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Abstract 
 

Cognitive impairment is a common and debilitating feature of Parkinson's disease 

(PD). While it is primarily caused by cerebral propagation of α-synuclein protein, 

evidence of comorbid diseases is frequently found in autopsy samples. This includes 

tau and amyloid-β pathologies – the hallmarks of Alzheimer's disease (AD) – and 

cerebrovascular damage. Comorbid diseases may influence cognition in PD over and 

above the effects of α-synuclein alone, and this influence may interfere with the 

results of clinical trials of next-generation medical treatments that target α-synuclein. 

 

The primary aims of this thesis were to define the extent and the effects of comorbid 

disease mechanisms in PD, and to identify viable clinical strategies for detecting 

coexistent disorders in vivo. Methods included a systematic review of autopsy studies; 

a factor analysis of the Montreal Cognitive Assessment (MoCA); a regression 

analysis of two genes; and a cross-sectional neuropsychological study of 45 patients. 

 

The systematic review found significant tau pathology in around one-third of PD 

patients at death. Significant amyloid-β pathology affected over half, and conferred a 

worse prognosis. Other pathologies (e.g. cerebrovascular disease) were less common, 

and did not contribute to dementia in PD. The factor analysis showed that the MoCA 

has limited value for distinguishing cognitive profiles in PD, suggesting that it should 

be used only for screening. The genetic project found that variation in the APOE gene 

influenced cognitive decline in early PD; the effect varied between men and women. 

Variation in MAPT did not affect cognitive decline. Finally, the neuropsychological 

study found that over half of cognitively impaired PD patients could be clinically 

diagnosed with a coexistent cognitive disorder, with AD being the most common. 

 

Collectively, the results of this thesis show that comorbid diseases, particularly AD, 

are common in PD, and these contribute to the cognitive phenotype. Consequently, a 

clinical assessment incorporating selected neuropsychological tests can be used to 

identify comorbid diseases in PD patients. It is important to consider the potentially 

confounding impact of multimorbidity in the design and analysis of clinical trials that 

aim to modulate neurodegeneration in PD by targeting α-synuclein.  
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1 General introduction 
 

Parkinson’s disease (PD) is a chronic, incurable degenerative disorder of the central 

nervous system. PD is a movement disorder, defined clinically by a cardinal motor 

syndrome (“parkinsonism”). However, there is increasing recognition of the disease’s 

significant non-motor element. Cognitive impairment, including dementia, is one of 

the most common long-term complications of PD, and one of the most consequential 

for the patient’s quality of life. Current and future treatment strategies are challenged 

by the frequency of comorbid disease processes in people with PD and cognitive 

impairment. The primary aim of this thesis was to define the frequency and effects of 

comorbid diseases in this patient group, and to discuss methods for identifying them 

clinically. The treatment implications of comorbid diseases in PD are also discussed. 

 

1.1 Parkinson’s disease 
 

PD is a common neurodegenerative disorder whose incidence is influenced by several 

known genetic and environmental factors. At autopsy, the disease is identifiable by 

two pathological hallmarks. In clinic, a diagnosis is made based on the cardinal motor 

signs, but numerous non-motor features frequently contribute to disease severity. 

 

1.1.1 Epidemiology 
 

PD is the second most common neurodegenerative disorder after Alzheimer’s disease 

(AD; Nussbaum & Ellis, 2003). The strongest risk factor is advancing age (Reeve, 

Simcox, & Turnbull, 2014). The incidence of PD increases sharply between the fifth 

and seventh decades of life, with 60 being the median age of onset (Lees, Hardy, & 

Revesz, 2009). PD affects approximately 0.5-1% of the population over this age, and 

2-4% of over-80s (Pringsheim, Jette, Frolkis, & Steeves, 2014; Tysnes & Storstein, 

2017). In the United Kingdom (UK), the projected 2018 prevalence of PD was almost 

150 000 people. The medical, social, and financial costs of PD are consequently 

formidable, and these are projected to grow still higher in the next 50 years, given the 

current trend towards an ageing population (Parkinson's UK, 2017). 
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PD is typically idiopathic: the precise causal mechanisms are not well defined. The 

incidence of the disease is around 1.5 times as high in men compared to women, and 

men tend to have more severe motor impairment (K. M. Smith & Dahodwala, 2014). 

Around 5-10% of cases are directly attributable to a known monogenic mutation: 

variants of the SNCA, LRRK2, and Parkin genes account for most of these. However, 

the vast majority of cases are caused by the cumulative action and interaction of 

numerous genetic and epigenetic factors with lifestyle and environmental exposures. 

The strongest genetic susceptibility factor is a mutation in GBA, the gene that encodes 

the lysosomal enzyme β-glucocerebrosidase. GBA mutations increase the risk of PD 

by more than fivefold (Sidransky et al., 2009). In addition, results of a recent, very 

large genome-wide association study implicated 90 independent risk signals spanning 

78 genetic loci (Nalls et al., 2019). Lifestyle and environmental factors that increase 

PD susceptibility include pesticide exposure, higher dairy consumption, and a history 

of traumatic brain injury. Variables associated with reduced risk include higher 

physical activity, higher serum urate concentration, and the use of nicotine, caffeine, 

or non-steroidal anti-inflammatory drugs (Ascherio & Schwarzschild, 2016). Each of 

these factors has a relatively modest effect size, and many influencing variables 

remain unknown (Lill, 2016). 

 

1.1.2 Neuropathology 
 

PD is pathologically defined by two hallmarks. One is the depletion of dopaminergic 

neurons in the substantia nigra pars compacta in the midbrain. The most severely 

affected area is the ventrolateral tier, a region that projects to the dorsal putamen in 

the striatum via the nigrostriatal pathway. Deprivation of dopamine from the striatum 

leads to the emergence of the core motor syndrome. This feature is common to all 

other parkinsonian disorders, including multiple system atrophy, progressive 

supranuclear palsy, and corticobasal degeneration. In PD, there is already moderate to 

severe loss of dopaminergic neurons in the substantia nigra by the onset of the motor 

signs. Striatal dopamine loss is profound within a few years of diagnosis (Kordower 

et al., 2013). Sections of brainstem in PD autopsy cases show a marked reduction in 

the normally dark pigmentation of the substantia nigra, reflecting the loss of 
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neuromelanin-laden neurons. Similar degeneration and depigmentation are also seen 

in the locus coeruleus (Dickson, 2012). 

 

The other PD hallmark is α-synuclein pathology, and the disease can therefore be 

classified as an α-synucleinopathy. In PD, the ordinarily soluble α-synuclein protein 

misfolds into insoluble aggregates within neuronal perikarya (“Lewy bodies”) and 

processes (“Lewy neurites”). The distribution of Lewy pathology in people with PD 

varies dramatically. The vulnerable neurons of the substantia nigra are universally 

affected. Lewy aggregates are almost always present in the dorsal nucleus of the 

vagus nerve (cranial nerve X), raphe nuclei, locus coeruleus, pontine tegmentum, and 

nucleus basalis. Less well-defined aggregates are sometimes observable higher up the 

neuraxis, including in the amygdala and the neocortex (Dickson, 2018). Lewy 

pathology may also be found in the peripheral nervous system, particularly in the 

sympathetic and enteric ganglia (Wakabayashi, Mori, Tanji, Orimo, & Takahashi, 

2010). The extent of the pathology parallels the duration and clinical severity of the 

disease. A scheme for staging PD based on the distribution of Lewy aggregates has 

been published by Braak et al. (2003), and this will be reviewed in Chapter 2. 

 

In addition to the two defining hallmarks, PD is characterised by various less specific 

pathological changes. Reactive gliosis and microgliosis of astrocytes and microglia 

occur in areas of cell death, prominently including the midbrain. The resulting chronic 

neuroinflammation promotes oxidative stress on neurons, leading to further cell loss 

(Kalia & Lang, 2015; Tansey & Goldberg, 2010). Intracellular iron accumulates in the 

substantia nigra, and this also increases oxidative damage (Belaidi & Bush, 2016). 

Furthermore, dysfunction of non-dopaminergic neurotransmitter systems occurs in 

PD. Early degeneration of the basal forebrain and its ascending pathways leads to a 

pronounced cholinergic deficit in frontotemporal brain regions. Serotonergic and 

noradrenergic dysfunction also occurs as a result of damage to the raphe nuclei and 

the locus coeruleus, respectively (Kehagia, Barker, & Robbins, 2010). Disequilibrium 

of these systems contributes to various clinical features of PD, and they are therefore 

potentially important targets for treatment (Brichta, Greengard, & Flajolet, 2013). 
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1.1.3 Clinical features 
 

During a patient’s lifetime, the clinical diagnosis of PD requires careful consideration 

of both motor and non-motor features. The current clinical diagnostic criteria for PD 

were published by the Movement Disorder Society (MDS) in 2015 (Postuma et al., 

2015). The MDS criteria summarise the signs and symptoms that define or support a 

diagnosis of PD in vivo, as well as features that reduce the probability of a diagnosis, 

or exclude it. A recent validation study indicated that these criteria have excellent 

specificity (88.5%) and sensitivity (94.5%) against the gold standard of clinical 

diagnosis by an expert neurologist (Postuma et al., 2018), and they have been adapted 

to diagnose early PD – defined by a disease duration of less than five years – with a 

specificity of 95.4% and a sensitivity of 69.8% (Berg et al., 2018). 

 

The MDS criteria define parkinsonism as bradykinesia plus rigidity and/or rest 

tremor. Bradykinesia is slowness in the initiation and execution of movement: limb 

bradykinesia is essential for a PD diagnosis. Rigidity refers to muscular resistance to 

passive movement – for example, when a clinician manipulates a patient’s limb. Rest 

tremor is an involuntary, rhythmic, oscillating motion of a fully resting limb; in PD, 

this is of a relatively low frequency, typically around 4-6 Hz. A fourth feature of 

parkinsonism is postural instability, but this is not a prerequisite for PD by the MDS 

criteria due to its limited diagnostic specificity and its rarity outside of late disease. 

The motor signs usually have unilateral onset in PD, but spread to both sides of the 

body with disease progression (Gelb, Oliver, & Gilman, 1999; Postuma et al., 2015). 

 

The probability of genuine PD is increased in the presence of four supportive features. 

The first is excellent response to medications based on L-3,4-dihydroxyphenylalanine 

(levodopa), the precursor of dopamine; these have been the standard method for 

managing the motor signs since the 1960s (Cotzias, Van Woert, & Schiffer, 1967). 

The second supportive feature is the emergence of medication-induced dyskinesia – a 

disabling hyperkinetic disorder characterised by involuntary writhing movements, 

which develops in response to prolonged dopamine therapy with levodopa and similar 

drugs (Heumann et al., 2014). Thirdly, rest tremor of a limb on clinical examination is 

also a supportive criterion. Finally, a diagnosis is supported by either a) clear loss of 
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olfactory function or b) cardiac sympathetic denervation, two non-motor features with 

over 80% specificity for PD (Postuma et al., 2015). 

 

Features that are clearly diagnostic of another parkinsonian disorder (multiple system 

atrophy, progressive supranuclear palsy, vascular parkinsonism, etc.) are absolute 

exclusion criteria for PD. These include unequivocal signs of cerebellar dysfunction 

and downward supranuclear gaze palsy. Normal functional imaging of the presynaptic 

dopamine system is also exclusionary: scans of striatal dopamine transporters with the 

[123I]-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)-nortropane (FP-CIT) 

radioligand and single photon positron emission tomography (SPECT) are universally 

abnormal in degenerative parkinsonian disorders (Benamer et al., 2000; Cummings et 

al., 2014). Features that lower the probability of PD without ruling it out are labelled 

“red flags”: these include early and severe bulbar or autonomic dysfunction, bilateral 

motor onset, and either long-term stability or rapid early progression of the motor 

signs. Clinically established PD is diagnosed when there are no red flags and at least 

two supportive criteria. Clinically probable PD may be diagnosed when up to two red 

flags are present, but there must be at least as many supportive criteria. The presence 

of more than two red flags, or any absolute exclusion criterion, rules out a diagnosis 

of PD (Postuma et al., 2015). 

 

Variation in the clinical presentation of PD has led to the identification of disease 

subtypes based on the dominant motor signs. Most patients have either prominent 

postural instability and gait disorder, or a tremor-dominant phenotype. The former is 

associated with an older age of onset – usually greater than 65 years – and a more 

rapid disease progression. The tremor-dominant subtype tends to have a younger 

onset, with a more gradual progression. Patients who do not clearly fit either subtype 

may be classified as indeterminate or mixed (Jankovic et al., 1990). Recent cluster 

analysis has identified additional subtypes that are also characterised by variation in 

non-motor symptomatology (Lawton et al., 2018; Thenganatt & Jankovic, 2014). 

 

In addition to the cardinal motor signs, PD is closely associated with a long list of 

non-motor symptoms, including sensory, autonomic, sleep-related, psychiatric, and 

cognitive features. Having several non-motor symptoms is the norm. Their incidence 

increases with disease progression; indeed, having none by five years is a diagnostic 
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red flag. However, some may precede emergence of the motor signs, often by several 

years (Barone et al., 2009; Goldman & Postuma, 2014). Non-motor symptoms have a 

significant detrimental impact on quality of life, in some cases even overshadowing 

the burden of the motor impairment (Martinez-Martin, Rodriguez-Blazquez, Kurtis, 

Chaudhuri, & The NMSS Validation Group, 2011). Despite this, these symptoms are 

often underappreciated in clinic, and consequently, they are frequently undertreated. 

Increasing recognition of non-motor symptoms has led to their becoming the focus of 

steadily more scientific attention over the last 30 years (D. Weintraub & Burn, 2011). 

 

One of the most common non-motor symptoms is a decline in olfactory function 

(hyposmia), which occurs in more than 80% of people with PD (Doty, 2012), and is 

generally appreciable prior to or shortly after motor onset. Pain affects a similar 

proportion; this is normally musculoskeletal or dystonic in nature, and is of moderate 

to severe intensity in around 40% of all patients (Silverdale et al., 2018). Autonomic 

dysfunction is also common: around half of people with PD experience constipation 

(Chen et al., 2015), and the same proportion report urinary dysfunction, including 

urgency, nocturia, and incontinence (Winge, 2015). Around a third, particularly later 

in the disease, have orthostatic hypotension – a drop in blood pressure on standing 

that can cause dizziness, visual disturbance, and even loss of consciousness. Other 

autonomic symptoms include excessive sweating, reduced salivation, anorgasmia in 

women, and erectile dysfunction in men (Malek et al., 2017; Sveinbjornsdottir, 2016). 

 

Around two-thirds of people with PD report sleep disorders. Fragmented sleep (brief 

arousals throughout the night) is the most common of these. Hypersomnia, typically 

manifesting as excessive daytime fatigue, affects around half. PD is also closely 

associated with rapid eye movement sleep behaviour disorder (RBD), a condition 

defined by the loss of natural muscle atonia during sleep. This leads to abnormal 

motor and vocal behaviours – kicking, thrashing, shouting, laughing, etc. – due to the 

acting out of dreams. RBD is the strongest known prodromal marker for PD and other 

α-synucleinopathies (Goldman & Postuma, 2014; Mehta, Morgan, & Sethi, 2008). 

 

Psychiatric features are prevalent at all stages of PD. Clinically significant depressive 

symptoms are present in over a third of patients, and 17-19% fulfil criteria for major 

depressive disorder, according to one large meta-analysis (Reijnders, Ehrt, Weber, 
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Aarsland, & Leentjens, 2008). Both anxiety and apathy are clinically significant in 

approximately a third (Dujardin et al., 2007; Leentjens et al., 2011). In addition to 

affective symptoms, up to a fifth of PD patients develop impulse control disorders, 

commonly involving compulsive gambling, buying, eating, or sexual behaviours. 

These behaviours are usually iatrogenic, being strongly related to treatment with 

dopamine agonists, and to a lesser extent with levodopa medications. Other risk 

factors for these include being unmarried or relatively young, or having a personal or 

family history of addictive or affective disorders (D. Weintraub & Claassen, 2017). 

 

Psychotic symptoms are also common in PD, with their severity ranging from mild 

illusions (e.g. senses of presence or passage) to persistent, detailed hallucinations or 

delusions. Visual hallucinations involving clear images of people, animals, and other 

complex stimuli occur in around a third of people with PD. Typically, insight into the 

falsity of these hallucinations is retained. Hallucinations in other sensory modalities 

(auditory, olfactory, gustatory, and tactile) are reported less frequently. Delusions 

affect only around 5% of patients, generally in late-stage disease. When they do 

occur, they tend to be of a paranoid, persecutory nature (Friedman, 2013). 

 

Cognitive impairment is one of the most common long-term non-motor features of 

PD, and one of the most consequential for quality of life (Duncan et al., 2014). 

 

1.2 Cognitive impairment 
 

Cognitive impairment is defined as a clinically significant decline in cognition from a 

previous level of functioning. Cognition comprises a range of mental operations. 

Operations that are psychologically and neurologically similar may be grouped into 

discrete cognitive domains, though the number and nomenclature of these domains 

varies to an extent in the scientific literature. 

 

The current, fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM; American Psychiatric Association, 2013) distinguishes six cognitive domains. 

Memory involves the encoding, storage, and retrieval of information. Attention refers 

to processing speed and the ability to selectively assign and maintain concentration on 
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a particular stimulus, to the exclusion of competing stimuli. Executive function 

includes higher-order operations such as reasoning, planning, abstract thinking, error 

monitoring, cognitive flexibility, response inhibition feedback utilisation, judgement, 

and problem solving. Visuospatial skills relate to visual and spatial perception, 

coordination, and construction. Language refers to the production and comprehension 

of speech and writing. Finally, social cognition covers abilities such as theory of 

mind, emotion recognition, and social conduct. Some neuropsychological test 

batteries include additional cognitive domains, such as praxis – the ability to execute 

skilled or learned movements, like dressing or using tools (J. E. Park, 2017). 

 

Lesion and neuroimaging studies support the theory that each cognitive domain 

corresponds to a distinct neurological substrate, largely involving different neural 

structures and networks. Neuropsychological tests may be used to ascertain the 

functioning of these substrates. Selective impairment by certain tests may indicate 

clinically significant damage to a specific brain region or network, as occurs in 

neurodegenerative diseases (Burrell & Piguet, 2015). 

 

In the early stages of a degenerative cognitive disorder, clinical deficits are minor and 

often restricted to a single domain, reflecting relatively mild pathology confined to a 

specific neurological locus. This stage is termed “mild cognitive impairment” (MCI; 

Petersen et al., 2009; Petersen et al., 1999), or “mild neurocognitive disorder” in the 

DSM-5. With disease progression, the deficits become more severe, and other 

domains are gradually involved. Marked multiple-domain cognitive impairment is 

diagnostic of dementia (“major neurocognitive disorder” in the DSM-5). Functional 

impairment secondary to the cognitive symptoms is also required for a dementia 

diagnosis. This manifests as significant difficulties engaging in normal occupational, 

social, and recreational activities. The definition of MCI requires independence to be 

retained, though subtle interference from the cognitive problems may still be 

appreciable (American Psychiatric Association, 2013; Knopman & Petersen, 2014). 

 

The cognitive impairment related to PD is heterogeneous in several respects (Litvan 

et al., 2011), similar to other features of the disease. The major distinction in terms of 

severity is between PD-MCI and PD dementia (PDD). The MDS has published 

clinical diagnostic criteria for both (Emre et al., 2007; Litvan et al., 2012), and these 
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will be reviewed in detail in Chapter 4. The rate of cognitive decline in PD varies, 

with some people experiencing a fluctuating course. One analysis of newly diagnosed 

patients who were followed over three years, for example, indicated that about 40% 

declined, a quarter remained cognitively stable, and the remainder either fluctuated or, 

in some cases, improved (Lawson, Yarnall, Duncan, et al., 2017). The differences in 

neuropathological burden that underlie this variation remain poorly understood. 

 

The neuropsychological profile of PD-associated cognitive impairment is traditionally 

considered to be characterised by dominant deficits to the executive and attentional 

domains, with relative preservation of memory (Emre et al., 2007). This profile is 

consistent with dysfunction of subcortical and frontal brain structures. An amnestic 

(memory-dominant) profile pointing to medial temporal lobe damage affects a smaller 

proportion – around a third, according to one cluster analysis (Janvin et al., 2006). 

Findings are comparable for PD patients with MCI. A single-domain, non-amnestic 

(typically frontal-dysexecutive) profile is the most common individual presentation, 

but substantial heterogeneity exists, and many patients have deficits to two or more 

domains (Caviness et al., 2007; Kalbe et al., 2016). 

 

1.2.1 Epidemiology of cognitive impairment in PD 
 

Cognitive impairment is common at all stages of PD, although it is more closely 

associated with advanced disease. Most research indicates that the point prevalence of 

MCI is approximately a quarter (Aarsland et al., 2010; Litvan et al., 2011), and the 

point prevalence of dementia is approximately a third (Aarsland, Zaccai, & Brayne, 

2005). In the long term, dementia affects the vast majority of people with PD; one 

large longitudinal study reported that it developed in 80% of those who survived for 

20 years after diagnosis (Hely, Reid, Adena, Halliday, & Morris, 2008). 

 

There are several known risk factors for cognitive decline in PD. Increasing age and 

disease duration are independently associated with the onset of dementia, though the 

predictive value of disease duration is muted in the oldest age groups (over 85 years 

of age). Male sex is more closely linked to dementia in PD, even after controlling for 

the increased incidence of PD in men; this contrasts with non-PD populations, where 
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female sex is more often associated with dementia (Cereda et al., 2016). MCI is a 

very strong predictor of a further decline to dementia, though a small percentage of 

people with PD-MCI may revert to normal cognition in the short term (Pedersen, 

Larsen, Tysnes, & Alves, 2013). As in other dementia disorders, some people with 

PD seem to be capable of withstanding a higher degree of neuropathology before it 

clinically manifests as cognitive impairment, due to individual differences in neural 

and cognitive networks. This “cognitive reserve” results from, and is measured by, 

signs of intellectual development, such as educational and occupational attainment 

(Poletti, Emre, & Bonuccelli, 2011). 

 

Several motor and non-motor features predict cognitive decline in PD. The postural 

instability and gait disorder phenotype is linked to a faster cognitive decline and a 

higher incidence of dementia than the tremor-dominant phenotype. Tremor-dominant 

patients generally transition to postural instability and gait disorder, or to a mixed 

profile, before cognitive symptoms emerge (Alves, Larsen, Emre, Wentzel-Larsen, & 

Aarsland, 2006). Longitudinal analyses indicate that visual hallucinations and RBD 

are risk factors for cognitive decline in PD (Aarsland, Andersen, Larsen, Lolk, & 

Kragh-Sørensen, 2003; Sinforiani et al., 2008). Depression and apathy both appear to 

be linked to dementia in PD, but it remains unclear whether they constitute genuine 

risk factors, or whether they are a consequence of cognitive problems (Marinus, Zhu, 

Marras, Aarsland, & van Hilten, 2018). 

 

Genetically, cognitive impairment in PD is a highly complex trait, influenced by 

numerous genetic variations often with small individual effect sizes. Polymorphisms 

of multiple genes, including APOE, MAPT, SNCA, GBA, and COMT, have been 

linked to cognitive decline and dementia in PD (Fagan & Pihlstrøm, 2017). APOE is 

the most significant genetic factor underlying AD. Coding variants of this gene result 

in three alleles, ε2, ε3, and ε4: the last has been strongly linked to higher AD risk, as 

well as poorer cognitive outcomes in various other medical conditions (Y. Huang & 

Mahley, 2014). Similarly, the H1 haplotype of the MAPT gene has been linked to 

several neurodegenerative diseases characterised by cognitive decline and, often, 

parkinsonism, including progressive supranuclear palsy and corticobasal degeneration 

(Zhang, Xing, Tan, Tan, & Yu, 2016). Both APOE ε4 and MAPT H1 have also been 

associated with cognitive decline in PD, though results are mixed, particularly for 
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MAPT. Chapter 7 presents a novel analysis of these two genes in a large prospective 

cohort, with the aim of clarifying the relationships that they have to cognitive function 

throughout the course of early PD. 

 

The prognostic implications of cognitive impairment in PD are significant. Dementia 

is associated with earlier mortality and a shorter time to nursing home placement 

(Parashos, Maraganore, O'Brien, & Rocca, 2002). Functional independence declines 

in parallel to worsening cognition, even in the absence of overt dementia (Rosenthal 

et al., 2010). Furthermore, cognitive impairment predicts significantly poorer quality 

of life for both the patient (Lawson et al., 2014) and for caregivers (Lawson, Yarnall, 

Johnston, et al., 2017). The substantial burden of cognitive impairment means that 

effectively managing it is a top priority for many people with PD and their families. 

 

1.2.2 Other causes of cognitive impairment 
 

There are numerous potential aetiologies for dementia. PD accounts for under 4% of 

the total figure (Aarsland, Zaccai, et al., 2005). Most cases are caused by another 

neurodegenerative disease. At least 60% of total dementia cases are caused by AD. 

Dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) account for 

smaller percentages (American Psychiatric Association, 2013). In addition to 

neurodegenerative disease, cognitive problems can be induced by acquired brain 

injury: cerebrovascular diseases account for most such cases. Cerebrovascular disease 

is a generic term for pathology of the brain’s blood vessels. Cognitive impairment that 

results from such pathologies is referred to as vascular cognitive disorder (VCD), 

which includes both vascular MCI and vascular dementia (Farooq & Gorelick, 2013). 

 

Each of these dementia disorders is defined by a characteristic neuropathology, 

generally affecting different brain structures. This neuropathology is described by 

post-mortem diagnostic criteria, which are used to confer a diagnosis after direct 

examination of the brain at autopsy. Abnormal protein aggregation is thematic in the 

neurodegenerative diseases, with pathology of different proteins being associated with 

different disorders (Kalia & Kalia, 2015). For PD, DLB, and AD, staging schemes use 

the topography of specific protein pathologies to define disease severity at autopsy. 
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Chapter 2 will describe the neuropathology associated with PD and each of these 

dementia disorders in detail, along with a summary of current post-mortem diagnostic 

criteria and staging schemes. In brief, DLB is another Lewy body disease, defined by 

the same intraneuronal α-synuclein inclusions that characterise PD (Lewy bodies and 

Lewy neurites). At autopsy, DLB is often indistinguishable from PDD: the distinction 

is purely a clinical one, defined by the “one-year rule.” According to this rule, PDD is 

diagnosed when cognitive symptoms emerge in established PD (one year or more 

after diagnosis), whereas DLB is diagnosed where cognitive symptoms either emerge 

prior to or contemporaneously with the onset of the motor signs (Emre et al., 2007; 

McKeith et al., 2005). The validity of the one-year rule will also be discussed in detail 

later in the thesis, when the clinical diagnostic criteria for the dementia disorders are 

reviewed in Chapter 4. 

 

Like PD, AD is pathologically defined by two hallmarks: intraneuronal neurofibrillary 

tangles consisting of hyperphosphorylated tau protein, and extraneuronal plaques 

consisting primarily of amyloid-β peptide (Thal, Walter, Saido, & Fändrich, 2015). 

FTD is pathologically heterogeneous. The characteristic feature is degeneration of the 

frontal and temporal lobes. In the vast majority of cases, this is associated with 

pathology of either the tau protein, or of transactive response DNA-binding protein 43 

(TDP-43; Mackenzie & Neumann, 2016). The pathologies that underlie VCD are also 

varied. Infarcts, haemorrhages, and small vessel disease are the major pathologies that 

are implicated in vascular dementia (Rodríguez García & Rodríguez García, 2015). 

 

During life, the different dementia disorders are associated with different clinical 

phenotypes as a result of differences in the nature and the location of the underlying 

neuropathology. Clinical diagnostic criteria describe the characteristics of each 

disorder, including the typical neuropsychological profile, associated non-cognitive 

symptoms, and indicative biomarkers (specific biochemical or anatomical correlates 

of disease progression that can be quantified in vivo). The diagnostic criteria will be 

covered in detail in Chapter 4, but the major clinical characteristics of each disorder 

are outlined here for an overview. 

 

Neuropsychologically, DLB is similar to PDD, as is to be expected given the degree 

of pathological overlap. Deficits to executive function, attention, and visuospatial 
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skills predominate, consistent with frontostriatal dysfunction. The clinical profile also 

includes parkinsonism, cognitive fluctuations, RBD, and visual hallucinations 

(McKeith et al., 2017). AD is characterised by initial prominent episodic memory 

impairment resulting from degeneration of the medial temporal lobe, including the 

hippocampus and the entorhinal cortex. Measures of language function, including 

verbal fluency and object naming, may also be impaired at the early stages (Dubois et 

al., 2014; McKhann et al., 2011). The pathological heterogeneity of FTD results in 

clinical variation, but abnormalities in language, social cognition, and/or behaviour 

are consistently prominent (Bang, Spina, & Miller, 2015). VCD is also varied. 

Executive dysfunction is most common, and there may also be deficits to processing 

speed, attention, and visuoconstructional abilities. Careful history-taking, ideally 

complemented by neuroimaging, is very valuable for the differential diagnosis of 

VCD from other dementia disorders (S. Weintraub, Wicklund, & Salmon, 2012). 

 

Currently, the diagnostic criteria for each dementia disorder demand exclusive disease 

processes: signs that implicate an alternative aetiology are typically exclusionary. 

However, multimorbidity is a common phenomenon in people with dementia. 

Neurodegenerative disease pathologies commonly overlap with one another (Irwin, 

Lee, & Trojanowski, 2013); cerebrovascular diseases and the associated lesions are 

also frequently present (Toledo et al., 2013). In PD, coexistent pathologies may 

influence a patient’s neuropsychological presentation during life. Therefore, the 

assumption of PDD in a patient with PD and emerging dementia may be invalid, and 

may misdirect treatment approaches. Consideration of possible comorbidities is 

becoming increasingly important, as treatments currently in development are targeted 

directly at specific pathologies, rather than solely at symptom management. 

 

1.2.3 Current treatment strategies 
 

Current treatment options for cognitive decline, both in neurodegenerative disease and 

acquired brain injury, are limited. Strategies are targeted at either a) ameliorating the 

symptoms or b) managing factors that contribute to further decline. At present, true 

disease-modifying therapies that would slow or halt cognitive decline by impeding of 

reducing neuropathological burden are not available (O'Hara, Kalia, & Kalia, 2018). 
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The main medications currently used for cognitive disorders are acetylcholinesterase 

inhibitors (namely rivastigmine, donepezil, and galantamine), which are used for mild 

to moderate dementia, and memantine, an N-methyl-D-aspartate receptor antagonist 

used for moderate to severe dementia. The acetylcholinesterase inhibitors prevent the 

enzymatic breakdown of acetylcholine, whereas memantine targets glutamatergic 

overactivity. All of these drugs are licensed for AD, but only rivastigmine is licensed 

for PDD and DLB, and none are licensed for VCD or FTD (Broadstock, Ballard, & 

Corbett, 2014; Olney, Spina, & Miller, 2017). Randomised placebo-controlled trials 

indicate that acetylcholinesterase inhibitors also improve cognition and global 

functional status in PDD (Dubois et al., 2012; Rolinski, Fox, Maidment, & McShane, 

2012), but the evidence for the efficacy of memantine in the α-synucleinopathies is 

weaker; a meta-analysis of clinical trials found that memantine conferred no benefit to 

cognition, behavioural symptoms, or functional independence in PDD and DLB (H. F. 

Wang et al., 2015). Thus, the best current method of ameliorating cognitive symptoms 

in PD is by targeting the cholinergic deficit. 

