and fatty acid oxidation in the 

squamous and classical subtypes respectively. 

 

Subsequent attempts to target arms within those subtype-associated metabolic 

pathways yielded mixed results. Inhibiting glycolysis via targeting of ALDOA 

successfully mediated a selective response in cell-lines associated with the 

squamous subtype, while classical cell-lines required a combination therapy to 

suppress metabolic flexibility to induce sensitivity to inhibition of fatty acid 

synthesis via targeting of FASN. 

 

An adjacent and complementary arm of research involved collaborative high-

throughput drug repurposing screens to identify additional targets for follow-up. 

This involved an initial screen of ~600 compounds in 8 PDCLs. Results generated as 

part of this screening approach highlighted the potency of statins in effecting a 

significant response selectively in squamous cell-lines. Research probing the 

mechanism by which statins induce this selective inhibition suggested that 

differences in degradation of the statin target HMGCR and cholesterol homeostasis 

may confer resistance to cell-lines classified as squamous, with findings 

demonstrating the potential of dietary components found in commonly ingested 

foodstuffs to mitigate the effects of statins in the otherwise sensitive, squamous 

subtype. 

 

This thesis therefore identified a range of therapeutic strategies effective in 

mediating sensitivity in in vitro pancreatic subtypes, with mechanisms of actions 

determined for each strategy. Results have demonstrated that pancreatic cancer 

cells exhibit differential sensitivities to metabolic inhibition, with subtype 

classification found to act as a predictor of sensitivity. As these in vitro subtypes 

recapitulate stratifications described in patients, these therapeutic strategies are 

of clinical relevance in the treatment of pancreatic cancer. 
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1.1  Introduction 

 

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease notoriously 

resistant to treatment, with a 5-year survival rate of less than 8% for patients 

diagnosed with the disease (Siegel, Miller and Jemal, 2017). Currently, the only 

means of curing the disease is surgical resection, a measure available only to ~20% 

of patients, and even then, a patient can expect just a 25% chance of surviving five 

years after surgery (Gillen et al., 2010). Over the past two decades, the standard 

of care treatment given to non-resectable PDAC patients has been Gemcitabine 

(Burris et al., 1997), with FOLFIRINOX (Conroy et al., 2011) and gemcitabine with 

nab-paclitaxel (Von Hoff et al., 2013) emerging more recently as alternatives. 

Though they represent the most effective therapeutics currently available to 

clinicians, the median survival for metastatic patients receiving these regimens of 

chemotherapy falls short of a year (Kamisawa et al., 2016). This highlights a clear 

need for novel therapeutic avenues that may be effective in treating the majority 

of patients. 

 

1.2  General characteristics of pancreatic cancer 

 

1.2.1  Anatomy and development of the pancreas 

 

The pancreas consists of a combination of interspersed exocrine and endocrine 

tissue, and as an organ, acts as a secretory gland to regulate metabolism. Its 

primary functions are to provide enzymes to the duodenum necessary for 

digestion, as well as to generate regulatory hormones to enter the circulatory 

system, controlling systemic metabolism; these two functions are carried out by 

the exocrine and endocrine lineages respectively. The exocrine system is made up 

of acinar and duct cells, while the endocrine component is comprised of a 

combination of cell-types, α-, β- and δ-cells, which constitute the islets of 

Langerhans. In the context of pancreatic cancer, it is important to consider the 

molecular mechanisms that regulate pancreatic formation and cell differentiation 
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(Figure 1.1) in order to understand the pathological rewiring that leads to 

oncogenic transformation. 

 

In mice, both PDX1 and GATA6 are necessary for the development of pancreatic 

tissue (Ahlgren, Jonsson and Edlund, 1996; Decker et al., 2006), with PDX1 

expression driving the early development of cells of all lineages within the 

pancreas (Wilding and Gannon, no date; Hale et al., 2005). Beyond formation of 

the pancreas, PDX1 is associated with insulin-producing β-cells, which are 

instrumental in carrying out the endocrine function of the pancreas: regulating 

metabolism. The collective expression of Forkhead Box A family of transcription 

factors, FOXA1, FOXA2 and FOXA3, is also associated with the developing pancreas 

(Monaghan et al., 1993). 

 

 

 

 
 

Figure 1.1| Temporal expression of genes necessary for pancreatic differentiation. Schematic 

displaying different stages of development (circles) leading to terminal differentiation of 

pancreatic tissue of both endocrine (blue) and exocrine (red) lineages, along with genes that 

regulate function/differentiation. Adapted from (Beer and Gloyn, 2016) and (Hruban et al., 2006). 
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Mutations within the Hepatocyte Nuclear Factor (HNF) family of transcription 

factors have long been associated with maturity-onset diabetes of the young 

(MODY), implicating their involvement in the maturation and function of β-cells 

(Fajans, Bell and Polonsky, 2001). A range of genomic and chromatin-

immunoprecipitation (ChIP) assays have validated this observation, and reinforced 

the role of HNF1A, HNF1B and HNF4 in pancreatic formation (Shih et al., 2001; 

Odom et al., 2004; Edghill et al., 2006). 

 

1.2.2  Tumour initiation 

 

The long-standing model of cancer formation holds that pancreatic precursor 

lesions, such as pancreatic intraepithelial neoplasms (PanINs) or intraductal 

papillary mucinous neoplasms (IPMNs), acquire mutations associated with 

oncogenesis over time. In this fashion, it is a gradual, multi-step process leading to 

progression to invasive carcinoma (Moskaluk, Hruban and Kern, 1997; Basturk et 

al., 2015), the most common of which likely occurs in ductal tissue giving rise to 

PDAC, accounting for 85% of all pancreatic malignancies (Alexakis et al., 2004). 

 

There remain issues with this model to this day however, with current research 

suggesting that oncogenesis can initiate within a tight time-frame, with 

simultaneous mutations potentially occurring concomitantly (Notta et al., 2016). If 

this is indeed the case, with progression occurring rapidly in a significant 

population of patients, there is then an even greater need for therapeutics 

effective in the management of advanced disease alongside the development of 

methods to assist in early diagnosis. Even the tissue of origin is a point of 

contention in PDAC, with evidence suggesting the transformative potential of cells 

of various lineage (Kleeff et al., 2007; Yonezawa et al., 2008). As such, much 

remains to be done to increase our understanding of pancreatic cancer 

oncogenesis, particularly to facilitate and advance the range of clinical 

interventions available to treat the disease. 
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1.2.3  Epidemiology and aetiology 

 

PDAC tends to occur in older populations, with the majority of cases found in 

patients over 60 years of age (Raimondi et al., 2007). A number of factors are 

thought to contribute to the occurrence of PDAC beyond age, with smoking found 

to contribute to incidence most from a range of various factors (Vrieling et al., 

2010; Bosetti et al., 2012). Body mass index is another contributor (Aune et al., 

2012), along with, although to a lesser extent, diet (Li et al., 2007). A family 

history of pancreatic cancer, along with germ-line mutations in genes that have 

long been associated with cancer susceptibility, are also found to increase the 

chances of developing pancreatic cancer (Lal et al., 2000; Jacobs et al., 2010). 

Despite these various risk factors that associate with PDAC, there are currently 

very few indicators to confidently identify high risk individuals for PDAC screening 

efforts, compounding early diagnosis of the disease and again, highlighting the 

necessity for late-stage treatments. 

 

1.3  Molecular characteristics of pancreatic cancer 

 

1.3.1  Common driver mutations 

 

Although a high degree of heterogeneity exists within pancreatic cancer, as seen in 

the high number of low prevalence mutations identified, mutations in KRAS are 

present in ~90% of PDAC cases (Biankin et al., 2012; Witkiewicz et al., 2015). KRAS 

is a membrane-bound GTPase, a member of the Ras superfamily of small GTPases 

that, when active, regulate a variety of pathways associated with oncogenesis, 

including survival and cell cycle progression (Vigil et al., 2010). In PDAC, 98% of 

KRAS mutations occur at the 12th glycine residue, leading to a constitutively active 

form of KRAS. 

 

In mouse models, maintenance of PDAC is dependent on continuous expression of 

activated KRAS (Collins et al., 2012). KRAS has proven to be a largely undruggable 
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target up to now (Gysin et al., 2011), though some experimental, clinically 

relevant methods have shown promise in treating pancreatic cancer in a preclinical 

setting, including the use of exosomes loaded with small interfering RNA (siRNA) 

designed to target mutant KRAS (Kamerkar et al., 2017). In addition to this, some 

small inhibitory molecules have been developed against KRASG12C (Ostrem et al., 

2013), however this specific mutation is present only in a very small percentage 

(3%) of PDAC patients (Cox et al., 2014), meaning these compounds will likely be 

clinically viable in other cancer-types and not pancreatic cancer. Should drug 

discovery research efforts lead to the development of a KRAS inhibitor effective in 

the context of pancreatic cancer, there is evidence from knockdown/knockout 

assays that subsets of cancer cell populations may prove refractory to KRAS 

inhibition (Singh et al., 2009; Muzumdar et al., 2017), with additional studies 

showing the potential of acquired resistance to KRAS inhibition as a possible 

mitigator of clinical efficacy (Collins et al., 2012). These observations indicate 

that pathways downstream of KRAS mutation may provide more promising drug 

targets than the gene product itself. 

 

Beyond KRAS alterations, mutations are found at high frequency in CDKN2A, TP53, 

and SMAD4 (Jones et al., 2008). PDAC is additionally characterised by an 

abundance of low prevalence mutations (Waddell, Pajic, A.-M. Patch, et al., 

2015), with experimental evidence highlighting the range of genes capable of 

driving pancreatic cancer initiation upon mutation (Mann et al., 2012). Despite a 

clear diversity in driver genes, the majority of mutations tend to occur in a 

number of canonical pathways central to cancer development (Jones et al., 2008). 

These studies therefore indicate that approaches to identifying therapeutics 

effective in treatment of PDAC be focused on targeting these pathways in general, 

rather than one specific genetic target, while these common driver mutations are 

also found to activate pathways commonly associated with the development of 

pancreatic cancer. These include the PI3K/Akt pathway (Ng SSW et al., 2000; 

Perugini et al., 2000; Bondar et al., 2002) and the oncogene c-Myc (Asano et al., 

2004; Hessmann et al., 2016). 
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1.3.2  Genomic instability and mutation burden 

 

Previous research has investigated the degree of genomic instability found in 

PDAC, with results highlighting the presence of disrupting structural variants in 

previously mentioned driver genes (Waddell, Pajic, A.-M. Patch, et al., 2015). 

Additionally, a subset of 14% of pancreatic cancer patients exhibit highly unstable 

genomes, with a further 36% displaying scattered chromosomal rearrangements. 

Those patients with a high degree of chromosomal instability also score highly for a 

point-mutational signature associated with BRCA1 and BRCA2 mutation (Alexandrov 

et al., 2013). Additionally, concurrent mutations in KRAS and TP53 in mice models 

drive genomic instability in the context of PDAC (Hingorani et al., 2005), providing 

evidence for a single event leading to wide-spread alterations of the genome. 

 

1.3.3  Dysregulation of gene expression 

 

While cancer signatures based on mutations and genetic alterations have informed 

the development of therapeutics effective in the treatment of various cancer-

types in the past (Lynch et al., 2004; Druker et al., 2006), analyses into gene 

expression and regulation are likely to provide more in-depth insights into the arms 

of targetable pathways that will be susceptible to inhibition. With the wide-spread 

availability of next-generation sequencing platforms, a number of large-scale 

studies have been conducted utilising RNA-seq to compare the transcriptomes of 

tumour and paired benign tissue (Mao et al., 2017), which has revealed similar 

dysregulation within pathways observed to exhibit increased rates of mutations 

(Jones et al., 2008). 

 

1.3.4  Epigenetic perturbations in pancreatic cancer 

 

Epigenetics is a term that describes genetic regulation beyond the genome, 

initially defined in the context of developmental biology (Margueron, Trojer and 

Reinberg, 2005; Holliday, 2006). Though cancer is inherently a genetic disease, 

with mutations driving oncogenic progression, the prevalence of gene 
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dysregulation in cancers attests to the contribution of epigenetic factors. Over the 

past couple of decades, the extent to which various cancer-types are driven by 

epigenetic perturbations has been extensively interrogated (Nebbioso et al., 

2018), highlighting the involvement of histone modification (Martinez-Garcia et 

al., 2011; McCabe et al., 2012; Zhao et al., 2016) and DNA methylation (Cai et al., 

2017; Hao et al., 2017) events in multiple cancers.  

 

Heterogenous epigenomic landscapes have been observed within pancreatic 

cancer, with distinct chromatin states found to predict prognosis in patients 

(Lomberk et al., 2018), while sweeping changes in chromatin structure have been 

described in pancreatic cancer metastases (McDonald et al., 2017). These 

observations, coupled with the finding that cells across multiple cancer types 

undergo epigenetic changes underpinning drug tolerance (Sharma et al., 2010), 

highlight the potential of therapeutically targeting epigenetic players in pancreatic 

cancer. To this end, there have been a number of novel inhibitors tested in the 

context of pancreatic cancer targeted towards a variety of classes of epigenetic 

enzymes (Hessmann et al., 2016). This includes proteins that regulate histone 

acetylation, including histone acetyltransferases (Ono, Basson and Ito, 2016) and 

histone deacetetylases (Lee et al., 2017; Booth et al., 2019), histone methylation, 

such as polycomb proteins (Avan et al., 2012), and the reading of epigenetic 

marks, such as the bromodomain and extra terminal domain (BET) family (Mazur et 

al., 2015; Sherman et al., 2017). 

 

 

1.4  A need for defined subtypes in pancreatic cancer 

 

Preclinical research efforts to identify new treatments are compounded by the 

previously described genomic diversity that exists within pancreatic cancer. By 

their design, classical clinical trials generally fail to appropriately address 

heterogeneity as patients are, by necessity, grouped together in large numbers. 

For this reason, drugs that may have potential in treating smaller subsets of 

actionable groups of patients may be overlooked, with exceptional responders 
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being dismissed as outliers rather than meaningful results. This highlights a need to 

break down pancreatic cancers into subtypes, each with unique sets of 

characteristics including differential sensitivities. Previous research efforts have 

succeeded in identifying effective therapeutic strategies in the treatment of other 

cancer-types in this manner (Slamon et al., 2001; Davies et al., 2002; Druker et 

al., 2006; Chapman et al., 2011). 

 

1.4.1  Different approaches to defining subtypes 

 

In order to address this diversity and develop methods allowing for the 

stratification of patients, various studies have attempted to define subtypes within 

pancreatic cancer. These research efforts have employed a range of approaches, 

including attempts that recognised the need for subtypes in pancreatic cancer, and 

considered physical properties/tissue of origin as pertinent characteristics for 

classification (Cubilla and Fitzgerald, 1979). Additional examples are the 

previously described subtyping study that looked at variability in genomic 

instability (Waddell, Pajic, A.-M. Patch, et al., 2015). Several successful attempts 

have also involved microarray assays, applied directly to multiple sources of 

tumour tissue (Collisson et al., 2011), and cells from metastatic sites and the 

surrounding microenvironment (Moffitt et al., 2015). 

 

With the advent of next-generation sequencing, transcriptome-based subtyping 

methodologies can be extended beyond microarrays, overcoming the limitation of 

quantifying expression within a pre-specified collection of genes. A recent 

research project characterised subtypes within PDAC via publicly available 

transcriptome databases within an entirely metabolic context. This study defined 

subtypes according to expression patterns of genes involved in glycolysis (Follia et 

al., 2019). Beyond the transcriptome, subtyping efforts have probed chromatin 

accessibility and DNA methylation profiles to describe the existence of epigenetic 

subtypes (Lomberk et al., 2018). 
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1.4.2  A multi-omics characterisation of pancreatic cancer subtypes 

 

This project will focus on a subtype classification system that employs a multi-

omics approach, taking into account the transcriptome, genome and epigenome to 

analyse a cohort of 457 patients, resulting in a descriptor of four distinct subtypes 

within PDAC (Bailey et al., 2016). These subtypes have recently been characterised 

taking into account previously mentioned subtyping efforts (Collisson et al., 2019) 

and are presented correspondingly as follows: the squamous subtype, 

characterised by poor prognosis and an upregulation of genes associated with 

“squamous-like” cancers (Hoadley et al., 2014); the pure classical progenitor 

subtype, associated with an upregulation of transcription factors involved in 

endoderm cell-fate determination; exocrine-like, a subtype defined by increased 

expression of transcriptional networks involved in later stage pancreas 

development, of both endocrine and exocrine lineages; and the immunogenic 

progenitor subtype, which shares a transcriptomic profile similar to the pure 

classical progenitor subtype, but with an additional upregulation of genes 

suggestive of immune infiltration. Based on their transcriptomic profiles, patients 

can be classed as belonging to one of the four subtypes (Figure 1.2). 

 

Enrichment analysis to characterise gene programmes (GPs) that define these 

subtypes facilitates the identification of pathways that may be involved in the 

initiation, progression or maintenance of tumours belonging to each subtype. When 

applied to GPs, enrichment analysis reveals the association of a diverse range of 

pathways with each of the four subtypes. One recurring observation is the 

enrichment of different pathways involving metabolism, particularly with GPs 

associated with squamous and pure classical progenitor subtypes (Figure 1.2). 

Gene programme 1 (GP1), the largest of the gene-sets whose collective expression 

is associated with both the pure classical progenitor and immunogenic progenitor 

subtypes, shows a marked enrichment for a broad range of pathways, many of 

which are associated with the biosynthesis and catabolism of various lipid 

metabolites. In contrast to this, the squamous subtype exhibits an upregulation of 

four separate gene programs, each defined by an enrichment for a distinct set of 
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pathways covering a diverse range of cellular functions. GP2 is the primary 

program enriched for genes associated with the “squamous-like” cancers and is 

also the most significantly associated with a worse prognosis, accounting for the 

poor clinical performance observed in the squamous subtype. Gene members of a 

range of pathways involving metabolism are enriched within this gene programme, 

including hypoxia which has long been associated with glycolytic activation 

(Semenza et al., 1994), as well as canonical glycolysis and glycolytic process 

pathways. 

 

More recent projects carrying out similar multi-omics analyses have validated and 

refined these findings, resulting in the description of two clearly distinct subtypes 

of pancreatic cancer (Cancer Genome Atlas Research Network., 2017). These two 

subtypes, squamous/basal-like and progenitor/classical, are reflective of the 

previously discussed attempts to define pancreatic cancer subtypes. 

 

1.5  Metabolism in cancer cells 

 

Metabolism is the process by which cells break down nutrients and generate energy 

to fuel biological functions. Metabolism in the context of cancer has been studied 

more and more extensively in recent years, with clear potential recognised in the 

identification of therapeutic targets that can be exploited after metabolic 

transformation in tumour cells. Such metabolic inhibitors would have the 

advantage of selectively killing cancer tissue, having no detrimental effect on 

normal cells, thus limiting deleterious side-effects associated with systemic 

chemotherapy (Vander Heiden, 2011). 
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Figure 1.2| Gene programmes constituting pancreatic cancer subtypes reveal metabolic 

dysregulation. Heatmap showing the collective expression of GPs that define the four subtypes, 

with black circles denoting GPs that are correlate best to specific subtypes. Pathways significantly 

enriched in those correlated GPs are shown to right, with those pathways related to metabolic 

function highlighted in red. Adapted from (Bailey et al., 2016). As can be seen, several metabolic 

pathways are found to be enriched in programmes associated with the squamous and pure classical 

progenitor subtypes. 
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1.5.1  Cancer cells and glucose 

 

One hallmark of transformation is the reliance of cancer cells on glycolysis as a 

primary source of energy production. This metabolic process, which involves 

breaking down glucose into pyruvate and then subsequently lactate (or ethanol in 

unicellular organisms, through the process of fermentation), was originally 

associated with cells grown in conditions of hypoxia. It is a mechanism less 

efficient at generating ATP from glucose than oxidative phosphorylation (OXPHOS), 

the primary means of energy production in most cells and which is reliant upon the 

tricarboxylic acid (TCA) cycle in mitochondria. Hypoxic cells are dependent on 

glycolysis as oxidative phosphorylation requires oxygen, as well as NADH and FADH2 

generated via the TCA cycle, to fuel the electron transport chain (ETC) that 

generates ATP (Figure 1.3).  

 

Aerobic glycolysis, or glycolysis conducted in normoxia, has also been associated 

with cell-types that exhibit rapid-proliferation. This includes single-cell organisms 

characterised by rapid growth (Bryant, Voller and Smith, 1964; Rolland, Winderickx 

and Thevelein, 2002), proliferating fibroblasts (Munyon and Merchant, 1959), stem 

cells, both induced and embryonic (Folmes et al., 2011), and transformed cells 

(Warburg, 1956), with cancer-associated aerobic glycolysis frequently termed as 

the “Warburg Effect” after Otto Warburg, the researcher credited with its 

discovery. While the reasons that a cell in an oxygen-limiting environment would 

utilise glycolysis as an energy source are apparent, the advantage of aerobic 

glycolysis is not immediately obvious, with the observed association between 

proliferation and glycolysis suggestive of a rapid production of cellular energy to 

fuel biosynthetic demands made possible by glycolysis. Alternative theories suggest 

that it may be due to metabolic reprogramming as a result of intermittent 

exposure to hypoxic conditions associated with the tumour micro-environment 

(Gatenby and Gillies, 2004). 
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Since its inception, much work has both reinforced and been influenced by 

Warburg’s theory, with one commonly-used and historically successful diagnostic 

tool in many cancer-types, FDG-PET, having been developed to detect the Warburg 

Effect in patients (Adams et al., 1998; Burt et al., 2001; van Tinteren et al., 

2002). This test functions via imaging of the radiotracer fluorodeoxyglucose (FDG), 

a fluorinated glucose analogue that is readily taken up by glycolytic tumour cells 

and can be detected via positron emission tomography (PET) imaging (Adams et 

al., 1998). Despite this, research throughout the years has cast doubt as to the 

veracity of the theory (Weinhouse, 1956), and one meta-analysis demonstrated 

that higher glycolytic ATP production is not a consistent characteristic of cancer 

cells on the whole relative to normal tissue (Zu and Guppy, 2004). However, these 

results highlight a metabolic heterogeneity found within cancer-associated cellular 

metabolism and suggests that a sub-category of cancer cells likely exhibit the 

highly glycolytic phenotype described by Warburg. This may also, in part, explain 

the inconsistency in the success rates of FDG-PET, with some population of cancer-

cells utilising glucose to fuel the TCA cycle, and potentially harnessing metabolic 

intermediates generated in this manner to support anabolic pathways (Lunt and 

Vander Heiden, 2011). 
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Figure 1.3| Overview of metabolic pathways dysregulated in cancers. Schematic outlining the various processes and metabolites that contribute to 
cancer progression. The glycolysis pathway is shown in red, with pyruvate converted to lactate in conditions of aerobic glycolysis and shuttled into 
mitochondria to fuel the TCA Cycle in most, non-cancerous cell-types. FAO is shown in green, with the end-product of β-oxidation (acetyl-CoA) also acting 
as a fuel source for the TCA cycle. NADH generated via this cycle acts as an electron carrier, driving the electron transport chain, and allowing the 
controlled transfer of protons (red circles) from the mitochondrial matrix (yellow) to the intermembrane space (pink). This interaction allows the 
maintenance of the proton gradient across the inner mitochondrial membrane, and the controlled generation of ATP via ATP synthase. 
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1.5.2  Lipid and fatty acid biosynthesis in cancer 

 

Lipogenesis is initiated utilising cytoplasmic pools of acetyl-CoA, which are 

predominantly produced by the breakdown of citrate by ATP citrate lyase (ACLY) 

within the cytoplasm. This citrate supply originates from within the TCA cycle, and 

its export from mitochondria is facilitated by the citrate transport protein 

(SLC25A1). Acetyl-CoA can then be converted to malonyl-CoA by the family of 

acetyl-CoA carboxylase family, consisting of an alpha and beta subunit (ACACA or 

ACC1 and ACACB or ACC2). The subsequent step in fatty acid synthesis (FAS) is 

mediated by fatty acid synthase (FASN), an enzyme integral for fatty 

acid/cholesterol biosynthesis, which acts to generate palmitate and saturated 

fatty acids from both acetyl-CoA and malonyl-CoA. This conversion is mediated by 

multiple reactions, all of which are catalysed by FASN, resulting in elongation 

cycles iteratively leading to the generation of 16-carbon palmitate (Lomakin, Xiong 

and Steitz, 2007). FASN has long been associated with cancer, with inhibition 

associated with an inhibition of growth in tumour cells (Kuhajda et al., 1994). As 

such, FASN has been considered as a possible target for anti-cancer therapeutics 

(Menendez and Lupu, 2007). 

 

In cancer cells, lipid biosynthesis is generally primed for the production of 

membranes and signalling molecules which are required for rapid proliferation 

(Currie et al., 2013). Cell membranes are primarily composed of phospholipids, 

and the generation of phosphatidylcholine, the primary phospholipid constituent of 

membranes, has been shown to promote oncogenesis in vivo (Gallego-Ortega et 

al., 2009), highlighting the link between transformation and lipid synthesis. 

 

Where fatty acid precursors are not synthesised into phospholipids, triacylglycerols 

(TAGs) are formed instead. These act as stores of cellular energy, and are 

maintained in the form of lipid droplets (Walther and Farese, 2009). Various 

families of enzymes are involved in TAG generation, including lipins (Csaki and 

Reue, 2010). The family of lysophosphatidylcholine acyltransferases (LPCATs) have 

been shown to localise to lipid droplets, and are thought to assist in LD formation 
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by providing phosphatidylcholine (Moessinger et al., 2011). Phosphatidylcholine is 

integral for LD structure, as it is the most abundant component in the polar lipid 

monolayer encompassing the neutral lipids and TAGs at the core (Bartz et al., 

2007). 

 

Transformation induced by KRAS mutation, present in the majority of pancreatic 

cancer, has been linked to a decrease in de novo lipid synthesis (Kamphorst et al., 

2013). Cells having been affected by such transformation are observed to scavenge 

exogenous lipids to compensate for the lack of endogenously produced fatty acids, 

in order to fuel the anabolic pathways rapidly proliferating cells are dependent on. 

 

1.5.3  The mevalonate pathway and cholesterol synthesis in cancer 

 

Beyond conversion to malonyl-CoA, acetyl-CoA may be converted to acetoacetyl-

CoA. This step is a necessary precursor for the mevalonate pathway, which is 

responsible for the generation of cholesterol, alongside a variety of sterol 

intermediates. The mevalonate pathway is initiated by the conversion of 

acetoacetyl-CoA to HMG-CoA and subsequently, to mevalonate, a metabolite which 

has been found to promote tumour progression in a xenograft mouse model 

utilising MDA-MB-435 (Duncan, El-Sohemy and Archer, 2004), a cell-line most likely 

of melanoma origin (Prasad and Gopalan, 2015). This discovery points to the 

involvement of downstream components of the mevalonate pathway on cancer 

development, the most well-characterised of which being cholesterol. 

