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Abstract 

Effective surveillance of foot-and-mouth disease (FMD) is of the utmost importance in 

order to understand the disease risks and implement effective control strategies. 

Epidemiological data obtained for FMD is mostly obtained through recognition and 

reporting of clinical cases by farmers which has several limitations. For example, 

under-reporting of disease is common, due to deficiencies in veterinary infrastructure, 

the effort involved for sample collection, or the repercussions of control measures for 

farmers. Diagnostic sample types, usually vesicular epithelium and fluid, are invasive 

and labour intensive to obtain, and can only be collected from acutely infected animals. 

Therefore, animals with sub-clinical FMD infection (particularly those in vaccinated 

herds) may not be identified but may still contribute to disease transmission. It is likely, 

therefore, that the true prevalence of FMD is not accurately known in parts of the world 

where the disease is endemic. Consequently, the requirement exists for a simple 

approach for FMD surveillance that does not rely on farmer reporting. Milk is a non-

invasive sample type routinely collected from dairy farms and has been utilised for the 

surveillance of a number of other diseases. Despite numerous publications suggesting 

the potential of milk as a valuable sample type for foot-and-mouth disease (FMD) 

surveillance, empirical studies have mainly focused on the risk of transmission via 

milk, or the detection of FMD virus (FMDV) in milk from individual animals. This thesis 

aimed to expand on previous studies to determine the utility of milk and its limitations 

for the surveillance of FMD at the individual and herd level, using data collected from 

experimental and field studies. A highly sensitive and specific high-throughput RNA 

extraction and real-time rRT-PCR was optimised and utilised for FMDV RNA genome 

identification throughout the project. Using this method, it was demonstrated that 

FMDV RNA genome could be detected up to 28 days post infection using milk samples 

collected from individual cows. Further analysis using serotyping or lineage-specific 

rRT-PCR assays and VP1 sequencing of milk samples collected from individual cows in 

northern Tanzania highlighted the use of milk as a suitable alternative to more invasive 

sample types such as epithelium. Additionally, storage and shipment condition 

simulations performed demonstrated good stability of FMDV RNA genome within milk 

samples.  Following these experiments, the potential use of pooled milk for herd–level 

FMD surveillance was investigated. Two proof-of-concept pilot studies were 
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performed comparing the rRT-PCR results of pooled milk samples collected from both 

a large-scale dairy farm in Saudi Arabia and milk pooling facilities supplied by 

smallholder dairy farms in Kenya, with farmer reports of clinical disease. Results 

supported laboratory limit of detection studies, demonstrating that FMDV could be 

detected from milk pools of up 10,000 litres, even when there were low numbers of 

clinical cases. Furthermore, both studies suggested the detection of subclinical 

infection in milk samples, where disease was not reported. Data from pilot studies 

performed in this thesis therefore support the use of milk as a simple, non-invasive 

approach for herd-level FMD surveillance. Further field studies are required to 

determine the full utility of this method before it may be implemented for 

targeted/risk-based surveillance alongside existing surveillance systems to facilitate 

improved knowledge of FMD epidemiology, or for use in FMD contingency plans.  
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CHAPTER 1 

 

Introduction:  

A review of diagnostic approaches for the 

surveillance of foot-and-mouth disease  

 

1.1 Summary 

A significant challenge for the world’s expanding population is sustainable food 

production. In order to manage this in the long term, animal health and welfare are key 

priorities. Infectious diseases have a considerable impact on global animal production 

and human poverty, and threats to food security are further increased by the 

international trade of animals and their products. Foot-and-mouth disease (FMD) is a 

contagious viral livestock disease of great economic importance with high costs for 

prevention and control. In order to quantify disease burden, inform control efforts and 

reduce disease impacts, effective surveillance is essential. However, in many regions 

where the disease is endemic, several limitations of current surveillance systems exist. 

Surveillance is often dependent upon the recognition and reporting of clinical cases by 

farmers, occasionally supplemented by targeted case finding or serological surveys. 

The capacity for undertaking outbreak investigation and collecting clinical specimens 

in countries with limited resources is also often restricted. Additionally, as clinical 

samples are usually only collected from acutely infected animals, subclinical infection 

may not be represented. This chapter explores these limitations in more detail, and 

highlights the potential use of milk as a cost-effective, non-invasive alternative for FMD 

surveillance, with the aim of reducing the bias observed when relying on sample 

vesicular epithelium or blood, and consequently aiming to improve the understanding 

of the epidemiology of FMD in a region.   
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1.2 Foot-and mouth disease 

1.2.1 Overview of disease 

Foot-and-mouth disease (FMD) is a highly contagious, transboundary disease of 

cloven-hooved mammals. Clinical signs include high body temperature, excessive 

salivation, and the formation of vesicles on the feet, in and around the mouth and nose 

(Kitching, 2002; Alexandersen et al., 2003; Jamal and Belsham, 2013). Although the 

disease has a low mortality rate, outbreaks of the disease in endemic regions are 

frequent, generally involving the infection of large numbers of animals, and therefore 

have a high impact (Onono et al., 2013). Additionally, the consequences of an outbreak 

in a normally disease-free country can be high, due to the rapid spread of infection 

through a naïve population. Consequently, FMD has an estimated annual global impact 

of US $11 billion (90% range: US $6.5 – 21 billion) (Knight-Jones and Rushton, 2013). 

 

1.2.2 Causative virus 

The disease is caused by FMD virus (FMDV), a single stranded positive sense RNA virus, 

that belongs to the genus Aphthovirus within the family Picornaviridae (Grubman and 

Baxt, 2004). The virus particle is 25-30nm in diameter, containing a single copy of the 

FMDV genome approximately 8400 nucleotides (nt) in length, surrounded by a 

icosahedral shaped protein capsid composed of 60 capsomers (Acharya et al., 1989). 

Each capsomer consists of four structural virus proteins (VP). VP1, VP2 and VP3 which 

are exposed on the surface of the virus, are encoded by the genes 1D, 1B and 1C 

respectively. VP4 is located internally and is encoded by the 1A gene. The non-

structural proteins (NPs) are encoded by the 2A, 2B, 2C, 3A, 3B, 3CPro, 3Dpol and Lpro 

genes which control replication and maturation of the FMDV virus (Figure 1.1) 

(Domingo et al., 2003; Sangula et al., 2010; Jamal and Belsham, 2013; Kamel et al., 

2019).  
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Figure 1.1 The structure of the FMD virus genome. Adapted from Jamal and Belsham 
(2013). 

  

1.2.3 Geographical distribution of FMD 

There are seven immunologically distinct serotypes of FMDV; O, A, C, Asia 1, and 

Southern African Territories (SAT) 1, 2 and 3 (Robson et al., 1977). The serotypes are 

not evenly distributed spatially, and there is a tendency for genetically related viruses 

within a serotype to appear in the same geographical area, for reasons such as animal 

movement and trade patterns. Globally, the distribution of FMDV is divided into seven 

geographic pools, based on nucleotide sequence analyses (World Organisation for 

Animal Health (OIE), 2019)(Figure 1.2). Pools 1, 2 and 3 include serotypes O, A, and 

Asia 1 and cover East and Southeast Asia, South Asia, and West Asia respectively; Pool 

4 includes serotypes O, A, SAT 1, 2 (and 3) in East Africa; Pool 5 is restricted to West 

Africa (serotypes O, A, SAT 1 and 2); Pool 6 includes serotypes SAT 1, 2 and 3 in 

Southern Africa; and pool 7 in South America (O and A) (Paton et al. 2009). Serotype C 

is not included in any of the pools since it has not been identified since 2004 (Sangula 

et al., 2011).  

Within each serotype, different topotypes exist in the respective areas, which are 

geographically distinct groups of FMDV isolates. For example in pool 4 (East Africa), at 

least 5 of the 7 serotypes are known to be in circulation. Within pool 4, serotype O 

comprises four different eastern African (EA) topotypes including EA-1, EA-2, EA-3 and 

EA-4, and serotype A includes lineages G-VII and G-I from the AFRICA topotype (Brito 

et al., 2015). Notably, the latter was identified in Tanzania in 2014, but had not been 

detected for over 30 years previously (Kasanga et al., 2015). SAT 1 includes topotype 

IX and I (NWZ), and SAT 2 topotypes IV, XIII, and VII, with some of these topotypes 
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being detected for the first time in the past ten years (Legesse et al., 2013; Brito et al., 

2015). In the Middle East (pool 3) at least 3 of the 7 serotypes circulate, and again, 

several different topotypes also exist within these serotypes. These include but are not 

limited to: for serotype O: the PanAsia, PanAsia-2 and Ind-2001d lineages of the ME-SA 

topotype; for serotype A: the Iran-05, and Iran-96 lineages of the ASIA topotype and; 

for serotype ASIA 1: the Sindh-08 lineage of the ASIA topotype (Knowles and Samuel, 

2003; Knowles et al., 2016). 

Additionally, incursions of new serotypes and/or topotypes that are not normally 

found in that region frequently occur. Examples of such incursions include the 2015 

emergence of the A/ASIA/G-VII lineage (which is endemic in Indian sub-continent) into 

Saudi Arabia, Iran, Armenia, Israel, and Turkey (Bachanek-Bankowska et al., 2018), and 

the expansion of the distribution of the O/ME-SA/Ind-2001 lineage into the Middle 

East and North Africa since 2013 (Valdazo-González et al., 2014; Knowles et al., 2015). 

Additionally, the role of wildlife in maintaining circulation of different FMDV serotypes 

is unclear. For example, African buffalo (Syncerus caffer) are known to be maintenance 

hosts for serotypes SAT 1, SAT 2 and SAT 3 in East Africa, and may contribute to 

increasing the level of antigenic diversity, with the potential to trigger new outbreaks 

in livestock (Vosloo et al., 1996; Casey et al., 2013). Outbreaks are reported through 

observation of clinical animals and diagnosis either in country or by international 

reference laboratories. However, there is a need to obtain a more thorough 

understanding of the exact serotypes/topotypes circulating in a region, to better 

understand the complex epidemiology of FMDV to improve effective control of FMDV 

outbreaks in endemic areas (Picado et al., 2011; Kasanga et al., 2012; Kasanga et al., 

2015). 
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Figure 1.2 The geographical distribution of FMDV into the seven virus pools based on 
nucleotide sequence analyses, 2019. Colour coding displays the OIE FMD classification 
status of each country. (The extent of countries and zones without an official OIE status 
is not fully shown)(World Organisation for Animal Health (OIE), 2019). Courtesy of Dr 
Antonello Di Nardo (The Pirbright Institute, UK). 

 

1.2.4 Impact of FMD 

FMD has a large global impact of approximately US $11 billion (90% range: US $6.5 – 

21 billion). The consequences of outbreaks in FMD free countries and zones can result 

in losses of over US $1.5 billion per year (Reid et al., 2001; Knight-Jones and Rushton, 

2013; Hall et al., 2013). However, FMD has the most dramatic impact in endemic 

countries where approximately three-quarters of the world’s livestock population 

reside. These are often low and middle income countries that lack the resources and 

infrastructure to eliminate the disease, and therefore also pose a significant threat to 

disease-free countries (Knight-Jones and Rushton, 2013; Knight-Jones et al., 2016).  

 

1.2.4.1 Direct losses 

FMD costs are a result of direct losses and indirect losses. The direct impacts of FMD 

are not typically due to animal mortality which is generally low, but due to production 

losses. These may include, but are not limited to, the suppression of fertility and 

livestock growth rates, the utility of draught animals due to lameness, delay in the sale 

of livestock or their products, and a reduction in milk yield (discussed further in section 
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1.5.4), which affects consumption for both calves and humans (Rufael et al., 2008; 

Knight-Jones and Rushton, 2013; Young et al., 2013; Ansari-Lari et al., 2017; Chaters et 

al., 2018).  

 

1.2.4.2 Indirect losses 

Indirect losses are due to the reaction to disease and include additional costs, forgone 

earnings and wider consequences. Additional costs may include control measures such 

as vaccination and culling, movement and trade restrictions, surveillance and the cost 

of diagnostic tests (Knight-Jones and Rushton, 2013; Robinson et al., 2011). For 

example, the UK 2001 outbreak resulted in losses of over £8 billion, and other than 

over £1.3 billion for additional costs, included £4.5-£5.4 billion in foregone tourism 

revenue and £1.4 billion in compensation to farmers (House of Commons, 2002; 

Knight-Jones and Rushton, 2013). In FMD endemic regions, the application of control 

measures may also have negative consequences such as the construction of fences that 

may damage wildlife habitats and behaviours. Additionally, if control measures are not 

effective, farmers may lose trust and become reluctant to comply in the future (Knight-

Jones et al., 2016). Even in FMD free regions, costs are still incurred to maintain this 

free status, including potential vaccination schemes, import controls to prevent new 

disease introductions, maintenance of vaccine banks and supporting scientific research 

(Knight-Jones and Rushton, 2013). 
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1.3 Control of foot-and-mouth disease  

1.3.1 Epidemiological patterns of FMD 

Foot-and-mouth disease is not evenly distributed around the world. It is prevalent in 

most developing countries, and circulates in approximately 77% of the global livestock 

population (Rushton et al., 2012). To date FMD has been observed in every region of 

the world known to contain livestock, apart from New Zealand (Poonsuk et al., 2018).  

The World Organisation for Animal Health (OIE) has classified FMD as a listed disease 

according to the Terrestrial Animal Health Code (OIE, 2019a). Consequently countries 

are listed according to their official FMD status into either: (i) FMD-free country or zone 

without vaccination (NV); (ii) FMD-free country or zone with vaccination (WV); or (iii) 

FMD endemic (see Figure 1.2). Any unclassified member state is assumed to be 

endemic. Member countries can apply for disease-free status by providing evidence 

that FMD has been eliminated for at least 12 months (OIE, 2019a).  

Currently, 68 countries are classified as FMD free without vaccination, and 2 countries 

as FMD free with vaccination. Additionally, some countries have FMD free zones, but 

they are yet to provide evidence for virus elimination throughout the whole country. 

Often the country may also have zones with different classifications, i.e. some zones 

free WV and some free NV, for example in Argentina and Brazil (OIE, 2019b).  

 

1.3.2 Control measures 

Effective control strategies are imperative if the burden of disease is to be reduced, or 

if disease-free status is desired. Control measures can include vaccination, culling, 

restriction of animal movements, and removing contact of livestock with potentially 

infectious wildlife such as African buffalo (Syncerus caffer) (Rweyemamu, 1984; Paton 

et al., 2009; Picado et al., 2011; Kasanga et al., 2012; Namatovu et al., 2013). 

Implementation of the most effective control measures may be challenging due to 

variations in global livestock management practices, and consequently different 

regions require a tailored approach. For example, movement restrictions are difficult 

to enforce in areas where livestock management practices are based on pastoralism, 

such as in East Africa (Di Nardo et al., 2011; Brito et al., 2015).  
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Several types of FMD vaccines exist. Conventional inactivated vaccines are the most 

commonly used, and are produced by amplifying the live virus of interest on baby 

hamster kidney-21 (BHK-21) cells, then inactivating the amplified virus with binary 

ethyleneimine (BEI) to remove non-structural proteins (NSP). An appropriate oil-

based adjuvant or aqueous-based adjuvant such as aluminium hydroxide/saponin is 

also added. These vaccines vary in potency, they are normally either 3 or 6 times the 

50% protective dose (PD50), and can be prepared against one, or multiple 

serotypes/topotypes (Doel, 1996; Cao et al., 2016; Kamel et al., 2019). Although these 

vaccines can be highly efficacious, additional frequent boosters are required, and 

production requires expensive bio-containment facilities. Additionally, decreased 

vaccine efficacy may be impacted by low capsid stability which is reliant on the 

maintenance of a cold chain, low vaccine potency, incorrect dosing, and poorly purified 

vaccines (Parida, 2009; OIE, 2017a). To overcome some of these limitations, newer 

vaccine types have also been developed including live-attenuated, DNA, peptide and 

live viral vector vaccines. For example, most of these do not require biocontainment 

facilities for production, and are able to differentiate between infected and vaccinated 

animals, which can often be a problem with poorly purified inactivated vaccines 

(Kamel et al., 2019).   

However, although efficacious vaccines for FMD are available, many endemic countries 

do not have effective vaccination campaigns, due to a lack of incentives and resources, 

poor veterinary services or problems with cold chain maintenance (Smith et al., 2014). 

In many regions, it is also unclear exactly which serotypes/subtypes are circulating, 

with many exhibiting high antigenic variation (for example in pool 4), and the 

possibility of the emergence of new variant viruses. Additionally, infection or 

vaccination with one serotype/topotype may not protect against another (Parida, 

2009). Therefore there is a requirement for vaccine strains to be carefully selected 

based on epidemiological data collected from a region, and the ongoing monitoring of 

vaccine efficacy due to virus evolution. Also, even though vaccines may fully or partially 

protect animals from acute clinical infection, animals may still present mild or 

subclinical infection (no clinical signs), leading to an epidemiological threat from 

carrier animals (Hutber et al., 1999; Parida, 2009; Rodriguez and Gay, 2011; Lloyd-

Jones et al., 2017). 
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Effective control of FMD relies on successful co-operation between stakeholders 

including livestock owners, animal health workers, FMD experts and government 

personnel (Roberts and Fosgate, 2018). Additionally, thorough surveillance and 

accurate and timely identification of current and emerging field strains is required to 

better understand and predict patterns of viral circulation and to inform and improve 

vaccine selection, especially in endemic regions such as East Africa (Paton et al., 2009; 

Jamal and Belsham, 2013). This would allow a region to progress through the early 

stages of the Progressive Control Pathway for Foot and Mouth Disease (PCP-FMD) 

(Food and Agriculture Organization of the United Nations (FAO), 2011). This is a tool 

developed by the FAO to facilitate and assist FMD endemic countries to increase the 

level of FMD control so that countries/regions may apply for FMD free status, with or 

without vaccination, through a set of FMD control activity stages. These include active 

monitoring of virus circulation to understand the epidemiology of FMD, applying 

specific control measures in order to reduce the burden of FMD, and monitoring of 

outcomes (see Figure 1.3) (Food and Agriculture Organization (FAO), 2011; Jamal and 

Belsham, 2013). 

 

 

Figure 1.3 The Progressive Control Pathway for Foot-and-Mouth Disease (PCP-FMD). 
Adapted from the Food and Agriculture Organization (FAO) (2018). 
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1.4 Diagnosis of foot-and-mouth disease 

1.4.1 Clinical signs 

Diagnosis of FMD is primarily based on the observation of clinical signs. These become 

apparent after a short incubation period, typically between 2 – 6 days, and include a 

high temperature, excessive salivation, and the formation of vesicles on the oral 

mucosa, nose, teats, and the inter-digital spaces and coronary bands of the feet (Figure 

1.4). Additionally, there may be fever, depression, lameness, mastitis and reduced milk 

production. Pigs often suffer from severe clinical disease, while in small ruminants the 

signs are generally more subtle, or even unapparent (Alexandersen et al., 2003). The 

clinical signs of FMD are often indistinguishable from those of other vesicular diseases 

such as swine vesicular disease (SVD), vesicular stomatitis (VS), vesicular exanthema 

of swine, and the signs associated with Seneca Valley virus-1 infection (SVV-1) 

(Nardelli et al., 1968; Gelberg and Lewis, 1982; Rodriquez and Nichol, 1999; Singh et 

al., 2012). Therefore, rapid and accurate detection of disease is imperative to confirm 

the disease causing agent, and to initiate the implementation of control processes. Data 

collected from clinical samples may assist in evaluating the epidemiological situation 

of FMDV in a region, detecting the presence of virus, identifying circulating serotypes 

and variants within serotypes, identifying vaccine strain candidates, and monitoring 

the effectiveness of control strategies (Paton et al., 2009; Jamal and Belsham, 2013). 
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(A) (B) (C) 

   

(D) (E) (F) 

   
 

Figure 1.4 Clinical signs of foot-and-mouth disease, including excessive salivation (A), 
and vesicles on the gums (B), tongue (C), inter-digital spaces of the feet (D and E), and 
teats (F). Photographs taken by Bryony Armson. 

 

1.4.2 Sample collection 

A range of sample types may be collected for the diagnosis of FMD, with vesicular 

epithelium or fluid being favoured due to the high concentrations of virus, although are 

only available for collection during the acute stage of the disease (Figure 

1.5)(Alexandersen et al., 2001; Ferris et al., 2006). Therefore, alternatives are required 

when infection is present but lesion material cannot be collected, for example on 

suspected farms before clinical signs become apparent (‘pre-clinical’ stage), during 

convalescence, in mild cases such as in small ruminants, or in ‘sub-clinical’ cases where 

no lesions are apparent.  

Other sample types submitted to reference laboratories for confirmatory diagnostics 

include blood, oesophageal–pharyngeal (OP) fluid and oral, nasal or lesion swabs (OIE, 

2018). The detection of FMD virus in blood samples is limited to the acute viremia stage 

of disease, although FMDV-specific antibodies may be detected for much longer 

periods (>1 year)(Alexandersen et al., 2003; Elnekave et al., 2015). Additionally, FMD 
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virus/viral RNA may be detected in oral or lesion swabs for up to at least 14 days post 

infection (Alexandersen et al., 2003; Stenfeldt, Lohse and Belsham, 2013), and in 

‘carrier animals’, in OP fluid for up to 3 years in cattle (Stenfeldt et al., 2013) or 5 years 

in buffalo (Condy et al., 1985).  

 

Figure 1.5 Approximate clinical window of FMD virus detection from different sample 
types: oral swab (A), OP fluid (B), blood (C), and vesicular epithelium (D). Day 0 
indicates the day vesicular lesions are first noticed. Based on data from Alexandersen 
et al., 2003, King et al., 2012 and Stenfeldt et al., 2013. Oral swab photograph courtesy 
of Emma Howson, 2016.  

 

1.4.3 Laboratory diagnosis 

Clinical samples collected from suspect cases are usually transported for routine 

diagnostic testing to local laboratories or centralised reference laboratories containing 

high containment facilities that are equipped for handling infectious pathogens. In the 

laboratory, detection of current or previous FMDV infection can be carried out using 

virological, molecular and serological tests according to the OIE Terrestrial Manual 

(OIE, 2018) which are explained in further detail below.  

 

1.4.3.1 Detection of live FMD virus 

Conventional detection of live virus is by virus isolation (Snowdon, 1966), usually from 

vesicular epithelial tissue or fluid, although this method can be used with other sample 
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types. Briefly, the sample is removed from the transport media (ideally composed of 

equal amounts of glycerol and 0.04 M phosphate buffer to maintain a pH of 7.2 – 7.6), 

then a 10% epithelial suspension is prepared by grinding the sample with sterile sand 

in a pestle and mortar and clarified in a centrifuge. This suspension is inoculated onto 

a primary or established cell-line such as primary bovine (calf) thyroid (BTY) cells or 

IB-RS-2 cells respectively, and the cell cultures examined for cytopathic effect (CPE) for 

up to 96 hours (OIE, 2018). Other susceptible cell lines include Baby Hamster Kidney-

21 (BHK-21) cells, lamb kidney cells, swine kidney cells (SK6), fetal goat cells (ZZ-R) 

and bovine kidney cells (LFBK-αVβ6)(Kasza et al., 1972; Ferris et al., 2006; Brehm et al., 

2009; LaRocco et al., 2013). This method is highly sensitive, and the resulting cell 

culture isolates may be utilised further, for example for vaccine matching. However, 

testing by this method can take up to four days to report a result, and it does not 

provide a definitive diagnosis of FMD, as CPE may be caused by other vesicular viruses. 

Therefore, in order to confirm infection of the sample with FMDV, additional diagnostic 

tests are required, such as the detection of FMD virus genome by molecular methods. 

 

1.4.3.2 Detection of FMD virus genome 

Reverse transcription polymerase chain reaction (RT-PCR) assays have been 

developed with a much greater sensitivity, and detect viral genomes (or fragments) 

instead of intact viral antigens and/or live virus. This detection method can be used on 

several sample types, including those that may be partially degraded and no longer 

infectious. Additionally, they can be easily automated, and produce relatively rapid 

results (<4 hours) (Reid et al., 1998; Reid et al., 2003; Shaw et al., 2007).  

The viral RNA must be extracted from the sample so that it may be used as a template 

for the RT-PCR assay. Additionally, this process inactivates the potentially infected 

sample, and can remove potential PCR inhibitors, such as RNases, proteins and lipids 

from a wide range of sample types (Wilson, 1997). A number of methods have been 

evaluated for the extraction of FMDV RNA. Many commercial kits or reagents include a 

lysis solution that contains guanidine isothiocyanate, which disrupts the cells and cell 

components by denaturing proteins, whilst maintaining the integrity of the RNA. For 

example, the use of Trizol® reagent produces high yields of RNA (Simms et al., 1993), 
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however samples are extracted manually and this method requires the use of 

potentially dangerous chloroform. Consequently, safer, higher throughput protocols 

have more recently been employed, for example using magnetic bead-based kits such 

as the MagMAX™-96 Viral RNA Isolation Kit (Applied Biosystems™, UK), and the LSI 

MagVet™ Universal Isolation Kit (Thermo Fisher Scientific, Loughborough, UK). RNA 

extraction using these kits may be performed manually, or in combination with 

automated extraction robots such as the KingFisher magnetic particle processors 

(Thermo Fisher Scientific), allowing for the processing of up to 96 samples in under 30 

minutes (Figure 1.6). Alternatively, silica-based spin column kits such as the QIAamp 

Viral RNA Mini Kit (Qiagen, Germany) may also be used in combination with automated 

extraction robots, and use silica matrices to bind nucleic acid, however due to the 

potential for clogging the filter, only limited sample types can be processed with this 

method.  

 

 

Figure 1.6 Examples of automated RNA extraction and real-time RT-PCR technologies. 
For RNA extraction: (A) - The KingFisher magnetic particle processor (Thermo Fisher 
Scientific) and (B) - QIAcube Connect (Qiagen). For laboratory rRT-PCR: (C) - Applied 
Biosystems™ 7500 Fast Dx Real-Time PCR Instrument. rRT-PCR technology for field 
settings:  (D) - T-COR 8™ Real-time PCR Thermocycler (Tetracore, Inc) and (E) – Mic 
qPCR cycler (Bio Molecular Systems). 
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After the nucleic acid has been isolated from the sample, RT-PCR can be performed to 

determine the presence and quantity of FMDV RNA in the sample. Conventional RT-

PCR methods involve three separate steps:  (i) conversion of the RNA into single-

stranded complementary DNA (cDNA) using a reverse transcriptase enzyme, (ii) 

amplification of template cDNA by PCR and (iii) the examination of PCR product by 

agarose gel electrophoresis (Reid et al., 1998). The process of PCR involves the 

denaturation (melting) of the double stranded DNA into single strands by heat, to 

which two oligonucleotide primers are annealed that are complementary to sequences 

on the target gene. The presence of a thermostable enzyme (e.g. Taq DNA polymerase) 

allows extension of the primers in opposite directions by DNA synthesis. As these 

primers are located apart from each other on the target gene, two complementary 

strands are consequently generated. Repetition of this process results in an 

exponential increase in the number of copies of the specific nucleic acid (see Figure 

1.7) (Guatelli et al., 1989; Holland et al., 1991).     

More recent developments to reduce the number of user dependent steps has resulted 

in real-time (r), one-step fluorogenic RT-PCR assay procedures that can be automated, 

with an increased throughput of samples (Reid et al., 2003). These methods are 

modified versions of the RT-PCR process described above, which allow the results to 

be monitored in real-time. A number of different chemistries exist although the most 

commonly used for FMDV detection is the addition of a fluorogenic TaqMan® probe 

specific to the target gene that is dual-labelled with a reporter (e.g. FAM) and quencher 

dye (e.g TAMRA). During the extension phase of the PCR reaction, the Taq polymerase 

enzyme cleaves the probe by nuclease degradation, and fluorescence is emitted when 

the two dyes are physically separated (Figure 1.7) (Heid et al., 1996; Didenko, 2001; 

Johansson, 2006). The increase in fluorescence intensity is proportional to the number 

of copies of nucleic acid produced, and can be visualised using a number of systems 

including the Applied Biosystems™ 7500 Fast Dx Real-Time PCR Instrument (Figure 

1.6), the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories Ltd.), 

and the AriaMx qPCR System (Agilent Technologies Inc.). 

To ensure the detection of all serotypes/topotypes of FMDV by (r)RT-PCR, highly 

conserved regions of the genome must be targeted. Conventional and real-time RT-PCR 

assays have been developed using primers based on sequences from the 1D and 2A/2B 
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region (Amaral-Doel et al., 1993), the 3D polymerase (Callahan et al., 2002; Nishi et al., 

2019) and the internal ribosomal entry site located in the 5’untranslated region (UTR) 

(Reid et al., 2002) (see Figure 1.1). The 5’UTR and 3D FMDV rRT-PCR assays are 

recommended by the OIE, are highly specific, and are as sensitive as the ‘gold standard’ 

method of virus isolation in cell culture (Shaw et al., 2004; OIE, 2018).  

 

  

Figure 1.7 Schematic of the real-time polymerase chain reaction (PCR) process. (1-2): 
double stranded DNA is denatured into 2 separate strands by heat. (2-3): The forward 
primer (FP), reverse primer (RP) and fluorogenic probe (P) are annealed to the 
template. (4): primer extension causes physical separation of the reporter (R) and 
quencher (Q) dyes on the probe causing fluorescence to be emitted. (5): after primer 
extension there are 2 sets of double stranded DNA and the process begins again with 
an exponential increase in the number of copies of specific nucleic acid. Figure adapted 
from Guatelli, Gingeras and Richman (1989) and the ThermoFisher Scientific website. 
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1.4.3.3 Identification of the FMDV serotype/strain  

Identification of the serotype responsible for a particular outbreak is of the utmost 

importance to inform vaccine selection and for tracing outbreaks. The antigen 

detection ELISA (enzyme-linked immunosorbent assay) (Ferris and Dawson, 1988) 

can identify the serotype of the causal FMDV and can be performed in 4-5 hours. 

However, the analytical sensitivity is often limited, and the test is only suitable for 

epithelium tissue/fluid and cell culture derived FMDV material. With the advent of 

molecular technology, various authors have demonstrated the utility of typing of FMDV 

by conventional RT-PCR assays (Callens and De Clercq, 1997; Giridharan et al., 2005; 

Bao et al., 2008; Saeed et al., 2011; Liu et al., 2018). However, due to the heterogeneity 

of FMDVs in different areas of the world, assays tailored to circulating virus strains are 

required (Jamal and Belsham, 2015). Recently, rRT-PCR assays for the detection of 

strains specific to a particular region, for example the Middle East (Reid et al., 2014; 

Knowles et al., 2015; Saduakassova et al., 2017), West Eurasia (Jamal and Belsham, 

2015), North (Ahmed et al., 2012) and East Africa (Bachanek-Bankowska et al., 2016) 

have been developed. Most of these characterisation rRT-PCR assays are designed to 

target the VP1 coding region, as it is the least conserved region of the FMDV genome, 

with a high degree of sequence variation (Baxt et al., 1984; Wittwer and City, 1989; 

Jamal and Belsham, 2013). In order for these to be continually sensitive and specific, 

sequences of circulating strains must be assessed and if necessary, primer sets adapted 

(Jamal and Belsham, 2015; Bachanek-Bankowska et al., 2016). 

 

1.4.3.4 Virus sequencing 

Nucleotide sequence analysis is also used for the characterisation of circulating FMDV 

strains. Most of the nucleotide sequences of FMDV published are of the VP1 coding 

region using Sanger sequencing (Sanger et al., 1977). VP1 sequencing is frequently 

used to deduce evolutionary dynamics, genetic and epidemiological relationships, in 

the tracing of outbreaks and monitoring the transboundary movements of the disease 

(Wittwer and City, 1989; Marquardt and Adam, 1990; Knowles and Samuel, 2003; 

Kasambula et al., 2012; Logan et al., 2014). However, the VP1 region represents less 

than ten percent of the full genome (i.e., 639/8300 nucleotides), and can only identify 
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the predominant consensus sequence (Cottam et al., 2008; Logan et al., 2014). With 

recent technological advances, whole genome sequencing (WGS) has become much 

more accessible and has been used for high resolution molecular epidemiological 

studies, such as investigating the transmission pathways of the 2007 UK FMDV 

epidemic (Cottam et al., 2008). WGS tools have been refined with the development of 

next-generation sequencing (NGS) (Marston et al., 2013; Gilchrist et al., 2015). 

Recently, a NGS protocol has been adapted to sequencing the whole genome of FMDV 

(Logan et al., 2014). NGS offers a rapid, robust, and high throughput method for the 

generation of high resolution viral genome sequences enabling the identification of 

minority variants (viral swarm structure) beyond the consensus level of which would 

usually only identify the most frequently appearing strains (Wright et al., 2011; Orton 

et al., 2013; Logan et al., 2014; King et al., 2016).  

 

1.4.3.5 Detection of FMDV antibody 

Natural infection induces antibodies to both FMD viral structural proteins (SP) and 

non-structural proteins (NSP) (Paton et al., 2009; Sørensen et al., 1998), and these can 

be detected using serological tests. The virus neutralisation test (VNT) (Karber, 1931) 

and the liquid phase blocking ELISA (LPBE) (Hamblin et al., 1986) can detect serotype 

specific anti-SP antibodies. However, the VNT takes several days to perform, and 

requires the use of live virus and therefore must be carried out in specialised 

biocontainment laboratories.  

Vaccination however, induces only anti-SP antibodies (providing the vaccines in use 

are purified to remove NSPs) and therefore tests which can detect anti-NSP antibodies 

can be used as differentiation of infected from vaccinated animals (DIVA) tests (Shen 

et al., 1999; Paton et al., 2006; Uttenthal et al., 2010). Tests based on anti-NSP 

antibodies can detect infection with all serotypes, however they are unable to identify 

with which serotype/topotype the animal has been infected with, due to the conserved 

nature of the NSP coding region (Grubman and Baxt, 2004). Additionally, many regions 

use poorly purified vaccines that may still contain NSP, and so differentiation is not so 

effective. Anti-NSP antibodies may persist for a long time (Elnekave et al., 2015), and 

as anti-NSP antibody ELISA testing is inherently retrospective these tests can therefore 
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only identify whether the animal has previously been infected with FMDV. 

Consequently, unlike virological methods, serological tests are unable to determine the 

current infectious status of an animal.  

 

1.4.4 Methods to reduce time to result for FMD diagnosis  

Rapid and accurate diagnosis is essential for surveillance and effective control of FMD. 

Although the more recently developed laboratory methodologies described above have 

been designed to reduce the time to result and minimise user intervention, samples 

from suspect cases still need to be transported to centralised reference laboratories for 

routine testing, as many countries lack the infrastructure to be able to carry out their 

own diagnosis (Fowler et al., 2014; Niedbalski, 2016; Howson et al., 2017). Transport 

of samples to these centralised facilities often involves lengthy travel times, including 

costly international shipments which can delay result reporting and critical decision 

making for days or even weeks after clinical signs have been observed. Also, transport 

times mean that results may not only be delayed, but also not as reliable if sample 

degradation could have taken place if a cold chain was not maintained (Fowler et al., 

2014; Howson et al., 2017).  

To overcome these difficulties, simple to use technologies that can be deployed either 

in the field or in local laboratories exist so that countries are able to improve their 

capacity for surveillance. Various portable platforms have been developed to enable 

local FMDV detection including the lateral-flow device (LFD)(Ferris et al., 2009) and 

closed tube tests that have been adapted for the use of thermostable lyophilised 

reagents such as the Enigma® Field Laboratory (FL) (Madi et al., 2012; Howson et al., 

2017), and the T-COR 8™ (Tetracore, Inc)(Howson et al., 2018) (see Figure 1.6). 