 

All of these medications have several disadvantages. Crucially, they are effective only 

for slowing the rate of cognitive decline over a relatively short period of time. For 

example, one large study found that donepezil delayed the progression of MCI to 

dementia over a 12-month period, but after 36 months, there was no difference 

between the treatment and the placebo groups (Petersen et al., 2005). Moreover, 

neither acetylcholinesterase inhibitors nor memantine improve cognitive function at 

the MCI stage (Tricco et al., 2013). One study reported that global cognition in PD 

patients without dementia improved with atomoxetine, a selective norepinephrine 

reuptake inhibitor usually used in the treatment of attention deficit hyperactivity 

disorder (D. Weintraub et al., 2010); however, no medications have yet shown 

sufficient efficacy to be licensed for MCI of any aetiology. Certain behavioural 

interventions, aerobic exercise, mental exertion, and regular social interaction may 

reduce the risk of further decline in MCI, though effect sizes are typically small and 

results are often inconsistent (Langa & Levine, 2014). Finally, a limitation of the 

acetylcholinesterase inhibitors is the burden of the side effects, which include 

dizziness, nausea, gastrointestinal dysfunction, and sleep disturbance (Zemek et al., 

2014). As discussed, all of these symptoms can occur naturally in PD; medication use 
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can exacerbate them significantly, and optimally titrating the dosage can therefore be 

very challenging with some patients. 

 

In addition to cholinergic medications, dopaminergic treatments (levodopa, dopamine 

agonists, and monoamine oxidase B or catechol-O-methyltransferase inhibitors) used 

to treat motor impairment in PD may also affect cognition, though the relationship is 

complex. These medications may impair some aspects of executive function (e.g. rule 

learning), but improve others (e.g. planning and cognitive flexibility). The “dopamine 

overdose hypothesis” suggests that this disparity may be explained by the fact that 

dopaminergic medications, which are intended to boost depleted dopamine activity in 

the dorsal striatum, simultaneously overdose the ventral striatum, which is relatively 

preserved in the early stages of PD. Therefore, functions that rely on dorsolateral and 

frontostriatal circuits (which pass through the dorsal striatum) may be improved, but 

functions that are mediated by limbic and orbitofrontal circuits (which pass through 

the ventral striatum) may be impaired. The hypothesis is supported by several studies 

(Dirnberger & Jahanshahi, 2013), and emphasises the need to consider cognitive as 

well as motor function when prescribing dopaminergic medications in PD. 

 

The second major strategy for managing cognitive impairment involves targeting 

modifiable risk factors that may contribute to further cognitive decline. Late-life 

depression is an established risk factor for dementia (Diniz, Butters, Albert, Dew, & 

Reynolds, 2013). Vascular risk factors – diabetes, hypertension, hyperlipidaemia, 

obesity, smoking, etc. – are strongly implicated in the pathogenesis of VCD, and also 

confer an increased risk of developing AD (Hasnain & Vieweg, 2014). Additionally, 

vascular comorbidity contributes to cognitive decline in PD (Malek et al., 2016), 

particularly to attentional and executive dysfunction (Pilotto et al., 2016). Depression 

and many of the vascular risk factors (e.g. hypertension, obesity, smoking) are 

potentially modifiable by medication, behavioural interventions, lifestyle changes, or 

other means, and these therefore represent realistic targets for treatment programmes. 

 

Studies that have sought to medicate these factors to reduce the incidence of dementia 

have so far reported generally disappointing results. Longitudinal studies have 

provided equivocal evidence for the benefit of antihypertensive drugs in lowering the 

long-term incidence of dementia (Peters et al., 2008). Cholesterol-lowering therapy 
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and diabetes management do not appear to slow cognitive decline (Tariq & Barber, 

2018). These results are probably due to the interventions being applied too late: 

neurodegenerative disease pathologies typically originate many years before symptom 

onset, so neural damage may be quite substantial by the time cognitive decline 

manifests clinically. Effectively employing vascular treatments to counteract 

cognitive decline may therefore require earlier intervention over longer time scales. 

 

Introducing true disease-modifying strategies that target the underlying pathologies to 

slow or halt cognitive decline in the long term represents an urgent unmet need for 

people with neurodegenerative disorders. Many such treatments are currently in 

development, and some have shown promising results in preclinical and early clinical 

trials (Medina, 2018; van Dyck, 2018; Zella et al., 2019). The design and analysis of 

trials in cognitively impaired PD cohorts requires a clear and accurate understanding 

of the pathology that underlies cognitive impairment in PD, in order to ensure 

appropriate interpretation and implementation of results. A detailed discussion of 

disease-modifying therapies is presented in Chapter 9, in relation to the original 

research findings in this thesis. 

 

1.3 Aims and structure of the thesis 
 

This thesis explores the contribution of coexistent disease mechanisms, such as AD 

pathologies and cerebrovascular disease, to cognitive impairment in PD. Additionally, 

the thesis aims to identify viable methods by which coexistent disease mechanisms 

may be detected in vivo. 

 

Four novel studies were undertaken to fulfil these aims. The objectives of these were: 

 

• To define the extent and the effects of the neuropathological heterogeneity 

underlying dementia in PD by systematically reviewing existing literature; 

• To assess the value of the Montreal Cognitive Assessment (MoCA), for 

distinguishing different cognitive profiles in PD patients; 
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• To clarify the link between cognitive decline in PD and variation in the 

APOE and MAPT genes, both of which are implicated in susceptibility to 

other neurodegenerative diseases; 

• To ascertain the proportion of people with PD and cognitive impairment 

who meet clinical diagnostic criteria for different cognitive disorders (e.g. 

AD), and to identify clinical tests with value for differential diagnosis. 

 

Various essential background topics are reviewed to contextualise the novel analyses. 

A literature review is used to describe a) the pathologies associated with PD and the 

main dementia disorders, and the post-mortem diagnostic criteria and staging systems 

used to evaluate their severity; b) clinical diagnostic criteria used to confer a diagnosis 

in vivo; and c) neuropsychological assessment strategies used to quantify the severity 

of impairment in different cognitive domains. 

 

The remainder of the thesis is divided into eight chapters, as follows: 

 

• Chapter 2 describes the neuropathology of PD and the dementia disorders, 

including DLB, AD, VCD, and FTD. The post-mortem diagnostic criteria 

for the main dementias are reviewed. Staging schemes for the different 

dementia pathologies are also described in this chapter. These are designed 

to quantify the severity of the pathology based on its global density and 

topographical distribution. This chapter illustrates the ways in which the 

dementia disorders differ from one another pathologically. 

 

• Chapter 3 presents a systematic review of autopsy studies of dementia in 

PD. Five databases were searched for English-language studies involving 

human subjects with dementia and PD. The main objective was to describe 

the neuropathology underlying dementia in PD. The results primarily focus 

on the severity and distribution of Lewy and Alzheimer pathologies, and 

define the extent to which these are associated with dementia in PD. The 

more modest contributions of cerebrovascular and other pathologies (e.g. 

TDP-43) to dementia in PD are also assessed. 
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• Chapter 4 is a critical review of the clinical diagnostic criteria for the main 

dementia disorders. These criteria are used to generate a probabilistic 

statement about the pathological cause of a patient’s cognitive impairment 

based on their clinical presentation. The contentious distinction between 

PDD and DLB (currently made clinically on the basis of the one-year rule) 

is also assessed in this section. This chapter illustrates the ways in which the 

dementia disorders differ from one another in vivo. 

 

• Chapter 5 describes the neuropsychological assessment of MCI and 

dementia. This includes screening tests, which are designed to provide a 

brief impression of a patient’s global cognition, and domain-focused 

evaluation, which provides more detailed data about a patient’s function in 

specific cognitive domains. Methods of contextualising raw scores by 

comparison to normative data or estimated premorbid function are 

discussed. Challenges pertaining specifically to the neuropsychological 

assessment of people with PD are also considered. 

 

• Chapter 6 is a novel statistical analysis of the MoCA, one of the most 

widely used clinical instruments for screening dementia and MCI. Previous 

research in PD, AD, and other disorders has shown evidence of a factor 

structure in the MoCA. Such a structure suggests that the test has the 

potential to describe variation in the function of different cognitive domains, 

which ordinarily requires detailed neuropsychological testing. This could be 

used to distinguish meaningful cognitive profiles in PD. MoCA data were 

drawn from a large cohort study, the Tracking Parkinson’s study (n = 1738), 

and various previously reported models were tested with factor analysis. 

 

• Chapter 7 is a novel analysis of the contribution of APOE and MAPT 

variants to cognitive decline in early PD. Both genes have been associated 

with other neurodegenerative diseases, and with cognitive decline in PD, but 

results are not always consistent. This analysis again used data from the 

Tracking Parkinson’s study. MoCA data were drawn from baseline and 18 

and 36-month follow-up visits. The study outcomes were the relationships 
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between APOE and MAPT genotypes and cognitive scores and cognitive 

status at each visit, as well as the rate of cognitive decline between visits. 

 

• Chapter 8 presents the results of a cross-sectional clinical study examining 

the heterogeneity of cognitive impairment in PD, which was conducted in 

two health boards in Scotland. Forty-five people with PD and evidence of 

cognitive impairment were recruited to the project, and all completed a 

detailed neuropsychological assessment designed to test multiple cognitive 

domains. Both the participant and a relative completed questionnaires on 

cognition and other non-motor symptoms. Medical notes were accessed for 

medical histories, medication plans, and neuroimaging results. The collated 

data were evaluated by the author together with a panel of experts in 

neurology, psychiatry, and clinical neuropsychology, to determine which 

disease underlay each participant’s cognitive decline. Tests with the best 

value for distinguishing different cognitive profiles were identified. 

 

• Chapter 9 is a general discussion of all the work presented in the thesis. 

Disease-modifying therapies for neurodegenerative disorders are discussed, 

and results from the studies above are used to make recommendations for 

trialling these treatments in PD cohorts. 
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2 Neuropathology of PD and dementia 
disorders 

 

At autopsy, the main dementia disorders are distinguished from one another by the 

underlying neuropathology. In neurodegenerative diseases, this pathology is defined 

by misfolded, insoluble aggregates of characteristic proteins. With time, these 

pathologies become more concentrated, and insidiously affect additional brain areas. 

During a patient’s lifetime, this process is reflected by a gradual worsening of the 

clinical features, including motor and cognitive impairment in PD. 

 

The mechanism by which pathological protein aggregates spread through the brain is 

hypothesised to resemble that of infectious prion particles, which propagate via direct 

cell-to-cell transfer (Goedert, Clavaguera, & Tolnay, 2010; Henderson, Trojanowski, 

& Lee, 2019). In most cases, the pathologies that define PD, DLB, and AD follow a 

reasonably predictable path through the brain. These paths form the basis of staging 

schemes, which describe hierarchical disease stages that are distinguished by the 

topographical distribution of the characteristic lesions. Staging schemes are used to 

quantify disease severity at autopsy. Post-mortem diagnostic criteria generally require 

certain severity thresholds to be reached before a diagnosis can be conferred. These 

criteria are most often used to retrospectively verify a clinical diagnosis. 

 

This chapter describes the pathological hallmarks of PD and the main dementia 

disorders (DLB, AD, FTD, and VCD), including current theories for explaining their 

pathogenic mechanisms, as well as methods for measuring the pathologies both at 

autopsy, and in vivo using biomarkers. Staging schemes and post-mortem diagnostic 

criteria are also reviewed. This background is an essential foundation to Chapter 3, in 

which a systematic review of autopsy studies of dementia in PD is presented. 

 

2.1 Lewy pathology 
 

PD is pathologically defined by degeneration of the dopaminergic nigrostriatal system 

and by the propagation of aggregated α-synuclein protein in the form of Lewy bodies 
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and Lewy neurites into surviving neurons (Dickson, 2012). Nigrostriatal degeneration 

is the main substrate of the parkinsonian syndrome, but Lewy pathology is the more 

relevant hallmark for understanding cognitive decline in PD (Emre et al., 2007). 

 

The α-synuclein protein is an isoform of the synuclein family, a group of small, 

ordinarily soluble, presynaptic proteins that also includes β-synuclein and γ-synuclein. 

In PD, α-synuclein misfolds initially into soluble pathogenic oligomers and, later, into 

larger, insoluble aggregates within neurons (Burré, Sharma, & Südhof, 2018). These 

inclusions exist in several morphological variations (Figure 2-1). Brainstem-type (or 

classical) Lewy bodies occur primarily in brainstem nuclei. They typically have a 

dense, spherical core and a halo of radiating fibrils. Cortical-type Lewy bodies are 

more amorphous, generally lacking a distinct core or halo (Ikeda, Ikeda, Yoshimura, 

Kato, & Namba, 1978; Wakabayashi et al., 2013). Their predilection sites include the 

amygdala and the neocortex. 

 

 

 

Figure 2-1. Lewy bodies and Lewy neurites. 

Photomicrograph of Lewy inclusions (brown) in the substantia nigra of an individual 
with Parkinson’s disease, stained with a mouse monoclonal α-synuclein antibody and 
Mayer’s haematoxylin counterstain. Source: WikiMedia Commons. 
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Cortical-type Lewy bodies are thought to be progenitors of classical Lewy bodies, and 

indeed, some severely affected PD cases show mature brainstem-type Lewy bodies in 

higher brain structures at autopsy, particularly in the amygdala and other limbic areas 

(Dickson, 2012). Lewy bodies are accompanied by Lewy neurites in neuronal 

processes, most commonly in axons. Other α-synuclein aggregates are observable 

throughout the neuropil, where they typically have a thin thread-like or dot-like 

structure (Kalia & Kalia, 2015). 

 

While there are several methods for studying the extent and distribution of Lewy 

pathology at autopsy, there are currently no established biomarkers. A cerebrospinal 

fluid (CSF) signature of lower total α-synuclein levels with increased oligomeric and 

phosphorylated levels has been reported in PD, but the diagnostic accuracy of this is 

insufficient for it to be considered a valid disease biomarker (Blennow, Biscetti, 

Eusebi, & Parnetti, 2016). Levels of α-synuclein in blood and plasma samples have 

similarly limited diagnostic value. Some studies report that solid tissue biopsies (e.g. 

from the submandibular and labial salivary glands and the colonic mucosa) have high 

sensitivity and specificity for detecting PD, although sample sizes are typically very 

small (Malek et al., 2014). A potentially viable alternative to these methods would be 

α-synuclein neuroimaging, which would involve the injection of a radioactive ligand 

with a specific binding affinity for pathological α-synuclein aggregates, followed by a 

positron emission tomography (PET) scan. At present, valid α-synuclein radiotracers 

are still in their infancy (Harada, Okamura, Furumoto, & Yanai, 2018). 

 

In contrast to in vivo methods, post-mortem tools for studying Lewy pathology are 

well established. Brainstem-type Lewy bodies are readily detectable at autopsy with 

conventional haematoxylin-eosin staining, though this method is insensitive to Lewy 

neurites and cortical-type Lewy bodies. Immunohistochemical methods offer greater 

sensitivity, as they exploit antibodies that selectively bind to the target protein. A 

second stain (counterstain) may then be applied to highlight the target protein against 

the surrounding tissue, facilitating visualisation of the pathological aggregates. 

 

Traditional immunohistochemical stains for Lewy pathology relied on antibodies to 

ubiquitin, a small regulatory protein that is abundant in Lewy inclusions (Kuzuhara, 

Mori, Izumiyama, Yoshimura, & Ihara, 1988). A limitation of these stains is that they 
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do not reliably differentiate Lewy inclusions from AD-related neurofibrillary tangles, 

in which ubiquitin is similarly abundant (McKeith et al., 2005). The discovery that α-

synuclein is the core constituent of Lewy bodies (Spillantini et al., 1997) led to the 

development of more sensitive immunostaining methods that relied on antibodies 

raised against the amino- and carboxyl-terminal sequences of that protein (Spillantini, 

Crowther, Jakes, Hasegawa, & Goedert, 1998). Immunohistochemistry for α-

synuclein remains the optimal method for detecting Lewy pathology at autopsy, with 

several antibodies showing excellent sensitivity and specificity (Beach et al., 2008). 

 

2.1.1 Pathological staging and diagnosis of Lewy body 
disease 

 

Susceptibility to α-synuclein aggregation and the development of clinical PD may be 

mediated by multiple molecular pathways and mechanisms, including α-synuclein 

proteostasis, mitochondrial function, calcium homeostasis, and oxidative stress and 

neuroinflammation. For example, Lewy body disease may be caused by genetic 

mutations that trigger an overproduction of α-synuclein; increase the propensity of 

intraneuronal α-synuclein to misfold; or interfere with neuronal functions designed to 

degrade misfolded α-synuclein (Poewe et al., 2017). Additionally, numerous studies 

indicate that Lewy pathology may spread via a prion-like mechanism that involves 

direct transfer from affected to unaffected neurons, a process that correlates with 

clinical progression (Brundin & Melki, 2017). 

 

According to the prion hypothesis for PD, pathological α-synuclein is secreted from 

affected neurons into the extracellular space (El-Agnaf et al., 2003), and subsequently 

taken up by other vulnerable neurons in synaptically-connected regions, where it 

seeds pathological misfolding and aggregation of endogenous α-synuclein. The 

validity of this model is supported by several in vitro studies (Volpicelli-Daley et al., 

2011) and murine models of PD (Luk, Kehm, Carroll, et al., 2012; Luk, Kehm, 

Zhang, et al., 2012). Compellingly, it is also supported by long-term studies of a small 

number of PD patients who had experimental therapy, involving a graft of foetal 

mesencephalic dopamine neurons being implanted into their striata. Within the 

relatively short span of 11-16 years, Lewy bodies appeared in the young grafted 
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neurons, suggesting that they had been corrupted by diseased neurons endogenous to 

the host brain (Kordower, Chu, Hauser, Freeman, & Olanow, 2008; Li et al., 2008). 

 

Autopsy studies by Braak and colleagues indicate that the hypothetical prion-like 

propagation of Lewy pathology through the PD brain follows a reasonably consistent, 

caudal-to-rostral trajectory. The Braak-PD model divides this path into six stages of 

increasing severity (Braak et al., 2003). Stage 1 is defined by pathology confined to 

specific nuclei of the medulla oblongata, specifically the dorsal vagal nucleus and 

sometimes the intermediate reticular zone. In stage 2, the pathology spreads to higher 

brainstem structures, including the caudal raphe nuclei and the locus coeruleus. Stage 

3 is defined by midbrain involvement; the substantia nigra is affected at this point. At 

stage 4, subcortical structures are affected, including various nuclei of the basal 

forebrain, thalamus, amygdala, and claustrum. Finally, stages 5 and 6 involve the 

neocortex, with the prefrontal, anterior cingulate, and sensory association cortices 

affected most prominently at stage 5, and the entire neocortex by stage 6. In later 

publications, Braak and colleagues hypothesised that the earliest pathogenic event in 

PD is the induction of a neurotropic pathogen, such as a virus, via a nasal and/or 

gastrointestinal route. The pathology could then spread to the central nervous system 

via the olfactory tract or vagus nerve (Hawkes, Del Tredici, & Braak, 2007). 

 

As an autopsy study, the Braak-PD model was based on cross-sectional data; there 

was no direct evidence for a temporal order to the pathological stages that mapped to 

clinical progression. However, the hypothesised correlation between pathological 

stages and clinical milestones is consistent with data from longitudinal cohort studies. 

Early pathology of the olfactory and gastrointestinal systems could underlie features 

such as hyposmia and constipation, which are recognised prodromal markers that 

often occur several years before motor onset (Berg et al., 2015; Rey, Wesson, & 

Brundin, 2018; Stokholm, Danielsen, Hamilton-Dutoit, & Borghammer, 2016). 

Involvement of the substantia nigra at stage 3 may lead to emergence of the motor 

syndrome, which is known to occur only when nigrostriatal degeneration is relatively 

advanced (Kordower et al., 2013). Finally, limbic and neocortical pathology at stages 

5-6 may underlie the cognitive decline that emerges in late PD (Braak et al., 2003). 
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Nevertheless, several criticisms of the Braak-PD model have also emerged. The 

preselection of cases with Lewy pathology in the dorsal vagal nucleus for the original 

study may have resulted in a non-representative PD sample (Kalaitzakis, Graeber, 

Gentleman, & Pearce, 2008a). Subsequent studies demonstrated that about 7% of PD 

cases had no involvement of this nucleus despite Lewy pathology in higher areas, 

suggesting that the sequentiality of the Braak-PD stages is not universally consistent 

(Kalaitzakis, Graeber, Gentleman, & Pearce, 2008b). Additionally, the model does 

not consider other pathological features that are essential to the clinical expression of 

PD, such as neuron loss and neurotransmitter dysfunction. The “incidental Lewy body 

disease” entity, discussed below, clearly indicates that Lewy pathology alone is often 

insufficient for motor and cognitive impairment, and the Braak-PD model may 

therefore be criticised for focusing purely on this hallmark (Kalaitzakis et al., 2008a). 

 

Despite these criticisms, most research to validate the model in PD has largely 

supported it. One autopsy study of 53 PD cases found that all had Lewy pathology of 

the medulla, pons, and substantia nigra, and all could be assigned to one of stages 4-6 

(Jellinger, 2003). A later study involving 21 PD cases and six neuropathologists 

indicated that the model has very high interrater and intrarater reliability at all stages 

(Müller et al., 2005). Thus, the Braak-PD scheme is a valid and reliable measure for 

describing the propagation of Lewy pathology in those clinically diagnosed with PD. 

 

Given the degree of pathological overlap between PD and DLB, it is unsurprising that 

a large percentage of DLB cases are also assignable to one of the Braak-PD stages. 

Jellinger’s (2003) study, for example, found that all 22 DLB cases had Lewy 

pathology of the brainstem, entorhinal and cingulate cortices, and in some cases, the 

neocortex. All cases were therefore classified as stages 5 or 6. Similarly, the main 

criteria for describing the distribution of Lewy pathology in DLB – the McKeith 

criteria by the DLB Consortium (McKeith et al., 1996) – are equally applicable to PD. 

 

In grading the severity of Lewy pathology, the McKeith criteria recommend that 10 

regions from the brainstem, limbic lobe, and neocortex should be examined at 

autopsy. The burden of Lewy bodies and neurites in each region is scored on a 

semiquantitative ordinal scale (0-4, corresponding to absent, mild, moderate, severe, 

and very severe). The topographical distribution of these lesions forms the basis of a 
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classification model, whereby cases can be assigned to brainstem-predominant, limbic 

(or transitional), or diffuse neocortical categories (McKeith et al., 2005; McKeith et 

al., 1996). The most recent iteration of the criteria added olfactory bulb only and 

amygdala-predominant categories. These are not associated with clinical DLB, but 

they have potential utility for identifying prodromal disease (McKeith et al., 2017), 

and they may also describe the distribution of incidental α-synuclein inclusions in 

other neurodegenerative diseases, such as AD. 

 

In conferring a diagnosis of DLB, the McKeith protocol requires the burden of 

coexistent AD lesions to be assessed. This procedure was recommended based on 

previous observations that the clinical expression of the DLB syndrome is muted in 

patients with severe comorbid AD (Del Ser, Hachinski, Merskey, & Munoz, 2001). 

The relative extent of Lewy and Alzheimer pathologies is used to confer a post-

mortem diagnosis of DLB in the form of a probability statement. High likelihood 

DLB may be diagnosed only when there is limbic or neocortical Lewy pathology, and 

coexistent Alzheimer lesions are absent, mild, or moderate (McKeith et al., 2017). 

 

In addition to PD and DLB, a third category of subjects with Lewy pathology may be 

observed in autopsy studies. These are elderly cases with Lewy inclusions but without 

a clear clinical history of neurological abnormality, including motor and cognitive 

impairment. These cases are termed “incidental Lewy body disease” (Gibb & Lees, 

1988). Such cases are reasonably common: one autopsy study of 1720 cases who 

were positive for α-synuclein pathology reported that approximately half of those 

with neocortical Lewy bodies had been free of both parkinsonism and dementia 

during life. The vast majority of these cases could be assigned to a Braak-PD or 

McKeith stage (Parkkinen, Pirttilä, & Alafuzoff, 2008). 

 

The nature of incidental Lewy body disease is contentious. It may be a non-specific, 

age-related development, with minimal implications for an individual’s neurological 

health. However, most evidence indicates that the condition is in fact a prodromal 

stage of PD/DLB, which would have emerged clinically had the subject survived for 

longer. One study found that Lewy aggregates in incidental Lewy body disease were 

distributionally similar to early PD (brainstem-predominant) or DLB (with neocortical 

involvement), but significantly sparser (Frigerio et al., 2011). Other studies have 
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demonstrated that the nigrostriatal dopamine deficiency (DelleDonne et al., 2008; 

Dickson et al., 2008) and neuron loss in the substantia nigra (Iacono et al., 2015) in 

incidental Lewy body disease cases are intermediate between controls and PD cases. 

These pathological changes are known to be reasonably severe by the time the motor 

signs emerge in PD (Kordower et al., 2013), pointing to a clinically silent period of 

pathological spread and neurodegeneration leading up to this event. Finally, limited 

data suggest that some mild but relevant clinical abnormalities can be detected in 

patients diagnosed with incidental Lewy body disease post-mortem. These include 

minor parkinsonian signs, subtle executive dysfunction, and hyposmia, all of which 

are strongly related to prodromal PD and DLB (Adler et al., 2010). Together, these 

results suggest that incidental Lewy body disease represents a preclinical stage of PD 

or DLB, where the pathology is insufficiently severe to cause significant problems. 

 

2.2 Tau and amyloid-β pathology 
 

Like PD, AD is pathologically defined by two hallmarks: in this case, neurofibrillary 

tangles and amyloid-β plaques (Figure 2-2). Neurofibrillary tangles are intraneuronal 

aggregates consisting of hyperphosphorylated tau protein. The microtubule-associated 

protein tau has six major isoforms, ranging up to 441 amino acids in length, all of 

which derive from the MAPT gene (Goedert, Spillantini, Jakes, Rutherford, & 

Crowther, 1989). Tau is expressed primarily in axons. Normally, it is highly soluble. 

However, in AD, tau undergoes hyperphosphorylation and misfolds into insoluble 

bundles of fibres. These neurofibrillary tangles are typically flame-shaped and consist 

ultrastructurally of straight or paired helical filaments (Grundke-Iqbal et al., 1986; 

Iqbal & Grundke-Iqbal, 2008) in a β-pleated sheet structure. Similar filamentous tau 

structures are also found in axons and dendrites throughout the neuropil, where they 

are referred to as neuropil threads (Braak, Braak, Grundke-Iqbal, & Iqbal, 1986). 

Hyperphosphorylation of tau protein is not unique to AD: it is also the defining 

pathological feature of the primary tauopathies, a group of neurodegenerative diseases 

that includes progressive supranuclear palsy and corticobasal degeneration. 

 

Amyloid-β plaques are the other AD hallmark. These are microscopic, extraneuronal 

structures consisting primarily of amyloid-β peptide. Like the α-synuclein and tau 
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proteins, amyloid-β is normally soluble. It is derived from the amyloid precursor 

protein following sequential cleavage by β-secretase and then γ-secretase enzymes. 

The major isoforms have 40 or 42 amino acid residues. The Aβ40 variant is the more 

abundant in the central nervous system (about 80-90% of total amyloid-β); the longer, 

less common form is more neurotoxic and more prone to pathological aggregation 

into insoluble plaques (Murphy & LeVine, 2010). 

 

The two main types of amyloid-β deposits associated with AD are neuritic and diffuse 

plaques. Neuritic plaques have a dense, fibrillar core of amyloid-β configured in a β-

sheet structure, typically between 10µm and 160µm in diameter, and containing both 

Aβ40 and Aβ42 isoforms. The core is encircled by pathologically altered processes 

(dystrophic neurites). These contain tau filaments in a paired helical configuration, 

indistinguishable both morphologically and biochemically from neurofibrillary 

tangles and neuropil threads (Dickson, 1997). Diffuse amyloid-β plaques are less 

well-circumscribed, lacking a β-sheet structure, a dense core, and dystrophic neurites 

 

 

 

Figure 2-2. Neurofibrillary tangles and amyloid-β plaques. 

Left: A neurofibrillary tangle stained with a tau antibody. Right: a neuritic amyloid-β 
plaque stained with the Gallyas silver technique. Source: WikiMedia Commons. 
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(Ikeda, Haga, Kosaka, & Oyanagi, 1989). They consist almost entirely of Aβ42, with 

virtually no colocalised Aβ40 (Iwatsubo, Saido, Mann, Lee, & Trojanowski, 1996). 

 

As with α-synuclein, evidence indicates that tau and amyloid-β pathologies seed from 

neuron to neuron in the manner of infectious prion particles. The two pathologies 

propagate independently of one another, both temporally and spatially (L. C. Walker, 

2018). According to the seminal amyloid cascade hypothesis (Hardy & Higgins, 

1992), amyloid-β aggregation is the critical pathogenic event in AD, preceding tau 

pathology and antedating clinical onset by up to 15 years (Benzinger et al., 2013). 

Accumulating amyloid-β pathology disrupts intraneuronal calcium homeostasis, 

inducing tau hyperphosphorylation and aggregation (Baudier & Cole, 1987). Neuron 

and synapse loss and clinical dementia occur thereafter (Hardy & Higgins, 1992). In 

light of the recent, repeated failures of drugs targeting amyloid-β (e.g. solanezumab, 

bapineuzumab) to improve cognitive outcomes in phase 3 clinical trials involving 

early stage AD patients (Doody et al., 2014; Salloway et al., 2014; Vandenberghe et 

al., 2016), the amyloid cascade hypothesis has been criticised as fundamentally 

flawed (Herrup, 2015). A full discussion of the arguments for and against the 

hypothesis is beyond the scope of this thesis. Despite the controversy, it remains the 

dominant model for explaining AD chronology and for directing the development of 

novel treatments for the disease (Selkoe & Hardy, 2016). 

 

One putative weakness of the hypothesis that is relevant here is the relatively poor 

correlation observed between amyloid-β plaque burden and dementia severity in AD. 

Neurofibrillary tangles and, particularly, the degree of neuron and synapse loss show 

significantly stronger associations (Giannakopoulos et al., 2003; Gómez-Isla et al., 

1997; Terry et al., 1991). Indeed, approximately one third of healthy elderly controls 

are positive for amyloid-β plaque pathology despite showing no signs of cognitive 

impairment, though longitudinal follow-up does suggest that these individuals are at 

an increased risk of conversion to MCI or dementia (Villemagne et al., 2011). These 

findings have led some authors to argue that amyloid-β acts as the trigger in AD 

pathogenesis, and tau as the bullet (Bloom, 2014). In other words, tau pathology may 

be the mechanism by which amyloid-β indirectly exerts neurotoxic and synaptotoxic 

effects, an argument that is consistent with the amyloid cascade hypothesis. 
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Additional downstream effects of amyloid-β and tau aggregation are diverse and less 

specific. Massive neuron and synapse loss by late disease is reflected by marked 

cortical atrophy on gross inspection, with enlarged ventricles and shrunken gyri 

(Apostolova et al., 2012). This is readily apparent in vivo with structural scanning, 

such as computed tomography (CT) or magnetic resonance imaging (MRI). Severe 

loss of neurons in the nucleus basalis results in profound disruption of the cholinergic 

system, and modulating this process remains the best available method for slowing 

the progression of dementia symptoms (Ferreira-Vieira, Guimaraes, Silva, & Ribeiro, 

2016). Reactive gliosis occurs in response to the neural damage; as in PD, this mainly 

involves astrocytes and microglia, and it is primarily centred on neuritic plaques 

(Fakhoury, 2017; Itagaki, McGeer, Akiyama, Zhu, & Selkoe, 1989). Finally, cerebral 

amyloid angiopathy (amyloid-β deposition within blood vessel walls) is a common 

autopsy finding in AD cases, with capillaries being the most susceptible vessels (Thal, 

Griffin, de Vos, & Ghebremedhin, 2008). 

 

Methods for studying tau and amyloid-β lesions in vivo are currently superior to their 

equivalents for α-synuclein. A CSF signature of increased total and phosphorylated 

tau with decreased Aβ42 has excellent sensitivity and specificity (both 85-90%) for 

AD dementia (Blennow et al., 2016). PET imaging with radiotracers for amyloid-β, 

such as thioflavin or stilbene derivatives and 11C-Pittsburgh Compound B (Anand & 

Sabbagh, 2017), is a well-established tool in selected clinical and research settings. 