 

Cholesterol has been shown to be instrumental in regulating a number of signalling 

pathways, with a variety of signalling receptors found to be recruited to lipid rafts 

(Mollinedo and Gajate, 2015), cholesterol-rich membrane microdomains (Brown 

and London, 1998, 2000). A number of these signalling receptors associated with 

lipid rafts are known to be involved in pancreatic cancer development, including 

insulin-like growth factor I receptor (IGF-IR), which is dependent upon lipid rafts 

for downstream signalling (Huo et al., 2003). IGF-I, the ligand of IGF-IR, has long 

been known to be overexpressed in PDAC (Bergmann et al., 1995), while 
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therapeutic inhibition of IGF-IR has been shown to inhibit PC growth in in vivo 

models (Moser et al., 2008), thus demonstrating the indirect involvement of lipid 

rafts in pancreatic cancer. This relationship is reinforced by the observation that 

markers involved in lipid raft formation are found to upregulated in a range of 

cancer-types, particularly breast and colon cancers (Staubach and Hanisch, 2011). 

 

Upstream of sterol synthesis, there are a number of alternative metabolites within 

the mevalonate pathway associated with cancer development and progression. 

This includes farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate 

(GGPP), two metabolites required for the transfer of farnesyl and geranylgeranyl 

moieties, constituting a post-translational modification known as prenylation. This 

modification is of particular relevance in PDAC as KRAS has long been known to be 

farnesylated (Hancock et al., 1989), while inhibition of KRAS prenylation has been 

shown to prevent tumour growth both in vitro and in vivo models of PC 

(Zimmermann et al., 2013; Jansen et al., 2017). Beyond KRAS, the Rho family of 

GTPases are also known to be prenylated (Clarke, 1992), while RhoA, a member of 

this family of small GTPases, has been shown to regulate the activity of YAP (Yu et 

al., 2012). This is of importance as YAP is inactivated by the tumour suppressor 

Hippo signalling pathway, a pathway known to be repressed in PDAC (Zhang et al., 

2014; Wang et al., 2020). These findings collectively highlight the mevalonate 

pathway’s involvement in driving cancer progression in general, with evidence that 

targeting the mevalonate pathway can disrupt the localisation and function of a 

range of GTPases (Ali et al., 2010), clearly demonstrating its relevance to PDAC. 

 

1.5.4  Fatty acid oxidation in cancer 

 

Fatty acid oxidations (FAO) is the process by which cells break down reserves of 

fatty acids, generating NADH and FADH2 to fuel the ETC. The initial stage of the 

process is β-oxidation, which occurs primarily within mitochondria and less 

commonly in peroxisomes. This process involves the recurrent break-down of fatty 

acids (FAs) to generate stores of acetyl-CoA, which can subsequently be utilised as 

fuel for the TCA cycle. Long chain FAs, which serve as a common substrate for β-
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oxidation, must be shuttled into mitochondria via the carnitine shuttle before they 

can be broken down (Fritz and Yue, 1963). 

 

Under conditions of metabolic stress, reflected by high AMP/ATP and ADP/ATP 

ratios, AMP-activated protein kinase (AMPK) modulates a number of signalling 

pathways that regulate cellular metabolic function. In this manner, AMPK acts as a 

key regulator of the balance between lipogenesis and FAO, increasing transcription 

of carnitine transporters, which drive FAO by facilitating the transfer of palmitate 

across mitochondrial membranes, in colorectal cell-lines and cardiac myocytes 

(Zaugg et al., 2011; Pfleger, He and Abdellatif, 2015), while directly 

phosphorylating and inhibiting the acetyl-CoA carboxylase (ACAC) family of 

enzymes. These enzymes, as described previously in chapter 1.5.2 , are necessary 

for the production of malonyl-CoA, which is essential for fatty acid biosynthesis 

(Hardie and Pan, 2002). This balance between FA catabolism and anabolism is then 

influenced by the metabolite malonyl-CoA, which is capable of both driving FAS 

and inhibiting FAO. The differential compartmentalisation of malonyl-CoA 

production, as determined by localisation of ACACA and ACACB, decides which 

pathway is effected, with cytosolic malonyl-CoA produced by ACACA activating 

lipogenesis, while mitochondrial malonyl-CoA produced by ACACB inhibits FAO in 

various experimental models (Abu-Elheiga et al., 2000, 2001; Hardie and Pan, 

2002). The observation that FAS and FAO are regulated by distinct enzymes 

challenges the historic assumption that the two pathways are mutually exclusive to 

one another (Jeon, Chandel and Hay, 2012; Carracedo, Cantley and Pandolfi, 

2013). 

 

Beyond the balance between lipogenesis and FAO, AMPK has also been found to 

regulate lipolysis, the process by which hydrolysis of TAGs induces the liberation of 

FAs, which can be utilised via FAO to generate cellular energy. In the past, 

conflicting results demonstrated that AMPK could both promote and inhibit 

lipolysis in adipocytes (Yin, Mu and Birnbaum, 2003; Daval et al., 2005). However, 

more recent research has highlighted the complex interplay of this regulatory 

cycle, with AMPK activation associated with upregulated lipolysis (Gauthier et al., 
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2008), hypothesised to act to offset the high energy consumption resultant from 

increased re-esterification of free FAs to TAGs (Ceddia, 2013). 

 

1.5.5  Autophagy in cancer 

 

Beyond regulation of the balance between FAS and FAO, AMPK also activates 

autophagy, the process by which cellular components such as organelles and 

cytoplasmic constituents are degraded, allowing for the recycling of energy and 

molecules required for biosynthesis. The initiation of autophagy facilitates 

homeostasis and the mitigation mitochondrial stress, which in the context of 

cancer, promotes cell survival by preventing DNA damage (Karantza-Wadsworth et 

al., 2007) and necrosis/inflammation (Degenhardt et al., 2006). As these processes 

are associated with tumorigenesis, the protective role of autophagy is thought to 

be tumour suppressive, an observation further validated by the enhanced initiation 

of tumour formation in autophagy-deficient mice (Yue et al., 2003; Takahashi et 

al., 2007). Despite this, autophagy inhibition has been shown to inhibit tumour 

growth in PDAC mouse-models (Yang et al., 2011), highlighting the complex 

interplay between autophagy driven tumour survival and suppression. 

 

1.5.6  Metabolic perturbations as a result of pancreatic cancer 

drivers 

 

Historic experiments performed in mice showed that transfection of ras oncogenes 

induced an increase in glucose uptake and expression of glucose transporters in rat 

fibroblasts (Racker, Resnick and Feldman, 1985; Flier et al., 1987). As further 

validation of the involvement of KRAS in driving glycolysis, previous research has 

shown that tumours initiated via inducible mutant KRAS expression in in vivo 

models regress upon loss of KRAS expression, leading to a reduction in glucose 

uptake and glycolysis (Ying et al., 2012). Building on these findings, work involving 

a similar inducible model assessing KRAS oncogene withdrawal also showed tumour 

regression, with those cells that survive withdrawal exhibiting decreased 

glycolysis, as observed in (Ying et al., 2012), as well as enhanced OXPHOS, which 
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was found to be necessary for the survival of these cells (Viale et al., 2014). In 

addition to inducing activation of glycolysis in PDAC, oncogenic KRAS has also been 

shown to drive non-canonical glutamine dependency (Son et al., 2013) and lipid 

uptake (Kamphorst et al., 2013) in in vitro models of pancreatic cancer, while 

signalling pathways downstream of mutant KRAS, such as mTOR (Kong et al., 2016; 

Zeitouni et al., 2016), also mediate metabolic dysregulation (Laplante and 

Sabatini, 2009). 

 

c-Myc, commonly activated in pancreatic cancer (Asano et al., 2004; Hessmann et 

al., 2016) and associated with the squamous, GP5 in PDAC patients (Figure 1.2), 

has been shown to act as a driver of a variety of metabolic pathways. For example, 

evidence proves that c-Myc mediates a switching from oxidative to glycolytic 

phenotypes in pancreatic cancer cell-lines (Sancho et al., 2015), an observation 

supported by past research demonstrating the ability of c-Myc to induce expression 

of lactate dehydrogenase (Shim et al., 1997) required for aerobic glycolysis. 

Conversely, c-Myc has also been shown to induce transcription of a number of 

genes involved in mitochondrial biogenesis in a range of cell-lines (Li et al., 2005; 

Kim, Lee and Iyer, 2008) and can mediate glutamine addiction in glioma cell-lines 

(Wise et al., 2008), indicating its ability to drive metabolic processes involving 

OXPHOS. In addition to this, interplay between mutant KRAS and c-Myc effects 

changes within cellular metabolism, with KRASG12D induced glycolysis shown to be 

dependent on c-Myc (Ying et al., 2012). These studies highlight the complex 

contribution of c-Myc to metabolic reprogramming in oncogenesis, as well as its 

ability to drive both glycolysis and OXPHOS (Dang, Le and Gao, 2009). 

 

Conversely, the hepatocyte nuclear factors (HNFs) are associated with pancreatic 

development, as described in chapter 1.2.1 , and have been found to act as 

tumour suppressors in pancreatic cancer (Hoskins et al., 2014; Luo et al., 2015), 

while HNF loss is associated with the aggressive squamous subtype in PDAC 

subtypes (Bailey et al., 2016). In the context of metabolism, this family of 

transcription factors have been linked to lipid homeostasis (Hayhurst et al., 2001) 

and are found to induce expression of genes involved in lipid biosynthesis (Odom et 

al., 2004).  
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Table 1.1| PDAC drivers are associated with metabolic reprogramming. Table showing 

perturbations commonly associated with PDAC oncogenesis and their demonstrated impacts on 

metabolism. A variety of molecular drivers of pancreatic cancer have been implicated in 

modulating metabolism, including KRAS mutation, which occurs in ~90% of PC. These are found 

affect a number of metabolic processes associated with cancer, including glycolysis, OXPHOS and 

lipogenesis. 

 

Collectively, these findings highlight the close association between drivers of 

pancreatic cancer formation and metabolic reprogramming (Table 1.1). This 

therefore highlights the integral part metabolism likely plays in PC development. 

 

1.6  Thesis aims and objectives 

 

Taking these collective findings into account, it was decided to focus on metabolic 

perturbations in those clearly defined subtypes of PDAC, with the end goal of 

selecting therapeutic interventions with clinical potential for subpopulations of 

patients. In order to enhance the possibility of identifying novel and effective 

therapeutic interventions, this thesis describes a multi-step approach which 

included the following specific aims: 

 

• Characterise and validate subtype-associated metabolism in a clinically 

relevant model of PDAC. 

• Identify therapeutics with potential to inhibit metabolic pathways found to 

associate with subtypes. 

Gene 
Perturbation 

in PDAC 
Effect on Metabolism Reference 

KRAS Mutation • Enhances glycolysis 
• Inhibits OXPHOS 

(Ying et al., 2012) 
(Viale et al., 2014) 

c-Myc Activation • Enhances glycolysis 
• Associated with OXPHOS 

(Sancho et al., 2015) 
(Li et al., 2005; Wise et al., 2008) 

HNFs Tumour Suppressor Enhances lipogenesis (Odom et al., 2004) 
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• Perform simultaneous, high-throughput drug repurposing screening to 

identify metabolism modulating therapeutics that effect a subtype-selective 

response. 

 

These efforts validated observations of metabolic dysregulation observed within 

patient subtype groups, confirming the upregulation of glycolysis associated with 

the aggressive, squamous subtype and FAO with the pure classical progenitor 

subtype in in vitro models of PDAC. Attempts to target these metabolic processes 

were met with success, with squamous PDCLs determined to exhibit sensitivity to 

inhibition of glycolysis. In contrast to this, PDCLs classified as pure classical 

progenitor were found to be resistant to attempts to target stores of FAs, with 

metabolic flexibility identified as the potential mechanism by with which PDCLs 

effect this mechanism of escape. 
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Materials and Methods 

 

2.1  General reagents 

 

Reagents used throughout the project are listed in table 2.1. 

 

Table 2.1| Table listing materials used throughout project. 

General Use 

Product Supplier Cat # 

AffinityScript cDNA Synthesis Kit Agilent 200436 

Bovine Serum Albumin (BSA) 
Fisher 

Bioreagents 
BP9702 

CellTiter 96® Aqueous Non-Radioactive Cell 

Proliferation Assay (MTS) 
Promega G5430 

Cholera Toxin Subunit B (Recombinant), Alexa 

Fluor™ 594 Conjugate 

Thermo 

Scientific 
C34777 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich D4540 

Filipin III Sigma-Aldrich F4767 

Formaldehyde 
Fisher 

Bioreagents 
F/1501/PB17 

Fumed Silica Sigma-Aldrich S5130-100G 

2X Laemmli Sample Buffer  Bio-Rad 1610737 

4-20% Mini-PROTEAN® TGX™ gel, 10-well, 50 µL Bio-Rad 4561094 

4-20% Mini-PROTEAN® TGX™ gel, 12-well, 20 µL Bio-Rad 4561095 

Mini-PROTEAN® Tetra Cell system Bio-Rad 1658004edu 

Phosphate Buffered Saline (PBS) Sigma-Aldrich P4417 

Pierce™ BCA Protein Assay Kit 
Thermo 

Scientific 
23227 
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Pierce™ ECL Western Blotting Substrate 
Thermo 

Scientific 
32106 

Precision Plus Protein™ Dual Xtra Prestained 

Protein Standards 
Bio-Rad 1610377 

RIPA Buffer Sigma-Aldrich R0278 

RnaseZap™ RNase Decontamination Solution Invitrogen AM9780 

RNeasy Mini Kit Qiagen 74106 

Seahorse XF Palmitate-BSA FAO Substrate Agilent 102720-100 

SYBR™ Select Master Mix 
Applied 

Biosystems 
4472908 

Trans-Blot® Turbo™ Midi Nitrocellulose 

Transfer Packs 
Bio-Rad 1704159 

Trizma® Base Sigma-Aldrich T1503 

10X Tris/Glycine/SDS (TGS) Bio-Rad 1610732 

TWEEN® 20 Sigma-Aldrich P7949 

Triton X-100 Sigma-Aldrich T8787 

VECTASHIELD Antifade Mounting Medium Vector Labs H-1000 

VECTASHILED with DAPI Vector Labs H-1200 

Tissue Culture 

13C6-D-Glucose Sigma-Aldrich 389374 

13C5-L-Glutamine Sigma-Aldrich 605166 

60 mm TC-treated Culture Dish VWR 734-1699 

6-well plates, TC treated VWR 734-1599 

96-well plates, TC treated VWR 734-1794 

Apo-Transferrin Sigma-Aldrich T1147 

D-(+)-Glucose Solution Sigma-Aldrich G8644 

DMEM Gibco 41965039 

DMEM/F12 Gibco 11320-033 

DMEM, no glucose, no glutamine, no phenol red Gibco A1443001 

Dulbecco’s PBS Gibco 14190094 
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EGF Recombinant Human Protein Gibco PHG0311L 

Fetal Bovine Serum (FBS) Gibco 10270106 

Ham’s F12 Nutrient Mixture Gibco 21765-029 

HEPES Buffer Solution Gibco 15630-049 

Hydrocortisone Sigma-Aldrich H0888 

IMDM Gibco 21980-065 

Insulin, Human Recombinant Gibco 12585014 

KSFM Gibco 17005042 

L-Glutamine Gibco 25030024 

Medium M199 Gibco 31150-022 

MEM Vitamins Gibco 11120037 

Mevalonic acid 5-phosphate, lithium salt hydrate Sigma-Aldrich 79849 

MycoAlert™ Mycoplasma Detection Kit Lonza LT07-318 

O-phosphorylethanolamine Sigma-Aldrich P0503 

RPMI 1640 Medium Gibco 21875034 

3,3’,5-Triiodo-L-thyronine Sigma-Aldrich T6397 

0.5% Trypsin (10X) Gibco 15400054 

Versene Gibco 15040033 

siRNA 

ON-TARGETplus Non-targeting Pool/siRNA #1 Dharmacon D-001810 

ON-TARGETplus HMGCR individual siRNA Dharmacon J-009811-08 

ON-TARGETplus HNF4A SMARTpool siRNA Dharmacon L-003406-00 

Primers/qPCR 

Hs_GAPDH_1_SG QuantiTect Primer Qiagen QT00079247 

Hs_HMGCR_1_SG QuantiTect Primer Qiagen QT00004081 

Drugs 

2-Deoxy-D-Glucose Sigma-Aldrich D8375 

Antimycin Sigma-Aldrich A8674 

Carbonyl Cyanide 3-chlorophenylhydrazone Sigma-Aldrich C2759 

Etomoxir Sigma-Aldrich E1905 
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FDA Approved Drug Library Selleckchem L1300 

L-Carnitine Sigma-Aldrich C0283 

Oligomycin Sigma-Aldrich O4876 

Rotenone Sigma-Aldrich R8875 

Antibodies 

Target Protein Species/Isotype Supplier Cat # 

ACLY Rabbit IgG NEB 13390 

Akt (pan) Rabbit IgG NEB 4691 

Β-Actin Mouse IgG2b NEB 3700 

pan-Akt Rabbit IgG NEB 4691 

AMPKα Rabbit IgG NEB 5831 

Phospho-AMPKα (T172) Rabbit IgG NEB 2531 

CAV1 Rabbit IgG NEB 3238 

Cleaved Caspase-3 

(D175) 
Rabbit IgG NEB 9661 

Cleaved PARP (D214) Rabbit IgG NEB 5625 

FASN    

GAPDH Mouse IgG1 NEB 97166 

HMGCR Rabbit IgG Abcam ab174830 

P62-lck Mouse IgG1 BD Biosciences 610832 

Peroxidase Anti-

mouse IgG 
Donkey IgG Stratech 

715-035-150-

JIR 

Peroxidase Anti-rabbit 

IgG 
Donkey IgG Stratech 

711-035-152-

JIR 
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2.2  Cell culture methods 

 

All methods involving the handling of cell tissue requiring aseptic technique were 

performed under sterile conditions in class II biological safety cabinets. 70% 

ethanol was used to sterilise all work surfaces and equipment before use. 

 

2.2.1  Cell-lines 

 

Patient derived cell-lines used throughout the project are characterised briefly in 

Table 2.2. Principle components analysis of gene expression in PDCLs highlights 

grouping of cell-lines into subtypes (Figure 2.1). 

 

Table 2.2| PDCLs and general characteristics. Table showing names of all PDCLs included in 

project, along with corresponding subtype classification and source of cell-line. 

Name Subtype Source Reference 

TKCC-02 Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-02-LO Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-10 Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-18 Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-19 Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-26 Squamous The Kinghorn Cancer Centre (Hardie et al., 2017) 

Mayo-4636 Classical The Mayo Clinic, Rochester (Pal et al., 2014) 

Mayo-5289 Classical The Mayo Clinic, Rochester (Pal et al., 2014) 

TKCC-22 Classical The Kinghorn Cancer Centre (Hardie et al., 2017) 

PaCaDD137 Classical Technische Universität Dresden (Rückert et al., 2012) 

TKCC-17 Borderline The Kinghorn Cancer Centre (Hardie et al., 2017) 

TKCC-09 Undefined The Kinghorn Cancer Centre (Hardie et al., 2017) 

 

Cell-lines established from KPC mouse models, originating from c57Bl/6 mice, 

were generously donated from the Owen Sansom, Beatson Institute. 
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Figure 2.1| Principle components analysis highlighting PDCL subtyping. PCA plot of gene 

expression within PDCLs showing principle component 1 (x-axis) plotted against principle 

component 2 (y-axis). Cells are coloured according to subtype. Arrows show directionality of gene-

sets consisting of genes found to be differentially expressed between PDCL subtypes. 

Data provided by Peter Bailey (unpublished) 

 

2.2.2  Culture maintenance 

  

TKCC-02-LO, TKCC-09, TKCC-10, TKCC-17 and TKCC-26-LO PDCLs were cultured in 

a 1:1 mixture of Medium M199 (Gibco) and Ham’s F12 nutrient mixture (Gibco) 

supplemented with 15 mM HEPES Buffer solution (Gibco), 2 mM L-Glutamine 

(Gibco), 20 ng/mL EGF (Gibco), 40 ng/mL Hydrocortisone (Sigma-Aldrich), 5 µg/mL 

apo-Transferrin (Sigma-Aldrich), 0.2 IU/mL Insulin (Gibco), 0.06% Glucose Solution 

(Sigma-Aldrich), 7.5% FBS (Gibco), 0.5 pg/mL Triiodothyrinine (Sigma-Aldrich), 1X 
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MEM vitamins (Gibco) and 2 µg/mL O-phosphoryl ethanolamine (Sigma-Aldrich), 

referred to as M199/F12 medium. TKCC-18, TKCC-19 and TKCC-22-LO were 

cultured in IMDM (Gibco) supplemented with 20% FBS, 20 ng/mL EGF, 2.5 µg/mL 

apo-Transferrin, 0.2 IU/mL Insulin and 0.5X MEM Vitamins, referred to as IMDM 

Rich medium. Mayo-4636 and Mayo-5289 were cultured in DMEM/F12 (Gibco) 

supplemented with 10% FBS and 15 mM HEPES Buffer solution, referred to as Mayo 

medium. TKCC-02 was cultured in RPMI 1640 (Gibco) supplemented with 10% FBS 

and 20 ng/ml EGF. PaCaDD137 was cultured in  DMEM (Gibco) supplemented with 

27% KSFM (Gibco) and 10% FBS (Table 2.3). All cell-lines were incubated at 37°C 

and TKCC-02-LO, TKCC-22-LO and TKCC-26-LO were grown in hypoxia (5% O2) while 

TKCC-10, Mayo-4636 and Mayo-5289 was grown in normoxia (20% O2). Cells were 

routinely cultured in T75 flasks, with 10 mL appropriate medium. All cells were 

subject to routine checks for mycoplasma using a MycoAlert™ Mycoplasma 

Detection Kit (Lonza), with tests conducted by the WWCRC Reagent Services. 

 

2.2.3  Splitting cells 

 

Cells were split at or nearing confluence by aspirating spent medium and adding 10 

mL DPBS (Gibco) supplemented with 0.1 mM Versene (Gibco). Cells were incubated 

at 37°C for 10 minutes in order to detach loosely attached cells, which were then 

transferred to a 15 mL Falcon tube. In order to dislodge those more strongly 

adhered cells, 3 mL Trypsin (Gibco) was then added to flasks and incubated at 

37°C for no more than 15 minutes, or until total detachment of cells. Detached 

cells were pooled in Falcon tubes and centrifuged at 1,000 RPM for 5 minutes, with 

cell pellets subsequently resuspended in fresh, pre-warmed media to be put into 

new flasks or used for experiments. Cells were then counted using a Nexcelom 

Cellometer 2000 cell counter. 

 

 

 

 



 

 

 

48 

Table 2.3| Media formulations for tissue culture. Table showing the complete make-up of all 

media types used throughout the project upon addition of all base media and supplements. Unless 

specified otherwise, concentrations are provided in mM. 

 

 

2.2.4  Freezing/thawing cells 

 

To store in liquid nitrogen at -196°C, cells were split as previously described. Cell 

pellets were resuspended in FBS supplemented with 10% DMSO (Sigma-Aldrich) to 

prevent ice crystal formation and stored overnight in a -80°C freezer. To thaw, 

cells were incubated in a water bath at 37°C for one minute before transfer into a 
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flask containing the appropriate, pre-warmed medium. Cells were incubated 

overnight to allow for adherence before replacing media containing DMSO. 

 

2.3  Protein handling methods 

 

2.3.1  Cell lysate preparation 

 

Cells were seeded at an appropriate density on a 6-well plate or 60 mm dish (VWR) 

and incubated overnight at minimum to allow for adherence, with incubation 

periods extend where required for experimental protocol. When ready for 

harvesting, spent medium was aspirated and cells were washed once with PBS 

(Sigma-Aldrich). After washing, cells were scraped on ice in PBS, then centrifuged 

at 13,300 RPM for 3 minutes at 4°C. The cell pellet was washed in PBS before 

resuspending 1:5 in cold RIPA buffer (Sigma-Aldrich), and this cell suspension was 

left on ice for 30 minutes to allow for complete lysis. In order to remove any 

remaining cell debris, lysates were centrifuged as before, and the resulting pellet 

was discarded. 

 

2.3.2  Quantifying lysate protein concentration 

 

Lysates were incubated on ice for a minimum of 30 minutes before quantification 

with a Pierce™ BCA Protein Assay kit (Thermo Scientific) according to the 

Bicinchoninic Acid assay (Smith et al., 1985). The assay was conducted according 

to manufacturer’s specifications, with known concentrations of albumin used to 

create a standard-curve. Absorbance values corresponding to each tested sample 

were subsequently read at 562 nm using a Tecan Infinite 200 plate-reader and 

converted to protein concentration (µg/mL) using standard-curves. 
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2.3.3  Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 

 

Electrophoresis was carried out using 20-40 µg of total protein from each cell 

lysate, diluted 1:1 in 2X Laemmli Buffer (Bio-Rad). Samples were heated at 95°C 

for 10 minutes before loading onto precast 4-20% Mini-PROTEAN® TGX™ gels (Bio-

Rad). Electrophoresis was run in a Mini-PROTEAN® Tetra Cell system (Bio-Rad) at a 

constant voltage of 120V for ~1.5 hours in 10X TGS running buffer (Bio-Rad). 10 µL 

Precision Plus Protein™ Dual Xtra standards (Bio-Rad) was run alongside samples to 

provide a scale for protein size. 

 

2.3.4  Western blotting 

 

Separated proteins were then transferred from the gel to a nitrocellulose 

membrane using a Trans-Blot® Turbo™ Midi Nitrocellulose Transfer Pack (Bio-Rad) 

run on the Trans-Blot® Turbo™ transfer system. After transfer, the membrane was 

blocked in 5% milk in TBS-T (150 mM NaCl, 20 mM Tris, 0.1% TWEEN® 20) for 1 

hour. Membranes were washed twice with TBS-T for 15 minutes before incubation 

with primary antibodies, diluted according to manufacturer’s specifications, for 

one hour in TBS-T supplemented with 2% BSA (Fisher Bioreagents). The membranes 

were washed as before and then incubated for an hour with secondary antibodies 

specific to the primary antibody isotype, conjugated to Horseradish Peroxidase 

(HRP). Finally, Pierce™ Enhanced Chemiluminescence (ECL) Western Blotting 

Substrate (Thermo Scientific) was used to produce a visible signal from HRP, which 

was subsequently imaged using the ChemiDoc MP system (Bio-Rad). Image Lab 

software was used to process all generated images, as well as for the identification 

and quantification of bands. 
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2.4  RNA handling methods 

 

2.4.1  RNA isolation from PDCLs 

 

Cells were seeded at an appropriate density on a 6-well plate and allowed to 

adhere overnight. RNA was harvested from plates and purified using an RNeasy 

Mini Kit (Qiagen) according to manufacturer’s specification. The workspace used 

for harvesting was pre-treated with RnaseZap™ (Invitrogen) in order to prevent 

contamination with RNase. Purified RNA was quantified via NanoDrop™ 2000 

spectrophotometer and kept frozen at -80°C until needed. 