Furthermore, serotype specific assays have been adapted for use with some of these 

technologies, allowing for rapid identification of the serotype either in local 

laboratories or at the point of sample collection (Chen et al., 2011; Howson et al., 2018). 
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1.5 FMD surveillance 

1.5.1 Limitations of established FMD surveillance systems 

Surveillance activities are designed to improve the epidemiological understanding of 

disease in a population of interest, and can be useful for informing disease prevention 

and control strategies (Falzon et al., 2019). In order to improve knowledge of the 

epidemiology of FMD in endemic regions, efficient, cost-effective surveillance systems 

are essential. Data collected through passive surveillance from clinical samples may 

assist in evaluating the epidemiological situation of FMDV in a region (Paton et al., 

2009; Jamal and Belsham, 2013). However, although approximately 77% of the global 

FMD susceptible livestock population reside in FMD endemic regions (e.g. see Figure 

1.8 for the global distribution of cattle), few clinical samples are sent to national 

reference laboratories for diagnostic testing (Rushton et al., 2012; Namatovu et al., 

2013; Robinson et al., 2014). For example in 2018, only 442 clinical samples from 25 

countries were received in the WRLFMD for FMD diagnosis (see Table 1.1), yet it is 

estimated that FMD affects 32 million livestock units (LSU), although it could be up to 

79 million, globally per year (1 LSU = 1 cow, 3.3 pigs, or 10 sheep or goats) (Sumption 

et al., 2008; Knight-Jones and Rushton, 2013). Consequently it is evident that an 

incomplete global picture of the epidemiology of the disease exists based on 

established surveillance methods. 

 
Figure 1.8 The global distribution of cattle. Reproduced from Robinson et al. (2014). 
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Table 1.1 Summary of samples collected and received to WRLFMD (January to 
December 2018). Adapted from WRLFMD (2018a, 2018b, 2018c, 2018d) 

Country 
Number 

of 
samples 

Virus isolation/ELISA 

O A C SAT 1 SAT 2 SAT 3 ASIA 1 NVD* 

Hong Kong SAR of 
PRC 

27 7 - - - - - - 16 

Israel 14 8 6 - - - - - - 

Kenya 28 6 3 - 1 1 - - 17 

Mongolia 24 17 1 - - - - - 7 

Nepal 18 3 - - - - - 8 7 

Palestinian 
Autonomous 
Territories 

12 12 - - - - - - - 

Swaziland 3 - - - - - - - 3 

Afghanistan 22 3 1 - - - - 1 17 

Bhutan 11 4 3 - - - - - 4 

Ethiopia 28 11 7 - - 1 - - 9 

Iran 25 11 9 - - - - 4 1 

South Korea 5 - 2 - - - - - 3 

Sri Lanka 16 9 - - - - - - 7 

Vietnam 40 20 13 - - - - - 7 

Zambia 3 3 - - - - - - - 

Algeria 2 2 - - - - - - - 

Malaysia 12 11 - - - - - - 1 

South Sudan 29 - - - - - - - 29 

Sudan 38 6 13 - - 5 - - 14 

Burkina Faso 18 7 - - - - - - 11 

Gambia 2 2 - - - - - - - 

Laos 1 - - - - - - - 1 

Senegal 11 6 - - - - - - 5 

Sierra Leone 34 - - - - - - - 34 

Thailand 19 8 8 - - - - - 3 

TOTAL 442 156 66 0 1 7 0 13 196 

*NVD: no virus detected 

 

Conventional surveillance often relies on the recognition and reporting of obvious 

clinical cases by farmers, livestock workers or animal health service providers (Bates 

et al., 2003; Picado et al., 2011; Machira and Kitala, 2017). In areas where FMD is 

common, farmers may be able to easily identify the disease based on clinical 

presentation (Nyaguthii et al., 2019), and this has been shown to be comparable to the 

results of serological testing (Morgan et al., 2014).  
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Although passive surveillance is valuable, there are several limitations to this 

approach. For example, it is possible that farmers may not observe or correctly identify 

FMD, especially where clinical signs are mild (Knight-Jones et al., 2014), or in regions 

where FMD is uncommon. Furthermore, even when farmers identify FMD, they may 

not view it as serious enough to report to veterinary services, or may be deterred due 

to the repercussions of imposed control measures, as has also been observed for other 

diseases (Falzon et al., 2019). Moreover, where outbreaks are reported, extensive 

spread of the disease may have occurred between noticing the disease and actual 

reporting (Vosloo et al., 2002; Knight-Jones et al., 2016). As a consequence FMD is often 

under-reported, and it is difficult to determine the true incidence of the disease. 

Passive surveillance activities may be supplemented by targeted case finding activities, 

but these may be infrequent due to the costs and labour involved (Hadorn and Stärk, 

2008; Kasanga et al., 2012). Alternative risk-based surveillance methods such as 

serological surveys can provide valuable information by identifying the presence of 

unreported infection (Caporale et al., 2012; Hoinville et al., 2013; Dhikusooka et al., 

2016). Many studies have used the detection of NSP antibodies in serum samples for 

FMD surveillance (Kibore et al., 2013; Ehizibolo et al., 2014; Lyons et al., 2017; Souley 

Kouato et al., 2018), however due to the length of time that NSP antibodies may persist 

in the blood, these tests are unable to identify when exposure occurred (Elnekave et 

al., 2015), although stratifying animals into age groups and performing expensive 

longitudinal studies with frequent testing intervals may improve accuracy (Bertram et 

al., 2018; Farooq et al., 2018). Additionally NSP antibody tests are unable to identify 

the causal viral lineage, are time consuming, labour-intensive and expensive to 

perform, and they may be influenced by the use of non-NSP purified vaccines (Lee et 

al., 2006; Caporale et al., 2012). 

Additionally, the capacity for undertaking outbreak investigation and collection of 

clinical specimens in resource-limited countries is often restricted (Kasanga et al., 

2012; Namatovu et al., 2013). Even when samples are collected from suspect cases, the 

insufficient maintenance of a cold chain during sample transport, and/or poor quality 

sample laboratory storage due to failures in power supply, may lead to sample 

degradation and therefore potentially false negative test results (Vosloo et al., 2002; 

Namatovu et al., 2013; Zinsstag et al., 2016).  
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When outbreaks are reported and clinical samples collected, the recommended sample 

types submitted to laboratories for FMD diagnosis are epithelial tissue or fluid in 

vesicular lesions from acutely diseased animals, although blood and OP fluid are often 

received (King et al., 2006; OIE, 2018). Consequently, the majority of samples are taken 

from animals with recognisable clinical signs often at a single time point. This may 

result in sampling bias towards visibly clinically infected animals, in comparison to 

sub-clinically infected animals (such as vaccinated herds), although the role of 

subclinical infection in disease transmission is still to be elucidated (Sutmoller and 

Casas, 2002).  

 

1.5.2 Reducing sampling bias 

In order to reduce sampling bias, methods for sample collection using alternative 

sample types at points other than during the acute stage of disease have also been 

explored. For example, FMDV RNA has been detected in saliva and nasal swabs, and air 

samples before clinical signs became apparent (Alexandersen et al., 2003; Marquardt 

et al., 1995; Nelson et al., 2017; Stenfeldt et al., 2013). This may enhance early detection 

so that control measures may be put in place, if resources allow, before extensive 

spread of the disease may occur (Charleston et al., 2011; Nelson et al., 2017). The 

Chinese national surveillance program has also successfully identified FMDV in lymph 

node samples at slaughter (OIE, 2017b). Detection of FMDV has also been 

demonstrated in nasal fluid, saliva and OP fluid during late-stage infection (Stenfeldt et 

al., 2013; Parthiban et al., 2015), and in OP fluid in persistently infected (carrier) 

animals (Stenfeldt et al., 2013; Lohse et al., 2018). Surveillance of animals using this 

method may facilitate the clarification of freedom from disease in a herd or region, and 

may identify the likelihood of onward transmission (Caporale et al., 2012; Parthiban et 

al., 2015). Detection of virus at these late stages may identify infected animals that were 

previously overlooked due to mild clinical signs, or sub-clinical infection.   
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1.5.3 Detection of sub-clinical FMD infection 

Several studies have identified the presence of FMDV RNA in sub-clinically infected 

animals, including cattle (Bertram et al., 2018; Hayer et al., 2018), Asian water buffalo 

(Bubalus bubalis) (Farooq et al., 2018) and African buffalo (Syncerus caffer) (Vosloo et 

al., 2007; Wekesa et al., 2015; Dhikusooka et al., 2016; Maree et al., 2016), although the 

proportion of animals affected is unknown. Additionally, the occurrence of sub-clinical 

FMDV infection in vaccinated animals has also been reported (Hafez et al., 1994; 

Hutber et al., 1999; Lyons et al., 2017; Hayer et al., 2018; Stenfeldt et al., 2018), and 

that newly infected sub-clinical animals may shed considerable amounts of infectious 

FMDV, despite no manifestation of clinical signs (Stenfeldt et al., 2015). Consequently, 

this information may affect control policies where vaccination is practiced, if FMDV can 

continue to circulate sub-clinically. Although the detection of NSP antibodies is a 

valuable tool in the identification of sub-clinical animals (Lyons et al., 2017; Farooq et 

al., 2018), previous infection of subject animals must be ruled out, which may involve 

costly longitudinal studies. Consequently, most studies have used the detection of 

FMDV in OP fluid to identify sub-clinically infected animals. This method however, 

must be performed by a trained individual, is labour intensive, and highly invasive for 

the animal (Kitching, 2002; Stenfeldt et al., 2013). Additionally, OP fluid samples are 

less likely to be collected from smaller animals such as sheep and goats, due to the 

invasive nature of the technique and the different sizes of instrumentation required.   

The potential risk and significance for FMD epidemiology from sub-clinically infected 

animals is not fully understood. Further studies focussing on the detection of natural 

sub-clinical infection utilising novel surveillance strategies may reduce the bias 

observed with conventional surveillance methods and facilitate improved knowledge 

on viral prevalence, dynamics and the emergence of new lineages  (Hutber et al., 1999; 

Sutmoller and Casas, 2002; Farooq et al., 2018; Stenfeldt et al., 2018).  
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1.6 Milk 

Milk is a non-invasive sample type, collected from lactating cattle on a daily basis, and 

has the advantage that both FMD virus and antibodies can be detected (Blackwell and 

McKercher, 1982; Armstrong, 1997). Milk has been utilised for the detection of several 

pathogens and the antibodies raised against them, including Brucella spp. (Vanzini et 

al., 1998; Hamdy and Amin, 2002), bovine viral diarrhoea virus (BVDV) (Drew et al., 

1999; Renshaw et al., 2000a; Hill et al., 2010), Schmallenberg virus (Daly et al., 2015), 

Coxiella burnetti  (Kim et al., 2005), bovine respiratory syncytial virus (Elvander et al., 

1995), and Neospora caninum (González-Warleta et al., 2011). Furthermore, the use of 

pooled milk samples from individual animals, or collecting samples of milk from a bulk 

tank or milk line enables a cost-effective surveillance approach which has been 

validated for the routine surveillance of diseases such as brucellosis (DEFRA, 2015a) 

and mastitis caused by Mycoplasma spp. (APHIS, 2008).  

An example of using pooled milk in a national surveillance system is for brucellosis in 

the United Kingdom (U.K.). The Brucellosis (England) Order 2000 (DEFRA, 2015a) 

aims to maintain the ’Officially Brucellosis Free’ status by ensuring animals are free 

from infection. This programme involves the submission of quarterly bulk milk 

samples from commercial dairy farms to the Animal and Plant Health Agency (APHA) 

for testing by the Brucellosis Bulk Milk ELISA (DEFRA, 2015b; Musallam et al., 2017). 

This method is non-invasive, involving milk already collected and destined for 

consumption, and therefore is more cost-effective than the serological sampling of 

individual animals (Rolfe and Sykes, 1987). 

Additionally, many studies have investigated the surveillance of bovine viral diarrhoea 

virus using pooled milk samples (Niskanen et al., 1991; Paton et al., 1998; Kuijk et al., 

2008, among others), determining this method to be useful for cost-effective 

surveillance. Consequently, as a part of the BVDFree Scheme in the U.K. (BVDFree, 

2019), bulk milk samples are collected from dairy farms, and sent to various 

laboratories for either antibody or virus detection by ELISA and RT-PCR respectively. 

This scheme identifies infected herds so that control measures may be implemented, 

with the aim of eliminating BVDV from all cattle by 2022.  
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It is hypothesised that similar schemes could be designed for FMD surveillance in 

endemic regions or during outbreak scenarios in FMD free countries. However, unlike 

infection with BVDV, in which animals may become persistently infected and shed 

large amounts of virus throughout their lifetime (Brock et al., 1998), FMD infection is 

generally not maintained within an individual or herd for long periods, other than in 

OP fluid (Stenfeldt et al., 2013), which requires invasive sampling. Consequently, the 

window of detection for cost-effective FMD surveillance is much smaller than that of 

BVDV. The potential of milk as a suitable sample type for FMD surveillance is discussed 

in more detail below. 

 

1.6.1 Detection of FMDV in milk 

Experimental inoculation of the mammary gland with FMDV has shown that it is an 

organ that is highly susceptible to viral replication (Burrows et al., 1971), and that virus 

is readily excreted in the milk of infected animals (Lebailly, 1920; Terbruggen, 1932; 

Burrows, 1968). After experimental infection of dairy cattle with FMDV, live virus has 

been detected in milk by virus isolation and plaque assay before the appearance of 

clinical signs (Burrows, 1968; Hedger and Dawson, 1970; Blackwell and McKercher, 

1982). Live FMDV was also detected up to 51 days post-infection (Burrows et al., 1971), 

although this experiment involved inoculation of virus directly into the udder, which is 

unlikely to be a natural route of infection. Additionally, experiments have inoculated 

FMDV infected milk into various animals such as suckling mice, guinea pigs and calves 

(Sellers, 1969; Felkai et al., 1970) to determine virus infectivity and the onward risk of 

transmission with similar limitations from the unnatural inoculation routes. 

Nevertheless, these experiments demonstrate the possible extended excretion periods 

of virus into milk, when compared to other sample types such as serum and vesicular 

epithelium, and highlight the potential risk of infected milk for virus transmission.  
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1.6.2 Detection of FMDV RNA in milk 

With a transition towards rapid, automated and high-throughput diagnostic methods, 

it has also been demonstrated that FMDV RNA can be detected in the milk of infected 

animals by real-time RT-PCR (Reid et al., 2006; Ahmed et al., 2017), multiplex PCR and 

RT-LAMP (Ranjan et al., 2016). A study by Reid et al. (2006) showed that after lactating 

cattle were kept in direct contact with experimentally infected lactating cattle to 

simulate a natural route of infection, virus was detected in milk by rRT-PCR for a longer 

time period than by conventional virus isolation methods. In some of the animals, 

FMDV RNA was detected before the appearance of clinical signs, and up to 23 days post 

infection in milk from the inoculated cattle. Additionally, in a study by Ahmed et al., 

(2017) FMDV RNA could be detected by rRT-PCR in the milk of apparently healthy NSP 

positive vaccinated Asian water buffaloes (Bubalus bubalis), suggesting the presence of 

sub-clinical infection in this species.  

Serotype identification of FMDV in milk samples has also been demonstrated by 

molecular methods (Saeed et al., 2011; Ahmed et al., 2017). Furthermore, Saeed et al. 

(2011) reported successful FMDV sequence analysis of milk collected from acutely 

infected animals, and studies on different viruses support the potential of obtaining 

sequence data from milk samples, for example vaccinia virus in milk from dairy cattle 

(Abrahão et al., 2009) and human immunodeficiency virus from human breast milk 

(Salazar-Gonzalez et al., 2011).   

 

1.6.3 Detection of FMD antibodies in milk 

It has also been demonstrated that antibodies to FMDV can be detected in cattle milk, 

from 7 days post infection and up to 12 months post vaccination (Stone and DeLay, 

1960). Antibodies to FMDV in milk samples have been detected using a liquid-phase 

blocking ELISA (LPBE) and a specific isotype assay (SIA) for bovine Immunoglobulin G, 

(Armstrong, 1997; Armstrong et al., 2000), and the authors hypothesised that both of 

these tests could be applied in surveillance schemes to identify exposed cattle/herds. 

A significant correlation between antibody levels in serum and milk has also been 

observed (Armstrong and Mathew, 2001; Fayed et al., 2013) and it has been 
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hypothesised that milk collected from infected cattle may contain higher levels of 

virus-specific antibody than serum, as serum antibody is concentrated into mammary 

secretions (Stone and DeLay, 1960). However in a study using milk from Asian 

buffaloes, Yadav et al. (2007) observed lower levels of FMDV-specific antibodies than 

in serum. Nonetheless, milk could be a useful alternative sample type to blood for 

surveillance or post-vaccination monitoring (Fayed et al., 2013), to complement 

current systems. 

 

1.6.4 The impact of FMDV infection on milk yield 

For milk to comprise a suitable sample type for FMD surveillance, it is important to 

have confidence that the ability to collect this sample is not affected by disease 

presence. Many studies document a reduction in milk yield during FMDV infection (see 

Table 1.2)(James and Rushton, 2002; Senturk and Yalcin, 2005; Knight-Jones and 

Rushton, 2013; Jemberu et al., 2014; Casey-Bryars et al., 2018). Interestingly, local 

breeds were estimated to have significantly smaller losses than Holstein dairy cattle 

(Senturk and Yalcin, 2005). These studies report highly variable losses although are all 

estimates based on farm surveys or expert opinion with relatively few empirical 

studies quantifying the reduction in milk output (see Table 1.2). One such example is 

from a longitudinal study in Pakistan carried out by Ferrari et al., (2014) that 

demonstrated a significant reduction in milk yield from individual cattle and buffaloes 

in the 60 days following the onset of acute clinical FMD. Additionally, Ansari-Lari et al., 

(2017) demonstrated a significant decline in individual daily milk production after an 

FMD outbreak compared to before the outbreak, although the drop was small (up to 

8% over a 42 day outbreak period). Furthermore, Lyons et al., (2015) aimed to quantify 

objectively the impact of FMD in milk yields. During an outbreak of FMDV SAT 2 on a 

large scale dairy farm housing mainly European breed cattle in Kenya, they observed 

that although there was up to an approximate 35% decrease in milk production at the 

herd level, no statistical evidence was found to indicate a significant decrease in milk 

yield between FMD clinical animals and non-clinical cases (Lyons et al., 2015).  

Interestingly, reports to date on the effect of FMDV infection on milk yield based on 

empirical data do not specify a complete cessation of milk production at any time. This 
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demonstrates the potential availability of milk as a diagnostic sample type during 

infection, as it is expected that it would still be possible to collect milk from individual 

lactating cows before, during and after FMD infection. However, factors such as the 

development of clinical mastitis as a result of vesicular lesions on the teats (Kitching, 

2002; Sharma, 2010; Lyons et al., 2015), may mean that milk from this animal is not 

contributed for herd level milk sampling. 

(Power and Harris, 1973; Kazimi and Shah, 1980; Chowdhury et al., 1993; Saxena, 

1994; Barasa et al., 2008; Mazengia et al., 2010; Bayissa et al., 2011; Onono et al., 2013; 

Ali et al., 2017) 

 

 

 



Chapter 1 

 

30 

 

 

R
ef

er
e

n
ce

P
o

w
er

 a
n

d
 H

ar
ri

s 
(1

9
7

3
)

K
az

im
i a

n
d

 S
h

ah
 (

1
9

8
0

)

C
h

o
w

d
h

u
ry

 e
t 

a
l.

 (
1

9
9

3
)

Sa
xe

n
a 

(1
9

9
4

)

Se
n

tu
rk

 a
n

d
 Y

al
ci

n
 (

2
0

0
5

)

B
ar

a
sa

 e
t 

a
l.

 (
2

0
0

8
)

M
az

en
gi

a 
et

 a
l.

 (
2

0
1

0
)

B
ay

is
sa

 e
t 

a
l.

 (
2

0
1

1
)

O
n

o
n

o
, W

ie
la

n
d

 a
n

d
 

R
u

sh
to

n
 (

2
0

1
3

)

E
st

im
at

ed
 m

il
k

 y
ie

ld
 lo

ss

2
5

%
 in

 f
ir

st
 f

o
u

r 
y

ea
rs

 n
at

io
n

al
ly

 a
ft

er
 i

n
cu

rs
io

n
 in

to
 

F
M

D
 f

re
e 

U
K

; 1
2

.5
%

 t
h

er
e

af
te

r 
if

 b
ec

o
m

es
 e

n
d

em
ic

7
4

.4
 li

tr
e

s 
o

f 
m

il
k

 lo
st

 p
er

 a
ff

ec
te

d
 la

ct
at

io
n

6
6

%
 r

e
d

u
ct

io
n

 in
 a

v
er

a
ge

 d
ai

ly
 y

ie
ld

1
4

–
1

9
%

 r
e

d
u

ct
io

n
 in

 t
h

e 
an

n
u

al
 y

ie
ld

 o
f 

an
 a

ff
ec

te
d

 

an
im

al

2
2

%
 a

n
d

 1
0

%
 m

il
k

 y
ie

ld
 lo

ss
 in

 c
u

rr
en

t 
la

ct
at

io
n

 f
o

r 

H
o

ls
te

in
 F

ri
es

ia
n

 a
n

d
 lo

ca
l b

re
ed

s,
 r

e
sp

ec
ti

v
el

y

6
2

%
 r

e
d

u
ct

io
n

 w
h

il
e 

si
ck

. A
v

er
a

ge
 1

4
 d

ay
 il

ln
es

s.
 

M
ea

n
 d

ai
ly

 lo
ss

 1
.6

 li
tr

e
s 

p
er

 c
o

w
 c

o
m

p
ar

e
d

 t
o

 n
o

rm
al

 

2
.6

 li
tr

e
s

5
0

%
 o

f 
p

re
-o

u
tb

re
ak

 le
v

el

A
cu

te
 p

h
as

e:
 1

.3
7

 li
tr

e
s/

co
w

/d
ay

 f
o

r 
av

er
a

ge
 2

5
.5

 

d
ay

s 
(7

3
.3

%
 r

e
d

u
ct

io
n

 w
h

il
e 

si
ck

; 7
.7

%
 r

e
d

u
ct

io
n

 p
er

 

la
ct

at
io

n
).

 C
h

ro
n

ic
 p

h
as

e:
 0

.6
7

 li
tr

e
s/

co
w

/d
ay

 f
o

r 
3

.8
 

m
o

n
th

s 
(7

8
%

 r
e

d
u

ct
io

n
 p

er
 l

ac
ta

ti
o

n
)

5
3

%
 r

e
d

u
ct

io
n

 in
 a

 h
er

d
 d

u
ri

n
g 

o
u

tb
re

ak
 p

er
io

d

T
y

p
e 

o
f 

st
u

d
y

E
xp

er
t 

o
p

in
io

n

L
o

n
gi

tu
d

in
al

P
o

st
-o

u
tb

re
ak

 f
ar

m
 s

u
rv

ey
s

P
o

st
-o

u
tb

re
ak

 f
ar

m
 s

u
rv

ey
s

E
xp

er
t 

o
p

in
io

n

P
o

st
-o

u
tb

re
ak

 in
te

rv
ie

w
s 

(P
ar

ti
ci

p
at

o
ry

 e
p

id
em

io
lo

gy
 

m
et

h
o

d
o

lo
gy

)

L
o

n
gi

tu
d

in
al

P
o

st
-o

u
tb

re
ak

 f
ar

m
 s

u
rv

ey
s

F
ar

m
er

 s
u

rv
ey

s 

(P
ar

ti
ci

p
at

o
ry

 e
p

id
em

io
lo

gy
 

m
et

h
o

d
o

lo
gy

)

B
re

ed

N
o

t 
sp

ec
if

ie
d

Sa
h

iw
al

N
o

t 
sp

ec
if

ie
d

In
d

ig
en

o
u

s 
an

d
 

cr
o

ss
-b

re
ed

H
o

ls
te

in
-F

ri
es

an

In
d

ig
in

o
u

s

F
o

ge
ra

B
o

ra
n

a

In
d

ig
en

o
u

s

F
ar

m
in

g 
sy

st
em

U
K

 b
as

ed
 d

ai
ry

 

fa
rm

s

L
ar

g
e-

sc
al

e

N
o

t 
sp

ec
if

ie
d

Sm
al

lh
o

ld
er

T
u

rk
is

h
 d

ai
ry

 

fa
rm

s

A
gr

o
p

as
to

ra
li

st
s

L
ar

g
e-

sc
al

e

P
as

to
ra

l a
n

d
 

ag
ro

-p
st

o
ra

l

P
as

to
ra

li
st

s

St
u

d
y

 

p
er

io
d

N
/A

1
9

7
6

1
9

8
8

-1
9

9
1

1
9

9
1

N
/A

2
0

0
5

2
0

0
8

2
0

0
8

N
o

t 

sp
ec

if
ie

d

C
o

u
n

tr
y

U
K

P
ak

is
ta

n

B
an

gl
ad

es
h

In
d

ia

T
u

rk
ey

So
u

th
 S

u
d

an

E
th

io
p

ia

E
th

io
p

ia

K
en

y
a

T
a

b
le

 1
.2

 S
u

m
m

ar
y

 o
f 

st
u

d
ie

s 
re

p
o

rt
in

g 
th

e 
im

p
ac

t 
o

f 
F

M
D

 o
n

 m
il

k
 y

ie
ld

 in
 c

at
tl

e.
 A

d
ap

te
d

 f
ro

m
 L

y
o

n
s 

et
  a

l. 
(2

0
1

5
)



Chapter 1 

 

31 

 

         

R
e

fe
re

n
ce

F
e

rr
a

ri
 e

t 
a

l.
 (

2
0

1
4

)

Je
m

b
e

ru
 e

t 
a

l.
 (

2
0

1
4

)

L
y

o
n

s 
e

t 
a

l.
 (

2
0

1
5

)

R
a

n
ja

n
, B

is
w

a
l, 

A
. K

. 

S
h

a
rm

a
, e

t 
a

l.
 (

2
0

1
6

)

A
li

 e
t 

a
l.

 (
2

0
1

7
)

A
n

sa
ri

-L
a

ri
 e

t 
a

l.
 (

2
0

1
7

)

C
a

se
y

-B
ry

ar
s 

e
t 

a
l.

 (
2

0
1

8
)

E
st

im
a

te
d

 m
il

k
 y

ie
ld

 l
o

ss

5
1

.8
%

 o
f 

p
o

te
n

ti
a

l 
d

u
ri

n
g

 o
u

tb
re

a
k

7
5

%
 o

f 
p

re
-o

u
tb

re
a

k
 l

e
v

e
l 

(a
v

e
ra

g
e

 l
o

ss
 o

f 
1

.8
 

li
tr

e
s/

co
w

/
d

a
y

)

A
n

im
a

ls
 i

n
 p

a
ri

ty
 ≥

4
, b

e
tw

e
e

n
 0

 a
n

d
 5

0
 D

IM
 a

t 
th

e
 

st
a

rt
 o

f 
th

e
 o

u
tb

re
a

k
, p

ro
d

u
ce

d
 o

n
 a

v
e

ra
g

e
 6

8
8

.7
 k

g
 

(9
5

%
C

I 
3

9
5

.5
, 9

8
1

.8
) 

le
ss

 m
il

k
 t

h
a

n
 p

re
d

ic
te

d
 f

o
r 

th
e

ir
 r

e
m

a
in

in
g

 l
a

ct
a

ti
o

n
. T

h
is

 r
e

p
re

se
n

ts
 a

n
 a

v
e

ra
g

e
 

1
5

%
 r

e
d

u
ct

io
n

 i
n

 t
h

e
 3

0
5

 d
a

y
 p

ro
d

u
ct

io
n

.

M
il

k
 p

ro
d

u
ct

io
n

 r
e

d
u

ce
d

 b
y

 8
5

%
, 6

7
%

, 4
5

 %
 a

n
d

 8
1

 

%
 o

n
 f

o
u

r 
d

a
ir

y
 f

a
rm

s.

T
o

ta
l 

lo
ss

 o
f 

2
2

5
 l

it
re

s 
(5

1
%

 o
f 

th
e

 p
re

d
ic

te
d

 v
a

lu
e

) 

p
e

r 
la

ct
a

ti
n

g
 b

u
ff

a
lo

, a
n

d
 1

9
5

 l
it

re
s 

(3
1

%
 o

f 
th

e
 

p
re

d
ic

te
d

 v
a

lu
e

) 
p

e
r 

la
ct

a
ti

n
g

 c
a

tt
le

.

T
o

ta
l 

re
d

u
ct

io
n

 o
f 

8
.0

 (
la

ct
a

ti
o

n
 o

n
e

 c
o

w
s)

 a
n

d
 4

.7
%

 

(l
a

ct
a

ti
o

n
 ≥

2
 c

o
w

s)
 i

n
 m

e
a

n
 d

a
il

y
 m

il
k

 p
ro

d
u

ct
io

n
 p

e
r 

co
w

 a
ft

e
r 

th
e

 o
u

tb
re

a
k

 w
h

e
n

 c
o

m
p

a
re

d
 w

it
h

 b
e

fo
re

 

(o
v

e
r 

a
 4

2
 d

a
y

s 
o

u
tb

re
a

k
 p

e
ri

o
d

).

F
M

D
 w

a
s 

a
ss

o
ci

a
te

d
 w

it
h

 c
o

n
si

d
e

ra
b

ly
 l

o
w

e
r 

h
e

rd
 m

il
k

 

y
ie

ld
 (

m
e

a
n

 p
e

rc
e

n
ta

g
e

 d
e

cr
e

a
se

 6
7

%
),

 w
it

h
 9

0
%

 o
f 

re
sp

o
n

d
e

n
ts

 r
e

p
o

rt
in

g
 r

e
d

u
ce

d
 c

o
w

m
il

k
 p

ro
d

u
ct

io
n

 

d
u

ri
n

g
 o

u
tb

re
a

k
s.

T
y

p
e

 o
f 

st
u

d
y

L
o

n
g

it
u

d
in

a
l

P
o

st
-o

u
tb

re
a

k
 f

a
rm

 s
u

rv
ey

s

L
o

n
g

it
u

d
in

a
l

M
il

k
 p

ro
d

u
ct

io
n

 r
e

co
rd

s 
- 

lo
n

g
it

u
d

in
a

l

P
o

st
-o

u
tb

re
a

k
 f

a
rm

 s
u

rv
ey

s

P
o

st
-o

u
tb

re
a

k
 f

a
rm

 s
u

rv
ey

s

P
o

st
-o

u
tb

re
a

k
 f

a
rm

 s
u

rv
ey

s

B
re

e
d

N
o

t 
sp

e
ci

fi
e

d

In
d

ig
e

n
o

u
s

E
u

ro
p

e
a

n
-b

re
e

d
 

ca
tt

le

C
ro

ss
b

re
d

C
a

tt
le

 a
n

d
 A

si
a

n
 

b
u

ff
a

lo

H
o

ls
te

in

N
o

t 
sp

e
ci

fi
e

d

F
a

rm
in

g
 s

y
st

e
m

S
m

a
ll

h
o

ld
e

r

P
a

st
o

ra
l 

a
n

d
 

sm
a

ll
h

o
ld

e
r

L
a

rg
e

-s
ca

le

O
rg

a
n

is
e

d
 d

a
ir

y
 

ca
tt

le
 f

a
rm

s

N
o

t 
sp

e
ci

fi
e

d

In
d

u
st

ri
a

l 
d

a
ir

y
 

h
e

rd

P
a

st
o

ra
l, 

a
g

ro
p

a
st

o
ra

l 

a
n

d
 r

u
ra

l 
sm

a
ll

-

h
o

ld
e

rs

S
tu

d
y

 

p
e

ri
o

d

N
o

t 

sp
e

ci
fi

e
d

2
0

1
2

-2
0

1
3

2
0

1
2

2
0

1
3

-2
0

1
4

N
o

t 

sp
e

ci
fi

e
d

2
0

1
4

2
0

1
1

–
2

0
1

4

C
o

u
n

tr
y

P
a

k
is

ta
n

E
th

io
p

ia

K
e

n
y

a

In
d

ia

P
a

k
is

ta
n

Ir
a

n

T
a

n
za

n
ia



Chapter 1 

 

32 

 

1.6.5 FMDV detection in pooled or bulk tank milk 

The potential for detection of FMDV in milk samples from individual animals has been 

described above. Theoretically, sampling of milk at the herd level or even further up 

the milk production chain could also offer a cost-effective framework for FMD 

surveillance. Currently, the impact of pooling on the detection sensitivity of FMDV in 

milk has not been sufficiently studied. Using milk samples from experimentally ‘in-

contact’ infected cattle diluted in uninfected whole milk, Reid et al., (2006) 

demonstrated that FMDV RNA could be detected by rRT-PCR down to a dilution of 10-

4, and by virus isolation down to a dilution of 10-3. Consequently, they hypothesised 

that the FMDV rRT-PCR assay could detect the presence of a single infected animal in a 

sample from the bulk milk of a herd of up to 10,000 animals. Utilising these data, 

simulation modelling studies by Thurmond and Perez, (2006), and Garner et al., (2016) 

aimed to estimate when FMD virus could be detected by rRT-PCR in bulk milk during 

an outbreak, and found that this approach could be useful for the detection of pre-

clinical infection, before the appearance of clinical signs in the herd. As a result, they 

suggested that pooled milk could be a useful tool in enhancing a surveillance system 

for FMD, and that this approach should be considered for regional FMD surveillance.  

However, to estimate prevalence of FMDV infection from bulk tank milk, pooling and 

sampling schemes should be carefully assessed, taking into account the analytical 

sensitivity of the chosen detection assay (Christensen and Gardner, 2000; Reichel et al., 

2016). Ahmed (2015) investigated the effect of pool size and found that larger pool 

sizes maximised pooling efficiency at low disease prevalence, whereas smaller pool 

sizes maximised efficiency at a higher prevalence. It is likely then that a bulk tank milk 

testing system could indeed detect small quantities of FMD virus, and identify the 

presence of even one newly infected animal, which may provide a useful surveillance 

tool for rapidly detecting infected herds. Additionally, farm/farmer selling trends 

which are difficult to quantify and therefore may not be incorporated into models, 

should be taken into consideration as these may have a large impact on the utility of 

pooled milk for FMD surveillance. 

 

 



Chapter 1 

 

33 

 

1.7 Scientific aims 

Milk has the potential to be a suitable alternative sample type to those currently used 

for FMD diagnosis. The benefits of this sample type are clear:  

 Simple to collect – it may already be collected as part of routine surveillance of 

other pathogens 

 Non-invasive compared to other sample types such as vesicular epithelium or 

blood 

 FMD live virus, FMDV RNA and FMDV antibody can be detected  

 FMDV RNA may be detected by rRT-PCR for a longer window than other sample 

types i.e. before, during and after the appearance of clinical signs 

 Potential for the identification of sub-clinical infected animals and herds 

 rRT-PCR assay can detect FMDV in heavily diluted milk demonstrating the 

potential for bulk tank milk testing. 

Despite the clear advantages of milk as an alternative sample type, and although FMDV 

detection in milk samples has been well described during in-vivo experiments 

(Burrows et al., 1971; Blackwell and McKercher, 1982; Reid et al., 2006), only a small 

number of studies have described the detection of FMDV RNA in milk from naturally-

infected animals. These include FMDV detection in milk from cattle and buffaloes in 

Pakistan (Saeed et al., 2011; Ahmed et al., 2017) and in cattle in India (Ranjan et al., 

2016). Furthermore, the limited milk samples used in these studies were collected 

either as an additional sample type to validate molecular assays, or to investigate the 

possible role of milk in FMDV transmission. 