Development of a tau neuroimaging agent has been more challenging due to the 

diversity of the protein’s possible ultrastructural conformations, as well as its relative 

scarcity in the brain; in AD, tau levels are typically 5-20 times lower than amyloid-β 

levels (Villemagne & Okamura, 2014). Quinoline derivatives that bind clearly to tau 

aggregates have been employed in clinical research, but the validity of these tracers is 

uncertain, as they are subject to some off-target binding. The development and 

validation of superior, second-generation tau tracers is ongoing (Harada et al., 2018; 

Schöll et al., 2019). 

 

At autopsy, various staining techniques are available to visualise plaques and tangles. 

The argyrophilic properties of tau and amyloid-β mean that they respond positively to 

silver impregnation methods. Silver stains such as the modified Bielschowsky and 

Gallyas techniques have been recommended in older consensus statements, as have 
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the Congo red and thioflavin S dyes, which recognise β-sheet structures (Hyman & 

Trojanowski, 1997; Mirra et al., 1991). Such methods are superior to traditional 

haematoxylin-eosin staining; however, newer immunohistochemical methods offer 

the greatest sensitivity. These include the AT8 antibody for tau and the 4G8 antibody 

for amyloid-β, which were introduced more recently and remain the preferred staining 

methods for Alzheimer lesions (Alafuzoff et al., 2006). 

 

2.2.1 Pathological staging and diagnosis of AD 
 

Staging systems exist for both tau and amyloid-β pathologies in AD. The Braak-tau 

model (Braak & Braak, 1991) distinguishes six stages of pathology, including both 

neurofibrillary tangles and neuropil threads. At stages I and II (mild pathology), tau 

lesions are mostly confined to the superficial pre-α layer of the transentorhinal cortex 

and the CA1 sector of the hippocampus, both located in the medial temporal lobe. In 

stages III and IV (moderate pathology), there is severe involvement of the pre-α 

layers of both the transentorhinal and the entorhinal cortices, and progressively more 

hippocampal involvement. Finally, stages V and VI (severe pathology) are marked by 

the extension of tau aggregates to the entirety of the hippocampal formation and to the 

neocortex, culminating in the primary motor field in the frontal lobe. Gradually more 

severe involvement of certain subcortical nuclei (including the anterodorsal thalamus, 

amygdala, and claustrum) occurs as the disease progresses, particularly between 

stages III and VI (Braak, Alafuzoff, Arzberger, Kretzschmar, & Del Tredici, 2006; 

Braak & Braak, 1991, 1995). 

 

The original study by Braak and Braak (1991) also attempted to stage neuritic plaque 

progression, but the high variability of these deposits meant that the model was less 

clear and consistent than the equivalent system for tau pathology. However, later 

work by Thal and colleagues established a five-phase model of amyloid-β deposition 

in AD (Thal, Rüb, Orantes, & Braak, 2002; Thal et al., 2000), covering all forms of 

amyloid-β pathology. The first Thal phase is defined by diffuse plaques distributed 

throughout the neocortex. These spread to superficial (mainly pre-β and pre-γ) layers 

of the entorhinal cortex in phase 2. At the same time, there is deposition of “fleecy” 

amyloid – amorphous clouds of amyloid-β (Thal et al., 1999) – in the internal layers 
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of the entorhinal cortex (pri-α, pri-β, and pri-γ) and in the CA1 sector of the 

hippocampus. Phase 3 is marked by amyloid-β deposition in numerous subcortical 

structures, including the basal forebrain, dorsal striatum, thalamus, claustrum, 

hypothalamus, and white matter. The final two phases are defined by further caudal 

proliferation, affecting the substantia nigra and the reticular formation in phase 4, and 

the locus coeruleus, raphe nuclei, and cerebellum in phase 5 (Thal et al., 2002). 

 

Much like the equivalent model for Lewy pathology, the Braak-tau scheme does not 

apply universally (Gertz et al., 1998). Nonetheless, its validity is strongly supported 

by clinicopathological studies, which also show a clear correlation between the 

pathological stages and dementia severity (P. T. Nelson et al., 2012). Suboptimal 

reliability was a limitation of the original 1991 model, which was based upon 

unconventionally thick brain sections (100µm) and used a relatively unreliable silver 

stain for tau. A later study used 5-15µm sections with the sensitive AT8 antibody, a 

protocol that made the staging scheme significantly more reliable (Braak et al., 2006). 

This Braak-tau model still showed relatively low interrater reliability for mild 

pathology – stages I-II had only 50% absolute agreement for 25 observers – though 

ratings were much more consistent for more advanced pathology (Alafuzoff et al., 

2008). A similar study reported that Thal phases had very high interrater reliability, 

with approximately 80% absolute agreement found between 26 observers across the 

spectrum of amyloid-β pathology (Alafuzoff et al., 2009). 

 

Early criteria for the post-mortem diagnosis of AD relied primarily on the extent of 

amyloid-β rather than tau lesions. The Khachaturian criteria suggested a diagnosis of 

AD if the number of amyloid-β plaques in a 1mm2 section of neocortical tissue 

exceeded an age-adjusted minimum (Khachaturian, 1985). The Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) criteria emphasised neuritic 

plaques specifically. By these criteria, neuritic plaques were scored ordinally (absent, 

sparse, moderate, or frequent), and then adjusted for age to generate a score of A, B, 

or C, corresponding to increasing probability of AD (Mirra et al., 1991). The age 

adjustments of both systems were valuable, given the increasing incidence with age of 

plaque pathology without clinical manifestation (Wolf et al., 1999). However, both 

sets of criteria were limited by the exclusion of tau pathology – an important 

omission, given the correlation between tau lesions and dementia severity in AD. 
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This limitation was addressed by the National Institute on Aging (NIA) and Ronald 

and Nancy Reagan Institute of the Alzheimer’s Association (NIA-Reagan) consensus 

criteria for AD, which incorporated indices of both tau and amyloid-β pathology into 

the diagnostic algorithm. The original NIA-Reagan criteria defined the likelihood of 

dementia resulting from Alzheimer pathology as low, intermediate, or high, based on 

various permutations of Braak-tau and CERAD scores (Hyman & Trojanowski, 

1997). The current, significantly updated NIA and Alzheimer’s Association (NIA-

AA) criteria use an “ABC” model that also includes Thal phases in the diagnostic 

algorithm. Rather than describing the likelihood that AD underlies dementia, the new 

criteria simply describe the severity of Alzheimer lesions as absent, low, intermediate, 

or high (Hyman et al., 2012; Montine et al., 2012). 

 

As in incidental Lewy body disease, it is reasonably common for autopsy studies to 

detect individuals who are neurologically normal despite the presence of Alzheimer 

lesions. One autopsy analysis of 188 elderly, community-dwelling individuals with no 

cognitive impairment during life found that more than a third fulfilled NIA-Reagan 

criteria for a post-mortem diagnosis of AD, the vast majority with intermediate 

likelihood (Schneider, Aggarwal, Barnes, Boyle, & Bennett, 2009). Moreover, 

another study involving 2332 unselected autopsy cases found that tau pathology was 

ubiquitous, though generally very mild, after the age of 40. Almost 80% of those over 

the age of 60 could be assigned a Braak-tau stage. Amyloid-β pathology was also 

common, albeit not universal. Increasing prevalence and severity was observed from 

age 40 onwards, but until the age of 80, less than half were affected. Even in the 

oldest age groups (90 and older), approximately a quarter of cases remained free of 

amyloid-β pathology (Braak, Thal, Ghebremedhin, & Del Tredici, 2011). 

 

Results such as these suggest that tau and amyloid-β lesions do not universally cause 

manifest dementia, as is also true for α-synuclein in the case of incidental Lewy body 

disease. In contrast to α-synuclein, it is probable that incidental tau pathology is not 

always a marker of prodromal AD, given that it is universally present by middle age 

and, in most cases, remains clinically silent even for several decades thereafter. It is 

more likely that mild tau changes are a natural consequence of normal senescence, 

which generally do not approach the threshold for clinical significance during the 

average human lifespan. The combination of tau with amyloid-β pathology in the 
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ageing brain is a more pernicious occurrence that probably does constitute prodromal 

AD, in line with the amyloid cascade hypothesis. 

 

2.3 Pathology associated with FTD 
 

The primary feature of FTD is frontotemporal lobar degeneration, defined by 

selective and progressive neuron loss and reactive gliosis in the frontal and temporal 

lobes. Various proteins are associated with this neurodegenerative process. TDP-43 

and tau underlie 85-90% of cases. TDP-43 is the most common molecular substrate of 

FTD, accounting for around half of the total figure. TDP-43 inclusions associated 

with frontotemporal lobar degeneration are typically spherical or crescent-shaped, and 

surrounded by dystrophic neurites of varying length and number. They are most 

commonly observed in the neuronal cytoplasm, though they may also occur in the 

nucleus, particularly in familial cases. Immunohistochemical methods for detecting 

TDP-43 inclusions are available; these also stain ubiquitin, but are negative for tau 

and other neurodegenerative disease proteins (Mackenzie & Neumann, 2016). 

Autopsy studies using antibodies to TDP-43 demonstrate that these lesions are 

reasonably common in individuals who do not have dementia. One meta-analysis 

involving a cumulative total of 1196 cognitively normal elderly adults found that 

almost a quarter had incidental TDP-43 pathology (Nascimento et al., 2018). 

 

Tau pathology in FTD exists in several morphological variations. Pick’s disease is a 

tauopathy defined by swollen neurons with spherical, tau-positive, intracytoplasmic 

inclusions (“Pick bodies”). These are biochemically and structurally distinct from AD 

lesions, being composed mainly of the 3-repeat tau isoform, whereas neurofibrillary 

tangles comprise both 3-repeat and 4-repeat isoforms (Olney et al., 2017). Aggregates 

of mainly 4-repeat tau also occur in FTD. These include argyrophilic grains – small, 

comma-shaped structures in neuronal processes (Rodriguez & Grinberg, 2015) – and 

large, globular inclusions in oligodendrocytes and astrocytes (Ahmed et al., 2013). 

 

Most of the remaining cases of frontotemporal lobar degeneration relate to a family of 

RNA/DNA-binding proteins derived from three oncogenes: namely, the fused in 

sarcoma, Ewing’s sarcoma, and TATA-binding protein-associated factor 15 genes. 



   2-49 

Collectively, these are referred to as FET proteins (Mackenzie & Neumann, 2016). A 

very small percentage of FTD cases have inclusions that are immunoreactive for 

ubiquitin, but not for TDP-43, tau, or FET proteins (Holm, Isaacs, & Mackenzie, 

2009). The rarity of FTD associated with any of these proteins means that they remain 

poorly characterised and poorly understood. 

 

Currently, there are no validated biomarkers or staging schemes for FTD-associated 

protein pathologies. In vitro evidence suggests that these proteins may also spread via 

a prion-like, cell-to-cell mechanism, similar to α-synuclein in PD and tau and 

amyloid-β in AD (Smethurst et al., 2016). Therefore, equivalent staging schemes are 

plausible. Two staging models for TDP-43 pathology are available. The first is for 

incidental TDP-43 pathology in the context of AD (Josephs et al., 2014; Josephs et 

al., 2016), and the second for a newly defined disease entity – limbic-predominant 

age-related TDP-43 encephalopathy – that is associated with hippocampal sclerosis 

and often overlaps with AD and FTD (P. T. Nelson et al., 2019). In both diseases, 

TDP-43 inclusions originate in the amygdala, then spread to medial temporal lobe 

structures such as the hippocampus, and finally, to frontal cortical areas. Incidental 

TDP-43 lesions in DLB spread via a similar pathway (McAleese et al., 2017). 

 

At present, no staging scheme has been validated specifically in cases of FTD caused 

by TDP-43 pathology. In the behavioural variant of FTD, a key model has identified 

four distinct distribution patterns of TDP-43 pathology (Brettschneider et al., 2014). 

However, evidence of a sequential order to these patterns was lacking, and therefore, 

the model does not constitute a true hierarchical staging scheme. Further research is 

needed to better characterise the trajectories of TDP-43 and other proteins in FTD, 

and to identify valid staging schemes. 

 

2.4 Cerebrovascular pathology 
 

Cerebrovascular disease refers to a diverse group of pathologies affecting the brain’s 

blood vessels. While the diseases are chronic, they often induce cognitive impairment 

after one or more acute events, such as a cerebrovascular accident (otherwise known 

as a stroke). This occurs when the blood supply to a region of the brain is interrupted, 
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either due to obstruction (ischaemic stroke) or rupture (haemorrhagic stroke) of a 

blood vessel. Various types of neurological lesion may result from cerebrovascular 

disease. As the lesions do not proliferate through the brain in any predictable manner, 

the concept of hierarchical staging schemes does not apply in this context. 

 

The main cerebrovascular diseases that are implicated in the pathogenesis of VCD are 

atherosclerosis, cerebral amyloid angiopathy, and cerebral small vessel disease 

(Grinberg & Thal, 2010; McAleese et al., 2016). Atherosclerosis is a degenerative 

disease that affects large and medium-sized arteries. It is defined by the gradual 

accumulation of proteins and lipids (e.g. cholesterol) into calcified plaques, which 

adhere to the arterial wall and result in a narrowing of the lumen. Rupture of these 

plaques is a major cause of blood clots (thrombosis) and subsequent stroke (Jackson, 

2011). Cerebral amyloid angiopathy – a common pathology in AD, as well as VCD – 

is defined by the deposition of amyloid-β peptide within the walls of leptomeningeal 

and intracortical arteries, arterioles, capillaries, and sometimes veins, which results in 

the degradation of smooth muscle cells (McAleese et al., 2016). Finally, cerebral 

small vessel disease comprises a set of disorders that affect the brain’s arterioles, 

capillaries, venules, veins, and small arteries. This includes arteriolosclerosis and a 

number of genetic and inflammatory small vessel diseases (Pantoni, 2010). 

 

Cerebrovascular diseases can damage neural tissue in various ways. The most 

common cerebrovascular lesions are infarcts, haemorrhages, and white matter lesions. 

Infarcts are areas of necrotic tissue resulting from constricted blood supply. Large 

macroinfarcts are typically linked to atherosclerosis; cavitating lacunar infarcts to 

small vessel disease; and small microinfarcts to either small vessel disease or cerebral 

amyloid angiopathy (Grinberg & Thal, 2010). Cerebral haemorrhages are areas of 

bleeding in the brain. In cortical areas, they are often related to amyloid angiopathy, 

whereas in subcortical and brainstem nuclei or the white matter, they are more often 

related to small vessel disease (McAleese et al., 2016). Finally, white matter lesions – 

referred to as leukoaraiosis or white matter hyperintensities when observed by 

neuroimaging – involve demyelination, axon loss, and reactive gliosis in the brain’s 

white matter. Generally, this damage is the result of degeneration of the blood-brain 

barrier and chronic hypoperfusion of the white matter, both of which occur as a 

consequence of small vessel disease (Grinberg & Thal, 2010). 
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Currently, criteria for evaluating the contribution of cerebrovascular lesions to 

cognitive impairment are limited. For research purposes, the NIA criteria for AD 

include diagnostic and reporting recommendations for cerebrovascular diseases and 

vascular brain injuries. These criteria require a minimum of six brain sections from 

the neocortex, basal nuclei, and thalamus to be assessed for microvascular lesions. It 

is recommended that the location, age, and number of these lesions, along with any 

macroscopic infarcts and haemorrhages, should be reported. A standardised reporting 

format is described in the criteria (Hyman et al., 2012). 

 

As with neurodegenerative protein pathologies, cerebrovascular lesions are often 

found in tissue samples from cases who had been cognitively normal during life. An 

analysis of 210 cases without cognitive impairment or neurodegenerative disease 

found some kind of cerebrovascular pathology in just over two-thirds. Atherosclerosis 

was the most common pathology, affecting almost a quarter of cases. Microinfarcts, 

macroinfarcts, lacunar infarcts, and cerebral amyloid angiopathy were all observed in 

10-20% of cases. Finally, haemorrhages and arteriosclerotic white matter lesions were 

found in less than 5% (Toledo et al., 2013). Thus, incidental cerebrovascular lesions 

are reasonably common in elderly autopsy samples, and often clinically silent. 

 

2.5 Chapter summary 
 

The most common dementia disorders affect the brain in different ways. The 

pathology of neurodegenerative diseases is defined by aberrant protein aggregates, 

including α-synuclein in PD and DLB, tau and amyloid-β in AD, and tau, TDP-43, 

FET proteins, and ubiquitin in FTD. The post-mortem identification of these proteins 

has been facilitated by recent advances in staining techniques that rely on sensitive 

immunohistochemical antibodies over traditional methods. Autopsy studies indicate 

that neurodegenerative and cerebrovascular lesions are common in cognitively intact 

elderly cases, as well as in dementia cases. In some cases, incidental pathology may 

constitute a prodromal disease that will manifest clinically if given sufficient time, but 

in many other cases, the lesions are clinically silent for the duration of the lifespan. 

 



   2-52 

Typically, protein aggregates associated with neurodegenerative diseases follow 

characteristic paths through the brain. Numerous variables may contribute to the 

propagation of these protein pathologies, including disruption of proteostasis, 

mitochondrial dysfunction, and oxidative stress and neuroinflammation. Numerous 

studies also point to a prion-like mechanism of direct cell-to-cell transmission. The 

predictability of these paths has allowed for the creation of staging schemes that 

quantify pathological severity, including the Braak-PD model for α-synuclein, the 

Braak-tau model for neurofibrillary tangles, and Thal phases for amyloid-β. While 

these schemes do not apply universally, their validity and reliability are strongly 

supported. The extent of Lewy and Alzheimer pathologies may also be quantified by 

the McKeith criteria for DLB and the NIA models for AD. At present, comparable 

models are not available for most of the protein inclusions that underlie FTD. The 

concept of staging models does not apply in the same way to cerebrovascular 

diseases, given the heterogeneity of lesions that arise in this context. 
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3 Systematic review of autopsy studies of 
dementia in PD1 

 

3.1 Introduction 
 

According to Braak theory, the cognitive decline associated with advanced PD is 

driven primarily by the propagation of pathological α-synuclein aggregates into 

limbic and neocortical areas (Braak et al., 2003). Brief literature reviews to date 

support this hypothesis, but also note the high prevalence of comorbidity in people 

with PD (Emre et al., 2007). Coexistent pathologies, particularly those associated with 

AD, may influence a PD patient’s cognition over and above the effect of Lewy 

pathology alone. Pathologies associated with frontotemporal lobar degeneration and 

cerebrovascular disease may also contribute to the clinical presentation. This chapter 

presents a novel systematic review of autopsy studies of PD cases with dementia. The 

main objective was to describe the relationship between each of these pathologies and 

the presence of dementia in PD. 

 

Direct examination of tissue with an autopsy remains the most definitive method for 

studying brain pathology. In AD, autopsy examination is more sensitive than any 

established in vivo biomarker (Jack et al., 2018). In PD, valid in vivo biomarkers for 

α-synuclein are limited or unavailable, as reviewed in the previous chapter. Therefore, 

direct visualisation and quantification of α-synuclein aggregates requires an autopsy. 

An additional advantage of the procedure is that it allows for post-mortem verification 

of the clinical PD diagnosis. This is very valuable, given the relatively high estimates 

of the clinical diagnostic error rate (Adler et al., 2014; Rizzo et al., 2016). 

 

As discussed, lesions associated with neurodegenerative and cerebrovascular diseases 

are frequent incidental findings in autopsy cases who did not have a corresponding 

diagnosis in vivo. For example, some degree of tau pathology, with no overt clinical  

                                                
1 The author acknowledges the contributions of Drs. Naveed Malek and Katherine Grosset to data 
collection for the work described in this chapter. Prof. Steve Gentleman contributed expertise in 
neuropathology to the final text. 



   3-54 

manifestation, invariably develops by middle age (Braak et al., 2011), and more than 

a third of elderly individuals without dementia may be assigned a post-mortem 

diagnosis of AD (Schneider et al., 2009). Based on these results, it is unsurprising that 

autopsy studies consistently point to a high degree of comorbidity in these diseases. 

Up to half of PD cases with dementia may have enough tau and amyloid-β pathology 

to fulfil post-mortem diagnostic criteria for AD. These lesions also occur in PD cases 

without dementia, though here they tend to be less common and less severe, more 

similar to healthy controls (Irwin et al., 2013). In AD, Lewy bodies were observed in 

just under half of one autopsy sample (n = 347). In around 40% of the α-synuclein-

positive AD cases, Lewy bodies were more or less restricted to the amygdala, but the 

remaining 60% had a pathological profile consistent with comorbid DLB (Uchikado, 

Lin, DeLucia, & Dickson, 2006). Recent evidence also points to a high degree of 

coexistent TDP-43 pathology in these diseases: TDP-43 inclusions were observed in 

almost three-quarters of pure AD cases, a third of pure DLB cases, and over half of 

mixed AD/DLB cases, compared to less than 20% of controls (McAleese et al., 2017). 

 

In addition to these findings, cerebrovascular pathology commonly coexists with 

neurodegenerative diseases. A very large autopsy study by Toledo et al. (2013) found 

comorbid cerebrovascular disease in a third of cases with pathological AD (n = 4629, 

85.7% with dementia) and a fifth of cases with an α-synucleinopathy (n = 323, 80.5% 

with dementia). Moderate to severe cerebral amyloid angiopathy was present in 

around 40% of the AD group, and around 10% of the α-synucleinopathy group. 

Furthermore, coexistent cerebrovascular pathology appeared to lower the threshold 

required for Alzheimer and Lewy pathologies to manifest clinically as dementia. 

Combined, these results show that neurodegenerative and cerebrovascular diseases 

frequently co-occur, especially in dementia cases. This phenomenon is clearest in the 

context of AD, where TDP-43 and cerebrovascular pathologies are significantly more 

prevalent than in the α-synucleinopathies (McAleese et al., 2017; Toledo et al., 2013). 

 

Several variables contribute to the overlap between these pathologies. Firstly, 

neurodegenerative and cerebrovascular diseases share many risk factors. Increasing 

age is the strongest risk factor for most of these diseases (Guerreiro & Bras, 2015; 

Portegies, Koudstaal, & Ikram, 2016; Reeve et al., 2014). Autopsy studies involving 

large numbers of cases stratified by age group indicate that the prevalence of 
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comorbid conditions increases linearly with age; in the oldest age groups, multiple 

pathology is the norm (Jellinger & Attems, 2010b; Kovacs, Alafuzoff, et al., 2008). 

Vascular risk factors and depression also contribute to all-cause dementia risk. The 

contributions to VCD and AD are strongest, but these factors also increase the risk of 

dementia in PD (Diniz et al., 2013; Hasnain & Vieweg, 2014; Pilotto et al., 2016). 

 

In addition to shared risk factors, disruption of essential molecular pathways and 

mechanisms may also explain the frequency of multimorbidity in elderly individuals. 

For example, disrupted proteostasis, neuroinflammation, and oxidative stress are all 

closely linked to the pathogenesis of multiple neurodegenerative diseases, including 

both PD and AD (Chen, Zhang, & Huang, 2016; Klaips, Jayaraj, & Hartl, 2018). 

Compellingly, research from cellular and animal studies also suggests that different 

protein pathologies may directly interact to promote one another’s aggregation. In 

transgenic mice, overexpression of human α-synuclein promotes the formation of tau 

fibrils (Giasson et al., 2003). Similarly, tau provokes the aggregation and toxicity of 

α-synuclein in vitro (Badiola et al., 2011), suggesting that the relationship between 

the two is bidirectional. Similarly, an interaction between α-synuclein and amyloid-β 

(particularly the more neurotoxic Aβ42 isoform) has been shown in vitro (Mandal, 

Pettegrew, Masliah, Hamilton, & Mandal, 2006) and in a murine model (Tsigelny et 

al., 2008). Thus, the development of one neurodegenerative disease may increase the 

probability of developing a second. 

 

Cellular and animal models have also explored the effect of pathological protein 

interaction on cognition within the context of neurodegenerative diseases. In one 

study, the colocalisation of α-synuclein, tau, and amyloid-β in transgenic mice 

resulted in a markedly accelerated cognitive decline (Clinton, Blurton-Jones, Myczek, 

Trojanowski, & LaFerla, 2010). This finding has implications for the differential 

diagnosis of PDD and DLB, which currently rests on the relative timing of motor 

versus cognitive onset, as per the one-year rule (Emre et al., 2007; McKeith et al., 

2005). If the finding that multiple pathology accelerates cognitive decline in murine 

models holds true in humans, then the onset timing of dementia within the context of 

an α-synucleinopathy may be mediated by the burden of coexistent Alzheimer 

pathology. This would imply that PDD and DLB are pathologically dissociable to 

some extent, with DLB having a higher degree of AD comorbidity. 
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The primary objective of this novel systematic review was to synthesise the scientific 

evidence to describe the relationship between various cerebral pathologies and 

dementia in PD. In addition to α-synuclein pathology, the frequency of coexistent tau 

and amyloid-β pathologies in PD was defined, and the effects of these comorbidities 

on cognitive status were described. The potential role of cerebrovascular lesions was 

also assessed, as was the influence of the less common protein pathologies associated 

with FTD. Secondary objectives were a) to establish the extent to which PDD is 

pathologically dissociable from DLB, and b) to explore the autopsy evidence for a 

possible additive or interactive effect between multiple coexisting pathologies, as 

described in cellular and animal models. 

 

3.2 Methods 
 

3.2.1 Protocol and registration 
 

This systematic review was written in accordance with Preferred Reporting Items for 

Systematic Reviews and Meta-analyses (PRISMA) guidelines (Liberati et al., 2009; 

Moher, Liberati, Tetzlaff, Altman, & Group, 2009) at www.prisma-statement.org. The 

protocol was predefined and registered with the International Prospective Register of 

Systematic Reviews at www.crd.york.ac.uk/prospero/ on 13/02/18 (registration code 

CRD42018088691). The protocol was not amended at any stage after it was uploaded, 

though the procedure for the risk of bias assessment was modified as described below. 

 

3.2.2 Eligibility criteria 
 

Report and study characteristics. Only autopsy studies were eligible for the review. 

Studies were required to include cases with clinically diagnosed and/or pathologically 

verified PD, including cases with dementia diagnosed either prospectively or 

retrospectively. The minimum sample size was five, including comparators. Only full 

text papers in English with original data were included. 
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Types of comparators. The presence of a comparator group (e.g. healthy controls) was 

not mandatory. Many studies compared PD cases with dementia to other disease 

populations, including PD without dementia, DLB, and AD. 

 

Types of outcome measures. The primary outcome was the presence of dementia 

during life, defined by clinical diagnosis or by objective cognitive testing. Studies 

limited to PD with MCI were not included. 

 

3.2.3 Information sources 
 

Search criteria were designed for the Ovid databases Medline and Embase, with 

articles from 1946 (Medline) or 1974 (Embase) to 26/01/2018 considered. 

 

The search terms and syntax were then copied to and adapted for the following 

databases, all to 26/01/2018: Literatura Latino-Americana e do Caribe em Ciências 

da Saúde (provided by BIREME), Cumulative Index to Nursing and Allied Health 

Literature (provided by EBSCO), and the Cochrane Library (provided by John Wiley 

& Sons). In order to identify additional relevant reports, reference lists within 

included articles and relevant reviews were hand searched, and the “cited by” function 

was applied to all included reports. 

 

3.2.4 Search strategy 
 

The search strategy was designed with reference to the Peer Review of Electronic 

Search Strategies checklist (McGowan et al., 2016). The literature search relied on 

medical subject headings combined with Boolean operators. Truncation of the words 

“dementia” and “cognition” was used to ensure that all potentially relevant lexical 

variations (e.g. “demented” or “cognitive”) were captured. 

 

The search terms were initially piloted for sensitivity by confirming that they 

identified five preselected key articles. 
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Searches were filtered to include only human subjects. Language filters were not 

applied, and duplicate results were removed. The search strategies for each database 

are provided in Appendix 1. 

 

3.2.5 Study selection process 
 

Preliminary screening relied on title and/or abstract screening, and potentially relevant 

articles were then read in full. Both selection stages were independently conducted by 

two investigators (CS and NM), with a third (KG) resolving discrepancies. 

 

3.2.6 Data collection 
 

A data extraction form was developed, containing one column for each item of 

interest. As a calibration exercise, data extraction was initially performed by the 

author (CS) for five randomly selected articles, and the form was then refined. 

 

3.2.7 Data items 
 

Data describing the type, location, and severity of pathological findings, as well as 

staining methods and diagnostic or staging criteria, were extracted. Demographic 

information (age at death, sex, disease duration, education) was recorded where 

provided for PD cases with dementia and for any comparison groups. Statistical 

comparison methods and results were noted. Study funding sources and conflicts of 

interest were also recorded. 

 

3.2.8 Risk of bias assessment 
 

The initial plan to assess risk of bias with a modified version of the Newcastle-Ottawa 

Scale (Wells et al., 2009), which was documented in the protocol, was revised after 

further reading identified significant problems with the scale’s validity (Stang, 2010), 

and with the use of strict quantitative scales and checklists for this purpose generally 

(Higgins & Altman, 2009; Liberati et al., 2009). Risk of bias was therefore assessed 

with an adapted version of the semiquantitative Cochrane tool (Higgins & Altman, 
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2009). Reports were evaluated for potential bias in selection, detection, and reporting. 

Bias was defined as “a systematic error, or deviation from truth” sufficient to 

meaningfully interfere with the results or conclusions (Higgins & Altman, 2009). 

 

The risk of bias assessment was performed by the author (CS), who was not blinded 

to any aspect of the included reports. Eligible reports were included in the review 

regardless of risk level. 

 

3.2.9 Methods of analysis 
 

Given the methodological and analytical heterogeneity of the target studies, no plans 

were made to conduct a meta-analysis. 

 

Some reports used the same cases; in determining the sample size of all studies 

combined, these cases were only counted once. Partial overlap between studies was 

not subjected to any adjustment. In generating the bar charts to describe the severity 

of Alzheimer pathology, it was sometimes necessary to impute data where categories 

in the original report (e.g. absent and mild) had been collapsed, provided that this 

information could not be obtained from the report’s authors. Values for imputation 

were based on average values when all studies were combined. Aggregation for each 

bar chart was based on raw numbers. 

 

A Pearson chi-square test was used to assess whether cerebrovascular pathology was 

more common in PD cases with dementia compared to those without. 

 

3.3 Results 
 

3.3.1 Study selection and characteristics 
 

The electronic search strategy retrieved 1552 records. Fourteen more were identified 

from hand searching. Excluding duplicates and non-human studies, 1519 records 

underwent preliminary screening. Six potentially relevant articles were found in 

languages other than English: these were not included, but the titles are listed in 
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Appendix 2. Eighty-four potentially relevant articles were read in full, and 40 of these 

were discarded. Half of the discarded articles were deemed to have little or no 

relevant detail; these are listed in Appendix 3. Ultimately, 44 articles involving 41 

studies were included (Figure 3-1). 

 

 

 

Figure 3-1. PRISMA flow diagram showing stages in the selection of studies. 

PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-analyses. 
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Interrater agreement was 96.8% at initial screening, and 92.9% at the full text stage. 

Four authors were contacted for missing information about the severity of tau and 

amyloid-β pathology in PD cases with dementia; none responded, and data were 

therefore imputed in the bar charts. 

 

The 44 reports involved 2002 cases with clinically diagnosed and pathologically 

verified PD, 1145 (57.2%) of whom had dementia. Dementia was primarily a clinical 

diagnosis, generally referencing the most recent version of the DSM, but standard 

neuropsychological tests were often applied. In 32 reports (72.7%), the diagnosis of 

dementia was based on retrospective review of clinical notes; in the other 12 reports 

(27.3%), dementia was established prospectively. Comparison groups included PD 

without dementia, healthy controls, DLB, AD, and various others (Table 3-1). 

 

Seven studies excluded cases that reached a specified threshold of coexistent tau 

pathology (Churchyard & Lees, 1997; Colosimo, Hughes, Kilford, & Lees, 2003; 

Halliday, Song, & Harding, 2011; Harding & Halliday, 2001; Kalaitzakis, Walls, 

Pearce, & Gentleman, 2011; Kövari et al., 2003; Wills et al., 2010), and one study 

required cases to meet post-mortem criteria for both AD and Lewy body disease (L. 