 

2.4.2  cDNA synthesis 

 

In order to generate cDNA necessary to perform quantitative PCR (qPCR), 1 µg of 

RNA isolated as described previously was subjected to reverse transcription. This 

was achieved via an AffinityScript cDNA synthesis kit (Qiagen), with the reaction 

carried out according to all manufacturer’s instructions. Any cDNA created in this 

manner was diluted 1:3 in RNase-free water and frozen at -20°C until required for 

qPCR. 

 

2.4.3  qPCR assays 

 

qPCR assays were carried out using 2X SYBR™ Select master mix (Applied 

Biosystems) and 10X QuantiTect primers (Qiagen), all according to manufacturer’s 

directions. Assays were performed on a QuantStudio 7 Flex Real-Time PCR System, 

with data processed and analysed using R statistical software. 

 

2.4.4  siRNA transfections 

 

Cells were transfected using RNAiMAX (13778-075, Invitrogen), a Lipofectamine-

based transfection reagent. Transfections were carried out with 10 nM appropriate 
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siRNA, with non-targeting siRNAs (Dharmacon), single or pooled, depending on 

experimental set-up, as a control. 

 

2.4.5  RNA-seq 

Sequencing was carried out on the Illumina HiSeq 2000/2500, generating paired-

end reads. These reads were then aligned to the GRCh37 reference genome via 

STAR (Dobin et al., 2013), with count data subsequently obtained using the 

featureCounts function of the “Rsubread” package (Liao, Smyth and Shi, 2014). 

Count data were subsequently normalised across samples and log transformed 

using the DESeq2 package (Love, Huber and Anders, 2014), generating log counts 

per million (LogCPM) values. 

 

2.5  Drug treatments 

 

2.5.1  Generating dose-response curves. 

 

Drugs were dissolved in appropriate solvent as instructed by manufacturers, where 

possible, creating 10mM working stocks. Cells were split, plated in a 96-well 

format and left in incubation for 24 hours to attach. After this attachment period, 

cells were dosed in 6 replicates with drug concentrations according to a 1:3 serial 

dilution. Additional wells containing the appropriate maximum percentage DMSO 

and 0.007% Triton-X100 (T8787, Sigma-Aldrich) were used as drug vehicle controls 

and 100% kill controls respectively. Viability was measured using an MTS assay kit 

(G5430, Promega), which acts to provide a quantification of viability via lactate 

dehydrogenase (LDH) mediated conversion of tetrazolium salt to formazan 

(Mosmann, 1983). GraphPad Prism version 7 was used to generate and analyse 

dose-response curves, with error bars shown across three replicates for each cell-

line tested. 
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2.6  Metabolic assays 

 

2.6.1  Extracellular metabolic flux assays 

 

Measurements of extracellular acidification rate (ECAR) and oxygen consumption 

rate (OCR) were obtained utilizing the Seahorse Xfe96 Analyser (Seahorse 

Biosciences) as previously described(Wu et al., 2006; Pike Winer and Wu, 2014). In 

brief, cells were seeded in their respective, fully supplemented medium at a range 

of densities optimized for each PDCL. 45 minutes prior to starting the assay, cells 

were equilibrated in basal media with minimal supplementation at 37°C in a non-

CO2 incubator. During the assay, indicated compounds were injected into wells at 

18-minute intervals. All results were normalized to total cellular protein content 

per well by RIPA extraction followed quantification with BCA protein assay kit 

(ThermoFisher Scientific, #23227) in a 96-well format, with absorbance measured 

using a Tecan Infinite 200 plate-reader. 
 

Table 2.4| Seahorse media formulations. Composition of media types used to culture cell-lines 

during extracellular flux assays. Red shading indicates addition of a supplement, while orange 

indicates addition conditional upon cell-line requirements. 
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2.6.2  Glycolytic stress test 

 

This extracellular flux assay, performed on the Seahorse platform, was initiated in 

the absence of glucose, with 10 mM glucose, a PDCL-dependent concentration of 

oligomycin and 50 mM 2-DG sequentially added to generate a profile of glycolysis 

under various conditions, as described previously (Pike et al., 2011; Pike Winer and 

Wu, 2014). TKCC-10 and TKCC-22-LO both required 1 µM while TKCC-02-LO, TKCC-

26-LO, Mayo-4636 and Mayo-5289 all required 2.5 µM oligomycin to achieve a 

maximal shift in ECAR. 

 

2.6.3  FAO assay 

 

This assay functions as an extension to the Mitochondrial Stress Test described by 

Seahorse Biosciences. 4-hours prior to beginning this assay, cells were cultured in 

substrate limited media supplemented with L-carnitine in order to stimulate 

consumption of endogenous fatty acid (FA) reserves. FAO was then subsequently 

quantified as a measurement of OCR upon treatment of subsets of cells with either 

40 µM FAO inhibitor Etomoxir or the FA palmitate, purchased as Seahorse XF 

Palmitate-BSA FAO Substrate, as described previously (Pike et al., 2011; Pike 

Winer and Wu, 2014). Initial OCR readings of the assay represent basal levels of 

respiration in the PDCLs, with sequential additions of PDCL-dependent 

concentrations of oligomycin, 1.6 µM CCP and a 1 µM combination of Antimycin and 

Rotenone providing a profile of OCR under different metabolic conditions. PDCLs 

were cultured in serum-free Krebs-Henseleit buffer supplemented with all 

necessary cell-line specific supplements excluding glutamine during the course of 

OCR recording. 
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2.6.4  Mito Fuel Flex Test 

 

The Mito Fuel Flex Test assay is designed to quantify the dependency, capacity and 

flexibility of cells to utilise three the major contributors to oxidative 

phosphorylation, glucose, glutamine and fatty acids. This is achieved by measuring 

changes in OCR upon treatment of cells with inhibitors of the metabolic arms 

corresponding to those three metabolites: UK5099, which inhibits the import of 

pyruvate into the mitochondria, halting glucose-driven OXPHOS; BPTES, an 

inhibitor of glutamine hydrolysis; and etomoxir, which inhibits CPT1A transfer of 

long-chain FAs into mitochondria. 

 

2.6.5  Lactate production and glucose consumption assays 

 

The L-Lactate content of culture media was measured using the colorimetric-based 

L-Lactate Assay Kit (Abcam, #ab56331) according to manufacturer’s specifications. 

3 x 104 cells were plated in their respective, fully supplemented medium and 24 

hours after seeding, this medium was replaced. Cells were cultured for a further 

48 hours before medium was taken for analysis and samples were subsequently 

deproteinated via PCA/KOH. Lactate levels in spent media were quantified by 

harnessing NADH generated from the conversion of lactate to pyruvate in order to 

reduce WST. This reaction yields formazan, which can be quantified 

spectrophotometrically, allowing a direct measurement of lactate levels. Each test 

was performed in duplicate, with output adjusted to background lactate levels in 

medium and normalised to total cell count. 

 

Glucose consumption was quantified via the colorimetric-based Glucose Uptake 

Assay Kit (Abcam, #ab136955) as per the manufacturer’s protocol. The assay 

functions by exposing cells to 2-DG, a glucose analogue that is taken up alongside 

glucose, but cannot be broken down beyond the initial step of glycolysis. This 

leads to accumulation of 2-DG-6-phosphate in cells proportionate to rate of 

glucose uptake, which can be oxidised to form NADPH. The resultant NADPH is 

then utilised as a reducing agent to convert glutathione disulphide to glutathione, 
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which can then be reacted with DTNB to produce a quantifiable colorimetric 

output. Each test was performed in triplicate and normalized to cellular protein 

content. 

 

2.6.6  Generating delipidated serum for metabolic studies 

 

Serum was delipidated with fumed silica (Sigma-Aldrich) according to 

manufacturer’s specifications. Briefly, 1 g of fumed silica was added to 50 mL FBS 

and left rotating overnight at 4°C. The resultant mixture was centrifuged at 2000 g 

for 15 minutes, and the supernatant filtered through. This method has been 

determined to most effectively deplete cholesterol, triglycerides and lipoproteins 

from serum as compared to other, commonly used approaches (Agnese, Spierto 

and Hannon, 1983), while preserving protein content (Ferraz et al., 2004).  

 

2.6.7  Stable isotope tracer metabolomics 

 

Cells were cultured in DMEM with no glucose, glutamine or phenol red, 

supplemented with all appropriate additives, replacing glucose and glutamine with 

isotopically labelled equivalents consisting of 13C. After 72 hours, cells were 

washed in PBS and collected in chilled 90% methanol. Cholesterol was then 

extracted after saponification with KOH in hexane. MSTFA was added to silylate 

samples, allowing for analysis via gas chromatography-mass spectrometry (GC-MS). 

 

2.7  Immunofluorescence and confocal microscopy 

 

2.7.1  Preparing cells for staining 

 

In preparation for microscopy work, cells were grown on coverslips, sterilised via 

autoclaving, placed in 6-well plates. Cells were incubated overnight to allow for 

adherence before harvesting for imaging or experimental treatment followed by 

harvesting. To prepare cells for staining, wells containing coverslips were washed 
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with PBS and fixed at room temperature with 4% formaldehyde in PBS for 10 

minutes. Formaldehyde was then removed, and cells were washed before being 

permeabilised for 3 minutes in 0.2% Triton X-100 (Sigma-Aldrich) in PBS. Where 

cells were stained for cholesterol imaging, permeabilization and staining steps 

were carried out concomitantly as described in the following section. 

 

2.7.2  Staining cells for imaging 

 

Cells were washed x3 with PBS between each described step and all plates were 

kept from direct light for the duration of staining upon addition of any 

fluorophore. Firstly, if staining for cholesterol, 100 µL of 50 µg/mL Filipin III 

(Sigma-Aldrich) in PBS was added to each coverslip and incubated at room 

temperature for 30 minutes. Next, if performing immunofluorescence, primary 

antibodies were diluted according to manufacturer’s specifications in 2% BSA in 

PBS and added to coverslips. After one-hour incubation at room temperature, 

coverslips were washed with PBS before the addition of secondary antibody for 

another hour incubation. Finally, if neutral lipid staining was carried out, 1 µg/mL 

BODIPY 493/503 was added to coverslips and incubated at room temperature for 

30 minutes. Coverslips were then washed in PBS and mounted on slides in 

VECTASHIELD, with or without DAPI depending on whether nuclear staining was 

required. 

 

2.7.3  Image acquisition 

 

All images were captured using a Zeiss LSM 780 confocal microscope system, with 

preliminary processing carried out using ZEN Black software. Immunofluorescence 

experiments were carried out with a minimum of 4 positions analysed for each 

condition, with imaging conducted at either 20X or 40X magnification. Z-stacks 

were acquired at each position, with sufficient depth to capture the entirety of all 

cells. Image sequences were then output as TIFFs for downstream analysis. 
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2.8  Data analysis 

 

2.8.1  General statistical analysis 

All statistical processing was carried out in R, while subsequent figure generation 

was performed using GraphPad Prism. Linear regression was performed using the 

least squares method of line fitting and was executed using the lm function of the 

“stats” package, which functions via QR decomposition (Goodall, 1993). 

 

2.8.2  Drug screening analysis 

 

Drug target data were obtained from the DrugBank database (Wishart et al., 2018), 

downloaded in the XML format. Clinical trials data were obtained from the 

Aggregate Analysis of ClinicalTrials.gov (AACT) database (Clinical Trials 

Transformation Initiative), downloaded in pipe-delimited format and processed in 

R. 

 

 

2.8.3  Immunofluorescence image analysis 

 

Images generated via confocal imaging were further processed using FIJI 

(Schindelin et al., 2012), allowing for the re-arranging of channels and the 

generation of maximum intensity Z-projections from a sequence of images 

representing a Z-stack. Feature detection and quantification was subsequently 

performed on Z-projections using CellProfiler (Carpenter et al., 2006) utilising the 

various functions to identify and enhance various features such as nuclei, lipid 

droplets, cleaved PARP and cleaved Caspase-3. Where necessary, additional 

processing allowed for the expansion of features and assessment of overlap of 

objects. 
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Defining Candidate Metabolic Vulnerabilities 

 

3.1  Introduction 

 

In order to identify therapeutics potentially effective in treating pancreatic 

cancer, studies concentrated on characterising subtypes previously found to exist 

within patients (Bailey et al., 2016). To this end, a diverse collection of patient 

derived cell-lines (PDCLs) generated directly from tumour tissue was used as a 

potential model for subtype-specific therapeutic development for pancreatic 

cancer. To first validate their application to this end, extensive transcriptomic 

profiling of PDCLs via RNA-seq was performed. To act as further verification of the 

robustness of the approach and model, subtyping of cell-lines was performed 

independently of the patient from which they were derived. 

 

Though the central dogma of genetics holds that translation of proteins is 

dependent on transcription of RNA, the relationship between mRNA and protein 

abundances are not directly proportionate, largely in part due to regulation at the 

post-transcriptional level (Lai, 2002; Thomson et al., 2006). Though previous 

evidence shows that gene expression in pancreatic tissue is closely correlated with 

protein abundance, more so than in a number of other tissue-types (Kosti et al., 

2016), proteomic characterisation was performed to confirm clinical relevance of 

dysregulation observed at the transcriptome level. 

 

Simultaneous characterisation of both transcriptomes and proteomes within PDCLs 

enabled the interrogation of both datasets to quantify dysregulation of pathways 

associated with oncogenesis and subtype differentiation in PDAC (Jones et al., 

2008; Bailey et al., 2016). This approach was intended to further reinforce the 

validity of the PDCL model, while allowing focus to be directed to pathways which 

represent potential for subtype-specific vulnerabilities. 
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In line with recent research that ties metabolic perturbations to pancreatic cancer 

development and progression (Ying et al., 2012; Kamphorst et al., 2013; Son et 

al., 2013), PDCLs were additionally subject to a range of assays assessing 

metabolic outputs. Specifically, rates at which cells utilised both glucose and fatty 

acids as energy sources were interrogated, which were then compared to findings 

at the transcriptomic and proteomic level. These analyses collectively revealed 

differential metabolic profiles that exist between subtypes, with subsequent 

research efforts aimed at identifying vulnerabilities within these metabolic arms. 

 

3.2  Transcriptomic profiling of PDCLs reveals subtype-

specific metabolic dysregulation 

 

3.2.1  Analysis of PDCL transcriptomes identifies in vitro subtypes  

 

In order to determine potential subtypes in PDCLs, RNA-seq was performed on a 

set of 48 novel, patient derived cell-lines (PDCLs), provided by the Australian 

Pancreatic Cancer Genome Initiative (for details on origin, see Table 2.2). This 

provided a comprehensive profile of PDCL transcriptomes, with subsequent 

hierarchical clustering of RNA-seq data revealing the existence of two broad 

subtype groups (Figure 3.1a) (Peter Bailey, unpublished data). These two subtypes 

were classified as squamous and classical. As was seen within bulk tumour and 

described in chapter 1.2.1 , the PDCL squamous subtype was characterised by the 

loss in expression of a number of genes associated with pancreatic identity 

determination, including PDX1 and HNFs (Figure 3.2). Clustering did reveal the 

existence of three PDCLs that could be classed as exocrine-like, which displayed 

expression of genes associated with terminally differentiated pancreatic epithelia 

such as CPA1, INS and GCG. Beyond those perturbations, these exocrine-like PDCLs 

showed similar transcriptional patterns as 17 PDCLS determined to belong to the 

pure classical progenitor subtype, and as such, these subtypes were grouped and 

referred to as classical, representative of the classical-pancreatic subgroup 

described in patients (Collisson et al., 2019).  
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Weighted Gene Co-expression Network Analysis (WGCNA) was then performed on 

transcriptome data to identify co-ordinately regulated gene programmes across 

the subtypes (Langfelder and Horvath, 2008), as previously conducted in bulk 

tumour data (Bailey et al., 2016). This analysis was conducted independently of 

that performed in patient samples, similarly generating gene networks assigned 

colour identifiers to facilitate the plotting of data. By comparing the composition 

and connectivity patterns of gene programmes between PDCL and patient data, it 

was possible to quantify conservation between tumour and cell-line gene 

networks, as previously described in literature (Langfelder et al., 2011). One 

major observation from this assessment of conservation was the recapitulation of a 

majority of gene programmes identified in bulk tumours, in particular those 

associated with the squamous and pancreatic progenitor subtypes, and those found 

in PDCLs. This can be seen in the high Zsummary measures obtained for gene 

programmes 1-5, which constitute all GPs that define squamous and pancreatic 

progenitor subtypes. Conservation scores are all greater than 10 in these GPs 

(Figure 3.1b), suggesting a preservation across these modules. Additionally, gene 

networks within cell-lines that share a high degree of similarity to subtype-

associated bulk tumour GPs are associated with subtype specification in cell-lines. 

This is seen in the module eigengene (ME) values, or values of expression that 

typify the collective expression of gene networks (Langfelder and Horvath, 2007), 

in those conserved modules. When plotting ME values of PDCL modules in cell-

lines, cell-lines are shown to cluster according to subtype (Figure 3.1c). An 

example of this can be seen within the turquoise GP in PDCLs, which has 

significant overlap with GP1, the GP most associated with the pancreatic 

progenitor subtype in patients. The ME values of this module are consistently 

higher across cell-lines grouped as classical. These observations collectively point 

to the existence of patterns which define patient subtypes in an in vitro context, 

thus highlighting the potential of cell-lines as a model of patient subtypes. 
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Figure 3.1| RNA-seq reveals two distinct subtypes in PDCLs. a Heatmap displaying hierarchical, unsupervised clustering of PDCL RNA-seq data. This 

analysis yields a clear, binary subtyping (squamous blue, classical orange). b Plot highlighting conservation between GPs previously described in patient 

tumour (y-axis, colour identifiers and GP numbers shown) and GPs identified in PDCLs (x-axis). Preservation scoring was achieved by computing Zsummary 

statistics (Langfelder et al., 2011) for bulk tumour GPs and shown along the y-axis (module preservation), with scores of >10 indicating preservation across 

modules, 2-10 suggesting weak preservation and scores <2 indicating no preservation. c Module eigengene values of PDCL modules for each cell-line, with 

subtyping shown along top. A number of modules are seen to associate with each of the two subtypes. Data provided by Peter Bailey (unpublished). 

b c 
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The mirroring of subtypes observed is a positive indicator of sample purity and 

suggests there was little to no stromal contamination of cancer epithelia while 

generating PDCLs. Though there may be strength in modelling interactions 

between stroma and tumour tissue, particularly as evidence shows cross-talk 

between the dense stroma associated with PDAC and tumour promotes cancer 

progression (Hwang et al., 2008), monocultures were studied to reduce 

complexity, thus facilitating the primary goal of identifying therapeutics that 

selectively target tumour cells. The immunogenic subtype, which is defined by 

gene programmes suggestive of significant immune infiltration, was not identified 

within PDCLs. This observation is expected as the immune component is naturally 

absent in monoculture systems derived from tumour epithelia. Reinforcing this, it 

was found that 74% (86 out of 116) of genes determined to be differentially up-

regulated in the immunogenic subtype in patient transcriptomes, as determined 

via Voom package (Law et al., 2014), were not found to be expressed in any PDCL. 

In comparison, when looking at each of the gene-sets significantly up-regulated in 

the three other subtypes, <10% were not found to be expressed within PDCLs. 

Interestingly though, gene programmes were found that were enriched for genes 

involved in immune regulation, likely resulting from cell autonomous signalling 

pathways previously described as being associated with the squamous subtype 

(Bailey et al., 2016).  

 

In summary, by comparing the co-ordinately regulated gene modules that exist in 

both patient and PDCL transcriptomes, the potential in harnessing PDCLs as a 

model of clinically relevant pancreatic cancer subtypes is evident. This then 

justified subsequent interrogation of the transcriptomes and proteomes of the two 

subtypes in PDCLs to search for therapeutic vulnerabilities. RNA-seq data were 

obtained and processed by Peter Bailey and Rosanna Upstill-Goddard. 
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Figure 3.2| Genes associated with pancreatic identity are downregulated in squamous PDCLs. 

Bar-plots showing the expression of (a) HNF1A, (b) HNF4A, and (c) PDX1 across PDCLs, coloured 

according to subtype and ordered from highest to lowest in terms of expression. As can been seen, 

expression is generally selectively found within classical (brown) rather than squamous (blue) 

PDCLs. The protein products of these three genes are all associated with pancreatic differentiation 

and identity, and the observation that their expression is lost in squamous PDCLs is in-line with 

observations within bulk tumour. All data are presented in LogCPM (log-transformed counts per 

million). 

c 
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3.2.2  Subtype-associated metabolic signatures within PDCL 

transcriptomes 

 

In order to identify pathways enriched for in subtype-associated gene modules and 

to quantify the collective expression of these functional biological pathways in 

PDCLs, the dnet R package (Fang and Gough, 2014) was implemented, allowing for 

enrichment analysis of pathways described in Gene Ontology (GO) (Ashburner et 

al., 2000), KEGG (Kanehisa and Goto, 2000) and Reactome (Fabregat et al., 2018)   

 

databases, and Gene-Set Variation Analysis (GSVA) was employed (Hänzelmann, 

Castelo and Guinney, 2013). GSVA analysis revealed that differences in expression 

of genes associated with metabolism are a key feature that defines the two 

subtypes in PDCLs, with a range of molecular processes involving fatty acid and 

glucose biosynthesis/metabolism differentially co-ordinately regulated between 

subtypes (Figure 3.3a). Upregulation of fatty acid biosynthesis in classical PDCLs 

can be demonstrated through highlighting the expression of genes involved in lipid 

anabolism in the turquoise GP, the module described previously as being most 

closely associated with the classical subtype (Figure 3.3b). Of note is the 

conservation of this transcriptional upregulation between PDCLs and bulk tumour, 

as a similar enrichment of genes involved in lipid anabolism, such as Peroxisomal 

Trans-2-Enoyl-CoA Reductase (PECR), which acts to elongate FAs during the 

biosynthetic process, and Malonyl-CoA Decarboxylase (MLYCD), which regulates 

levels of malonyl-CoA, the key determinant in rates of biosynthesis, can be seen 

within the pancreatic progenitor subtype in patients. This serves to further 

validate this observation within the PDCL model. 
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Figure 3.3| Metabolic genes are dysregulated between subtypes. a Heatmap showing 

coordinated dysregulation of metabolic gene-sets highlighting the transcriptional distinction 

between PDAC subtypes. Analysis performed and data provided by Peter Bailey (unpublished). b 

Heatmap showing the expression of genes from the turquoise gene programme associated with the 

fatty acid biosynthetic process according to the GO database. Rows and columns were clustered 

according to Ward hierarchical clustering. 
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When assessing differences in expression of genes involved in glycolysis, isoform 

ratios are seen to inform subtype classification, with the aldolase family of 

enzymes best representing this phenomenon. The aldolases are essential enzymes 

for early glycolysis, catalysing the cleavage of fructose 1,6 bisphosphate into 

glyceraldehyde-3-phosphate. Early enzyme kinetic assays determined that Aldolase 

A (ALDOA) has the greatest cleavage efficiency for fructose 1,6 bisphosphate 

among the isoforms (Penhoet and Rutter, 1971), implicating it as the major 

aldolase driving glycolysis within cells (Chang et al., 2018). Its expression is 

predominantly associated with energy-consuming muscle cells (Lebherz and Rutter, 

1969), and loss of ALDOA has previously been linked to fatal rhabdomyolysis (Yao 

et al., 2004). Additionally, increased levels of ALDOA have long been observed in 

patients with cancer (Asaka et al., 1994; Li et al., 2019). Within PDCLs, 

ALDOA:ALDOB expression ratios are found to be dysregulated across subtypes, with 

squamous cell-lines displaying greater levels of ALDOA transcript and classical cell-

lines, ALDOB (Figure 3.4a-b). This association corresponds to a poorer prognosis in 

patients with a high ALDOA:ALDOB ratio (Figure 3.4c). 

 

These observations work to collectively highlight the coordinated dysregulation of 

genes involved in metabolism between the subtypes and suggest a transcriptome-

driven regulation of general metabolism in PDCLs. These findings were then 

validated at the proteomic level to ensure an association between abundance of 

metabolic enzymes and subtypes before confirming the effect on metabolic 

phenotypes. 
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Figure 3.4| Impact of metabolic isoform ratio on subtype and outcome. a Scatter-plot showing 

the expression of ALDOA plotted against expression of ALDOB, highlighting association between 

ALDOA:ALDOB ratio and subtype, as well as the significant negative correlation in expression 

between the two isoforms. High ALDOA/low ALDOB expression is associated with the squamous 

subtype (blue triangles) while the opposite is true for classical (brown circles). Test statistics 

correspond to the Pearson correlation coefficient, with linear regression (grey, dotted line) 

highlighting negative correlation. b Boxplot displaying the ALDOA:ALDOB ratios grouped according 

to subtype. As observed in (a), a high ALDOA:ALDOB ratio is highly significantly associated with the 

squamous subtype, as determined via Mann-Whitney U test. c Kaplan-Meier curve showing the 

significantly improved disease-specific survival prognosis in PDAC patients with low ALDOA:ALDOB 

ratio relative to those with high. Low/high patient classification was achieved by splitting the 

cohort in two across the median ratio and p-value calculated via logrank test. 

c 

a b 
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3.3  Proteomic profiling validates and expands on 

transcriptomic analysis 

 

In order to ensure that the observed dysregulation of genes involved in metabolism 

translated to differences in protein quantities between subtypes, PDCL proteomes 

were quantified via mass-spectrometry. This analysis was performed within a 

selection of cell-lines representative of the two distinct subtypes. This analysis 

firstly demonstrated that there was a strong correlation (r = 0.78; p = 2.2 x 10-16) 

between mRNA and protein abundances when considering genes/gene products 

involved in lipid biosynthesis and glycolysis, as defined by the canonical glycolysis 

and fatty acid biosynthetic processes specified in the GO database (Ashburner et 

al., 2000) (Figure 3.5). These pathways consist of a variety of genes integral to 

both glycolysis and lipogenesis, including the aldolases, whose role in glycolysis is 

described in chapter 3.2.2 , acetyl-CoA carboxylases and FASN, both catalysing 

intermediate reactions in FA biosynthesis, described in chapter 1.5.2 , and AMPK 

subunits, which mediate the metabolic stress response described in 1.5.4 , 

suggesting that transcriptomic analysis which demonstrates a dysregulation of 

metabolic cassettes (Figure 3.3a) should directly inform downstream proteomic 

data. 

 

In order to investigate the extent to which pathways are affected by this 

dysregulation at the protein level, a subset of PDCLs most reflective of the subtype 

extremes were analysed, considering only proteins present in classical and absent 

in squamous. This validated the association between lipid biosynthesis and 

metabolism pathways and the classical subtype observed within the transcriptome 

(Figure 3.6). The findings that proteins involved in lipid biosynthesis and 

metabolism are more abundant in classical cell-lines, in conjunction with the 

previously described results obtained from RNA-seq analysis that corroborate the 

upregulation of genes associated with lipogenesis in classical PDCLs and suggest 

the more widespread dysregulation of metabolic cassettes between subtypes 

(Figure 3.3a), provide compelling evidence that different metabolic pathways are 

activated between the subtypes. These observations are consistent with the 
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research described in chapter 1.5.6 , which details the association of drivers of 

pancreatic cancer with upregulation of glycolysis, FA biosynthesis and FAO (Table 

1.1). Before interrogating these pathways to identify potential susceptibilities, it 

was necessary to first validate these findings via functional assays.  