Given the benefits described above, further investigation into the potential of milk as 

an alternative sample type for routine FMDV detection and surveillance is warranted, 

especially as this approach is already successfully utilised for a number of other 

pathogens. Sampling of milk both at an animal and herd level could offer a more 

representative sampling framework compared to established surveillance methods, 

reducing sample selection bias, increasing surveillance sensitivity, and may facilitate a 

more thorough understanding of herd/district level epidemiology.  
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It is hypothesised that sampling of milk at the herd level, for example by taking aliquots 

of milk from bulk tanks, may be useful for targeted/risk-based surveillance to: 

 improve knowledge on the epidemiology of FMD in endemic areas, including 

determination of circulating serotypes, and identification of sub-clinical infections 

 rapidly identify infected herds in response to an outbreak in a disease-free country 

 screen infected premises after an outbreak to ensure disease freedom 

Therefore the aim of this thesis was to expand on previous studies to determine 

whether milk may be utilised for FMDV detection and surveillance. Consequently, this 

thesis is organised to answer five specific research objectives (see figure 1.9): 

(i)  Optimise a high-throughput nucleic acid extraction and one-step real-time RT-

PCR method to detect foot-and-mouth disease virus (FMDV) in milk samples.  

(ii) Determine the utility of milk samples compared with sample types currently 

used, collected from individual experimentally and naturally infected animals. 

(iii) Evaluate the stability of FMDV in milk samples during transportation. 

(iv)  Determine the effects of pooling milk on the sensitivity and specificity on the 

FMDV detection system. 

(v) Assess the potential of FMDV testing of pooled milk in different farming systems 

as an alternative surveillance approach, by comparison with established 

surveillance methods. 
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Chapter 2: 
Optimisation and evaluation of a high-throughput screening method for the detection 

of foot-and-mouth disease virus in milk samples 
(i),(ii),(iv) 

 
Chapter 3: 

Opportunities for enhanced surveillance of foot-and-mouth disease in endemic 
settings using milk samples from individual cattle 

(ii) 
 

Chapter 4: 
Moving from individual to pooled milk: considerations for the treatment of samples 

collected from herds in endemic countries  
(iii),(iv) 

 
Chapter 5: 

Utilising milk from pooling facilities as a novel approach for foot-and-mouth disease 
surveillance 

(v) 
 

Chapter 6: 
Pooled milk for foot-and-mouth disease surveillance on large-scale dairy farms in 

endemic settings 
(v) 

 
Chapter 7: 

Discussion and future research 

Figure 1.9 Overview of thesis. Numerals in parenthesis indicate the research 
objectives focussed on in each chapter.  
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CHAPTER 2  

Optimisation and evaluation of a high-

throughput screening method for the detection 

of foot-and-mouth disease virus in milk samples 

 

Data presented in this chapter has been published in Veterinary Microbiology: 

https://doi.org/10.1016/j.vetmic.2018.07.024 
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2.1 Summary 

This study aimed to assess the performance of an optimised nucleic acid extraction 

protocol utilising robotic equipment in combination with a one-step real-time RT-PCR 

method to detect foot-and-mouth disease virus (FMDV) in milk samples, in order to 

assess the utility of milk as a non-invasive sample type for surveillance. Four milking 

Jersey cows were infected via direct contact with two non-milking Jersey cows that had 

been previously inoculated with FMDV (isolate O/UKG/34/2001). Milk and blood were 

collected throughout the course of infection to compare two high-throughput real-time 

reverse transcription polymerase chain reaction (rRT-PCR) protocols with different 

RT-PCR chemistries. Using both methods, FMDV was detected in milk by rRT-PCR one 

to two days before the presentation of characteristic foot lesions, similar to detection 

by virus isolation. Furthermore, rRT-PCR detection from milk was extended, up to 28 

days post contact (dpc), compared to detection by virus isolation (up to 14 dpc). 

Additionally, the detection of FMDV in milk by rRT-PCR was possible for 18 days longer 

than detection by the same method in serum samples. FMDV was also detected with 

both rRT-PCR methods in milk samples collected during the UK 2007 outbreak. 

Dilution studies were undertaken using milk from the field and experimentally-

infected animals, where for one sample it was possible to detect FMDV at a dilution of 

10-7. Based on the peak CT values detected in this study, these findings indicated that it 

was possible to identify one acutely-infected milking cow in a typical-sized dairy herd 

(100-1000 individuals) using milk from bulk tanks or milk tankers. These results 

motivated further studies using milk in FMD-endemic countries for FMD surveillance. 
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2.2  Introduction 

Rapid and accurate detection is central to facilitate the control of FMD. Real-time 

reverse transcription polymerase chain reaction (rRT-PCR) assays have been 

developed with high diagnostic and analytical sensitivity (Shaw et al., 2004), and since 

they detect viral RNA (or even degraded genome) instead of intact viral antigens 

and/or live virus, these assays can be used on a number of sample types (Reid et al., 

1998; Reid et al., 2003).  

Milk is a non-invasive sample type that does not require qualified veterinary 

practitioners for collection, unlike traditional sample types such as vesicular lesion 

tissue or fluid, oesophageal-pharyngeal fluid, and blood. Previous experiments have 

shown that the mammary gland is highly susceptible to FMDV replication, and that 

FMDV can be detected in milk before the appearance of clinical signs (Burrows et al., 

1971; Blackwell and McKercher, 1982; Reid et al., 2006). Milk therefore represents a 

potentially valuable sample source for FMDV detection and surveillance during, and in 

recovery from a disease outbreak. 

Previous studies have investigated FMDV detection by rRT-PCR in milk samples from 

experimentally infected Holstein-Friesian cattle (Reid et al., 2006) using two-step 

amplification protocols. This chapter aims to build on this previous work, to assess the 

performance of a more recently developed nucleic acid extraction protocol utilising 

rapid, higher throughput robotic equipment and newer one-step real-time RT-PCR kits 

to detect FMDV in milk. Two protocols were compared employing the MagMAX™ 

Pathogen RNA/DNA Kit (Applied Biosystems®) for RNA extraction, in combination 

with either the TaqMan® Fast Virus 1-Step kit (Applied Biosystems®) (Method A), or 

the Superscript III Platinum® One-Step qRT-PCR Kit (InvitrogenTM) (Method B). 

Although these methods are currently utilised in FMD diagnostic laboratories for the 

traditional samples mentioned above, they have not been fully validated for use on milk 

samples. Unlike the other sample types, milk contains high concentrations of calcium, 

proteinases and fat globules that have been shown to inhibit amplification efficiency 

(Rossen et al., 1992; Bickley et al., 1996). Although this was not observed in the 

previous study by Reid et al. (2006), they used milk from Holstein-Friesian cattle, 

which has a lower fat concentration than milk from Jersey cattle, for example 
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(Palladino et al., 2010). Therefore, in order to fully challenge the RNA extraction 

conditions of the methods tested in this chapter, Jersey cows, which produce milk with 

a high fat content, were used. Additionally, the effect of FMD on milk yield in Jersey 

cows was also assessed. 

It is anticipated that the results from this study can be used to support the development 

of an FMD surveillance plan utilising pooled milk in endemic settings, or from bulk 

tanks as part of preparedness for combating a possible FMD outbreak in disease-free 

settings.  

 

2.3  Materials and Methods 

2.3.1 Experimental samples 

In-vivo studies were carried out in the high containment unit at The Pirbright Institute, 

UK and all procedures were approved by the Home Office (Project Licence 

number:70/718) and complied with the Animals (Scientific Procedures) Act 1986, EU 

Directive 2010/63/EU. Four naïve Jersey dairy cows (aged between 2 years, 9 months, 

and 8 years, 1 month), were infected via direct contact (day 0) with two non-milking 

Jersey cows that had been inoculated by intra-dermolingual injection with 105 TCID50 

FMDV O/ME-SA/PanAsia, O/UKG/34/2001 (0.25 mL per inoculation site [n=2]) two 

days previously, and that were displaying clinical signs. Animals were observed for 

clinical signs, and sampled every day for blood and milk on days -5 to 7, and 10, 12, 14, 

19, 21, 26 and 28 days post contact (dpc). Blood was collected in plain vacutainers and 

serum used in the testing. Milk was collected by machine twice a day until 7 dpc, and 

once a day thereafter on the days stated, and daily milk yields recorded by weight. 

Skimmed milk was separated from the cream and cell fraction by centrifuging an 

aliquot of each whole milk sample at 3000xg (Hettich Rotanta 460R) for ten minutes. 
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2.3.2 Field samples 

Twelve milk samples collected during the FMDV outbreak in the UK in 2007 (caused 

by a derivative of FMDV O1 BFS 1860) were used to compare diagnostic screening 

methods. These samples were from individual cows displaying clinical signs held at 

one of the infected premises (IP) 2 (Cottam et al., 2008; Ryan et al., 2008). 

 

2.3.3 Cell culture isolates 

FMDV cell culture isolates (isolated once in primary bovine thyroid [BTY] cells) were 

obtained from the FMDV repository held at the World Organisation for Animal Health 

(OIE) Reference Laboratory and United Nations Food and Agriculture Organization 

(FAO) World Reference Laboratory for foot-and-mouth disease (WRLFMD), Pirbright, 

UK. Positive controls for rRT-PCR assays were prepared by spiking unpasteurised 

whole Jersey milk with a 10-2 dilution of cell culture isolate O/SAU/1/2016. Analytical 

sensitivity of the diagnostic screening methods was assessed using a ten-fold dilution 

series (10-1 to 10-8) of cell culture isolate A/KEN/6/2012 in whole Jersey milk. 

 

2.3.4 Virus Isolation 

Virus isolation was carried out on primary bovine thyroid (BTY) cell cultures 

(Snowdon, 1966), on all experimental samples on the day of collection. Titrations were 

later performed on milk samples using BTY cell cultures after storage at -80oC, and the 

viral titre was calculated using the Spearman-Kärber method, as described by the FAO 

(Karber, 1931; OIE, 2018) and expressed in units of TCID50/mL. 

 

2.3.5 Diagnostic screening methods 

Diagnostic screening methods for the detection of FMDV genome in milk samples are 

defined as Method A and Method B for the purpose of this study, and are described in 

Table 2.1.  
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Table 2.1 Comparison of the two high-throughput foot-and-mouth disease virus 
detection methods. 

 A B 

Extraction kit 
MagMAX™ Pathogen RNA/DNA 

Kit (Applied Biosystems®) 
MagMAX™ Pathogen RNA/DNA Kit 

(Applied Biosystems®) 

Internal Control 
VetMAX™ Xeno™ Internal Positive 

Control RNA (Applied 
Biosystems®) 

VetMAX™ Xeno™ Internal Positive 
Control RNA (Applied Biosystems®) 

Sample input  200 µL  200 µL 

rRT-PCR kit 
‘TaqMan® Fast’ Virus 1-Step 

Master Mix (Applied 
Biosystems®) 

‘Superscript’ III Platinum® One-Step 
qRT-PCR Kit (InvitrogenTM) 

Internal control assay 
VetMAX™ Xeno™ Internal Positive 

Control LIZ™ Assay (Applied 
Biosystems®) 

VetMAX™ Xeno™ Internal Positive 
Control LIZ™ Assay (Applied 

Biosystems®) 

Primers and Probes 
Targeting 3D polymerase 

(Callahan et al., 2002)  
Targeting 3D polymerase  

(Callahan et al., 2002) 

RNA template input 2.5 µL 5 µL 

 

2.3.6 RNA extraction 

RNA extractions for both methods were carried out using the MagMAX™ Pathogen 

RNA/DNA Kit (Applied Biosystems®) on a MagMAX™ Express 96 Extraction Robot 

(Applied Biosystems®) with a sample input of 200 µL, and elution volume of 90 µL. 

One µL per reaction of VetMAX™ Xeno™ Internal Positive Control RNA (10,000 

copies/µL) (Applied Biosystems®) was also added to the lysis buffer prior to 

extraction. 

 

2.3.7 rRT-PCR 

Two commercially available rRT-PCR kits were evaluated as listed in Table 2.1. In 

Method A, the TaqMan® Fast Virus 1-Step Master Mix (Applied Biosystems®) was 

used with the following thermal cycling conditions: 50oC for 5 min, 95oC for 20 sec, 

then 45 cycles of 95oC for 3 sec and 60oC for 30 sec. For this method 2.5 µL of RNA 

template were added to the rRT-PCR reaction mix containing 6.25 µL of 1-step 

mastermix (4x, supplied with the kit), 0.25 µL each of forward and reverse primer (20 

µM), 0.25 µL probe (10 µM), and 14.5 µL of nuclease free water. In Method B, the 

Superscript III Platinum® One-Step qRT-PCR Kit (InvitrogenTM) was used with the 
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reagents, parameters and thermal cycling conditions previously reported (Shaw et al., 

2007), with an RNA template volume of 5 µL. Primers and probes targeting the 

conserved 3D region of the FMDV genome (Callahan et al., 2002) were used for both 

methods. This assay has been previously shown to reliably detect viral RNA 

representing all seven FMDV serotypes (King et al., 2006) and is a widely adopted 

diagnostic assay recommended by the OIE for use in FMD Reference Laboratories. One 

µL VetMAX™ Xeno™ Internal Positive Control LIZ™ Assay (Applied Biosystems®) per 

reaction was also included in the reaction mix. The Applied Biosystems® 7500 Real-

time PCR System was used on the ‘fast’ setting for Method A and the ‘standard’ setting 

for Method B. Evaluation of the RNA extraction and rRT-PCR methods were performed 

using experimental and field milk samples. Samples were considered positive for all CT 

values observed until the end of the assay: ≤45 for Method A and ≤50 for Method B. 

 

2.3.8 Statistics 

In order to measure the agreement between the two methods using experimental 

whole milk samples, Cohen’s Kappa statistic (κ) and the proportion of observed 

agreement (Aobs) were performed in R version 3.5.3 (R Core Team, 2019) using the 

package ‘fmsb’ (Nakazawa, 2017), and interpreted as described by Landis and Koch 

(Landis and Koch, 1977), and linear regression was used to compare CT values. A paired 

t-test was used to compare CT values from both methods using field samples. Unpaired 

t-tests were used to compare average milk yields before (-6-0 dpc) and during infection 

(1-6 dpc), both performed in Prism version 7 (GraphPad Software, Inc.). 
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2.4  Results 

2.4.1 Comparison of detection methods with field samples 

Twelve milk samples positive for FMDV collected from individual cows during the UK 

2007 FMD outbreak were tested using both methods (A and B). Comparisons between 

the methods demonstrated lower CT values in all samples when using Method B (Table 

2.2) (p = <0.001), with a mean CT difference of 5.00 between the two methods. Positive 

rRT-PCR results were observed in 12/12 (100%) for both methods. 

 

Table 2.2 CT values of individual milk samples collected from individual cows obtained 
from infected premises (IP) 2, from the 2007 UK outbreak of foot-and-mouth disease 
(FMD) for both methods. (Verification of clinical signs from these animals and formal 
confirmation of the FMD outbreak was completed by the Pirbright Institute (Ryan et 
al., 2008)). 

Sample ID Age of oldest lesion Method A Method B 

c27 Not dated 21.19 (±0.45) 16.50 (±0.28) 

105 2 days 21.59 (±0.22) 17.18 (±0.20) 

036 5 days 26.18 (±0.17) 22.03 (±0.28) 

027 6 days 27.07 (±0.15) 21.46 (±0.15) 

369 6 days 24.98 (±0.17) 19.67 (±0.15) 

341 6 days 27.15 (±0.14) 21.81 (±0.12) 

069 4 days 25.26 (±0.11) 20.15 (±0.20) 

030 5 days 27.79 (±0.25) 21.78 (±0.43) 

161 2 days 29.58 (±0.08) 24.38 (±0.19) 

092 5 days 32.27 (±0.19) 27.94 (±0.30) 

241 3 days 22.04 (±0.39) 16.81 (±0.29) 

093 5 days 24.64 (±0.27) 20.09 (±0.74) 

Data shown are mean CT values of rRT-PCR performed for Methods A and B, with standard deviations in 
parentheses. CT values are the mean of three replicates from independent extractions. 
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2.4.2 Comparison of detection methods by limit of detection 

The limit of detection of both methods was compared using the ten-fold dilution series 

of FMD A/KEN/6/2012 spiked into whole Jersey milk (10-1 to 10-8) (Figure 2.1). 

Without normalising for different sample input volumes, Method B demonstrated a one 

log10 increase in the limit of detection when compared with Method A when all wells 

were positive, and a range in the difference in average CT value of between 5.33 and 

6.30, for Methods A and B. For each dilution, the maximum standard deviation between 

three technical replicates was 3.55 (Method B, 10-7). 

 

Figure 2.1 Comparison of the limit of detection for Methods A (used the TaqMan® Fast 
Virus 1-Step Master Mix (Applied Biosystems®)) and B (used the Superscript III 
Platinum® One-Step qRT-PCR Kit (InvitrogenTM)). CT values are the average of three 
replicates, and bars represent standard deviation.  ■ : Method A,  : Method B. Open 
symbols indicate where no amplification was observed in at least one of the three 
replicates. 
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2.4.3 Experimental samples 

The dairy cows (identified as animal numbers 108, 825, 867 and 951) exhibited clinical 

signs within 3-4 days after exposure to the inoculated cattle. Cows 108 and 825 

developed mastitis and were euthanised at 3 dpc and 14 dpc, respectively. Both 867 

and 951 survived to 28 dpc when the experiment was terminated.  

Experimental samples were tested with both methods, after a freeze thaw and storage 

at -80oC for five years. Based on the testing of 67 whole milk samples, there was 

agreement (in at least one replicate) between positive and negative results in 61/67 

(91.0%) samples across both methods (Figure 2.2).  

re  

Figure 2.2 Comparison of both methods tested with whole milk samples from four 
experimentally infected cows.  Each square represents the average CT value of the 
whole milk sample at each day post contact (DPC). White squares represent a ‘No CT’ 
value – no detection. Black squares represent any CT value ≤45 (Method A) or ≤50 
(Method B) in all replicate wells – FMDV positive. Grey squares represent instances 
where a ‘No CT’ value was observed in one or two wells, but a positive result was 
observed in the other replicates. N/A represents where there was not sufficient sample 
available for testing.  

 

When comparing the two methods, almost perfect agreement was observed between 

the number of positive/negative samples identified (κ = 0.811; p = <0.001; Aobs = 0.910) 

(Table 2.3). Additionally, for the milk samples that were positive using both methods, 

the average CTs generated were lower when using Method B (R2 = 0.704, p = 0.001) 

(see Appendix I, Figure 8.1). CT values of the internal controls in all whole milk samples 

(n=67) were considered positive by both methods (Method A: mean: 35.37±0.83, 

Method B: mean: 38.23±2.42). Results from Method B were therefore used to 

determine the window of virus detection in dairy cows. 



Chapter 2 

 

46 

 

In most instances at the onset of infection, FMDV detection in milk by rRT-PCR 

coincided with detection by virus isolation, 1-2 days before the appearance of 

characteristic foot lesions, and concurrent with the development of nasal discharge in 

animals 867 and 951. FMDV detection by rRT-PCR in whole milk was observed for 

animals 108 and 825 until they were euthanised at 3 dpc and 14 dpc respectively 

(Figure 2.3). In addition to early detection, FMDV detection in both milk fractions 

(whole and skimmed) by rRT-PCR was prolonged, and was extended in whole milk 

(detected up to dpc 28 for animals 867 and 951), in comparison to virus isolation 

(detected up to dpc 7 for all three remaining cows). At the onset of infection, rRT-PCR 

detection of FMDV in serum coincided with FMDV detection in milk, 1 day prior 

(animals 867, 825 and 951) and the same day (108). In contrast, rRT-PCR FMDV 

detection in serum ended at 7dpc and 10 dpc, compared to at 28dpc in milk for animals 

951 and 867, respectively. 

 

Table 2.3 Comparison of Method A and Method B using experimental whole milk 
samples.  

  
Method B 

  
Positive* Negative Total 

Method A 

Positive* 38 2 40 

Negative 4 23 27 

Total 42 25 67   

κ = 0.811; p = <0.001; Aobs = 0.910   

*Positive results are those with at least one well giving a CT of ≤45 (Method A)/≤50 (Method B). 
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re  

Figure 2.3 FMDV detection in samples collected at regular intervals from all cows. 
Virus titrations in BTY cells (A) and rRT-PCR using Method B (B) for skimmed and 
whole milk fractions and serum (B only). Average CT is derived from the mean of 2 
replicates. The development of lesions in at least one foot indicates the onset of clinical 
signs. : Onset of clinical signs, : whole milk,   : skimmed milk,  : serum.  

 

2.4.4 Impact of FMDV infection on milk yields 

Milk yields were recorded by weight on -5 to 6 dpc. The average daily milk yield before 

cows were infected by direct contact (-6 to 0 dpc) was 22.14±0.51kg, 20.29±0.45kg, 

18.17±0.86kg and 18.36±0.43kg for animals 108, 825, 867 and 951, respectively, these 

values were used as a baseline to calculate the change in milk yield after infection. The 

average daily milk yield after infection between days 1-6 dpc, was 23.00±0.58kg, 

22.44±0.82kg, 16.58±1.96kg and 15.08±1.59kg, with an average change of +3.88%, 

+12.15%, -8.73% and -17.85% for animals 108, 825, 867 and 951, respectively. No 

significant difference was observed between average yields before and after infection 

[p = 0.356 (108), p = 0.450 (867), p = 0.056 (951)], apart from for animal 825 [p = 0.032 

(825)], which demonstrated an increase in average milk yield after infection. The 

maximum reduction in milk yield recorded on any one day was 50.47% for cow 867, 

on 6 dpc. The mean difference in milk yield between -6 to 0 dpc and 1 to 6 dpc was 

greatest for cow 951 (-17.85%, range:-48.26% to +3.49%). 

 

2.4.5 Limit of detection 

To estimate the dilution at which FMDV may still be detected from a pooled milk 

sample, the limit of detection was determined using the more sensitive Method B, using 

one milk sample from the animal experiment (867, 4.5 dpc, mean CT value: 19.65) and 

one milk sample from the 2007 outbreak (animal number c27, mean CT value: 16.50 

[Table 2.2]). Ten-fold serial dilutions were conducted in clean Jersey milk (Figure 2.4). 

Limits of detection were 10-7 for sample c27 and 10-5 for sample 867 (4.5 dpc) with 

mean CT values of 40.61 and 38.70, respectively. 
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Figure 2.4 Detection of FMDV by rRT-PCR using Method B on ten-fold dilutions in 
Jersey whole milk of two milk samples: animal 867 (4.5 days post contact infection) 
and 200017, a field sample from the UK 2007 outbreak (Table 2.2). CT values are the 
average of three replicates with standard deviation error bars. : 867 (4.5 dpc), : 
200017. Open symbols indicate where no amplification was observed in at least one of 
the three replicates. 

 

2.5  Discussion 

Two RNA extraction and rRT-PCR combinations (Methods A and B) were evaluated 

utilising experimental milk and serum samples, and opportunistic milk samples 

collected in the field during the UK 2007 outbreak (Ryan et al., 2008). These two 

methods employ different RT-PCR kits (with different thermocycling conditions) and 

have been optimised for different RNA template volumes (2.5 µL and 5 µL for Methods 

A and B, respectively). These specific methods were selected for comparison since they 

were already used in two of the laboratories that participated in this study. Comparison 

of these RT-PCR kits using milk samples collected from the UK 2007 outbreak 

generated lower CT values for all samples with Method B (the MagMax™ Pathogen 
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RNA/DNA kit in combination with the SuperScript™ III Platinum™ One-Step qRT-PCR 

Kit). It is possible that increasing the RNA template volume for Method A to 5 µL would 

reduce the number of PCR cycles required to generate signal in the assay. However, the 

CT differences (i.e., >4) observed in these comparative experiments were greater than 

would be expected from a two-fold dilution in the volume starting template. Samples 

from experimentally infected cows were tested by both methods, where more samples 

were identified as positive using Method B, than Method A, and a higher limit of 

detection was also observed for Method B using the spiked milk dilution series. Based 

on these results, Method B was used to determine the window of virus detection during 

FMDV infection and was carried forward as the method of choice for FMDV genome 

detection in milk samples, for chapters 3 – 6 of this thesis. It was demonstrated that 

FMDV could be detected in whole milk by rRT-PCR coincident with, and up to 24 days 

after the onset of early clinical signs of FMD (28 dpc). This was longer than when tested 

by virus isolation, and for a longer period than with traditional surveillance samples 

such as serum, from which FMDV was detected only up to six days after the onset of 

clinical signs. Reid et al. (2006) were only able to detect FMDV RNA in milk up to 23 

days post infection, but identified the presence of low copy numbers of FMDV RNA in 

the mammary lateral lymph node on post-mortem analysis at day 28 post infection. 

However, for this study, Jersey cattle were used, instead of the Holstein-Friesian cattle 

that were utilised by Reid et al. (2006), and therefore it is unknown if this extended 

detection is due to the higher fat content of the milk from this breed, as FMDV has been 

shown to be particularly concentrated in the cream component (Reid et al., 2006). 

Additionally, it is likely that it could be due to the higher limit of detection of the newer 

detection methods, although as there was no absolute quantification of the virus stocks 

in my study, analytical sensitivity cannot be directly compared. Ranjan et al. (2016) 

demonstrated the presence of FMDV in milk samples up to 37 days post clinical 

manifestation by multiplex (m) PCR and reverse transcription loop-mediated 

isothermal amplification (RT-LAMP). In this study, animals 867 and 951 were 

terminated at 28 days post contact, and therefore it is unknown how much longer 

FMDV RNA might have been detected in these animals. Previous studies have reported 

FMDV detection up to 51 days post inoculation (Burrows et al., 1971), however this 

involved the inoculation of FMDV directly into the mammary gland which is not a 

method of transmission in field situations.  
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During the study, animal 108 displayed lesions on the teats, and animals 108 and 825 

developed clinical mastitis (108 and 825). Vesicular lesions on the teats are common 

in lactating cows with FMD, with infection of the ruptured lesions predisposing animals 

to the development of secondary mastitis (Kitching, 2002), and field studies have 

supported this association between FMD and clinical mastitis (Sharma, 2010; Lyons et 

al., 2015). FMDV infection has been shown to cause a reduction in milk yield (Knight-

Jones and Rushton, 2013), where secondary mastitis may play a part. However, in our 

study, when average milk yields were compared before (-6 to 0 dpc) and after (1 – 6 

dpc) infection, no significant decrease was observed, even in cow 108 with secondary 

mastitis, although the maximum decrease observed on any one day was 50.47% for 

animal 867. This is comparable to previous experimental studies that demonstrated a 

maximum reduction of 62.1% on 10 dpc (Reid et al., 2006), and during an outbreak of 

FMDV in Iran, a total reduction of 8.0% and 4.7% in mean milk production for first and 

second lactation cows, respectively (Ansari-Lari et al., 2017).  These published studies 

and our study support data reported by Lyons et al. (2015) who observed that although 

there was a decrease in milk production at the herd level, clinical FMD was shown to 

be a poor predictor of milk yield, and that no statistical evidence was found to indicate 

a significant decrease in milk yield between FMD clinical animals and non-clinical cases 

when lactation curves were modelled. 

This study has demonstrated that milk from individual animals could be utilised as a 

less invasive sample type with simple collection procedures. Pooling these milk 

samples, or collecting milk from bulk storage tanks would allow for a testing method 

where there would be no requirement to test all samples individually, thus reducing 

the cost of testing. Bulk tank milk is used as a sample for a number of other diseases, 

including bovine viral diarrhoea virus (BVDV) (Renshaw et al., 2000a; Hill et al., 2010) 

and Coxiella burnetii (Bauer et al., 2015). In our study, the limit of detection was 

determined using the better performing Method B, to establish how far a positive milk 

sample could be diluted in whole Jersey milk and still be detected, simulating the 

detection of one infected animal from a herd. As expected, the ability to detect FMDV 

at high dilutions was related to the viral load of FMDV in the individual positive milk, 

and for one sample, FMDV was detected at a dilution of up to 10-7. Based on the peak 

CT values detected in this study, these observations of the limit of detection indicate 
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that it should be possible to identify one acutely-infected milking cow in a typical sized 

dairy herd (100-1000 individual) using bulk milk sampling. However, further research 

on the impact of pooling on detection sensitivity is recommended, and is performed in 

chapters 5 and 6. If virus can be detected in bulk tank milk, this may provide a useful 

surveillance tool for rapidly detecting infected herds, whilst involving minimal stress 

to the animal for sample collection. Additionally, the likelihood of detecting FMDV 

infected animals may be increased due to the extended period of FMDV detection in 

milk compared to serum. 

Before investigating pooling, research is required to demonstrate that FMDV can be 

detected in milk samples collected from individual cattle in endemic settings, and 

therefore this is investigated in Chapter 3. This may be particularly important where 

multiple serotypes are circulating, and vaccination may be practiced, as it unknown 

what effects these factors may have on the detection of FMDV in milk from animals in 

these regions. Data obtained in these experiments may then inform and facilitate the 

design and implementation of surveillance testing plans for FMD. This could be in 

readiness for a potential outbreak, for example by testing bulk milk samples to rapidly 

identify infected herds in response to an outbreak in a disease-free country. 

Additionally, alternative surveillance approaches using pooled milk from large-scale 

dairy farms or pooling facilities may be useful for FMD epidemiological studies in 

endemic regions, to identify disease presence and the circulating serotypes. 
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CHAPTER 3 

Opportunities for enhanced surveillance of 

foot-and-mouth disease in endemic settings 

using milk samples from individual cattle 

 

Data presented in this chapter has been published in Transboundary and Emerging 

Diseases: https://doi.org/10.1111/tbed.13146 
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3.1 Summary 

The aim of this study was to examine the application of milk from individual cattle as 

an alternative sample type for FMDV detection and typing, and to evaluate milk as a 

novel approach for targeted surveillance of FMD in East Africa. FMDV RNA was 

detected in 73/190 (38%) individual milk samples collected from naturally infected 

cattle in northern Tanzania. Further, typing information by lineage-specific rRT-PCR 

assays was obtained for 58% of positive samples, and correlated with the virus types 

identified from traditional sample types collected during outbreak investigations in the 

study area. The VP1-coding sequence data obtained from milk samples matched the 

sequence data generated from paired epithelial samples collected from the same 

animal. This study demonstrates that milk represents a potentially valuable sample 

type for FMDV surveillance and might be used to overcome some of the existing biases 

of traditional surveillance methods. However, it is recommended that care is taken 

during sample collection and testing to minimise the likelihood of cross-contamination. 

Such approaches could strengthen FMDV surveillance capabilities in East Africa, both 

at the individual animal and herd level. 
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3.2  Introduction 

Accurate and rapid identification of the FMDV serotype responsible for a particular 

outbreak is of the utmost importance for informing appropriate control strategies. 

Current methods of detection and characterisation of FMDV include virological [e.g. 

virus isolation (Snowdon, 1966)], molecular [e.g. reverse transcription polymerase 

chain reaction (rRT-PCR)(Reid et al., 1998)] and serological tests [e.g. virus 

neutralisation test (OIE, 2018)]. Various pan-serotypic rRT-PCR assays (which detect 

all serotypes but which do not differentiate between them) have been described 

(Callahan et al., 2002; Reid et al., 2002; King et al., 2006; Shaw et al., 2007). For serotype 

identification, the antigen detection ELISA (enzyme-linked immunosorbent assay) 

(Ferris and Dawson, 1988) is traditionally employed. However, the analytical 

sensitivity is often limited, and the test is only suitable for epithelium samples and cell 

culture material.  

Various authors have demonstrated the utility of typing of FMDV by conventional RT-

PCR assays (Callens and De Clercq, 1997; Giridharan et al., 2005; Bao et al., 2008), and 

more recently, rRT-PCR assays for the detection of strains specific to a particular 

region, for example the Middle East (Reid et al., 2014; Knowles et al., 2015), West 

Eurasia (Jamal and Belsham, 2015; Saduakassova et al., 2017), and East Africa 

(Bachanek-Bankowska et al., 2016). To enable the characterisation of circulating FMDV 

strains, nucleotide sequence analysis is also commonly used (Baxt et al., 1984; Wittwer 

and City, 1989; Jamal and Belsham, 2013). VP1 sequencing (Sanger et al., 1977; 

Knowles et al., 2016) has value in deducing evolutionary dynamics, genetic and 

epidemiological relationships, and in the tracing of outbreaks and monitoring of the 

transboundary movements of the disease (Marquardt and Adam, 1990; Knowles and 

Samuel, 2003; Logan et al., 2014).  

Currently, the most common sample type submitted to laboratories for FMD diagnosis 

is epithelial tissue or sometimes the fluid found within a vesicular lesion. These are 

labour intensive to collect (King et al., 2006) and consequently, reporting of disease is 

inherently biased towards clinical animals, and samples are often not collected due to 

the effort involved. Therefore viruses circulating sub-clinically may not be represented 

and the true prevalence of the disease is under-recognised (Knight-Jones et al., 2016).  
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Milk is a simple-to-collect, non-invasive sample type that has already been utilised for 

the surveillance of a number of diseases (Sekiya et al., 2013; Bauer et al., 2015; Nielsen 

et al., 2015). Although FMDV detection in milk samples has been well described during 

in-vivo experiments as shown in Chapter 2 and by others (Burrows et al., 1971; 

Blackwell and McKercher, 1982; Reid et al., 2006), only a small number of studies have 

demonstrated that FMDV RNA can be detected in milk from naturally-infected animals. 

These include FMDV detection in milk during the 2007 FMD outbreak in the United 

Kingdom (Armson et al., 2018, Chapter 2), in cattle and buffaloes in Pakistan (Saeed et 

al., 2011; Ahmed et al., 2017) and in cattle in India (Ranjan et al., 2016). The limited 

milk samples used in these studies were collected either as an additional sample type 

to validate molecular assays, or to investigate the possible role of milk in FMDV 

transmission. Nonetheless these studies provide useful evidence that FMDV RNA can 

be detected in milk from naturally infected animals and typed by rRT-PCR. 

Consequently, further investigation into the potential of milk as an alternative sample 

type for routine FMDV detection and surveillance is warranted, particularly in areas 

where surveillance infrastructure is limited.  

For example, Tanzania has the third largest cattle population in Africa, and a report 

prepared in 2012 estimated milk production at 1.6 billion litres per annum (Kurwijila 

et al., 2012). However, FMD is of a high concern in Tanzania, with adverse impacts on 

livestock production, trade, and farmer livelihoods (Kivaria, 2003; Casey-Bryars et al., 

2018). Although the recent introduction of the Progressive Control Pathway for FMD 

control (PCP-FMD) in eastern Africa has driven improved knowledge of the 

distribution of FMD, the epidemiology is still inadequately understood. Additionally, 

control of the disease remains challenging for many reasons, including insufficient 

surveillance and diagnostic capacity, a lack of comprehensive animal movement 

records, and inconsistent, costly vaccination programmes. The presence of at least 4 

serotypes (O, A, SAT 1 and SAT 2) with multiple topotypes further complicates the 

control of the disease (Food and Agriculture Organization (FAO), 2011; Kasanga et al., 

2012; Namatovu et al., 2013; Casey-Bryars et al., 2018; Kerfua et al., 2018). 