Walker et al., 2015). Differential diagnosis of PDD versus DLB generally relied on 

the conventional one-year latency rule (Emre et al., 2007; McKeith et al., 2005), but a 

longer range of 2 to 5 years was sometimes applied (Apaydin, Ahlskog, Parisi, Boeve, 

& Dickson, 2002; Harding & Halliday, 2001; Hurtig et al., 2000; Irwin et al., 2012; 

Kövari et al., 2003; Tsuboi, Uchikado, & Dickson, 2007). 
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Table 3-1. Characteristics of reports included in the systematic review. 

Author (year) PD 
total 

PD with 
dementia (n, %) Definition of dementia Comparison groups 

Aarsland et al. (2005) 22 18 (81.2) DSM-III-R None 
Apaydin et al. (2002) 22 13 (59.1) DSM-III-R None 
Ballard et al. (2006) 28 28 (100) DSM-III-R DLB 
Bancher et al. (1993)a, b 28 12 (42.9) MMSE<17 None 
Braak and Braak (1990) 11 10 (90.9) Clinical Controls, AD, trisomy 21 
Braak et al. (2005) 88 79 (89.8) MMSE<21 None 
Churchyard and Lees (1997) 27 17 (63.0) DSM-III Controls 
Colosimo et al. (2003) 38 21 (55.3) DSM-III-R None 
Compta et al. (2011)c 56 29 (51.8) DSM-IV None 
de la Monte et al. (1989) 10 4 (40.0) Clinical Controls and AD 
de Vos et al. (1995) 18 12 (66.7) DSM-III-R / MMSE<20 Controls 
Fujishiro et al. (2010) 13 13 (100) Clinical DLB 
Gaspar and Gray (1984) 32 18 (56.3) Clinical Controls 
Halliday et al. (2011) 19 12 (63.2) Clinical Controls and DLB 
Harding and Halliday (2001) 41 16 (39.0) CDR>0.5 DLB 
Horvath et al. (2013) 155 109 (70.3) Clinical None 
Howlett et al. (2015)d 34 34 (100) Clinical DLB 
Hughes et al. (1993) 100 31 (31.0) DSM-III / MMSE<20 None 
Hurtig et al. (2000) 42 22 (52.4) DSM-IV None 
Irwin et al. (2012) 140 92 (65.7) DSM-IV None 
Jellinger et al. (1991)a, b 26 9 (34.6) MMSE<17 Controls 
Jellinger et al. (2002)b 200 66 (33.3) MMSE<20 None 
Jellinger and Attems (2006)b 17 17 (100) Clinical DLB 
Jellinger and Attems (2008)b 68 32 (47.1) MMSE<20 DLB 
Jendroska et al. (1996) 50 23 (46.0) DSM-III-R Controls 
Kalaitzakis et al. (2009) 32 12 (37.5) DSM-IV / ICD-10 DLB 
Kalaitzakis et al. (2011) 93 41 (44.1) DSM-IV / ICD-10 Controls, DLB, MSA, PSP 
Kempster et al. (2010)c 129 69 (53.5) DSM-IV None 
Kotzbauer et al. (2012) 32 32 (100) Clinical None 
Kövari et al. (2003)  22 10 (45.5) CDR>0.5 None 
Libow et al. (2009)  18 18 (100) DSM-IV None 
Mattila et al. (1998)e 44 35 (79.5) GDS>1 None 
Mattila et al. (1999)e 45 35 (77.8) GDS>1 None 
Mattila et al. (2000)e 45 35 (77.8) GDS>1 None 
Nakashima-Yasuda et al. (2007)  90 21 (23.3) Clinical Controls and DLB 
Perry et al. (1985) 11 7 (63.6) Clinical Controls and AD 
Ruffmann et al. (2016) 104 55 (52.9) DSM-IV / MDS DLB 
Sabbagh et al. (2009) 51 51 (100) DSM-IV None 
Sierra et al. (2016) 20 10 (50) MDS Controls, AD, DLB 
Tsuboi et al. (2007) 7 7 (100) Clinical DLB 
Vermersch et al. (1993) 24 16 (66.6) Clinical Controls and AD 
Walker et al. (2015)d 3 3 (100) MDS AD and DLB 
Whitehouse et al. (1983) 9 5 (55.6) Clinical Controls and PEP 
Wills et al. (2010)f 35 

18 
18 (51.4) 
7 (38.9) 

Clinical Controls 

 

a These reports were based on the same sample. 
b There was potential overlap between these samples. 
c There was potential overlap between these samples. 
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d There was potential overlap between these samples. 
e These reports were based on the same sample. 
f This study obtained striata from 35 cases and inferior frontal gyri from 18. 
AD = Alzheimer’s disease, CDR = Clinical dementia rating, DLB = Dementia with Lewy bodies, DSM = Diagnostic and 
Statistical Manual of Mental Disorders, GDS = Global Deterioration Scale, ICD = International Classification of 
Diseases, MDS = Movement Disorder Society, MMSE = Mini-Mental State Examination, MSA = Multiple system 
atrophy, PD = Parkinson’s disease, PEP = Postencephalitic parkinsonism, PSP = Progressive supranuclear palsy. 

 

 

3.3.2 Risk of bias 
 

Studies were evaluated for risk of selection, detection, and reporting bias, which were 

then combined to generate an impression of overall risk (Table 3-2). Overall, 77.3% 

of reports had low risk of bias. Nine had an unclear risk, and only one report (Libow, 

Frisina, Haroutunian, Perl, & Purohit, 2009) had a high risk of bias. Risk of selection 

bias, introduced by procedures for case recruitment, was low in 65.9% of reports. 

Two reports had high risk. The cases in one study (Libow et al., 2009) were primarily 

hospital residents, whose health is likely to be considerably poorer than most PD 

samples (either due to PD or due to comorbid conditions). The second study recruited 

cases from NIA-funded AD centres, potentially leading to an overrepresentation of 

PD cases with comorbid AD (Nakashima-Yasuda et al., 2007). 13 reports had an 

unclear risk of selection bias; in all of these, the recruitment procedure and/or the 

source of the autopsy cases was not provided. 

 

Risk of detection bias, related to the ways in which study outcomes were determined, 

was low in 45.5% reports, and unclear in 52.5%. All instances of unclear risk were 

due to omission of information regarding the neuropathological assessment 

procedures, including whether the pathologists were blinded to clinical data, what 

antibodies were used, and what guidelines or diagnostic criteria were consulted. 

 

Assessment of reporting bias relied on comparison of the report’s method section to 

its results and discussion sections, in order to identify selective outcome reporting. 

One study (Libow et al., 2009) had a high risk of reporting bias, due to the omission 

of crucial information from the results section, including neuropsychological and 

medical data pertaining to the vast majority of the autopsy cases. All other studies had 

low risk of reporting bias. 
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Table 3-2. Risk of bias in each report in the systematic review. 

Author (year) Selection Detection Reporting Overall risk 
Aarsland et al, (2005)     
Apaydin et al. (2002)     
Ballard et al. (2006)     
Bancher et al. (1993)     
Braak & Braak (1990)     
Braak et al. (2005)     
Churchyard and Lees (1997)     
Colosimo et al. (2003)     
Compta et al. (2011)     
de la Monte et al. (1989)     
de Vos et al. (1995)     
Fujishiro et al. (2010)     
Gaspar and Gray (1984)     
Halliday et al. (2011)     
Harding and Halliday (2001)     
Horvath et al. (2013)     
Howlett et al. (2015)     
Hughes et al. (1993)     
Hurtig et al. (2000)     
Irwin et al. (2012)     
Jellinger and Attems (2006)     
Jellinger and Attems (2008)     
Jellinger et al. (1991)     
Jellinger et al. (2002)     
Jendroska et al. (1996)     
Kalaitzakis et al. (2009)     
Kalaitzakis et al. (2011)     
Kempster et al. (2010)     
Kotzbauer et al. (2012)     
Kövari et al. (2003)     
Libow et al. (2009)     
Mattila et al. (2000)     
Mattila et al. (1999)     
Mattila et al. (1998)     
Nakashima-Yasuda et al. (2007)     
Perry et al. (1985)     
Ruffmann et al. (2016)     
Sabbagh et al. (2009)     
Sierra et al. (2016)     
Tsuboi et al. (2007)     
Vermersch et al. (1993)     
Walker et al. (2015)     
Whitehouse et al. (1983)     
Wills et al. (2010)     
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A summary of risk of bias in each category across all studies is shown in Figure 3-2. 

 

 

Figure 3-2. Summary of risk of bias in the included reports. 

Reports were evaluated for risk of selection, detection, and reporting bias, each graded 
as “low”, “unclear”, or “high”. These were combined for an impression of overall risk. 
 

 

3.3.3 Lewy pathology 
 

Lewy pathology was detected by routine staining or antibodies to ubiquitin in earlier 

studies, while antibodies to α-synuclein were widely used following their introduction 

in 1998 (Spillantini et al., 1998). Two early studies found leading causes of dementia 

in PD to be comorbid AD, cortical Lewy bodies, and cerebrovascular disease, though 

no identifiable aetiology was reported for a significant percentage (Hughes, Daniel, 

Blankson, & Lees, 1993; Jendroska, Lees, Poewe, & Daniel, 1996), probably due to 

the reliance on older staining methods. 

 

Dementia was linked to Braak-PD or McKeith stage in four studies with a cumulative 

total of 480 cases. In dementia cases, Lewy pathology almost invariably extended to 

the limbic lobe or the neocortex (85.3-100% of cases); neocortical involvement was 
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consistently more frequent than in PD cases without dementia (Compta et al., 2011; 

Horvath, Herrmann, Burkhard, Bouras, & Kövari, 2013; Irwin et al., 2012; Kempster, 

O'Sullivan, Holton, Revesz, & Lees, 2010). Insoluble cortical α-synuclein levels were 

particularly overexpressed, though soluble levels were also raised, according to an 

analysis of the inferior frontal gyrus (Wills et al., 2010). Limbic and neocortical Lewy 

body counts were around 10 times higher in dementia cases (Apaydin et al., 2002). A 

moderate total cortical Lewy body score had excellent sensitivity (90.9%) and 

specificity (90.0%) for detecting dementia in PD (Hurtig et al., 2000). The severity of 

cognitive impairment correlated strongly with Braak-PD stage (Braak, Rüb, Jansen 

Steur, Del Tredici, & de Vos, 2005), and with Lewy body densities in the frontal, 

straight, cingulate, middle temporal, and angular gyri, particularly when cases with 

coexistent Alzheimer pathology were excluded (Mattila, Rinne, Helenius, Dickson, & 

Röyttä, 2000; Mattila, Röyttä, Torikka, Dickson, & Rinne, 1998). 

 

PD cases with dementia also showed higher Lewy pathology in subcortical regions 

relative to those without dementia. In the amygdala and hippocampus, studies relying 

on ubiquitin stains found no association of Lewy bodies to dementia (Churchyard & 

Lees, 1997; de Vos, Jansen, Stam, Ravid, & Swaab, 1995; Mattila, Rinne, Helenius, 

& Röyttä, 1999), but studies using α-synuclein stains found significantly higher Lewy 

body densities in these regions, which correlated with dementia severity (Apaydin et 

al., 2002; Halliday et al., 2011; Mattila et al., 2000). Parahippocampal α-synuclein 

scores had excellent sensitivity (91-93%) and specificity (84-88%) for separating 

dementia cases from cognitively healthy PD cases (Harding & Halliday, 2001). 

However, in the nucleus basalis and the midbrain, including the substantia nigra, there 

were no differences in α-synuclein burden between PD without dementia, PDD, and 

DLB (Apaydin et al., 2002; Sierra, Gelpi, Martí, & Compta, 2016). 

 

In the striatum, one study found that insoluble α-synuclein levels were twice as high 

in PDD as in PD without dementia (Wills et al., 2010). Another study differentiated 

PDD from DLB on the basis of striatal α-synuclein. Lewy pathology of the striatum 

affected only 29.4% of 17 PDD cases, compared to 76.5% of 17 DLB cases (Jellinger 

& Attems, 2006). Additionally, in the claustrum, there was a progressive and 

significant trend towards greater Lewy pathology from PD without dementia to PDD 

to DLB (Kalaitzakis, Pearce, & Gentleman, 2009). DLB groups tended towards 
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greater global α-synuclein than PDD groups, but differences were usually not 

statistically significant (Fujishiro et al., 2010; Halliday et al., 2011; Ruffmann et al., 

2016; Sierra et al., 2016). 

 

The strong association between extensive Lewy pathology and dementia was 

challenged by some observations. Various large samples found that between 15.2% 

and 44.7% of 181 cognitively healthy PD cases had severe, neocortical-type 

pathology (Compta et al., 2011; Horvath et al., 2013; Irwin et al., 2012; Kempster et 

al., 2010). One study described 17 PD cases with no dementia despite limbic and/or 

neocortical pathology, and concluded that no clear threshold of Lewy body burden 

can distinguish PD cases with and without dementia (Colosimo et al., 2003). 

 

The opposite phenomenon, dementia cases with modest Lewy pathology, was also 

reported, albeit rarely. One study described three PD cases with dementia despite no 

Lewy bodies outside of the brainstem, and only absent or mild Alzheimer or 

cerebrovascular pathology. In one of the cases, the dementia may have been due to a 

vitamin B12 deficiency (Libow et al., 2009), but insufficient detail is provided in the 

report to explain the other two; partly as a result of this, the report was deemed to 

have a high risk of bias. However, studies with low risk of bias sporadically found 

other dementia cases with brainstem-type pathology. These accounted for 14.7% of 

one large (n = 109) dementia group (Horvath et al., 2013); smaller studies reported 

the figure as 12.5% (Harding & Halliday, 2001) and 3.8% (Compta et al., 2011). In all 

other studies that reported Braak-PD or McKeith stage, no such cases were found. 

 

3.3.4 Coexistent Alzheimer pathology 
 

Coexistent tau and amyloid-β pathologies of varying severity were common in PD 

cases. Tau pathology was universally scored with Braak-tau staging. A third of cases 

with dementia had moderate or severe tau pathology (Figure 3-3). There was more 

heterogeneity in the methods used to quantify amyloid-β lesions. Most studies used 

CERAD criteria, and therefore considered neuritic plaque burden only. Moderate to 

severe amyloid-β pathology affected just over half of PD cases with dementia (Figure 

3-4). Thus, amyloid-β pathology was typically more prominent than tau pathology. 
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Figure 3-3. Severity of tau pathology in PD cases with dementia. 

The severity of tau pathology was universally scored with Braak-tau staging. a Data 
were imputed for two or more categories. b There was potential overlap between these 
samples. PD = Parkinson’s disease. 

 

Figure 3-4. Severity of amyloid-β pathology in PD cases with dementia. 

Amyloid-β scored by CERAD criteria, except for Horvath et al. (Thal phases), and Braak 
et al. (semiquantitative scoring ranging from mild to severe). For Thal phases, phase 1 
was defined as mild, phases 2-3 as moderate, and phases 4-5 as severe. a Data were 
imputed for two or more categories. b There was potential overlap between these 
samples. CERAD = Consortium to Establish a Registry for Alzheimer’s Disease, PD = 
Parkinson’s disease. 
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There was significant heterogeneity in the criteria used to diagnose comorbid AD. 

Many studies used Khachaturian or CERAD criteria, which rely on neuritic plaque 

pathology only. Partially as a result of the use of different criteria, the percentage of 

PD cases diagnosed with comorbid AD varied markedly. The four largest studies that 

defined AD as intermediate or high probability by NIA criteria – thereby accounting 

for tangles as well as plaques – were reasonably consistent: comorbid AD was 

diagnosed in 19.3% (Braak et al., 2005), 20.0% (Horvath et al., 2013), 28.6% (Irwin 

et al., 2012), and 31.5% (Jellinger, Seppi, Wenning, & Poewe, 2002) of all PD cases. 

When only PD cases with dementia were considered, there was much more 

variability, with one large study (Jellinger et al., 2002) finding considerably more 

cases of comorbid AD than most other studies (Figure 3-5). 

 

 

 

Figure 3-5. Likelihood of AD in PD cases with dementia (NIA-Reagan). 

The NIA-Reagan criteria define the likelihood that dementia is due to Alzheimer 
pathology using an algorithm that combines CERAD scores with Braak-tau stages, 
therefore considering both plaque and tangle pathology. AD = Alzheimer’s disease, 
CERAD = Consortium to Establish a Registry for Alzheimer’s Disease, NIA = National 
Institute on Aging, PD = Parkinson’s disease. 
 

 

 

Early studies linked dementia in PD to dysfunction of the cholinergic system resulting 

from degeneration of basal forebrain neurons (Gaspar & Gray, 1984; E. K. Perry et 

al., 1985; Whitehouse, Hedreen, White, & Price, 1983), which is also a prominent 

feature of AD. Comorbid AD was associated with greater cortical and amygdala 

atrophy in PD cases with dementia, but the striatum was severely atrophic regardless 

of AD comorbidity (de la Monte, Wells, Hedley-Whyte, & Growdon, 1989). 
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Tau and amyloid-β pathologies in PD cases with dementia were typically moderate to 

severe only in the entorhinal cortex, and mild in the hippocampus, according to two 

descriptive studies. The neocortex was generally unaffected by tau and variably 

affected by amyloid-β (Braak & Braak, 1990; de Vos et al., 1995). The prefrontal 

cortex was more affected by tau pathology than the temporal cortex in PDD cases – a 

rare pattern in AD. The occipital and cingulate cortices were rarely affected in these 

cases (Vermersch, Delacourte, Javoy-Agid, Hauw, & Agid, 1993). 

 

Two reports based on the same samples described considerably more advanced 

Alzheimer pathology in PD cases with severe dementia, and concluded from this that 

dementia in PD was due to comorbid AD (Bancher, Braak, Fischer, & Jellinger, 1993; 

Jellinger, Braak, Braak, & Fischer, 1991). Later studies from the same research group 

supported this (Jellinger & Attems, 2008; Jellinger et al., 2002). Alzheimer pathology 

was substantially higher in these studies than in other series. 

 

Amyloid-β pathology in the striatum had value for differentiating PDD and DLB. In 

one study, all of 17 DLB cases had moderate to severe striatal amyloid-β, compared 

to only 17.6% of 17 PDD. This was a statistically significant difference (Jellinger & 

Attems, 2006). A study excluding cases with substantial neurofibrillary pathology 

similarly found higher striatal amyloid-β in DLB, which correlated with dementia 

severity, and had 100% sensitivity and 66.7% specificity for differentiating the 10 

DLB cases from the 12 PDD cases (Halliday et al., 2011). In another study, 92.9% of 

14 DLB cases had dense-core plaques in the striatum, which were entirely absent in 

41 PDD cases. The higher frequency of severe striatal amyloid-β in DLB was not 

significant in this analysis (Kalaitzakis et al., 2011). 

 

Claustrum amyloid-β was comparable between PDD and DLB, but exceeded levels in 

PD without dementia, while tau was negligible in all three groups (Kalaitzakis et al., 

2009). Midbrain and cerebellar amyloid-β was higher in DLB than PDD in one study 

(Fujishiro et al., 2010), but not in another, possibly because the latter study involved 

PDD cases that were approximately seven years younger on average, and therefore 

likely to have less advanced amyloid-β pathology than the other group (Sierra et al., 

2016). In both of these studies, subtentorial tau was comparable in PD (regardless of 

dementia) and DLB. Finally, in a sample of cases with comorbid Lewy and Alzheimer 
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pathologies, those clinically diagnosed with DLB had greater global amyloid-β 

(significant in the temporal and cingulate cortices) and tau (significant in the frontal 

and cingulate cortices) than those with PDD. Global amyloid-β load was comparable 

for DLB and AD clinical groups (L. Walker et al., 2015). 

 

3.3.5 Coexistent TDP-43 and cerebrovascular pathology 
 

Only one study focused on TDP-43 pathology. Hippocampal and entorhinal sections 

were positive for TDP-43 in 3.0% of healthy controls, 7.2% of PD cases without 

dementia, 19.0% of PDD, 31.3% of DLB plus AD, and none of the DLB cases 

without comorbid AD. Statistical differences were found only when a dementia group 

was compared to a non-dementia group, and when a disease group was compared to 

controls (Nakashima-Yasuda et al., 2007). The risk of bias assessment suggested that 

this study might have artificially selected cases with more advanced AD pathology, 

but the clear demarcation of groups with and without pathological AD means that this 

procedure did not affect the results, and they can be accepted as valid. 

 

Two studies examined argyrophilic grain disease, which was found in approximately 

5% of total PD cases (n = 88 and n = 140), with no relationship to dementia (Braak et 

al., 2005; Irwin et al., 2012). No studies reported results for other forms of tau 

pathology, nor for any of the other FTD pathologies (i.e., FTD-specific tau inclusions, 

ubiquitin, or FET proteins). 

 

Cerebrovascular pathology affected 16.7-28.6% of PD cases without dementia, and 

15.6-44.4% of those with dementia (Aarsland, Perry, Brown, Larsen, & Ballard, 

2005; Horvath et al., 2013; Irwin et al., 2012; Ruffmann et al., 2016). The percentage 

was sometimes higher for dementia cases, but no study detected a statistically 

significant difference. To assess if this observation was due to limited sample sizes, 

the four samples were combined and tested together with a chi-square test. The total 

sample size was 421; 274 had dementia, of whom 59 (21.5%) had cerebrovascular 

disease and 215 (78.5%) did not. Of the 147 without dementia, 31 (21.1%) had 

cerebrovascular disease and 116 did not (78.9%). The chi-square test confirmed that 
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cerebrovascular pathology was not significantly more common in PD cases with 

dementia (χ2 = 0.01, p = 0.92). 

 

Unlike other cerebrovascular pathologies (infarcts, haemorrhages, etc.), cerebral 

amyloid angiopathy was significantly more common in PD cases with dementia 

(Compta et al., 2011; Irwin et al., 2012). The most comprehensive study of amyloid 

angiopathy found that it affected various types of blood vessel in PD cases with 

dementia, including parenchymal capillaries as well as meningeal and cortical vessels. 

Capillary amyloid angiopathy was severe in more than half of the dementia cases; 

generalised amyloid angiopathy, affecting meningeal and cortical vessels, was severe 

in a quarter, and moderate in around a third. In contrast, three-quarters of PD cases 

without dementia were completely unaffected. Consistently significant differences 

between the two groups were observed (Jellinger & Attems, 2008). 

 

3.3.6 Relative contribution of α-synuclein, amyloid-β, and tau 
 

Multiple indices of α-synuclein, amyloid-β, and (less consistently) tau were 

significant predictors of dementia in PD based on univariable regressions (Horvath et 

al., 2013; Irwin et al., 2012; Ruffmann et al., 2016). One study of 22 PD cases found 

that most of the variance in cognitive scores was accounted for by Lewy pathology in 

the entorhinal, anterior cingulate, and temporal cortices, with smaller contributions of 

entorhinal and temporal amyloid-β (Kövari et al., 2003). The predictive values of 

amyloid-β and tau were typically muted in multivariable regressions (Table 3-3). A 

measure of tau pathology remained independently associated in one analysis (Horvath 

et al., 2013), but Lewy pathology was consistently the best predictor. The predictive 

values of amyloid-β and tau were lost from another model when cortical Lewy bodies 

were added; strong collinearity of these pathologies precluded further multivariable 

analysis in this study (Compta et al., 2011). 
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Table 3-3. Predictors of dementia in PD by multivariable regression. 

Author (year); method Variable OR (95% CI) p-value 

Horvath et al. (2013) Lewy body score >6a 4.2 (1.7-10.6) 0.002 

Multivariable logistic regression Braak-tau stage 1.6 (1.1-2.3) 0.009 

Irwin et al. (2012) Total cortical Lewy score 4.1 (1.9-8.8) <0.001 

Stepwise-selection model  APOE ε4 genotype 4.2 (1.3-13.8) 0.018 

Ruffmann et al. (2016) Mean cortical Lewy score 4.2 (2.2-9.0) <0.001 

Multivariable logistic regression    
 

a By 1996 McKeith criteria (McKeith et al., 1996). 
CI = confidence interval, OR = odds ratio. 
 

 

 

One study of 104 cases used receiver operating characteristic curves to predict 

dementia in PD, and found that mean cortical Lewy body score alone was the best 

predictor (area under the curve [95% confidence interval, CI]: 0.80, [0.72, 0.88]) 

(Ruffmann et al., 2016). However, another study of 56 cases indicated that a 

combination of α-synuclein, amyloid-β, and tau was superior to any single measure 

(0.95, [0.88, 1.00]) (Compta et al., 2011). 

 

A multivariable regression with dementia severity as a continuous dependent variable 

indicated that anterior cingulate and entorhinal Lewy body densities jointly accounted 

for approximately 60% of the variance in cognitive scores; values for tau and 

amyloid-β were non-significant in this model (Kövari et al., 2003). Another study 

using linear regression again found the best results for cingulate Lewy pathology; 

additionally, neurofibrillary tangle load in the temporal lobe was a marginally 

significant predictor (p = 0.047). When cases with severe amyloid-β load were 

excluded, frontal α-synuclein was the sole significant predictor (Mattila et al., 2000). 

 

Only one study (n = 22) found that cognitive scores could not be predicted by any 

measure of α-synuclein, amyloid-β, or tau, though Lewy body score could predict the 

annual rate of cognitive decline (Aarsland, Perry, et al., 2005). The best predictor of 

annual decline was a summated score incorporating both Lewy and Alzheimer 
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pathologies of the prefrontal cortex, according to a later study that used multiple 

backward regressions (Howlett et al., 2015). 

 

None of the studies that assessed the predictive value of cerebrovascular pathology 

for dementia found a significant association, including for cerebral amyloid 

angiopathy, in either univariable or multivariable analyses (Compta et al., 2011; 

Horvath et al., 2013; Irwin et al., 2012; Ruffmann et al., 2016). 

 

3.3.7 The motor-cognitive interval and mortality 
 

The latency from motor to cognitive onset in PD was studied in four survival analyses 

(Ballard et al., 2006; Kotzbauer et al., 2012; Ruffmann et al., 2016; Sabbagh et al., 

2009) with a cumulative total of 166 PD cases with dementia; three of these studies 

(Ballard et al., 2006; Ruffmann et al., 2016; Sabbagh et al., 2009) associated higher 

amyloid-β with a shorter motor-cognitive interval. Moderate to severe plaque 

pathology reduced this interval by 4.7 years on average (Sabbagh et al., 2009). 

Additionally, a multivariable regression model established cortical amyloid-β as the 

only significant predictor of a shorter motor-cognitive interval (Ruffmann et al., 

2016). No associations of α-synuclein or tau were found in any of these studies. 

 

In another study (n = 28), a longer time to dementia correlated moderately with 

reduced plaque pathology, and more weakly with reduced α-synuclein, but not with 

Braak-tau stage. A significant correlation (r = –0.37, p = 0.04) was also observed with 

measures of choline acetyltransferase in the temporal cortex, indicating that 

cholinergic activity in this area is reduced in cases with a longer duration of motor 

decline preceding cognitive onset (Ballard et al., 2006). 

 

Other studies explored the association of pathology with mortality. Kaplan-Meier 

survival curves in one study (n = 32) linked increased amyloid-β pathology to a 

higher mortality rate (Kotzbauer et al., 2012). A larger study (n = 200) additionally 

found a weaker association of tau to mortality; comorbid AD decreased life 

expectancy by a mean of 4.5 years. A multivariable regression found that dementia, 
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tau pathology, and particularly neuritic plaque pathology all predicted lower survival 

(Jellinger et al., 2002). 

 

3.3.8 Intercorrelations between different pathologies 
 

Moderate positive correlations were reported between Braak-tau stage and cortical 

and striatal amyloid-β load (Compta et al., 2011; Halliday et al., 2011) and Thal phase 

(Horvath et al., 2013). Alzheimer lesions also correlated positively with α-synuclein 

burden. Braak-tau stage correlated weakly with Braak-PD stage, global Lewy body 

score, and global, cortical, and striatal Lewy neurite score (Compta et al., 2011; 

Halliday et al., 2011; Horvath et al., 2013). Generally stronger correlations were 

found between α-synuclein and amyloid-β. Global Lewy body score correlated better 

with Thal phases than with Braak-tau stages, though the coefficient was still modest 

(Horvath et al., 2013). Moderate correlations were found between multiple indices of 

α-synuclein (Braak-PD stage, cortical Lewy body score, and striatal and hippocampal 

Lewy neurites) and cortical and striatal amyloid-β (Compta et al., 2011; Halliday et 

al., 2011). Another study demonstrated moderate positive correlations between striatal 

α-synuclein and cortical and hippocampal plaques, but not with hippocampal tangles 

(Tsuboi et al., 2007). 

 

Cerebral amyloid angiopathy correlated moderately with tau pathology, and more 

modestly with cortical amyloid-β load (Compta et al., 2011). TDP-43 pathology 

correlated strongly with Braak-tau stage (Nakashima-Yasuda et al., 2007), but 

unfortunately, the potential association of TDP-43 with amyloid-β was not analysed. 

 

3.3.9 Genetic results 
 

The genetics underlying dementia in PD were not the focus of this review, but data 

pertaining to genetic differences were recorded where present. A higher percentage of 

APOE ε4 carriers were consistently found in PD cases with dementia compared to 

those without. In two studies, this was not statistically significant (Compta et al., 

2011; Ruffmann et al., 2016), but another study with fewer ε4 carriers in the cases 

without dementia did detect a significant difference (Irwin et al., 2012). A stepwise 
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regression model in this study also found that the ε4 allele was strongly related to 

dementia in PD, with an odds ratio of 4.2, comparable to the odds ratio for total 

cortical Lewy body score (Table 3-3). Another study based on cases with mixed 

Alzheimer and Lewy pathologies found that those clinically diagnosed with PDD, 

DLB, and AD could not be differentiated by ε4 frequency (L. Walker et al., 2015). 

 

The APOE ε4 allele was linked to some pathology scores. One study found that it was 

associated with higher parietal, temporal, and entorhinal amyloid-β, and higher total, 

entorhinal, and occipital amyloid angiopathy. However, there was no relationship of 

ε4 to cortical Lewy pathology or to tau (Compta et al., 2011). In contrast, other 

studies found that ε4 was associated with increased global Lewy pathology in the 

cortex, which was significant in the precentral, angular, and temporal gyri (Mattila et 

al., 2000). In a combined PDD/DLB sample, ε4 was again associated with higher 

global cortical α-synuclein, and linear regressions showed that it predicted higher 

Lewy body density in the frontal, parietal, and temporal cortices (Ruffmann et al., 

2016). In the only other study that examined amyloid angiopathy and APOE, no ε4 

carriers were identified in the PDD group. In the limited number of cases of DLB and 

PD without dementia, no association of ε4 to generalised or capillary amyloid 

angiopathy scores was observed (Jellinger & Attems, 2008). 

 

The only other genetic results concerned MAPT. No association of MAPT status to 

dementia was found in any study that carried out the analysis. Additionally, linear 

regression found that no MAPT genotype was associated with any clinical or 

pathological outcome (Compta et al., 2011; Irwin et al., 2012; Ruffmann et al., 2016). 

 

3.4 Discussion 
 

The results of the systematic review show that limbic and neocortical Lewy pathology 

is present in virtually all cases of PD with dementia. Coexistent pathologies that 

contribute to dementia, most notably Alzheimer-related changes, are common. Of the 

studies that defined pathological AD by NIA-Reagan criteria, between a fifth and a 

third of all PD cases fulfilled that diagnosis (Braak et al., 2005; Horvath et al., 2013; 

Irwin et al., 2012; Jellinger et al., 2002). In the PD cases with dementia, tau pathology 
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was moderate or severe in around a third, and amyloid-β pathology was moderate or 

severe in just over half. Thus, even taking into account the differences across studies, 

both tau and amyloid-β pathologies are common in PD cases at autopsy, particularly 

in those with dementia. 