 

Figure 3.5| Expression of metabolic genes correlates strongly to protein abundances in PDCLs. 

Scatter-plot showing correlation between the expression of genes as determined by RNA-seq in a 

selection of subtyped PDCLs (x-axis) and abundance of their corresponding gene product as 

determined by mass-spectrometry (y-axis). Genes were selected to display from the “canonical 

glycolysis” and “fatty acid biosynthetic process” pathways as defined by the GO database. 

Spearman’s rank correlation coefficient was calculated at 0.782, p = 2.2 x 10-16, with linear 

regression highlighting the positive correlation between transcript and protein abundances (dotted 

grey line). 
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Figure 3.6| Classical subtype PDCLs are defined by the presence of metabolic networks of 

proteins. Network plot displaying metabolic pathways enriched for proteins selectively found in 

classical cell-lines. Each red ellipse represents a protein associated with the classical subtype, 

associations between biological processes and proteins are highlighted in grey, and druggable 

targets are shown in yellow. Transcriptome analysis had previously highlighted upregulation of lipid 

biosynthesis within this subtype, with network analysis validating this phenomenon at the protein 

level. An association was also found between the classical subtype and metabolism of both lipids 

and amino acids. Analysis and data provided by Bryan Serrels (unpublished). 

 

3.4  Metabolic characterisation reveals distinct metabolic 

phenotypic differences between subtypes 

 

In order to characterise metabolism in PDCLs and validate results from RNA-seq 

and proteomics, the Seahorse XFe96 analyser was employed for quantification of 
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extracellular bioenergetics. This system functions through the quantification of 

oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) within 

wells containing cells, as determined by shifts in oxygen and pH levels recorded by 

fluorescent biosensors (Wu et al., 2006). OCR acts as a measure of oxidative 

phosphorylation as cellular oxygen consumption is coupled with the electron 

transport chain (ETC) and ATP production through the progression of the TCA 

cycle. ECAR is similarly linked to aerobic glycolysis due to the resultant lactate 

production and efflux of protons. 

 

To generate a comprehensive profile in real-time, metabolic stress tests were 

performed. By measuring changes in extracellular flux in real-time upon the 

injection of various compounds into wells over the course of each assay, these 

protocols allow for basal and maximal read-outs for a range of metabolic 

functions. 

 

3.4.1  Determining optimal conditions for bioenergetics assays 

 

Before proceeding with extracellular flux assays, it was necessary to first 

determine the optimal seeding densities for each cell-line, as well as the minimum 

concentrations of injected compounds required to achieve maximal effects on 

metabolic pathways. These steps were required to avoid recording metabolic 

artefacts in response to over- or under-confluence, as well as to limit the 

possibility of off-target effects that might result from injecting high concentrations 

of compounds. 

 

To ascertain the ideal plating conditions, cells were seeded at a range of densities, 

allowed 24 hours to attach, and viewed under a microscope. According to 

manufacturer’s specifications, optimal confluency was determined to be 50-90% at 

the time of assay, with seeding densities selected to satisfy this criterion. Upon 

determining this, the optimal concentrations of oligomycin and FCCP were 

deduced in each cell-line by assaying shifts in ECAR and OCR respectively in 

response to increasing concentrations of each compound. As oligomycin/FCCP 

concentrations increase, ECAR/OCR rise until they reach a maximal level, with 
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final concentrations selected by determining the lowest concentration at which 

these maximal levels were recorded Table 3.1. 

 

Table 3.1| Cell-line optimisations determined for bioenergetic stress tests on Seahorse 

platform. Optimal overnight seeding densities and minimum oligomycin concentrations required to 

affect maximal metabolic response listed for each PDCL tested. 

 

 

3.4.2  Rates of glycolysis differ between subtypes in PDCLs 

 

Rates of both basal and maximal glycolysis were recorded according to the 

glycolytic stress test (Figure 3.7). This experiment functions by first recording 

background levels of ECAR while cells are cultured in full media lacking glucose 

and serum (Table 2.4). This then acts as a measurement of non-glycolytic ECAR, 

and when glucose is subsequently injected into cell-plates followed by a rise in 

ECAR, this background level of acidification can be subtracted from recorded ECAR 

values to provide a quantification of basal glycolysis. 

 

In order to measure glycolytic capacity, or maximal rates of glycolysis, oligomycin 

is subsequently injected into cells. This compound acts as an inhibitor of ATP 

Synthase (Symersky et al., 2012), rapidly reducing levels of OXPHOS and leading to 

an increase in ADP/ATP ratios (Slater and Welle, 1969), which in turn drives 

anaerobic metabolism in the form of glycolysis. 2-DG, a glucose analogue that is 

taken up by glucose transporters in cells (Hansen et al., 1995) but cannot be 

metabolised further, is lastly injected into cells, acting as an inhibitor of key 

glycolytic enzymes (Wick et al., 1957). ECAR levels are then expected to drop, 

with this final measurement acting as a secondary measure of non-glycolytic ECAR. 

 

PDCL TKCC-22 PaCaDD137 Mayo-5289 Mayo-4636 TKCC-18 TKCC-26 TKCC-10 TKCC-02 

Oligomycin 

Concentration 
1 µM 2.5 µM 2.5 µM 2.5 µM 1 µM 2.5 µM 1 µM 2.5 µM 

Cell Density 

(cells/well) 
2.2 x 104 2.5 x 104 3.5 x 104 1.5 x 104 2 x 104 1.85 x 104 1.75 x 104 1.3 x 104 
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Figure 3.7| Conducting glycolytic stress tests in PDCLs. Rates of basal and maximal glycolysis 

were determined in real-time via glycolytic stress test. Background, non-glycolytic acidification 

rates were measured in cells before addition of glucose. Basal rates of glycolysis (green) were 

subsequently obtained after injection of 10 mM glucose, with maximal rates, or glycolytic capacity, 

(red) next achieved via injection of a PDCL-dependent concentration of oligomycin. Finally, 50 mM 

2-DG was injected in order to suppress glycolysis, providing a secondary measure of background 

acidification rates. Data presented as mean, with error bars representing SD, n=5. 
 

The results of the glycolytic stress test determined that rates of basal glycolysis 

were significantly higher across all squamous PDCLs as compared to classical cells 

(Figure 3.8a) with a modest but significant, increase in maximal rates of glycolysis 

also observed in squamous PDCLs (Figure 3.8b). The greater increase in levels of 

basal glycolysis relative to maximal glycolysis in squamous PDCLs translated to 

lower rates of glycolytic reserve within this subtype (Figure 3.8c). This suggests 

that glycolysis within squamous PDCLs is, in general, operating at rates closer to 

maximum in the absence of a source of metabolic stress. These data collectively 

indicate a dependency on glycolysis and is suggestive of a potential sensitivity to 

therapeutic inhibition of this pathway (Issaq, Teicher and Monks, 2014). 

 



 

 

 

76 

3.4.3  Functional metabolic outputs validate subtype aligned-

glycolytic phenotypes 

 

In order to validate the findings determined via bioenergetic stress tests, 

additional colorimetric kits were implemented to directly quantify the 

consumption of glucose and production of lactate across PDCLs. Two assays were 

employed: 

 

1. Abcam glucose uptake assay: this assay functions as outlined in (Saito et al., 

2011). Briefly, cells are exposed to the previously described glucose 

analogue 2-DG, which is taken up by cells at rates equivalent to glucose 

(Hansen, Gulve and Holloszy, 1994). Upon uptake, 2-DG is phosphorylated by 

hexokinases within cells, generating 2-DG-6-phosphate which cannot be 

metabolised further. The resultant 2-DG-6-phosphate is then exposed to 

high concentrations of glucose-6-phosphate dehydrogenase, leading to 

oxidation and the concurrent generation of NADPH. This NADPH is then 

harnessed via a recycling amplification reaction alongside glutathione and 

DTNB, allowing for colorimetric detection (Ellman, 1959). The production of 

NADPH, and hence signal, is directly proportionate to 2-DG uptake. 

2. Abcam L-lactate assay: this assay functions similarly to the glucose uptake 

assay, with lactate dehydrogenase (LDH) utilised to convert L-lactate to 

pyruvate, producing NADH. NADH production is then quantified by exposure 

to tetrazolium salts, as in MTS/MTT assays, providing a colorimetric output 

which corresponds to starting quantities of lactate. As small quantities of 

LDH inherent to metabolically active cells are capable of influencing results, 

all samples were deproteinized using perchloric acid (Neuberg, Strauss and 

Lipkin, 1944) and subsequently neutralised using potassium hydroxide. 

 

Results from colorimetric assays validated the previous Seahorse experiments, and 

found that squamous cells consistently consume more glucose (Figure 3.9a) and 

subsequently produce more lactate (Figure 3.9b) than compared to classical 

PDCLs. Furthermore, the results of the glucose uptake assay account for the 
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latency between addition of 2-DG and cessation of glycolysis observed in classical 

PDCLs during the glycolytic stress test (Figure 3.7), with squamous cell-lines taking 

up 2-DG at quicker rates, resulting in a more immediate inhibition of glycolytic 

enzymes. 

 

Insulin has long been associated with stimulating the uptake of glucose (Park and 

Johnson, 1955; Levine and Goldstein, 1958). In order to quantify its possible 

influence as a supplement on the rate of glucose consumption, the glucose uptake 

assay was conducted in the presence and absence of insulin. Insulin was found to 

slightly increase glucose uptake, though not significantly, selectively in squamous 

cell-lines, but even in the absence of insulin, basal levels of glucose consumption 

were higher in all tested squamous PDCLs relative to classical. As such, insulin 

supplementation is not considered a likely contributor to described metabolic 

phenotypes. Though more data would be required to determine conclusively, the 

insulin-mediated increase in glycolysis associated with squamous PDCLs may be 

due to the secondary, noncatalytic function of the aldolase family of enzymes as 

modifiers of cell structure and endo/exocytosis (Volker and Knull, 1997; Merkulova 

et al., 2011). In this role, aldolases have been shown to act as a scaffolding 

protein for the insulin-responsive glucose transporter, GLUT4 (SLC2A4), facilitating 

insulin-driven exocytosis of GLUT4 (Kao et al., 1999). This interaction has been 

described as potential facilitator of a negative feedback system, wherein high 

levels of aldolase substrates, indicative of active glycolysis, inhibit the scaffolding 

function of aldolases and limit insulin-driven glucose transport. Within the context 

of the PDCLs, the more active aldolase isoform is associated with squamous PDCLs 

(Figure 3.4), which would allow this subtype to clear aldolase substrates quicker, 

liberating a greater proportion of aldolase to facilitate the translocation of GLUT4 

to the cell membrane, enhancing insulin sensitivity.  
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Figure 3.8| Distinct glycolytic signatures define PDCL subtypes. a Boxplot displaying rates of 

basal glycolysis determined via glycolytic stress test across PDCLs. Data is presented as Individual 

cell-lines (left) and cell-lines grouped according to subtype (right). Subtypes are indicated by 

colouring, with squamous PDCLs (blue) displaying significantly higher rates of glycolysis than 

classical (brown). b Boxplot showing rates of glycolytic reserve, or the difference between basal 

and maximal observed rates of glycolysis, as in (a). c Boxplots of glycolytic capacity, or rate of 

maximal glycolysis, as in (a). Data presented with boxes indicating 25th to 75th percentiles, with 

lines representing median values and whiskers showing minima and maxima, n=5. P-values were 

determined according to a Mann-Whitney U test. 

a 

b 
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Figure 3.9| Validating PDCL metabolic signature. a Bar-plot showing rates of glucose consumption 

in individual PDCLs ordered according to subtype. Measurements were recorded with cells cultured 

in medium without insulin (blue) and with insulin (red). b Bar-plots showing lactate production 

across PDCLs, with data presented according as in figure 3.7. All experiments were performed in 

duplicate mean and presented as mean with error bars representing SD. P-values were determined 

according to a Mann-Whitney U test. 

a 
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3.4.4  Rates of Fatty Acid Oxidation co-segregate with PDCL subtypes 

 

Basal and maximal Fatty acid oxidation (FAO) processes depend on the utilisation 

of both endogenous and exogenous fatty acids as fuel to drive the TCA cycle, and 

rates were determined in PDCLs using a modified version of the mitochondrial 

stress test (Figure 3.10), as described previously (Pike et al., 2011). 

 

 

Figure 3.10| Measuring rates of fatty acid oxidation in PDCLs. The FAO profile corresponding to 

the Mayo-4636 cell-line, representative of the classical subtype and selected for descriptive 

purposes. Basal exogenous FAO levels (time-point 6-18 mins, green box within cyan area) are 

measured by recording the natural rate of respiration in the absence of exogenous FAs (control, red 

curve) and then quantifying the increase in OCR recorded in the presence of the FA palmitate (dark 

red). Endogenous FAO (blue box) is similarly measured by quantifying the decrease in OCR induced 

by the drug Etomoxir (yellow curve), which prevents the metabolism of endogenous FAs. Maximal 

respiration (time-point 42-52 mins, red) is then calculated with the same conditions as basal rates 

after treating cells with the uncoupling agent FCCP, which drives oxidative respiration. Respiration 

is measured as the oxygen consumption rate (OCR) as normalised to total protein content of wells. 

Data presented as mean, with error bars representing SD, n=4. 
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Briefly, cells were cultured in glucose and glutamine-limited media (Table 2.4) for 

4 hours in advance of the assay in order to promote the metabolism of surplus 

endogenous FAs and to encourage uptake of exogenous FAs during the course of 

the experiment. Cells were treated with either DMSO (control), an exogenous 

source of FA (palmitate), or an inhibitor of FA uptake across the mitochondria 

(etomoxir), which prevents FAO entirely. Oxygen consumption was then measured 

in real-time across a range of treatments affecting metabolism, with an initial 

injection of oligomycin, preventing TCA cycle driven ATP synthesis, and providing a 

measurement of ATP production (statistics not shown as ATP synthesis aligned 

closely with basal respiration, indicating no differential proton leak between PDCL 

subtypes). FCCP, an uncoupling agent which uncouples ETC from ATP synthesis, is 

subsequently added into wells, facilitating the efflux of protons across the 

mitochondrial membrane, disrupting the proton gradient and generating heat 

energy that is lost instead of cellular energy captured in ATP production. This 

results in an upregulation of ETC to offset the flooding of protons back into the 

inner mitochondrial matrix, leading to the oxidation of all substrates available to 

the cell to fuel the TCA cycle, and allowing a measurement of maximal rates of 

respiration. Finally, antimycin A and rotenone are injected, both acting as 

inhibitors of ETC complexes, preventing all oxygen consumption linked to 

respiration, allowing for the resolution of background OCR. 

 

FAO assays revealed that the classical PDCLs use a significantly higher rate of 

exogenous FAs as a fuel source compared to squamous PDCLs (Figure 3.11a), 

though due to technical issues with their general growth properties and 

adherence, alongside additional washing steps necessary for this protocol, the 

squamous PDCL TKCC-02 were determined to be incompatible with this assay.  In 

contrast, endogenous FAs are preferentially utilised to fuel basal respiration in a 

selection of classical PDCLs as compared to squamous, but no significant 

association exists between subtype and endogenous FA usage at maximal levels, 

when cells are placed under metabolic stress (Figure 3.11b). This observed 

increase in FAO in classical PDCLs thus validates the previously described findings 

at the transcriptomic and proteomic levels, which had collectively suggested an   
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Figure 3.11| Rates of FAO differ across PDCL subtypes. a Boxplots showing the rates of fatty acid 

oxidation fuelled by exogenous fatty acids. Data is presented as in figure 3.7. Classical PDCLs 

(brown) exhibit significantly higher rates of both basal (top) and maximal (bottom) exogenous FAO 

than squamous (blue).  b Boxplots showing rates of FAO fuelled by endogenous fatty acids, as in 

(a). P-values were determined according to a Mann-Whitney U test. Data presented with boxes 

indicating 25th to 75th percentiles, with lines representing median values and whiskers showing 

minima and maxima, n=4. 

a 
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upregulation of metabolic players involved in lipid and FA metabolism within this 

subtype. The increase in rates of exogenous FA supports the association between 

proteins involved in FA catabolism, such as acyl-CoA dehydrogenase 

short/branched chain (ACADSB), which oxidizes acyl-CoA derivatives as part of the 

FAO process (Rozen et al., 1994), malonyl-CoA decarboxylase (MLYCD), which 

mediates the degradation of malonyl-CoA to acetyl-CoA, thus preventing the 

inhibition of FAO associated with malonyl-CoA described in chapter 1.5.4 , and 

SLC27A3, a fatty acid transporter associated with FA uptake into cells (Maekawa et 

al., 2015), and the classical subtype. Additionally, the upregulation of genes 

involved in lipid biosynthesis in classical PDCLs may be linked to the increased 

rates of basal endogenous FAO in this subtype, as in the absence of metabolic 

stress, it is possible that a balance between catabolism and anabolism persists, as 

has been suggested in literature (Carracedo, Cantley and Pandolfi, 2013), 

described in greater detail in chapter 1.5.4 . As such, active FA synthesis within 

this subtype would produce FA stores which may be utilised to fuel FAO, reflected 

in increased rates of endogenous FAO. 

 

3.4.5  Metabolic flexibility is associated with classical PDCLs 

 

Emergence of resistance to therapeutic intervention is a common phenomenon in 

cancer (Holohan et al., 2013) mediated by a variety of mechanisms including the 

emergence of drug-target mutations conferring resistance via tumour evolution 

(Gorre et al., 2001; Pao et al., 2005) or the activation of redundant, compensatory 

pathways (Wheeler et al., 2008; Mao et al., 2013), and therefore requires careful 

consideration in a preclinical setting. Flexibility in metabolism has previously been 

shown to mitigate sensitivity to otherwise effective therapies over time, with 

imatinib resistance in chronic myeloid leukaemia having been linked to enhanced 

glycolysis (F. Zhao et al., 2010) and OXPHOS activation found to confer resistance 

to BRAF inhibition in melanoma (Haq et al., 2013). In the context of pancreatic 

cancer, in vitro models have demonstrated that upregulation of glucose uptake 

and glycolysis (Shukla et al., 2017; Zhao et al., 2017), as well as lipid synthesis 

(Tadros et al., 2017), may contribute to resistance to the standard of care 

therapeutic, gemcitabine. 
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Multiple research projects have also identified the potential of cancer cells to 

adapt to metabolic inhibition via various mechanisms, for example, inhibition of 

OXPHOS can be overcome across a range of cancer-types via upregulation of 

glycolysis (Zhong et al., 2015; Nagana Gowda et al., 2018). Similar phenomena 

have also been described within pancreatic cancer, with attempts to block 

glutamine dependency associated with PDAC (Son et al., 2013) in cell-line models 

found to induce concerted compensatory changes, including a metabolic shift to 

FAO, which facilitates resistance to inhibition (Biancur et al., 2017). Additionally, 

therapeutic inhibition of lactate dehydrogenase (LDH) in pancreatic cancer cells 

revealed an upregulation of OXPHOS via AMPK activation, conferring resistance to 

LDH inhibition (Boudreau et al., 2016). Given these findings, as well as the close 

association between molecular drivers of pancreatic cancer and metabolic 

reprogramming (Table 1.1), there is a clear potential of therapeutic resistance 

emerging as a result of metabolic flexibility in PDAC which must therefore be 

addressed (Kimmelman, 2015). 

 

In order to measure potential for metabolic flexibility within PDCLs, an assay 

designed according to the Mito Fuel Flex Test was conducted. This experiment 

allowed for the quantification of a cell-line’s dependency on the three major 

metabolites responsible for driving mitochondrial respiration: glucose, glutamine, 

and fatty acids. Dependency scores were calculated for each of the three 

metabolites via treatment with inhibitors of key players in their respective 

metabolism, such as: UK5099, an inhibitor of the mitochondrial pyruvate carrier 

(Hildyard et al., 2005) which prevents the utilisation of pyruvate, a primary 

product of glycolysis, to fuel OXPHOS; BPTES, a glutaminase inhibitor (Shukla et 

al., 2012), prevents the hydrolysis of glutamine, disrupting its introduction to the 

TCA cycle; etomoxir, an inhibitor of CPT1A (Kruszynska, Stanley and Sherratt, 

1987), as mentioned previously prevents the carnitine-dependent transfer of FAO 

intermediates into the mitochondria, inhibiting FAO. Capacity scores were 

subsequently calculated by employing combinations of these metabolic inhibitors, 

allowing a read-out of a cell’s ability to compensate for the loss of various fuel 

sources with one of the three metabolites of interest. Flexibility was then 
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calculated by subtracting dependency scores from capacity scores. This analysis 

revealed that metabolic flexibility existed only within PDCLs classified as classical 

(Figure 3.12), with low dependencies and high flexibility seen particularly within 

Mayo-5289. Some negligible flexibility in glutamine metabolism was observed 

within TKCC-10 (squamous), but in general, squamous PDCLs displayed no 

flexibility and greater dependency than classical cell-lines. 

 

 

Figure 3.12| Classical PDCLs display greater metabolic flexibility than squamous. Bar-plots 

showing metabolic dependency (dark grey) and flexibility (light grey) for glucose (a), glutamine (b) 

and fatty acids (c) across PDCLs representative of the squamous and classical subtypes. As can be 

seen, flexibility is observed only in classical cell-lines. Data are presented as mean, with error bars 

representing SD, n=5. 

 

a b 
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3.5  KRAS and mitochondrial gene mutation status do not 

account for subtype-associated metabolic dysregulation 

 

As described in chapter 1.5.6 , KRAS mutation status has been implicated as a 

driver of glycolysis, with previous research additionally indicating an association 

exists between KRAS mutation copy number and metabolic reprogramming towards 

glycolytic activation (Kerr et al., 2016). Similarly, the presence of mutations in 

mitochondrial DNA suggestive of mitochondrial dysfunction have been found to 

contribute to a more glycolytic, less oxidative phenotype in a collection of TKCC 

pancreatic cancer cell-lines (Hardie et al., 2017). In order to assess this 

relationship within PDCLs, the mutation status of both KRAS and all genes 

expressed in PDCLs found within mitochondrial DNA, as determined by the Genome 

Reference Consortium Human (GRCh) genome, build 38 (Schneider et al., 2017), 

was overlaid onto subtype. This revealed that, although there did appear to be a 

slightly higher frequency in both mitochondrial and homozygous KRAS mutations in 

squamous PDCLs (Table 3.2), neither association was significant according to a chi-

squared test. These findings therefore suggest that neither mutant KRAS copy 

number, nor mitochondrial DNA mutation are major contributors to subtype-

associated metabolism, thus justifying an approach that prioritises focus on those 

distinct biological processes associated with the two subtypes. 
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Table 3.2| There is no apparent association between KRAS mutation copy number, 

mitochondrial mutations and PDCL subtype. Chart displaying mutation rates across KRAS and 

mitochondrial genes, with colouring to indicate nature of mutation. No significant association was 

found to exist between KRAS mutation status or mitochondrial mutation-load and subtype, 

according to chi-squared test. 

 

 

 

 

3.1  Association of KRAS amino acid substitution and 

subtype specification 

 

Though KRAS mutations most commonly affect codon 12 (Miglio et al., 2014), 

previous research has shown that the exact amino acid substituted for the glycine 

residue at this position may act as a prognostic factor in PDAC (Bournet et al., 

2016), while mutations at codon 61 have been linked to a favourable outcome in 

patients (Witkiewicz et al., 2015). As PDAC subtype is also a predictor of 

prognosis, it was decided to investigate any potential association between subtype 

and KRAS mutation type. As described in literature, most mutations within cell-

lines were found in codon 12 (Table 3.3), however there was no correlation found 

between subtype and any specific KRAS mutation.  
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Table 3.3| Within PDCLs, mutations in KRAS do not show association between codon specificity or residue change and subtype. Chart displaying 

mutations within KRAS in PDCLs, with mutations (red shading) categorised according to codon affected and amino acid substitution. PDCL subtypes are 

indicated by colour, with blue representing the squamous and brown representing classical subtypes. As can be seen, there is no association between the 

various KRAS mutations and subtypes. 
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3.2  Discussion 

 

This chapter aimed firstly to assess the relevance of PDCLs as an in vitro model of 

PDAC subtypes and secondly to identify vulnerabilities associated with subtypes via 

transcriptomic and proteomic analyses, with validation by functional assays. The 

first aim was achieved via analysis of RNA-seq data, which highlighted the 

conservation in co-ordinately expressed gene programmes between patients and 

cell-lines. Pathway analyses involving these gene programmes then revealed a 

dysregulation of genes involved in metabolism between the two identified in vitro 

subtypes, with both proteomics analysis and assays probing metabolic outputs 

pointing to an association between glycolysis and the squamous subtype, as well as 

FA synthesis and FAO with the classical subtype. This finding is particularly 

significant given that glycolysis, which is associated with the aggressive, squamous 

subtype, has been linked with a worse prognosis in PDAC (Baek et al., 2014; Xiang 

et al., 2018), echoed by previous findings that a poor prognosis glycolytic subtype 

exists in PDAC(Follia et al., 2019)  and that metabolic reprogramming has been 

long been described in PDAC, as described in chapter 1.5.6 . 

 

The results outlined within this chapter collectively point to the existence of 

distinct metabolic subtypes in PDCLs which correlate with subtypes previously 

described in pancreatic cancer patients (Bailey et al., 2016). This work therefore 

validates and expands on previous efforts to subtype pancreatic cancer via 

metabolite profiling, which demonstrated that cells subtyped into two divergent 

groups according to an alternative subtyping approach, as described in chapter 

1.4.1 (Collisson et al., 2011), exhibited distinct glycolytic and lipogenic 

dependencies (Daemen et al., 2015). This study demonstrated that cell-lines 

classed as quasi-mesenchymal, analogous to the squamous subtype described 

within this work (Collisson et al., 2019), displayed elevated levels of metabolites 

involved in glycolysis, such as glyceraldehyde-3-phosphate and lactate, while 

classical cell-lines exhibited upregulated long-chain FAs, such as oleic and 

palmitate. The findings described within this chapter therefore provide additional 

evidence for the existence of these subtypes, while suggesting the origins of such 
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are choreographed at the level of the transcriptome (Figure 3.1). Within PDCLs, 

initial analyses failed to narrow targets to a single driver accounting for the 

metabolic divergence observed between subtypes, although there is a clear and 

co-ordinately regulated shift in metabolic players at both the transcript and 

protein levels that aligns with subtype specification. Interrogating this metabolic 

dysregulation further therefore holds potential for identifying novel, subtype-

associated vulnerabilities.  
 