Consequently, there is a requirement for improved surveillance of FMD, utilising 

simple, cost-effective tools.  
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Therefore, the aim of this chapter was to examine the use of milk from individual cattle 

for FMD surveillance in Tanzania where this approach had not been investigated 

previously. It is anticipated that results from this chapter may inform future studies 

focussing on the use of pooled milk samples for the simple, cost-effective herd-level 

surveillance of FMD.   

 

3.3  Materials and Methods 

3.3.1 Viruses and field samples 

Milk samples (n=190) (see Appendix II, Table 8.1) were collected by hand from clinical 

and healthy cows during FMD outbreak investigations in northern Tanzania (Serengeti 

and Bunda Districts) between 2012 and 2015 (Casey-Bryars et al., 2018). For four of 

the FMD clinically affected cows (subsequently referred to as animals A – D) that 

supplied a milk sample, vesicular lesion material (epithelium or fluid) was also 

collected on the same day.  This lesion material was submitted to the WRLFMD for 

confirmatory diagnostics, sequencing and phylogenetic analyses (WRLFMD, 2015). 

Cell culture isolates (isolated once in primary bovine thyroid [BTY] cells) 

TAN/39/2012 (serotype O), TAN/6/2013 (A), TAN/33/2014 (SAT 1) and 

TAN/19/2012 (SAT 2) from the EA region spiked in negative milk from a UK farm were 

used as positive controls for molecular assays. All samples had been stored at -80oC 

(milk, epithelium and vesicular fluid) or -20oC (isolates) before use.  

 

3.3.2 RNA extraction and rRT-PCR 

As samples in this chapter were tested before the molecular method optimisation 

occurred (see Chapter 2), the MagMAX™-96 Viral RNA Isolation Kit (Applied 

Biosystems®) was utilised, which is currently used for nucleic acid extraction from 

clinical samples in the WRLFMD. This kit uses the same chemistry as that described in 

method B, only the sample input volume is smaller (50 µL compared to 200 µL), 

resulting in an increase of approximately 1-2 CTs. 
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The pan-serotypic rRT-PCR assay described in Method B (Chapter 2) was carried out 

on an Applied Biosystems® 7500 Real-time PCR System, using the Superscript III 

Platinum® One-Step qRT-PCR Kit (InvitrogenTM), with primers and probes targeting 

the conserved 3D region of the FMDV genome (Callahan et al., 2002; OIE, 2017a), and 

thermal cycling conditions as previously reported (Shaw et al., 2007). Positive samples 

were then tested using the O, A, SAT 1 and SAT 2 East Africa (EA) typing rRT-PCR 

assays, as previously described (Bachanek-Bankowska et al., 2016). For all rRT-PCR 

assays, positive samples were defined as those with a CT value of ≤ 50. 

 

3.3.3 VP1 nucleotide sequencing 

Paired epithelial/fluid samples had been previously typed as SAT 1 (WRLFMD, 2015), 

therefore SAT 1 assay conditions were used. For amplification of the VP1 region of 

FMDV, a one-step RT-PCR described previously (Sanger et al., 1977; Knowles et al., 

2016) was performed with the primers shown in table 3.1.  Amplification products 

were visualised by electrophoresis on a 1.5% agarose-Tris-borate-EDTA gel containing 

0.5ug/ml Gel Red, and compared with DNA size markers (GeneRuler 100 bp DNA 

Ladder Plus, Fermentas Inc, USA). Post-PCR purification was carried out using the 

Illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare Life Sciences, UK) 

according to the manufacturer’s instructions, and the products eluted in 20 μL of 

elution buffer. 

DNA sequencing of PCR products was carried out using the BigDye® Terminator v3.1 

Cycle Sequencing Kit (Life Technologies), reactions cleaned up by ethanol/EDTA 

precipitation, and loaded onto the ABI 3730 DNA Analyser. Primers used are listed in 

table 3.1. VP1 sequences were assembled using SeqMan Pro (Lasergene package, 

DNAstar Inc., Madison, WI, USA), and further sequence analysis performed using 

BioEdit v7.2.5 (Hall, 1999). 

Phylogenetic analyses of the FMDV VP1 coding sequences of FMD virus isolates from 

milk and clinical samples were performed in MEGA7 (v0.26)(Kumar et al., 2016). The 

evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 
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1987). The evolutionary distances were computed using the Kimura 2-parameter 

method (Kimura, 1980) in the units of the number of base substitutions per site.  

 

Table 3.1. One step RT-PCR (A) and DNA sequencing primers (B) for SAT 1. Sequences 
are described previously (Knowles et al., 2016) 

(A) One step RT-PCR  (B) DNA Sequencing 

Forward primers Reverse primers Sequencing primers 

SAT1-1C559F SAT-2B-208R NK72 

SAT1U-OS SAT-2B-208R SAT1U-OS 

  SAT 1-1D200F 

  SAT 1-1D394R 

 

3.4  Results  

3.4.1 Detection of FMDV serotypes within milk samples 

An initial screen of all the milk samples was performed. FMDV RNA was detected in 

73/190 (38%) milk samples (Figure 3.1A) and the FMDV type was identified in 42/73 

(58%) FMDV positive milk samples (Figure 3.1B). SAT 1 was the most prevalent 

serotype detected (45%), followed by serotypes O (29%) and A (12%), with no 

evidence of SAT 2 in the milk samples tested (Figure 3.1B and Appendix II, Table 8.1). 

Typing of milk samples that were observed to have a CT value of above 38 using the 

pan-serotypic rRT-PCR assay was not possible. In addition, a positive signal from more 

than one typing assay was identified in eighteen milk samples, including three samples 

each positive for multiple serotypes (O, A and SAT 1). In samples with a positive signal 

for two FMDV types, O and SAT 1 were the most common types detected, while types 

A and SAT 1 were identified in one sample only.  

Published reports of clinical samples from the study region indicate circulation of all 

four serotypes during the study period (WRLFMD, 2015) (Figure 3.1C) and are mainly 

consistent with rRT-PCR typing results of the milk samples, apart from the absence of 

SAT 2 detection in the milk samples. 
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Figure 3.1 (A) CT values from the pan-serotypic rRT-PCR assay (  ) for milk samples 
collected from individual cows in northern Tanzania throughout the study period 
(n=190). (B) CT values for each East African serotyping rRT-PCR assay for samples that 
tested positive (CT ≤ 50) in the pan-serotypic rRT-PCR assay. (C) Collection dates and 
the reported serotypes of clinical samples (vesicular epithelium/fluid) submitted to 
the World Reference Laboratory for Foot-and-mouth disease (WRLFMD). : Serotype 
A.  : Serotype SAT 1. : Serotype O. : Serotype SAT 2. : Sample that could not be 
typed. 
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3.4.2 Detection of FMDV RNA in milk samples, compared to lesion material 

To determine if milk is a suitable alternative sample type to vesicular lesion material 

(epithelium/fluid) for FMDV detection and typing, both sample types collected from 

the same animal were tested and the results compared (Table 3.2). In the pan-serotypic 

assays, the CT values of the lesion material samples were stronger (lower CT values) 

than of the milk samples. Typing results were comparable for all pairs, with the 

exception of Animal A, where no signal was observed in any of the typing assays. In 

three animals (B, C and D), SAT 1 was detected in both milk and lesion material samples 

(Table 3.2). In animals C and D, the CT values of the pan-serotypic and the SAT 1-specific 

assays were comparable, while in animals A and B the differences in the values were 

greater. In animal A, SAT 1 was detected in the vesicular lesion sample only. Two 

different FMDV types (O and SAT 1) were detected in both milk and vesicular fluid in 

animal B, but type O was not detected in the vesicular epithelium sample. 

 

Table 3.2 FMDV detection in milk samples and epithelial samples. 

Animal 
Reference 

WRLFMD 
reference/ 
Milk sample Sample Type 3D O A SAT 1 SAT 2 

A 
TAN/20/2014 Vesicular epithelium 18.30 No CT No CT 24.98 No CT 

7736 Milk 33.31 No CT No CT No CT No CT 

B 

TAN/22/2014 Vesicular epithelium 10.19 No CT No CT 21.06 No CT 

TAN/23/2014 Vesicular fluid 9.94 38.07 No CT 19.76 No CT 

7609 Milk 29.04 33.13 No CT 33.42 No CT 

C 

TAN/28/2014 Vesicular epithelium 16.00 No CT No CT 20.33 No CT 

TAN/29/2014 Vesicular fluid 9.05 No CT No CT 10.3 No CT 

7805 Milk 26.48 No CT No CT 29.17 NP 

D 
TAN/34/2014 Vesicular epithelium 16.51 No CT No CT 16.77 No CT 

7815 Milk 25.08 No CT No CT 25.69 NP 

CT values are the mean of duplicates for each rRT-PCR assay. NP – not performed. 
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3.4.3 VP1 nucleotide sequencing of milk samples, compared to lesion 

material 

To determine if milk is a suitable alternative to the commonly used epithelial tissue 

and vesicular fluid sample types for characterisation of FMDV by VP1 sequencing, two 

sequences derived from the milk samples from northern Tanzania (7805 and 7815) 

were compared with previously reported sequences of paired epithelial/fluid samples 

from the same animal, held in the WRLFMD archive. 

VP1 sequences obtained from milk samples 7805 (animal C; accession number 

MH791039) and 7815 (animal D; accession number MH791040) were found to be 

identical (animal D) or within one nucleotide difference (animal C) to reported 

sequences of paired vesicular samples from the same animals (animal C: accession 

number MF592687, animal D: accession number MF592691) (Figure 3.2). The 

nucleotide difference for animal C was a non-synonymous change at VP1 amino acid 

position 204.  
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Figure 3.2 Phylogenetic analyses of FMDV VP1 coding sequences of FMD virus isolates 
(accession number in parentheses) collected from Tanzania in 2014. Blue triangles 
represent milk samples from cows 7805 and 7815, and red triangles represent clinical 
lesion material from the same animal. The tree is drawn to scale, with branch lengths 
in the same units as those of the evolutionary distances used to infer the phylogenetic 
tree. Evolutionary analyses were conducted in MEGA7(Kumar et al., 2016). 
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3.5 Discussion 

The aim of this chapter was to examine the suitability of milk from individual cattle for 

FMD detection and typing so that it could be used for FMD surveillance in endemic 

settings such as East Africa. FMDV RNA was detected in 38% of the 190 milk samples 

tested, and of these, 58% of samples could be typed, with some milk samples positive 

for more than one serotype. It is possible that these animals were co-infected with 

multiple FMDV serotypes, as has been previously described in endemic areas 

(Woodbury et al., 1994; Ferris et al., 1995; Casey-Bryars et al., 2018). However, 

alternative explanations should also be considered, including the possibility that these 

results represent (i) contamination due to contact with materials infected with other 

FMDV types during sample collection in the field, transport or testing in the laboratory; 

or (ii) cross-reaction between the individual typing rRT-PCR assays, although no 

evidence of this has been observed during the validation of these tests (Bachanek-

Bankowska et al., 2016). Samples that could not be typed were those with a low level 

of FMDV specific RNA, indicated by high CT values (> 38) detected in the pan-serotypic 

assay. It is likely that these samples were beyond the analytical sensitivity of the typing 

assays, and methods to concentrate virus could be investigated to improve this in the 

future. 

During the study period, all four serotypes were detected in clinical samples, as 

reported by WRLFMD (2015), which was mainly concurrent with the results of rRT-

PCR testing of milk samples. However, there was an absence of serotype SAT 2 

detection in the milk samples, likely due to milk samples not being collected from the 

specific locations where serotype SAT 2 was identified in clinical samples at the start 

of the study period. Additionally, on some dates, FMDV RNA was detected in a milk 

sample, but there were no confirmed diagnostic reports of this serotype in the region 

at this time. This could be due to poor farmer recognition of clinical signs, lack of 

disease reporting, or sample contamination (as discussed above). Alternatively, these 

results may indicate that FMDV can be detected in milk samples during the pre-clinical 

or convalescence phases of infection, as reported previously (Blackwell and 

McKercher, 1982; Reid et al., 2006; Armson et al., 2018 [see Chapter 2]), or even during 

subclinical infection. 
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In order to substantiate the use of milk as an alternative sample type for surveillance, 

typing assay results and VP1 sequences from both milk and the traditional diagnostic 

sample types (epithelium or vesicular fluid) from the same animal and collection date 

were compared. The stronger CT values of the lesion material samples compared to 

those of the milk samples when tested by the pan-serotypic rRT-PCR confirm previous 

observations of higher virus concentrations in vesicular lesions (King et al., 2006; 

Stenfeldt et al., 2015). Typing results were comparable, with SAT 1 detected in all 

samples apart from the milk sample from animal A, possibly due to the reduced viral 

load observed in this animal.  Additionally, the presence of type O in the milk and 

vesicular fluid from animal B, but not in the vesicular epithelium sample was 

interesting. As discussed above, contamination cannot be excluded as a reason for this 

result.  

Additionally, two sequences derived from the milk samples from northern Tanzania 

were compared with previously reported sequences of paired epithelial/fluid samples 

from the same animal, held in the WRLFMD archive. Sequences from the same animal 

were found to be identical, or with one nucleotide difference, which may be explained 

by a mutation that could have occurred during viral replication, as sequences from the 

vesicular samples were obtained from virus isolated on primary bovine thyroid (BTY) 

cells. Upon comparison of the SAT 1-specific primers/probe with the VP1-coding 

sequence data obtained from milk and vesicular samples, it was evident that the 

difference in CT values between the pan-serotypic and the SAT 1-type specific assay 

may occur due to nucleotide differences at the 3’ end of the primer binding region of 

the typing assay. At least one nucleotide difference was identified within the SAT 1-

specific typing assay binding region in sequences obtained from animals A and B, while 

no such differences were observed in sequence data obtained from animals C and D. As 

the VP1-coding sequence is the most variable genome region, mismatches between the 

primers and probes of the typing assays and the template are expected. Therefore, it is 

recommended to use typing assays alongside the more sensitive pan-serotypic assay 

as a screening tool (Bachanek-Bankowska et al., 2016). Only limited vesicular samples 

were available from the same animal for this study, therefore, generation of additional 

data when more samples are available will continue to further validate these 

preliminary results. Additionally, the detection of FMDV RNA in milk samples should 
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also be compared with that of other excretory samples such as nasal swabs, oral swabs, 

and OP fluid from the same animals at different stages of infection. Overall however, 

observations from paired samples indicate that, despite a weaker rRT-PCR signal, milk 

can be useful for the detection and typing of FMDV from individual animals. 

This study demonstrates that milk could represent a valuable sample type as an 

alternative to the traditional diagnostic samples collected for FMD surveillance: 

vesicular epithelium or fluid. Milk from individual animals can be routinely collected 

and FMDV RNA can be detected and typed by rRT-PCR in milk samples in a region 

where FMD is endemic, albeit with weaker CT values than from vesicular samples. 

Additionally, the identification of multiple FMD serotypes in an individual milk sample 

suggests the likely possibility of co-infection, however contamination should not be 

excluded. The study demonstrates that VP1 sequence data may be obtained from milk 

samples, enhancing the possibility of further, in-depth virus characterisation. Milk 

sampling as a targeted surveillance approach shows promise given the concordance 

between typing data from milk samples and confirmed reports from outbreak 

investigations. Due to the high analytical sensitivity of molecular tests used to detect 

FMDV, appropriate care needs to be taken to minimise the possibility for cross-

contamination during sample collection, transport and testing in the laboratory.  In 

conclusion, milk is a simple-to-collect, non-invasive sample type which might be 

utilised in targeted surveillance campaigns in FMD endemic regions. Follow-on studies 

are required to assess the application of pooled milk in combination with herd clinical 

status for improved FMDV surveillance. 
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CHAPTER 4 

Moving from individual to pooled milk: 

considerations for the transport and storage of 

samples collected from herds in endemic 

countries  

 

 

 

Acknowledgements: Bulk milk samples and MicroTabs, used for specificity and 

preservative testing respectively, were kindly provided by the Animal and Plant Health 

Agency (APHA), Surrey, UK.  

 

 

 

 

 



Chapter 4 

 

68 

 

4.1 Summary 

The cost-effective, non-invasive collection of pooled milk samples for herd-level 

surveillance in endemic settings may help to improve the current understanding of 

FMD epidemiology. However, in many developing countries where FMD is endemic, a 

lack of infrastructure and resources can pose challenges in maintaining the cold chain 

for sample storage and transportation to testing laboratories. This chapter aimed to 

address some of the logistical challenges that might impact on the use of milk samples 

for surveillance purposes in endemic settings, including determination of the stability 

of FMDV RNA in milk samples in different scenarios, simulating conditions that might 

be experienced during storage and transport. Experiments performed demonstrated 

that FMDV detection was not significantly affected during long-term storage at -20oC, 

after multiple freeze-thaw cycles (-20oC/room temperature) or treatment with a 

common preservative (Bronopol). However, heat treatment at 56oC as a method to 

inactivate virus is not recommended when rRT-PCR testing is to be performed, due to 

the large increase in CT values that occurs, potentially resulting in a loss in diagnostic 

sensitivity. Separate experiments aimed to determine the occurrence of non-specific 

amplification, and the level of intra-assay contamination that may occur when testing 

milk samples. In these studies, only, 3/884 wells in the FMDV rRT-PCR assay were 

found to be weakly positive for FMDV RNA, resulting in a specificity of 99.66%. With 

these considerations in mind, experiments performed in this chapter further support 

the utility of pooled milk as an alternative sample for FMD surveillance, especially 

when samples may need to be shipped long-distances for FMDV testing.  
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4.2  Introduction 

The potential of milk as an alternative sample type for FMDV detection has been 

described in Chapters 2 and 3 (Armson et al., 2018, 2019). Milk sampling is non-

invasive and can be cost-effective as milk is routinely collected from dairy farms. Milk 

is also potentially less susceptible to selection bias than the routine sample type 

(vesicular material), as it does not rely on the observation of clinical signs. Of particular 

interest is the potential use of pooled milk for routine, low-cost, herd surveillance of 

FMD in endemic settings to determine disease prevalence and improve our 

understanding of FMD prevalence and epidemiology, so that appropriate control 

measures may be employed. 

In many developing countries where FMD is endemic, a lack of infrastructure and 

resources can pose challenges in maintaining the cold chain for sample storage and 

transportation to reference laboratories (Fowler et al., 2014; Niedbalski, 2016). 

Consequently, temperature and/or pH changes may affect the preservation of clinical 

samples (Bachrach et al., 1957), which may be partially degraded upon arrival for 

testing, resulting in difficulties in fully characterising the field FMDV isolate (Shaw et 

al., 2004).  

The same may be true for milk samples, although several publications have reported 

an increased survival of FMDV in milk samples subjected to high-temperature 

pasteurisation, pH variation, freeze-drying, and the preparation of dairy products 

(Felkai et al., 1970; Blackwell and Hyde, 1976; Tomasula and Konstance, 2004; Spickler 

and Roth, 2012). It is hypothesised that the high fat and protein content of milk may 

partially protect the virus from inactivation procedures (Spickler and Roth, 2012).  

These experiments mostly involved the use of non-molecular testing methods, and 

were mainly focussed on the stability of live virus under extreme inactivation 

conditions, to assess the risk of milk and milk products for onward transmission of 

disease. Consequently, little is currently known about how these conditions affect the 

stability of FMDV RNA genome, and the ability to detect it using the FMDV rRT-PCR 

assay described in Chapter 2 (Armson et al., 2018).  
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It is anticipated that variations in temperature and consequently a decrease in pH (due 

to an increased growth of contaminating bacteria [Christiansson, Bertilsson and 

Svensson, 1999]) may cause degradation of full length, high quality RNA in the sample 

(Wilson, 1997), although this may still be detectable by the rRT-PCR assay.  

Additionally, PCR inhibition may occur due to substances found in milk such as 

bacterial contamination, antibiotics, RNases, fats and proteins, although an efficient 

RNA extraction method should remove many of these factors (Wilson, 1997; Radström 

and Al-soud, 2001; Schrader et al., 2012). Consequently, if milk samples from 

developing countries may be utilised as an alternative sample for FMDV detection, 

more research is required on the effects that these small changes in temperature or pH, 

which may occur during transportation, may have on FMDV RNA genome stability and 

the ability to detect it using the rRT-PCR assay. 

Milk samples collected from field settings in this project (see chapters 3, 5 and 6) show 

that FMDV RNA genome is detected by rRT-PCR consistently with high CT values (>30 

for pooled milk). Although limit of detection studies performed in Chapter 2 (Armson 

et al., 2018) demonstrate positive CT values of up to 41, it is possible that results may 

be due to false amplification. False amplification may occur for three main reasons: 

(i) Environmental contamination during sample collection, for example transferring 

equipment between farms without sufficient disinfection. 

(ii) Intra-assay or inter-assay contamination of the plate wells during set-up, RNA 

extraction or rRT-PCR from the laboratory environment or positive controls.  

(iii) Non-specific amplification of other template (e.g. from other organisms) present 

in milk.  

During work performed for this thesis, environmental contamination was controlled 

as far as was reasonably practicable for example sample collectors wore disposable 

gloves and used disinfectant appropriately. It was therefore assumed to be negligible 

for the purpose of this study. ‘False positives’ may have occurred due to non-specific 

amplification, i.e. amplification of other nucleic acid other than that of the target gene 

found in milk samples, although it is anticipated to be negligible due to the high 

analytical specificity of the primers and probes used (targeting the 3D polymerase) 

(Callahan et al., 2002; Reid et al., 2009). Furthermore, the possibility for intra-assay 
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contamination during set-up and testing cannot be ignored, as this might lead to 

amplification in samples of known negative origin (Reid et al., 2009). However, in the 

study by Reid et al. (2009) a different RNA extraction protocol and sample matrices 

were used. Therefore, the specificity of the method used for FMDV detection in this 

project still requires assessing.  

This chapter is divided into two main parts. First, experiments were performed to 

simulate a range of scenarios that may occur from the point of milk sample collection 

to final testing. These include investigating the effects of various factors on the stability 

of FMDV RNA and the ability of detection by the rRT-PCR. These factors include heat 

inactivation and the addition of a common preservative (Bronopol) prior to shipment, 

and variations in temperature during long term storage and transportation. 

Second, sensitivity and specificity experiments were performed to test more robustly 

the FMDV rRT-PCR detection method used throughout this thesis. It was anticipated 

that results from these experiments would help to better inform the conditions 

employed for the storage, transport and testing of pooled milk samples from endemic 

regions. 

 

4.3  General materials and methods 

4.3.1 Clinical samples 

FMDV viruses used in this chapter were obtained either from archival stocks of cell 

culture isolates (isolated once in primary bovine thyroid [BTY] cells) held in the 

WRLFMD repository (The Pirbright Institute, UK), or were archival samples previously 

collected from experimental studies as described in Chapter 2 (Armson et al., 2018). 

Negative unpasteurised milk from Jersey cattle used for preparing dilution series or as 

controls was purchased from a UK farm. Unpasteurised milk samples as a negative 

cohort used for specificity testing were kindly provided by the Animal and Plant Health 

Agency (APHA), collected from UK farms every quarter as part of the national 

Brucellosis surveillance programme (DEFRA, 2015a).  
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4.3.2 RNA extraction 

All RNA extractions were carried out using the MagMAX™ 96 Viral RNA Isolation Kit 

(Applied Biosystems®) using a sample input of 50 µL on a MagMAX™ Express 96 

Extraction Robot (Applied Biosystems®) according to manufacturer’s instructions. 

Negative extraction controls consisted of unpasteurised whole milk added to lysis 

buffer.  

 

4.3.3 Real-time reverse transcription PCR 

All rRT-PCR assays were carried out on an ABI7500 rRT-PCR machine (Applied 

Biosystems®) using the reagents, parameters and thermal cycling conditions as 

previously described in Chapter 2 (Method B) (Callahan et al., 2002; Shaw et al., 2007; 

Armson et al., 2018). Replicates of samples with a CT value of >50 were considered 

negative, and weren’t included in statistical analyses. 

 

4.3.4 Virus Isolation 

Virus isolation of milk samples was carried out on primary bovine thyroid (BTY) cell 

cultures (Snowdon, 1966), with the following modification. After the 30 minute 

incubation of the test-sample cell-culture tubes to allow adsorption of virus into the 

cells, all tubes were washed 3-5 times with phosphate buffered saline (PBS, Severn 

Biotech Ltd.) before the addition of 2mL Eagle’s maintenance medium (serum free, 

MEM with HEPES, phenol red & GlutaMax)(Gibco®, Life Technologies). Tubes were 

then returned to the incubator for 72 hours and observed each day for cytopathic effect 

(CPE). Titrations of the original virus spiked milk sample were performed and the viral 

titre was calculated using the Spearman-Kärber method, as described by the UN, Food 

and Agriculture Organization (FAO) and expressed in units of TCID50/mL (Karber, 

1931; OIE, 2017a). 
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4.4 The stability of FMDV RNA in milk samples  

4.4.1 Treatment of milk samples prior to shipment 

This section investigates the effect of preservative treatment, heat inactivation and 

storage of milk samples on the ability of the rRT-PCR assay described above to detect 

FMDV RNA genome. The latter two methods could be employed prior to shipment in 

order to increase the time before spoiling or to inactivate the virus, and consequently 

may reduce the cost of shipment to international reference laboratories by allowing 

shipment at a lower category level.  

 

(A) Does treatment with a common preservative affect the ability to detect FMDV by rRT-

PCR? 

As part of the national brucellosis surveillance programme, bulk milk samples collected 

by large-scale farms and submitted to national laboratories are often treated with a 

preservative to increase their storage duration before spoiling. A common preservative 

used in the UK is Bronopol (2-bromo-2-nitro-1,3-propanediol) plus natamycin. If a 

similar scheme was employed for FMD surveillance in the UK, milk samples may 

contain this preservative.  

Alternatively, this preservative could be added before shipment, so that samples may 

only need to be refrigerated during transportation. A previous experiment, using a 

different RNA extraction and rRT-PCR method to the one employed in this project, 

demonstrated that treatment with a similar Bronopol-based preservative had no 

significant effect on the detection of FMDV RNA in milk samples (Reid et al., 2006).  

Method 

One ‘Broad Spectrum Microtabs II™’ (Advanced Instruments) tablet, containing 8 mg 

Bronopol and 0.30 mg Natamycin, was added to 25 mL unpasteurised Jersey milk, to 

simulate the method used in samples collected in the UK for the surveillance of other 

diseases such as brucellosis and bovine viral diarrhoea. Two ten-fold serial dilutions 

(10-1 to 10-8) of cell-culture isolate A/KEN/6/2012 were prepared, one in the 

preservative-treated milk, and one in untreated negative milk as a control. RNA 
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extraction and the rRT-PCR assay were performed on each dilution series in triplicate. 

A paired t-test was performed comparing the results of preservative treated versus 

untreated dilution series. 

Results 

Results showed that the limit of detection for the untreated sample was one log10 

higher than for the treated sample, although this was near the limit of analytical 

sensitivity of the rRT-PCR assay (Figure 4.1). However, there was no significant 

difference between the mean CT values of the treated and untreated dilution series 

(p=0.139). 
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Figure 4.1 rRT-PCR results for the milk samples treated with preservative added ( ) 
and untreated ( ). Each point represents the mean of three replicates. Black symbols 
indicate where no amplification was observed for one or more replicate. Error bars 
indicate the standard deviation. 
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(B) What effect does heat-inactivation of samples have on the ability to detect FMDV RNA 

by rRT-PCR? 

Strict procedures exist for the shipment of samples containing live FMD virus (IATA, 

2019) and it is recommended that samples of unknown FMD status (i.e. could contain 

live virus) be shipped according to category A (The Pirbright Institute, 2019), which 

requires expensive packaging and shipping. Prior validated inactivation of any live 

virus present may therefore allow shipment of milk samples at a reduced cost, as 

samples may be sent at a lower category level. This allows more samples to be included 

in one shipment, and the requirements for packaging are fewer (IATA, 2019).  

Heat inactivation is a cheap, simple inactivation protocol currently used for serum 

samples (The Pirbright Institute, 2019), involving heating samples in a water 

bath/heat block for two hours. It is anticipated that this method could be applied to 

milk samples, and could be performed by local low-resource laboratories before 

reduced-cost shipment to national/international reference laboratories for diagnostic 

testing. This section investigates the stability of FMDV RNA in milk and consequent 

detection by the rRT-PCR after heat-inactivation. 

Method 

A 10-1 dilution of cell culture isolate A/SAU/6/2015 was prepared in unpasteurised 

whole milk, and fifteen replicates of this dilution were aliquoted into 1.8 mL cryotubes. 

An additional four aliquots of milk were also prepared, as an FMD-negative control. 

Three tubes of the 10-1 dilution and an FMD negative control were placed in a water 

bath at 56oC for different time periods (60 mins, 45 mins, 30 min or 15 mins). An 

additional 3 tubes and an FMD-negative control were placed at +4oC for 60 minutes as 

non-treated controls. 

After heat inactivation (or no treatment), virus isolation and RNA extraction-FMDV 

rRT-PCR were performed on all milk samples and FMD-negative controls. Additionally, 

virus titrations of the original virus spiked milk sample were performed on BTY cells 

(10-1 – 10-8) to calculate the virus titre. 
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Results 

The virus titre of the FMDV A/SAU/6/2015 sample when spiked in unpasteurised milk 

was 6.0 log TCID50/mL.  

No CPE was observed after heat inactivation of FMD infected milk samples for 30 

minutes or more (Table 4.1). As observed by eye, a large difference in CT value was 

observed when comparing no heat treatment with all heat inactivation times (CT 

difference >10).  

 

Table 4.1 Results of the pan-serotypic rRT-PCR assay and virus isolation after heat 
inactivation. 

Heat inactivation at 56oC CT value (SD) CPE observed in BTY cells 

None 17.97 (0.08) 3/3 

15 mins 28.47 (0.99) 3/3 

30 mins 32.59 (0.42) 0/3 

45 mins 34.28 (0.63) 0/3 

60 mins 33.17 (0.44) 0/3 

SD: standard deviation. CPE: cytopathic effect. BTY: bovine thyroid. CT values are the mean of three 
biological and three technical replicates (n=9).  

 

(C) Does long-term storage at -20oC affect the ability to detect FMDV by rRT-PCR? 

International reference laboratories typically maintain those samples not preserved in 

glycerol for long-term storage in a -80oC freezer. However, low-resource laboratories 

may only have access to ‘regular’ freezer space that maintains a temperature of -20oC. 

Consequently, milk samples may need to be stored at this temperature for long periods 

until enough samples are collected for shipment. 

Method 

A ten-fold dilution series (10-1 – 10-8) of cell culture isolate A/TAN/1/2013 was 

prepared in unpasteurised whole milk. Nine 500 µL aliquots of each dilution were 

prepared, and four aliquots of each dilution series stored at either -20oC or -80oC. At 3-

month time intervals over a period of one year (i.e., at 0, 3, 6, 9 and 12 months), an 

aliquot stored at -20oC and -80oC was removed for testing. RNA was extracted in 
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triplicate from each dilution series and the pan-serotypic rRT-PCR performed on each 

replicate.  

Paired t-tests were performed comparing the two storage temperatures at each time 

interval (3, 6, 9 and 12 months). Additionally, paired t-tests were carried out to 

compare the CT values at Day 0, with -20oC storage at each time interval.   

Results 

There was no significant difference in the CT values obtained between storage at -80oC 

and -20oC at any of the time intervals, apart from at 6 months (p = 0.02) (Figure 4.2). 

However, the difference in average CT values for the 6 month time interval was small 

(mean of difference = 1.22, 95% CI = 0.18 – 2.25). Additionally, when long term storage 

(12 months) is compared with testing on Day 0, no significant difference in the limit of 

detection was observed (p = 0.08).  
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4.4.2 Storage of milk samples during transportation  

This section aims to determine the effect of temperature on rRT-PCR detection of 

FMDV changes that may occur during storage and transportation, in a number of 

experiments, described below. 

 

(D) What is the effect of freeze-thawing samples on FMDV detection by rRT-PCR? 

From sample collection through to testing, milk samples may be freeze-thawed 

multiple times, for example if further aliquoting of the sample is required, or during 

transportation, especially where delays may result in inadequate maintenance of the 

cold-chain. 

Method 

For experiments (D) and (E) two milk samples collected from the in-vivo experimental 

infection study (Chapter 2) were chosen with different levels of FMDV RNA present 

(based on original CT value): Animal 867, 4 days post infection (DPI) (average CT = 

19.65) and Animal 867, 7 DPI (average CT = 26.61), named ‘high’ and  ‘low’ respectively. 

In order to ensure enough material was available, samples were diluted 1/20 in 

unpasteurised whole milk, and separated into different aliquots for each experiment 

(D) and (E).  

For this experiment (D), each sample (‘high’ and ‘low’) underwent five freeze-thaw 

cycles: samples were stored at -20oC for at least 3 hours, and then defrosted for at least 

30 minutes at room-temperature (RT) (approximately 21-23oC). RNA was extracted in 

triplicate and the pan-serotypic rRT-PCR performed on each replicate at the start of 

the experiment, and also at each ‘thaw’ step (Figure 4.3). Additionally, the pH was 

measured at each ‘thaw’ step by adding a drop of each sample to universal pH indicator 

paper. This was to determine whether these temperature fluctuations also affected the 

pH of the milk sample, for example due to an increase in the growth of contaminating 

bacteria, as a decrease in pH may cause degradation of intact virus and nucleic acid, 

potentially leading to a ‘false negative’ result. One-way ANOVA tests were performed 

to compare CT values obtained at each thaw stage for the ‘high’ and ‘low’ samples. 
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Figure 4.3 The freeze-thaw process carried out for each sample (‘high’ and ‘low’), 
indicating the point at which rRT-PCR and pH testing was carried out. 

 

Results 

There was no significant difference between the mean CT values between any of the 

thaw steps for the ‘low’ sample (p = 0.23) (Figure 4.4). A significant difference between 

thaw steps was observed for the ‘high’ sample (p = <0.01), however the difference 

between the lowest and highest CT value for this sample was small (CT=1.29). At each 

thaw step, the pH of each sample remained at 7. 
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Figure 4.4 CT values from the pan-serotypic rRT-PCR measured at each thaw (T) step 
for the ‘high’ sample ( ) and ‘low’ ( ) sample. Each point represents the mean of 
three replicates. Error bars indicate the standard deviation. 

 

(E) What is the effect of short term storage at +4oC or room-temperature on FMDV 

detection by rRT-PCR? 

If freeze-thawing samples does have a negative effect on FMDV detection, an 

alternative to shipping samples on dry ice to maintain samples in a frozen state would 

be to transport refrigerated samples. This may also reduce cost and the package size 

required. 

Method 

Thirteen aliquots of each sample (‘high’ and ‘low’) were prepared, and four aliquots of 

each were stored at +4oC, room temperature, and -20oC as a control (Table 4.2). 

Samples were stored for four days, and on each day, an aliquot was removed, RNA 

extracted in triplicate and the pan-serotypic rRT-PCR performed on all replicates. 

Additionally the pH was measured, as above.  
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Table 4.2 Storage temperatures and rRT-PCR testing intervals for samples ‘high’ (H) 
and ‘low’ (L). 