 

The relative contribution of Alzheimer versus Lewy pathologies was more difficult to 

define, due to variation between studies. Studies from one research group found 

advanced Alzheimer pathology in most cases of PD with dementia (Bancher et al., 

1993; Jellinger & Attems, 2008; Jellinger et al., 1991; Jellinger et al., 2002). In other 

studies, Alzheimer lesions were universally less frequent and less severe. These 

differences were not explicable by systemic differences in dementia severity, age, 

disease duration, or case selection procedures. While global tau independently 

predicted dementia in PD in one study (Horvath et al., 2013), two other studies found 

no such association (Irwin et al., 2012; Ruffmann et al., 2016). One possible 

explanation for this was the lower α-synuclein burden in the first study compared to 

the other two, which might have allowed the independent contribution of tau to 

emerge. Another factor may be differences in the distribution of tau pathology, as 

involvement of some areas correlated more closely and consistently with dementia 

than others. For example, neurofibrillary tangles in the temporal lobe showed a 

particularly strong linear association with dementia severity (Mattila et al., 2000). 

 

Combined, these results indicate that tau contributes to dementia in a subset of PD 

cases, particularly when α-synuclein levels are relatively low or tau levels relatively 

high. Amyloid-β, in contrast, was not independently related to dementia in any study. 

Thus, tau has a closer relationship with cognitive status in PD than amyloid-β, which 

is consistent with observations in AD (P. T. Nelson et al., 2012). These findings have 

implications for clinical trials of novel disease-modifying therapies in PD that target 

α-synuclein. Specifically, testing for tau (e.g. using CSF assays) will be beneficial for 

studies that include cognitive function as a key outcome, either as part of the selection 

criteria or as a stratification factor for sub-group analysis. 

 

While amyloid-β pathology was not associated with the presence of dementia in PD, 

moderate to severe plaque deposition was strongly linked to a more rapid cognitive 

decline (Ballard et al., 2006; Halliday et al., 2011; Ruffmann et al., 2016; Sabbagh et 
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al., 2009), and to earlier mortality (Jellinger et al., 2002; Kotzbauer et al., 2012). 

Longitudinal biomarker studies measuring amyloid-β in vivo support its association 

with the rate of cognitive decline in PD, showing that higher amyloid-β predicts a 

greater decrease in cognitive scores over time (Gomperts et al., 2013; Siderowf et al., 

2010). Therefore, testing for amyloid-β as well as tau is also likely to become relevant 

in longitudinal studies of disease-modifying treatments for PD. Analyses of the rate of 

cognitive decline should include a measure of amyloid-β as a covariate. 

 

The consistent association of amyloid-β with the motor-cognitive interval in both 

autopsy and biomarker studies indicates that it is a key factor distinguishing DLB 

from PDD. The most striking differences between these two groups were found in the 

striatum. Moderate to severe striatal amyloid-β had good specificity (66.7-82.4%) for 

DLB versus PDD (Halliday et al., 2011; Jellinger & Attems, 2006), and dense-core 

striatal plaques were present only in DLB (Kalaitzakis et al., 2011). While 

neuroimaging findings are similar (Edison et al., 2008), it is not clear how early these 

differences emerge; further studies of this would help to refine the diagnostic criteria 

for prodromal PD. These criteria rely on features such as RBD, hyposmia, and 

autonomic dysfunction (Berg et al., 2015), all of which also frequently precede DLB, 

such that the criteria often capture cases who progress to DLB rather than PD 

(Fereshtehnejad et al., 2017). Amyloid-β biomarkers, which are already incorporated 

into criteria for prodromal and preclinical AD (Dubois et al., 2014; Sperling et al., 

2011), may also have a place in the prediction of a motor-dominant PD phenotype 

versus a cognitive-dominant DLB phenotype in at-risk individuals. 

 

As expected, the relationship between α-synuclein and dementia was strong, but again 

there was some variation between studies. Global cortical α-synuclein was generally 

the best predictor of dementia (Horvath et al., 2013; Irwin et al., 2012; Kövari et al., 

2003; Mattila et al., 2000; Ruffmann et al., 2016), though cingulate or frontal scores 

had the best correlations in one study (Mattila et al., 2000), and the addition of tau and 

amyloid-β measures improved predictive accuracy for dementia in another (Compta et 

al., 2011). Neocortical, limbic, and paralimbic α-synuclein was almost universally 

more severe in dementia cases, and this had excellent sensitivity and specificity for 

distinguishing these cases from cognitively healthy PD cases (Harding & Halliday, 

2001; Hurtig et al., 2000). While the findings strongly support Braak theory (Braak et 
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al., 2003) and the role of extensive α-synuclein as the primary substrate of dementia 

in PD, some exceptions to the rule were observed. 

 

Firstly, significant α-synuclein deposition in limbic or neocortical areas was often 

found in PD cases who did not have a history of cognitive impairment. Such cases 

accounted for around 15-45% of the cognitively healthy PD group in the largest 

studies (Compta et al., 2011; Horvath et al., 2013; Irwin et al., 2012; Kempster et al., 

2010). Other large autopsy studies have also reported relatively severe α-synuclein, as 

well as tau and amyloid-β pathologies, in many elderly cases with neither motor nor 

cognitive impairment in life (Parkkinen, Kauppinen, Pirttilä, Autere, & Alafuzoff, 

2005; Parkkinen et al., 2008; Schneider et al., 2009). Higher cognitive reserve may 

explain the variance between pathological and clinical severity in AD (W. Xu, Yu, 

Tan, & Tan, 2015), and this may also apply to PD (Hindle, Martyr, & Clare, 2014). 

Unfortunately, too few studies reported proxy measures of cognitive reserve, such as 

educational or occupational attainment, to allow a test of this as part of the systematic 

review. Neural plasticity, genetics, and environmental exposures could also explain 

the observations; all of these are worthy of further study in the context of PD. 

 

Secondly, a rare but intriguing finding was the occurrence of dementia cases with 

relatively modest, brainstem-type Lewy pathology. The cognitive impairment in these 

cases is presumably due to a pathology distinct from the primary condition. Comorbid 

AD probably accounts for the majority of these, but some individual cases may have 

had other problems, including vascular dementia or FTD. Alternatively, cholinergic 

dysfunction originating in the basal forebrain, which was related to cognitive function 

in several studies (Gaspar & Gray, 1984; E. K. Perry et al., 1985; Whitehouse et al., 

1983), might be sufficient to independently cause dementia in a small number of 

cases. A focus on these apparently anomalous cases in future research would be 

useful for further explaining the pathological variation that underlies dementia in PD. 

 

Several other pathologies were assessed for a link with dementia in PD. TDP-43 did 

not contribute to dementia in the only study that assessed this. TDP-43 was correlated 

strongly with tau pathology (Nakashima-Yasuda et al., 2007), but the association with 

amyloid-β was not evaluated. Animal models indicate that amyloid-β induces TDP-43 

misfolding and aggregation (Herman, Khandelwal, Stanczyk, Rebeck, & Moussa, 



   3-80 

2011); the potential for this in PD could be examined in future research. Similarly, 

argyrophilic grain disease was rare and not associated with dementia in PD (Braak et 

al., 2005; Irwin et al., 2012). It is possible that this pathology is more common than 

indicated by these two studies, as it is often overlooked at autopsy (Das & Ishaque, 

2018), but the current results suggest that argyrophilic grain disease is an incidental, 

age-related finding that does not contribute to the incidence of dementia in PD. 

 

Cerebral amyloid angiopathy was significantly more common in dementia cases, and 

correlated with coexistent Alzheimer pathology (Compta et al., 2011; Irwin et al., 

2012; Jellinger & Attems, 2008). Other cerebrovascular pathologies were not more 

common in dementia (Aarsland, Perry, et al., 2005; Horvath et al., 2013; Irwin et al., 

2012; Ruffmann et al., 2016), even when the studies were combined. This finding 

seemingly contrasts with some prospective studies, which have reported a correlation 

between increasing vascular risk factors and cardiovascular disease, and poorer 

cognitive scores in PD (Malek et al., 2016), particularly in the domains of executive 

function and attention (Pilotto et al., 2016). Differences in disease duration and 

overall pathological burden may explain the discrepancy. Participants in the 

prospective studies were one to five years into the disease on average. In contrast, the 

autopsy cases represented end-stage PD, when the extensive burden of Lewy and 

Alzheimer pathologies probably masked any independent role of vascular factors. 

 

Finally, previous cellular and animal studies have indicated that α-synuclein, tau, and 

amyloid-β may promote one another’s aggregation to accelerate neurodegeneration 

and dementia (Badiola et al., 2011; Clinton et al., 2010; Giasson et al., 2003; Mandal 

et al., 2006; Tsigelny et al., 2008). Multiple studies in the systematic review found 

correlations that support this theory in humans with PD (Apaydin et al., 2002; Compta 

et al., 2011; Halliday et al., 2011; Horvath et al., 2013; Mattila et al., 2000). An 

exacerbating role of amyloid-β on α-synuclein or tau may be the mechanism by which 

this pathology accelerates the rate of cognitive decline in PD. Additionally, the 

intercorrelations between these pathologies suggests that disease-modifying therapies 

targeted against one may actually inhibit the proliferation of another, increasing the 

overall benefit. This effect has already been demonstrated in a murine model, in 

which transgenic mice overexpressing α-synuclein were protected from cognitive and 
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motor impairment after treatment with an antibody for tau (Gerson et al., 2018). How 

this would translate to clinical research involving humans remains to be evaluated. 

 

3.4.1 Role of APOE and MAPT genotypes 
 

Genetic analysis of autopsy cases focused exclusively on two genes: APOE and 

MAPT. APOE ε4, the strongest genetic risk factor for AD (Pimenova, Raj, & Goate, 

2018), was consistently overrepresented in PD cases with dementia compared to those 

without (Compta et al., 2011; Ruffmann et al., 2016; L. Walker et al., 2015), though 

the differences were only statistically significant in one study (Irwin et al., 2012). A 

multivariable regression in this last study additionally found that ε4 had strong 

predictive value for dementia, with an odds ratio similar to that reported in AD 

samples (Andreasson et al., 2014). Studies involving living subjects have produced 

similarly inconsistent results for APOE ε4, likely a product of small sample sizes and 

heterogeneous cognitive measures. According to a recent review, most evidence 

supports a link between ε4 status and cognitive decline in PD (Fagan & Pihlstrøm, 

2017), with a faster progression to dementia in ε4 carriers compared to non-carriers 

(Morley et al., 2012; Schrag, Siddiqui, Anastasiou, Weintraub, & Schott, 2017). 

 

The link between APOE ε4 and pathology scores could explain the mechanisms by 

which the allele influences cognition in PD. No study reported an association of ε4 

with tau. However, several studies found that ε4 exacerbated amyloid-β and (less 

consistently) Lewy pathology, particularly in neocortical areas (Compta et al., 2011; 

Irwin et al., 2012; Mattila et al., 2000; Ruffmann et al., 2016). Previous research has 

indicated that the exacerbatory effects of ε4 on amyloid-β pathology may promote the 

development of comorbid AD in Lewy body diseases. However, separate mechanisms 

that are unrelated to amyloid-β (e.g. disruption of neuroplasticity or mitochondrial 

function) may also contribute to the development of pathologically "pure" PDD or 

DLB (Tsuang et al., 2013). Recent research indicates that ε4 may have direct 

pathogenic effects on α-synuclein (Emamzadeh, Aojula, McHugh, & Allsop, 2016), 

which could also explain the allele's association with pure PDD and DLB. Together, 

these findings show that ε4 confers a significantly worse prognosis in PD by 
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increasing the probability of dementia, either due to comorbid AD or due to advanced 

Lewy pathology. 

 

The included studies agreed that MAPT status was unrelated to dementia and to any 

pathology scores (Compta et al., 2011; Irwin et al., 2012; Ruffmann et al., 2016). This 

is consistent with some cohort studies (Mata et al., 2014; Morley et al., 2012), but 

contrasts with others that reported an association of the H1 haplotype with cognition 

(Nombela et al., 2014; Williams-Gray, Evans, et al., 2009). Again, the discrepancy 

may be partially explicable by limited sample sizes leading to underpowered analysis, 

or by heterogeneity in cognitive measurement methods and sample characteristics. It 

has been suggested that MAPT H1 is related to cognitive decline in early PD, but that 

this association is muted in later disease (Collins & Williams-Gray, 2016; Morley et 

al., 2012). Because the studies included in this review involved autopsy subjects, they 

naturally tended to involve older cases with advanced PD: in the three studies that 

reported results for MAPT, mean disease durations were in the 13-15 year range 

(Compta et al., 2011; Irwin et al., 2012; Ruffmann et al., 2016). At present, this 

explanation remains speculative; further research is required to establish whether 

different genetic mechanisms mediate early versus late cognitive decline in PD. 

 

The association of APOE and MAPT with cognition in PD will be considered in 

further detail in Chapter 7, in which a novel analysis of these genes in a large PD 

cohort is presented. This will clarify some of the inconsistencies that have been 

observed in previous research, including the autopsy studies in this review. 

 

3.4.2 Limitations 
 

Strengths of the review were the comprehensiveness of the search strategy, the large 

sample size of over 2000 pathologically-confirmed PD cases, and the low risk of bias 

in almost all of the included studies. However, various methodological limitations 

were found in the studies assessed. Ascertainment of dementia was retrospective in 32 

reports (72.7%), and therefore derived from non-standardised medical notes that may 

have been incomplete or superficial. In particular, distinguishing PDD from DLB 

based purely on retrospective review may be difficult (Lippa et al., 2007), though 
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some studies controlled for this by requiring a longer motor-cognitive interval in 

order to exclude ambiguous cases. Secondly, several studies used a short screening 

test to assess cognition; many of these have limited sensitivity and specificity for 

dementia in non-AD samples, including PD (Zadikoff et al., 2008). Thirdly, many of 

the included studies had a small sample size, and none reported power calculations. 

Finally, many studies did not report relevant information pertaining to the source of 

autopsy cases or the procedures followed during the pathological assessment. Ideally, 

two neuropathologists should conduct each assessment, in order to control for the 

subjectivity that is inherent in semiquantitative rating scales. Pathologists should also 

be blinded to clinical data, in order to minimise the risk of observer-expectancy bias. 

 

The review itself may have been limited by aspects of the electronic search strategy. 

There was some potential for publication bias: eight possibly relevant unpublished 

articles could not be retrieved online. Furthermore, the exclusion of articles in 

languages other than English may have led to the omission of some relevant detail. 

 

3.4.3 Conclusions 
 

Several disease processes, particularly Alzheimer-related, often coexist with PD, and 

these are frequently severe enough to affect cognition, thereby adding to the effects of 

Lewy pathology alone. Tau pathology contributes to dementia in a subset of cases, 

and amyloid-β confers a worse prognosis, characterised by an accelerated cognitive 

decline and earlier mortality. A reciprocal interaction between α-synuclein, tau, and 

amyloid-β means that they promote one another’s aggregation, leading to a more 

aggressive disease course. Accordingly, both tau and amyloid-β should be assessed in 

clinical trials of new disease-modifying therapies targeting α-synuclein, particularly 

when cognition is a study outcome. This will improve the chance of showing efficacy, 

and reduce the risk of a false negative finding caused by coexistent pathologies.  
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4 Clinical diagnostic criteria for dementia 
disorders 

 

Dementia disorders are distinguishable at autopsy by pathological differences: either 

aberrant protein aggregations in neurodegenerative diseases, or cerebrovascular 

damage in vascular dementia. The pathological variation means that each disorder is 

associated with a characteristic clinical profile in vivo. Features of these profiles 

(cognitive, behavioural, neurological, etc.) are described in clinical diagnostic criteria. 

These guidelines form the framework for diagnosis, especially in research settings 

where it is important for study samples to be clearly and consistently defined. In most 

criteria, particular combinations of core and supportive features are used to specify 

the level of diagnostic confidence. This chapter describes and critically reviews the 

current diagnostic criteria for the main dementia disorders (AD, PDD, DLB, FTD, 

and VCD). Where available, research criteria for the predementia stages of each 

disorder are also considered. 

 

In most sets of diagnostic criteria, dementia is defined consistently with the DSM-5: a 

decline in cognition from a previous level, evidenced by concern on the part of the 

patient, a knowledgeable informant, and/or a clinician, and supported by objective 

neuropsychological testing. The decline should affect a minimum of two cognitive 

domains. The symptoms should not occur purely in the context of drug intoxication or 

delirium, and should not be attributable to another disorder, such as major depression 

or encephalitis. The decline should be of sufficient magnitude to interfere with social 

and occupational function. Importantly, the functional impairment must result from 

cognitive deficits, rather than from motor or sensory deficits (e.g. parkinsonism or 

post-stroke paralysis). MCI is distinguished from dementia by a more modest decline, 

sometimes affecting only one domain, which is insufficient to significantly interfere 

with function (American Psychiatric Association, 2013). In this chapter, it will be 

noted where the diagnostic criteria deviate from the DSM definition. 
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4.1 Clinical diagnostic criteria for AD dementia 
 

Two major sets of AD diagnostic criteria are currently in use. The first was published 

by the International Working Group (IWG) for New Research Criteria for AD 

(Dubois et al., 2007), and subsequently updated as the IWG-2 criteria (Dubois et al., 

2014). The other criteria were published by the NIA-AA. Separate sets of clinical 

NIA-AA criteria were published for AD dementia (McKhann et al., 2011), AD-MCI 

(Albert et al., 2011), and preclinical AD (Sperling et al., 2011); these were recently 

collated into an overarching research framework (Jack et al., 2018). 

 

Both the IWG and the NIA-AA dementia criteria define typical AD by a gradual and 

relatively long-term decline in episodic memory (Dubois et al., 2007; McKhann et al., 

2011). The IWG criteria also specify that the memory deficit does not benefit from 

cueing (Dubois et al., 2007). This is a useful addition, as a lack of a cueing benefit 

points to a genuine encoding problem reflecting hippocampal dysfunction, as opposed 

to an information retrieval problem mediated by frontostriatal circuits. This feature 

has value for distinguishing AD from other dementias, such as DLB and PDD, in 

which a retrieval deficit is prominent (Economou, Routsis, & Papageorgiou, 2016). 

 

The IWG-2 criteria distinguish three atypical AD variants, defined by focal cortical 

damage and a relatively spared hippocampus, resulting in a primarily non-amnestic 

presentation. Posterior-variant AD is defined by occipitotemporal or bilateral parietal 

atrophy, leading to visuospatial deficits (e.g. object or face recognition). Frontal-

variant AD presents clinically as the behavioural variant of FTD, with marked frontal 

lobe atrophy leading to behavioural changes and a dysexecutive cognitive syndrome. 

Logopenic-variant AD also presents clinically as an FTD subtype, with a progressive 

language impairment that primarily affects word retrieval (Dubois et al., 2014). The 

anatomical substrate of logopenic AD is atrophy of the posterior temporal and inferior 

parietal lobes of the left hemisphere (Henry & Gorno-Tempini, 2010). The NIA-AA 

distinguish the same atypical variants, albeit with different terminology (visuospatial, 

executive, and language presentations) that reflects the primary neuropsychological 

deficit (McKhann et al., 2011). 
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The inclusion of atypical variants gives the current criteria greater validity than 

previous criteria, which required memory impairment (McKhann et al., 1984). This is 

a significant development, given that large clinicopathological studies have found that 

6-25% of autopsy-confirmed AD cases had a non-amnestic profile in vivo (Lopez et 

al., 2000; Murray et al., 2011). However, the description of atypical variants 

introduces potential for confusion with other dementias, particularly FTD. Most cases 

with a posterior or logopenic syndrome have AD at autopsy (Migliaccio et al., 2009), 

but the frontal syndrome is more often associated with pathological FTD (Mendez, 

Joshi, Tassniyom, Teng, & Shapira, 2013). Future criteria would benefit from more 

detailed guidelines for the differential diagnosis of atypical AD and FTD (especially 

behavioural-variant FTD). Altered food preferences and neuropsychiatric 

disturbances appear to have the most value for this purpose (Chare et al., 2014), but 

further studies are needed to more clearly delimit the atypical AD phenotypes. 

 

Various exclusionary items are already included in the diagnostic criteria to rule out 

other causes of dementia. By the IWG-2 criteria, core features of other dementias (e.g. 

early behavioural abnormalities or hallucinations) exclude an AD diagnosis (Dubois 

et al., 2014). These items reduce diagnostic confidence by the NIA-AA criteria, but 

do not rule out a diagnosis (McKhann et al., 2011). Rigorously applying these items 

results in high specificity against other dementias, but may lead to lower sensitivity. 

One clinicopathological study, for example, found prominent behavioural changes in 

many AD cases that often compromised diagnostic sensitivity (Harris et al., 2015). 

Moreover, hallucinations are not uncommon in early AD (Ruiz et al., 2018), though 

they are typically much less severe and less complex than in disorders such as PDD 

and DLB. Therefore, these exclusionary items may need to be applied stringently only 

when very high specificity is required. Again, further studies are needed to clarify 

how behavioural and neuropsychiatric symptoms may differ qualitatively as well as 

quantitatively in AD versus the other dementias. 

 

Finally, a very significant feature of current criteria is their incorporation of AD 

biomarkers into the diagnostic algorithm. In the NIA-AA and original IWG criteria, 

these are a) medial temporal lobe atrophy by MRI, b) reduced temporoparietal 

glucose metabolism by PET, c) a CSF signature defined by increased total and 

phosphorylated tau with reduced Aβ42, or d) the presence of an autosomal dominant 
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mutation with essentially full penetrance on the amyloid precursor protein (APP) or 

presenilin (PSEN1 or PSEN2) genes (Dubois et al., 2007; McKhann et al., 2011). 

 

The more recent IWG-2 criteria are stricter, specifying only three AD biomarkers: the 

AD CSF signature, a pathogenic mutation, or evidence of amyloid-β pathology using 

a PET scan with a validated radioligand (Dubois et al., 2014). These are more specific 

biomarkers than medial temporal lobe atrophy and reduced temporoparietal glucose 

metabolism, both of which may be observed in older individuals who have neither 

Alzheimer pathology nor dementia (Wirth et al., 2013). While each of the biomarkers 

are continuous measures, the NIA-AA research framework recommends applying 

standardised cutoffs (positive/negative) in clinical trials (Jack et al., 2018). However, 

cutoff values are not suggested. Identification and implementation of the values that 

best balance sensitivity and specificity should be considered a priority, as this would 

enable standardisation of research projects across varied settings and populations. 

 

4.1.1 AD-MCI and preclinical AD 
 

The current diagnostic criteria extend to the stages of AD that precede overt dementia, 

including the prodromal stage (encompassing MCI) and the presymptomatic or 

preclinical stage (Dubois et al., 2010). The NIA-AA has separate guidelines for AD-

MCI (Albert et al., 2011) and preclinical AD (Sperling et al., 2011). AD-MCI is 

defined by a lower cognitive performance than would be expected based on the 

person’s age, education, etc., preferably with documented evidence of a progressive 

decline, and typically affecting episodic memory. Functional independence must be 

preserved. High likelihood AD-MCI is defined by positive biomarkers for both 

neurodegeneration (e.g. decreased hippocampal volume or reduced temporoparietal 

glucose metabolism) and amyloid-β pathology. Intermediate likelihood AD-MCI is 

diagnosed if only one of these is positive. Caution is recommended in the presence of 

features such as hallucinations, parkinsonism, or high vascular risk, but these are not 

exclusionary (Albert et al., 2011). 

 

The NIA-AA definition of preclinical AD is characterised by the presence of AD 

biomarkers without clinical manifestation. This category was divided into three 
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stages. Stage 1 is defined by amyloid-β pathology by CSF or PET, stage 2 when there 

is also tau pathology and AD-type neurodegeneration, and stage 3 by additional subtle 

cognitive and/or behavioural changes that do not reach criteria for AD-MCI (Sperling 

et al., 2011). The last stage may include subjective cognitive decline reported by 

individuals who are within the normal range on neuropsychological tests (Jessen et 

al., 2014). The three stages follow a temporal sequence, consistent with the amyloid 

cascade hypothesis: thus, amyloid-β aggregation occurs first, and this is followed by 

tau, neurodegeneration, and dementia (Hardy & Higgins, 1992; Jack et al., 2010). 

This definition of preclinical AD is firmly grounded in current theory and practice, 

but there is still a significant need for its validation, given the controversy 

surrounding the hypothetical chronology of AD pathogenesis (Garrett & Valle, 2016). 

 

In characterising predementia AD, the IWG favour a more unified approach, whereby 

a single set of criteria describes the entire clinical and pathological continuum of 

symptomatic AD, regardless of severity. No cutoff is proposed to separate prodromal 

AD from AD dementia; both require one of the core clinical phenotypes with at least 

one positive biomarker (Dubois et al., 2007). Preclinical AD, as defined in the IWG-2 

criteria, encompasses asymptomatic at risk and presymptomatic AD. Patients are 

asymptomatic at risk if they have the AD CSF signature or a positive PET scan for 

amyloid-β, but do not meet criteria for one of the clinical AD phenotypes (Dubois et 

al., 2014). This is slightly more specific for AD than the NIA-AA stage 1 criteria, 

which do not require evidence of tau pathology in the CSF (Dubois et al., 2016). 

Individuals who are positive for a pathogenic APP, PSEN1, or PSEN2 mutation are 

classified as presymptomatic AD, reflecting the fact that these individuals will 

invariably develop clinical AD given sufficient survival time (Dubois et al., 2014). 

 

4.2 Clinical diagnostic criteria for Lewy body 
dementias 

 

As described in Chapter 2, PDD and DLB are Lewy-type α-synucleinopathies that are 

often indistinguishable at autopsy. There are separate diagnostic criteria for both, but 

the term “Lewy body dementias” may be used to capture both diseases if required 

(Lippa et al., 2007). 
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4.2.1 PDD and DLB 
 

The MDS diagnostic criteria for PDD define the two core features as a diagnosis of 

PD, and a dementia with insidious onset and gradual decline that develops within 

established PD (i.e. one year or more after motor onset). PDD may be distinguished 

from AD by greater executive and visuospatial impairment and fluctuating attention. 

Free recall may be impaired, but cued recall is relatively preserved, as is language. 

Hallucinations (generally complex and visual), delusions, and sleep disturbances, 

including excessive daytime fatigue and RBD, are also more common in PDD than in 

AD. Mood disorders, such as apathy and depression, are less specific changes that are 

associated with all forms of dementia (Emre et al., 2007). 

 

The MDS criteria recommend a diagnosis of probable PDD when there is impairment 

in two of the four core cognitive domains (attention, executive function, visuospatial 

skills, and free recall), and at least one psychiatric or behavioural symptom. Possible 

PDD is diagnosed where there is an atypical cognitive profile or a lack of psychiatric 

and behavioural changes, or where the interval between motor and cognitive onset 

cannot be firmly established (Emre et al., 2007). 

 

At present, the criteria do not recommend any biomarkers. Compared to AD, PDD 

has significantly reduced frontal, cingulate, and parietal glucose metabolism by PET, 

but this is insufficiently sensitive to be considered a valid biomarker (Emre et al., 

2007). Later research has identified some potential biomarkers that, subject to further 

validation, may be incorporated into the next iteration of the diagnostic criteria. These 

include serum butyrylcholinesterase activity (M. X. Dong et al., 2017) and nucleus 

basalis degeneration (Schulz, Pagano, Fernández Bonfante, Wilson, & Politis, 2018), 

both of which are markers of cholinergic change. Direct measures of α-synuclein 

pathology (e.g. by PET or CSF analysis) will have utility as biomarkers when they are 

feasible, and if required, AD biomarkers are useful for establishing the extent of 

coexistent Alzheimer pathologies. 

 

The McKeith criteria for DLB define the disorder by prominent executive, attentional, 

and visuospatial deficits, similar to PDD. There are four core clinical features. In 
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addition to dementia, these are cognitive fluctuations affecting attention and alertness; 

recurrent, complex visual hallucinations; RBD; and spontaneous parkinsonism. In 

patients with parkinsonism, dementia must have occurred prior to or within one year 

of the motor onset. Supportive clinical features include severe sensitivity to 

neuroleptic medications, repeated falls, syncope, autonomic dysfunction, delusions, 

excessive daytime fatigue, hyposmia, and mood changes (McKeith et al., 2017). 

 

The most recent McKeith criteria incorporate biomarkers as an adjunct to clinical 

examination, paralleling developments in AD diagnosis. A distinction between 

indicative and supportive biomarkers is made; supportive biomarkers do not enter the 

diagnostic algorithms, but may help with the diagnostic evaluation. Probable DLB is 

diagnosed if there are two or more of the four core clinical features, or one of these 

features plus one or more indicative biomarkers. Possible DLB is diagnosed if there is 

one core clinical feature with no biomarker support, or where there is indicative 

biomarker evidence but no core features. The indicative biomarkers for DLB are 

reduced dopamine transporter uptake in the basal nuclei by FP-CIT SPECT; cardiac 

sympathetic denervation by metaiodobenzylguanidine myocardial scintigraphy; and 

polysomnographic verification of RBD. Supportive biomarkers are little or no atrophy 

of the medial temporal lobe by CT or MRI; hypometabolism of the occipital lobe with 

relative sparing of the cingulate gyrus (the “cingulate island sign”) by PET or SPECT; 

and a characteristic electroencephalography signature defined by prominent 

abnormalities at posterior derivations (McKeith et al., 2017). The supportive 

biomarkers are particularly valuable for distinguishing DLB from AD, even at the 

MCI stage (Bonanni et al., 2016; Chiba, Fujishiro, Iseki, Kasanuki, & Sato, 2018). 

 

4.2.2 PD-MCI and MCI-LB 
 

The MDS criteria for PD-MCI were designed to be consistent with the PDD criteria 

and with concepts established in the AD literature. PD-MCI requires a gradual and 

modest cognitive decline, insufficient to interfere with functional independence, 

which develops within the context of PD. Two certainty levels may be used for a 

diagnosis. Level I is based on abbreviated neuropsychological testing: cognitive 

decline may be identified by either a short screening test, or by impaired performance 
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on at least two tests within a limited assessment battery. Level II requires detailed 

testing, comprising at least two tests of each of the five core cognitive domains 

(attention, executive function, visuospatial skills, memory, and language). A 

diagnosis requires at least two of the tests to be impaired at 1-2 standard deviations 

(SDs) below appropriate norms, or evidence that performance has declined 

substantially from a previous level that has been either estimated or established by 

serial testing. The level I criteria are intended for resource-restricted clinical settings, 

while level II criteria offer greater sensitivity and the ability to subtype different 

presentations of PD-MCI (Litvan et al., 2012). 

 

The sensitivity and specificity of the MDS criteria for PD-MCI, particularly the level 

II criteria, have been supported by subsequent research (Goldman et al., 2013). Both 

levels of testing have clear independent predictive ability for PDD (Hoogland et al., 

2017; Hoogland et al., 2019). The level II criteria also have good reliability (Broeders 

et al., 2013). The reliability of the level I criteria is lower: marked variation in the 

proportion of PD cases diagnosed with MCI is introduced by the use of different 

cutoff values and screening tests. The incorporation of a formal measure of premorbid 

cognitive function may improve the consistency of the criteria, particularly when they 

are based on abbreviated testing (Szeto et al., 2015). 

 

At present, diagnostic criteria for the MCI equivalent of DLB (“MCI-LB”) are not 

available. Studies investigating this stage of the disease have relied on ad hoc 

definitions formed by analogy with MCI in other diseases. Initial studies suggest that 

MCI-LB can be differentiated from AD-MCI by a cognitive profile that is similar to 

but milder than overt DLB, with prominent executive and visuospatial decline, and a 

higher frequency of neuropsychiatric symptoms (Cagnin et al., 2015; Donaghy et al., 

2018; Sadiq et al., 2017; Yoon, Kim, Moon, Yong, & Hong, 2015). Prodromal forms 

of DLB that initially present as an affective or psychotic disorder, or as delirium, have 

been identified (McKeith, Taylor, Thomas, Donaghy, & Kane, 2016). 

 

As with AD, the incorporation of DLB biomarkers may be an especially useful 

complement to clinical review for detecting prodromal DLB. The validity of FP-CIT 

SPECT for this purpose is supported (Thomas et al., 2019); data regarding other DLB 

biomarkers are not yet available. It is anticipated that the DLB Consortium will 
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collate this evidence in the near future, and release consensus criteria for prodromal 

DLB that are comparable with those for prodromal PD and AD. 