In order to facilitate the identification of novel therapeutic targets and maximise 

the possibility of identifying an effective treatment strategy, two separate 

approaches were taken at this point in the project (Figure 3.13). Firstly, 

transcriptome and proteome data were split by subtype and interrogated to 

highlight pathways that represent possible vulnerabilities, allowing for direct 

selection of key enzymes targetable through therapeutic modulation. This 

approach is supported by the previous successes of in vitro attempts to target both 

glycolysis (Maftouh et al., 2014; Anderson et al., 2017) and FA biosynthesis 

(Rajeshkumar et al., 2015; Ventura et al., 2015; Brandi et al., 2017), while 

differences in subtype vulnerabilities may provide further explanation for instances 

whereby cells exhibited resistance to these therapeutic interventions (Kamphorst 

et al., 2013; Boudreau et al., 2016). Secondly, high-throughput screening was 

performed to select a broader set of compounds that can be subsequently 

narrowed according to stratifications described within this chapter. This strategy 

allows the potential to select for inhibitors that indirectly modulate metabolic 

pathways associated with the subtypes, while drug repurposing allows the 

possibility for expediting prospective clinical tests (Bertolini, Sukhatme and 

Bouche, 2015; Würth et al., 2016). 
 

The following chapter describes the identification of pathways found to 

functionally contribute to subtype-specific phenotypes in in vitro models, allowing 

the identification of key players within these pathways that can be inhibited via 

clinically relevant compounds. The additional observation that these subtype-

associated pathways in cell-line models are reflective of dysregulation observed in 

patients reinforces the clinical potential of follow-up work to identify drug 

treatments following this approach. 
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Figure 3.13| Two concurrent approaches taken to identify novel therapeutics. Flowchart outlining approaches described as part of project to dissect 

metabolic dysregulation and identification of therapeutics. Research described in chapter 3 (blue boxes) revealed metabolic distinctions between 

subtypes, with later chapters designated to discuss the two arms to achieve the end goal of identifying compounds effective in treating pancreatic cancer 

in vitro. The first, to be described in chapter 4 (green boxes), focused on key players within metabolic processes identified as being subtype-associated, 

while the second, to be described in chapter 5 (orange boxes), relied on high-throughput screening to identify novel therapeutics that may induce 

sensitivity in cells via metabolic inhibition.
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Targeting Subtype-associated Metabolic 

Processes 

 

4.1  Introduction 

 

Evidence points to the existence of a variety of potentially targetable metabolic 

alterations across a range of cancer-types (Martinez-Outschoorn et al., 2017), as 

discussed in chapter 1.5 , with many pre-clinical research projects focused on 

exploiting these therapeutically, as described briefly in chapter 3.1 . In-line with 

these efforts, and guided by the distinct metabolic phenotypes identified within 

the PDCLs as described in the previous chapter, as defined by a dysregulation of 

metabolic players at the transcriptome and proteome levels, translating to 

differential activation of glycolysis and FA metabolism between subtypes, we 

sought to investigate potential individual targets within these pathways. As 

discussed in greater detail in chapter 1.5.1 , a major metabolic pathway long 

associated with oncogenesis is glycolysis, which is hyperactive in squamous PDCLs.  

Alongside this upregulation of glycolysis, aldolase isoform ration is skewed towards 

expression of ALDOA (Figure 3.4), a highly active form of this enzyme which is 

involved in early-stage glycolysis. As such, this presented an ideal potential target 

to modulate therapeutically and it was decided to assess the ability of ALDOA 

inhibition in suppression of squamous-associated glycolysis, alongside any impact in 

cell viability.  

 

Beyond inhibition of glycolysis, the potential of targeting fatty acid biosynthesis, 

another important metabolic process linked to cancer generation (Menendez and 

Lupu, 2007) and upregulated in classical PDCLs, was investigated. FA biosynthesis 

was targeted via inhibition of FASN, an enzyme necessary for lipogenesis and with 

previously described links to cancer progression, as discussed in chapter 1.5.2 . 
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Despite the potential of these approaches that target metabolism, as indicated by 

the dysregulation of various metabolic pathways between subtypes, it is expected 

that metabolic flexibility may prove a challenge when devising treatment 

strategies involving metabolic vulnerabilities. This is of particular concern as, 

beyond its identification in classical PDCLs (Figure 3.12), it has been described 

previously as a general feature of pancreatic cancer (Boudreau et al., 2016; 

Biancur et al., 2017). In order to account for any resistance to treatments 

potentially resulting from metabolic flexibility, compensatory activation of 

alternative metabolic pathways may be quantified on exposure to therapeutics. 

Should flexibility be identified within PDCLs, combinatorial approaches may be 

considered to suppress the upregulation of compensatory metabolism. 

 

4.2  Inhibiting squamous-associated glycolysis limits viability 

in PDCLs 

 

4.2.1  Identifying ALDOA as a potential target for inhibition of 

glycolysis in squamous subtype 

 

As described in chapter 3.2.2 , aldolase A (ALDOA) is the major functional isoform 

in a family of enzymes that catabolise one of the initial steps in glycolysis, and its 

expression is strongly associated with the squamous subtype. An siRNA screen 

conducted on a select number of PDCLs in the Institute of Cancer Research (ICR), 

London, showed that knockdown (KD) of ALDOA induced a significant  loss of 

viability across 5 out of 9 cell-lines tested (Figure 4.1). The majority of the PDCLs 

included in this screen were classified as squamous, a subtype found to display 

high levels of glycolysis (Figure 3.8), with only one classical PDCL, TKCC-22, 

included in siRNA screening, which may be considered an outlier relative to other 

classical PDCLs, exhibiting the highest levels of ALDOA expression amongst all 

PDCLs. The observation that many squamous PDCLs are sensitive to ALDOA KD, 

alongside the expression pattern of aldolase isoforms within PDCLs, suggests that 

the squamous subtype utilises the highly active ALDOA isoform (Chang et al., 2018) 
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to drive glycolysis and may be dependent on this for survival. This possibility was 

reinforced by previous research showing that the silencing of ALDOA inhibited 

glycolysis in two commercially available pancreatic cancer cell-lines and improved 

prognosis in vivo according to a xenograft model of breast cancer (Grandjean, de 

Jong, B. P. James, et al., 2016). The same body of work that described this 

research employed a drug repurposing screen, which identified TDZD-8, an 

inhibitor of GSK-3β (Martinez et al., 2002), to act as a small-molecule inhibitor of 

ALDOA. This inhibition was resolved to be likely due to interaction between TDZD-

8 and cysteine 289 of ALDOA, leading to conformational changes affecting the C-

terminal tail of the protein, a site that has long been recognised as a regulator of 

ALDOA activity (Gamblin et al., 1991), TDZD-8 was then found to mediate an anti-

cancer effect in the same mouse model and, based on these collective findings, 

TDZD-8 was selected to test as an inhibitor of squamous-associated glycolysis. 

  

 

Figure 4.1| ALDOA identified as possible target via siRNA-mediated KD. Barplot showing 

sensitivity of PDCLs to ALDOA KD, with cell-lines ordered according to sensitivity. As can be seen, a 

number of cell lines (5 out of 9) were found to be significantly sensitive. Significance was defined 

as a Z-score < -1.96, equivalent to p < 0.05, represented by the dashed, red line. 

 

In order to first validate ALDOA as a driver of glycolysis in squamous cells, the 

effect of TDZD-8 on glycolytic rates were assessed across PDCLs at a 4 hour time-

point, in line with previous publications (Grandjean, de Jong, B. P. James, et al., 

2016). This assay revealed that glycolysis was inhibited dramatically with TDZD-8 
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treatment, selectively in squamous PDCLs (Figure 4.2). This observation was dose-

dependent, with rates of glycolysis tending to 0% at higher concentrations of TDZD-

8, highlighting the importance of ALDOA in glucose metabolism. 

 

 
 

Figure 4.2| ALDOA inhibition selectively reduces rates of glycolysis in Squamous PDCLs. 

Scatter-plot showing inhibition of glycolysis, as determined via glycolytic stress test, in PDCLs after 

four hours treatment with TDZD-8, an inhibitor of ALDOA. As can be seen, inhibition of ALDOA leads 

to a reduction in glycolysis specifically in squamous cell-lines (blue), while classical PDCLs (brown) 

are largely unaffected. Glycolysis is presented as a percentage relative to glycolysis in DMSO-

treated control cells. Data presented as mean, with error bars representing SD, n=4. 

 

 

4.2.2  Inhibiting glycolysis via TDZD-8 treatment is effective in 

squamous PDCLs 

 

Upon determining that TDZD-8 inhibited glycolysis specifically in squamous cell-

lines, it was decided to assess the effect of the compound on cell viability. In 
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preparation for dose-response curve, it was first necessary to optimise 

concentrations and timeframes for testing. Firstly, it was found that TDZD-8 can 

maximally suppress glycolysis in a representative squamous cell-line within an hour 

after treatment, with high concentrations completely inhibiting glycolysis (Figure 

4.3a). Subsequent assays showed that lower concentrations require a longer 

treatment time, up to 72-hours, before a response is seen (Figure 4.3b). The 

observation that TDZD-8 can induce a response within this short timeframe 

suggests a direct mechanism of inhibition, supporting the likelihood that TDZD-8 

mediates its inhibition of glycolysis via on-target effects. Despite the rapid 

response, it was decided to allow 72 hours for dose-response curves, to maintain  

consistency with field standards. 

 

 

 

Figure 4.3| Determining optimal conditions for TDZD-8 treatment. a Curve showing rapid 

response of a squamous cell-line, TKCC-10, to 15 µM TDZD-8 treatment. Within an hour, glycolysis is 

almost completely inhibited. Data presented as mean, with error bars representing SD, n=8. b Box-

plot showing changes in glycolysis after treatment with 2 µM (blue) and 4 µM (dark blue) relative to 

DMSO control (cyan). At 24-hours, no response in glycolysis is apparent, but at 48- and 72-hour 

time-points, a clear and significant decrease is observed. Data presented with boxes indicating 25th 

to 75th percentiles, with lines representing median values and whiskers showing minima and 

maxima, n=6. 

 

a b 
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Efforts to assess the sensitivities of six cell-lines, three representative of the each 

subtype, to TDZD-8 at a 72-hour time-point determined that squamous cell-lines 

were more sensitive to TDZD-8 (Figure 4.4) (Holly Brunton, unpublished data), with 

lower observed IC50 values obtained for all squamous PDCLs tested. Reduction in 

viability in squamous cells was found to correspond closely with decreased rates of 

glycolysis, suggesting that abrogation of ALDOA-driven glycolysis may be 

responsible for inhibition of growth in these cells. These results were not wholly 

consistent with siRNA screening (Figure 4.1), with PDCLs displaying different 

sensitivities to ALDOA KD as compared to TDZD-8 treatment. This may indicate a 

lack of specificity of TDZD-8, though it would be necessary to validate results from 

high-throughput siRNA screening before any conclusions could be made. However, 

due to time limitations, this was not possible within this project. 

 

 

Figure 4.4| Squamous PDCLs are selectively sensitive to ALDOA inhibition. Dose-response curve 

showing impact of 72 hours TDZD-8 treatment on cell viability. As can be seen, squamous PDCLs 

(blue) were found to be considerably more sensitive than classical (brown) PDCLs. Cell viability was 

determined via MTS assay, with values presented adjusted according to readings obtained from 

DMSO controls. Data provided by Dr Holly Brunton (unpublished) and are presented as the mean of 

three biological replicates, with error bars representing SD.  
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Despite squamous cell-lines having been previously found to display no metabolic 

flexibility to fuel mitochondrial respiration (Figure 3.12), it was necessary to assess 

whether inhibition of glycolysis was maintainable over time, with no escape 

mechanism to overcome sensitivity as previously described in chapter 3.4.5 and 

commonly seen when targeting other metabolic vulnerabilities in pancreatic 

cancer (Ying et al., 2012; Son et al., 2013; Boudreau et al., 2016; Biancur et al., 

2017). As such resistance may arise in PDCLs upon ALDOA inhibition, glycolysis was 

recorded after 7 days of treatment with TDZD-8. Reduction in glycolysis was found 

to persist in the small population of cells still viable after a week of treatment 

without drug replenishment at IC50 concentrations (15 µM) in TKCC-26 (Figure 4.5), 

thus demonstrating that inhibition of glycolysis is sustainable in squamous cell-

lines. 

 

4.1  Inhibition of fatty acid metabolism in classical subtype 

reveals metabolic flexibility 

 

4.1.1  Inhibiting general oxidative phosphorylation in classical cells 

limits viability 

 

As described in chapter 1.5.4 , AMPK is a key regulator of cellular metabolic stress 

and is activated when cellular energy is depleted (Jeon, Chandel and Hay, 2012). 

Upon activation, AMPK phosphorylates and inactivates key anabolic enzymes, such 

as acetyl-CoA carboxylases (Buzzai et al., 2005), upregulates carnitine transporters 

(Zaugg et al., 2011), and facilitates lipolysis (Gauthier et al., 2008), leading to an 

initiation of FAO, while concurrently activating autophagy (Egan et al., 2011; Kim 

et al., 2011). Both processes allow for the recycling of a variety of cellular 

components and lipids, facilitating re-introduction into the TCA cycle, which in the 

context of cellular energetics would therefore promote OXPHOS. Within the PDCLs, 

it was demonstrated that phosphorylation of the functional, catalytic alpha subunit 

of AMPK is found to be associated PDCLs belonging to the classical subtype relative 

to squamous (Figure 4.6) (Holly Brunton, unpublished data). This observation,  
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Figure 4.5| Inhibition of glycolysis by TDZD-8 is sustained at extended time-points. Box-plot 

showing glycolysis rates after 7 days treatment with 15 µM TDZD-8 in TKCC-26, a cell-line 

representative of the squamous subtype. As can be seen, rates of glycolysis are decreased on 

treatment with TDZD-8, relative to DMSO control. Glycolysis was recorded via glycolytic stress test, 

and results are shown as percentage basal glycolysis, adjusted according to cell number, as 

determined via glycolytic stress test. Data presented with boxes indicating 25th to 75th percentiles, 

with lines representing median values and whiskers showing minima and maxima, n=8. 
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when considered alongside the role of AMPK as an activator of FAO, may in part 

explain the increased rates of FAO in classical cell-lines, and points to AMPK as a 

potential target to suppress classical-associated metabolic pathways.  

 

Compound C was selected to test as an inhibitor of AMPK in the PDCLs. This 

compound was initially identified by a high-throughput screen designed to identify 

AMPK inhibitors (Zhou et al., 2001), which demonstrated its action as a reversible 

competitor of ATP capable of reversing the effects of the AMPK activator AICAR 

(Sun, Connors and Yang, 2007). Compound C has been widely used as an inhibitor 

of AMPK in cancer (Vucicevic et al., 2011; Yang et al., 2012; Garulli et al., 2014).  

 

 

 

Figure 4.6| AMPK is activated in classical PDCLs. a Reverse-phase protein array (RPPA) results, 

showing greater levels of phosphorylated AMPKα in classical cell-lines (brown), as compared to 

squamous (blue). b Results of western blot validating levels of phospho-AMPKα in PDCLs. 

Unphosphorylated AMPKα is also included, and levels of both active and inactive forms are seen to 

be higher in classical PDCLs. Data provided by Dr Holly Brunton (unpublished). 

 

Dose-response curves demonstrated that classical PDCLs were more sensitive to 

treatment with compound C than squamous cell-lines (Figure 4.7) (Holly Brunton, 

unpublished data). Initial tests with compound C determined that rates of 

oxidative phosphorylation were decreased on treatment (Figure 4.8). This 

b a 



 

 

 

102 

observation was found only to be significant at maximal rates, under conditions of 

metabolic stress, which when taken into consideration alongside AMPK’s role in 

regulating metabolic stress response as well as its inherent activation in classical 

PDCLs, implicates its involvement in driving the stress response, and hence 

OXPHOS, in classical PDCLs. This is in-line with previous research which 

demonstrated that compound C acts as an inhibitor of AMPK-associated respiratory 

capacity in cardiac myocytes (Pfleger, He and Abdellatif, 2015). 

 

 

 

Figure 4.7| Classical cell-lines exhibit increased sensitivity to compound C. Dose-response curve 

showing response of PDCLs to 72 hours treatment of the AMPK inhibitor compound C. As can be 

seen, classical PDCLs (brown) were found to be more sensitive than squamous (blue). This result 

suggests that activated AMPK may be promoting the increased mitochondrial respiration associated 

with classical PDCLs, rendering this subtype sensitive to AMPK inhibition. Cell viability was 

determined via MTS assay, with values presented adjusted according to readings obtained from 

DMSO controls. Data provided by Dr Holly Brunton (unpublished) and are presented as the mean of 

three biological replicates, with error bars representing SD. 
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Figure 4.8| AMPK inhibition decreases rates of stress-induced oxidative phosphorylation in 

classical PDCLs. Bar-plots showing rates of OXPHOS in two PDCLs representative of the classical 

subtype after 96 hours treatment with AMPK inhibitor compound C. As can be seen, compound C 

significantly reduces OXPHOS at maximal levels, which are induced by stimulators of mitochondrial 

stress. This highlights AMPK’s role in activating metabolic stress in classical PDCLs. Both basal and 

maximal rates are shown. Data presented as mean, with error bars representing SD, n=8. 

 

As metabolic flexibility was determined to be a feature associated with the 

classical subtype, it was necessary to ensure that alternative sources of cellular 

energy production were not activated in response to loss in OXPHOS observed with 

compound C treatment. To this end, glycolytic stress tests were performed, which 

found glycolytic rates to decrease upon treatment with compound C (Figure 4.9), 

with rates of glycolysis dropping by 54% and 46% in TKCC-22 and Mayo-5289 

respectively. This result indicates that glycolysis is not activated as a response to 

OXPHOS suppression upon inhibition of AMPK. 
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Figure 4.9| AMPK inhibition decreases glycolysis in classical PDCLs. Box-plot showing rates of 

glycolysis in PDCLs representative of the classical subtype after 96 hours treatment with compound 

C. As can be seen, rates of glycolysis ten to decrease on treatment in a dose-dependent manner. 

This indicates that compensatory, glycolytic pathways are not activated upon inhibition of AMPK. 

Data presented with boxes indicating 25th to 75th percentiles, with lines representing median values 

and whiskers showing minima and maxima, n=6. 

 

 

4.1.2  Inhibiting fatty acid biosynthesis in classical PDCLs induces 

increased glycolysis 

 

FASN, a key enzyme in lipogenesis, has been implicated as a key driver pathologic 

lipid biosynthesis in tumour cells in multiple cancer-types (Chajès et al., 2006; 

Fiorentino et al., 2008). Consequently, efforts have been made to formulate  
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inhibitors of FASN in the treatment of cancer (Menendez and Lupu, 2007), with 

GSK2194069 an example of a potent and selective inhibitor of FASN identified 

specifically to this end (Hardwicke et al., 2014). Though FASN is involved in 

catalysing multiple reactions necessary in the generation of saturated FAs, 

GSK2194069 was found to act via inhibition of FASN’s β-ketoacyl reductase 

activity, similar to other previously described inhibitors (Vázquez et al., 2008). As 

an increase in genes and proteins involved in lipid biosynthesis, such as HMG-CoA 

reductase (HMGCR), a key enzyme in cholesterol biosynthesis, and acyl-CoA 

synthetase medium chain member 3 (ACSM3), a member of the acyl-CoA 

synthetases which regulate the balance between FA synthesis and FAO (Ellis, 

Bowman and Wolfgang, 2015), is associated with the classical subtype (Figure 3.3b 

and Figure 3.6) and previous work has indicated an increased dependence of 

classical PDCLs on FA biosynthesis (Daemen et al., 2015), we assessed the 

differential efficacy of GSK2194069 between PDCL subtypes. 

 

Firstly, it was necessary to validate that inhibition of FASN via GSK2194069 

treatment induced a cessation of lipid biosynthesis. To this end, lipid droplets, 

which act as units of storage for the end product of lipid synthesis (TAGs), were 

quantified in cells treated with GSK2194069. Results showed that lipid droplet 

count was drastically reduced upon inhibition of FASN (Figure 4.10), suggesting 

that FASN is necessary for the synthesis of fatty acids required to produce TAGs, 

and hence lipid droplets. These results therefore justified the use of GSK2194069 

as an inhibitor of lipid biosynthesis and provided evidence of on-target effects. 
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Figure 4.10| FASN inhibition reduces rates of 

triglyceride/lipid droplet production in classical 

PDCLs. a Representative images showing lipid droplets, 

fluorescently labelled with BODIPY 493/503 (green), in 

Mayo-5289. A clear reduction in lipid droplet number 

can be seen after treatment with GSK2194069 (bottom), 

an inhibitor of FASN, relative to DMSO control (top). 

Image acquired at 63X magnification. b Bar-plot showing 

total quantities of lipid droplets per counted nuclei in 

Mayo-5289 after treatment with GSK2194069. Data 

presented as mean across three biological replicates, 

with error bars representing SD. 

b 
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Figure 4.11| GSK2194069-mediated FASN inhibition leads to increase in glycolysis in classical 

PDCLs. a Box-plot highlighting impact of 20 µM GSK2194069 on glycolysis in classical cell-lines. As 

can be seen, 72-hour treatment was not sufficient to yield a significant response in any PDCL, while 

96-hours elicited an increase in glycolysis in both Mayo-5289 and TKCC-22 cells. At 120-hours 

treatment, this response persists in TKCC-22, while it is lost in Mayo-5289. b Box-plot highlighting 

impact of 40 µM GSK2194069 on glycolysis in classical cell-lines. As with 20 µM, 72-hours was an 

insufficient time point to see a significant response, but at longer time-points, a response is seen 

across all PDCLs. At both concentrations, the effect on glycolysis within Mayo-5289 is alleviated at 

120-hours, suggesting that this cell-line may break the drug down quicker than the others. This set 

of experiments revealed that the optimal treatment time/dose to yield the greatest response in 

glycolysis across all classical cell-lines was 40 µM at 96-hours. Additionally, it was seen that 

inhibition of FASN induced a compensatory resistance mechanism in classical PDCLs. Data presented 

with boxes indicating 25th to 75th percentiles, with lines representing median values and whiskers 

showing minima and maxima, n=6. 

40 μM 

a 
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Despite this impact on fatty acid biosynthesis, work performed by Holly Brunton 

showed no observable difference in impact on cell viability between subtypes upon 

GSK2194069 treatment. By quantifying rates in glycolysis after GSK2194069 

treatment over concentrations of 20-40 µM between 72-120 hours, it was 

subsequently determined that FASN inhibition increased glycolysis in three PDCLs 

representative of the classical subtype (Figure 4.11). This finding suggests that 

classical cell-lines may utilise previously described metabolic flexibility as 

mechanism to escape inhibition of FA biosynthesis; by targeting the stores of fatty 

acids required for FAO via inhibition of FASN, these cells can utilise glucose and 

glycolysis as an alternative source to generate required cellular energy. 

 

4.2  Modulating metabolic flexibility in classical subtype 

PDAC 

 

4.2.1  JQ1 treatment enhances subtype-associated metabolism in 

PDCLs 

 

The bromodomain and extra terminal domain (BET) family of proteins coordinate 

gene expression through the binding of acetylated histones and recruit 

transcription factors and other regulators of transcription (Belkina and Denis, 

2012). Due to their involvement in the regulation of genes involved in replication, 

including cyclin dependent kinases 6 and 9 (CDK6 and CDK9) (Dawson et al., 2011), 

as well as the BET family protein BRD4’s role in orchestrating mitotic transcription 

(Dey et al., 2009), these epigenetic readers have presented as attractive targets in 

cancer research (Dawson, Kouzarides and Huntly, 2012). In order to target this 

family therapeutically, an inhibitor, JQ1, was designed to competetively bind to 

acetyl-lysine binding cavities within this family of BET proteins, thus preventing 

their pattern recognition and hence, function (Filippakopoulos et al., 2010). JQ1 

has previously demonstrated anti-cancer potential, with research showing JQ1 

inhibits acinar-to-ductal metaplasia, which is an initial step in PDAC 

transformation, in explants from KRAS mutant mice (Mazur et al., 2015), while it 

has also been proposed as one of very few therapeutic approaches available to 
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target c-Myc (Delmore et al., 2011; Chen, Liu and Qing, 2018). Due to the role of 

c-Myc in metabolic reprogramming of pancreatic cancer discussed in chapter 1.5.6 

JQ1’s inhibition of c-Myc informs its potential as a modulator of metabolism, with 

previous research efforts demonstrating its ability to reverse c-Myc associated 

glycolysis in patient-derived xenograft models of pancreatic cancer (Sancho et al., 

2015). In addition to this, BRD4 has been shown to act as an inhibitor of 

autophagy, described in chapter 1.5.5 , with JQ1 disrupting this function and 

facilitating the AMPK-mediated stress response (Sakamaki et al., 2017), while JQ1 

has also been shown to act more generally to inhibit mitochondrial activity, 

leading to a deficit in ATP production and activation of mitochondrial stress 

respose via AMPK in leukemia and breast cancer cell-lines (Wang et al., 2015). 

Beyond this, JQ1 mediated inhibiton of BET-family proteins has also been shown to 

abrogate the transcription of a variety of genes associated with stroma-driven 

metabolism in pancreatic cancer cells, such as HMG-CoA reductase (HMGCR), a key 

driver of cholesterol biosynthesis, and glycine decarboxylase (GLDC) (Sherman et 

al., 2017). This collection of findings highlights the diverse effects JQ1 has been 

demonstrated to mediate on cancer cell metabolism, and as these metabolic 

pathways align with those found to be assoicated with PDAC subtypes in vitro, 

encompassing aerobic glycolysis and AMPK stress-response, it was decided to 

investigate effects of JQ1 on metabolism within PDCLs. 

 

Initial experiments were performed utilising the glycolytic stress test upon 

treatment of cells with JQ1, in order to assess the impact of BET inhibition on 

glycolytic profiles. Analysis revealed that JQ1 exposure enhanced the glycolytic 

characteristics indicative of subtype, with rates of glycolysis decreasing in classical 

PDCLs and increasing in squamous (Figure 4.12). These observed phenomena were 

particularly noticeable when considering basal rates of glycolysis in the classical 

subtype (Figure 4.12a), which when considered alongside current literature 

pointing to JQ1 as an activator of cellular stress response, suggests that JQ1 may 

promote AMPK activation in classical PDCLs, leading to a decrease in glycolysis and 

enhanced dependence on OXPHOS. This possibility is supported by the observation 

that phosphorylation of AMPK, as determined via western blotting, was selectively  



 

 

 

Figure 4.12| JQ1 treatment differentially affects glycolysis across subtypes. a Box-plot highlighting changes in rates of basal glycolysis induced by 

treatment with JQ1. As can be seen, glycolysis is universally, significantly decreased across all classical PDCLs after 3 days exposure, while squamous cell-

lines are largely unaffected. b Box-plot showing changes in maximal rates of glycolysis, with conditions as in a. Squamous cell-lines tend to exhibit an 

increase in glycolysis, in contrast to classical PDCLs. Taken together, these findings suggest that JQ1 drives cells towards a more extreme metabolic 

phenotype, reinforcing those traits in metabolism associated with subtype. Data presented with boxes indicating 25th to 75th percentiles, with lines 

representing median values and whiskers showing minima and maxima, n=4.

a b 



increased in classical PDCLs upon exposure to JQ1 (Figure 4.13). Western blotting 

in this instance showed inconsistencies with previous results, which indicated that 

Mayo-4636 has higher levels of phospho-AMPK than squamous PDCLs (Figure 4.6b). 