Day 0 Day 1 Day 2 Day 3 Day 4 

Untreated -20oC +4oC RT -20oC +4oC RT -20oC +4oC RT -20oC +4oC RT 

H H H H H H H H H H H H H 

L L L L L L L L L L L L L 

Results 

Using a paired t-test, there was no significant difference between short term storage at 

-20oC (control) and +4oC for the ‘low’ sample (p = 0.57) or the ‘high’ sample (p = 0.08) 

over the 4 days (Figure 4.5). However, using a one way-ANOVA, there was a significant 

difference with these two temperatures compared with room temperature storage for 

the high sample (p = 0.001). Additionally, over the 5 days there was a significant 

difference in CT value for the ‘high’ sample (p = 0.02), with an overall decrease in CT 

value during storage at -20 oC and +4 oC, in contrast to an increase in CT value for 

storage at room temperature. The pH remained at 7 for all samples/days, apart from 

for days 3 and 4 when both samples were stored at room temperature, where the pH 

lowered to 6. 
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Figure 4.5 CT values from the pan-serotypic rRT-PCR measured on each day after 
storage at -20oC ( ), +4oC ( ), and room temperature (RT) ( ) for the ‘high’ and ‘low’ 
samples. CT values for the untreated high ( ) and low ( ) milk samples prior to 
storage are also indicated. Each point represents the mean of three replicates, apart 
from ‘high’-RT-D4, as no amplification was observed for one replicate. Error bars 
indicate the standard deviation.  

 

 

 

 

 

 

 



Chapter 4 

 

84 

 

4.5 Assessing the FMDV detection system using milk 

samples. 

(F) Reproducibility of the limit of detection 

Although limit of detection (LOD) experiments have previously been performed using 

the FMDV detection method employed in this project (see Chapter 2, Armson et al., 

2018), these experiments have shown that at the LOD of the rRT-PCR assay 

amplification often only occurs in a proportion (e.g. one replicate out of two) of samples 

containing low amounts of viral RNA, as seen elsewhere in this chapter in experiments 

(A), (C) and (G-ii). This experiment aims to determine how consistently samples 

containing low amounts of viral RNA are detected at the LOD of the rRT-PCR. 

Method 

Ten-fold serial dilutions of FMDV cell culture isolate A/SAU/6/2015 were prepared in 

negative unpasteurised milk. The virus titre at a 10-1 dilution was 6.0 log TCID50/mL 

(see experiment [B]). RNA was extracted from the dilutions 10-3 to 10-8 and 10 

replicates of each dilution were tested using the pan-serotypic rRT-PCR.  

Results 

Amplification was observed for all ten replicates at a dilution of 10-6 (Figure 4.6). 

However, amplification was also observed for 4/10 (40%) of replicates at a dilution of 

10-7.  
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Figure 4.6 rRT-PCR (CT) values of ten replicates of the ten-fold dilution series of cell 
culture isolate A/SAU/6/2015 spiked in unpasteurised milk. Dotted lines represent the 
mean of the ten replicates. 

 

(G) Diagnostic specificity 

In order to determine the diagnostic specificity of the FMDV detection system in milk, 

two experiments were performed:  

(i) Checkerboard test to assess intra-run cross-contamination 

(ii) FMDV rRT-PCR of milk samples from a known FMDV negative cohort 

 

(G-i) Checkerboard test 

Method 

In these experiments (G-i and G-ii), cell culture isolate O/SAU/1/2016 was diluted to 

10-2 in unpasteurised whole milk to prepare a FMDV positive control. Unpasteurised 

whole milk was used for the negative control.  
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Positive and negative control samples were added to the RNA extraction plate in a 

checkerboard layout as displayed in figure 4.7, and then an rRT-PCR performed in the 

same layout.  

Results 

No rRT-PCR signal indicative of contamination was observed in any of the negative 

wells. The mean CT value of the positive wells was 24.24±0.71, with an inter-well 

coefficient of variation of 2.91%. 

22.5 NEG 23.5 NEG 24.4 NEG 24.9 NEG 24.4 NEG 23.8 NEG 

NEG 22.6 NEG 24.1 NEG 23.8 NEG 24.1 NEG 24.1 NEG 23.9 

24.2 NEG 24.4 NEG 24.6 NEG 24.6 NEG 23.8 NEG 25.2 NEG 

NEG 24.5 NEG 24.5 NEG 24.5 NEG 24.0 NEG 24.9 NEG 24.0 

23.8 NEG 24.9 NEG 24.5 NEG 24.8 NEG 24.5 NEG 26.0 NEG 

NEG 23.9 NEG 23.7 NEG 24.1 NEG 24.2 NEG 25.1 NEG 24.3 

23.4 NEG 25.2 NEG 25.3 NEG 24.2 NEG 24.0 NEG 24.1 NEG 

NEG 24.1 NEG 23.0 NEG 22.8 NEG 24.7 NEG 23.9 NEG 25.6 

 

Figure 4.7 Checkerboard layout and CT values after rRT-PCR of positive and negative 
spiked milk (white and grey wells, respectively). NEG: CT value >50.  

 

(G-ii) FMDV rRT-PCR of known negative samples 

Method 

Bulk milk samples (n = 442) collected from UK farms as part of the national brucellosis 

surveillance programme for England (DEFRA, 2015a) and submitted to the Animal and 

Plant Health Agency (APHA), Surrey, UK were used in this experiment. Broad Spectrum 

MicroTabs were added to each sample as a preservative, and they were refrigerated 

until tested. As the UK was free from FMD when these samples were collected, it was 

expected that all samples should be negative for FMDV on the rRT-PCR assay, allowing 

the specificity of the assay to be calculated.  

RNA was extracted from the bulk milk samples, and then the rRT-PCR was performed 

on each sample in duplicate. Two positive and two negative control wells were 

included on each of the 11 rRT-PCR plates. 
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Results 

Results of the rRT-PCR assays are shown in Table 4.3. Three wells (a maximum of one 

per plate) demonstrated false positive results with CT values ranging between 39.11 

and 41.09, leading to a specificity of the rRT-PCR assay of 99.66% (95% CI: 99.01% - 

99.91%). Taking a ‘positive’ result as amplification in both duplicate wells the 

specificity of the rRT-PCR assay for the 442 milk samples tested was 100%. All controls 

were correct. 

 

Table 4.3 rRT-PCR assay results of the 442 bulk milk samples tested.   

rRT-PCR plate 
number 

Number of Bulk 
milk samples 
tested  

Number of wells 
containing bulk milk 
samples 

Number of wells 
positive* for FMDV (CT 
value, % of total) 

1 43 86 0 (0%) 

2 43 86 0 (0%) 

3 43 86 0 (0%) 

4 43 86 1 (41.09, 1.16%) 

5 43 86 0 (0%) 

6 43 86 0 (0%) 

7 43 86 1 (39.39, 1.16%)) 

8 43 86 1 (39.11, 1.16%)) 

9 43 86 0 (0%) 

10 43 86 0 (0%) 

11 12 24 0 (0%) 

Total 442 884 3 (0.34%) 

*A positive result is defined as a CT value ≤ 50 
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4.6 Discussion 

Experiments performed in the first part of this chapter (section 4.4) aimed to simulate 

the storage, treatment and transport conditions of milk samples that may occur when 

they are collected from cattle in an endemic or outbreak setting.  

After collection, milk samples may be stored locally either on the farm, or at a local 

laboratory. In order to increase the robustness of the samples during this temporary 

storage period, samples may be treated with a preservative, for example Bronopol, 

currently used in the UK when bulk milk samples are collected for the surveillance of a 

number of diseases (DEFRA, 2015a). Experiment (A) aimed to determine whether 

treatment with this common preservative has an inhibitory effect on the detection of 

FMDV, using the methods described in this thesis. Although there was no significant 

difference between the mean CT values of the treated and untreated milk samples for 

the samples containing higher concentrations of FMDV RNA, there was a one log10 

reduction in the limit of detection with treatment. Consequently, this method is only 

recommended where may be anticipated difficulties with maintenance of the cold 

chain, and where milk samples are not likely to contain low levels of FMDV RNA (e.g. 

pooled samples from large herds).  

Together with treatment of milk samples with preservative, it was anticipated that 

prior inactivation of any live virus present  may help to reduce the high cost of sample 

shipment by allowing milk samples to be sent at a lower category level. It has been 

demonstrated at TPI that FMDV infected serum samples that were heat treated for 2 

hours at 56°C resulted in an inability to propagate the virus in tissue culture (The 

Pirbright Institute), although shorter time periods have also been reported to be 

effective (personal communication, Alison Morris). Prior to my study the ability to 

detect FMDV RNA following this treatment had not been investigated. However, it was 

anticipated that heat treatment for up to 2 hours may degrade FMDV RNA. 

Consequently, experiment (B) was designed to investigate whether the inactivation of 

live FMD virus was possible over shorter heat treatment times in milk samples, and 

following this, whether this affected FMDV RNA genome detection by rRT-PCR. Indeed, 

treatment of milk samples at 56oC for over 30 minutes did inactivate any live virus 

present, however, it also significantly increased the resulting CT value (>10). Although 



Chapter 4 

 

89 

 

this may be suitable for milk samples collected from individual cattle at the peak of 

FMD infection, this would not be appropriate for convalescing animals, or indeed 

pooled milk samples that typically demonstrate weaker CT values. This experiment 

used a cell-culture isolate spiked milk sample, instead of milk from a naturally infected 

cow and it is thought that virus shed within cells of the milk from an infected cow may 

be further protected from inactivation procedures (Sellers, 1969; Tomasula et al., 

2007). Therefore it is possible that the changes in CT values/limit of detection may be 

reduced in this case, after heat inactivation or indeed after treatment with 

preservative. Consequently, further research should be performed to test heat 

inactivation of naturally infected milk samples, but also serum and other sample types, 

to determine whether the recommended 2 hour inactivation period could be shortened 

with the same inactivation effectiveness. 

After collection in endemic countries, milk samples may need to be stored for a number 

of months in a -20oC freezer, prior to testing or shipment to international reference 

laboratories. Experiment (C) demonstrated that, when compared to the ‘gold standard’ 

sample storage for international reference laboratories (-80oC), there was no 

significant difference in FMDV RNA detection after 12 months of storage at -20oC. This 

indicates that storage of milk samples in -20oC freezers, which are more widely 

available in low resource laboratories, for up to 12 months would not affect the results 

of the rRT-PCR. However, for this experiment the temperature of the freezers remained 

in range (-90oC to -50oC for the -80oC freezer, -30oC to -5oC for the -20oC freezer), but 

in some endemic settings, power outages are a common occurrence, which may lead to 

freeze-thawing of the milk sample.    

Consequently, experiment (D) aimed to simulate a scenario where multiple freeze-

thaws of a milk sample may occur before testing. This may occur during storage, due 

to power outages as mentioned above, aliquoting of samples before transportation, or 

during a delayed/prolonged shipment. This experiment showed that even after five 

freeze-thaw steps, there was little change in CT value (maximum change from starting 

value = 1.29 CT). This indicates that unintentional freeze-thaws that may occur 

between sample collection and testing should not negatively affect the results 

generated by rRT-PCR.  
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In addition, experiment (E) was carried out to determine whether milk samples may 

be refrigerated during transportation to reduce shipping costs, instead of being 

maintained in a frozen state as currently recommended. Interestingly, CT values of 

samples stored at +4oC were not significantly different from those stored at -20oC for 

four days for both the ‘high’ and ‘low’ samples. Storage at room temperature was also 

tested, and for the ‘high’ sample had a negative effect on the resulting CT value after 

storage for 4 days. Interestingly however, no negative effect on the resulting CT value 

for the ‘low’ sample was observed. The reason for this difference in the behaviour of 

the two samples is unknown. It is hypothesised that spoiling of the milk and lowering 

of the pH may have led to degradation of virus/nucleic acid, although it has been 

demonstrated that FMDV RNA detection is still possible from lateral flow device strips 

treated with citric acid (Romey et al., 2018). Consequently, it is possible that samples 

may be refrigerated during transportation, as long as this temperature can be 

maintained, as RNA detection from samples stored at higher temperatures is 

unpredictable. This may be used as a method to reduce shipment costs without 

affecting the viability of the RNA by permitting the use of simpler packaging types, 

decreasing the  dimensions of packages, and removing the need to ship samples on dry 

ice.  

Although these experiments demonstrate potential opportunities to reduce shipping 

costs, the use of a temperature monitor included in the shipment may be useful to 

record any fluctuations in the temperature of samples that may occur. This may then 

assist in informing the true status of test results, for example, whether there may be 

false negatives due to a prolonged increase in temperature during shipment. These 

experiments used limited isolates to test these methods and, although it is anticipated 

that differences in FMDV serotype/lineage would have little effect, this should be 

considered if a milk sampling surveillance system is to be implemented. 

In the next part of this chapter (section 4.5), experiment (F) demonstrated the potential 

for false negative results when the levels of FMDV RNA genome in a pooled sample may 

be low, and at the limit of detection of the assay. Replicate rRT-PCR testing (e.g. 

duplicate/triplicate) is therefore recommended to increase the likelihood of FMDV 

detection. 
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Previous studies have investigated the diagnostic specificity of the FMDV rRT-PCR. For 

example, Reid et al. (2009) observed a 98.9% specificity for 3,004 samples collected 

from FMD-negative farms during field outbreaks in the United Kingdom in 2007. 

Additionally, as part of the collaborative work carried out for Chapter 2, the Foreign 

Animal Disease Diagnostic Laboratory (FADDL) observed a diagnostic specificity of 

100% when testing 1,005 individual bulk milk tank samples in 5 US states 

(unpublished). However, both studies used different reagents/equipment/sample 

types to those used in this project. Therefore, in order to have confidence in the results 

from this project, it was important to determine the possibility of non-specific 

amplification, and the level of intra-assay contamination that may occur when testing 

milk samples by the chosen FMDV rRT-PCR assay. 

For both experiments (G-i) and (G-ii), over 99% of samples known to be negative for 

FMDV were correctly identified as negative, with a 100% diagnostic specificity if a 

‘positive’ result requires the presence of amplification in all replicate wells. It can 

therefore be assumed that amplification due to the presence of other template present 

in the milk cross-reacting with the FMDV rRT-PCR assay, is negligible, as observed 

previously. However, there were three samples where amplification did occur, 

indicating that some intra-assay contamination may occur during set-up or testing. CT 

values of these false positives were those that may be expected from truly FMDV 

positive pooled milk samples. It is possible that this level of intra-assay contamination 

and the associated CT values may be due to the strong positive controls used in this 

experiment (approximately CT = 20), and using controls with higher CT values may 

reduce this level of contamination. It is therefore necessary that great care is taken to 

minimise the risk of contamination when performing these assays, as it is difficult to 

determine whether a positive result is the result of false amplification, especially when 

samples containing low concentrations of FMDV RNA may not demonstrate 

amplification in all replicates tested. Additionally, this experiment was limited by the 

cost of reagents and the availability of samples. To more accurately determine the 

specificity of the rRT-PCR assay, it is recommended that a greater number of negative 

milk samples are tested, including those from a range of cattle breeds from different 

geographical regions. Indeed it should be considered that although the FMDV pan-
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serotypic assay has been shown to be highly specific, organisms that may be present in 

the milk of animals not from the UK have the potential to cause false positive results.  

 

4.7  Conclusion 

Experiments performed in this chapter have tackled some of the logistical issues that 

might impact the use of pooled milk collected from outbreak scenarios or endemic 

settings, and shipment to national/international reference laboratories for FMDV 

detection by rRT-PCR.  

Experiments in this chapter have demonstrated that the integrity of FMDV RNA 

present in milk samples does not seem to be significantly affected by changes such as 

chemical treatment with Bronopol, during freeze-thaw, and during refrigerated 

storage. It is likely, as alluded to previously (Blackwell and Hyde, 1976; Tomasula and 

Konstance, 2004; Spickler and Roth, 2012), that the high fat and protein content of 

whole milk may offer protection against these changes, making milk a particularly 

suitable sample type for FMDV detection.  

Additionally, although the high analytical sensitivity of the FMDV rRT-PCR assay is 

encouraging, care should be taken when interpreting the test results of pooled milk 

samples from cattle in the field. In order to maximise the likelihood of FMDV detection 

in pooled milk samples containing a low FMDV RNA concentration, it is recommended 

that multiple replicates of samples are tested. In addition, great care should also be 

taken to minimise the likelihood of intra-assay contamination during testing using 

appropriate methods. These include the use of individual laboratory space and 

personal protective equipment for each stage of the testing process to minimise 

contamination of ‘clean’ reagents, laboratory/workspace disinfection and regularly 

changing gloves (Wilson, 1997; CDC, 1999; Schrader et al., 2012). 

With these considerations in mind, experiments performed in this chapter further 

support the utility of pooled milk as an alternative sample for FMD surveillance, 

especially when samples may need to be shipped long distances for FMDV testing. 
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CHAPTER 5 

Utilising milk from pooling facilities as a novel 

approach for foot-and-mouth disease 

surveillance 

 

Data presented in this chapter has been published in Transboundary and Emerging 

Diseases: https://onlinelibrary.wiley.com/doi/10.1111/tbed.13487   

 

© 2020 The Authors. Transboundary and Emerging Diseases published by Blackwell Verlag GmbH. 

 

Additionally, description of the study area and sample size calculations for Survey 1 

have been described in the following research article, published in Veterinary Research 

(See Appendix III, Figure 8.2): https://doi.org/10.1186/s13567-019-0652-0.   

 

https://doi.org/10.1186/s13567-019-0652-0
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Rono carried out small-holder farmer surveys, with assistance from the animal health 

assistants and drivers. Thanks also go to the milk pooling facility managers, the county 

and sub-county veterinary officers, and village chiefs for their support and cooperation 

of the project.  

Laboratory work and analysis: Milk samples were shipped to The Pirbright Institute 

and tested by BA, who also carried out data analyses, interpretation of results and 

writing. Simon Gubbins and ADN provided additional guidance on statistical analysis. 
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5.1 Summary 

Surveillance systems for foot-and-mouth disease (FMD) have several limitations and 

biases, and are often not effective in resource-limited countries. Using milk for the 

detection of FMD virus (FMDV) as a non-invasive, routinely-collected and cost-effective 

surveillance tool could address some of these limitations. This chapter aimed to 

investigate the potential of pooled milk sampling for FMD surveillance using real-time 

RT-PCR (rRT-PCR) which was compared with reports of household-level incidence of 

FMD in Nakuru County, Kenya. Pooled milk samples were collected weekly from five 

pooling facilities that were supplied by smallholder dairy farmers. Alongside this, 

periodic cross-sectional surveys of smallholder farmers were performed which were 

powered to detect a threshold household-level FMD incidence of 2.5%. Information on 

trends in milk production and sales was also collected, where it was observed that up 

to 26% of the smallholder farmers surveyed were contributing milk to pooling 

facilities. FMDV RNA was detected in only 9/219 pooled milk samples, with SAT 1 

identified in 3 out of the 9 positive samples using a type-specific rRT-PCR. This finding 

was consistent with the laboratory confirmed serotype responsible for outbreaks in 

the study area at the time of milk sampling. Milk samples were positive for FMDV RNA 

on 4/21 half-month periods when at least one farmer reported observing FMD on their 

farm, i.e. the clinical FMD incidence at the household level was above a threshold of 

2.5%. This indicates that the pooled milk surveillance system can detect FMD 

household level incidence at a threshold of 2.5%. Additionally, milk samples were 

positive for FMDV RNA on 5/21 half-month periods when there were no reports of 

FMD by farmers during the surveys, indicating that this surveillance system may be 

able to reveal the presence of FMD at even lower levels of infection in the population 

(i.e. below a threshold of 2.5%), or when conventional disease reporting systems fail. 

This pilot study highlights that surveillance based on molecular detection of FMDV in 

pooled milk samples has the potential to address some of the existing limitations of 

traditional surveillance methods. However, to fully evaluate the reliability of this 

surveillance approach in FMD endemic settings, further studies are required aimed at 

establishing a more precise correlation with estimates of household-level clinical 

incidence. 
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5.2  Introduction 

Foot-and-mouth disease (FMD) has been described as a high impact disease among 

pastoralists in East Africa (Onono et al., 2013; Nthiwa et al., 2019). According to recent 

studies and reports by the OIE/FAO World Reference Laboratory for FMD (WRLFMD) 

four serotypes are currently known to circulate in East Africa, and within each serotype 

a number of topotypes/lineages also exist (Bachanek-Bankowska et al., 2016; Casey-

Bryars et al., 2018; WRLFMD, 2018c, 2019). However, there are still  major knowledge 

gaps about the distribution and epidemiology of circulating FMD viruses (Brito et al., 

2015). This is particularly the case in areas where surveillance is dependent upon the 

recognition and reporting of clinical cases by farmers and livestock workers (Bates et 

al., 2003; Picado et al., 2011; Machira and Kitala, 2017) due to under-reporting. In these 

settings, limited capacity to undertake outbreak investigation and collection of clinical 

specimens following reports renders laboratory confirmation problematic (Kasanga et 

al., 2012; Namatovu et al., 2013). As a result, evidence-based strategies to respond to 

outbreaks are often not implemented, which reduces farmers’ willingness to report 

even further. It is therefore difficult to determine the true incidence of the disease 

(Vosloo et al., 2002; Knight-Jones et al., 2016). Although targeted case finding or 

serological surveys are valuable, they are generally infrequent due to the costs and 

labour involved (Hadorn and Stark, 2008; Kasanga et al., 2012). Consequently, the 

requirement exists for a simple, cost effective approach for the surveillance of FMD that 

does not rely on farmer reporting.  

Pooled milk is a routinely collected, non-invasive sample type that has the potential to 

be utilised for the herd-level surveillance of FMDV, as demonstrated by the surveillance 

of a number of other diseases including bovine viral diarrhoea (Dubovi and Section, 

1995; Drew et al., 1999; Hill et al., 2010), brucellosis (Hamdy and Amin, 2002; Chand 

et al., 2005), and Q fever (Kim et al., 2005; Bauer et al., 2015). Limit of detection studies 

have highlighted the potential of identifying one acutely-infected milking cow in a herd 

of up to 1000 using pooled milk sampling (Armson et al., 2018, see Chapter 2). 

Additionally, simulation modelling suggested the earlier detection of FMDV by RT-PCR 

screening of pooled milk samples compared with farmer reporting, and encouraged 
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empirical studies to investigate the use of pooled milk for regional FMD surveillance 

(Thurmond and Perez, 2006; Garner et al., 2016; Kompas et al., 2017).  

This chapter therefore describes a proof-of-concept pilot study performed in Nakuru 

County Kenya to explore the use of pooled milk as a non-invasive alternative sample 

matrix for the surveillance of FMD. Clinical FMD has been frequently reported in this 

region, and confirmed during outbreak investigations as part of the ‘real-time’ training 

courses organised by the European Commission for the Control of Foot-and-Mouth 

Disease (EuFMD) (Machira and Kitala, 2017; Nyaguthii et al., 2019). Indeed, in the six 

months prior to the commencement of this study, 13/220 smallholder farmers 

surveyed in Nakuru County reported having a case of FMD in at least one animal on 

their farm, as described by Nyaguthii et al. (2019) (Figure 5.1) 

 
Figure 5.1. Map of occurrence of FMD cases in Nakuru County, Kenya in the six months 
prior to the study described in this chapter. Reports are according to cross-sectional 
smallholder farmer surveys performed by Nyaguthii et al. (2019) (Survey 1 – see 
section 5.3.3). Farmer-reported FMD outbreak locations within the study area are 
represented in red. Adapted from Figure 3 in Nyaguthii et al. (2019). 
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Although several studies have examined the impact of FMD outbreaks on large-scale 

farms in Kenya (Mulei et al., 2001; Kimani et al., 2005; Lyons et al., 2015), the majority 

of livestock is owned by smallholder dairy farmers, who contribute to an estimated 70-

80% of all milk sold to the dairy production chain. This milk directly or indirectly 

supplies consumers, milk pooling facilities or private processors (Omore et al., 1999; 

Karanja, 2003; Rademaker et al., 2016). Generally, a small amount of milk produced by 

smallholder farmers is retained at home, while the rest is traded either to local shops, 

hotels or neighbours, or sold to milk pooling facilities directly or indirectly via hawkers 

(Karanja, 2003; TechnoServe Kenya, 2008; Muriuki, 2011) (Figure 5.2). Therefore, for 

the study described in this chapter it was anticipated that milk supplied by smallholder 

farmers and collected from pooling facilities could represent a useful resource for FMD 

surveillance in this endemic region.  

 

Figure 5.2. The dairy value chain in Kenya for milk supplied by smallholder and 
medium/large-scale dairy farmers. Based on data from Karanja (2003); TechnoServe 
Kenya (2008); Muriuki (2011). Adapted from Recheis (2019). 

 

The aim of this study was therefore to (i) validate the use of milk collected from pooling 

facilities as a sample matrix for FMDV detection and characterisation and (ii) assess 

the usefulness of pooled milk as a simple, non-invasive alternative for FMD surveillance 

in Kenya whilst improving our knowledge on milk production and selling trends. To 
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achieve this, results obtained by FMDV rRT-PCR of milk samples collected from pooling 

facilities were tested for correlation with reports of clinical disease from surveys of 

smallholder farmers. 

 

5.3  Materials and Methods 

5.3.1 Study area and population 

The study area is outlined by Nyaguthii et al. (2019). Briefly, the study area consisted 

of neighbouring catchment areas of five milk pooling facilities that were recruited for 

sample collection, located within Molo, Njoro and Rongai sub-counties of Nakuru 

County, Kenya (Figure 5.3). This area was selected due to the large numbers of FMD-

susceptible livestock present, regular outbreaks of FMD, and the presence of a large 

number of smallholder dairy farmers. The milk pooling facilities were approached and 

informed consent acquired prior to participation in the study. Catchment areas were 

constructed with the guidance of facility managers using Google Earth (Google Inc., 

USA), and as some of the catchment areas bordered or overlapped each other, a single 

spatial polygon layer was created using QGIS version 2.18.10 (QGIS Development 

Team, Las Palmas, USA) to define the entire study area (Figure 5.3).  
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Figure 5.3 Map of the study area located in Molo, Rongai and Njoro sub-counties of 
Nakuru County, Kenya. Capitalised letters indicate the location of each milk pooling 
facility (A-E). Catchment areas for each facility are colour coded. Catchment area D 
overlaps that of B. Additionally, catchment area E overlays C. The survey area is 
bordered with a dashed black line, and the white area indicates parts of the study area 
that were not within the catchment areas of any of the milk pooling facilities. Red 
triangles indicate the locations of smallholder farms where FMD was reported during 
Survey 2 (see section 5.3.3). 
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5.3.2 Study objectives 

The primary goal of the study was the detection of viral RNA by rRT-PCR in pooled milk 

samples collected from the milk pooling facilities described above to be compared with 

the presence of clinical FMD (as reported by smallholder farmers) above a defined 

threshold in the entire study area. In order to achieve this objective, two concurrent 

studies were performed: 

(i) Repeat cross-sectional surveys of smallholder dairy farmers - to determine FMD 

incidence in the entire study area, and improve knowledge on milk production and 

selling trends in the catchment areas of the five milk pooling facilities. 

(ii) The collection of pooled milk samples from the five milk pooling facilities, at 45 

weekly time points - for subsequent FMDV detection by rRT-PCR. 

 

5.3.3 Cross-sectional surveys for clinical disease 

Three cross-sectional smallholder farmer surveys (S) were carried out for the study in 

this chapter.  

For all surveys the eligibility criteria for the study population to be interviewed was 

smallholder dairy farmers described as those that owned at least one, but no more than 

fifty dairy cattle, and had cattle located within the premises. A systematic set of spatial 

points was randomly generated within the study area polygon using QGIS version 

2.18.10 (QGIS Development Team, Las Palmas, USA). During the field surveys, the 

closest smallholder dairy farm to a randomly generated coordinate that fitted the 

eligibility criteria was surveyed. This was considered the optimal approach in the 

absence of a sampling frame or recent census data (with the last being done in 2009). 

The limitation of this approach is the assumption that smallholder farmers were evenly 

distributed throughout the study area. The spatial coordinates of surveyed farms were 

assigned to a facility catchment area using ArcGIS version 10.6.1 (Environmental 

Systems Research Institute, Inc.) based on approximate descriptions of the catchment 

areas from facility managers (Figure 5.3).  Questionnaire data were collected using the 

EpiCollect+ mobile phone application (Aanensen et al., 2009). 

Survey 1 (S1) was a baseline survey conducted between 16th November and 1st 

December 2016 to provide information on herd size, milk production and milk sales 
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only, as results on FMD clinical incidence from this survey do not correlate with milk 

sampling periods. This survey is described in more detail (including sample size 

calculations) by Nyaguthii et al., (2019) (see Appendix III, Figure 8.2). Briefly, based on 

an estimated prevalence of 15%, a total of 237 GPS coordinates were assigned, which 

included accounting for non-responsiveness and the potential inaccessibility of some 

farms. 

Two subsequent smallholder farmer surveys (S2 and S3) were carried out during 23rd 

- 29th March 2017 (S2) and 20th - 26th September 2017 (S3), to provide further 

information on herd size, and the temporal trends of milk production and milk sales 

throughout the study period. During S2 and S3 farmers were asked how many cattle 

they owned, how many were lactating, how much milk their cows produced, how much 

milk they sold, and where they sold it (e.g. neighbours, ID of pooling facility). The full 

questionnaire is included in Appendix III, Figure 8.3. Additionally, epidemiological 

information was also obtained, including determination of the FMD clinical incidence 

in the study area since the previous survey. Farmers were asked if they had observed 

FMD on their farm sequentially since the time of the last survey (i.e. since S1 for S2, and 

since S2 for S3), and to provide an indication of the time of the outbreak (either the 

first half or second half of the month). This allowed FMD household-level clinical 

incidence to be estimated in two-week blocks of time (see statistical analysis section 

for further details). The case definition for FMD was defined as farmers observing at 

least two of the clinical signs listed by the African Union – Inter African Bureau for 

Animal Resources (AU-IBAR, 2014) in at least one of their animals. Due to a limitation 

on resources, S2 and S3 surveys were powered to detect a threshold household-level 

FMD incidence of 2.5% based on perfect sensitivity and specificity, a 95% confidence 

interval and an infinite study population. Based on these parameters, using the online 

epidemiological calculator EpiTools (http://epitools.ausvet.com.au) (Sergeant, 2019), 

the required number of households for each survey was 120. Consequently, 120 spatial 

points were randomly generated within the study area for each survey, as described 

above.  
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5.3.4 Pooled milk samples 

Milk samples were collected once per week for 45 weeks (16th November 2016 – 20th 

September 2017) from each of the five recruited milk pooling facilities (denoted A – E). 

Milk was collected in 15 mL sterile Falcon tubes directly from the pooling tank for 

facilities A and B (Figure 5.4). A pooling tank was either not available or in use for 

facilities C, D and E. and so milk was pooled into 50 litre cans (<25 cans per facility). 

Therefore, to obtain a representative milk sample at these facilities, 3 mL of milk was 

taken from each can, pooled in a jug, and mixed. A 15 mL aliquot was then taken (Figure 

5.4). At each collection the total volume of milk in the tank/cans, and the number of 

farmers contributing was recorded. Sample collection was organised so that one 

person could visit all facilities within a few hours. Immediately upon collection, all milk 

samples were stored on ice during transportation to a local -20oC storage facility that 

was equipped with a temperature monitor.  Milk samples were shipped on dry ice to 

The Pirbright Institute (TPI) for subsequent laboratory analysis. Additionally, at the 

time of milk sample collection, information was obtained from the pooling facility 

regarding the tank volume and number of farmers supplying milk.  
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(i)    (ii) 

  

(iii) (iv) (v)  

   
 

Figure 5.4 Milk sample collection from tanks (i, ii, iii) and 50L cans (iv, v) at milk 
pooling facilities in Nakuru County, Kenya.  

 

5.3.5 Laboratory testing of pooled milk samples 

RNA extraction and the pan-serotypic rRT-PCR assay were carried out in duplicate on 

all pooled milk samples using an optimised method as previously described (Armson 

et al., 2018, see Chapter 2). Briefly, RNA was extracted from whole milk samples using 

the MagMAX™ Pathogen RNA/DNA Kit (Applied Biosystems®) on a MagMAX™ Express 

96 Extraction Robot (Applied Biosystems®). rRT-PCR assays were performed using 

the reagents, parameters and thermal cycling conditions previously reported (Shaw et 

al., 2007) , with primers and probes targeting the conserved 3D region of the FMDV 

genome (Callahan et al., 2002). Any milk sample with a CT value of ≤ 50 was considered 

positive, and was subsequently tested by the East Africa (EA) typing rRT-PCR assays 

[O, A, Southern African Territories (SAT) 1 and SAT 2]. These assays were designed to 
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detect FMDV lineages currently circulating in East Africa, namely: topotype EA-2 and 

EA-4 (serotype O); topotype AFRICA, lineage G-I (serotype A); topotype I (NWZ) 

(serotype SAT 1); and topotype IV (serotype SAT 2) (Bachanek-Bankowska et al., 

2016). However, the fluorophores used on each probe were modified to: A – Cy5, SAT 

1 – JOETM, SAT 2 – TAMRATM. This modification does not affect the sensitivity of the 

rRT-PCR assays. Positive samples for the EA rRT-PCR typing assays were also defined 

as those with a CT value of ≤ 50. 

FMDV cell culture isolates (isolated once in primary bovine thyroid [BTY] cells) were 

obtained from archival stocks held in the FAO/OIE World Reference Laboratory for 

foot-and-mouth disease repository (WRLFMD), TPI, UK. Cell culture isolates 

O/SAU/1/2016, O/TAN/39/2012, A/TAN/6/2013, SAT1/KEN/72/2010, and 

SAT2/TAN/19/2012 were used to prepare positive control material for the pan-

serotypic and EA-O, EA-A, EA-SAT 1 and EA-SAT 2 rRT-PCR assays, respectively, using 

a 10-2 dilution spiked into unpasteurised whole milk from Jersey cattle. Two negative 

extraction controls consisting of unpasteurised whole milk were also included on each 

plate. 

 

5.3.6 Statistical analysis 

Descriptive and statistical analyses were carried out using R 3.5.3 (R Core Team, 2019) 

within RStudio IDE (RStudio Team, 2019). Paired t-tests were performed to compare 

information on milk yield and milk supply data between each survey.  

Analyses tested the degree of association between the incidence of clinical FMD in the 

entire study area (either above or below the 2.5% household-level FMD incidence 

threshold) and the rRT-PCR testing, both at the study area level and within the 

individual milk pooling facility catchment area level. Mixed effect logistic regression 

analysis was performed including the milk pooling facility variable as a random effect 

on the intercept. This was to examine associations between the binary outcome of the 

rRT-PCR for weekly testing of the pooled milk samples in the entire study area (i.e. 

FMDV RNA detected yes/no), and the following explanatory variables: (1) clinical FMD 

incidence, (2) tank volume, (3) number of farmers contributing to the facility, (4) the 
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average number of adult female cows per farm, (5) the percentage of famers selling to 

a milk pooling facility, and (6) the average milk yield per cow per day. Variables 2 and 

3 utilised weekly data collected from the pooling facility at the time of milk sampling, 

using increments of 1000L for tank volume (variable 2) and 100 for the number of 

farmers contributing to the facility (variable 3). For FMD incidence (variable 1), 

farmers were asked if they observed FMD on their farm, and when it occurred (in which 

half of the month) to create a binary variable. This was applied to each week of that 

half month, to enable comparison with the weekly rRT-PCR of pooled milk (i.e. if FMD 

was identified on a farm in the second half of January, both weeks in this half month 

period were assigned as positive for clinical FMD). Variables 4, 5 and 6 utilised data 

from smallholder farmer surveys, so there were only three data points for weeks 3 (S1), 

20 (S2) and 45 (S3). Therefore, for each variable, data points for the unrecorded weeks 

were predicted by linear interpolation. A backward stepwise regression was 

performed to fit a final multivariate model, based on the results of a likelihood ratio 

tests to remove variables with a p value higher than 0.05. 