 

4.2.3 The one-year rule for differential diagnosis of PDD and 
DLB 

 

Current clinical diagnostic criteria for PDD and DLB distinguish them on the basis of 

the one-year rule: PDD is diagnosed if dementia occurs more than one year after PD 

diagnosis, whereas DLB is diagnosed if the cognitive symptoms emerge prior to or 

within one year of motor onset (Emre et al., 2007; McKeith et al., 2005). Several 

authors have argued that the arbitrary one-year cutoff should be abandoned, and the 

two dementias treated as a single disease entity (Friedman, 2018; Postuma et al., 

2016), but this is controversial; other authors have emphasised the differences 

between the disorders to justify a maintenance of the status quo (Boeve et al., 2016). 

 

Pathologically, PDD and DLB are often indistinguishable. Both are characterised by 

extensive limbic and neocortical α-synuclein pathology. This may be more severe in 

DLB, where there is also usually a higher amyloid-β load (particularly in the striatum) 

and a lower cholinergic deficit (Ballard et al., 2006; Halliday et al., 2011; Jellinger & 

Attems, 2006, 2008; Kalaitzakis et al., 2011). Additionally, DLB generally has less 

severe neuron loss in the substantia nigra (Tsuboi & Dickson, 2005), leading to milder 

striatal dopamine depravation. Clinically, these differences are reflected by worse 

global cognition (K. W. Park et al., 2011; Takemoto et al., 2016; Yoon, Lee, Yong, 

Moon, & Lee, 2014) and more frequent neuropsychiatric disturbances (Chiu, Tsai, 

Chen, Chen, & Lai, 2016) in DLB. Parkinsonism is usually milder, with less tremor, 

though the levodopa response, which is typically excellent in PD, is muted in DLB 

(Goldman, Goetz, Brandabur, Sanfilippo, & Stebbins, 2008). Around a quarter of 

DLB patients never develop parkinsonism (W. S. Kim, Kågedal, & Halliday, 2014). 

 

While the differences in means are often statistically significant, none of these 

variables can distinguish PDD and DLB consistently. Moreover, there are numerous 

other ways in which the two dementias are more similar than different. Many 

autonomic, sleep-related, and psychiatric features are common to both disorders. 
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Features such as RBD, constipation, orthostatic hypotension, and hyposmia are 

established prodromal markers of both PD and DLB (Donaghy & McKeith, 2014; 

Gibbons & Freeman, 2015), and the research criteria for prodromal PD also have 

predictive value for DLB (Fereshtehnejad et al., 2017). Furthermore, prodromal 

biomarkers (e.g. degeneration of the dopaminergic nigrostriatal system by FP-CIT 

SPECT) are comparable for both (Berg et al., 2015; Thomas et al., 2019). 

 

Additionally, problems with the basic validity of the one-year rule have emerged. 

Neuropsychological studies have indicated that 20-40% of PD patients have MCI at 

the time of diagnosis (Lawson et al., 2014; Yarnall, Rochester, & Burn, 2013), and 

cognitive decline not reaching the threshold for clinical significance precedes PD 

diagnosis in many patients, often by several years (Darweesh et al., 2017). Thus, 

cognitive decline is not necessarily a later feature of PD, as the one-year rule implies. 

Finally, distinguishing PDD and DLB has limited value for clinical practice. The two 

have very similar responses to current dementia drugs (H. F. Wang et al., 2015), and 

disease-modifying therapies targeting α-synuclein will be equally useful for both. 

 

In summary, despite some statistically significant differences in mean clinical or 

pathological scores, PDD and DLB are more similar than different, and there is no 

empirical basis for the one-year rule. The two dementias are best considered as 

different points on a continuum, ranging in severity from incidental Lewy body 

disease to PD without dementia, and then to PDD, DLB, and DLB with comorbid AD 

(Jellinger & Korczyn, 2018). The current criteria for PDD and DLB are of high 

quality, well validated, and in widespread use, but there is a need for future versions 

to decisively address this issue. Increased communication between the organisations 

involved in PD research and those involved in DLB should facilitate the development 

of harmonised diagnostic criteria that have greater validity across the spectrum of 

Lewy body diseases. 

 

4.3 Clinical diagnostic criteria for FTD 
 

FTD is defined by degeneration of the frontal and temporal lobes, often asymmetrical, 

with heterogeneous molecular pathology; tau, TDP-43, FET, and ubiquitin proteins 
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may underlie this dementia. The pathological diversity is reflected in vivo by 

variability in cognitive and behavioural presentation. Current criteria distinguish a 

behavioural variant (Rascovsky et al., 2011), and three types of primary progressive 

aphasia (PPA; Gorno-Tempini et al., 2011). FTD often overlaps clinically and 

pathologically with degenerative motor disorders, including progressive supranuclear 

palsy, corticobasal degeneration, and amyotrophic lateral sclerosis (Olney et al., 

2017); the diagnosis of these diseases is beyond the scope of this thesis. 

 

Neuroanatomically, behavioural-variant FTD is usually characterised by bilateral 

atrophy of the frontal lobes (Neary et al., 1998). The clinical diagnostic criteria 

describe a gradual onset and progression of behavioural and cognitive change. Given 

the potential for a loss of insight on the part of the patient, history should be provided 

by an informant. Both probable and possible diagnoses require at least three of six 

core clinical features: behavioural disinhibition, apathy, loss of sympathy or empathy, 

compulsive or stereotyped behaviours, hyperorality and dietary changes, and a 

neuropsychological profile characterised by a primarily dysexecutive syndrome, with 

relative preservation of memory and visuospatial function (Rascovsky et al., 2011). 

 

Probable behavioural-variant FTD may only be diagnosed where there is significant 

functional impairment and neuroimaging evidence of atrophy, hypoperfusion, or 

hypometabolism of the frontal and/or temporal lobes. Possible behavioural-variant 

FTD should be diagnosed in the absence of functional impairment or neuroimaging 

support. A definite diagnosis may be conferred either with post-mortem verification, 

or in vivo if there is a known pathogenic mutation. For all FTD variants, pathogenic 

mutations are on the MAPT or granulin (GRN) genes (Rascovsky et al., 2011). 

 

The diagnostic criteria for PPA (Gorno-Tempini et al., 2011) distinguish three 

subtypes: nonfluent, semantic, and logopenic. In each, the impairment has a gradual 

onset and progression, and primarily affects language. Marked early impairment to 

memory, visual perception, or behaviour is not consistent with PPA (Mesulam, 2001). 

 

Nonfluent PPA is characterised by a progressive agrammatism with speech dyspraxia, 

resulting in slow and effortful speech. Two of three supportive features – impaired 

comprehension of complex sentences, spared single-word knowledge, and spared 
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object knowledge – are also required. Semantic PPA, in contrast, has impaired single-

word knowledge and impaired object naming, particularly for low-frequency words 

and objects. Three of four supportive features – impaired object knowledge, dyslexia 

or dysgraphia, spared sentence repetition, and spared speech production – are 

required. Language is typically fluent and grammatically correct in semantic variant 

PPA (Gorno-Tempini et al., 2011). 

  

As discussed above (section 4.1.1), logopenic PPA is generally an atypical AD variant 

(Dubois et al., 2014). The core features are impaired single-word retrieval (e.g. object 

naming) and impaired sentence or phrase repetition. Three of four supportive features 

– phonological errors in speech, spared single-word comprehension, spared motor 

speech, and spared grammatical knowledge – are required for a diagnosis. Speech is 

slowed, as in nonfluent PPA, but it is grammatically correct and normally inflected 

(Gorno-Tempini et al., 2011). 

 

Confidence in a diagnosis of any of the three PPA variants is increased if there is 

supportive structural (CT or MRI) or functional (PET or SPECT) neuroimaging. This 

should show marked atrophy or hypometabolism in the fronto-insular region for 

nonfluent PPA; in the anterior temporal lobe for semantic PPA; and in the left 

temporoparietal area for logopenic PPA. As with behavioural-variant FTD, a definite 

diagnosis for any of the PPA syndromes can be made if there is either post-mortem 

confirmation, or a pathogenic mutation in the MAPT or GRN genes (Gorno-Tempini 

et al., 2011). 

 

The diagnostic criteria for both behavioural and PPA variants of FTD have several 

strengths. Autopsy studies show excellent sensitivity and very good specificity against 

AD (Harris et al., 2013). The description of the logopenic syndrome is useful for 

capturing clinically atypical, language-dominant AD cases. The inclusion of several 

features such as object agnosia, phonological errors, altered food preferences, and 

neuropsychiatric dysfunction is also useful for differential diagnosis, as studies show 

that these items are specific markers of FTD syndromes over AD (Chare et al., 2014). 

 

Further strengths of the criteria is that they allow for a diagnosis relatively early in the 

disease, and they incorporate biomarkers; both features are essential for long-term 
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clinical trials that require early identification of FTD and an objective measure of 

disease progression. The validity of the imaging profile for PPA has been supported 

by a large meta-analysis, though for nonfluent and semantic variants, the regional 

overlap between atrophy and hypometabolism is not total. This suggests that future 

diagnostic criteria should specify different guidelines for structural and functional 

scans (Bisenius, Neumann, & Schroeter, 2016). 

 

Clinicopathological analysis has also revealed some limitations with the criteria. A 

subset of cases (10-30%) diagnosed with non-logopenic FTD variants had a post-

mortem diagnosis of AD (Chare et al., 2014), suggesting that FTD remains a 

relatively common clinical misdiagnosis for atypical AD. Moreover, the specificity of 

the criteria against non-AD dementias and psychiatric disorders remains to be 

determined. Evidence so far indicates that the criteria for possible behavioural-variant 

FTD have low specificity against psychiatric disorders, such as schizophrenia, though 

the more stringent neuroimaging-based criteria for probable disease have good 

specificity (Kerssens et al., 2016; Vijverberg et al., 2016). 

 

Finally, the current criteria have limited ability to distinguish the various molecular 

pathologies (tau, TDP-43, etc.) that underlie FTD, which will be essential for clinical 

trials of disease-modifying therapies. AD biomarkers are valuable for the differential 

diagnosis of AD and FTD associated with tau pathology, particularly in early disease. 

Valid neuroimaging and CSF biomarkers for TDP-43 pathology are not yet available, 

but they are in development (Steinacker, Barschke, & Otto, 2019). Additionally, the 

different molecular pathologies have been linked to subtly different symptom profiles 

(D. C. Perry et al., 2017); further characterisation of these would also be useful for the 

next generation of FTD diagnostic criteria. 

 

4.4 Clinical diagnostic criteria for VCD 
 

Like FTD, VCD is characterised by marked clinical and pathological heterogeneity. 

Several sets of diagnostic criteria have been published, often for subtypes of VCD 

such as multi-infarct dementia, ischaemic vascular dementia, and subcortical vascular 

dementia (Chui et al., 1992; Erkinjuntti et al., 2000; Hachinski et al., 1975; Román et 
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al., 1993). The most recent criteria subsume all kinds of cognitive decline associated 

with cerebrovascular disease (Gorelick et al., 2011; Sachdev et al., 2014), and 

incorporate standardised protocols for the clinical assessment (Hachinski et al., 2006) 

and neuroimaging (Wardlaw et al., 2013) of VCD. 

 

The latest diagnostic criteria were published by the International Society for Vascular 

Behavioural and Cognitive Disorders (VASCOG; Sachdev et al., 2014). Two possible 

cognitive onset patterns are described. Firstly, the onset may be temporally related to 

a documented stroke or series of strokes, and therefore has an abrupt onset (typically 

within three months) followed by a stepwise or fluctuating course. Relevant focal 

neurological signs (lower facial weakness, dysarthria, hemiparesis, hemianopsia, etc.) 

can be considered evidence of a stroke. The second onset pattern is more gradual; this 

type is generally related to subcortical ischaemic disease (O'Brien et al., 2003). The 

criteria allow for a diagnosis in this case if neuropsychological testing points to a 

classic subcortical ischaemic profile. This is defined by prominent deficits to speed of 

information processing, complex attention, and executive function, in addition to 

early gait disturbance or urinary dysfunction, or personality and mood changes such 

as abulia, depression, or emotional incontinence (Sachdev et al., 2014). 

 

A diagnosis of probable VCD requires neuroimaging evidence of cerebrovascular 

disease, which is more sensitive than any clinical test. Relevant imaging includes 

multiple large infarcts; a single strategically placed infarct (e.g. in the thalamus or 

basal nuclei); multiple lacunar infarcts; extensive white matter lesions; or one or more 

intracerebral haemorrhages. A single infarct may be sufficient to cause mild VCD. 

Evidence of one of the rare genetic cerebrovascular disorders, such as cerebral 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, 

also supports a diagnosis of probable VCD, even in the absence of neuroimaging 

(Sachdev et al., 2014). 

 

Additional exclusion criteria were added to the VASCOG criteria to facilitate 

differential diagnosis from other disorders. In particular, an early and progressive 

memory decline with aphasia, agnosia, or apraxia is exclusionary, unless there are 

explanatory focal lesions or vascular events. Clear and early parkinsonism is also an 

exclusion criterion. Comorbid AD is not an exclusion criterion for VCD, given the 
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frequency of overlap between these dementias. However, AD biomarkers may be 

used to select cases with a relatively pure cerebrovascular disorder for clinical trials if 

this is required (Sachdev et al., 2014). 

 

The VASCOG criteria have various strengths. They are comprehensive; compatible 

with the DSM-5, AD diagnostic criteria, and previous standardisation protocols; and 

they allow for a diagnosis of VCD before overt dementia has emerged. Several 

ongoing developments are likely to contribute to future iterations of the diagnostic 

criteria for VCD. The development of biomarkers is difficult, given the heterogeneity 

of cerebrovascular pathologies, but various potential CSF markers – including 

measures of sulfatide, neurofilament, matrix metalloproteinases, and the serum 

albumin ratio – may increase diagnostic certainty in some cases (Hachinski et al., 

2006). Additionally, established biomarkers for AD may be useful for distinguishing 

pure VCD from AD with coexistent cerebrovascular disease (Janelidze et al., 2016). 

 

Improved biomarkers could also form part of a diagnostic strategy aimed at detecting 

preclinical VCD. This is a more complex procedure than identifying preclinical AD, 

as some subtypes of vascular dementia (e.g. abrupt-onset caused by post-stroke 

infarction) can develop immediately after an acute event, without an intervening 

preclinical or MCI stage (Meyer, Xu, Thornby, Chowdhury, & Quach, 2002). 

However, other subtypes with more insidious onset (e.g. small vessel disease) may be 

detectable with MRI in the preclinical and MCI stages (Lambert et al., 2018; Sudo et 

al., 2015). Large-scale prospective longitudinal studies are needed to facilitate the 

identification of additional predictive variables, as well as genetic and environmental 

risk factors, that can be used to inform clinical trials in the future. 

 

Finally, a major challenge for the clinical diagnosis of VCD is the frequent overlap 

with AD. Pure vascular dementia is rare; tau and amyloid-β pathologies are present 

with varying severity in the clear majority of cases, particularly in the oldest age 

groups (Jellinger & Attems, 2010a; Thal, Grinberg, & Attems, 2012). Similarly, 

cerebrovascular pathology is frequently found in AD cases, and contributes to poorer 

cognition (Toledo et al., 2013). The current criteria allow for a diagnosis of possible 

VCD with AD, or possible AD with cerebrovascular disease, in cases with both types 

of pathology (Sachdev et al., 2014). A useful addition to future diagnostic criteria 
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would be a refined protocol for identifying cases with probable dual pathology, which 

again would allow clinical trials the option of selecting relatively pure cases of VCD. 

 

4.5 Chapter summary 
 

Current clinical diagnostic criteria have multiple strengths. Increasing recognition of 

the diversity of pathologies that may underlie cognitive decline has led to better 

characterisation of the clinical profiles associated with each disorder. The focus on 

biomarkers has facilitated the preclinical detection of degenerative pathologies, 

raising the prospect of disease-modifying therapies at an early stage. As a result of 

these developments, the current criteria show excellent sensitivity and specificity, and 

are therefore valid and reliable methods for the differential diagnosis of dementias. 

 

Several ongoing challenges face the development of the next generation of diagnostic 

criteria. Eventual harmonisation of the NIA-AA and IWG criteria for AD is essential 

for consistency across diverse research settings. A major rethinking of the traditional 

division between PDD and DLB is required, given the problems with the one-year 

rule. In FTD, the focus should be on identifying valid biomarkers for the range of 

molecular pathologies associated with frontotemporal lobar degeneration. Finally, in 

VCD, there is a need to further clarify the relationship to AD and the numerous risk 

factors associated with various kinds of cerebrovascular disease. Overcoming these 

challenges will require constant dialogue between the various organisations involved 

in each of these disorders. This will enable the creation of shared research objectives, 

a standardised language, and consistent diagnostic criteria and testing methods across 

all of the various disorders that can cause cognitive decline. 
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5 Neuropsychological assessment of cognition 
 

Current diagnostic criteria for MCI and dementia require objective evidence that a 

clinically significant decline in cognition has taken place. Neuropsychological 

assessment is used to establish this. Numerous tests of cognition are available for this 

purpose, including short cognitive screening tests and more detailed domain-focused 

tests. Screening tests are designed to identify patients with probable MCI or dementia 

as efficiently as possible. Domain-focused tests are typically performed as part of a 

comprehensive neuropsychological evaluation. This is a considerably longer and 

more resource-intensive procedure, but it provides much more detail about the nature 

and severity of a patient’s cognitive impairment, which may be used to assist 

differential diagnosis and inform the planning of effective clinical management. 

 

This chapter gives a brief overview of methods employed in the neuropsychological 

assessment of cognition, with reference to some of the most widely used and well 

validated test paradigms for both screening and domain-focused testing. Challenges 

that must be addressed during the application and interpretation of these tests, such as 

motor or language impairment, are discussed. Available strategies for assessing the 

degree of functional interference resulting from cognitive decline, and for estimating 

premorbid cognitive ability, are also described. 

 

5.1 Cognitive screening tests 
 

5.1.1 Patient-directed measures 
 

Time pressure and resource constraints in clinical settings, particularly in primary 

care, means that there is generally a need to identify potential cognitive impairment as 

efficiently as possible. Short cognitive screening tests are very frequently used for this 

purpose. The quality of a screening test can be measured by various criteria, some of 

which are mutually exclusive. This section will summarise these criteria and describe 

two of the most widely used screens: the Mini-Mental State Examination (MMSE; 

Folstein, Folstein, & McHugh, 1975) and the MoCA (Nasreddine et al., 2005). 
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Naturally, screening tests should be short; 10 minutes is generally the maximum 

acceptable administration time, but in primary care settings a five minute maximum is 

desirable (Carnero-Pardo, 2014). They should be easy to use and score reliably for a 

variety of clinical practitioners, and easy for patients with a wide range of medical 

conditions to tolerate without undue distress or discomfort. Additionally, the tests 

should be applicable to a diverse patient population, and therefore, they should not be 

biased by socioeconomic or cultural factors. Ease of remote administration (e.g. 

online or by telephone) and adaptability to different languages is extremely useful 

(Carnero-Pardo, 2014). Psychometrically, screening tests should have high sensitivity, 

specificity, and positive predictive value for cognitive impairment of any aetiology; 

this requires the assessment of multiple cognitive domains, so that the clinical profiles 

of different dementia disorders are captured (Cullen, O'Neill, Evans, Coen, & Lawlor, 

2007). Finally, sensitivity to the mild stages of these disorders, including MCI, is very 

valuable (Lorentz, Scanlan, & Borson, 2002). 

 

Until recently, the MMSE was the ubiquitous screening test in clinical practice. The 

MMSE takes 5-10 minutes and is scored out of 30, with a score above 23 usually 

indicating normal function. Approximately two-thirds of the items assess memory, 

language, and orientation to time and place; attention and calculation items amount to 

five points, and executive-visuospatial function is assessed by a single item requiring 

the patient to copy a drawing of two interlocking pentagons (Folstein et al., 1975). 

 

Despite its widespread use, the popularity of the MMSE has declined markedly due to 

multiple limitations. Its reliability is compromised by a lack of standardisation; for 

example, the words that a patient must learn in the recall task may vary, such that 

some versions of the test are objectively more difficult than others (Carnero-Pardo, 

2014). The test lacks adequate sensitivity for MCI and mild dementia (G. Xu, Meyer, 

Thornby, Chowdhury, & Quach, 2002), and also for non-AD dementias as a result of 

its emphasis on memory, language, and orientation items. Finally, the MMSE was 

removed from the public domain and made subject to copyright in 2001, making it an 

expensive option for routine clinical administration. 

 

The MoCA was explicitly designed to overcome these limitations. The test is formally 

divided into six cognitive domains: short-term recall; attention, concentration, and 
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working memory; executive function; visuospatial skills; language; and orientation to 

time and place, with approximately equal allocation of points to each. As a result of 

the balanced coverage of executive and visuospatial domains, the MoCA is sensitive 

to various non-AD dementias, including DLB (C. S. Wang et al., 2013), VCD (Y. 

Dong et al., 2010), and behavioural-variant FTD (Freitas, Simões, Alves, Duro, & 

Santana, 2012). It is also superior to the MMSE for evaluating cognitive impairment 

in PD (Biundo et al., 2016); this will be discussed more fully in the next chapter. The 

MoCA has less of a ceiling effect than the MMSE, and consequently, it is more 

sensitive to MCI (Nasreddine et al., 2005). The test is in the public domain and three 

standardised, English-language parallel versions are freely available online, as are 

versions in other languages (www.mocatest.org). The MoCA takes approximately as 

much time to administer as the MMSE, and it is also scored out of 30 (Nasreddine et 

al., 2005). The MoCA is highly adaptable: an abbreviated version (Horton et al., 

2015) and a telephone version (Wong et al., 2015) have been published. Because of 

these features, the MoCA has become one of the most popular and valuable screening 

tests currently in clinical practice. 

 

5.1.2 Informant-rated measures 
 

Informant-rated cognitive measures are usually questionnaires that are completed by a 

knowledgeable informant (e.g. a relative or friend). A widely used example is the 

Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE; Jorm, 1994; 

Jorm, Scott, Cullen, & MacKinnon, 1991), a 10-minute questionnaire in which the 

informant is asked to rate the patient’s level of performance on a series of everyday 

tasks relative to their performance 10 years earlier. Scoring for each item is based on 

a five-point scale ranging from “much worse” to “much better”; the final score is the 

mean value across all items. 

 

Informant-rated measures have the advantage of being unaffected by any potential 

confounders that are intrinsic to the patient, such as their baseline cognitive ability, 

education, or physical or language impairments (Jorm et al., 1996). The format of 

these methods means that they can be completed remotely, and they are therefore 

adaptable to large scale community screening projects (Cullen et al., 2007). However, 
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they may be biased by unmeasured personal characteristics of the informant, such as 

the quality of their relationship with the patient, and their capacity for sensitive 

observation (Jorm et al., 1996). Some potential informants may be unwilling to 

candidly report on the patient’s deteriorating cognition due to personal or cultural 

factors. In many cases, elderly patients may be unable to identify someone who 

knows them sufficiently well (Lorentz et al., 2002). Finally, informant-rated scales 

often provide little or no information about decline in specific cognitive domains, and 

their usefulness for differential diagnosis is therefore extremely limited. Because of 

these weaknesses, informant-rated measures are best employed as an adjunct to 

clinician-administered, patient-directed cognitive testing. 

 

5.2 Domain-focused neuropsychological tests 
 

Short cognitive screening tests are very useful in time-restricted settings where there 

is a need to identify possible cognitive impairment quickly and efficiently. However, 

their brevity means that these screening tests do not offer a comprehensive assessment 

of each cognitive domain, which is an essential component of the diagnostic process. 

Full domain-focused evaluation is longer, often lasting several hours, and is usually 

conducted in secondary care settings by a clinical neuropsychologist. A patient’s 

performance is generally compared against established norms, which are adjusted for 

age and/or education as appropriate. 

 

Most mental operations rely on input from several cognitive domains. As described in 

the introduction, the six cognitive domains described in the DSM-5 are memory, 

attention, executive function, visuospatial skills, language, and social cognition 

(American Psychiatric Association, 2013). Performance on any individual cognitive 

test requires a base level of attention, orientation, and language function, so that the 

patient can understand and adhere to the instructions (Burrell & Piguet, 2015). 

Domain-focused cognitive tests are designed to isolate a primary component of a 

single cognitive domain to the greatest extent that is possible, although no test 

provides a completely pure assessment of a particular domain. The most important 

diagnostic information is derived from the pattern of deficits across all of the tests in 
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the neuropsychological evaluation (Palta, Snitz, & Carlson, 2016). Some of the most 

popular test paradigms for each cognitive domain are briefly described below. 

 

Memory. A broad distinction can be made between explicit memory for facts, events, 

and other specific items of information, versus implicit memory for skills and 

routines. Explicit memory may be further divided into semantic memory (general 

knowledge, ideas, and concepts of the world) and episodic memory (experiences and 

biographical events). Most clinical tests of memory target episodic memory, as this is 

characteristically impaired in neurodegenerative disorders such as AD (Machado et 

al., 2009), in which there is damage to medial temporal lobe structures including the 

hippocampus and the adjacent entorhinal, perirhinal, and parahippocampal cortices 

(Squire & Wixted, 2011). The common tests of episodic memory usually involve 

presenting a series of verbal or visual stimuli, often belonging to certain semantic 

categories, and asking the patient to recall as many as possible, either immediately or 

after a delay. For example, verbal episodic memory may be tested with a word list 

learning paradigm, such as the Hopkins Verbal Learning Test (Brandt, 1991). Recall 

may be either free or cued. Cueing involves the presentation of a clue (e.g. semantic 

or phonemic) relevant to one or more stimuli from the learning trial. A cueing benefit 

during data retrieval is a useful feature for distinguishing PDD and DLB from AD, as 

this generally points to a frontostriatal attentional problem, as opposed to a genuine 

hippocampal encoding deficit (Economou et al., 2016). 

 

Attention, processing speed, and working memory. These abilities have a complex 

neural basis that includes the dorsolateral and anterior prefrontal cortex, the anterior 

cingulate cortex, the inferior parietal lobe, and various subcortical structures, such as 

the caudate nucleus and the cerebellum (Joyce & Hrin, 2015). Tests of attention 

and/or speed generally require a response to target stimuli, often while working as 

quickly as possible and ignoring task-irrelevant stimuli. The trail-making task Part A 

(Reitan, 1944) is a common test of processing speed that involves presenting a patient 

with circled numbers distributed randomly across a page, and asking the patient to 

draw a trail between these in ascending order, as quickly as possible. The Symbol 

Digit Modalities Test (A. Smith, 1982) is another speed test in which patients must 

use a reference key to pair as many abstract symbols with a corresponding number as 

they can in 90 seconds. Orientation is a component of attention referring to the 
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individual’s ability to place themselves appropriately in time and space; asking the 

patient to provide the date or to name the building that they are in may be used to 

assess this. Working memory is another component of attention (though it also taps 

memory and executive function), which involves the temporary storage and 

manipulation of a limited amount of data. A classic test of working memory is the 

digit span task (Wechsler, 1981), in which the patient is read consecutive number lists 

of increasing length, and then immediately asked to recite them in the same order 

(forward digit span) or in reverse (backward digit span). 

 

Executive function. Like attention, executive function has a complex neural basis; the 

frontal lobes, subcortical nuclei, and white matter connections are all centrally 

involved (Bettcher et al., 2016). “Executive function” is an umbrella term for various 

cognitive operations including reasoning, planning, cognitive flexibility, response 

inhibition, and problem solving, and a range of tests are available for testing these 

abilities. Fluency tasks, such as the Controlled Oral Word Association Test (Benton, 

de Hamsher, & Sivan, 1983), require the patient to list as many words as possible that 

start with a given letter (phonemic fluency) or fit within a given semantic category 

(semantic fluency). Cognitive flexibility may be assessed by a set-shifting paradigm, 

in which patients must alternate between two competing sets of rules. An example is 

Part B of the trail-making task, in which patients are asked to draw a line that 

alternates between ascending numbers and ascending letters. Problem-solving abilities 

may be assessed by complex puzzles, or by presenting patients with a series of 

hypothetical problems and asking them to identify an appropriate course of action. 

Response inhibition is another component of the executive system necessary for 

selectively suppressing prepotent responses to stimuli. This can be assessed with a 

classic Stroop colour/word interference task, in which patients are presented with a 

series of colour words printed in an incongruently coloured ink (e.g. the word “red” 

printed in blue ink) and asked to name the ink colour for each word as quickly as 

possible (Stroop, 1935). Set shifting may be incorporated into the Stroop task, so that 

patients alternate between naming the ink colour and reading the word. 

 

Visuospatial skills. Visuospatial skills are mediated primarily by the parietal lobe and 

the parieto-occipital junction (Thiyagesh et al., 2009). Assessment of these skills is 

based on the patient’s ability to interpret or produce visual information. Basic visual 
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perception may be assessed by asking patients to identify letters that have been 

partially destroyed, or objects from their silhouette. Various tasks involving the 

production of a simple line drawing are commonly used to test visuoconstructional 

ability: this includes the shape copying and clock drawing tasks on the MoCA, and 

the interlocking pentagons copying task on the MMSE. The Rey-Osterrieth Figure 

Test requires the patient to reproduce a substantially more complex, abstract line 

drawing (Osterrieth, 1944). Finally, a common test of spatial perception is the 

judgement of line orientation task, in which the patient is asked to identify which of 

many angled lines in a diagram have the same orientation as the target lines (Benton, 

Varney, & Hamsher, 1978). 

 

Language. Neurologically, language is situated mainly in the left hemisphere, 

including Broca’s area in the inferior frontal lobe and Wernicke’s area in the posterior 

temporal lobe (Hickok, 2009). Various aspects of language, including comprehension, 

expressive language production, grammar, prosody, and motor speech function, may 

be assessed in routine conversation with the patient. Formal tests of language 

production that are useful in the diagnosis of aphasia are confrontation naming tasks, 

such as the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 1983), in which 

the patient is presented with a series of drawings depicting objects, and asked to name 

the objects. Asking the patient to repeat a list of single words or sentences is useful 

for identifying certain subtypes of PPA-variant FTD. Language comprehension can be 

assessed by asking the patient to follow commands or answer questions. For each of 

these tasks, stimuli of varying levels of complexity may be employed. 

 

Social cognition and behaviour. These aspects of cognition are mediated by widely 

distributed neural regions, most importantly including the prefrontal cortex, cingulate 

gyrus, fusiform gyrus, amygdala, and the insula (Patin & Hurlemann, 2015). Tests of 

social cognition do not often feature in neuropsychological assessment batteries, but 

numerous tests are available. The Edinburgh Social Cognition Test is used for the 

assessment of theory of mind: patients are asked to describe images that portray social 

interactions (Baksh, Abrahams, Auyeung, & MacPherson, 2018). The Ekman 60 is a 

test of emotion recognition that involves the sequential presentation of 60 faces, each 

expressing one of six basic emotions; the patient is asked to identify the emotion 

(Ekman & Friesen, 1976). Assessment of pathological behavioural changes is more 
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challenging within the confines of a formal clinical or research setting. Because 

patients with social cognition disorders (e.g. behavioural-variant FTD) often have 

impaired insight (Desmarais, Lanctôt, Masellis, Black, & Herrmann, 2018), 

information is generally sourced from a reliable informant. For example, the widely 

used Neuropsychiatric Inventory relies on a structured interview with an informant to 

probe various behavioural disturbances that are common in cognitive disorders, such 

as apathy, anxiety, depression, disinhibition, and impulsivity (Cummings et al., 1994). 

 

5.3 Assessment of functional impairment 
 

The severity of functional interference that results from cognitive impairment is an 

essential feature to evaluate during a neuropsychological assessment, as it has 

important implications for diagnosis and patient management. Most functional scales 

probe the patient’s ability to handle everyday activities and affairs, such as mobility, 

washing, dressing, shopping, and managing financial matters or medications. Input 

from an informant is usually necessary. For example, the Clinical Dementia Rating 

scale, developed for and validated in AD, relies on a semi-structured interview with 

both the patient and an informant (Morris, 1997). 