This may be due to passaging of Mayo-4636, a PDCL that has been demonstrated to 

incrementally shift from classical to squamous temporally, as determined via 

presence of HNF markers of the classical subtype (data not shown). As a higher 

passage of Mayo-4636 were used to generate Figure 4.13a, this PDCL may be more 

of an intermediate subtype than pure classical. 

 

As additional evidence, JQ1 increased rates of exogenous FAO in a cell-line 

representative of the classical subtype (Figure 4.14). However, maximal rates of 

glycolysis are less impacted by JQ1 in classical PDCLs (Figure 4.12b), suggesting 

that BET inhibition does not reduce the metabolic flexibility associated with this 

subtype (Figure 3.12). In squamous PDCLs, the reverse is seen, with rates of 

glycolysis increased after treatment with JQ1 (Figure 4.12), which may 

demonstrate an inability to modulate a stress response via AMPK in this subtype 

(Figure 4.6). 

 

4.2.2  JQ1’s effect on metabolism is mediated by increased 

lipogenesis and associated stress response 

 

As discussed in chapter 4.2.1 JQ1 acts as an inhibitor of BET proteins, which 

orchestrate transcriptional regulation via recruitment of transcription factors. Due 

to this role, it was decided to quantify the broad effect of JQ1 treatment on 

transcription in order to ascertain the mechanism by which BET inhibition mediates 

its effect on metabolism. To this end, RNA-seq was performed, with thanks, by 

Giuseppina Caligiuri and Peter Bailey on PDCLs representative of the subtypes after 

exposure to JQ1. Analysis of RNA-seq results revealed the upregulation of a 

number of genes whose protein products are involved in lipogenesis (Figure 4.15), 

including the acetyl-CoA carboxylases, described in chapter 1.5.2 , lipins 1 and 2 

(LPIN1/2), which catalyse one of the final steps in TAG synthesis. This upregulation 

of genes was particularly pronounced within the PDCL classified as classical. This 

was found to translate to a corresponding increase of protein abundances within 
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two of these gene targets that are integral to lipogenesis: FASN, described in 

chapters 1.5.2 and 4.1.2 , and ATP citrate lyase (ACLY), described briefly in 1.5.2 

and a mediator of the initial step of lipid and FA biosynthesis, the degradation of 

cytosolic citrate (Figure 4.16). 

 

 

 

 

 

 

Figure 4.13| JQ1 selectively activates mitochondrial stress in classical PDCLs. a Western blot 

showing levels of phospho-AMPK in PDCLs classed as classical (left, brown) as compared to 

squamous (right, blue). Mayo-5289 were run separately to the other PDCLs due to limitations in 

well number per gel. b Quantification of western blots shown in (a), normalised to DMSO control. 

 

a 

b 



 

 

 

113 

 

 

 

Figure 4.14| JQ1 reduces overall levels of mitochondrial respiration in classical PDCL, while 

increasing FAO rates. Bar-plots showing levels of oxidative phosphorylation, as determined via 

mitochondrial stress-test, in Mayo-4636, a classical PDCL, upon JQ1 treatment. As can be seen, 

basal levels of respiration decrease on JQ1 treatment, with 1 µM sufficient to induce a significant 

response. This observation is abrogated upon addition of palmitate, an exogenous fatty acid, which 

is reflected by the significant increase in FAO observed after JQ1 treatment. These results suggest 

that FAO may be upregulated as a response to the observed decrease of overall mitochondrial 

respiration induced by JQ1 treatment. Data presented as mean, with error bars representing SD, 

n=8. 

 



 
Figure 4.15| JQ1 treatment increases transcription of genes involved in lipogenesis. Schematic showing 

lipogenesis pathway. Log fold-change of genes involved in the pathway, as determined via RNA-seq, is shown 

alongside the position of their respective protein products, with significant results highlighted by golden 

borders. As can be seen, JQ1 induces an upregulation of expression across a range of genes whose protein 

products contribute to lipid biosynthesis. This observation is particularly true within the more classical PDCL 

(Mayo-4636) relative to the more squamous (TKCC-10). These transcriptional changes are hypothesised to 

increase shuttling of citrate from mitochondria to fuel anabolism, resulting in a decrease in ATP generated 

via OXPHOS (blue-shaded rectangle). In classical cells, this is likely to activate the stress-response regulator, 

AMPK, allowing for an increase in compensatory metabolic pathways, including autophagy, which allows for 

recycling of metabolites through the TCA cycle (Guo et al., 2016). 

 



In order to verify that this dysregulation and downstream modulation of protein 

levels affected changes on a functional level, rates of lipid biosynthesis were 

inferred via staining and quantification of lipid droplets, an organelle whose 

production is associated with late-stage lipogenesis (Figure 4.15), by BODIPY 

493/503 upon treatment with JQ1. This revealed an increase in lipid droplets in 

two PDCLs representative of the classical subtype (Mayo-5289 and Mayo-4636) and 

a squamous cell-line (TKCC-10) (Figure 4.17a). As it has previously been observed 

that induction of apoptosis often leads to an increase in lipid droplet abundance in 

vitro (Boren and Brindle, 2012), it was necessary to assess whether lipid droplet 

production associated with JQ1 treatment was due to increased lipogenesis 

resulting from transcriptional regulation, or apoptosis as a result of JQ1 exposure. 

Immunofluorescence of two markers of apoptosis, cleaved PARP and cleaved 

Caspase-3, indicated that apoptosis was not directly initiated by JQ1 treatment, 

with no significant induction of apoptosis observed in PDCLs representative of 

either classical or squamous subtypes (Figure 4.17b-c). 

 

Collectively, these results show that JQ1 treatment leads to an upregulation of 

genes involved in lipogenesis, resulting in increased FA biosynthesis and generation 

of stores of lipid droplets. While the observation of increased LD count on 

exposure to JQ1 is consistent with previous research (Zirath et al., 2013; Wang et 

al., 2015), this has been proposed to be a result of FA uptake to offset 

mitochondrial dysfunction rather than biosynthesis. This hypothesis makes sense in 

light of the AMPK activation associated with JQ1 treatment (Sakamaki et al., 

2017), which would be expected to inhibit anabolic process such as lipogenesis 

(Hardie and Pan, 2002), and is corroborated by the finding that KD of c-Myc, which 

is a target of JQ1, leads to downregulation of genes central lipogenesis, including 

FASN, ACLY and ACACA, each described in chapter 1.5.2 , in fibroblasts, alongside 

a concurrent increase in LD quantity (Edmunds et al., 2014). The observation that 

these genes involved in lipid biosynthesis are upregulated in PDCLs after JQ1 

treatment therefore represents a potentially novel mechanism by which 

lipogenesis is maintained in spite of the upregulated stress response, with 

increased FAO allowing for a recycling of cellular energy committed to lipid 

biosynthesis. 
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Figure 4.16| JQ1 treatment leads to increased levels of proteins involved in lipogenesis. a 

Western blot showing levels of ACLY and FASN, two enzymes necessary for lipid biosynthesis. Upon 

treating PDCLs with JQ1 for 96 hours. Subsequent quantification of the bands corresponding to 

ACLY (b) and FASN (c) highlighted their upregulation upon treatment with JQ1. As both proteins are 

involved in the process of FAS, it is expected that JQ1 acts as a promotor of FA biosynthesis. 

 

a 

b 
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Figure 4.17| JQ1 increases rates of lipid biosynthesis across both PDCL subtypes. a Bar-plot 

displaying the ratio of lipid droplets to nuclei across a selection of PDCLs representing both 

subtypes after 4 days treatment with JQ1, with DMSO representing a vehicle control. Results are 

shown as percentage relative to DMSO control, displayed on a log scale. As can be seen, increases 

lipid droplet production is associated with JQ1 treatment in a dose-dependent manner. b Bar-plot 

showing the percentage of cells determined to be positive for cleaved PARP via 

immunofluorescence upon JQ1 treatment. As can be seen, no increase in cleaved PARP was 

observed in either PDCL. c Bar-plot showing percentage cells positive for cleaved Caspase-3, as in 

(b). A slight increase in cleaved Caspase-3 was observed in TKCC-10 (squamous) at high 

concentrations of JQ1, however, this result was not found to be significant. This shows no 

significant correlation between apoptosis and lipid droplet formation. All data presented as mean 

across three biological replicates, with error bars representing SD. 

a 

b c 
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4.2.3  JQ1 treatment enhances sensitivity to inhibitors of 

lipogenesis, highlighting potential as a combination treatment 

 

As JQ1 acts to enhance both FAO and lipid biosynthesis in classical PDCLs, it was 

decided to assess the efficacy of combining JQ1 with the FA synthesis inhibitor, 

GSK2194069. By adding JQ1, it was possible to limit the increase in rates of 

glycolysis previously observed with FASN inhibition via GSK2194069 in classical 

PDCLs (Figure 4.11), with JQ1 exposure negating any observable increase in 

glycolysis (Figure 4.18a). This effect is thought to be due to the ability of JQ1 to 

activate the metabolic stress responder, AMPK, along with the associated 

downregulation of aerobic glycolysis (Faubert et al., 2013) and upregulation of FAO 

(Hardie and Pan, 2002). Additionally, as JQ1 has been found to suppresses overall 

mitochondrial respiration (Zirath et al., 2013), which in PDCLs results in an 

increased dependence on FAO (Figure 4.14), concurrent inhibition of FASN likely 

decreases the store of FAs available to fuel FAO. As such, this combination therapy 

is associated with decreased cell viability in classical PDCLs (Figure 4.18b) (Holly 

Brunton, unpublished data).  

 

4.1  Discussion 

 

By selecting potential targets within the metabolic pathways found to be 

functionally upregulated within the subtypes of PDAC, an inhibitor of squamous-

associated glycolysis, TDZD-8, was identified with potential to induce selective 

sensitivity in PDCLs classed as squamous. These results therefore validated findings 

that demonstrated the role of ALDOA as an activator of glycolysis in pancreatic 

cancer cells (Grandjean, de Jong, B. James, et al., 2016) and siRNA screening 

conducted within PDCLs (Figure 4.1), confirming ALDOA as a target for squamous-

associated glycolysis. These findings also build on work that have demonstrated 

the efficacy of therapeutic interventions that target glycolysis in pancreatic 

cancer, such as LDH inhibition in pancreatic cancer cells cultured under hypoxia, 

and thus under conditions of induced anaerobic glycolysis (Le et al., 2010; Maftouh 
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et al., 2014). It also supports observations that pancreatic cells exhibit differential 

sensitivities to LDH inhibition, with resistance dependent on AMPK-mediated 

activation of OXPHOS (Boudreau et al., 2016) and wild-type TP53 (Rajeshkumar et 

al., 2015), which is of relevance as the sensitive squamous subtype is associated 

with mutant TP53 in patients (Bailey et al., 2016), although there is no significant 

association between subtype and TP53 mutation status in PDCLs. 

 

 

  

Figure 4.18| JQ1 treatment suppresses induced metabolic plasticity in classical PDCL and 

increases sensitivity to FASN inhibition. a Box-plot showing basal rates of glycolysis in TKCC-22 

after 7 days treatment with JQ1 and GSK2194069. As can be seen, in the absence of JQ1, FASN 

inhibition leads to increased glycolysis. This is suppressed upon addition of JQ1. Data presented 

with boxes indicating 25th to 75th percentiles, with lines representing median values and whiskers 

showing minima and maxima, n=8. b Bar-plot showing synergistic effects of GSK2194069 and JQ1 on 

cell viability, as determined vai MTS, in PDCLs representative of the classical subtype at 30 µM and 

1 µM respectively. Data for (b) provided by Dr Holly Brunton (unpublished). 
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One issue that would need to be addressed in future experiments involving TDZD-8 

as a selective inhibitor of ALDOA is its lack of specificity: although TDZD-8 has 

been shown to potently inhibit ALDOA, it was initially described as an inhibitor of 

glycogen synthase kinase 3-β (GSK3β) (Martinez et al., 2002), which phosphorylates 

and inactivates glycogen synthase. GSK3β is a known inhibitor of glucose 

homeostasis (Cline et al., 2002; Patel et al., 2008) and has been proposed as a 

therapeutic target in PC (Garcea et al., 2007). For these reasons, it cannot be 

concluded with certainty from this work whether the anti-cancer and anti-

glycolytic effects mediated by TDZD-8 in PDCLs are dependent on ALDOA or GSK3β 

inhibition, with the possibility of both targets contributing to loss in viability 

observed on treatment. In order to validate which therapeutic target of TDZD-8 

mediates its anti-glycolytic effects in squamous PDCLs, additional assays would be 

required. This could involve knock-down experiments, assessing the effects of KD 

of both targets on cell viability and glycolysis in comparison to TDZD-8 exposure; 

unfortunately, due to time constraints, this was not possible to complete as part of 

this project. 

 

However, the same approach was met with less success when attempting to inhibit 

FAO in the pure classical progenitor subtype, with the targeting of stores of FAs via 

inhibition of FASN insufficient to induce a similar subtype-selective sensitivity. It 

was thought that metabolic flexibility inherent to this subtype (Figure 3.12) may 

have contributed to this observed resistance, a hypothesis supported by the 

observation that oncogenic KRAS can facilitate metabolic reprogramming 

conferring resistance to inhibition of FA synthesis in vitro (Kamphorst et al., 2013), 

as well as the sensitivity of pure classical progenitor PDCLs to inhibition of AMPK, a 

regulator of metabolic flexibility in many cell-types (Faubert et al., 2015). 

Concurrent treatment with the metabolic modulator JQ1 allowed for a mitigation 

of this sensitivity. It’s thought that JQ1 treatment enhances sensitivity to FASN 

inhibition via an upregulation of lipogenesis, which is offset by a simultaneous 

increase in FAO as cells recycle energy committed to anabolic processes via the 

degradation of newly synthesised FA. By targeting FASN therapeutically, it is 

possible to prevent lipid biosynthesis proceeding to generation of long-chain FAs 

such as palmitate (Ventura et al., 2015), which are shuttled into the mitochondria 



 

 

 

121 

to fuel FAO (Qu et al., 2016). As such, a combination of JQ1 and FASN inhibition 

may result in a build-up of intermediate metabolites, such as cytosolic acetyl-CoA 

and malonyl-CoA, acting as an energy sink that cells are unable to efficiently 

recycle. Excess malonyl-CoA synthesised in this fashion would additionally serve to 

further promote lipogenic processes and inhibit FAO (Abu-Elheiga et al., 2001), 

thus exacerbating limitations in available energy. Further work may be performed 

to confirm this hypothesis; for example, experiments assessing histone acetylation 

after JQ1 treatment could be implemented to infer levels of cytoplasmic acetyl-

CoA generated via ACLY, as the two have been found to be correlated (Wellen et 

al., 2009; Lee et al., 2014). 

 

As is the case with TDZD-8 as an inhibitor of ALDOA, lack of specificity may affect 

the validity of some findings described within this chapter. Previous work has 

found compound C, like many general purpose kinase inhibitors, to be lacking in 

specificity (Bain et al., 2007), with an independent screen identifying a 

structurally identical compound they named Dorsomorphin, as an inhibitor of bone 

morphogenetic protein signalling (Yu et al., 2008). Due to this lack of specificity, 

compound C’s impact in inhibiting stress induced OXPHOS cannot be entirely 

ascribed with certainty to inhibition of AMPK. In order to further validate this, 

future work could include either AMPK knock-down or the testing of a second 

inhibitor, with one candidate being SBI-0206965. This compound was initially 

discovered as an inhibitor of ULK1 (Egan et al., 2015), but was subsequently found 

to have selective inhibitory activity against both AMPK and ULK1 (Dite et al., 

2018). However, this would not serve to completely address the issue of 

specificity, as this compound does target ULK1.  

  



 

 

 

122 

 

 

 

 

 

 

Chapter 5 High-Throughput Drug 

Screening Reveals potential of 

Statins in PC Treatment 
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5.1  Introduction 

 

De novo drug development is an intensive scientific procedure, requiring 

significant commitments of money, time and expertise to yield a product that can 

be considered for clinical use. Due to the restrictive nature of this kind of 

approach, there have been many studies in recent years aimed at assessing the 

efficacy of previously designed and publicly available compounds in a range of 

different cancer types via drug repurposing (Pollak, 2014; Würth et al., 2016). One 

example of such being the discovery that disulfiram, a therapeutic primarily and 

historically used to treat alcoholism (Chick et al., 1992), is effective in selectively 

inducing cell death in glioma cell-lines resistant to other lines of 

chemotherapeutics, identified via a drug repurposing screen (Triscott et al., 2012). 

This finding has been expanded on by multiple preclinical research projects (Liu et 

al., 2012; Lun et al., 2016), with phase II clinical trials initiated to test its efficacy 

in glioblastoma patients (Huang et al., 2018, 2019). 

 

Concurrent with work outlined in the previous chapter that sought to identify 

inhibitors of subtype-associated pathways, a high-throughput drug repurposing 

screen was conducted with selected PDCLs in collaboration with the Beatson 

Screening Facility. Cell viability was used as primary output from this project, 

though cell morphology data were also collected. This is of relevance as previous 

work has described the value in screening the impact of compounds on various 

adverse effects on cells beyond toxicity (Martin et al., 2014). However, analysis of 

morphology data is planned for the future and will be outwith the scope of this 

PhD project. 

 

Analysis of cell viability data resultant from drug repurposing screening 

determined that the statin family of therapeutics, originally designed to reduce 

cholesterol levels in patients, effectively reduced viability selectively in squamous 

PDCLs. This finding was in accordance with other preclinical research efforts that 

indicate that statins may exhibit anti-cancer potential. Efforts were then 

concentrated on elucidating the mechanism by which statin sensitivity was 
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mediated differentially between subtypes. This was performed with the end goal 

of identifying strategies allowing for enhancement of statin treatment by either 

overcoming mechanisms of resistance in classical PDCLs or synergising with 

mechanisms of sensitivity in squamous PDCLs. 

 

5.2  Identifying candidate metabolic targets via high-

throughput screening  

 

High-throughput screening within the Beatson Screening Facility was performed in 

a 384-well format, with cells seeded and drugs added 24 hours after seeding. 72 

hours after treating, cells were stained with DAPI and whole-cell stain and read on 

the Operetta (Figure 5.1a), with screening conducted to allow for two runs per 

week (Figure 5.1b). Screening in the Beatson Screening Facility consisted of a 

single round of primary screening involving multiple drug concentrations. 

 

5.2.1  Optimising PDCLs for High-Throughput Screening 

 

5.2.1.1 Selecting PDCLs for screening 

 

PDCLs were selected to best represent the diversity of a variety of features found 

across cell-lines (Table 5.1). This led to the inclusion of a range of PDCLs that can 

be characterised according to subtype as classical or squamous, with some PDCLs 

included representative of a less well defined, borderline phenotype. Additional 

subtyping metrics were assessed allowing for cell-lines to be considered in terms of 

structural variant features (Waddell, Pajic, A.-M. Patch, et al., 2015) and DNA-

damage response elements (Alexandrov et al., 2013), providing a quantification of 

nuclear stability. Metabolic profile was also considered, with a mixture of PDCLs 

displaying active glycolysis and oxidative phosphorylation, as described throughout 

chapter 3.4 , included in screening, though this expectedly correlated closely with 

the subtype grouping.
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Table 5.1| Selecting PDCLs for inclusion in screening project. Table showing characterization of PDCLs included in high-throughput screening. 

Characteristics pertaining to subtype, DNA-repair defects, and metabolism quantified across PDCLs, with cell-lines selected to represent the full spectrum 

of the set of PDCLs. The classical metric shows the collective expression of the classical-associated, turquoise gene programme. As no single gene 

programme is representative of the squamous subtype, the squamous metric shows the collective expression of genes determined to be upregulated in 

patients categorised as squamous. Subtype shows a categorical labelling summarising the classical and squamous measurements. Stability shows PDCLs 

subtyped according to structural variants, as in (Waddell, Pajic, A.-M. Patch, et al., 2015), while BRCA score describes the COSMIC BRCA mutational 

signature (signature 3), as in (Alexandrov et al., 2013). The metabolic metric shows which descriptor best reflects metabolic phenotype, with PDCLs 

described as glycolytic, high levels of aerobic glycolysis, or oxidative, high levels of oxidative phosphorylation.  
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5.2.1.2 DMSO and Staurosporine Concentration 

 

The primary endpoint of screening was percentage inhibition as determined via 

nuclear count. A variety of approaches can be implemented to identify significant 

hits, depending on the design of the assay, with Z-scores often employed for hit 

selection in post-screening analyses. This method depends on assigning Z-scores as 

determined relative to the standard deviation across a plate and assumes that  

 

 
 

 

 

Figure 5.1|Workflow of high-throughput screening with Beatson Screening Facility. a Schematic 

detailing high-throughput drug-screen, with details of drug libraries included and outputs of screen. 

b Scheduling of plates over the course of the screen, allowing for two runs per week. 

a 
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most compounds will yield negative results (Malo et al., 2006). As the libraries 

included in this screen contain a large number of potent active compounds with 

known anti-cancer properties, as will be discussed in chapter 5.2.2.1, this method 

was not applicable, and as such, precise neutral and inhibitor controls were 

required to ascertain percentage inhibition. To this end, DMSO was utilised as a 

neutral control, while staurosporine, commonly used to initiate apoptosis in cells 

(Frankfurt and Krishan, 2001; Herrmann et al., 2007), acted as an inhibitor 

control. 

 

5.2.2  High-Throughput Screening of PDCLs 

 

5.2.2.1 Primary Screening 

 

Primary screening was carried out with a variety of drug libraries, with in-house 

screening in collaboration with the Beatson Screening Facility including two 

libraries of clinically approved and well characterised compounds: one consisting 

of 119 approved oncology drugs assembled by the Developmental Therapeutics 

Program (Institute National Cancer), as well as a larger set of 420 more general 

purpose, FDA approved compounds, distributed by Selleckchem (Table 2.1). Both 

these libraries were screened at four concentrations, ranging from 10 nM to 10 µM 

(Figure 5.1a). A smaller library of 35 epigenetic chemical probes, available from 

the structural genomics consortium (SGC) (Brown and Müller, 2015), was 

additionally included in this screen. Two rounds of screening were performed each 

week, allowing 24 hours for cells to attach and 72 hours for drug treatments 

(Figure 5.1b). 

 

In anticipation of the in-house screening project, an extensive list of targets was 

generated for the compounds within the two large drug libraries. This was 

achieved by incorporating data downloaded in the XML format, with subsequent 

formatting, from the DrugBank database (Wishart et al., 2018). This data provided 

annotations for targets alongside each drug, as well as associated gene targets, 

which informed later pathway analyses. 
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5.2.3  Analysis of Results from In-house Screening 

 

Results were processed by the Beatson Screening Facility, with cell loss of viability 

(LOV) quantified via nuclear count acting as the primary output. Morphological 

data was also generated via whole-cell staining, although this was treated as a 

secondary output with results planned for more detailed analysis at a later time-

point by the Beatson Screening Facility. 

 

In order to first identify compounds acting selectively in one subtype relative to 

the other, compounds were scored according to mean LOV difference between 

PDCLs classed as extremely squamous (TKCC-02, TKCC-10) and extremely classical 

(TKCC-22, PaCaDD137) (Table 5.2). One primary observation made while analysing 

results from drug-screening was the subtype-selective response of PDCLs to 

treatment with a number of compounds that target elements within the DNA-

damage response (DDR) and DNA replication, including irinotecan and etoposide, 

which inhibit topoisomerases and affect DNA structure through facilitating strand 

breaks in DNA (Champoux, 2001; Wood et al., 2015), and fluorouracil, which 

inhibits thymidine synthesis, leading to an imbalance of deoxynucleotides and DNA 

damage (Yoshioka et al., 1987; Longley, Harkin and Johnston, 2003). This 

squamous-associated effect was most apparent in the drug bleomycin, an inhibitor 

of DNA ligase, likely through DNA binding (Ono et al., 1976), which is commonly 

used as part of the chemotherapeutic regimen to treat testicular cancer (Einhorn 

and Williams, 1980) and functions to kill cells via induction of single- and double-

stranded breaks in DNA (Tounekti et al., 2001). Though these responses were 

subtype selective, with squamous PDCLs exhibiting greater sensitivities than 

classical PDCLs, nuclear stability phenotypes (as specified in Table 5.1) were not 

predictive of sensitivities to these DDR modulating agents, with TKCC-10, TKCC-02 

and TKCC-22 all classified as unstable (Waddell, Pajic, A. M. Patch, et al., 2015), 

exhibiting high BRCA scores (Alexandrov et al., 2013). As work involving DNA 

damage initiating agents was the research focus of others within the group, it was 

decided to investigate alternative hits. 
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Beyond compounds with known targets in the DDR pathway, two statins were found 

to induce loss of viability in a distinctly subtype selective fashion, specifically 

effecting a response in squamous PDCLs: pitavastatin and fluvastatin. This finding 

was of particular note as these two therapeutics have never been tested in clinical 

trials involving pancreatic cancer, according to the Aggregate Analysis of 

ClinicalTrials.gov (AACT) database (Clinical Trials Transformation Initiative), thus 

indicating the clinical novelty of such a therapeutic strategy in the context of 

PDAC. The statin family of therapeutics were originally designed to manage 

hypercholesteremia via competitive inhibition of HMGCR and have historically been 

successfully employed to reduce LDL cholesterol in patients (Baigent et al., 2005; 

LaRosa et al., 2005). Within the context of cancer, multiple research projects have 

highlighted the statins family’s ability to induce cell death across a range of 

 

Table 5.2| Identifying subtype-selective, metabolically active compounds. Table showing those 

compounds included in drug screening with significantly different responses between squamous and 

classical subtype PDCLs at 1 or 10 µM. Compounds were ordered according to absolute mean 

difference in percentage loss of viability (LOV) between the two subtypes (red/green shading), 

taken as a mean of 1 and 10 µM, with only compounds with mean LOV > 25% shown. Positive scores 

(red) indicate greater sensitivity in squamous cell-lines, while negative scores (green) indicate 

classical sensitivity. Selected gene product targets are shown to the right in blue, with genes 

grouped according to target proteins/pathways. As can be seen, two statins, pitavastatin and 

fluvastatin, were found to induce a highly subtype-selective response. The number of clinical trials 

relating to pancreatic cancer each compound was involved in is shown on the right. 
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cancer-types in vitro (Dimitroulakos et al., 1999, 2002; Mueck, Seeger and 

Wallwiener, 2003; Seeger, Wallwiener and Mueck, 2003), including in models of 

pancreatic cancer (Gbelcová et al., 2008; Fendrich et al., 2013), with the finding 

that PC cells are dependent on cholesterol uptake (Guillaumond et al., 2015) 

providing additional rationale for targeting cholesterol synthesis in PDAC. 