 

5.4  Results 

5.4.1 Pooled milk 

5.4.1.1 Milk supply to pooling facilities 

The average volume of milk recorded weekly in the tanks/cans over the entire study 

period was 3019.0, 1469.0, 237.5, 473.1 and 176.5 litres for milk pooling facilities A, B, 

C, D, and E, respectively. Variabilities in milk supply were observed over the study 

period, as shown in Figure 5.5 and Table 5.1. This was likely influenced by the number 

of farmers contributing to the milk pools, which also varied with a similar pattern. 

Results for individual milk pooling facilities are shown in Appendix III (Figures 8.4 and 

8.5). The average number of farmers contributing milk to A, B, C, D, and E was 915 

(range [min-max]: 450 – 1500), 29 (17 – 50), 25 (10 - 60), 42 (11 – 57) and 22 (10 - 

33), respectively. The average volume of milk sold to a pooling facility per farmer was 

14.1 litres (range [min-max]: 0.0 – 55.0) for the entire study area during the study 

period. 
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Figure 5.5 Temporal trend of the total volume of milk and the total number of farmers 
contributing to all milk pooling facilities on the dates sampled (week 1 – 16/11/2016, 
week 45 – 20/09/2017). 

 

5.4.1.2 FMDV rRT-PCR results of pooled milk 

A total of 219 pooled milk samples were collected from five facilities and tested using 

the pan-serotypic rRT-PCR. Milk samples were not collected on weeks 41 - 45 from 

facility B, due to a lack of milk supply, and on week 1 for facility E, as it was recruited a 

week later than the others. FMDV RNA genome was detected in 9/219 (4.11%) milk 

samples, 6 samples from facility A, and 1 sample from each of facilities B, C and D (mean 

CT value: 40.57, range [min-max]: 36.15 – 46.74) (Figure 5.6). Additionally, 3/9 

samples (collected at facility A) with the strongest CT values (<39) were also positive 

by the EA SAT 1 rRT-PCR typing assay. No other serotypes were detected by the EA 

rRT-PCR typing assays in the positive milk samples. The detection of SAT 1 in milk was 

concordant with results from clinical lesion material collected within the study area on 

the 27/01/2017 and submitted to the WRLFMD for confirmatory diagnostics, 

sequencing and phylogenetic analyses (WRLFMD, 2017), although these positive milk 



Chapter 5 

 

108 

 

samples and the clinical sample were collected from different catchment areas (A and 

D respectively).   

 

 

Figure 5.6 (A) Pan serotypic rRT-PCR CT values from pooled milk samples collected 
from milk pooling facilities A, B, C, D and E in Nakuru County, Kenya, over the 45-week 
study period. Points with a grey centre represent samples that were also positive by 
the SAT 1 serotype-specific assay (CT value displayed is for the pan-serotypic rRT-PCR 
assay). (B) Black squares indicate time points of smallholder farmer surveys 1, 2 and 
3. Grey arrows indicate the time period for which FMD incidence questions where 
based for each survey. Grey shading indicates time points where the FMD incidence 
was ≥2.5% in the entire study area (as reported by smallholder farmers during the 
household surveys). 
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5.4.2 Cross-sectional surveys 

Descriptive data from each survey is detailed in Table 5.1 for the entire study area, and 

also for the catchment areas of the individual milk pooling facilities. The number of 

smallholder farmers that took part in S1, S2 and S3 was 220, 117 and 119, respectively. 

Due to compilation of a combined catchment area and randomisation of the spatial 

coordinates generated for surveying smallholder farms throughout the study area, 

some farms were located outside the boundaries of the individual catchment areas of 

any milk pooling facilities (Figure 5.3). Therefore, data from 47, 15, and 18 smallholder 

farms (for S1, S2 and S3, respectively) were not included in the descriptive data for 

individual catchment areas, and only included in the descriptive data and regression 

analysis generalised to the entire study area (Table 5.1). Due to the overlap of some of 

the catchment areas, some farms were also included in the analysis for more than one 

individual catchment area. 

The number of farmers in the entire study area that reported FMD on their farm during 

the 45-week study period was 4/456 (0.88%). All of the reported cases of FMD were 

in S2, when 4/117 (3.42%) farmers reported disease in their animals during either 

January or February (weeks 8-15), representing a household level incidence above 

2.5% during those times (Figure 5.6).  Additionally, reactive FMD vaccination was 

reported by farmers during the study period, where 48.7% of farmers interviewed 

reported vaccination of their cattle during S2, when there were reports of FMD in the 

study area (Table 5.1). During S3, there were no reports of FMD vaccination. 

The average volume of milk yield daily per farm was higher for S1 (11.0 litres, 95% CI 

9.0 – 13.1, p = 0.117) and S3 (13.8 litres, 95% CI 11.1 – 16.5, p = 0.003) compared to S2 

(8.9 litres, 95% CI 7.0 – 10.7), consistent with the milk supply trends to facilities and is 

likely related to a prolonged drought that took place during this time (Figure 5.5). For 

the entire study area, the largest percentage of farmers that sold to a facility at any time 

during the study period was 25.5% (S1), which was found to be lower during the 

subsequent surveys (S2 12.0%, p = 0.04; S3 15.1%, p = 0.20). The same pattern was 

observed for the individual catchment areas, where the largest number of farmers 

contributing at any time was in catchment area B (47.5%) recorded in S1. In the 
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catchment area of facility E none of the farms surveyed sold their milk to a pooling 

facility throughout the study period. 

 

5.4.3 Correlation between FMDV RNA in milk samples from all pooling 

facilities, and clinical FMD in the entire study area. 

Results from the rRT-PCR were cross-tabulated with the household-level FMD clinical 

incidence in the entire study area (where FMD incidence above the 2.5% threshold was 

defined as the gold standard) (Table 5.2). As each parameter was measured in different 

time periods (i.e. pooled milk was collected weekly, whereas the FMD incidence was 

recorded in half-month increments), half-month time periods were employed. 

Consequently, a binary variable was created for the results of the rRT-PCR where a 

half-month period was assigned as positive if there was a positive rRT-PCR result in at 

least one week of that period. Therefore, by using the half-month periods and taking 

the clinical incidence as reported by farmers in the whole study area as the gold 

standard, the pooled milk surveillance system had a sensitivity of 100% (95% CI 51.0% 

– 100%) and specificity of 70.6% (95% CI 46.9% - 86.7%) (Table 5.2). FMDV RNA was 

identified in four pooled milk samples collected during the period from January to 

February 2017 (weeks 8-15) when the clinical incidence at household level across the 

entire study area was ≥2.5% (3.42%) (Figure 5.6).  There were also instances where 

FMDV RNA was detected in the milk samples, but there were no corresponding reports 

by farmers (i.e. the household-level incidence of FMD was not above 2.5%).  
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Table 5.2 Comparison of the FMDV pan-serotypic rRT-PCR results of samples from all 
milk pooling facilities, with FMD incidence by farmer reports for the entire study area. 

 
FMD incidence ≥ 2.5%  

Yes No Total 

Pan-serotypic rRT-PCR of 
pooled milk samples 

 Positive† 4 5 9 

 Negative 0 12 12 

 Total 4 17 21 

Half-month periods were assigned to the results of the rRT-PCR of the pooled milk and deemed 
positive if there was a positive rRT-PCR result in at least one week of that period. There were 
a total of 21 half-month periods for the duration of the study. †A positive pan-serotypic rRT-
PCR result is defined as a CT value of ≤50 in any week of the half-month time period. 

 

Both univariable analyses and the multivariable mixed effect logistic regression 

models were used to determine whether there was any association between the 

household-level incidence being above 2.5% in the entire study area and the FMD rRT-

PCR results from pooled milk, further incorporating other predictors listed in Table 

5.3. Based on the univariable analysis, there was a higher odds of observing a FMD 

positive rRT-PCR result when the clinical incidence in the whole study area was ≥2.5% 

(OR = 4.21, 95% CI = 1.02 – 17.30, p = 0.046), the volume of milk supplied to the facility 

increased (OR = 1.78 for each additional 1000 litres supplied, 95% CI = 1.25 – 2.54, p = 

0.002), and when the number of farmers contributing to the facility increased (OR = 

1.27 for each additional 100 farmers, 95% CI = 1.12 – 1.43, p < 0.001).  During 

multivariate model selection, after model simplification by removing non-significant 

terms (p > 0.05), only the number of farmers contributing to the facility (3) was 

retained as significant (OR = 1.27, 95% CI = 1.12 - 1.43, p < 0.001), and there was no 

longer any association between the household-level incidence being above 2.5% in the 

study area and the FMD rRT-PCR result in the pooled milk.  

Univariable and multivariable logistic regression analysis was also carried out using 

the data for each individual catchment area only (data not shown). The only catchment 

area with any significant associations was for facility A, where there was a higher odds 

of observing an FMD positive rRT-PCR result when there was an increase in the 

number of farmers contributing to the tank (OR = 1.38 for each additional 100 farmers, 
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95% CI = 1.03 – 1.85, p = 0.031). Significant associations were not observed for any of 

the other catchment areas. 

 

Table 5.3 Univariate mixed effect logistic regression analysis for association with a 
positive FMD rRT-PCR result for the total study area. 

Variable 
Type of 
variable 

Odds Ratio (95% CI) P value 

1. FMD incidence  Categorical 4.21 (1.02 - 17.31) 0.046 

2. Tank volume (per 1000 litres) Continuous 1.78 (1.25 - 2.54) 0.002 

3. Number of farmers contributing to 
the facility (per 100 farmers) 

Continuous 1.27 (1.12 - 1.43) < 0.001 

4. Average number of adult female 
cows per farm 

Continuous 0.99 (0.26 - 3.78) 0.990 

5. Percentage of farmers selling to a 
milk pooling facility 

Continuous 1.04 (0.96 - 1.11) 0.358 

6. Average milk yield per cow  Continuous 0.48 (0.15 - 1.49) 0.203 

 

re  

r 

5.5  Discussion 

Previous studies have demonstrated the potential of using milk from individual 

animals as an alternative sample type for FMDV detection and surveillance (Armson et 

al., 2019, Chapter 3), and that it is possible to detect FMDV in highly diluted milk 

samples from individual clinical cases (Armson et al., 2018, Chapter 2). This pilot study 

aimed to expand on this work and explore the use of milk collected from pooling 

facilities supplied by smallholder farmers as a simple, non-invasive alternative sample 

matrix for the surveillance of FMD. In order to achieve this, the household-level 

incidence of clinical disease was compared with FMDV RNA detection by rRT-PCR from 

pooled milk facilities in an endemic region of Kenya.  

According to data collected by milk pooling facilities, the number of farmers 

contributing milk fluctuated throughout the study period, with a similar pattern 

observed for the volume of milk supplied. There was a decrease in the output of milk 

supplied to all facilities in or after March 2017, likely due to the effects of a drought 

that occurred in the first quarter of 2017 (World Food Programme Kenya, 2017). This 

corresponded with data collected from the smallholder farmer surveys, demonstrating 
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the lowest milk yield per farmer, and the lowest percentage of farmers supplying milk 

to a facility (12.0% for the entire study area) occurring at this time. The largest 

percentage of farmers that supplied milk to a facility at any time was 25.5% for the 

entire study area, or 47.5% for an individual catchment area.  

FMDV RNA was detected in milk samples collected from pooling facilities with tanks 

containing up to 5000 litres. Additionally, typing assays confirmed the presence of SAT 

1, which was concurrent with reports from clinical samples collected from reported 

outbreaks for confirmatory diagnostics (WRLFMD, 2017). The average CT values 

obtained for the positive milk samples were high (>36), likely due to the dilution factor 

of the samples, as some were collected from large pools (up to 5000 litres). This 

corresponds with previous limit of detection studies (Armson et al., 2018) that 

predicted similar CT values (>30) for pools of this size. This study observed that an 

increase in tank volume was correlated with an increase in the number of farmers 

contributing milk, and consequently it is probable that the likelihood of an FMD 

infected cow that supplied milk to one of these pools is increased, contrary to what 

might be expected based on rRT-PCR test sensitivity. Univariable analysis supported 

this, suggesting a positive association between an FMD positive rRT-PCR result in the 

pooled milk and the number of farmers contributing to the facility, and also with the 

volume of milk in the tank/cans at the time of sample collection. Based on these results, 

the likelihood of FMDV detection, and therefore surveillance efficiency may be 

optimised by targeting sampling on large milk pooling facilities that have milk supplied 

from a large percentage of farmers in their catchment area. 

During the study period, throughout the entire study area, there were four reports of 

FMD in the smallholder farmer surveys in facility catchment areas A and C, all during 

January and February 2017. As there was at least one FMD report in each half-month 

period during these two months, the household-level incidence in the whole of the 

study area was significantly ≥2.5%. This correlated with FMDV detected in a milk 

sample collected from at least one of the facilities in the study area in each of these half-

month periods, therefore it could be assumed that the pooled milk surveillance system 

might be able to detect FMDV when the household-level incidence is ≥2.5%. This was 

supported by univariable analysis which indicated a positive association between an 

FMD positive rRT-PCR result when the clinical incidence in the entire study area was 
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≥2.5%. Although the sensitivity was 100% when using clinical reports from farmers as 

the gold standard, the authors acknowledge the limitations of using these half-month 

time steps for this comparative analysis. These half-month time periods for FMD 

reporting were used to simplify data recording which was based on farmer recall in the 

absence of written records.  

FMDV RNA was also detected in five pooled milk samples that were collected when 

there were no clinical FMD reports. As there were negative extraction controls and a 

high number of ‘negative’ samples where no amplification was observed on the rRT-

PCR assay, it is unlikely that non-specific amplification of other template (e.g. from 

other organisms) present in milk occurred. The laboratory methodology used in this 

study has been shown to be highly specific, however, inter/intra-assay contamination 

was observed in the negative cohort tested in Chapter 4 and therefore laboratory 

contamination cannot be excluded, even though measures were implemented to 

minimise the likelihood of this occurring. There may also be further alternative 

explanations which are discussed below. 

It is possible that the surveys conducted for this study were underpowered, due to 

limited resources available, and therefore the clinical disease threshold of 2.5% was 

too high to robustly assess specificity. In future studies, a more precise evaluation of 

sensitivity and specificity of the pooled milk detection system may be achieved if 

surveys are powered to detect a lower threshold FMD incidence. Farmers in this region 

of Kenya had good knowledge of FMD (Nyaguthii et al., 2019), which was demonstrated 

by the descriptions of clinical signs by farmers corresponding with the case definition. 

However, it is possible that mild clinical signs or sub-clinical infection could reduce the 

likelihood of farmer reporting and provide explanation for instances where there were 

positive milk samples but no farmer reports of disease. Further investigation is 

required to determine the incidence of sub-clinically infected animals in this region, for 

example by using serological surveys, and whether virus particles may be present in 

the milk of sub-clinically infected animals (Sutmoller and Casas, 2002). Further 

investigation is also required into the impact of vaccination on FMDV excretion in milk. 

During the study period, vaccination was carried out in response to an outbreak. 

Whether vaccination in these herds may increase the likelihood of sub-clinical infection 

is unknown, although there have been reports of sub-clinical infection in vaccinated 
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animals (Donaldson and Kitching, 1989; Hutber et al., 1999; Lyons et al., 2017), and 

virus excretion in the milk of apparently healthy vaccinated animals (Ahmed et al., 

2017).   

Of the milk samples positive by the pan-serotypic rRT-PCR assay, 3 were identified as 

SAT 1, but no amplification was observed in any of the EA typing rRT-PCR assays for 

the other samples. Outbreaks due to the circulation of type O outside of the study area 

were reported in August 2017 (WRLFMD, 2017). It is possible that these samples were 

at the limit of detection for the EA-O rRT-PCR typing assay, as this assay has been 

shown to have a slightly reduced analytical sensitivity compared with the pan-

serotypic rRT-PCR assay (Bachanek-Bankowska et al., 2016). It is also possible that 

another lineage of FMDV was also circulating in the region that cannot be detected by 

the EA typing assays used. 

Several methodological issues arose during this study that may have affected the 

results of FMD clinical incidence and therefore the sensitivity and specificity 

estimations of the pooled milk surveillance system. The original aim of the study was 

to undertake smallholder farmer surveys within the catchment areas of the milk 

pooling facilities. Catchment areas were approximated by facility managers, and as 

some of the catchment areas either bordered or overlapped each other, a single spatial 

polygon was created to define the whole study area. It is unclear how precise these 

catchment areas were, as in some cases farmers from one catchment area reported 

supplying milk to a neighbouring catchment area. This may explain cases where there 

was a positive report of FMD by a farmer in one catchment area, but there were no rRT-

PCR positive milk samples from the area’s pooling facility in that time period (for 

example catchment area C). Additionally, some of the surveyed farms were located in 

more than one catchment area (due to overlap of the catchment areas), or none of the 

catchment areas (due to being between catchment areas), which may have led to bias 

in the descriptive data and analysis. Due to the absence of an available sampling frame, 

it was assumed that smallholder farmers were evenly distributed throughout the 

whole study area. This was a reasonable assumption based on the knowledge of the 

authors and animal health assistants in the area, although any disparity may have led 

to an inaccurate estimation of household-level incidence. In addition, the intention of 

the study was to recruit milk pooling facilities that stored milk in bulk tanks for the 
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collection of milk samples. However, three of the facilities either did not have, or were 

not using their bulk tanks, and instead pooled milk in 50 litre cans. The reasons for not 

using an existing bulk-tank included a low milk supply and not being fully functional. 

Consequently, a small volume of milk from each can was pooled and mixed in order to 

obtain a sample representative of the whole milk pool from this facility. The authors 

recognise the limitations in this approach and further sampling methodologies for 

facilities using cans should be explored.  

This pilot study describes the rRT-PCR testing of milk samples from milk pooling 

facilities as a simple surveillance approach for FMD in this endemic region of Kenya. 

Based on data from the entire study area, by utilising the weekly collection of milk 

samples, it was possible to detect and type FMDV RNA by rRT-PCR from milk pools of 

up to 5000 litres, when the FMD clinical incidence was ≥2.5%, and when fewer than 

25% of farmers were selling their milk to these pooling facilities. Based on the 

encouraging results obtained in this study, further investigation is required to obtain a 

more precise correlation of household-level incidence with pooled milk sample results, 

to fully assess the usefulness of this novel surveillance approach. With more resources 

available, this could be achieved by combining clinical surveys of FMD infection at the 

individual animal level and serological surveys with sufficient statistical powers to 

detect a low incidence of infection or disease. Additionally, the collection of pooled milk 

samples should be focussed on larger facilities, which have a large number of 

contributing farmers from the surrounding area. Furthermore, pooling systems higher 

up the dairy production chain should also be explored as a target for FMD surveillance, 

although the possible reduced ability in detecting FMDV RNA from milk samples after 

pasteurisation. Follow-on studies should also investigate the establishment of sentinel 

systems in the epidemiological surveillance of FMD, and how geographical limits that 

may encompass different farming practices may affect this solution.  

In conclusion, this pilot study highlights that this novel, simple surveillance approach 

has the potential to address some of the well-recognised limitations of more traditional 

surveillance methods in resource-limited countries where there are a high number of 

smallholder dairy farmers, and to improve the capacity for surveillance which could 

contribute to informing and evaluating disease control policies in these endemic 

regions.
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CHAPTER 6 

 

Pooled milk for foot-and-mouth disease 

surveillance on large-scale dairy farms in 

endemic settings 

 

Data presented in this chapter have been submitted as an original research article to 

Frontiers in Veterinary Science (January 2020).  
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6.1 Summary 

Pooled milk has been exploited for the surveillance of several diseases of livestock. 

Previous studies have demonstrated that foot-and-mouth disease virus (FMDV) RNA 

can be detected in the milk of infected animals at high dilutions, suggesting that the 

collection of pooled milk samples from large-scale dairy farms could be used to 

enhance FMD surveillance. The aim of this study was to evaluate pooled milk collected 

via proportional in-line samplers for FMDV surveillance on a regularly vaccinated, 

large-scale dairy farm in Saudi Arabia. During the six-month sampling period, the farm 

experienced two FMD outbreaks caused by strains within the A/ASIA/G-VII and O/ME-

SA/Ind-2001d lineages. FMDV RNA was detected in 5.7% of the 732 pooled milk 

samples, and typing information was concordant with viral isolates obtained from 

animals with clinical disease. The FMDV positive milk samples were temporally 

clustered around reports of new clinical cases, but with a wider distribution. To 

investigate this further, a model was established to predict CT values using individual 

cattle movement data, clinical disease records and virus excretion data from previous 

experimental studies. These predictions explained some of the instances where 

positive results by rRT-PCR were observed, but no new clinical cases and suggested 

that subclinical infection occurred during the study period. The results from this study 

indicate that testing pooled milk by rRT-PCR may be valuable for FMD surveillance and 

suggest probable subclinical virus circulation in vaccinated herds that may play a role 

in the epidemiology of FMD in vaccinated populations. Further studies are required to 

investigate the effect of vaccination on the detection of FMDV in milk and to evaluate 

more representative sampling methods. 
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6.2  Introduction 

Milk has been exploited for the surveillance of several pathogens of livestock including 

bovine viral diarrhoea virus (Renshaw et al., 2000a; Hill et al., 2010), Schmallenburg 

virus (Daly et al., 2015), Coxiella burnetti (Kim et al., 2005), bovine respiratory 

syncytial virus (BRSV) (Elvander et al., 1995), and neospora (González-Warleta et al., 

2011). The use of pooled milk samples has also been validated as a rapid, cost-effective 

approach for the routine surveillance of diseases such as brucellosis (DEFRA, 2015a) 

and mastitis caused by Mycoplasma spp (APHIS, 2008). 

Previous experiments have shown that the mammary gland is an organ that is highly 

susceptible to foot-and-mouth disease virus (FMDV) replication, and FMDV can be 

detected in milk from experimentally infected animals before, during and after the 

appearance of clinical signs (Nardelli et al., 1968; Burrows et al., 1971; Blackwell and 

McKercher, 1982; Reid et al., 2006; Armson et al., 2018, see Chapter 2). Additionally, 

FMDV can be detected and typed by real-time reverse transcription polymerase chain 

reaction (rRT-PCR) assays in milk from naturally infected cattle in outbreak and 

endemic scenarios (Armson et al., 2018, 2019, see Chapters 2 and 3). Previous studies 

(Reid et al., 2006; Armson et al., 2018, see Chapter 2) have suggested that it could be 

possible to identify one acutely-infected milking cow in a typical-sized dairy herd 

(100–1000 individuals) using milk from bulk tanks or milk tankers, based on the 

detection of FMDV RNA in highly diluted milk samples from infected cattle. Simulation 

modelling using these data (Reid et al., 2006; Thurmond and Perez, 2006; Garner et al., 

2016) support the requirement for further research to assess the use of pooled milk as 

a useful tool to enhance FMD surveillance.  

Sampling of milk at the herd level could potentially offer a representative framework 

for FMD surveillance on large-scale dairy farms in endemic countries. Indeed, milk is 

routinely collected, and has several advantages over vesicular material or serum by 

being non-invasive and potentially less susceptible to selection bias in targeted (risk-

based) surveillance. For example, the use of milk does not rely on disease reporting by 

farmers or veterinary professionals, and may detect sub-clinically circulating viruses 

(Armson et al., 2019, seee Chapter 3) which may be under-represented, particularly in 

vaccinated populations (Knight-Jones et al., 2016).  
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These results motivated further studies using pooled milk from different production 

systems in endemic settings. Saudi Arabia is an FMD-endemic country in which a range 

of production systems exist, including nomadic and small-scale herds containing small 

ruminants and cattle, and large-scale dairy production systems (Asghar et al., 2016). 

Large-scale dairy farms can house up to 20,000 cattle, and often keep detailed records 

of individual cattle health, movements, milk yields and vaccination status (Hutber et 

al., 1999; Lyons et al., 2017; Gomaa Hemida et al., 2018). Recently, Saudi Arabia has 

experienced outbreaks due to viral lineages that are not normally present in this 

region, including the A/ASIA/G-VII and O/ME-SA/Ind-2001 lineages (Knowles et al., 

2015; Bachanek-Bankowska et al., 2018). These FMD outbreaks also affected large-

scale dairy farms, despite regular vaccination and strict biosecurity practices (Lyons et 

al., 2017; Gomaa Hemida et al., 2018). 

The aim of this study was therefore to validate the use of pooled milk for the 

surveillance of FMD in these large-scale production systems. The goal was to provide a 

representative model for cost-effective and efficient surveillance to rapidly detect 

infected herds during outbreaks in endemic countries. Similarities that exist in the 

production systems of FMD-free countries mean that this approach could support 

targeted/risk-based surveillance in response to an outbreak in a disease-free country. 

The specific objectives were to (i) validate the use of pooled milk collected from a large 

scale dairy farm in Saudi Arabia for the detection and characterisation of FMDV by real-

time rRT-PCR; (ii) compare the results obtained by FMDV rRT-PCR with clinical 

incidence; (iii) model the predicted CT values of pooled milk samples based on detailed 

epidemiological data available from the farm; (iv) estimate the sensitivity and 

specificity of this surveillance approach to assess the usefulness of pooled milk as a 

cost-effective, non-invasive surveillance tool. 
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6.3  Materials and Methods 

6.3.1 Study site and population 

The study site was a large-scale dairy farm located in central Saudi Arabia. The farm 

housed approximately 4,000 Holstein Friesian cattle and was organised into 

management houses (H) with lactating groups of up to 240 cows that were milked four 

times a day. The farm had a fenced outer perimeter and there were no other FMD 

susceptible livestock or wildlife present on the farm. The study population comprised 

all cattle on the farm that were in lactating groups during the study period 

(10/09/2015 to 25/02/2016). The farm had electronic recording systems for 

monitoring individual animal health and movements. Lactating cattle were vaccinated 

approximately every three months with a high potency (≥6.0 PD50), killed, aqueous 

adjuvanted (aluminium hydroxide and saponin), non-structural protein (NSP) purified 

FMD vaccine (containing O Manisa, O-3039, O-PanAsia2, A Iran-05, A Saudi-95, Asia-1 

Shamir and SAT-2 virus strains) (Aftovaxpur, Merial Animal Health) (Lyons et al., 

2017). 

In September 2015, the farm had clinical cases of FMD due to the then emerging 

A/ASIA/G-VII viral lineage (Bachanek-Bankowska et al., 2018). In February 2016, 

three months after the last clinical case (on 12/11/2015), new clinical cases were 

observed and confirmed as serotype O (ME-SA/Ind-2001d lineage), with the last 

recorded clinical case on 07/03/2016. All recording of clinical cases was done by farm 

staff supervised by veterinary surgeons employed by the farms. The resulting data 

were entered into an electronic farm recording system. FMD cases were defined by 

observation of increased salivation and any of the following additional clinical signs: 

mouth lesions, feet lesions, teat lesions, fever, reduced feed intake and lameness. The 

farm policy was to isolate new cases of FMD in a dedicated isolation facility. If the 

isolation facility was full or the number of observed cases in the group exceeded 

approximately 5%, cases remained within groups. Animals were moved from isolation 

back to the main herd either after complete recovery or when sufficiently recovered, 

depending on available space in the isolation facility. 
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6.3.2 Pooled milk sampling 

As part of routine herd health surveillance, milk samples were collected twice weekly 

using a proportional in-line milk sampler (Figure 6.1), designed to pull a representative 

sample from each house, and delivered to the farm laboratory. Throughout the study 

period (10/09/2015 to 25/02/2016), milk samples (n=732) were collected twice 

weekly (between 10/09/2015 - 03/12/2015), weekly (between 10/12/2015 – 

25/02/2016), or on an ad-hoc basis. Milk samples were collected from each 

management house containing lactating cows (n=17) and on an ad-hoc basis from two 

houses containing cows separated due to various diseases (a “sick-cow pen”). All milk 

samples were labelled with the date and house identification number and were stored 

in a freezer at -20°C until they were shipped to The Pirbright Institute (TPI, UK) for 

FMDV detection.  

 

 

Figure 6.1 Milk sample being collected by the proportional in-line sampler. Photo 
courtesy of Nick Lyons. 

 

6.3.3 Laboratory testing of pooled milk samples 

6.3.3.1 Viral isolates 

FMDV cell culture isolates (isolated once in primary bovine thyroid [BTY] cells) were 

obtained from archival stocks held in the OIE/FAO World Reference Laboratory for 

foot-and-mouth disease (WRLFMD) repository. O/SAU/1/2016 was diluted 10-2 in 

unpasteurised whole milk and used as a positive control for the pan-serotypic rRT-PCR 

assay and the serotype specific O (ME-SA/Ind-2001d lineage) rRT-PCR assay. For the 
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serotype specific A (ASIA/G-VII lineage) rRT-PCR assay, A/SAU/6/2015 was diluted 

10-4 in unpasteurised whole milk and used as a positive control. 

 

6.3.3.2 FMDV detection assays 

RNA extraction and the pan-serotypic rRT-PCR were carried out as previously 

described using an optimised method (Armson et al., 2018, see Chapter 2). Briefly, RNA 

extractions were carried out using the MagMAX™ Pathogen RNA/DNA Kit (Applied 

Biosystems®) using a sample input of 200 µL on a MagMAX™ Express 96 Extraction 

Robot (Applied Biosystems®) according to manufacturer’s instructions. VetMAX™ 

Xeno™ Internal Positive Control RNA (Applied Biosystems®) was added prior to 

extraction. Negative extraction controls consisted of unpasteurised whole milk added 

to lysis buffer. 

The pan-serotypic rRT-PCR assay was performed using the reagents, parameters and 

thermal cycling conditions previously reported (Shaw et al., 2007) with primers and 

probes described by Callahan et al. (Callahan et al., 2002). One µL per reaction of 

VetMAX™ Xeno™ Internal Positive Control LIZ™ Assay (Applied Biosystems®) was also 

included in the reaction mix. All rRT-PCR assays were performed in duplicate using an 

Applied Biosystems® 7500 Fast Real-time PCR System. Any milk sample with a CT 

value of ≤ 50 was considered positive, and was also tested in duplicate on both lineage-

specific rRT-PCR assays for A/ASIA/G-VII (Saduakassova et al., 2017) and O/ME-

SA/Ind-2001d (Knowles et al., 2015), using the reagents, parameters and thermal 

cycling conditions previously reported. Additionally, samples with amplification below 

the 0.2 fluorescence threshold (which therefore were not considered positive) by the 

pan-serotypic rRT-PCR assay (termed ‘inconclusive’ for this study) were also tested 

using the lineage specific rRT-PCR assays. The reason for this was that lower CT values 

have previously been obtained by A/ASIA/G-VII rRT-PCR assay when compared with 

values on the same samples using the pan-serotypic rRT-PCR assay (Saduakassova et 

al., 2017). 
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6.3.4 Development of a model to predict FMD virus concentrations (CT 

values) in pooled milk samples 

The CT values of pooled milk samples were predicted using information supplied by the 

farm and from the literature. These ‘predicted’ CT values were then compared with the 

‘observed’ CT values obtained by the pan-serotypic rRT-PCR assays. The values used 

for each parameter are described below. 

 

A) Equating CT value with the number of virus ‘units’  

The limit of detection of FMDV RNA in milk using the pan-serotypic rRT-PCR assay was 

based on a previous cattle challenge study (Armson et al., 2018, see Chapter 2), as this 

was the only study in the literature based on the same rRT-PCR methodology. In the 

previous study, ten-fold serial dilutions of a whole milk sample from an infected animal 

gave a limit of detection of 10-6 (Armson et al., 2018, see Chapter 2). For this study, a 

virus unit value of 1 was assigned to this last dilution at which FMDV RNA could be 

detected (i.e. 10-6) and subsequent virus unit values were assigned to each ten-fold 

dilution on a log scale (Figure 6.2). Linear regression was applied so that a CT value 

could be predicted from the fit when the total virus unit value (V) in the pooled milk 

was known.  
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Figure 6.2 Linear regression used to predict CT values from total virus unit values. Data 
is taken from limit of detection studies performed in Chapter 2 (Armson et al., 2018). 

 

B) Estimating the number of virus units excreted per cow at each stage of infection (Ui) 

Using data from the cattle challenge study performed in the same study (Armson et al., 

2018), FMDV RNA could be detected in milk by the pan-serotypic rRT-PCR assay 

between 3 to 28 days post infection (DPI), while clinical signs were first observed at 4 

DPI. As the day of infection for each cow on the large-scale farm in Saudi Arabia was 

unknown, the model assumed that the day clinical signs were first recorded was day 

[D] 0. Consequently, an excretion profile was created using the mean CT values based 

on data collected from two in-contact animals from the challenge study (Armson et al., 

2018, see Chapter 2) between D-1 to D24, subsequently referred to as the ‘stage of 

infection’ (i) (Figure 6.3). Missing values were interpolated, by retrieving values from 

the fitted line between the two nearest values. From these CT values, the virus unit 

value (U) was predicted for each stage of infection (i) using the linear regression model 

fitted in Figure 6.2. 
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Figure 6.3 Virus unit values (U) assigned to each stage of infection (i) between days -
1 and day 24, based on mean CT values of two animals in the challenge study performed 
in Chapter 2 (Armson et al., 2018).   = virus units for ‘1’ (no vaccination),  = ‘1/10’ 
virus units, and   = ‘1/100’ virus units. 

 

Previous studies have described a reduced level of virus excretion in nasal fluid, saliva, 

and oesophageal–pharyngeal fluid sample types in vaccinated versus non-vaccinated 

animals (Orsel et al., 2007; Parthiban et al., 2015; Thwiny, 2016). As the effect of 

vaccination on the duration of excretion or quantity of FMD virus in milk is unknown, 

additional factors were included to account for this possibility, as milk samples in this 

study were collected from regularly vaccinated cattle. Data from previous studies were 

therefore used to inform the model (Orsel et al., 2007; Parthiban et al., 2015; Stenfeldt 

et al., 2016; Thwiny, 2016), where significantly lower levels of viral excretion (by over 

102 copies/ml) were observed in vaccinated animals compared with unvaccinated 

animals. Consequently, in the model prediction for this study three ‘levels’ of viral 

excretion were adopted: ‘1’ as described above (no vaccination), and then tenfold 

reductions of ‘1/10’ and ‘1/100’ (Figure 6.3). In the model prediction, each (‘1’, ‘1/10’ 

and ‘1/100’) virus unit value for each stage of infection (i) was used separately to 

determine the effect this change had on the resulting CT value in the pooled milk 
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sample. Additionally, the reduction was assumed to remain constant throughout the 

course of infection (D-1 to D24). 

 

C) Determining the number of cattle at each stage of infection (Ni) per sampling date 

(t) 

Using records of the onset of clinical signs for each cow and individual movement data 

available from the farm, the number of cows at each stage of infection (Ni) per sampling 

date (t) per house was calculated. 

 

D) Determining the reduction in milk yield for infected cattle 

The only milk yield data available from the farm was the average milk yield per house 

for each sampling date. To enable simplification of the model, it was assumed that in 

each house all lactating cows produced equal volumes of milk (Mu). This was 

considered a reasonable assumption as cattle were placed into houses on the basis of 

stage of lactation.  