 

5.4 Neuropsychological assessment in PD 
 

In neuropsychological evaluation, it is essential to ensure the validity of cognitive test 

scores by minimising the effects of potential confounders. The motor impairment that 

characterises PD may be a significant confounder in tests that require motor dexterity 

or speed, including those that involve writing or complex drawing. Circumnavigating 

this problem requires careful selection of tests that are suitable for the individual 

patient or the target population. The MDS has published a list of tests that minimise 

the need for a motor response, and are therefore appropriate for evaluating cognition 

in PD. Furthermore, the MDS recommend that people with PD be tested in their 

“optimal motor state”, typically meaning that they are responding to anti-Parkinson 

medications at the time (Litvan et al., 2012). Currently, a standardised cognitive 

battery for use in PD research that tests all cognitive domains with suitable methods is 

not available, though efforts are underway (Hoogland et al., 2018). 
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Similar problems relate to the assessment of functional impairment due to cognitive 

decline in PD. Many functional rating scales validated in other neurodegenerative 

disease groups (e.g. the Clinical Dementia Rating scale) rely on information about 

personal care and hygiene, such as dressing and washing, which may be impaired in 

PD purely as a result of motor rather than cognitive dysfunction. An informant-rated 

functional rating scale has been published specifically for use in PD (Kulisevsky et 

al., 2013), and this exclusively includes items that are minimally affected by motor 

impairment. Therefore, the questionnaire provides a valid index of the degree of 

functional interference that results directly from cognitive problems in PD. 

 

5.5 Normative scores and premorbid ability 
 

Even once an appropriate task has been selected and administered correctly, a raw test 

score in isolation is not particularly informative. A meaningful interpretation requires 

comparison to a baseline or reference standard that, at a minimum, defines the cutoff 

between normal and impaired function. In the context of a neurological or psychiatric 

disorder, the ideal option would be to compare a patient’s test scores before and after 

diagnosis, but this is rarely an option, due to the rarity of routine neuropsychological 

testing in healthy individuals. Therefore, comparisons are generally to a normative 

score and/or an index of estimated premorbid function. 

 

Normative scores are typically obtained from large samples of cognitively healthy 

individuals, usually stratified by age group, education level, and other potential 

covariates. These normative studies define the range of test scores that characterises 

the healthy population. Raw test scores obtained from a patient become meaningful 

once they are transformed into the appropriately adjusted standardised score, such as 

percentile ranks, scaled scores, z-scores, and T-scores, all of which indicate how 

typical the patient’s score is in comparison to their peer group. Impaired performance 

is usually defined by a score more than two SDs below the mean, corresponding to 

the second percentile or lower (Palta et al., 2016). 

 

A complementary approach is to compare a patient’s score to their estimated level of 

cognitive function prior to the onset of their disorder. This may be particularly 
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informative for patients who were previously at the high or low extremes of cognitive 

function, as comparison to population reference scores alone may be misleading for 

these individuals. For example, scores in the average range may represent a clinically 

significant decline, with substantial implications for occupational and social function, 

for a person who was previously at the high end of the cognitive spectrum. 

 

The simplest way of estimating premorbid function is based on demographic factors 

such as educational and occupational attainment. The duration of education remains 

correlated with cognitive scores into old age (Ritchie, Bates, Der, Starr, & Deary, 

2013), and has the advantage of being relatively easy to measure, regardless of the 

patient’s current level of function. A more formal method is to test a “crystallised” 

cognitive ability, such as reading, which is often relatively spared in the mild to 

moderate stages of dementia (McGurn et al., 2004). Reading tests used for this 

purpose (H. E. Nelson & Willison, 1991; Wechsler, 2001, 2009) involve the 

presentation of a series of low-frequency words with irregular grapheme-phoneme 

mappings or stress patterns (e.g. “naive”). The patient is asked to read each word 

aloud; the proportion of correct answers correlates with lifelong capacity for learning 

and knowledge. These tests provide a reasonably accurate index of premorbid 

cognition, although again, they are less valid for people who were previously high or 

low functioning (Bright & van der Linde, 2018). 

 

5.6 Chapter summary 
 

Neuropsychological assessment is a complex but essential procedure for investigating 

cognitive disorders. An extensive range of tests is available both for dementia 

screening and detailed, domain-focused evaluation. The optimal test for a particular 

situation depends on the characteristics of the patient or group under examination; 

sensitivity to specific factors, such as motor impairment in PD, is required in order to 

produce meaningful scores. Interpretation of these scores also requires a normative or 

comparative baseline, so that the magnitude of any decline can be contextualised. The 

neuropsychological information can then be combined with other clinical data 

(neurological, radiological, etc.) so that a diagnosis can be conferred and an effective 

clinical management plan can be decided upon.  
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6 Factor structure of the MoCA in PD 
 

6.1 Introduction 
 

As stated in the previous chapter, the MoCA (Nasreddine et al., 2005) is one of the 

most widely used screening tests currently used for cognitive screening in clinical and 

research settings. It is a brief, clinician-administered assessment that surpasses many 

of the limitations of the older MMSE (Folstein et al., 1975), having greater utility for 

detecting MCI, and better coverage of different cognitive domains. Some studies have 

assessed the construct validity of the MoCA in AD and other dementia groups, and 

found evidence of a factor structure that maps to the different cognitive domains. This 

indicates that the MoCA may be a brief method of obtaining domain-specific 

cognitive profiles that are useful for differential diagnosis and clinical management. 

This chapter presents a novel factor analysis of the MoCA designed to explore the 

extent to which previously reported factor structures are valid in people with PD. 

 

Several studies have supported the value of the MoCA for detecting and quantifying 

cognitive impairment in PD. The test has consistently shown greater sensitivity for 

both PD-MCI and PDD than other screens (Dalrymple-Alford et al., 2010; Hoops et 

al., 2009; Zadikoff et al., 2008), largely due to its inclusion of executive and 

visuospatial items. Very good test-retest and interrater reliability statistics in PD have 

been demonstrated, and the MoCA correlates well with a full neuropsychological 

assessment battery (Gill, Freshman, Blender, & Ravina, 2008). As a result of its 

strong psychometric properties, the MDS has recommended the test for the global 

assessment of cognition in PD: an impaired MoCA score may be used for a level I 

diagnosis of PD-MCI (Litvan et al., 2012). 

 

Although the MoCA was designed to provide an indication of global cognitive 

function, it was explicitly structured around six cognitive domains: short-term recall; 

attention, concentration, and working memory; executive function; visuospatial skills; 

language; and orientation to time and place (Nasreddine et al., 2005). A fuller test of 

these domains is possible with detailed, domain-focused neuropsychological 

assessment, which is then used to identify distinct cognitive profiles. However, such 
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testing is time-consuming, resource-intensive, and rarely available in retrospective 

studies that rely on review of patients’ medical notes. Identification of cognitive 

subtypes would be greatly facilitated if a brief screening test could adequately 

distinguish and quantify function in the different cognitive domains. To test if the 

MoCA is capable of this, its internal structure has been assessed more rigorously to 

test whether the domain-specific sections map to statistically independent factors. 

 

When applied to a heterogeneous dementia group, one factor analysis indicated that 

the MoCA comprised two distinct factors: namely, memory and attentional-executive 

function (Duro, Simões, Ponciano, & Santana, 2010). The memory factor included the 

short-term recall, language, and orientation subtests, and the attentional-executive 

function included attention, executive, and visuospatial subtests. A later factor 

analysis focused on a more specific clinical group (AD and MCI) and tested several 

models (Freitas, Simões, Marôco, Alves, & Santana, 2012). While the previously 

reported two-factor model had a good fit to the observed data, confirmatory factor 

analysis indicated that the six-factor structure postulated by Nasreddine et al. (2005) 

had the best fit. Additionally, one second-order factor (“cognition”) was tested. This 

comprised all six first-order factors and had a good fit to the data, supporting the 

unidimensionality of the MoCA as a measure of global cognitive function (Freitas, 

Simões, Marôco, et al., 2012). 

 

At present, there has been limited exploration of the construct validity of the MoCA 

in PD. One study found that the executive, visuospatial, and memory subsections 

showed high sensitivity against a detailed neuropsychological test of these domains, 

though specificity and diagnostic accuracy were only adequate for the executive 

subsection (Hendershott, Zhu, Llanes, & Poston, 2017). So far, only a single factor 

analysis of the MoCA in PD has been published. In this study, the cohort were highly 

educated, with a short average disease duration, and a high mean MoCA score of 

26.4. As a result, some items (primarily belonging to the language and orientation 

subsections) showed clear ceiling effects, being correct in more than 95% of cases. 

Because of the lack of variance, these items were omitted from the exploratory factor 

analysis, which suggested a three-factor model comprising executive function, 

memory, and verbal attention (Benge et al., 2017). This model has not yet been 

independently tested with confirmatory factor analysis. 
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The objective of this analysis was to extend previous research by exploring the factor 

structure of the MoCA in a very large cohort of people with PD, including patients 

with possible MCI and dementia, in order to test whether it could validly distinguish 

different cognitive domains in this population. Previously reported models based on 

PD, AD, and other dementia cohorts formed the basis of the analysis. 

 

6.2 Methods 
 

The analysis used data from the Tracking Parkinson’s study, a long-term prospective 

observational project involving 2000 recent-onset PD patients at 72 sites (Malek et 

al., 2015). The study was conducted in compliance with the Helsinki Declaration 

(World Medical Association, 1967), and approved by the multicentre research ethics 

committee (reference code 11/AL/0163) and local National Health Service (NHS) 

research and development departments (reference code GN11NE062). Patient 

recruitment took place between February 2012 and June 2014. The study is ongoing, 

with visits every six months, including in-depth assessments at baseline and every 18 

months subsequently. Funding for the study was provided by Parkinson’s UK (grant 

number J1101), a registered charity in England and Wales (charity number 258197) 

and in Scotland (charity number SC037554). 

 

6.2.1 Participants 
 

All participants in the Tracking Parkinson’s cohort had PD diagnosed fewer than 3.5 

years before study enrolment by a specialist movement disorder neurologist in local 

clinics. Exclusion criteria included age below 18 or over 90; a diagnosis of an 

alternative parkinsonian disorder; or a severe comorbid illness that would preclude 

full study participation. Patients with a clinical diagnosis of dementia at baseline were 

excluded, but cognitive function was not otherwise part of the eligibility criteria. 

 

For this analysis, participants were excluded if they had incomplete MoCA data or 

blank values for education (n = 262). The analysis was initially applied to the full 

sample (n = 1738). Due to possible ceiling effects (which may obscure a meaningful 

factor structure), analysis was also conducted on two sub-samples defined by a MoCA 
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score lower than 26, encompassing probable MCI and more severe levels of cognitive 

impairment (n = 797), and lower than 21, indicative of moderate to severe impairment 

(n = 157). These cutoff values have good sensitivity and specificity (Dalrymple-

Alford et al., 2010) and have been used in previous analyses of the Tracking 

Parkinson’s cohort (Malek et al., 2015). 

 

6.2.2 Materials 
 

For this analysis, baseline study data were used. The primary measure was the MoCA 

version 7.1. The test was conducted by local clinical and/or research staff (generally a 

research nurse). The MoCA takes around 5-10 minutes to administer, and includes 

tests of word recall, figure copying, clock drawing, trail-making, phonemic fluency, 

verbal abstraction, picture naming, sentence repetition, forward and backward digit 

spans, vigilance, serial subtractions, and temporal and spatial orientation. 

 

The highest possible MoCA score is 30; higher scores indicate better cognitive 

function. A single bonus point is added for participants with fewer than 13 years of 

education, and an education-adjusted score above 25 indicates normal cognition. For 

this analysis, some MoCA items were only available as ordinal values: the contour, 

hands, and numbers on the clock drawing task had been collapsed into a single item 

(scored 0-3), as had the serial subtractions (also 0-3). Item scores used for the factor 

analysis were not adjusted for education level, but the bonus point was included when 

reporting total scores, and when defining the MoCA<26 and MoCA<21 sub-samples. 

 

Education was recorded dichotomously as more than 12 years of education versus 

fewer than 13 years of education. Item 1.1 of the MDS Unified Parkinson’s Disease 

Rating Scale (UPDRS) was used to assess the degree of functional impairment 

resulting from cognitive problems. This scale was completed by the clinician on a 

five-point scale (none, slight, mild, moderate, severe); these scores were analysed as 

numeric values (0-4). Motor severity was scored with a modified Hoehn and Yahr 

scale (Hoehn & Yahr, 1967; Jankovic et al., 1990), and anti-Parkinson medications 

were converted to levodopa equivalent daily dose (LEDD) using an established 

formula for dose equivalence (Tomlinson et al., 2010). 
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6.2.3 Statistical analysis 
 

Statistical analysis used Stata version 13 (StataCorp, 2013). The factor structure of the 

MoCA was assessed using factor analysis, a test that groups observed variables based 

on common variance into a smaller number of latent factors. Confirmatory factor 

analysis with maximum likelihood estimation was used to test previously reported 

factor structures of the MoCA. Exploratory factor analysis (principal factors with 

oblique rotation) was used to identify possible alternative models. Because the MoCA 

item scores are not continuous, these analyses were based on summary statistics from 

correlation matrices. The exploratory factor analyses, and subsequent confirmatory 

analyses of the resulting model, were conducted on randomly-selected subgroups of 

the full sample; the similarity of these groups was confirmed using between-group 

comparisons (t-test or Mann-Whitney U test) for sex, education, age, disease duration, 

etc. The normality of the distributions was evaluated by inspecting a histogram. 

 

Each model generated by confirmatory factor analysis was tested for goodness-of-fit 

to the observed data using various standard indices. Approximate cutoff values that 

indicated a good fit were those suggested by Acock (2013). The indices (with cutoff 

values indicating a good fit in parentheses) were: χ2 / df (2-3), root mean square error 

of approximation (<0.05), comparative fit index (>0.95), Tucker-Lewis index (>0.95), 

and standardised root mean square residual (<0.08). 

 

The Stata syntax for the analysis is available online on the Open Science Framework 

[https://osf.io/x7d8p/]. 

 

6.3 Results 
 

6.3.1 Descriptive statistics 
 

Descriptive statistics for the full sample and the MoCA<26 and MoCA<21 sub-

samples are presented in Table 6-1. For each, functional impairment secondary to the 

cognitive symptoms was minimal. The ratio of men to women was typical of PD (K. 

M. Smith & Dahodwala, 2014), and was more pronounced in the MoCA<26 and 
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MoCA<21 sub-samples. The distribution of responses for each item is provided in 

Appendix 4 (Table A1). The highest percentage of correct answers was consistently 

provided for the orientation items; values for the recall items were typically lowest. 

 

 

Table 6-1. Descriptive statistics for the full sample and the sub-samples. 

 Item Full sample MoCA<26 MoCA<21 

Sample size (n) 1738 797 157 

Male sex (n, %) 1123 (64.6) 564 (70.8) 117 (74.5) 

Age in years 67.6 (9.2) 69.9 (8.5) 73.4 (7.3) 

Disease duration in years 3.2 (3.1) 3.0 (2.7) 3.5 (4.1) 

>12 years education (n, %) 1176 (67.6) 492 (61.7) 76 (48.4) 

Hoehn and Yahr (median, IQR) 2 (1-2) 2 (1-2) 2 (1.5-2.5) 

LEDD 291 (206) 301 (202) 315 (200) 

MoCA 25.3 (3.4) 22.4 (2.7) 17.9 (2.2) 

MDS UPDRS 1.1 0.5 (0.7) 0.7 (0.8) 0.9 (1.0) 
    

Data are mean (standard deviation) unless otherwise specified. In the full sample, disease duration was 
missing for 46 participants; UPDRS for 5; Hoehn and Yahr for 4; and LEDD for 14. IQR = 
interquartile range, LEDD = levodopa equivalent daily dose, MDS = Movement Disorder Society, 
MoCA = Montreal Cognitive Assessment, UPDRS = Unified Parkinson’s Disease Rating Scale. 
 

 

6.3.2 Confirmatory factor analysis 
 

Because some MoCA items were only available as ordinal values, polychoric 

correlation matrices were generated, as these accommodate both dichotomous and 

ordinal scores. Initially, these matrices had multiple blank values due to lack of 

variance in the data, precluding further analysis. Therefore, similar items were 

collapsed into additional ordinal variables, as follows: the lion, rhinoceros, and camel 

into a single “animals” item (scored 0-3); date, month, year, and day into a “temporal” 

[orientation] item (0-4); and place and city into a “spatial” [orientation] item (0-2). 

 

The polychoric correlation matrix was used to create a summary statistics dataset, 

which formed the basis of the confirmatory factor analysis models. Factor-indicator 
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correspondences used standard reflective measurement. Four models based on 

previous research were tested: a two-factor model, a six-factor model, a one-factor 

second-order model, and a three-factor model based on 20 out of the 30 MoCA items 

Table 6-2). 

 

 

Table 6-2. Summary of models tested with confirmatory factor analysis. 

 Item 2-factor model 6-factor models 3-factor model 

Trail-making Attentional-executive Executive Executive 

Phonemic fluency Attentional-executive Executive*  Executive 

Abstraction 1 Attentional-executive Executive Executive 

Abstraction 2 Attentional-executive Executive Executive 

Animals Memory Language Not included 

Repetition 1 Memory Language Verbal attention 

Repetition 2 Memory Language Verbal attention 

Recall 1 Memory ST Recall ST Recall 

Recall 2 Memory ST Recall ST Recall 

Recall 3 Memory ST Recall ST Recall 

Recall 4 Memory ST Recall ST Recall 

Recall 5 Memory ST Recall ST Recall 

Digits forward Attentional-executive ACWM Verbal attention 

Digits backward Memory ACWM Executive 

Vigilance Attentional-executive ACWM Not included 

Subtractions Attentional-executive ACWM Executive† 

Cube Attentional-executive Visuospatial Executive 

Clock Attentional-executive Visuospatial Executive 

Temporal Memory Orientation Not included 

Spatial Memory Orientation Not included 
    

*Phonemic fluency was cross-loaded onto the language factor in the six-factor model. †Subtractions 
was cross-loaded onto the Verbal Attention factor. ACWM = attention, concentration, and working 
memory; ST = short term. 
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The two-factor model included memory and attentional-executive function (Duro et 

al., 2010). Factor loadings for the two-factor model in the full sample were varied, but 

all were statistically significant (Table A2). 

 

The six-factor model comprised short-term recall, visuospatial abilities, executive 

function, attention, language, and orientation (Freitas, Simões, Marôco, et al., 2012), 

The model initially failed to converge. After noting that the “spatial” variable loaded 

perfectly onto the Orientation factor, that variable’s error variance was constrained to 

zero, enabling an admissible solution model to converge. Factor loadings were again 

universally significant (Table A3). Phonemic fluency was loaded onto two factors 

(executive function and language): for both, the coefficients were weak. 

 

The six-factor model formed the basis of a one-factor second-order model, again 

replicating Freitas, Simões, Marôco, et al. (2012). Again, the error variance for the 

“spatial” variable was constrained to zero. All of the first-order factors loaded 

strongly onto the higher-order factor (“cognition”), with the exception of orientation, 

which loaded more weakly. All loadings were statistically significant (Table A4). 

 

The three-factor model excluded 10 items that were also previously excluded in the 

original factor analysis (Benge et al., 2017) due to clear ceiling effects (specifically, 

the orientation, naming, and vigilance items). The subtractions test was cross-loaded 

onto both the executive and the verbal attention factors. All loadings were significant 

and coefficients were high, except for the loading of subtractions on verbal attention 

(Table A5). 

 

Fit statistics were computed for all of the above models (Table 6-3); none had a good 

fit, according to the previously defined cutoff values. When tested in the MoCA<26 

subgroup, correlation coefficients and fit statistics in the two-factor and three-factor 

models were generally poorer (Appendix 4, Tables A6-A8). The six-factor models 

failed to converge. With the MoCA<21 sub-group, all tested models failed to 

converge, possibly due to the limited sample size (n = 157). In each model, various 

strategies were explored with the aim of achieving convergence (e.g. examining 

modification indices and specifying better starting values), but the possible 

respecifications could not be justified theoretically, or did not lead to convergence. 
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Table 6-3. Goodness-of-fit statistics for the confirmatory factor analyses. 

Statistic 2-factor model 6-factor model 1-factor model 3-factor model 

χ2M 4031.53 2753.84 2994.20 1623.26 

dfM 169 155 164 101 

p <0.001 <0.001 <0.001 <0.001 

pclose-fit H0 <0.001 <0.001 <0.001 <0.001 

χ2 / df  23.86 17.77 18.26 16.07 

RMSEA (90% CI) 0.12 (0.11-0.12) 0.10 (0.10-0.10) 0.10 (0.10-0.10) 0.09 (0.09-0.10) 

CFI 0.62 0.74 0.72 0.81 

TLI 0.57 0.69 0.68 0.77 

SRMR 0.09 0.07 0.08 0.06 
 

All models were tested in the full sample (n = 1738). CFI = comparative fit index, CI = confidence 
interval, RMSEA = root mean square error of approximation, SRMR = standardised root mean square 
residual, TLI = Tucker-Lewis Index. 
 

 

6.3.3 Exploratory factor analysis 
 

In order to determine whether the MoCA’s items mapped to a different factor 

structure in this cohort, a novel exploratory factor analysis was conducted. The full 

sample was split randomly into two subgroups of approximately equal size (subgroup 

1, n = 856; subgroup 2, n = 882). The exploratory factor analysis was applied to 

subgroup 1, and then tested with confirmatory factor analysis in subgroup 2. 

Between-group comparisons found no significant differences between the subgroups 

in any of the tested variables (age, disease duration, education, etc.). 

 

The exploratory factor analysis was constrained to six factors after examining a 

screeplot. Factors identified were short-term memory (comprising recall items 1-5), 

executive-visuospatial function (cube, clock, trail-making, and subtractions), attention 

and working memory (repetition 1, digit spans forward and backward, vigilance, and 

phonemic fluency), verbal-executive function (abstraction 1 and 2 and phonemic 

fluency), orientation (temporal and spatial) and expressive language (repetition 2 and 

animals). Table 6-4 contains loadings for every item on every domain. 
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Table 6-4. Loadings for each item by factor using exploratory factor analysis. 
 

Item Memory 
Visuospatial-

executive 
Attention 

Verbal-

executive 
Orientation 

Expressive 

language 

Trail-making 0.03 0.60 0.03 0.04 0.13 –0.07 

Phonemic fluency 0.03 0.08 0.22 0.23 0.13 0.06 

Abstraction 1 –0.02 0.11 –0.08 0.59 0.14 0.02 

Abstraction 2 0.06 0.06 –0.08 0.68 0.07 0.23 

Animals 0.00 0.40 –0.06 0.13 –0.18 0.45 

Repetition 1 0.04 0.00 0.55 0.09 –0.15 0.27 

Repetition 2 0.06 –0.13 0.13 0.22 0.29 0.53 

Recall 1 0.35 0.10 0.02 0.23 –0.10 –0.22 

Recall 2 0.65 0.05 0.02 0.13 –0.11 –0.18 

Recall 3 0.69 0.04 –0.01 0.06 –0.01 –0.05 

Recall 4 0.74 –0.02 –0.01 –0.07 0.05 0.23 

Recall 5 0.74 –0.05 –0.02 -0.05 0.04 0.19 

Digits forward –0.02 0.06 0.72 –0.12 –0.10 –0.07 

Digits backward –0.05 0.18 0.48 –0.18 0.27 0.18 

Vigilance 0.05 –0.13 0.32 0.17 0.27 –0.06 

Subtractions –0.08 0.33 0.12 0.11 0.13 –0.03 

Cube –0.07 0.53 –0.06 0.24 0.05 0.08 

Clock 0.08 0.59 0.15 -0.01 –0.18 0.08 

Temporal 0.16 0.29 –0.08 –0.28 0.45 –0.09 

Spatial –0.05 –0.04 –0.08 0.17 0.84 0.08 
 

Values are correlation coefficients. For each item, the strongest loading is in bold text. This analysis 

was run on the full sample, subgroup 1. 
 
 
 
The new model did not converge when tested with confirmatory factor analysis in 

subgroup 2. Again, various strategies designed to achieve convergence were explored, 

but no appropriate respecifications emerged. Therefore, it was not possible to validly 
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compare the fit of the new model to previously tested ones. The model was not 

retained for further interpretation. 

 

A second exploratory factor analysis replicating Benge et al. (2017), constrained to 

three factors and excluding the orientation, naming, and vigilance items, was also 

conducted in subgroup 1. The resulting model was almost identical to that reported by 

Benge et al. (2017), the sole exception being backward digit span, which loaded 

strongly onto the verbal attention factor rather than the executive factor. Subjecting 

this revised model to confirmatory factor analysis in subgroup 2 again found poor fit 

statistics (Table A9). 

 

6.4 Discussion 
 

In a large PD cohort, no clear factor structure in the MoCA was found. Six-factor and 

one-factor second-order models reported in AD and MCI samples (Freitas, Simões, 

Marôco, et al., 2012), and a two-factor model reported in a varied dementia group 

(Duro et al., 2010), were not replicated in this cohort. Additionally, there was a poor 

fit for a three-factor model previously suggested as appropriate for PD (Benge et al., 

2017). Finally, new exploratory factor analyses did not identify any better structures 

to fit the observed data. 

 

The discrepancy between these results and some previous models may be explicable 

by different cognitive score distributions in the samples tested. In this sample, the 

mean MoCA score was 25.3, and 941 (54.1%) were in the normal range. In contrast, 

the samples in previous analyses had much lower cognitive scores, with overall means 

of 14.4 (Duro et al., 2010) and 22.4 (Freitas, Simões, Marôco, et al., 2012) in the 

cognitively impaired patients – in the latter study, the controls had a mean score of 

24.7, below the recommended cutoff for healthy cognition. In both studies, the MCI 

groups would have been considered moderately to severely impaired in this analysis, 

as they had means of 19.6 (Duro et al., 2010) and 18.3 (Freitas, Simões, Marôco, et 

al., 2012). Moreover, over two-thirds of the Tracking Parkinson’s cohort had more 

than 12 years of education, compared to only around 10% of one previously tested 
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sample (Duro et al., 2010). In the other study, the mean number of education years 

was only 7.8 (Freitas, Simões, Marôco, et al., 2012). 

 

The exploratory factor analysis previously conducted in PD (Benge et al., 2017) was 

based on a cohort much more similar to the Tracking Parkinson’s group; mean MoCA 

score, disease duration, education, and the ratio of men to women were all similar, 

though the other cohort was slightly younger. The present analysis found a poor fit for 

their model, showing that promising models generated by exploratory factor analysis 

do not necessarily have a good fit when tested in independent samples with 

confirmatory factor analysis. This was also the case for the new models generated by 

exploratory factor analysis in this project. Similar to Benge et al. (2017), the 

orientation, object naming, and digit span items had clear ceiling effects, reflecting 

their relative ease. Executive and memory items showed much greater variance, as 

was also the case for the AD group in Freitas et al.’s (2012) study. Therefore, 

screening tests designed to be even shorter than the MoCA (i.e. five minutes or less) 

should minimally include sensitive tests of these two domains. 

 

Combined, these results imply that a clear factor structure to the MoCA may emerge 

in cohorts that are characterised by more severe cognitive impairment, where a 

consistent and theoretically reasonable pattern of errors might emerge. However, this 

factor structure is obscured in cognitively normal or mildly impaired samples, where 

by definition most participants will provide correct responses to the majority of the 

MoCA’s items. Attempts were made to test this hypothesis in a subset of the Tracking 

Parkinson’s cohort with more severe impairment (MoCA<21), but the model failed to 

converge, probably due to the small sample size. Future research with a larger cohort 

of moderately or severely impaired PD patients would be useful to establish whether 

the factor structure reported in other dementias is evident in this context. Further 

follow-up of the Tracking Parkinson’s cohort could potentially explore this. 

 

The major strength of the present analysis was the very large sample size (n = 1738), 

which permitted a well-powered sub-group analysis with a MoCA<26 sub-group (n = 

797). A limitation was the relatively large number of participants (n = 262) who were 

excluded due to missing data. Additionally, the cohort was not fully representative of 
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the PD population at large, given the eligibility criteria requiring diagnosis 3.5 years 

or fewer before study enrolment, and the high education level. 

 

The current results suggest that the MoCA should be reserved for screening purposes, 

or for assessment of global level of cognitive function, as is suggested by the MDS 

(Litvan et al., 2012). The MoCA is a reliable and valid instrument for these purposes. 

Its coverage of multiple cognitive domains makes it particularly useful for screening 

non-AD dementias, even at the early stages of mild impairment, while also retaining 

the brevity of less sensitive assessments, such as the MMSE. However, detailed 

neuropsychological testing remains the gold standard for accurately measuring 

multiple cognitive domains and subsequently describing a patient’s cognitive profile. 

 

6.4.1 Conclusions 
 

These results do not support the existence of a clear factor structure to the MoCA in a 

large cohort of PD patients with overall normal or mildly impaired cognition. 

Comparisons to previous studies suggest that a clinically significant factor structure 

may emerge in samples with moderate to severe dementia. The MoCA may be useful 

for identifying meaningful subtypes in such cases, but the evidence suggests that it 

cannot do so in more mildly impaired patients, including those with PD-MCI. 

Therefore, for the present, subtyping people with PD-MCI should rely on the 

established procedure of detailed neuropsychological testing. The MoCA should be 

used for either screening purposes or for assessing global cognitive function in PD.  
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7 The influence of APOE and MAPT on 
cognitive decline in early PD 

 

7.1 Introduction 
 

Cognitive decline in PD and other neurodegenerative disorders is a highly polygenic 

trait, influenced by numerous genetic variants of modest individual effect size. Two 

of the genes that have been most extensively studied in relation to cognitive decline in 

PD are APOE and MAPT, though results have often been inconsistent, particularly for 

MAPT. This chapter presents a new, detailed analysis of APOE and MAPT, again 

using data from the Tracking Parkinson’s project, with the MoCA as the measure of 

cognitive function. The aim is to take advantage of the study’s large sample size, 

longitudinal design, and detailed genetic data to clarify the nature of the relationship 

between APOE and MAPT variants and cognition through the course of early PD. 

 

7.1.1 APOE: structure, function, and role in AD susceptibility 
 

Of the more than 30 genetic loci that have been implicated in AD susceptibility, 

APOE is by far the most significant (Pimenova et al., 2018). This gene is located at 

chromosome 19q13, consists of four exons, and encodes apolipoprotein E (apoE), the 

major apolipoprotein in the central nervous system. Mature human apoE consists of 

299 amino acid residues. A cysteine / arginine alternation at residues 112 and 158 

distinguishes three protein isoforms: apoE2, apoE3, and apoE4 (Zhong & Weisgraber, 

2009). These isoforms correspond to three alleles of the APOE gene – ε2, ε3, and ε4 – 

which are defined by two exonic single nucleotide polymorphisms (SNPs), rs429358 

and rs7412 (Rasmussen, 2016). These alleles have different frequencies in the 

population. One large meta-analysis reported a frequency in Caucasians of 8.4% for 

ε2, 77.9% for ε3, and 13.7% for ε4; ε3/ε3 homozygotes constituted almost two-thirds 

of healthy controls (Farrer et al., 1997). 

 

The three APOE alleles have different implications for AD susceptibility. The most 

common allele, ε3, is neutral with respect to AD risk. The ε4 allele is the major 
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genetic risk factor for AD. The effect size increases in a dose-dependent manner: the 

probability of AD is increased by approximately three times in individuals with a 

single copy of ε4 relative to individuals with no ε4 alleles, and by approximately eight 

times in ε4 homozygotes. This allele also reduces the average age of dementia onset 

by 9-16 years, and the average age of death by 5-6 years (Corder et al., 1993). The 

rarer ε2 allele is a protective factor against AD, and is about half as common in AD 

patients compared to healthy controls (Chartier-Harlin et al., 1994). Again, the 

magnitude of the effect depends on dosage. Thus, in order of AD susceptibility from 

lowest to highest risk, the APOE genotypes are as follows: ε2/ε2, ε2/ε3, ε3/ε3, ε2/ε4, 

ε3/ε4, and ε4/ε4 (Pimenova et al., 2018). 