 

Despite these observations, clinical efforts to treat pancreatic cancer with statins 

has been met with mixed results: while some retrospective analyses of clinical 

trials have shown statin exposure to positively influence survival (Lee et al., 2016; 

Moon et al., 2016), randomised prospective trials indicate that addition of statin to 

standard of care treatment alone is not sufficient to benefit pancreatic cancer 

patients (Hong et al., 2014). To further complicate statins’ ability to treat 

pancreatic cancer, a meta-analysis found that cholesterol intake was correlated 

with an increased incidence of pancreatic cancer (Chen et al., 2015), while more 

recent analysis has cast some doubt on this, indicating that patient LDL levels do 

not account for the relationship between statin exposure and survival (Huang et 

al., 2017); however, there is insufficient clinical data to draw any firm conclusion 

from this study (Liu et al., 2017). Recently, various preclinical research projects 

investigating the repurposing of statins for use in cancer management have 

focused on the observation that the anti-cancer effects associated with this family 

of therapeutics are observed in sub-populations of cell-lines (Clendening et al., 

2010; Goard et al., 2014; Warita et al., 2014). As these findings align with the 

results from screening, it was decided to pursue statins as a hit, with the potential 

to explore the mechanism of subtype-specific sensitivity. 

  

5.2.4  Validating statins as major hit from screening 

 

In order to ensure definitively that those statins identified via screening affected 

PDCLs in a subtype-selective manner, dose-response curves were generated to 

include supplementary PDCLs that best represent the two subtypes. As pitavastatin 

elicited a more potent response than fluvastatin (Table 5.2), this therapeutic was 

selected for further testing. Dose-response curves assessing pitavastatin’s efficacy 
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validated the findings of high-throughput screening, highlighting the increased 

levels of sensitivity to statins within squamous PDCLs (Figure 5.2). As further 

validation, siRNA mediated KD of HMG-CoA Reductase (HMGCR), the primary target 

of pitavastatin, was shown to activate apoptosis, as determined via PARP cleavage, 

a commonly used marker of apoptosis (Boulares et al., 1999; Soldani and Scovassi, 

2002), as similarly observed on pitavastatin treatment in TKCC-02, the cell-line 

most sensitive to statin treatment (Figure 5.3). 

 

 

 

 

  
 

Figure 5.2| Pitavastatin selectively inhibits squamous subtype PDCLs. a Dose-response curve 

showing effect of pitavastatin on PDCLs during high-throughput drug screening. Curves are coloured 

according to subtype, with squamous cell-lines (blue) displaying higher sensitivity than classical 

(yellow/brown). b Barplot showing the differences in IC50 of pitavastatin between PDCLs of classical 

(yellow) vs squamous (blue) subtypes. Results were obtained for an extended set of cell-lines which 

validated results generated via high-throughput screening.  

a b 
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Figure 5.3| Inhibition of HMGCR activity induces apoptosis in squamous PDCLs. Western blot 

showing induction of PARP cleavage on siRNA mediated silencing of HMGCR (left) and inhibition of 

HMGCR via pitavastatin treatment. As can be seen, HMGCR KD leads to a reduction in protein 

abundance, while both HMGCR KD and pitavastatin induce apoptosis, as denoted by PARP cleavage. 

 

5.3  Cholesterol synthesis and HMGCR degradation 

potentially contribute to statin resistance in classical 

PDCLs 

 

5.3.1  Quantifying anabolic processes reveals differences in 

cholesterol biosynthesis between subtypes 

 

In order to assess whether rates of cholesterol biosynthesis align with differential 

sensitivities observed in statin sensitivity described above (Figure 5.2), cholesterol 

biosynthesis rates were quantified via isotope labelling. This process involves 

feeding cells with 13C-labelled glucose and glutamine for 72 hours before 

metabolites are extracted and quantified via liquid or gas chromatography 

followed by mass-spectrophotometry. Both glucose and glutamine are taken up and 

catabolised to restore pools of cellular acetyl-CoA, an intermediate metabolite 

necessary for the synthesis of a range of biomolecules including fatty acids and 

sterols. By quantifying isotope ratios of metabolites downstream of acetyl-CoA in 
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this fashion, it’s possible to quantitively differentiate between newly synthesised 

and imported metabolites. 

 

As suggested by previous RNA-seq data, classical cell-lines display higher rates of 

cholesterol biosynthesis (Figure 5.4a-b), with a greater proportion of cholesterol 

labelled with 13C to unlabelled than squamous PDCLs. While the correlation 

between statin sensitivity and rates of cholesterol biosynthesis appears to be a 

novel finding in preclinical cancer research, work in breast cancer cells have 

shown that increased expression of genes involved in cholesterol synthesis 

corresponds to an enhanced resistance to treatment with atorvastatin (Kimbung et 

al., 2016). These results align with findings that protein products involved in  

 

 

Figure 5.4| Rates of cholesterol biosynthesis differ between subtypes. a Bar-plot showing 

distribution of cholesterol isotope labelling within PDCLs representative of the classical subtype. Up 

to 27 atoms of 13C may be incorporated into a single molecule of cholesterol, with partially labelled 

molecules containing 12 or more 13C atoms also resultant from de novo synthesis. b Bar-plots 

showing cholesterol synthesis in squamous PDCLs, as in (a). c Bar-plot showing ratios of synthesised 

cholesterol relative to unlabelled cholesterol taken-up by cells directly from media. As can be 

seen, rates of cholesterol synthesis are increased in classical PDCLs, with nearly no synthesis 

detected in the squamous TKCC-10 or TKCC-02 cell-lines. 

a 

b 

c 



 

 

 

134 

cholesterol biosynthesis, including HMGCR, are upregulated in classical PDCLs 

(Figure 3.6). Sample preparation and mass-spectrometry was performed with 

thanks by Grace McGregor. 

 

5.3.2  HMGCR degradation is found to be dysregulated between 

subtypes 

 

In order to understand the difference in sensitivity to statins observed between 

subtypes, it was firstly necessary to consider the protein target of the statin family 

of therapeutics, HMGCR. HMGCR is an endoplasmic reticulum (ER)-bound enzyme 

integral to the biosynthesis of cholesterol (Stevenson, Huang and Olzmann, 2016), 

functioning to convert HMG-CoA to mevalonate, a precursor to synthesised sterols. 

Western blots were conducted initially to test for differences between protein 

abundances, however this revealed a putative cleavage band that appeared 

specifically within the resistant, classical PDCLs (Figure 5.5a). This observed band 

suggests upregulated degradation within this subpopulation of cell-lines, which is 

of particular interest due to previous work that identified cleavage of HMGCR in 

response to downstream products of the mevalonate pathway, suggestive of a 

negative feedback loop (Inoue et al., 1991; Sever, Song, Yabe, Joseph L Goldstein, 

et al., 2003; DeBose-Boyd, 2008). One paper in particular points to degradation 

induced by a cysteine-protease, resulting in cleavage along a membrane-spanning 

domain of the protein existing between residues 314-340 (Moriyama et al., 1998). 

This sterol-dependent cleavage mirrors the ER-associated degradation of HMGCR, 

which is initiated via Insig-mediated ubiquitination of HMGCR’s transmembrane 

region (Sever, Song, Yabe, Joseph L. Goldstein, et al., 2003; Hartman et al., 

2010), though is induced independent of the proteasome and would likely mediate 

inactivation of HMGCR similarly via displacement from the ER. This event results in 

the generation of two cleavage products, one lighter (36 kDa) consisting of 

membrane-spanning domains, and another heavier (61 kDa) consisting of the 

catalytic domain. The observation of a putative cleavage product with the 

molecular weight of ~60 kDa is therefore in-line with these findings, as the 
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antibody used (ab174830, Abcam) was generated against an immunogen spanning 

400-500 aa residues (Figure 5.5b).  

 

Of additional note, no SNPs were found to occur within the HMGCR gene across all 

PDCLs included in analysis, ruling out the possibility of the band existing due to 

heterozygous mutation resulting in a truncated protein. This finding is of 

additional relevance as previous research has identified a genetic variation within 

the HMGCR gene that confers resistance to statins in colorectal cancer cells (Lipkin 

et al., 2010) and has been confirmed within a range of in vitro systems (Medina et 

al., 2008). This class of SNP is found within exon 13 in the catalytic region, 

encoding the statin-binding domain and is therefore distinct from the pattern of 

cleavage observed here. 

 

5.3.1  Proteasomal inhibition partially inhibits HMGCR cleavage in 

vitro 

 

To validate whether this observed band corresponds to HMGCR degradation, it was 

decided to assess the effect, if any, of protease inhibitors on band formation. 

ALLN, an inhibitor of cysteine-proteases including cathepsins and calpains (Sasaki 

et al., 1990), which are associated with lysosomal and non-lysosomal protein 

degradation respectively (Chondrogianni, Fragoulis and Gonos, 2002), was first 

tested to assess whether inhibition of proteasomal protein degradation prevented 

the generation of this cleavage band (Figure 5.6a). Treatment with 25 µM ALLN 

was seen to lead to an increase of overall HMGCR abundance, both intact protein 

and putative cleavage product (Figure 5.6b). This observation may be due to the 

inhibition of degradation of activated SREBP, an ER-localised transcriptomic 

activator of lipogenesis and promoter of HMGCR expression (Wang et al., 1994), 

resulting in increased transcription and translation of HMGCR. Despite this general 

increase in protein levels of both bands, the shift in abundance of the putative 

cleavage band was observed to be slightly less relative to full-length HMGCR, 

suggesting that inhibition of cysteine-proteases may mitigate degradation as 

previously documented (Moriyama et al., 1998), and that this band genuinely   
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Figure 5.5| HMGCR is potentially selectively cleaved in classical PDCLs. a Western blot showing 

the differential cleavage of HMGCR between PDCL subtypes. As can be seen, intact HMGCR was 

detected in all PDCLs tested, however, the putative cleavage product was found selectively in the 

three classical cell-lines (left, yellow) and was absent in squamous (right, blue). Labels for 

detected bands are shown to the right, alongside predicted molecular weights. Actin is shown as a 

loading control. b Schematic showing structure of the HMGCR protein. The cleavage site previously 

described (Moriyama et al., 1998) is highlighted, along with the region against which the antibody 

used in (a) was manufactured. 

 

a 

b 
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corresponds to HMGCR degradation. The partial inhibitory effect observed may be 

due to additional proteasomal mechanisms also contributing to HMGCR 

degradation, which is supported by evidence that HMGCR is also ubiquitinated and 

targeted for proteasomal degradation (Sever, Song, Yabe, Joseph L Goldstein, et 

al., 2003). 

 

5.3.2  Mevalonate induces negligible levels of cleavage of HMGCR in 

vitro 

 

As described in the previous section, it has been long established that downstream 

metabolites within the mevalonate pathway contribute to the degradation of 

HMGCR. Both sterol and non-sterol intermediates induce this degradation, 

including mevalonate itself (Roitelman and Simoni, 1992; Ravid et al., 2000). In 

order to determine the effect, if any, mevalonate has on the cleavage product 

observed in a representative classical PDCL, Mayo-5289 were supplemented with 

mevalonate 5-phosphate at a range of concentrations for 24 hours. Western 

blotting was then performed in order to quantify changes in the abundance of 

intact HMGCR and the putative cleavage product (Figure 5.7a). This determined an 

slight, incremental increase in HMCGR degradation, with increased abundances 

observed in both full-length and cleaved HMGCR. While the increase in intact 

HMGCR is unexpected, though potentially accounted for by compensatory 

fluctuations in levels of downstream metabolites which may occur within the 24-

hour time frame of the experiment, this increase is offset by the comparatively 

larger increase in abundance of the ~60 kDa cleavage band. 

 

This observed increase in the putative cleavage band of HMGCR upon exposure to 

mevalonate, though slight, reinforces the likelihood of this being a true indicator 

of degradation. If so, this suggests that internal levels of the metabolites within 

the mevalonate pathway may be increased within classical PDCLs, thus inducing 

the increased levels of HMGCR cleavage associated with this subtype. Additionally, 

the higher rates of cholesterol synthesis found in this subtype (Figure 5.4) may be 

a contributor to this phenomenon. Though speculative, it’s possible that increased  
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Figure 5.6| Treatment with protease inhibitor ALLN moderately inhibits HMGCR cleavage in 

vitro. a Western blot showing HMGCR levels in response to 25 µM ALLN treatment in Mayo-5289 

across a range of time-points. As can be seen, ALLN treatment does appear to increase the 

presence of cleaved HMGCR, however this is observed alongside in increase of intact HMGCR, 

indicating that cleavage is not enhanced in the presence of mevalonate. b Quantification of 

western blot results shown in (a), normalised to loading control (GAPDH). 

 

a 

b 
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Figure 5.7| Mevalonate exposure induces some HMGCR cleavage in vitro. a Western blot 

showing HMGCR levels in representative classical PDCL, Mayo-5289, exposed to increasing 

concentrations of mevalonate for 24 hours. As can be seen, exposure to high concentrations of 

mevalonate does appear to increase the presence of cleaved HMGCR, however this is observed 

alongside an increase of intact HMGCR. b Quantification of western blot results shown in (a), 

normalised to loading control (GAPDH). Results show that, although levels of both intact and 

cleaved forms of HMGCR increase upon mevalonate treatment, slightly more cleaved HMGCR is 

generated than whole, suggesting a slight increase in HMGCR degradation at higher mevalonate 

concentration. 

a 
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levels of downstream metabolites in classical PDCLs induces cleavage of HMGCR, 

the effect of which is offset due to higher levels of HMGCR translation (as 

transcription is not significantly upregulated in either subtype), leading to roughly 

equivalent abundances of intact HMGCR across subtypes. This high level of 

turnover may allow classical PDCLs escape statin treatment, with pitavastatin 

unable to induce its inhibitory effect, allowing this subtype to overcome the 

sensitivity observed in squamous PDCLs. Due to time limitations, it was not 

possible to assess the impact of pitavastatin on rates of cholesterol synthesis via 

stable isotope tracing, which would be required to confirm this hypothesis. 

 

5.4  Cholesterol localisation and lipid raft formation are 

indicators of statin sensitivity 

 

5.4.1  Caveolin-1, a regulator of cholesterol homeostasis, is found 

selectively in squamous PDCLs 

 

Beyond the potential of statin resistance being modulated by differential 

degradation of HMGCR, it was decided to investigate additional regulators of the 

mevalonate pathway to identify other possible contributors to subtype-associated 

statin sensitivity. By interrogating transcriptomic and proteomic data for proteins 

involved in the regulation of cellular cholesterol, it was determined that Caveolin-

1 (CAV1) is selectively found in squamous PDCLS, which was validated by western 

blot (Figure 5.8). CAV1 is a cholesterol binding scaffolding protein (Murata et al., 

1995) and an integral constituent of caveolae (Rothberg et al., 1992), specialised 

lipid rafts found within cell membranes and enriched for cholesterol. CAV1 is 

necessary for the formation of caveolae (Drab et al., 2001) and its ectopic 

expression is also sufficient to lead to caveolae formation in CAV1 deficient cell-

lines (Fra et al., 1995). 

 

The absence of CAV1 in classical PDCLs may provide an insight into the mechanism 

of resistance to pitavastatin associated with this subtype as research has described  
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Figure 5.8| CAV1 protein and mRNA is upregulated in the statin-sensitive, squamous subtype. a 

Western blot highlighting dysregulation of CAV1 at the protein level (top) in PDCLs ordered 

according to subtype and bar-plot showing similar expression of CAV1 according to RNA-seq 

(bottom). b Box-plot showing expression of CAV1 in PDCLs grouped according to subtype. P-values 

were determined according to a Mann-Whitney U test. 

a 

b 



 

 

 

142 

CAV1 as a regulator of cholesterol efflux (Frank et al., 2001; Fu et al., 2004) and 

cholesterol as an instigator of caveolin trafficking (Pol et al., 2005). This complex 

interplay between localisation CAV1 and cholesterol homeostasis, though not 

completely elucidated, may modulate sensitivity due to the dependence of 

squamous PDCLs on caveolae and downstream signalling pathways (Anderson, 1998) 

or the inability of classical PDCLs to export and sequester cholesterol, driving the 

ER-localised HMGCR degradation previously described (Figure 5.6 and Figure 5.7). 

This possibility of CAV1 mediating sensitivity to pitavastatin is in-line with the 

finding that increased levels of caveolae are indicative of increased sensitivity to 

cholesterol depletion (Li et al., 2006). 

 

5.4.2  Cholesterol localisation differs between subtypes in vitro 

 

To assess the possible correlation between the absence/presence of CAV1 within 

PDCLs on cholesterol localisation, filipin III was used to stain and visualise 

cholesterol in cells representative of both subtypes. Typical imaging via confocal 

microscopy requires a permeabilization step to allow the passage of fluorophores 

across the plasma membrane, allowing for internalisation of staining materials and 

visualisation. However, detergents commonly used to permeabilise mammalian 

cells, such as Triton X-100 and saponin, function via the disruption or removal of 

cholesterol at the cell membrane (Ingelmo-Torres et al., 2009; Böttger and Melzig, 

2013). In order to avoid this effect, it was decided to permeabilise cells with filipin 

III, which is known to permeabilise membranes (Knopik-Skrocka and Bielawski, 

2002); it was first necessary to optimise the concentrations and time-points that 

would allow sufficient permeabilization for cholesterol visualisation (Figure 5.9). 

Recent publications describe using 50-100 µg/mL filipin III in combination with 

detergent-based permeabilization for cholesterol quantification (Hissa et al., 

2012; Warita et al., 2014), while higher concentrations ranging from 150-1000 

µg/mL were utilised in earlier studies which omitted additional permeabilization 

steps (Tillack and Kinsky, 1973; Milhaud, 1992). As such, it was decided to test 

concentrations between 100-500 µg. 



 

 

 

143 

 

Figure 5.9| Optimising filipin III concentrations in cholesterol visualisation reveals differential 

localisation between subtypes. Confocal images acquired at 40X magnification in TKCC-22 (top) 

and TKCC-02 PDCLs, representative of the classical and squamous subtypes respectively, treated for 

30 mins with increasing concentrations of filipin III. As can be seen in TKCC-22, lower 

concentrations of filipin III induce minimal cholesterol staining, with a disparate staining pattern, 

while exposure to increased concentration leads to greater signal and the emergence of patterns 

consistent with cell membrane. This is contrast to TKCC-02 which seems largely unaffected by 

filipin III concentration, with a consistent staining across all doses.  

 

It was observed that increasing concentrations of filipin III in PDCLs representative 

of the two subtypes had no visible effect on permeabilization within TKCC-02, a 

cell-line classed as squamous. This was found in contrast to the classical PDCL, 

TKCC-22, which required higher concentrations to effectively permeabilise cells, 

with staining patterns differing as filipin III concentrations increased. It was 

thought that this phenomenon may exist due to morphological distinctions 

between the two PDCLs, with TKCC-22 tending to grow in compact, epithelial-like 

layers, therefore requiring increased concentrations of filipin III to penetrate 
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clusters of cells, while TKCC-02 exhibit a more mesenchymal-like morphology, with 

individual cells growing disparately. Taking into account the stoichiometry of the 

binding of filipin with cholesterol and phospholipid to effect permeabilization 

(Milhaud, 1992), the more concentrated TKCC-22 cell-line would be expected to 

require greater concentrations of filipin to induce the same level of 

permeabilization as TKCC-02. 

 

The results of filipin III staining optimisation indicate that cholesterol localisation 

differs between TKCC-22 and TKCC-02 (Figure 5.9). Though staining was carried 

out in the absence of additional cell markers, it appears that staining was localised 

to cell membranes in TKCC-22 at high concentrations of filipin III, with the 

boundaries of observable cell clusters visibly stained, along with what appears to 

well defined cell boundaries. However, in TKCC-02, staining appears centralised to 

perinuclear puncta, suggesting a localisation within the ER, where cholesterol 

biosynthesis is carried out, or within the Golgi network/transport vesicles. This 

suggests the upregulation of active flux of cholesterol in squamous PDCLs. 

 

5.4.3  Lipid rafts are enriched in select squamous PDCLs, while CAV1 

appears to colocalise with cholesterol 

 

It was decided to assess the impact, if any, of pitavastatin treatment on caveolae 

formation, while simultaneously investigating CAV1 localisation within PDCLs. 

Caveolae imaging was achieved via exposure to cholera toxin subunit B (CT-B), a 

protein that binds to gangliosides GM1 found in lipid rafts, including caveolae 

(Holmgren et al., 1975; Parton, 1994), conjugated to a fluorescent tag, allowing 

for the visualisation of lipid rafts as described in past publications (Calay et al., 

2010; Irwin et al., 2011). 

 

In the squamous PDCLs tested, CAV1 was found to form puncta in a very similar 

manner to cholesterol in TKCC-02, representative of the squamous subtype (Figure 

5.10). This suggests a colocalization of the two and is consistent with the finding 

that CAV1 cycles between the ER, the Golgi network and caveolae at the plasma 
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membrane, leading to the hypothesis that this flux of CAV1 facilitates cholesterol 

transport (Dupree et al., 1993; Conrad et al., 1995). In contrast, very little 

staining was evident in Mayo-5289, suggesting absence or low levels of CAV1 and 

lipid rafts. The observation that CAV1 and cholesterol likely colocalise to 

 

 

Figure 5.10| Lipid rafts and CAV1 are visible only in squamous cell-lines, while pitavastatin has 

a minor effect on lipid raft formation. Confocal images at 40X magnification showing imaging of 

CAV1 protein localisation (green), as well as lipid rafts stained with fluorescently tagged cholera 

toxin B (red) and nuclei stained with DAPI (blue). Images were acquired in TKCC-02 (left), TKCC-10 

(centre) and Mayo-5289 (right), with cells exposed to DMSO (top) or 1 µM pitavastatin (bottom) for 

72 hours. As can be seen, CAV1 and lipid rafts were most detectable within squamous PDCLs (blue), 

while the classical cell-line (brown), Mayo-5289, exhibited a lower intensity of staining with less 

discernible patterning, possibly reflecting noise rather than a true signal. This suggests a greater 

abundance of both CAV1 and lipid rafts in squamous PDCLs, with CAV1 accumulating in perinuclear 

puncta and lipid rafts detectable along cell membranes. Additionally, pitavastatin appears to have 

a minor impact on lipid raft formation, with a slight decrease in signal associated with treatment as 

compared to control, while no observable effect was seen on CAV1 localisation. 



 

 

 

146 

 

organelles associated with intracellular transport selectively in squamous PDCLs 

therefore supports the theory that interplay between the two molecules effects 

pitavastatin sensitivity. Though speculative, this may involve differential 

cholesterol efflux or sequestration, with the possibility that these phenomena 

influence HMGCR degradation via the negative feedback loop described in chapter 

5.3 . 

 

Secondarily, pitavastatin was found not to induce a major change in lipid raft 

formation or CAV1 localisation in either subtype, with patterns of staining 

remaining consistent between vehicle control (DMSO) and pitavastatin treatments 

(Figure 5.10). There did appear to be some slight decrease in signal of lipid raft 

staining along cell membranes upon pitavastatin treatment, however, it was not 

possible to quantify intensities. This suggests that pitavastatin has a minimal 

impact on lipid raft formation. In order to validate the subtype specificity of lipid 

rafts and CAV1 localisation, the analysis could be extended to additional PDCLs. 

 

 

5.5  Interrogating downstream arms of mevalonate pathway 

implicates GGPP and cholesterol in mediating sensitivity 

to statins 

 

5.5.1  Mevalonate pathway intermediates and cancer initiation and 

progression 

 

A number of metabolites downstream within the mevalonate pathway have been 

associated with cancer development and progression, with mevalonate itself 

facilitating growth within various cancer models (Larson and Yachnin, 1984; 

Duncan, El-Sohemy and Archer, 2004), implicating this pathway in oncogenesis. 

This project focused on the involvement of two specific metabolites within the 

mevalonate pathway: cholesterol and geranylgeranyl pyrophosphate (GGPP). These 
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were selected due to their well-documented involvement in processes associated 

with pancreatic cancer. 

 

Cholesterol’s involvement in cancer development may be in part attributed to its 

role as a facilitator of a number of signalling pathways dependent on receptors 

associated with lipid rafts (Mollinedo and Gajate, 2015). This includes the PI3K/Akt 

pathway, which is often found activated in pancreatic cancers (Bondar et al., 

2002). GGPP, along with farnesyl pyrophosphate (FPP), are necessary for protein 

prenylation. 

 

These targeted protein modifications have been demonstrated to be necessary for 

localisation of signalling proteins to cell membranes (Moores et al., 1991; Hart and 

Donoghue, 1997), including KRAS (Chandra et al., 2011), the mutated form of 

which is a common driver of pancreatic cancer. Due to the link between these 

metabolites and pancreatic cancer, as well as the widespread dietary availability 

of both (de Wolf et al., 2017), it was decided to assess the impact of exposure to 

these molecules on pitavastatin sensitivity. 

 

5.5.1  Dietary metabolites within mevalonate pathway induce 

pitavastatin resistance in squamous PDCLs 

 

In order to assess the impact that these metabolites may have on pitavastatin 

sensitivity, dose-response curves were carried out in the absence or presence of 

mevalonate, cholesterol, and GGPP. As all media used to culture PDCLs were 

supplemented with FBS, which is highly rich in lipids, generally containing ~750 µM 

cholesterol (Whitford and Manwaring, 2004), it was necessary to delipidate FBS to 

accurately quantify cholesterol’s influence on pitavastatin sensitivity. 
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Figure 5.11| Supplementing various metabolites in the mevalonate pathway rescues pitavastatin-induced apoptosis in vitro. Schematic outlining the 
key metabolites in the mevalonate pathway (grey ellipses), as well as the enzymes that mediate its progression (red). As can be seen, pitavastatin targets 
the HMGCR-induced conversion of HMCG-CoA to mevalonate in the initial step of the pathway. a Dose-response curve showing the impact of 500 µM 
mevalonate on pitavastatin sensitivity in TKCC-02 and TKCC-10, two squamous PDCLs previously demonstrated to be highly sensitive to statins, after 72 
hours treatment. As can be seen, mevalonate supplementation fully rescues the effect of pitavastatin in sensitive PDCLs. b Dose-response curve showing 
the effect of 20 µM cholesterol in delipidated medium on pitavastatin sensitivity in TKCC-10, relative to fully supplemented medium. As can be seen, cells 
are more sensitive to pitavastatin in delipidated medium relative to medium with full serum, an effect that is nearly fully mitigated on addition of 
cholesterol. c Bar-plots showing sensitivity of squamous PDCLs to three concentrations of pitavastatin, comparing with or without supplementation of 10 
µM GGPP. As can be seen, addition of GGPP abrogates sensitivity to pitavastatin.

a 

b 
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Primary findings showed that exposure to 500 µM mevalonate entirely mitigated 

sensitivity to pitavastatin in sensitive, squamous PDCLs (Figure 5.11a), thus fully 

implicating the mevalonate pathway and downstream components in mediating 

sensitivity to pitavastatin within this subtype. Further results showed that, while 

cells cultured in delipidated FBS exhibited enhanced sensitivity, cholesterol 

treatment also induced some resistance to pitavastatin in squamous PDCLs (Figure 

5.11b). Exposure to GGPP in particular was seen to nullify the effects of 

pitavastatin on cell viability in those sensitive cell-lines (Figure 5.11c). These 

results are in accordance with previous findings that sensitivity to statin treatment 

can be abrogated with the addition of mevalonate and GGPP in in vitro models of 

various cancer types (Greenaway et al., 2016; Ishikawa et al., 2018; 

Sheikholeslami et al., 2019), while the discovery that cholesterol supplementation 

can confer resistance to statin treatment is corroborated by observations that 

cholesterol can rescue statin mediated defects in myotube formation in myoblasts 

(Wei et al., 2016). 