Due to limited studies quantifying the reduction in milk yield during FMDV infection in 

highly vaccinated cattle, original milk yield data from a large-scale Holstein-Friesian 

dairy farm in Kenya that reported a FMD outbreak in August 2012 (Lyons et al., 2015a; 

Lyons et al., 2015b) were used to inform this study. The mean milk yield from 189 cattle 

was calculated for each 5-day period during infection (D0 to D4, D5 to D9, D10 to D14, 

D15 to D19, D20 to D24) as a percentage of the mean yield before infection (‘normal 

yield’: D-10 to D-1). ANOVA and Welch two sample T-tests demonstrated a significant 

difference between D5 to D9 and normal yield (p = 0.001). Therefore, a value of 87% 

of the normal yield (Mi) was employed for each cow at stage D5-D9 of infection when 

determining the final number of virus units in a pooled milk sample.  
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E) Determining the final number of virus units in a pooled milk sample per sampling 

date (F(t)) 

Using the input parameters calculated in (A) to (D), the final number of virus units in a 

pooled milk sample per sampling date (F(t)) for each house can be calculated using the 

following equation:  

𝐹(𝑡) =
∑ 𝑀𝑖𝑈𝑖𝑁𝑖(𝑡)
24
𝑖=−1

∑ 𝑀𝑖𝑁𝑖(𝑡)
24
𝑖=−1 +𝑀𝑈(𝐻 − ∑ 𝑁𝑖(𝑡)

24
𝑖=−1 )

 

Where: 

 Ni is the number of cows at infection stage i 

 Ui is the number of virus units excreted per cow at infection stage i 

 Mi is the amount of milk produced by a cow in infection stage i 

 MU is the amount of milk produced by a healthy cow 

 H is the total number of cows contributing to the milk pool 

 

F) Predicting CT values for each sampling date (t) 

Using the value of F(t) for each house the CT value was predicted from the linear 

regression model fitted in (A) (Figure 6.2). 

 

6.3.5 Statistical analysis 

All data analyses were performed using R 3.5.3 (R Core Team, 2019) within RStudio 

IDE (RStudio Team, 2019). In order to compare the ‘observed’ CT values obtained from 

pooled milk samples with ‘predicted’ CT values, values were plotted for visual 

comparison. For each sampling date (t), ‘predicted’ and ‘observed’ CT values were 

assigned a 0 or 1 for a negative (CT of >50) or positive (CT of ≤50) result, respectively. 

Additional diagnostic cut-off CT values of 45 and 40 were also investigated. 

Contingency tables were constructed for each house, and for all houses combined using 

each virus unit value level (i.e. ‘1’, ‘1/10’ and ‘1/100’), for which sensitivity, specificity, 

and the Cohen’s Kappa statistic (κ) (Landis and Koch, 1977) were calculated.  
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6.4 Results 

6.4.1 Epidemiology of the FMD outbreak 

Throughout the study period, the mean number of lactating cows in each house was 

227 (median 237, range 44-240). Details of the farm and clinical incidence for the two 

FMD outbreaks are shown in Table 6.1. Based on the total number of cattle present on 

the farm, the overall incidence risk was 2.8% and 0.87% for the two separate outbreaks 

beginning on 02/09/2015 and 15/02/2016, respectively. The epidemic curves with 

corresponding sampling periods are shown in Figure 6.4c. Based on movement 

records, cows affected with suspected FMD were moved into a quarantine house at the 

start of the outbreak where they continued to be milked (if possible) until they had 

recovered sufficiently to move back to the same or an alternative lactating house. When 

quarantine houses reached maximum occupancy or the house level incidence exceeded 

5%, this practice was discontinued.   

 

Table 6.1. Summary of outbreak data on the large-scale dairy farm in Saudi Arabia. 

Variable  

Total number of lactating cattle during study 
period (approx.) 

4,000 

Number of lactating houses 17 

Number of lactating animals per housea 
(mean, median, range) 

227 (237, 44-240) 

Number of lactating houses affected (%) 10 (58.8)b 4 (23.5)c 

Number of clinical cases of FMDd 107b 33c 

Overall incidence risk (number of cases/total 
livestock on farm) (%) 

2.8b 0.87c 

Date of index case 02/09/2015b 15/02/2016c 

a Calculated on milk sampling days throughout the study period. b A/ASIA/GVII outbreak.                         
c O/ME-SA/Ind-2001 outbreak. Outbreaks were determined according to reports by WRLFMD.  
d Case definition used by the farm for FMD was any animal seen salivating with any of the 
following additional clinical signs: mouth lesions, feet lesions, teat lesions, fever, reduced feed 
intake and lameness. 
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Figure 6.4 (A) CT values from the pan-serotypic rRT-PCR assay ( ) for pooled milk 
samples collected from 19 lactating houses in the large-scale dairy farm in Saudi Arabia 
throughout the study period (n=732). (B) CT values for each lineage-specific rRT-PCR 
assay for samples that tested positive (CT ≤ 50), or where very low amplification (below 
the threshold) was observed, in the pan-serotypic rRT-PCR assay. : A/ASIA/G-VII. 
: O/ME-SA/Ind-2001d. : Sample could not be typed. (C) Epidemic curves of FMD 
outbreaks on the farm. Stars represent dates where clinical samples (vesicular 
epithelium/fluid) were collected and submitted to the World Reference Laboratory for 
Foot-and-mouth Disease (WRLFMD), and reported as : A/ASIA/G-VII, : O/ME-
SA/Ind-2001d. 

 

6.4.2 Pooled milk 

During the study period 732 milk samples were collected of which 42 (5.7%) were 

positive using the pan-serotypic rRT-PCR (Table 6.2, Figure 6.4A). Of the 42 positive 

samples and those considered ‘inconclusive’ due to amplification below the 0.2 

fluorescence threshold (n=22), 32.8% were positive by the A/ASIA/G-VII rRT-PCR 

assay, and 9.4% were positive by the O/ME-SA/Ind-2001d rRT-PCR assay (Figure 6.4B). 

Additionally, 3.1% of the samples tested on the lineage-specific assays were positive 

for both lineages. Of the samples that were positive on the pan-serotypic rRT-PCR 

assay, 19/42 (45.2%) could not be typed. Of the samples that were inconclusive on the 

pan-serotypic assay, 3/22 (13.6%) were positive for A/ASIA/G-VII and 1/22 (4.5%) 

was positive for O/ME-SA/Ind-2001d.  

 

Table 6.2. Summary of milk sample results for all rRT-PCR assays for the large-scale 
dairy farm in Saudi Arabia. 

Variable Value 

Duration of milk sampling (weeks) 25 

Number of houses milk samples were collected from 19 

Number of pooled milk samples tested 732 

Number positivea by pan-serotypic rRT-PCR assay (%) 42 (5.7%) 

Number positivea by A/ASIA/G-VII rRT-PCR assay (%) 21/64b (32.8%) 

Number positivea by O/ME-SA/Ind-2001d rRT-PCR assay (%) 6/64b (9.4%) 

a Positive results are those with at least one well giving a CT of ≤50. b 22 samples were 
considered ‘inconclusive’ (amplification was observed below the fluorescence threshold of 0.2) 
and were therefore also tested by the lineage-specific rRT-PCR assays. 
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6.4.3 Correlation between epidemiological data and FMDV RNA in pooled 

milk 

Laboratory results from the pooled milk samples were directly compared against 

clinical data collected during the FMD outbreaks. The first period of clinical disease was 

seen in lactating cows between 02/09/2015 and 24/09/2015 (n=99), with two 

recurrences of clinical disease in a smaller number of cows in mid-October (n=1) and 

the first half of November 2015 (n=7) (Figure 6.4C). Clinical samples (vesicular 

epithelium/fluid) were collected from clinically affected animals (n=3) in September 

and October 2015, and were characterised as belonging to the A/ASIA/G-VII lineage. 

Further clinical disease was recorded at the beginning of February 2016 (n=33) and a 

clinical sample identified the strain as from the O/ME-SA/Ind-2001d lineage. Visual 

comparison of the epidemic curve and temporal representations of rRT-PCR results 

indicates some clustering of positive pooled milk samples around the occurrence of 

new clinical cases but with a wider distribution (Figure 6.4). Clustering of lineage 

A/ASIA/G-VII positive results can also be seen from the commencement of sampling to 

the end of November, concurrent with reports of this lineage from clinical samples. The 

clinical incidence in lactating cows over the whole study period was 3.6% (Table 6.1), 

while FMDV genome was detected in 5.7% of pooled milk samples (Table 6.2). A 

contingency table was constructed to determine the sensitivity (Se) and specificity (Sp) 

of the pan-serotypic rRT-PCR, using the number of new clinical cases observed on milk 

sample collection days for all houses sampled as the gold standard: Se = 42.9% (95% 

confidence interval (CI): 21.4% - 67.4%), Sp = 95.0% (95% CI: 93.1% - 96.4%) 

(Appendix IV, Figure 8.6).   

FMDV genome was detected in pooled milk in 17 out of the 19 (89.5%) sampled houses 

compared to 14/19 (73.7%) houses that reported clinical cases. Of the latter, 13 were 

PCR positive at some point during the outbreaks (Figure 6.5). Furthermore, four 

houses were positive by rRT-PCR with no recorded clinical cases at any time during the 

outbreaks. There were also eight samples taken where the rRT-PCR result was negative 

but there were new clinical cases observed on that day.  
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6.4.4 Predicting CT values in pooled milk  

Predicted CT values were obtained for each house and compared with the observed CT 

values from the pan-serotypic rRT-PCR (Figure 6.5). The potential effect of reduced 

virus excretion that may occur due to vaccination was also investigated, where CT 

values were predicted for the different levels of virus excretion to accommodate the 

possible impact of FMDV vaccination (‘1’, ‘1/10’ and ‘1/100’) (Figure 6.5). Predicted CT 

values were not calculated for some houses due to a lack of available epidemiological 

data required for the analysis, or because the house was used as a quarantine pen to 

isolate new cases of FMD at the start of the outbreak, and therefore regular milk 

samples were not collected (Houses 17 and 18). Additionally, House 12 is not included 

in figure 6.5 as both the observed and predicted results were all negative. 

Visual comparison of observed versus predicted CT values revealed instances where (i) 

positive results were obtained for both observed and predicted values, and CT values 

were generally comparable, (ii) positive results were obtained for predicted values 

only, and (iii) positive results were obtained for the observed results only, although 

this was less frequent than when comparing observed CT values with new clinical cases 

(Figure 6.5). 

The lowest predicted CT values (i.e. the highest viral RNA concentration) obtained for 

‘1’, ‘1/10’, and ‘1/100’ were 30.4, 34.5 and 38.7, respectively, compared with 31.6 for 

the observed results. A reduction in viral excretion increased the predicted CT values 

and in some instances decreased the duration for which milk samples from a house 

would remain positive (CT≤50). Additionally, applying a diagnostic cut-off value of 45 

or 40 decreased the likelihood and duration of predicted positive CT values. 

Contingency tables for all houses combined indicated that a virus excretion level of 

‘1/10’ with a diagnostic cut-off CT value of 40 generated results closest to those of the 

observed rRT-PCR results (Se = 34.6% [95% CI: 19.4% - 53.8%], Sp = 97.2% [95% CI: 

95.7% - 98.2%], Aobs = 0.95, K = 0.31) (Appendix IV, Figure 8.7). A reduction in 

sensitivity and increase in specificity was observed when these values were compared 

with estimates of sensitivity and specificity using records of new clinical cases as the 

‘gold standard’.  

 



Chapter 6 

 

135 

 

 

 



Chapter 6 

 

136 

 

 

 



Chapter 6 

 

137 

 

 

Figure 6.5 ‘Observed’ CT values for the rRT-PCR of pooled milk samples ( ) vs 
‘Predicted’ CT values at ‘1’ viral excretion ( ), ‘1/10’ ( ) and 1’100 ( ), for each 
management house [1-16, and 20]. Houses 12 and 17 are not shown because they were 
not included in this analysis due to the absence of clinical cases and rRT-PCR positive 
results in milk. House 18 was an isolation pen and not enough epidemiological data 
were available for analysis. 
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6.5 Discussion 

This study aimed to expand on previous work to determine the utility of testing pooled 

milk by rRT-PCR as an alternative approach for FMD surveillance in vaccinated dairy 

herds. During the six-month study period, 732 pooled milk samples were collected 

from a large-scale dairy farm housing approximately 4,000 cattle during an FMD 

outbreak.  

The first objective of this study was to determine whether detection and 

characterisation of FMDV by rRT-PCR was possible from pooled milk samples, and 

compare these results with epidemiological data recorded during the outbreaks. This 

is the first study we are aware of showing that FMDV genome can be detected in pooled 

milk samples from regularly vaccinated cattle collected using a proportional in-line 

milk sampler on a large-scale dairy farm. The mean CT values obtained in the pan-

serotypic rRT-PCR assay were high (>31), most likely due to the dilution of milk from 

a relatively small number of infected animals in groups of lactating cattle numbering 

up to 240 and collectively producing in excess of 10,000 litres per day. These results 

confirm the hypotheses from previous laboratory and modelling studies that suggested 

FMDV genome could be detected at these dilutions during outbreaks in field settings 

(Reid et al., 2006; Thurmond and Perez, 2006; Armson et al., 2018, see Chapter 2).  

Lineage-specific rRT-PCR assays (Knowles et al., 2015; Saduakassova et al., 2017) 

confirmed the presence of the A/ASIA/G-VII and O/ME-SA/Ind-2001d lineages in the 

pooled milk samples, and this was supported by reports from samples collected from 

clinical cases that were sent separately for laboratory testing. Reports for these 

samples demonstrated that the two outbreaks were caused by different FMD viral 

lineages, the first due to the A/ASIA/G-VII lineage, and the second the O/ME-SA/Ind-

2001d lineage, both are which are thought to have emerged recently from the Indian 

sub-continent (Knowles et al., 2015; Bachanek-Bankowska et al., 2018). The rRT-PCR 

results from the pooled milk samples suggest that there was a period of co-circulation 

or even co-infection with FMD viruses from these lineages. Co-infection in clinical 

samples from individual cattle in Saudi Arabia has been reported previously 

(Woodbury et al., 1994), although this possibility cannot be confirmed in the present  

study given that samples were taken and tested from only three clinical cases. Indeed 
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the collection of a variety of sample types from numerous individual animals during 

this study (e.g. vesicular lesion material, blood, nasal/oral swabs and milk) may have 

allowed for the detection of co-infection, and may have also enabled a more thorough 

validation of the pooled milk surveillance approach.     

Although the farm routinely vaccinates with a high-potency, polyvalent FMD vaccine, 

both potency tests (Fishbourne et al., 2017; Waters et al., 2018) and field studies 

(Lyons et al., 2017) suggest that the vaccine does not confer complete protection 

against the A/ASIA/G-VII lineage or the O/ME-SA/Ind-2001d lineage. This may explain 

why clinical cases still occurred during the study period, albeit with a low overall 

incidence risk. This is especially the case for, the A/ASIA/G-VII lineage, which was 

detected in more pooled milk samples compared to O/ME-SA/Ind-2001d, consistent 

with expected vaccine performance from respective in vitro vaccine-matching data and 

experimental studies (Fishbourne et al., 2017; Waters et al., 2018, A. Ludi, personal 

communication). The detection of a greater number of milk samples positive for the 

A/ASIA/G-VII lineage could also be due to the relative performance of the typing rRT-

PCR assays. In previous validation studies, lower CT values for the A/ASIA/G-VII 

lineage typing assay have been demonstrated compared to the pan-serotypic rRT-PCR 

assay (indicating an increased sensitivity) (Saduakassova et al., 2017). In contrast, the 

O/ME-SA/Ind-2001d typing assay has been shown to generate CT values comparable 

to the pan-serotypic rRT-PCR (Knowles et al., 2015).  

In order to validate the use of pooled milk for the surveillance of FMDV on this large-

scale farm, pan-serotypic rRT-PCR results from the pooled milk samples were 

compared to the clinical incidence of FMD during the study period. At the farm level 

there were four temporal clusters of clinical cases with gaps of at least 15 days between 

them. Visual appraisal of the data indicated that FMDV rRT-PCR results were generally 

correlated to these clusters, although they showed a wider distribution around and in 

between the clusters of clinical cases. Comparison of the onset of individual clinical 

cases with assay results on milk sampling days at the house level revealed only 6 

occasions when milk samples were positive and a new clinical case was recorded on 

the same day. There were also occasions when either (i) positive milk samples were 

obtained when there were no new clinical cases on that day, or (ii) there were new 

clinical cases occurring but a positive result was not observed in the milk. This resulted 
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in a low sensitivity and moderate specificity for the pooled milk rRT-PCR assay (42.9% 

and 95.0% respectively). However, this approach is limited by only comparing the 

assay results with the onset of new clinical cases on the sampling day which does not 

account for FMDV genome shedding in pre-clinical, convalescent, or subclinically 

affected animals.  

In order to attempt to account for these limitations, ‘observed’ CT values obtained by 

the pan-serotypic rRT-PCR assays were compared with ‘predicted’ CT values for each 

house based on detailed epidemiological and cattle movement data from the farm, and 

data from recent literature. Although these results were similar, compared with the 

onset of clinical cases there was a reduction in sensitivity and an increase in specificity. 

It is likely that this may be due to the reduced number of sampling points available for 

the predictive analysis as a result of a lack of epidemiological data available from two 

of the houses. It is possible that this reduced sensitivity (i.e. instances where there were 

positive ‘predicted’ but negative ‘observed’ rRT-PCR results of the pooled milk) was 

due to a lower quantity and shorter duration of viral excretion in the milk of these 

vaccinated infected cattle than was assumed in the model. This theory supports 

findings by  Leeuw et al. (1978) who were unable to detect infectious FMD virus in the 

milk of vaccinated cattle after challenge. However, this previous study used a 

homologous vaccine to the challenge strain and focussed on the detection of live virus 

instead of FMDV RNA genome. As there are no other studies known to have considered 

viral excretion into the milk of vaccinated cattle, data used to inform the model was 

based on more recent studies that measured viral excretion from vaccinated and non-

vaccinated animals in alternative samples such as nasal fluid, saliva, and oesophageal–

pharyngeal fluid (Orsel et al., 2007; Parthiban et al., 2015; Thwiny, 2016). The authors 

acknowledge the limitation of this approach, particularly since the quantity and 

duration of viral excretion seemed to have a substantial impact on the likelihood of 

predicting a positive result in the milk. Consequently, further investigation into the 

effect of vaccination on viral excretion in milk is required and would enhance the 

predictive ability of the model. 

Management practices on the farm may also have contributed to the low sensitivity of 

the pooled milk rRT-PCR assay. These include the inconsistent removal of clinical cases 

and milking practices during the study period in response to the outbreak, with the 
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potential for increased sensitisation of farmers to disease as the outbreak progressed, 

resulting in a decreased chance of milk from an infected cow contributing to the milk 

pool. Additionally, the proportional in-line sampling method may not be truly 

representative of all cattle in the group, as reported previously (Clarke et al., 1997). 

Although the in-line sampler is designed to represent the whole milking, it has been 

demonstrated that this method may terminate sampling early (Clarke et al., 1997) and 

milk from infected cattle may be excluded from the sample tested leading to false 

negative results. This may explain the low sensitivity obtained for this FMDV detection 

system compared with what was predicted in the model. Other methods, for example 

collecting a sample from the bulk tank after thorough agitation, may be more 

representative (Barnard, 1977) and could be considered for future studies.  

During the study period there were also instances when positive rRT-PCR results 

observed in milk samples did not correspond to new clinical cases observed, or indeed 

‘infected’ (D-1 to D24) cows present in the house that would excrete virus into the milk 

pool. The possibility that these ‘false positives’ were due to laboratory contamination 

cannot be excluded. However, the laboratory methodology used in this study has been 

shown to be highly specific (see Chapter 4), and as there were a high number of 

‘negative’ samples it is unlikely that these results are due to either laboratory 

contamination or non-specific amplification. An alternative explanation for this 

observation include spill-over of virus between houses as cattle were being milked (i.e. 

virus from an infected animal in one house may have been carried over to the milk from 

the subsequent house, generating false-positive results for an otherwise negative 

house) as there was no milk line disinfection between houses. There is also the 

possibility of delays in clinical case detection, sub-clinical infections or mild clinical 

cases that may not have been noticed by farm workers. Subclinical infections in 

vaccinated animals have been reported previously (Bertram et al., 2018; Farooq et al., 

2018; Stenfeldt et al., 2018) and this is a possible explanation for the prolonged period 

between cases (up to 27 days), although it is unknown whether the outbreaks on this 

farm were due to prolonged circulation or new virus introductions.  

This is the first study to evaluate the use of pooled milk as a surveillance sample for the 

detection of FMDV on large-scale dairy farms in endemic regions. This study 

demonstrates that rRT-PCR testing of pooled milk may be utilised for FMD surveillance 



Chapter 6 

 

142 

 

and reveal underlying sub-clinical FMD infection. More representative sampling 

methods should be investigated that may increase the sensitivity of this approach 

including an exploration of how the dairy value chain may be exploited for FMD 

surveillance. Subsequently, this methodology could be integrated into FMD 

surveillance programmes providing significant benefits over conventional surveillance 

strategies. The similarities in the farming system evaluated in this study and dairy 

farms in FMD-free countries highlights the potential of this surveillance approach for 

use in disease-free regions in the event of an incursion of FMDV, to allow rapid 

identification of infected herds, tracing the source and spread of infection and to screen 

infected premises to assess disease freedom. 
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7.1 Thesis summary 

Effective disease surveillance enables stakeholders to confidently determine the health 

status of animals, and allows the necessary control methods to be implemented in 

order to reduce disease impact. Additionally, surveillance output data may help to 

assess the effectiveness of intervention strategies such as vaccination programmes 

(Drewe et al., 2011; Falzon et al., 2019). Currently, several limitations exist for foot-

and-mouth disease (FMD) surveillance in endemic regions which have been described 

in more detail earlier in this thesis (see Chapter 1, section 1.5), and include the 

dependence on disease recognition and reporting by farmers, and the labour and costs 

involved in collecting and testing invasive clinical samples. Consequently, it is likely 

that much of the FMD circulation estimated to occur goes undetected (Sumption, 

Rweyemamu and Wint, 2008; Knight-Jones and Rushton, 2013).  

Milk has been utilised for the detection of several pathogens and their specific 

antibodies, including Coxiella burnetti (Kim et al., 2005) and bovine viral diarrhoea 

virus (Drew et al., 1999; Renshaw et al., 2000b), among others. Additionally, pooled 

milk systems for herd-level surveillance are in place for diseases such as brucellosis 

(DEFRA, 2015a) (see Chapter 1, section 1.6). Previous studies have demonstrated 

FMDV detection from milk samples in experimental and field scenarios (Burrows, 

1968; Reid et al., 2006; Ranjan et al., 2016; Ahmed et al., 2017). Additionally, the 

potential use of pooled milk samples for cost-effective FMD surveillance has also been 

highlighted (Reid et al., 2006; Thurmond and Perez, 2006).  

The principal aim of this thesis was to expand on previous studies to determine the 

utility of milk for FMDV detection and surveillance. The objectives were to (i) optimise 

a high-throughput molecular FMDV detection system to be employed throughout the 

project; (ii) determine the utility of milk samples compared to conventional sample 

types for FMDV diagnosis from individual experimentally and naturally infected 

animals; (iii) evaluate the stability of FMDV RNA in milk samples during 

transportation; (iv) determine the effects of pooling; and (v) assess the use of pooled 

milk surveillance approaches in different farming systems. By addressing these 

research gaps, this thesis demonstrates that milk can be used as a non-invasive, simple 

sample type for FMD surveillance.  



Chapter 7 

 

145 

 

7.1.1 The advantages of using milk for FMD surveillance 

7.1.1.1 FMDV detection in milk samples  

Since it was first demonstrated that FMDV was excreted in the milk of FMD infected 

animals by Lebailly (1920), many studies have evaluated methodologies for the 

detection of both FMD virus and antibodies in milk samples. These techniques are 

summarised in Figure 7.1, and include antibody detection assays, the detection of live 

virus by isolation onto susceptible cell lines, and various molecular detection methods.  

 

 

Figure 7.1 Techniques for the detection of FMDV/antibody in milk samples: (a) FMDV 
antibody assays (Stone and DeLay, 1960; Armstrong, 1997); (b) live virus on 
susceptible cell-lines (Burrows, 1968; Hedger and Dawson, 1970; Blackwell and 
McKercher, 1982; Reid et al., 2006; Armson et al., 2018)(Chapter 2); (c) the detection 
and typing of FMDV RNA genome by real-time rRT-PCR (Reid et al., 2006; Ranjan et al., 
2016; Ahmed et al., 2017; Armson et al., 2018, 2019)(Chapters 2 and 3); (d) VP1 
sequence data generation (Armson et al., 2019)(Chapter 3); and (e) the detection of 
FMDV RNA genome by point of care technology such as the Enigma® Mini Laboratory 
(Goller et al., 2018). 
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This thesis has expanded on these studies, focussing primarily on the application of 

molecular methods for the detection of FMDV RNA genome. A highly sensitive and 

specific real-time rRT-PCR using a high-throughput RNA extraction protocol was 

optimised and utilised for FMDV RNA genome identification throughout the project 

(Armson et al., 2018)(Chapter 2). Absolute quantification of the virus stocks used 

throughout this thesis was not performed and consequently the true analytical 

sensitivity could not be determined, and compared with previous studies such as that 

performed by Reid et al. (2006). However, milk samples collected in the experimental 

study (Chapter 2, Armson et al., 2019) were also tested using the method detailed in 

Reid et al. (2006) at the time of sample collection. The CT values observed were higher 

(weaker) than those observed when using ‘Method B’ after five years of sample storage. 

Therefore, the optimised method used throughout this thesis likely has a greater 

sensitivity than that used by Reid et al. (2006).  

Results from the testing of milk from experimentally and naturally infected cattle 

demonstrated that the FMDV serotype or lineage could be identified using previously 

developed type-specific or lineage-specific rRT-PCR assays, and VP1 sequence data 

could also be obtained (Armson et al., 2019)(Chapter 3). Additionally, RNA genome 

detection, and typing and sequence data obtained from milk samples was generally 

consistent with that of vesicular epithelium, fluid or serum samples commonly used for 

FMD diagnosis (Armson et al., 2018, 2019)(Chapters 2 and 3). Further studies should 

perform more thorough comparisons of these sample types with milk and include 

additional sample types such as nasal and oral swabs, and OP fluid. Consequently, these 

findings provide confidence that milk is a sample type from which a range of 

information may be obtained for FMDV diagnostic and epidemiological purposes.  

 

7.1.1.2 Increasing the window of detection compared to established sampling methods 

Utilising an optimised high-throughput screening method, Chapter 2 demonstrated the 

increased window of FMDV detection by rRT-PCR in milk samples compared to serum 

samples and as previously described, vesicular epithelium or fluid (Alexandersen et al., 

2003; King et al., 2012) (Figure 7.2). Evidence from this thesis supports previous 

observations that FMDV RNA genome can be detected before and during the 
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appearance of FMD clinical signs. Further evidence for the detection of FMDV in 

convalescing cows is also described in Chapter 2 (Armson et al., 2018), which supports 

previous observations by Reid et al., (2006). However, the termination of the cattle 

experiment while FMDV RNA genome was still being detected in the milk indicates 

further work is necessary to determine the true duration of virus excretion in the milk 

of naïve-infected animals. Additionally, comparison of the predictive modelling results 

with ‘observed’ rRT-PCR results (Chapter 6) suggested that the window of virus 

detection may have been different in these regularly vaccinated cows to that of the 

naïve cattle during the experimental study. Indeed it is unfortunate that milk was not 

collected from selected individual cattle during this study period (Chapter 6), so that 

the window of virus detection may have been defined in the milk of these regularly 

vaccinated animals. Future studies should therefore aim to elucidate viral excretion 

patterns in the milk of cattle of different breeds, and those vaccinated/infected with 

various serotypes/topotypes.  

 

 

Figure 7.2 Approximate clinical window of FMD virus detection from different sample 
types: oral swab (A), OP fluid (B), blood (C), vesicular epithelium (D) and milk (E). Day 
0 indicates the day vesicular lesions are first noticed. Based on data from Alexandersen 
et al., 2003; King et al., 2012; Stenfeldt, Lohse and Belsham, 2013; and Armson et al., 
2018, Chapter 2. Photographs courtesy of Bryony Armson and Emma Howson, 2016. 
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7.1.1.3 The detection of subclinical infection 

Several studies have identified FMDV infection in animals with no obvious signs of 

disease (Bertram et al., 2018; Hayer et al., 2018) (see Chapter 1, section 1.5). It is 

reasonable to assume that FMDV RNA genome may also be excreted in the milk of sub-

clinically infected animals. Multiple data sets in this thesis demonstrate the detection 

of FMDV RNA genome in milk samples in the absence of clinical disease (Chapters 3, 5 

and 6)(Armson et al., 2019), with subclinical infection as a possible explanation in 

some of these instances. These data support observations by Ahmed et al., (2017) 

where FMDV RNA genome was detected in the milk of apparently healthy vaccinated 

water buffaloes (Bubalis bubalis). It is unknown whether vaccination may increase the 

likelihood of sub-clinical infection. Investigating FMD viral excretion patterns in the 

milk of vaccinated versus non-vaccinated cattle is recommended as a research priority 

if milk is to be utilised as a sample type for FMD surveillance where regular vaccination 

is practised. For example, viral excretion in the milk of vaccinated animals could be 

measured as part of FMD vaccine field trials using dairy cattle. Further data from these 

types of studies may enhance the ability of predictive models and may be used to better 

inform milk surveillance programs. 

 

7.1.1.4 The detection of FMDV in pooled milk  

This thesis aimed to expand on previous studies to investigate whether FMDV RNA 

genome could be detected in pooled milk samples from outbreak or endemic settings 

which has not been demonstrated previously.  

Initially (A) the ability to detect FMDV from the milk of individual cattle was assessed 

(discussed above in section 7.1.1.1) (Figure 7.3A), and these data were used to inform 

pooling studies.  
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Figure 7.3 Summary of collection of milk from the field. (A) Milk samples from 
individual cattle in northern Tanzania. (B) Pooled milk samples representing dairy 
cattle on small-holder farms in Nakuru County, Kenya. (C) Pooled milk samples 
representing dairy cattle on a large-scale farm in Saudi Arabia. Photographs courtesy 
of Bryony Armson and Nick Lyons. 

 

Subsequently, proof-of-concept pilot studies were carried out which demonstrated the 

ability of the rRT-PCR assay to detect FMDV in pooled milk samples collected from two 

different farming systems: (B) small-holder farmers supplying local milk pooling 

facilities in Kenya (Figure 7.3B) (Chapter 5); and (C) individual management groups of 

a large-scale dairy farm in Saudi Arabia (Figure 7.3C)(Chapter 6).  

Results demonstrated that FMDV could be detected from milk pools of up to 5,000 

litres and 10,000 litres for studies (B) and (C) respectively, even when there were low 

numbers of clinical cases of FMD. Due to the methodology used for sampling pooled 

milk for study (B), the number of cows represented by each sample was not known but 

could be estimated from data obtained from small-holder farmer surveys, suggesting 

the contribution of milk by over 1000 cattle. For study (C) although the volume of milk 

per management group was greater, it was supplied by a relatively smaller number of 

high-yielding cattle, approximately 240 cattle per house. These data support 

laboratory findings from limit of detection studies using the optimised high-
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throughput FMDV rRT-PCR method carried out in Chapter 2 (Armson et al., 2018) and 

in a previous study that employed a different detection system (Reid et al., 2006), that 

suggested the assay would be sensitive enough to detect FMDV in pooled milk from 

large herds, even in the unlikely case that only one animal was infected. Data obtained 

in this thesis also support previous modelling studies which suggested that it would be 

possible to detect FMDV from a milk pool supplied by over 1000 cattle (Thurmond and 

Perez, 2006; Garner et al., 2016; Kompas et al., 2017). However, the milk pool volumes 

suggested in these studies (up to 20,000 litres) are larger than those tested in this 

thesis (up to 10,000 litres). Indeed, based on the weak CT values observed from pooled 

milk samples throughout this thesis (CT value > 30), it is unknown whether FMDV could 

be detected in pooled milk samples collected from larger herds (>1000), or samples 

collected higher up in the dairy value chain. Although it is assumed possible by limit of 

detection and modelling studies (Reid et al., 2006; Armson et al., 2018), these methods 

may not represent the realities of the field, and consequently field studies are required 

in order to determine the absolute limit of the FMDV detection system for pooled milk 

samples. 

 

7.1.2  The limitations of utilising milk for FMD surveillance 

7.1.2.1 Potential for contamination of the rRT-PCR assay 

The high-throughput RNA extraction and real-time rRT-PCR optimised and utilised for 

FMDV RNA genome identification throughout this project was shown to be highly 

sensitive, able to detect FMDV RNA genome in large milk pools of up to 10,000 litres 

(Armson et al., 2018)(see Chapters 2, 5 and 6). The FMDV detection method used 

throughout this project was also shown to be highly specific (99.66%) when testing a 

negative cohort of milk samples from UK dairy herds. However amplification was 

observed in several wells of the rRT-PCR plates during the testing of this negative 

cohort. Additionally, there were several occasions (see Chapters 5 and 6) where high 

(weak) CT values were observed where there were no clinical cases, or where there 

were no obvious alternative explanations for example viral excretion during 

convalescence or environmental contamination (such as contamination of the milk line 

from a previous ‘positive’ house [see Chapter 6]). 
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Due to the number of negative milk samples observed from Kenya and Saudi Arabia, it 

is unlikely that non-specific amplification of other template present in the milk (e.g. 

from other organisms) occurred, as it would be expected that more/all samples would 

have been positive. Additionally, the molecular detection method used throughout this 

thesis was based on the well-established and validated 3D pan-serotypic rRT-PCR 

assay utilised in reference laboratories that has been shown to be highly specific in a 

wide variety of sample types collected across the world (Callahan et al., 2002; Goris et 

al., 2009; Reid et al., 2009). However, as the negative cohort performed in chapter 4 

was only collected from select breeds in the UK, to fully validate the specificity of the 

rRT-PCR assay, further cohorts of known negative milk samples should be tested from 

various cattle breeds and locations, and from those that may contain organisms exotic 

to the UK,  

It is more likely that inter/intra-assay contamination of the rRT-PCR assay was 

responsible for the ‘false positive’ samples observed in the negative cohort of milk 

samples from the UK (see Chapter 4). The rRT-PCR assay performed throughout this 

thesis did not employ a cut-off value for positivity because the viral RNA in large milk 

pools may be highly dilute. A ‘positive’ result was therefore defined as the observation 

of amplification above the cycle threshold (CT) combined with a ‘healthy’ looking 

amplification curve, until the end of the run (50 cycles). Indeed, some of the CT values 

observed for the milk samples collected from Kenya and Saudi Arabia were higher than 

those observed for limit of detection experiments (see Chapters 2 and 4), and therefore 

contamination is a possible explanation. Consequently it is possible that at least some 

of the high CT values observed throughout this thesis may have been ‘false’ positive 

results.  

Due to the sensitive nature of the rRT-PCR assay, it is often impossible to differentiate 

between a true and a false positive result.  Interpretation of the amplification curve 

may help to identify non-specific amplification, however amplification due to 

contamination of the sample during collection or during assay set-up cannot be 

identified in this way. Future work should aim to incorporate the use of negative 

controls throughout the whole sampling process i.e. from sample collection to testing. 

Additionally, to define cut-off values for positivity using analytical and epidemiologic 

approaches (Caraguel et al., 2011), bearing in mind the increased likelihood of higher 
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CT values due to potentially highly diluted viral RNA. Additionally, absolute 

quantification of different serotypes of virus to more accurately determine the 

analytical sensitivity of the rRT-PCR assay may assist in the definition of these cut-off 

values. This would improve confidence in the results so that the milk sampling 

approach may be incorporated into active surveillance plans for FMD-free countries. 

To mitigate the risk of contamination in the field, stringent biosecurity measures must 

be applied, including the use of personal protective equipment where necessary and 

appropriate disinfection of equipment. Additionally in the laboratory, sample tubes 

should not be opened unnecessarily and samples from different regions and dates 

should be processed separately, which was the method used for testing milk samples 

throughout this thesis. Chapter 4 also highlighted the importance of performing 

multiple replicates of samples during assay set-up, where resources allow, so that true 

positive results may more easily be determined.   

 

7.1.2.2 Milk sampling methods  

Results presented in this thesis identified several limitations of the milk sample 

collection methods used in these studies, and have been discussed in more detail in the 

respective chapters. For example, in Kenya (see Chapter 5), three of the milk pooling 

facilities did not own, or were not using their bulk milk tank, and therefore an 

alternative sampling method taking a small amount of milk from all 50 litre cans was 

employed, resulting in a more labour-intensive sampling process. However, samples 

collected in this way were assumed to be as representative as collection from a bulk 

tank, and excluding facilities using this method may bias the surveillance as this 

appeared to be a common practice.  An optimal system could be designed for each of 

the various levels of pooling that occurs, including those further up the milk production 

chain (see section 7.2.2). Results from the large-scale dairy farm in Saudi Arabia (see 

Chapter 6) suggested that the proportional in-line milk sampler may not have always 

generated a representative sample from the herd, potentially resulting in ‘false 

negative’ results, especially if the sample container became full before the last cows of 

the group had been milked. Additionally, potential virus contamination of the milk line 

between different management groups may have resulted in ‘false positive’ results. 
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Consequently, it may be more suitable to collect milk samples directly from the bulk 

tank after mixing, that would be supplied by all/more lactating cows on the farm. This 

may have an additional cost-benefit of capturing more animals in fewer samples, 

although it is important to ensure that the FMDV detection method is indeed sensitive 

enough to still enable the detection of virus from one infected animal in this higher 

dilution of milk.  

 

7.1.2.3 Estimation of FMD clinical incidence 

The methods used for the pilot studies performed in this thesis (see Chapters 5 and 6) 

were appropriate, given that FMD surveillance using pooled milk has not previously 

been investigated, and therefore there were limited resources available. However, as 

discussed in more detail in these chapters, the estimation of disease incidence in the 

respective study populations may not have been truly accurate. For example, although 

it has been reported that farmers in Kenya had good knowledge of FMD (Nyaguthii et 

al., 2019), mild clinical signs, subclinical infection or indeed an unwillingness to report 

disease are likely to have resulted in low incidence estimates (Vosloo et al., 2002; 

Knight-Jones et al., 2014). Also, although farm staff on the large-scale dairy farm in 

Saudi Arabia were reported to be familiar with performing individual FMD case 

detection of individual cattle, it is possible that clinical signs may have been mild in this 

vaccinated population, and therefore cases may have gone undetected. Additionally, 

the study performed in Kenya was underpowered, due to the limited resources 

available for performing cross-sectional surveys of small-holder farmers. Future 

studies should therefore aim to more precisely estimate the level of FMD clinical 

incidence so that the milk sampling approach can be more robustly assessed. For 

example studies performed on large farms could integrate the collection of multiple 

sample types and milk from individual animals in addition to pooled milk samples. 

Additionally, those studies investigating small-holder farming systems could employ 

serological NSP testing of selected farms (discussed further in section 7.2.3).  
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7.1.2.4 Reduction in milk yield during FMDV infection 

Reservations exist as to the ability of FMDV detection in pooled milk due to the many 

reports of reduced milk yield during FMDV infection (James and Rushton, 2002; 

Knight-Jones and Rushton, 2013; Ferrari et al., 2014; Jemberu et al., 2014; Bastola, 

2015; Ansari-Lari et al., 2017; Casey-Bryars et al., 2018). Indeed, animals that are sick 

and/or experience a cessation or reduction in milk production may not contribute to 

the milk pool, and therefore a pooled milk sample may not be representative of FMD 

virus circulation in the whole herd. Additionally, the milk of uninfected cows may dilute 

the virus contained in the small amounts of milk produced by infected cattle so that the 

final virus concentration is beyond the analytical sensitivity of the rRT-PCR assay.  

Despite these reservations, data presented in this thesis demonstrated that FMDV RNA 

genome could still be detected from a pooled milk sample when the FMD incidence 

rates over each of the study periods were low (Chapters 5 and 6). For the study in Saudi 

Arabia (Chapter 6), sick or diseased animals were isolated from their management 

house, although this process was not consistent when isolation pens became full. Virus-

laden milk from these animals was therefore not included in the sampled milk pool, yet 

FMDV RNA could still be detected. It is possible that the regular vaccination of these 

animals resulted in less severe/no clinical signs in some animals, and consequently a 

reduced impact on milk yield. For the study performed in Kenya (Chapter 5), farm-level 

data was not available and therefore it is unknown how many infected animals did not 

contribute their milk. Although this information is not necessary when performing 

surveillance of the study population, it would be useful to determine the true 

sensitivity of the FMDV detection system, and to inform future modelling studies.  

 

7.1.2.5 Sampling bias 

Milk samples can only be collected from lactating female animals. Therefore, if 

surveillance approaches focus exclusively on dairy cattle; males, young stock, breeds 

designed for meat, and other species such as sheep, goats and pigs may not be 

represented. It is therefore anticipated that the milk sampling surveillance approach 

could act as a supplement to current surveillance systems that may be limited to the 

detection of acute disease. Therefore, it is important that data obtained from the milk 
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sample collected is representative of the FMDV circulation in the susceptible 

population. 

In FMD endemic regions such as East Africa and the Middle East, there are many 

nomadic and small-holder farmers that keep small ruminants together with their dairy 

cattle, and a small number of large-scale dairy farms (Nthiwa et al., 2019; Nyaguthii et 

al., 2019). It has been suggested that sheep and goats may play a significant role in the 

transmission of FMDV, and therefore the close proximity likely results in high levels of 

viral circulation between species (Kitching and Hughes, 2002; Asghar et al., 2016). In 

FMD-free countries such as Western Europe, dairy farms are also generally widespread 

(Department of Environment Food and Rural Affairs, 2010). It is likely that dairy cattle 

may act as sentinels for the surrounding susceptible FMD population, and 

consequently surveillance systems that focus on dairy cattle are likely to be highly 

representative of disease circulation in these settings. This was supported by 

simulation models performed by Garner et al. (2016) who suggested that bulk milk 

testing could enhance early detection in areas where there are many dairy cattle, even 

when the outbreak starts outside of a dairy area.  

In contrast, a milk sampling surveillance approach may not be appropriate for endemic 

countries such as Hong Kong SAR, China and Thailand that have large populations of 

pigs, and less market for dairy products resulting in a lower number of dairy cattle (see 

Figure 7.4) (Sumption et al., 2008; Robinson et al., 2014).  

 

Figure 7.4 The global distribution of cattle. Adapted from Robinson et al. (2014). 
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7.2 Recommendations for future studies 

Data presented in this thesis have demonstrated the benefits and limitations of milk as 

a sample type for FMDV detection and surveillance, with the potential of 

implementation into regional surveillance plans alongside existing surveillance 

schemes. Before integrating pooled milk into FMD surveillance systems, there are 

several considerations that require further investigation. 

 

7.2.1 Technologies for improved molecular data collection  

Although results from Chapter 4 demonstrated that FMDV RNA detection by rRT-PCR 

was not significantly affected during the long-term storage and simulated transport of 

milk samples, the use of point of care (POC) technologies would allow for rapid result 

reporting at source, reducing the need for expensive and logistically challenging 

transport of samples to national or international FMD laboratories. The detection of 

FMDV RNA from milk samples using a fully automated cartridge-based real-time RT-

PCR diagnostic system (the Enigma® Mini Laboratory) has been described (Goller et 

al., 2018), and although this system is no longer commercially available, similar 

systems could be designed that are suitable for use in mobile and local laboratories 

with limited resources, or on large-scale dairy farms where samples may be tested on-

site. It is possible that existing POC technologies that do not include an RNA extraction 

step may not be suitable for the detection of FMDV RNA from milk samples due to PCR 

inhibitors such as the proteins and lipids found in milk. Therefore, future work could 

aim to optimise these or alternative technologies in combination with effective simple 

sample preparation methods such as those described by Howson et al. (2018).  

Furthermore, as results obtained in Chapter 3 highlighted the ability to obtain VP1 

sequence data from milk samples, the potential for next-generation sequencing (NGS) 

should also be investigated. This genomic data could then be used to better understand 

the epidemiology of FMDV in a region, for example by investigating the viral diversity 

of pooled milk samples to determine the burden of infection in a region (Walker et al., 

2013; King et al., 2016). With the rapid advancement of technology, the potential exists 

for the application of POC NGS technology such as the MinION nanopore sequencer 
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(Oxford Nanopore Technologies, Oxford, UK) for real-time, portable genome 

sequencing of FMDV in milk samples (Hansen et al., 2019). However, it is possible that 

the low concentrations of viral RNA in a pooled milk sample may be too low to obtain 

quality sequence data, and milk may not be suitable for rapid field sequencing as prior 

processing may be required (Logan et al., 2014). 

 

7.2.2 Exploring the milk production chain for representative pooled milk 

sampling 

Pooling studies performed for this thesis have highlighted the importance of simple, 

representative sampling methods to ensure confidence in the test result. Further work 

is required to examine the pooling systems employed by different geographical regions 

or farming settings, and how they may be targeted for effective surveillance. For 

example, assessment of the ability to detect FMDV at different stages of the milk 

production chain, from the individual animal, to the farm-level and up to processing 

centres should be performed (Figure 7.5). Sampling milk at higher levels would capture 

the contribution of milk by a greater proportion of the dairy cattle population in a 

region. However, the stage at which pasteurisation occurs should be carefully 

considered, as it has been demonstrated that FMDV is less likely to be detected 

following this process (Reid et al., 2006; Aly and Gaber, 2007; Tomasula et al., 2007). 

Garner et al. (2016) modelled FMDV detection from a transport tanker containing 

20,000 litres of milk collected from up to five large-scale dairy farms, and it is 

important to externally validate these findings based on field data particularly if they 

are used to inform surveillance policy. Information should also be obtained concerning 

the cost implications for sampling at each stage, and how representative the sample is 

of the region of interest, i.e. what percentage of susceptible animals are contributing to 

the sample. Additionally, FMDV has been previously identified in the milk of sheep and 

goats (Aly and Gaber, 2007), and therefore it could be investigated whether this 

approach could be useful for FMD surveillance, as has been demonstrated for the 

detection of Brucella spp. (Hamdy and Amin, 2002).  

The adulteration of milk by farmers for financial gain has been reported, especially in 

underdeveloped countries (Azad and Ahmed, 2016). Substances added to milk may 
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include milk powder, water or chemicals such as hydrogen peroxide, formalin and 

salicylic acid. Although pooling facilities often perform tests for these substances, there 

remains the potential for milk contamination, and it is unknown how these substances 

may affect any FMD virus contained within the milk. Therefore, experiments should be 

performed to determine how the presence of these substances in milk samples may 

affect the ability of the rRT-PCR to detect FMDV RNA genome. Alternatively, milk 

samples could only be taken for testing once the appropriate quality assessments have 

been performed. 

 

 

Figure 7.5 Targeting different stages of the milk production chain for cost-effective 
pooled milk sampling. Yellow stars indicate sampling levels already investigated in this 
thesis. Red arrows indicate potential sampling levels for future research. Adapted from 
Recheis (2019) 

 

7.2.3 Improving sensitivity estimates of the pooled milk surveillance 

system 

Proof-of-concept pilot studies performed for this thesis demonstrated the ability to 

detect FMDV RNA genome from large milk pools. However, the methods used to 

estimate sensitivity involved comparing pooled milk sample results against reports of 

clinical disease by farmers. Although this method was appropriate for the pilot studies 
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performed for this thesis and with the resources available, it may not have provided an 

accurate representation of the true burden of disease in the population, as described 

earlier (section 7.1.2.3). 

Further studies are therefore required, in order achieve improved estimates of clinical 

incidence in a region, so that the sensitivity of the pooled milk surveillance system can 

be more precisely estimated. For example, testing frequently collected serum samples 

for non-structural protein (NSP) and structural protein (SP) antibodies, and for FMDV 

RNA genome alongside reports of clinical cases would provide evidence for FMD 

infection and may identify cases of subclinical infection in small-holder farming 

systems. Farmer surveys should also be powered to estimate the true incidence of 

disease if possible, instead of the detection of a specific threshold of FMD incidence, 

which was employed for this thesis. Additionally, studies performed on large farms 

could integrate the collection of multiple sample types e.g. vesicular epithelium, serum, 

nasal/oral swabs, or oesophageal-pharyngeal fluid from suspected infected animals 

and milk from individual animals throughout the period of infection. This would 

confirm suspected cases of FMD, provide further information on the window of 

detection of virus excretion in the milk of these cows, potentially identify/confirm 

cases of co-infection and consequently would assist in more robustly assessing the 

pooled milk sample surveillance approach. 

 

7.2.4 FMDV antibody testing 

Antibodies to FMDV have been detected in milk, and a significant correlation found 

with the levels of antibodies found in serum (Armstrong, 1997; Armstrong and 

Mathew, 2001; Fayed et al., 2013). Consequently, the detection of FMDV antibodies in 

milk samples could be integrated into surveillance schemes to identify infected 

cattle/herds, or could be a useful alternative sample type to blood for post-vaccination 

monitoring (Fayed et al., 2013). Although several assays for the detection of FMDV 

antibody from milk samples have been developed (Stone and DeLay, 1960; Armstrong, 

1997; Armstrong et al., 2000), newer methods may need to be optimised and validated, 

based on current commercially available tests for serum. Indeed, it is possible that 

virus-specific antibody testing of milk samples collected for work performed in this 
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thesis could provide additional information, for example to support suggestions of sub-

clinical infection, or provide support for results that could be interpreted as ‘false 

positives’.    

 

7.3 Potential applications of the pooled milk 

surveillance system 

Once further validation of the pooled milk surveillance system has been performed, it 

is anticipated that it may be valuable for targeted/risk-based surveillance alongside 

existing surveillance systems to facilitate improved knowledge of FMD epidemiology, 

or for use in FMD contingency plans.  

 

7.3.1 FMD endemic regions 

Data presented in this thesis have demonstrated the potential use of milk to improve 

knowledge on FMD epidemiology in endemic regions. It is anticipated that this 

approach could be utilised to answer specific research questions, such as: 

(i) Estimation of FMD incidence and circulating serotypes/lineages. The burden of 

infection could be predicted based on CT value, or through sequence diversity data; 

(ii) Estimation of the level of subclinical infection, for example in vaccinated vs. non-

vaccinated populations; 

(iii) Assessment of control strategies, such as the effectiveness of vaccination 

programmes. 

Although further research is required to fully validate the use of milk for FMD 

surveillance in different scenarios, it is possible that a simple, risk-based surveillance 

approach could be employed in the near future, especially to answer some of the 

questions that require less precise estimates of disease incidence, such as which 

serotypes/lineages are circulating in a region. Improved knowledge of the FMD 

epidemiology in a region may facilitate the progress of a country through the 
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Progressive Control Pathway for Foot and Mouth Disease (PCP-FMD) (Food and 

Agriculture Organization of the United Nations (FAO), 2011).  

 

7.3.2 FMD free countries 

Farm-level bulk milk sampling has been demonstrated to be effective for FMDV 

detection (see Chapter 6). Therefore, one speculates whether a similar milk sampling 

approach to that utilised for brucellosis in the United Kingdom (DEFRA, 2015a, 2015b) 

could be applied as an early warning indicator of disease, where milk samples are 

routinely submitted to testing laboratories (see Chapter 1, section 1.6). However, due 

to the short window of FMDV excretion in milk (<28 days), much shorter testing 

intervals (e.g. weekly) would be required. Consequently, the cost of pooled milk 

sampling at this frequency would likely outweigh the benefit of detection only a few 

days earlier than with passive surveillance methods, as suggested by modelling studies 

performed by Kompas et al. (2017) based on dairy herds in the Victoria state of 

Australia. There are however, several applications of the pooled milk surveillance 

system that could be cost-effective for use in FMD free countries and have been 

considered potentially valuable for use in the United States (Kompas et al., 2017; 

Lombard et al., 2017): 

(i) Testing of dairy premises in response to the threat of an outbreak in a 

neighbouring country or region for early preclinical diagnosis; 

(ii) Confirmation of a suspect case in a herd of dairy cattle; 

(iii) Testing of unpasteurised milk to be moved to a disease-free region; 

(iv) Screening of dairy herds after the cessation of clinical signs to signify disease 

freedom on a farm/region. 

A surveillance system designed for these purposes must be highly specific and sensitive 

to ensure a high degree of confidence in the test results. False results may have costly 

implications including the unnecessary culling of animals or onward viral transmission 

(Caporale et al., 2012; Lewerin et al., 2018). Therefore, in order for the milk sampling 

surveillance system to be implemented for these purposes, further research is required 

to obtain precise estimates of sensitivity and specificity, from studies performed in 

settings similar to those of FMD free countries. In the event of a future FMD outbreak 
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in a normally-free country, bulk milk sampling could be exploited in order for example, 

to determine the optimal frequency of milk sampling, which has only so far been 

hypothesised using simulation modelling  (Thurmond and Perez, 2006; Garner et al., 

2016; Kompas et al., 2017).  

 

7.4 Concluding remarks 

In conclusion, this thesis has demonstrated the utility of milk as a diagnostic sample 

for FMDV detection, and based on the proof-of-concept pilot studies performed, has 

highlighted the benefits and limitations of its application for FMD surveillance in both 

FMD endemic and free regions.  

Further research and investment are required to inform recommendations on how this 

simple, cost-effective, risk-based targeted surveillance system that is otherwise 

expensive and logistically challenging, could be used to contribute to FMD surveillance 

activities around the globe.  
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Appendices 

Appendix I 

Determination of the optimal high-throughput 

screening method for the detection of FMDV in milk 

samples 

 

 

Figure 8.1 Comparison of Methods A and B for the detection of FMDV from whole milk 
from each cow. CT values are the mean of two replicates.  : Method A, : Method B. 
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Appendix II  

FMD detection in milk samples from individual cattle 

Table 8.1 List of samples and virus isolates from northern Tanzania used throughout 
the study. The mean CT values for the pan-serotypic (3D) rRT-PCR and East Africa (O, 
A, SAT 1, SAT 2) rRT-PCR typing assays are reported. 

Animal ID/     
WRLFMD 
Reference 

Collection 
date 

Sample 
type 

Location 3D O A 
SAT 

1 
SAT 

2 

8177 26/05/2012 M Nyamburi No CT NP NP NP NP 

8146 30/07/2012 M Nyamburi No CT NP NP NP NP 

8233 17/08/2012 M Nyamburi No CT NP NP NP NP 

8233 17/08/2012 M Nyamburi No CT NP NP NP NP 

8401 18/08/2012 M Nyamsingisi 24.93 No CT 24.10 No CT No CT 

8266 17/10/2012 M Nyamburi No CT NP NP NP NP 

8233 18/10/2012 M Nyamburi 36.46 No CT No CT No CT No CT 

8259 18/10/2012 M Nyamburi No CT NP NP NP NP 

8269 18/10/2012 M Nyamburi No CT NP NP NP NP 

8401 10/11/2012 M Nyamsingisi No CT NP NP NP NP 

8403 10/11/2012 M Nyamsingisi No CT NP NP NP NP 

8406 10/11/2012 M Nyamsingisi No CT NP NP NP NP 

8427 13/11/2012 M Nyichoka No CT NP NP NP NP 

8438 13/11/2012 M Nyichoka No CT NP NP NP NP 

8445 13/11/2012 M Nyichoka No CT NP NP NP NP 

8457 13/11/2012 M Nyichoka No CT NP NP NP NP 

7470 23/11/2012 M Rwamchanga No CT NP NP NP NP 

7476 23/11/2012 M Rwamchanga No CT NP NP NP NP 

7689 23/11/2012 M N/A No CT NP NP NP NP 

7652 24/11/2012 M Rwamchanga No CT NP NP NP NP 

7653 24/11/2012 M Rwamchanga No CT NP NP NP NP 

7655 24/11/2012 M Rwamchanga No CT NP NP NP NP 

7910 20/12/2012 M Tamau No CT NP NP NP NP 

7913 20/12/2012 M Tamau No CT NP NP NP NP 

7930 18/01/2013 M Mbilikili 31.33 No CT 32.73 No CT No CT 

7941 18/01/2013 M Mbilikili No CT NP NP NP NP 

7945 18/01/2013 M Mbilikili 35.07 No CT 35.56 No CT No CT 

7950 18/01/2013 M Mbilikili 34.60 No CT No CT No CT No CT 
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7951 18/01/2013 M Mbilikili 26.99 No CT 27.17 No CT No CT 

7963 18/01/2013 M Mbilikili 29.58 No CT 28.75 No CT No CT 

7964 18/01/2013 M Mbilikili 25.93 No CT 26.76 No CT No CT 

8110 04/02/2013 M Natambiso No CT NP NP NP NP 

8225 14/02/2013 M Motukeri No CT NP NP NP NP 

8404 15/02/2013 M Nyamsingisi No CT NP NP NP NP 

8406 15/02/2013 M Nyamsingisi No CT NP NP NP NP 

6605 11/11/2013 M Nygoti No CT NP NP NP NP 

9151 11/11/2013 M Nygoti No CT NP NP NP NP 

9152 11/11/2013 M Nygoti No CT NP NP NP NP 

6778 16/11/2013 M Nyamburi No CT NP NP NP NP 

8261 16/11/2013 M Nyamburi No CT NP NP NP NP 

8562 16/11/2013 M Nyamburi 36.57 No CT No CT 48.00 No CT 

8806 16/11/2013 M Nyamburi No CT NP NP NP NP 

8808 16/11/2013 M N/A No CT NP NP NP NP 

8809 16/11/2013 M N/A 36.72 No CT No CT No CT No CT 

8811 16/11/2013 M N/A No CT NP NP NP NP 

8149 18/11/2013 M Nyamburi 32.39 41.40 No CT 34.26 No CT 

8413 18/11/2013 M Nyamburi No CT NP NP NP NP 

8194 22/11/2013 M Motukeri No CT NP NP NP NP 

8193 25/11/2013 M Motukeri 37.96 No CT No CT No CT No CT 

8530 25/11/2013 M Mbilikili No CT NP NP NP NP 

9202 19/01/2014 M N/A 33.53 No CT No CT No CT No CT 

7024 26/01/2014 M Nyichoka No CT NP NP NP NP 

9232 29/01/2014 M N/A 33.67 No CT No CT No CT No CT 

6532 05/02/2014 M Tamau No CT NP NP NP NP 

6537 05/02/2014 M Tamau No CT NP NP NP NP 

7700 05/02/2014 M Tamau No CT NP NP NP NP 

8850 05/02/2014 M N/A No CT NP NP NP NP 

6545 06/02/2014 M Tamau No CT NP NP NP NP 

6551 06/02/2014 M Tamau No CT NP NP NP NP 

6582 06/02/2014 M Tamau No CT NP NP NP NP 

7908 06/02/2014 M Tamau No CT NP NP NP NP 

7909 06/02/2014 M Tamau 35.48 No CT No CT No CT No CT 

7913 06/02/2014 M Tamau 32.41 38.05 No CT 35.65 No CT 

7914 06/02/2014 M Tamau No CT NP NP NP NP 

7545 10/02/2014 M Mbilikili No CT NP NP NP NP 

8544 10/02/2014 M Mbilikili 31.97 34.16 No CT 36.25 No CT 
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8687 10/02/2014 M N/A 36.97 No CT No CT 40.75 No CT 

7950 12/02/2014 M Mbilikili 37.04 No CT No CT 38.85 No CT 

7955 12/02/2014 M Mbilikili 36.18 No CT No CT 36.86 No CT 

7956 12/02/2014 M Mbilikili No CT NP NP NP NP 

7961 12/02/2014 M Mbilikili 35.44 No CT No CT 40.69 No CT 

7963 12/02/2014 M Mbilikili No CT NP NP NP NP 

8682 12/02/2014 M N/A No CT NP NP NP NP 

8884 12/02/2014 M N/A No CT NP NP NP NP 

8889 12/02/2014 M N/A No CT NP NP NP NP 

8897 12/02/2014 M N/A No CT NP NP NP NP 

8110 18/02/2014 M Natambiso 36.83 No CT No CT No CT No CT 

8300 19/02/2014 M Nyamsingisi No CT NP NP NP NP 

8401 19/02/2014 M Nyamsingisi No CT NP NP NP NP 

8403 19/02/2014 M Nyamsingisi No CT NP NP NP NP 

8533 19/02/2014 M Nyamsingisi 39.66 No CT No CT No CT No CT 

8534 19/02/2014 M Nyamsingisi No CT NP NP NP NP 

9200 19/02/2014 M N/A 34.66 38.01 No CT 37.20 No CT 

9201 19/02/2014 M N/A 35.38 No CT No CT 36.38 No CT 

9203 19/02/2014 M N/A No CT NP NP NP NP 

9204 19/02/2014 M N/A No CT NP NP NP NP 

9205 19/02/2014 M N/A No CT NP NP NP NP 

9206 19/02/2014 M N/A No CT NP NP NP NP 

7459 22/02/2014 M Rwamchanga 37.69 No CT No CT No CT No CT 

7461 22/02/2014 M Rwamchanga 35.68 No CT No CT No CT No CT 

7472 22/02/2014 M Rwamchanga 33.69 No CT No CT No CT No CT 

7476 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7479 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7485 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7487 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7494 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7652 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7653 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7665 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7670 22/02/2014 M Rwamchanga No CT NP NP NP NP 

8694 22/02/2014 M Tamau No CT NP NP NP NP 

8698 22/02/2014 M Rwamchanga No CT NP NP NP NP 

7050 24/02/2014 M Nyichoka No CT NP NP NP NP 

9310 24/02/2014 M N/A No CT NP NP NP NP 
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9311 24/02/2014 M Nyichoka No CT NP NP NP NP 

9312 24/02/2014 M N/A 37.41 No CT No CT No CT No CT 

9313 24/02/2014 M N/A No CT NP NP NP NP 

9315 24/02/2014 M N/A No CT NP NP NP NP 

7028 26/02/2014 M Nyichoka No CT NP NP NP NP 

7030 26/02/2014 M Nyichoka 35.61 40.80 No CT No CT No CT 

7033 26/02/2014 M Nyichoka 35.58 No CT No CT No CT No CT 

7040 26/02/2014 M Nyichoka 37.18 40.35 No CT No CT No CT 

7043 26/02/2014 M Nyichoka No CT NP NP NP NP 

7048 26/02/2014 M Nyichoka No CT NP NP NP NP 

6625 28/03/2014 M Natambiso No CT NP NP NP NP 

6644 28/03/2014 M Natambiso No CT NP NP NP NP 

6657 28/03/2014 M Natambiso No CT NP NP NP NP 

6585 14/04/2014 M Nygoti No CT NP NP NP NP 

6599 14/04/2014 M Nygoti 35.06 No CT No CT 39.79 No CT 

6605 14/04/2014 M Nygoti No CT NP NP NP NP 

9151 14/04/2014 M Nygoti 36.80 37.36 No CT 35.96 No CT 

9152 14/04/2014 M Nygoti 36.71 No CT No CT No CT No CT 

6675 19/05/2014 M Nygoti No CT NP NP NP NP 

6700 19/05/2014 M Nygoti 36.64 No CT No CT 39.71 No CT 

9243 20/05/2014 M N/A 38.58 No CT No CT No CT No CT 

9247 20/05/2014 M N/A No CT NP NP NP NP 

9248 20/05/2014 M N/A No CT NP NP NP NP 

8257 23/05/2014 M Nyamburi No CT NP NP NP NP 

8565 23/05/2014 M Nyamburi 35.48 No CT No CT No CT No CT 

8806 23/05/2014 M Nyamburi No CT NP NP NP NP 

8809 23/05/2014 M N/A 24.54 26.77 31.33 26.52 No CT 

8177 26/05/2014 M Nyamburi No CT NP NP NP NP 

8413 26/05/2014 M Nyamburi No CT NP NP NP NP 

8816 26/05/2014 M Nyamburi 37.09 No CT No CT No CT No CT 

8829 26/05/2014 
M 

N/A 
No 
CT 

NP NP NP NP 

8643 30/05/2014 M Nygoti 34.60 No CT No CT No CT No CT 

8646 30/05/2014 M Nygoti 35.53 No CT No CT 39.09 No CT 

9149 30/05/2014 M Nygoti No CT NP NP NP NP 

8225 18/08/2014 M Motukeri 32.90 37.00 No CT 37.01 No CT 

9111 18/08/2014 M Motukeri 36.38 37.25 No CT 48.18 No CT 

7736 03/09/2014 M Nyichoka 33.31 No CT No CT No CT No CT 



Appendix 

 

168 

 

7601 09/09/2014 M N/A 23.55 No CT No CT 23.79 No CT 

7602 09/09/2014 M N/A 31.01 No CT No CT 31.27 No CT 

7608 09/09/2014 M N/A 23.28 34.92 No CT 31.76 No CT 

7609 09/09/2014 M Nyichoka 30.79 33.11 37.07 32.43 No CT 

7716 29/09/2014 M N/A No CT NP NP NP NP 

7730 08/10/2014 M N/A No CT NP NP NP NP 

7743 08/10/2014 M N/A No CT NP NP NP NP 

7805 09/10/2014 M Bunchugu 27.39 No CT No CT 27.05 No CT 

7808 10/10/2014 M N/A No CT NP NP NP NP 

7815 16/10/2014 M Rwamchanga 26.30 No CT No CT 24.48 No CT 

7828 16/10/2014 M N/A 37.75 No CT No CT No CT No CT 

7832 16/10/2014 M N/A 35.66 No CT No CT No CT No CT 

7834 16/10/2014 M N/A No CT NP NP NP NP 

7848 16/10/2014 M N/A 32.76 37.76 No CT 40.70 No CT 

8011 07/11/2014 M N/A 29.62 No CT No CT 32.62 No CT 

8014 07/11/2014 M N/A No CT NP NP NP NP 

8021 07/11/2014 M N/A 33.81 No CT No CT No CT No CT 

8032 07/11/2014 M N/A 34.20 47.61 No CT 37.21 No CT 

8039 07/11/2014 M N/A No CT NP NP NP NP 

8040 07/11/2014 M N/A 33.70 37.24 No CT 36.48 No CT 

8044 07/11/2014 M N/A 35.13 No CT No CT No CT No CT 

8045 11/11/2014 M N/A No CT NP NP NP NP 

8227 25/11/2014 M Motukeri No CT NP NP NP NP 

7033 27/11/2014 M Nyichoka No CT NP NP NP NP 

9013 27/11/2014 M Nyichoka 39.58 No CT No CT No CT No CT 

7960 02/12/2014 M Mbilikili 31.62 35.85 No CT 33.34 No CT 

7961 02/12/2014 M Mbilikili 40.31 No CT No CT No CT No CT 

8840 02/12/2014 M Motukeri No CT NP NP NP NP 

8884 02/12/2014 M N/A 31.78 35.06 No CT 44.97 No CT 

8502 18/12/2014 M Mbilikili 37.69 No CT No CT No CT No CT 

8517 18/12/2014 M Mbilikili 35.43 No CT No CT No CT No CT 

9511 18/12/2014 M N/A 32.56 36.07 No CT 33.94 No CT 

8644 26/12/2014 M Nygoti No CT NP NP NP NP 

9205 09/01/2015 M N/A 36.99 No CT No CT No CT No CT 

9144 28/01/2015 M Nyichoka 30.14 34.54 37.05 37.40 No CT 

9150 28/01/2015 M Nygoti No CT NP NP NP NP 

9201 28/01/2015 M N/A 27.37 36.80 No CT 34.45 No CT 

9202 28/01/2015 M N/A 36.33 No CT No CT No CT No CT 
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6778 29/01/2015 M Nyamburi No CT NP NP NP NP 

6779 29/01/2015 M Nyamburi No CT NP NP NP NP 

8261 29/01/2015 M Nyamburi No CT NP NP NP NP 

8806 29/01/2015 M Nyamburi No CT NP NP NP NP 

8808 29/01/2015 M N/A No CT NP NP NP NP 

8811 29/01/2015 M N/A 34.58 No CT No CT No CT No CT 

9227 29/01/2015 M N/A No CT NP NP NP NP 

7605 13/03/2015 M N/A No CT NP NP NP NP 

7951 02/12/2015 M N/A 32.30 35.31 No CT No CT No CT 

6516 N/A M Tamau 32.27 No CT No CT 37.89 No CT 

8297 N/A M Nyamsingisi No CT NP NP NP NP 

TAN/19/2012 
(SAT 2) 

28/04/2012 C Simanjiro           

TAN/39/2012 
(O) 

31/05/2012 C 
Ngorongoro 
district  

     

TAN/6/2013 
(A) 

16/03/2013 C Nyamburi           

TAN/33/2014 
(SAT 1) 

16/10/2014 C Rwamchanga 
     

TAN/20/2014 03/09/2014 E Nyichoka           

TAN/22/2014 09/09/2014 E Nyichoka      

TAN/23/2014 09/09/2014 VF Nyichoka           

TAN/28/2014 09/10/2014 E Bunchugu      

TAN/29/2014 09/10/2014 VF Bunchugu           

TAN/34/2014 16/10/2014 E Rwamchanga      

N/A – information not available. NP – Not performed. M – Milk. CC – Cell culture isolate. E – Epithelium. 
VF – Vesicular fluid. No CT – No CT value observed (>50). 

 

 

 

 

 

 

 

 



Appendix 

 

170 

 

Appendix III  

FMD surveillance in Nakuru County, Kenya 
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Figure 8.2 Description of the study area and Survey 1 (Chapter 5) are described in the 
above research article, published in Veterinary Research. 
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Figure 8.3 The paper form of the questionnaire used when interviewing small-holder 
dairy farmers during surveys 2 and 3. 
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Figure 8.4 Graph showing the temporal trend of the total volume of milk supplied to 
each milk pooling facility on the sampling dates (week 1 –16/11/2016, week 45 – 
20/09/2017). 
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Figure 8.5 Graph showing the temporal trend of the total number of farmers supplying 
to each milk pooling facility on the sampling dates (week 1 – 16/11/2016, week 45 – 
20/09/2017). 
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Appendix IV  

FMD surveillance on a large scale dairy farm in Saudi 

Arabia 

 

 
New clinical cases observed 

   Positive Negative Total 

Pan-serotypic 
rRT-PCR 

Positive 6        36 42 

Negative 8 682 690 

Total 14 718 732 

Se = 42.9%, Sp = 95.0%, Aobs = 0.94, K = 0.19 

Figure 8.6 Comparison of pan-serotypic rRT-PCR assay results for pooled milk with 
the number of new clinical cases observed on the milk sample collection day for all 
houses.  

 

 

 
‘Predicted’ rRT-PCR 

   Positive Negative Total 

‘Observed’ 
rRT-PCR 

Positive 9 19 28 

Negative 17 657 674 

Total 26 676 702 

                          Se = 34.6%, Sp = 97.2%, Aobs = 0.95, K = 0.31 

*Houses 17 and 18 were not included in the analysis due to incomplete epidemiological data. 

Figure 8.7 Comparison of actual rRT-PCR assay results for pooled milk with the 
predicted results for all houses* for ‘1/10’ virus excretion with a cut-off CT value of 40. 
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