 

These findings collectively highlight the potential of commonly found and 

widespread metabolites on mitigating the effects of pitavastatin, suggesting that 

additional precautions may be necessary when considering the clinical application 

of statins in treating pancreatic cancer. Before this family of therapeutics can 

represent a viable option in a clinical setting, efficacy will likely need to be 

enhanced through either diet limitation or potential combinatorial approaches. 

 

5.6  Statin sensitivity is enhanced by concomitant EGFR 

inhibition 

 

As clinical trials assessing the efficacy of statins in treating pancreatic cancer have 

yielded mixed results, as discussed in chapter 5.2.3 , an observation possibly 

influenced by dietary intake, it was decided to interrogate downstream effectors 

of statin sensitivity in squamous PDCLs. This line of research was performed with 

the view of identifying therapeutics with potential to use in combination with 
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pitavastatin to enhance performance of the drug in both a preclinical and clinical 

setting. 

 

5.6.1  Pitavastatin inhibits Akt activation in squamous PDCLs 

 

Previous research efforts have demonstrated that statins inhibit AKT activity in a 

range of preclinical models of cancer via various potential mechanisms of action 

(Calay et al., 2010; Wang et al., 2016; Beckwitt, Shiraha and Wells, 2018). This 

observation is of importance due to the involvement of the PI3K/Akt pathway in 

pancreatic cancer oncogenesis (Bondar et al., 2002). In order to confirm AKT as a 

downstream indicator of pitavastatin sensitivity in pancreatic cancer subtypes, the 

effect of pitavastatin treatment on AKT phosphorylation was assessed within 

PDCLs, with further on-target validation performed via HMGCR knockdown in 

TKCC-02, a sensitive cell-line classed as squamous (Figure 5.12). This revealed that 

both pitavastatin treatment and HMGCR KD were sufficient to reduce activation of 

AKT in the squamous PDCL, TKCC-02, while a resistant, classical cell-line, TKCC-

22, exhibited a minimal decrease in levels of phospho-AKT upon pitavastatin 

treatment. These results therefore support previous work that has linked statin 

mediated HMGCR inhibition to disruption of AKT signalling, while demonstrating 

that this phenomenon is associated with sensitivity to statin treatment. 
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Figure 5.12| Inhibition or loss of HMGCR leads to inactivation of AKT in sensitive PDCLs. 

Western blot showing the decrease in AKT phosphorylation in response to both siRNA mediated 

knockdown of HMGCR (left) and inhibition of HMGCR via 1 µM pitavastatin treatment (right) in 

TKCC-02 (blue) and TKCC-22 (brown), representatives of the sensitive, squamous subtype and 

resistant, classical subtype respectively. Within TKCC-02, a slight decrease can be seen in total AKT 

levels after treatment with pitavastatin or HMGCR KD, while a more pronounced effect can be 

observed in levels of phospho-AKT after both treatments. In TKCC-22, there appears to be a slight 

decrease in phospho-AKT levels, though this effect is markedly less than that observed in TKCC-02. 

 

5.6.2  Combinatorial gefitinib treatment induces cell-death at low 

pitavastatin concentration in squamous PDCLs 

 

Multiple studies have linked statin-mediated inactivation of AKT to epidermal 

growth factor (EGFR) inhibition (Mantha et al., 2005; Dimitroulakos, Lorimer and 

Goss, 2006), with EGFR being a well-established upstream activator of the PI3K-Akt 

pathway (Soltoff et al., 1994; Mattoon et al., 2004). Possible explanations for such 

a phenomenon suggest a displacement of EGFR from lipid rafts via cholesterol 

depletion (Irwin et al., 2011) or a dissociation of upstream effectors, such as Rho-

GTPases, from the cell membrane as a result in decreased prenylation, disrupting 

actin cytoskeleton organisation (T. T. Zhao et al., 2010). Both mechanisms of 
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action would account for a loss of EGFR activity, with the involvement of EGFR in 

statin sensitivity reinforced by the finding that statin treatment improves survival 

in lung cancer patients receiving EGFR inhibitors (Hung et al., 2017). With these 

findings in mind, it was decided to assess the efficacy of a combination of 

pitavastatin with erlotinib, a widely used EGFR inhibitor that has been shown to 

enhance gemcitabine sensitivity in pancreatic cancer (Moore et al., 2007). The 

expectation is that this combinatorial approach, introducing an additional means 

of inhibiting EGFR, will enhance the on-target effect of statin treatment, further 

disrupting signalling pathways essential within squamous PDCLs. 

 

Synergy between the two therapeutics was quantified via the SynergyFinder web 

application (Ianevski et al., 2017), which allowed for the presentation of zero 

interaction potency (ZIP) scores (Yadav et al., 2015) across all concentrations 

tested in both drugs. Combination treatments demonstrated that squamous PDCLs 

displayed high ZIP scores at low doses of both therapeutics, while classical cell-

lines required treatment with highly concentrated doses before any synergy was 

observed (Figure 5.13). These results indicate a synergistic effect of the two 

therapeutics selectively in the squamous subtype, while highlighting the possibility 

that this combination may be effective in patients, with clinically viable doses 

likely to induce an effect. 

 

5.1  Potential in vivo testing of statin efficacy 

 

In order to assess the potential of testing a regimen of statin treatment in mouse 

models, as well as establish potential subgrouping, it was decided to test 

pitavastatin in a variety of cell-lines established from a genetically engineered 

mouse model (GEMM) induced by concurrent mutations of Kras and Trp53 

(Hingorani et al., 2005). This model allows for the recapitulation of aggressive 

PDAC in mice that progresses in a similar fashion to the disease in human patients, 

bearing the hallmark genomic instability associated with human PDAC. Dose-

response curves generated in three cell-lines derived from KPC tumours displayed 
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Figure 5.13| Pitavastatin and erlotinib synergise at low concentrations in squamous PDCLs. 

Heatmaps showing synergies between erlotinib and pitavastatin in two PDCLs representative of 

each classical (top) and squamous (bottom) subtypes. For each PDCL, a heatmap representing the 

dose-response curves for each therapeutic is shown (left), as well as an equivalent heatmap 

displaying ZIP scores (right), with shading indicating areas of greatest synergy. Data corresponding 

to erlotinib is shown along the x-axis and pitavastatin along the y-axis. As can be seen, synergy in 

classical PDCLs is only seen at prohibitively high concentrations of both drugs, while in squamous 

cell-lines, synergy is observed at much lower concentrations (<5 µM pitavastatin, <10 µM Erlotinib). 

 

differential sensitivities (Figure 5.14), with one cell-line in particular (Panc47) 

exhibiting a sensitivity approaching that observed in sensitive, squamous PDCLs 

(IC50 = 2.6 µM). This is suggestive of the existence of partial subtypes, a finding 

with particular relevance due to the clinical relevance of this in vivo model in in 

vivo research. In order to further validate this potential subgrouping, it was 

decided to assess the degradation status of HMGCR via western blot, as well as the  
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Figure 5.14| Cell-lines derived from mouse models of pancreatic cancer exhibit differential 

sensitivity to pitavastatin treatment. Dose-response curve showing sensitivity of three KPC derived 

cell-lines after 72 hours exposure to pitavastatin. As can be seen, all cell-lines displayed some 

degree of sensitivity to treatment, with Panc47 in particular exhibiting loss of viability. 

 

presence/absence of additional subtype-associated proteins; these were selected 

as putative markers of pitavastatin sensitivity. 

 

Western blotting revealed the presence of the same ~60 kDa HMGCR degradation 

band as detected in PDCLs, with a complete absence this marker in Panc47, the 

cell-line most sensitive to pitavastatin treatment. In addition to this, there was a 

marked absence of HNF4A and slight decrease in HNF1A abundance, two 

transcription factors closely associated with the classical subtype in PDCLs (Figure 

5.15). This finding, in contrast to what was seen in the more resistant mice cell-

lines, further aligned Panc47 with the squamous subtype as presented in PDCLs. 

This close alignment suggests that the same mechanism of pitavastatin escape 

found in classical PDCLs may persist in the KPC model of pancreatic cancer, 
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therefore highlighting the potential of this in vivo system in modelling the 

complexities of subtype-associated responses to statin treatment and validating 

observations within PDCLs with the scope of greater clinical relevance. 

 

  
 

Figure 5.15| Subtype-specific markers of pitavastatin sensitivity persist in mice models of 

pancreatic cancer. Western blot showing quantities of various protein products associated with 

pitavastatin resistance in PDCLs across three cell-lines derived from KPC mice, ordered according to 

increasing pitavastatin sensitivity. As previously seen in PDCLs, presence of HMGCR degradation 

corresponded to pitavastatin resistance, as did presence of protein markers indicative of the 

classical subtype. This mirrors what is found in human derived cell-lines, with cell-lines exhibiting a 

more squamous-like phenotype displaying greater sensitivities to pitavastatin. 

 

5.2  Discussion 

 

This chapter described the establishment of a collaborative high-throughput drug 

repurposing screen conducted in PDCLs in collaboration with the Beatson Screening 

Facility. This study identified a variety of compounds that elicit a subtype-
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selective response, with a number of therapeutics implicated in DNA damage 

effecting sensitivity in squamous PDCLs (Table 5.2), including: bleomycin, which 

inhibits DNA ligase (Ono et al., 1976), resulting in DNA breaks (Tounekti et al., 

2001); etoposide and irinotecan, which target topoisomerases 1 and 2 respectively 

(Pommier, 2013), enzymes that effect over- or underwinding of DNA via induction 

of strand breaks (Champoux, 2001); and fluorouracil, which induces DNA damage 

via dTTP depletion (Longley, Harkin and Johnston, 2003). These compounds are 

regularly used as part of clinical anti-cancer treatments, with proven efficacy 

against a range of cancer types (Einhorn and Williams, 1980; IMPACT, 1995; Hanna 

et al., 2006), while irinotecan forms part of the FOLFIRINOX regimen which is used 

as standard of care in the treatment of PDAC (Conroy et al., 2011). These results 

therefore suggest that the squamous subtype may be more sensitive to clinically 

relevant compounds that inhibit components of DDR, a finding that aligns with 

work that has demonstrated that enhanced replication stress is a signature of 

squamous PDCLs, conferring a dependency on DDR proteins (Dreyer et al., 2019) 

including ATM and ATR serine/threonine kinases (ATM and ATR), which activate 

upon DNA damage (Durocher and Jackson, 2001; Bakkenist and Kastan, 2003), 

coordinating the cellular DDR response (Matsuoka et al., 2007). As this work was 

the focus of a separate project within the group, it was decided to take 

alternative hits forward for follow-up analysis. 

 

Beyond agents associated with DNA damage, screening results, supported by 

follow-up validation, identified the potential of statins to selectively induce cell-

death in squamous cell-lines. This anti-cancer effect was most readily observed 

upon treatment with pitavastatin, a minimally metabolised statin (Kajinami, 

Takekoshi and Saito, 2003; Mukhtar, Reid and Reckless, 2005) whose efficacy as a 

therapeutic in an oncological context has been demonstrated in in vitro and in vivo 

models of a range of cancers (You et al., 2016; Abdullah, Abed and Richardson, 

2017), including PC (Villarino et al., 2017). 

 

Despite many preclinical efforts over the past decades, the mechanism by which 

statins effect their anti-cancer potential is still disputed (Sorrentino et al., 2014; 

Wei et al., 2016; Yu et al., 2018). This chapter has attempted to determine these 
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mechanisms within pancreatic cancer cell-lines, taking an approach centred in 

comparisons between sensitive and resistant subtypes in PDCLs. This revealed a 

dysregulation of cholesterol homeostasis across subtypes, mediated by the absence 

or presence of caveolins. Those differences in cholesterol trafficking had apparent 

links to the activation of a negative feedback loop within the cholesterol 

biosynthesis pathway, potentially facilitating resistance to statin treatment. 

However, due to time constraints, it was not possible to assess the impact of CAV1 

depletion on pitavastatin sensitivity, HMGCR degradation, cholesterol localisation, 

and lipid raft formation. This series of experiments would have been ideal to 

further investigate caveolin’s involvement in cholesterol homeostasis and validate 

the relationship between intracellular trafficking and statin resistance, thus 

confirming the proposed mechanism of statin resistance. Despite this, it was 

determined that statins disrupted AKT signalling within sensitive cell-lines, with 

erlotinib selected as a therapeutic to partner with pitavastatin in order to take 

advantage of this downstream effect. 

 

Although recent, prospective clinical trials involving statins have yielded mixed 

results, trial design choices that fail to fully take into account experimental data 

generated in preclinical research are likely to have negatively influenced results. 

One review argues that a range of crucial factors such as dietary intake of patients 

and dosing of therapeutics have not been optimised for the clinical success of 

statins in the context of oncology, while supporting the view that pitavastatin is 

the ideal choice of statin for cancer studies due to a favourable pharmacodynamic 

profile (Abdullah et al., 2018). This importance of statin choice is reflected in a 

study that highlighted differential efficacy of a range of statins in in vitro and in 

vivo models of pancreatic cancer (Gbelcová et al., 2008), although pitavastatin 

was not included in this set of experiments. Dietary factors, as explored in brief 

within this chapter, are also likely to confound sensitivity to pitavastatin in 

patients with PDAC. Recent research has supported this possibility, with 

indications that geranylgeraniol, a metabolite downstream of mevalonate and 

upstream of cholesterol in the mevalonate pathway, can interfere with anti-cancer 

properties of pitavastatin in vivo (de Wolf et al., 2017), while demonstrating that 

this metabolite is present in a variety of widely consumed foodstuffs. This 
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highlights the need of clinical trial design to pay consideration to these concerns 

and echoes the findings that both cholesterol and GGPP mitigate pitavastatin 

sensitivity in PDCLs, as well as in a number of in vitro models of various cancer 

types (Greenaway et al., 2016; Wei et al., 2016; Sheikholeslami et al., 2019). 

 

Finally, findings described in this chapter have also highlighted the possibility of 

designing an effective therapeutic strategy in GEMMs in advance of clinical 

consideration, allowing for the in vivo assessment of pitavastatin efficacy. This 

would involve pitavastatin treatment with concurrent dietary limitation, ensuring a 

minimal intake of cholesterol and GGPP, with the additional possibility of treating 

with a combination of erlotinib. These in vivo experiments would be ideal for 

establishing a clinically viable regimen of therapeutic administration and dietary 

limitation, with the added benefit of facilitating dosage optimisation and allowing 

the assessment of efficacy of pitavastatin treatment in combination with erlotinib. 
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Concluding Remarks 

 

6.1  Summary of project findings 

 

In order to address the lack of therapeutics effective in treating pancreatic 

cancer, this body of work has outlined a subtype-focused approach. By harnessing 

an in vitro model of PDAC subtypes that reflects clinical subgrouping (Bailey et al., 

2016) and providing extensive characterisation of pathways associated with 

pancreatic cancer, it was intended to identify novel, stratified vulnerabilities 

likely to be represented in subgroups within a clinical setting. Interrogation of 

transcriptomic and proteomic data, in tandem with experiments quantifying rates 

of metabolic processes linked to PC (Ying et al., 2012; Kamphorst et al., 2013; 

Daemen et al., 2015), led to the identification of highly divergent metabolic 

phenotypes which aligned closely to subtypes: 

 

• Squamous; highly glycolytic phenotype, exhibiting increased aerobic 

glycolysis and decreased OXPHOS. 

• Classical; highly oxidative with high levels of FAO, with an associated 

upregulation of lipid biosynthesis suggesting a balance between catabolism 

and anabolism. 

 

This allowed for the generation of strategies to exploit potential vulnerabilities 

associated with these distinct metabolic dependencies, with two separate 

approaches developed in order to maximise the possibility of discovering effective 

therapeutics. This involved: (1) performing literature searches to identify novel 

drug targets corresponding to subtype-associated metabolic pathways, while 

incorporating all PDCL data available for review, including RNA-seq, proteomics, 

siRNA screening, and metabolic assays; (2) performing high-throughput drug 

repurposing screening, with libraries containing a variety of general purpose, 

metabolism-targeting compounds. 
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The first approach identified ALDOA, a highly active isoform of aldolase (Chang et 

al., 2018), a glycolytic enzyme that catalyses early glycolysis, upregulated in the 

squamous subtype, as a potential target of squamous-associated glycolysis. Follow-

up experiments involving a therapeutic inhibitor of ALDOA, TDZD-8 (Grandjean, de 

Jong, B. P. James, et al., 2016), demonstrated its potential to successfully inhibit 

glycolysis selectively in PDCLs belonging to the squamous subtype. This effectively 

induced cell death in vitro, however, in vivo experiments would be required to 

validate its efficacy in treating pancreatic cancer. This strategy also allowed for 

the characterisation of metabolic flexibility within classical PDCLs, as inhibition of 

FA biosynthesis resulted in a compensatory activation of glycolysis within this 

subtype. This phenomenon bears clear clinical relevance due to its potential to 

facilitate emergence of resistance to metabolic inhibition (Boudreau et al., 2016; 

Biancur et al., 2017) and as a result of these observations, JQ1 was discovered to 

therapeutically mitigate this resistance mechanism. This inhibitor of epigenetic 

reader proteins was found to act to induce widespread changes at the 

transcriptomic level, effecting dysregulation of a range of metabolic genes, 

consistent with other research conducted within PC (Sakamaki et al., 2017; 

Sherman et al., 2017), allowing for the sensitisation of classical cell-lines to the 

targeting of lipid biosynthesis via FASN inhibitors. 

 

The second approach of drug repurposing screening identified statins as a possible 

therapeutic effective selectively in squamous PDAC. In order to enhance clinical 

potential by finding optimal treatment strategies, the mechanism by which statin 

sensitivity is induced selectively in squamous PDCLs was investigated. This line of 

research identified the potential of pairing with the EGFR inhibitor erlotinib in 

vitro, alongside the possibility that dietary limitation may be necessary to induce a 

full response to statins in a clinical setting. 

 

6.2  Conclusions and future work 

 

Pancreatic cancer is highly aggressive, with the poor prognosis associated with the 

disease reflective of its refractory nature. Poor outcomes are in part accounted for 
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by the failure of standard of care therapeutics in effectively managing 

metastasised PDAC, with overall survivals of less than a year typically observed in 

patients receiving chemotherapeutic treatments (Kamisawa et al., 2016). This 

shortcoming must be addressed and viable therapeutics found in order to improve 

PC prognoses, with one area of emerging interest of clinical potential being the 

targeting of cell metabolism in PDAC (Blum and Kloog, 2014; Cohen et al., 2015; 

Garrido-Laguna and Hidalgo, 2015). This interest is driven by the degree of 

metabolic dysregulation observed in pancreatic cancer, with reprogramming in 

glycolysis (Zhou et al., 2011; Ying et al., 2012; Guillaumond et al., 2013), 

glutamine metabolism (Son et al., 2013; Biancur et al., 2017), autophagy (Perera 

et al., 2015; Yang et al., 2018) and FAO (Khasawneh et al., 2009; Kamphorst et 

al., 2013) associated with cancer development, while preclinical efforts have 

demonstrated the efficacy of a range of therapeutics that target each of these 

pathways (Maftouh et al., 2014; Ventura et al., 2015; Brandi et al., 2017). 

 

Heterogeneity is a dominant feature of PC, which is defined by a high number of 

low prevalence mutations found in patient genomes (Biankin et al., 2012; Waddell, 

Pajic, A.-M. Patch, et al., 2015). This is most clearly apparent when considering 

the wide range of mutations that have been implicated in driving oncogenesis, 

with one study which harnessed a transposon-based insertional mutagenesis screen 

having identified >500 genes as candidate drivers, primarily acting as potential 

tumour suppressors whose loss promotes cancer progression in in vivo models 

(Mann et al., 2012). In order to address this complex mutational landscape, recent 

efforts have focussed on subtyping patients into workable groups (Collisson et al., 

2011, 2019; Bailey et al., 2016), allowing for the identification of shared 

vulnerabilities. These subtypes are of particular relevance to the field of clinical 

pancreatic cancer research as recent work has demonstrated the capacity to 

rapidly subtype PDAC patients upon diagnosis (Aguirre et al., 2018). The work 

detailed as part of this thesis has described the definition of subtypes in vitro, 

which faithfully recapitulate those identified in patients. Due to this overlap, 

these cell-lines represent an ideal model to guide translational research efforts; as 

pathways dysregulated in patients are also perturbed in cell-lines, therapeutics 
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identified that act to inhibit these processes and which elicit a subtype-selective 

response are likely to be of clinical relevance. 

 

This work has demonstrated the existence of distinct metabolic phenotypes, which 

are associated with PDAC subtypes and exhibit differential sensitivities to 

metabolic inhibition via therapeutics. This can be summarised as such: in vitro, 

the squamous subtype is defined by upregulated glycolysis, with an enhanced 

sensitivity to inhibition of glycolysis, while the classical subtype exhibits increased 

FA biosynthesis and metabolism. The discovery of these phenotypes and inherent 

vulnerabilities is supported by a similar project that identified two in vitro 

metabolic subtypes in pancreatic cancer, subsequently demonstrating that the 

upregulation of glycolysis and FA biosynthesis associated with these distinct groups 

predict sensitivity to targeting these processes (Daemen et al., 2015). Efforts 

described in this thesis serve to expand on this, having identified a potential 

transcriptionally coordinated origin of metabolic reprogramming corresponding to 

gene dysregulation associated with subtypes (Bailey et al., 2016). This is further 

evidenced by the finding that dysregulation of genes involved in glycolysis at the 

transcriptome level informs metabolic subtypes found in patient populations (Follia 

et al., 2019). Work within has additionally identified metabolic flexibility 

associated with the classical subtype, a phenomenon described previously in 

pancreatic cancer (Kimmelman, 2015; Boudreau et al., 2016; Biancur et al., 2017), 

while JQ1, a therapeutic with clinically viable analogues (Alqahtani et al., 2019), 

was found to abrogate this flexibility in vitro. 

 

Expanding on the clinical utility of these described metabolic perturbations, the 

glycolytic phenotype associated with the squamous subtype has the potential for 

clinical detection via the diagnostic tool, FDG-PET. This imaging technique, 

described in chapter 1.5.1 , allows for detection of transformed cells exhibiting 

the increased glucose uptake associated with the Warburg Effect (Adams et al., 

1998). Regarding the use of this tool in diagnosing PC, historic efforts have 

identified some factors that may confound efficacy of PDAC detection, including 

hyperglycaemia and diabetes status (Diederichs et al., 1998, 2000), while recent 

meta-analyses have demonstrated that FDG-PET has limited utility in diagnosing PC 
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relative to alternative diagnostic tools (Wang et al., 2013; Rijkers et al., 2014). 

Despite these findings, FDG-PET has been shown demonstrate prognostic value, 

with a correlation found between FDG uptake and poor survival outcomes in 

patients with PC (Ahn et al., 2014; Yamamoto et al., 2015; Chen et al., 2016). 

These observations are particularly striking given the poor prognosis associated 

with patients classified with squamous PDAC (Bailey et al., 2016), along with the 

finding that glycolytic activation, as a result of the emergence of gemcitabine 

resistance in PDAC cell-lines, leads to enhanced FDG-PET detection upon 

implantation in in vivo models (Shukla et al., 2017), and serve to collectively 

suggest that patients with squamous PDAC may be more readily detected via FDG-

PET.  

 

In addition to this, future work has been suggested within this thesis which would 

involve the probing of efficacy of statins in in vivo models of PDAC. Research was 

initially conducted in order to determine the mechanism of action by which statins 

exert their subtype-selective response, with squamous PDCLs exhibiting greater 

sensitivity than classical, as observed in drug repurposing screening and 

subsequently validated. This demonstrated the potential of commonly found 

foodstuffs to limit the anti-cancer efficacy of statin treatment in vitro, a finding 

in-line with other preclinical research efforts (Greenaway et al., 2016; Wei et al., 

2016; Sheikholeslami et al., 2019), suggesting that dietary limitation may be an 

effective strategy in a clinical setting (de Wolf et al., 2017; Abdullah et al., 2018). 

Additionally, combination therapies demonstrated the potential of pairing 

pitavastatin with erlotinib in squamous PDCLs, which supports previous 

observations that EGFR inhibition enhances statin’s ability to inhibit cancer 

progression both in vitro (Mantha et al., 2005; Dimitroulakos, Lorimer and Goss, 

2006) and in patients with lung cancer (Hung et al., 2017). As proof that these 

findings can be translated into clinically viable strategies, future work would be 

required to assess the efficacy of both treatment approaches in in vivo models of 

PDAC, which would ideally be conducted within mouse models of PDAC subtypes. 

Early subtyping efforts indicated that cell-lines derived from GEMMs of PDAC 

exhibited both classical and squamous subtypes (Collisson et al., 2011), a finding 

supported by recent work that identified subtypes within the KPC model of PDAC 
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(Candido et al., 2018). Research conducted as part of this thesis utilising cell-lines 

derived from KPC mice suggests that these cell-lines exhibit differential 

sensitivities to pitavastatin according to subtype, as determined by select 

biomarkers. Collectively, these findings therefore suggest the potential of 

assessing pitavastatin efficacy in KPC mouse models. 

 

Finally, this work also describes the establishment of a collaborative high-

throughput screening project with the Beatson Screening Facility. This project has 

the potential to be expanded on in future work, with morphological data resulting 

from the screen to be analysed in-house by the Screening Facility. Results obtained 

from these analyses may inform future projects, with the potential to identify 

novel therapeutics effective in treating PDAC subtypes in vitro necessitating 

follow-up studies including validation experiments and in vivo testing. 

 

The work described within this thesis has outlined attempts to identify therapeutic 

strategies to effectively target metabolic processes in PDAC subtypes in vitro. This 

has revealed the potential of inhibiting both glycolysis and the mevalonate 

pathway within squamous cell-lines. It has also served to characterise metabolic 

flexibility associated with the classical subtype, which necessitates combinatorial 

strategies, targeting both flexibility and FA biosynthesis, to elicit a response. This 

work has therefore served to characterise associations between metabolic 

pathways and PDAC subtypes, facilitating the identification of a number of 

therapeutic targets, with screening projects initiated as part of this project poised 

to identify further clinically exploitable vulnerabilities. 
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