 

The mechanisms by which APOE influences AD risk are incompletely understood, 

partly due to the multifunctionality of the apoE protein. The protein’s central role is in 

the transportation of cholesterol and triglycerides, but it also has isoform-specific 

effects on amyloid-β metabolism that are more relevant for AD pathogenesis (Y. 

Huang & Mahley, 2014). ApoE4 is less efficient at amyloid-β clearance than the other 

isoforms (Castellano et al., 2011), and also increases fibrillar amyloid-β deposition 

(Reiman et al., 2009). Both of these contribute to plaque formation, and subsequently 

to the neurotoxic cascade that ultimately leads to AD dementia. ApoE4 is also 

associated with heightened tau phosphorylation, reduced mitochondrial function, 

increased neuroinflammation, and decreased neurogenesis in regions such as the 

hippocampus (Y. Huang, 2010), all of which may further contribute to AD risk. 

 

7.1.2 MAPT: structure, function, and role in tauopathies 
 

The MAPT gene encodes the microtubule-associated protein tau, and it is therefore 

strongly linked to neurodegenerative tauopathies. The gene is located on chromosome 

17q21 and spans 134kb of nucleotide sequence. As a result of an ancient inversion of 

an approximately 900kb region, including the entire MAPT gene, there are two major 

haplotypes, H1 and H2, which are differentiated by a defined set of SNPs and an 

intron deletion in H2. The H2 haplotype is almost exclusive to European populations, 

in which it has a frequency of around 20% (Stefansson et al., 2005). Subsequent 

evolutionary processes led to multiple subhaplotypes that are unique to H1, and a 



   7-125 

small number that are unique to H2. A classification system introduced by Pittman et 

al. (2005) identified 24 subhaplotypes, designated H2a-H1x in descending order of 

frequency, which capture more than 95% of the diversity at the locus. 

 

Like apoE, tau is a multifunctional protein. Its primary role is in maintaining the 

structural integrity of neurons by regulating axonal transport, promoting neurite 

outgrowth, and assembling and stabilising microtubules in the cytoskeleton (Zhang et 

al., 2016). The protein is subject to numerous post-translational modifications, of 

which phosphorylation is the most relevant for neurodegenerative diseases. All 

tauopathies are defined by abnormally phosphorylated (usually hyperphosphorylated) 

tau. This impairs the protein’s normal function, thus compromising the structural 

integrity of neurons. Additionally, there may be a gain of neurotoxic function, as 

hyperphosphorylation of the tau protein promotes its pathological oligomerisation and 

aggregation into neurofibrillary tangles (Johnson & Stoothoff, 2004). 

 

Approximately 60 MAPT variants have been linked to neurodegenerative diseases 

(Zhang et al., 2016). Various mutations in the gene are pathogenic for autosomal 

dominant FTD (Rascovsky et al., 2011). The H1 haplotype is a major risk factor for 

primary tauopathies including progressive supranuclear palsy (Conrad et al., 1997; 

Höglinger et al., 2011), corticobasal degeneration (Houlden et al., 2001), and 

argyrophilic grain disease (Kovacs, Pittman, et al., 2008). Recent analysis of H1 

subhaplotypes indicated that they do not confer equal risk: for example, the strongest 

risk factors for progressive supranuclear palsy are the H1c, H1d, H1g, and H1o 

subhaplotypes (Heckman et al., 2019). The H2 haplotype is associated with reduced 

susceptibility to these disorders (Zhang et al., 2017). As a secondary tauopathy, AD is 

not as closely associated with MAPT as the primary tauopathies; however, genome 

wide association studies show that H1 increases AD risk and H2 decreases AD risk by 

small but statistically significant margins (Allen et al., 2014; Gerrish et al., 2012). 

 

7.1.3 Effects of APOE and MAPT in PD 
 

Given the associations of APOE and MAPT variants with neurodegenerative diseases, 

many researchers have assessed the potential link to PD susceptibility. For APOE, 
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results have often been inconsistent. Two meta-analyses found no overall link 

between ε4 and PD susceptibility; instead, ε2 – the protective allele with respect to 

AD – was implicated as a modest PD risk factor (X. Huang, Chen, & Poole, 2004; 

Williams-Gray, Goris, et al., 2009). Frequently small sample sizes, heterogeneity of 

odds ratios, and probable publication bias suggested that these conclusions should be 

interpreted with caution (Williams-Gray, Goris, et al., 2009). For MAPT, results have 

been more consistent: the link between H1 and PD has been clearly supported by 

genome wide association studies (Nalls et al., 2011), which found that the H1/H1 

genotype increases the risk of developing PD by around 50% relative to H1/H2 and 

H2/H2 (Zabetian et al., 2007). 

 

In addition to a potential role in PD pathogenesis, both APOE and MAPT have been 

studied as candidate genes for cognitive decline in PD. The autopsy studies presented 

in the systematic review in this thesis all found that ε4 carriers were over-represented 

in PD cases with dementia relative to those without, although statistical comparisons 

were not always significant (Compta et al., 2011; Irwin et al., 2012; Ruffmann et al., 

2016; L. Walker et al., 2015). These findings are consistent with large meta-analyses 

of clinical studies, which have reported that the presence of an ε4 allele in PD 

increases the risk of dementia by approximately 60-70% (Pang, Li, Zhang, & Chen, 

2018; Williams-Gray, Goris, et al., 2009). The ε4 allele also induces a more rapid 

cognitive deterioration in PD (Morley et al., 2012). Neuropsychological studies have 

suggested that the ε4 allele causes PD patients to express an amnestic cognitive 

phenotype similar to that of pure AD, characterised by poorer information encoding 

and semantic fluency associated with reduced activity in temporoparietal circuits 

(Mata et al., 2014; Nombela et al., 2014). While these data imply that ε4 promotes 

amyloid-β pathology and comorbid AD in PD, clinicopathological studies have also 

shown that ε4 increases the incidence of dementia in α-synucleinopathies with 

minimal coexistent Alzheimer lesions. This suggests that the gene may have direct 

effects on the propagation of Lewy pathology (Tsuang et al., 2013), consistent with 

some studies in the systematic review (Mattila et al., 2000; Ruffmann et al., 2016). 

 

Evidence for an effect of MAPT on cognitive decline in PD is more mixed. The H1 

haplotype has been linked to poorer memory (Morley et al., 2012) and visuospatial 

function (Nombela et al., 2014) in PD patients without overt cognitive impairment. 
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Another study (n = 512) reported that H1 was a strong predictor of dementia within 

five years of diagnosis (Williams-Gray, Evans, et al., 2009). However, several other 

studies have found no association of MAPT with cognition in PD. This included all of 

the autopsy studies in the systematic review that analysed this gene (Compta et al., 

2011; Irwin et al., 2012; Ruffmann et al., 2016), as well as the largest prospective 

study to date, which reported no link between MAPT and any cognitive measure in a 

total of 1079 patients with a mean of 6.6 years disease duration (Mata et al., 2014). 

 

It has been suggested that MAPT may influence cognition in early PD, but that this 

effect is muted in cases with longer disease durations (Collins & Williams-Gray, 

2016; Morley et al., 2012). While this could potentially explain much of the variation 

between studies, some authors reported an association of H1 with dementia even in 

cases with long disease durations (Setó-Salvia et al., 2011). Analysis of individual 

MAPT subhaplotypes might provide a more plausible explanation for the variability. 

The H1p subhaplotype has been linked to dementia in PD (Setó-Salvia et al., 2011), 

and H1g has been associated with DLB (Labbé, Heckman, Lorenzo-Betancor, Soto-

Ortolaza, et al., 2016). Another study linked various subhaplotypes (H1e, H1j, and 

H1x) to multiple system atrophy (Labbé, Heckman, Lorenzo-Betancor, Murray, et al., 

2016), another neurodegenerative α-synucleinopathy. Each of these studies found that 

the majority of MAPT subhaplotypes were neutral with respect to disease risk. 

 

The main objective of this analysis was to conduct a detailed assessment of the role of 

APOE and MAPT in cognitive decline in early PD. Data were again drawn from the 

Tracking Parkinson’s cohort. The analysis uses cognitive data collected over three 

years, and detailed genetic data that enabled estimation of 24 MAPT subhaplotypes. 

 

7.2 Methods 
 

7.2.1 Participants 
 

Basic information about the Tracking Parkinson’s study, including eligibility criteria, 

was provided in the previous chapter (section 6.2.1). This analysis used data from the 

baseline, 18-month, and 36-month follow-up visits, when participants completed an 
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in-depth assessment that included cognitive testing with the MoCA. Participants were 

excluded if they were missing genetic data for APOE or MAPT, or if full MoCA data 

were not available at each of the three timepoints. Additionally, only participants who 

self-reported white British ancestry were included, in order to limit confounding by 

ancestry (Lander & Schork, 1994). Following these procedures, the total sample size 

for the main analysis was 986. Further details on participants who were excluded, 

including the main reasons for exclusion, are provided in Appendix 5. 

 

7.2.2 Materials 
 

The primary outcome measure was the MoCA version 7.1. Scores were adjusted for 

education, to a maximum of 30, as described previously. The rate of cognitive decline 

was calculated by subtracting a later MoCA score from an earlier one (e.g. a 

participant with a MoCA of 29 at baseline and 24 at 36 months had a 0-36 month 

decline of 5 points). A higher change indicated greater cognitive decline; zero 

indicated no change, and a negative value indicated improvement. The MoCA score 

at each timepoint was used to define probable cognitive status in three categories: 

normal (MoCA 26-30), MCI (21-25), and dementia (<21). These cutoffs have good 

psychometric properties and have been used previously (Dalrymple-Alford et al., 

2010; Malek et al., 2015). 

 

As in Chapter 6, functional impairment resulting from cognitive deficits was assessed 

with the MDS UPDRS 1.1; Hoehn and Yahr stage was used to quantify the degree of 

motor impairment; and all anti-Parkinson medications were converted into LEDD. 

Education was recorded dichotomously as more than 12 years of education versus 

fewer than 13 years of education. For each analysis, age and disease duration were 

converted to binary variables based around a median split, in order to facilitate 

examination of statistical interactions. 

 

7.2.3 Genotyping 
 

Blood samples were collected from each participant at baseline. An ethylene diamine 

tetra-acetic acid sample was used for DNA extraction, and transferred to the genetics 
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laboratory at the Medical Research Council Centre for Neuropsychiatric Genetics and 

Genomics at Cardiff University for analysis. 

 

SNP array genotyping was performed using the Illumina HumanCore Exome array. 

Over half a million SNPs, including approximately 27 000 custom variants previously 

associated with neurological or psychiatric disorders, were analysed (Malek et al., 

2015). Genotypes were aligned to the Haplotype Reference Consortium panel (hg19 / 

GRCh37) using perl script (http://www.well.ox.ac.uk/~wrayner/tools/) for imputation. 

Pre-imputation haplotype phasing was performed with Eagle, and imputation with 

Minimac3 (Das et al., 2016) using the 1000 Genomes Phase 3 v5 panel (Auton et al., 

2015), a mixed population reference panel. 

 

PHASE 2.1 (Stephens & Donnelly, 2003) was used for reconstructing genotypes. The 

SNPs for determining APOE status were not directly genotyped, but were imputed to 

a high quality (INFO >0.98 for rs429358 and rs7412). MAPT H1 and H2 haplotypes 

were distinguished by rs9468. The subhaplotypes specified for the analysis were the 

24 originally defined by Pittman (2005). 

 

7.2.4 Statistical analysis 
 

Statistical analysis used Stata version 15 (StataCorp, 2017). A chi-square was used to 

test whether APOE and MAPT allele frequencies deviated from the Hardy-Weinberg 

equilibrium; significant deviations may reflect population stratification, genotyping 

errors, or other factors that might lead to bias (Namipashaki, Razaghi-Moghadam, & 

Ansari-Pour, 2015). The test used the user-written “genhw” command (Cleves, 1999). 

 

Linear regression was used with continuous dependent variables (MoCA score and 

rate of cognitive decline). The robust estimator of variance was used to calculate the 

standard errors. Standard assumptions of linear regression (including normality and 

homoscedasticity of the residuals) were checked for each model. When MoCA score 

was the dependent variable, normality plots indicated that the residuals were 

somewhat skewed, but given the large sample size and the robustness of linear 

regression models, no data transformations were applied. Ordered logistic regression 
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was used with the categorical dependent variable (cognitive status). The assumption 

of proportional odds was tested, and if this was violated, generalised ordered logistic 

regression using the “gologit” command (Williams, 2006) was used. 

 

Separate analyses were run with the primary independent variable as APOE genotype 

(ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4) and MAPT genotype (H1/H1, H1/H2, and 

H2/H2); reference categories were set as ε3/ε3 in the APOE analyses and H1/H1 in 

the MAPT analyses. Secondary analyses used the number of APOE ε4 alleles (0, 1, or 

2), APOE ε4 status (positive/negative), and MAPT H2 status (positive/negative) as the 

main independent variables. Each analysis was initially unadjusted, then adjusted for 

sex and age (partially adjusted), and finally adjusted for sex, age, disease duration, 

and education (fully adjusted). Due to some missing data for disease duration or 

education, the sample size for the fully adjusted models was 969 at baseline and at 36 

months, and 966 at 18 months. The APOE analyses were not adjusted for MAPT 

status, and vice versa. As described above, age, disease duration, and education were 

dichotomised. In fully adjusted models, genotypes were tested for interactions with 

each of the other predictor variables, and stratified analysis (e.g. sex-stratified, age-

stratified) was conducted subsequently if a significant interaction was found. 

 

Further analysis of MAPT subhaplotypes used logistic regression with the user-written 

“haplologit” command (Marchenko, Carroll, Lin, Amos, & Gutierrez, 2008), a 

semiparametric profile-likelihood method that uses phased and unphased SNP data to 

estimate subhaplotype effects. The binary outcome measure was normal cognition 

versus dementia. Participants with probable MCI (MoCA 21-25) were excluded. Only 

data from the 36-month visit were used, as this timepoint had the highest raw number 

and the highest percentage of participants with dementia. 

 

Because subhaplotypes were unphased, their frequencies were not directly observed; 

therefore, they were estimated using haplologit’s expectation-maximisation algorithm. 

An additive model was used, allowing for the effect of an extra copy of a given 

haplotype to be assessed. The reference category was the subhaplotype with the 

highest estimated frequency in participants without dementia, combined with all rare 

subhaplotypes, which were defined by a frequency lower than 2 divided by the total 
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sample size. The analysis was adjusted for sex and age category. Power calculations 

were run with G*Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 2009). 

 

The Stata syntax for the analysis is available online on the Open Science Framework 

[https://osf.io/wh6k4/]. 

 

7.3 Results 
 

7.3.1 Descriptive statistics 
 

The distribution of APOE and MAPT genotypes is shown in Table 7-1. Observed 

genotype frequencies did not significantly deviate from Hardy-Weinberg expected 

frequencies (APOE χ2 = 7.3, p = 0.06; MAPT χ2 = 0.007, p = 0.93). 

 

 

Table 7-1. Distribution of APOE and MAPT genotypes (n = 1002). 

 APOE genotype n (%) 

ε2/ε2 9 (0.9) 

ε2/ε3 128 (13.0) 

ε2/ε4 37 (3.8) 

ε3/ε3 592 (60.0) 

ε3/ε4 199 (20.2) 

ε4/ε4 21 (2.1) 

MAPT genotype  

H1/H1 639 (64.8) 

H1/H2 309 (31.3) 

H2/H2 38 (3.9) 

 

 

 

Table 7-2 provides descriptive statistics for the Tracking Parkinson’s cohort in the 

present analyses at the baseline, 18-month, and 36-month timepoints. The mean 
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change in MoCA score was –0.2 (SD 2.7) from baseline to 18 months, with 37.4% of 

participants declining, and the remainder either staying the same or improving. The 

mean change was 0.4 (SD 2.8) from 18-36 months (with 45.3% declining), and 0.4 

(SD 3.3) from baseline to 36 months (with 42.1% declining). 

 

 

Table 7-2. Descriptive statistics for the analysis sample at each timepoint. 

  Baseline 18 months 36 months 

Sample size (n) 986   

Male sex (n, %) 625 (63.4)   

Age in years 66.7 (8.9) 68.3 (8.9) 69.9 (9.1) 

Disease duration in years 1.3 (0.9) 2.9 (0.9) 4.4 (2.2) 

>12 years education (n, %) 683 (69.3)   

Hoehn and Yahr (median, IQR) 1.5 (1-2) 2 (1.5-2.5) 2 (1.5-2.5) 

LEDD 280 (207) 421 (253) 558 (293) 

MoCA 25.9 (3.0) 25.9 (3.3) 25.5 (3.9) 

Normal cognition (n, %) 608 (61.7) 620 (62.9) 581 (58.9) 

MCI (n, %) 327 (33.2) 295 (30.0) 299 (30.3) 

Dementia (n, %) 50 (5.1) 70 (7.1) 105 (10.6) 

MDS UPDRS 1.1 0.4 (0.7) 0.6 (0.7) 0.7 (0.9) 
    

Data are mean (standard deviation) unless otherwise specified. Across all visits, full data on disease 
duration were missing for 4 participants; UPDRS for 9; Hoehn and Yahr for 42; LEDD for 21; and 
education for 18. Cognitive status was determined based on MoCA score: normal = 26-30, MCI = 21-25, 
dementia = 0-20. IQR = interquartile range, LEDD = levodopa equivalent daily dose, MCI = mild 
cognitive impairment, MDS = Movement Disorder Society, MoCA = Montreal Cognitive Assessment, 
UPDRS = Unified Parkinson's Disease Rating Scale. 
 

 

7.3.2 APOE 
 

The results of all unadjusted, partially adjusted, and fully adjusted regression models 

are provided in Appendix 6. The fully adjusted linear regression models found no 

associations between APOE genotype and cross-sectional MoCA score at any 

timepoint, though at 36 months, deleterious effects of the ε3/ε4 (unstandardised 
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coefficient [95% CI]: –0.6 [–1.2, 0.0], p = 0.06) and ε4/ε4 (–1.6 [–3.4, 0.2], p = 0.09) 

genotypes relative to ε3/ε3 approached statistical significance. 

 

There was a significant interaction between APOE genotype and sex at each 

timepoint. Subsequent sex-stratified analyses found significant associations between 

APOE genotype and cognitive outcome that varied by sex. Relative to male ε3 

homozygotes, male ε2 homozygotes had higher cognitive scores at all timepoints; in 

contrast, male ε4 homozygotes had lower cognitive scores at 18 and 36 months. The 

ε2/ε3 genotype was marginally deleterious in men at baseline only. In women, ε4 

homozygosity was protective at 18 and 36 months, and there was a marginal 

protective effect of ε2/ε3 at 18 months, but not at baseline or 36 months (Table 7-3). 

 

No significant interactions between APOE genotype and age, disease duration, or 

education were observed at any timepoint. 

 

Unadjusted, partially adjusted, and fully adjusted logistic regression models to predict 

cognitive status found no significant associations at any timepoint. Moreover, there 

were no significant interactions with any of the other predictors. However, based on 

the interaction that had been observed in the linear regression results for MoCA score, 

a sex-stratified analysis was conducted. This found that in men only, ε4 homozygosity 

was significantly associated with higher odds of worse cognitive status at 18 (2.9 [1.0, 

8.4], p = 0.04) and 36 months (odds ratio [95% CI]: 3.9 [1.3, 11.7], p = 0.02). 

 

The next analyses used the magnitude of MoCA change between study visits as the 

outcome variable. Fully adjusted models found no effect of APOE genotype on 

change from baseline to 18 months or 18 to 36 months. However, the ε2/ε3 genotype 

was marginally protective from baseline to 36 months (unstandardised coefficient 

[95% CI]: –0.6 [–1.2, 0.0], p = 0.04) relative to the ε3/ε3 reference genotype. 
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Table 7-3. Effect of APOE genotype on cognition, stratified by sex. 

 Men (n = 614) Baseline 18 months 36 months 

ε2/ε2 
2.5 (1.2, 3.8) 

p < 0.001* 

3.1 (2.7, 3.5) 

p < 0.001* 

2.8 (2.0, 3.7) 

p < 0.001* 

ε2/ε3 
–0.9 (–1.8, –0.2) 

p = 0.05* 

–0.6 (–1.5, 0.3) 

p = 0.22 

–0.3 (–1.2, 0.6) 

p = 0.48 

ε2/ε4 
0.3 (–1.3, 1.3) 

p = 0.97 

–0.3 (–2.4, 1.7) 

p = 0.74 

–0.6 (–2.6, 1.5) 

p = 0.59 

ε3/ε4 
–0.3 (–1.0, 0.3) 

p = 0.30 

0.2 (–0.4, 0.9) 

p = 0.49 

–0.5 (–1.3, 0.3) 

p = 0.24 

ε4/ε4 
–1.0 (–2.4, 0.4) 

p = 0.16 

–2.2 (–4.0, –0.5) 

p = 0.01* 

–3.3 (–5.7, –0.8) 

p = 0.008* 

Women (n = 355)    

ε2/ε2 
–0.6 (–2.7, 1.6) 

p = 0.60 

–0.1 (–1.5, 1.2) 

p = 0.84 

0.2 (–1.4, 1.9) 

p = 0.79 

ε2/ε3 
0.5 (–0.4, 1.4) 

p = 0.30 

0.8 (0.0, 1.6) 

p = 0.05* 

0.9 (–0.1, 1.9) 

p = 0.06 

ε2/ε4 
–0.1 (–1.6, 1.3) 

p = 0.78 

0.2 (–1.8, 2.3) 

p = 0.82 

–1.0 (–3.8, 1.8) 

p = 0.50 

ε3/ε4 
0.1 (–0.6, 0.8) 

p = 0.81 

–0.2 (–1.1, 0.6) 

p = 0.58 

–0.8 (–1.7, 0.2) 

p = 0.13 

ε4/ε4 
0.7 (–0.2, 1.7) 

p = 0.60 

1.2 (0.2, 2.3) 

p = 0.02* 

1.8 (0.4, 3.1) 

p = 0.001* 

    
Data are unstandardised regression coefficient (95% CI); significance level. The dependent variable is MoCA 
score. The reference category is APOE ε3/ε3. Positive values indicate a higher MoCA score than the mean score 
in the ε3/ε3 group, and negative values indicate a lower MoCA than ε3/ε3. Age, disease duration, and education 
category were covariates. *p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive Assessment. 
 

 

The MoCA change model from baseline to 36 months showed significant interactions 

between APOE and sex, age, and disease duration (separately). Sex-stratified analysis 

indicated that ε4 homozygosity was associated with cognitive decline over this period 

only in men (2.5 [0.8, 4.2], p = 0.004). Age-stratified analysis showed that the ε2/ε3 

genotype was protective only in older participants (–1.4 [–2.4, –0.4], p = 0.008); the 

ε2/ε4 genotype was marginally deleterious only in younger participants (1.3 [0.0, 2.6], 
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p = 0.05). Finally, when the analysis was stratified by disease duration, ε2/ε2 and 

ε2/ε3 were protective (–1.7 [–3.2, –0.3], p = 0.02 and –1.3 [–2.1, –0.6], p < 0.001, 

respectively) only in participants with a longer disease duration, whereas ε3/ε4 and 

particularly ε4/ε4 were deleterious (0.8 [0.0, 1.5], p = 0.04 and 3.2 [0.9, 5.5], p = 

0.007, respectively) in those with a shorter disease duration. Over the shorter intervals 

(baseline to 18 months and 18-36 months), no significant interactions were observed. 

Secondary analyses used different indices of APOE status as the predictor. When the 

number of APOE ε4 alleles was used, the results were almost identical to the above. 

When ε4 positivity was used, most previously observed results, including all 

interactions, were no longer evident. These results are summarised in Appendix 7. 

 

7.3.3 MAPT 
 

Unadjusted, partially adjusted, and fully adjusted linear regression models found no 

statistically significant relationships between the three major MAPT groups (H1/H1, 

H1/H2, and H2/H2) and MoCA scores at any timepoint (Appendix 6). Similarly, no 

associations were found when logistic regression was used to examine the relationship 

with cognitive status, nor when the magnitude of MoCA decline was the dependent 

variable. There was no significant interaction between MAPT genotype and any of the 

other predictors in any analysis. The results were almost identical when the analysis 

was simplified to a comparison of H2 carriers with non-carriers (Appendix 7). 

 

For the subhaplotype analysis, participants with MCI (n = 299) were excluded, 

leaving a sample size of 686 (581 with normal cognition and 105 with dementia). The 

expectation-maximisation algorithm estimated that the most common subhaplotype 

was H2a, which had a frequency of 20.6%, comparable to previous studies (Labbé, 

Heckman, Lorenzo-Betancor, Soto-Ortolaza, et al., 2016; Pittman et al., 2005). The 

reference category was formed by combining H2a (allele sequence: AGGCCG) with 

subhaplotypes that had an estimated frequency lower than 0.3%, of which there were 

two: H1k (AAACTG) and H2w (GGGCCG). Three participants had constituent 

haplotype frequencies below 0.3%, and these were excluded from further analysis. 

Odds ratios were therefore computed in 683 participants for 21 subhaplotypes (Table 

7-4), adjusted for sex and age category. The unadjusted model is included in 
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Appendix 8. As shown, no MAPT subhaplotypes were significantly associated with 

dementia. 

 
 

Table 7-4. Effect of MAPT subhaplotypes on odds of dementia in PD. 

Subhaplotype Allele 
sequence 

Estimated 
frequency (%) 

OR 
(95% CI) p-value 

H1b GGGCTA 17.9 0.7 (0.4, 1.2) 0.18 

H1c AAGTTG 15.1 0.8 (0.5, 1.4) 0.44 

H1d AAGCTA 7.5 0.7 (0.3, 1.5) 0.39 

H1e AGGCTA 6.8 0.9 (0.4, 1.8) 0.71 

H1f GGACTA 0.7 2.2 (0.3, 16.1) 0.42 

H1g GAACTA 1.2 0.8 (0.1, 5.4) 0.83 

H1h AGACTA 2.8 1.3 (0.5, 3.5) 0.58 

H1i GAGCTA 4.3 1.8 (0.9, 3.6) 0.12 

H1j AGGCTG 1.0 –* 0.99 

H1l AGACTG 4.8 1.2 (0.6, 2.4) 0.63 

H1m GAGCTG 2.3 1.5 (0.6, 3.8) 0.40 

H1n GGACTG 1.0 –* 1.00 

H1o AAACTA 1.1 1.3 (0.3, 5.8) 0.76 

H1p GGGTTG 0.04 3.7 (0.7, 19.6) 0.12 

H1q AAGTTA 1.3 0.4 (0.5, 3.3) 0.42 

H1r AGGTTG 1.6 1.0 (0.2, 4.0) 0.96 

H1s GGGCTG 1.1 –* 0.99 

H1t AGATTG 1.0 –* 0.99 

H1u AAGCTG 2.5 1.7 (0.7, 3.9) 0.24 

H1v GGATTG 1.7 0.9 (0.2, 3.9) 0.94 

H1x GAATTG 1.4 1.1 (0.2, 5.4) 0.93 
 

For allele sequence, SNPs are in the following order: rs1467967, rs242557, rs3785883, rs2471738, 
rs9468 (H2-tagging), and rs7521. The reference category was H2a combined with all rare 
subhaplotypes (estimated frequency <0.3%). *OR very close to 0, with undefined upper CI limits and 
p-values very close to 1; therefore, results are not reported. CI = confidence interval, OR = odds ratio, 
SNP = single nucleotide polymorphism. 
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Power calculations indicated that the analysis was often underpowered for rarer 

subhaplotypes and smaller odds ratios (Appendix 9). 

 

7.3.4 Sensitivity analysis 
 

The sensitivity analysis repeated the main analysis, but included participants who had 

been excluded due to incomplete MoCA data (n = 781). The extent of missing data 

and the main reasons for it are summarised in Appendix 5, and the results of the 

sensitivity analysis are provided in Appendix 10. Statistically significant associations 

were slightly more frequent in the sensitivity analysis. For APOE, the mild deleterious 

effect of ε3/ε4 on MoCA score at 36 months crossed into significance in the fully 

adjusted model, and there were some additional marginally significant interactions. 

Sex-stratified effects of APOE on MoCA score were similar to the main analyses 

above. For MAPT, results were again very similar to the main analyses, with no 

significant results in any fully adjusted model. 

 

7.4 Discussion 
 

This study provides a detailed analysis of the influence of APOE and MAPT on 

cognitive decline in early PD, with full genotyping of both genes and a large sample 

size as important strengths of this work. The primary novel finding was that the 

effects of APOE ε4 homozygosity were significant only in men, with evidence of 

lower cognitive scores and higher odds of cognitive impairment at the 18 and 36 

month timepoints, and an accelerated cognitive decline over the entire three-year 

period. Male ε2 homozygotes had consistently higher cognitive scores, though here 

there was no observable effect on rate of decline. Furthermore, in women only, there 

was an unexpected protective effect of ε4 homozygosity on cross-sectional MoCA 

score at 18 and 36 months. These results were independent of the potentially 

confounding effects of age, disease duration, and education, and they were supported 

by the sensitivity analysis, which had a larger sample size. 

 

Interactions between APOE and sex are well established in the AD literature, but they 

are in the opposite direction. Meta-analyses have indicated that the protective effect of 
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ε2 and the deleterious effect of ε4 on AD risk are significantly greater in women than 

in men, particularly up to the age of around 75 (Farrer et al., 1997; Neu et al., 2017). 

Moreover, female ε4 carriers have a faster rate of cognitive decline than male ε4 

carriers at the MCI stage (X. Wang et al., 2019). Multiple mechanisms for these sex 

differences have been suggested, including a complex interaction of apoE systems 

with oestrogenic changes in peri- and post-menopausal women (Riedel, Thompson, & 

Brinton, 2016), and an exacerbating effect of ε4 on tau pathology in women but not in 

men (Altmann, Tian, Henderson, Greicius, & ADNI Investigators, 2014). 

 

In sharp contrast to AD, male sex is a risk factor for PD (K. M. Smith & Dahodwala, 

2014), and men typically have a worse clinical progression (Haaxma et al., 2007), 

including a higher incidence of cognitive decline and dementia (Cereda et al., 2016; 

Miller & Cronin-Golomb, 2010). The current study suggests that a sexually dimorphic 

role of APOE – which was not examined in any of the studies above – may partially 

underlie the sex differences in the cognitive decline of PD versus AD. Biomarker and 

animal studies are needed to explore the biological mechanisms by which APOE 

interacts with sex to affect cognition in PD specifically. In addition, replication of this 

result in other large PD cohorts would also be useful, in order to verify that it is not a 

false positive result. Finally, this finding underscores the importance of considering 

sex as a covariate in future studies of APOE in PD. 

 

In the cohort as a whole, there was no clear effect of APOE on cognitive scores cross-

sectionally. Similarly, the link between APOE and the rate of cognitive decline over 

time was weak, with a significant effect only of the ε3/ε4 genotype between the 18 

and 36-month follow-up visits. A potential reason for this is the relative instability of 

cognition in early PD. Other prospective studies with three-year follow-up of newly 

diagnosed PD patients have indicated that a substantial minority fluctuate or even 

improve over this period (Lawson, Yarnall, Duncan, et al., 2017). It may be that more 

robust associations of APOE with cognitive decline will emerge with time. The 

Tracking Parkinson’s study is ongoing, and an update of this analysis will be useful 

when participants are in the middle to late stages of the disease, and the incidence of 

advanced cognitive dysfunction is appreciably higher. 
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Variants of the MAPT gene (including subhaplotypes) were not associated with any 

measure of cognition in this cohort. The historically inconsistent results relating the 

major MAPT haplotypes to cognitive decline in PD have been attributed to differences 

in disease duration; variation in MAPT has been suggested to be most relevant in early 

PD (Collins & Williams-Gray, 2016; Morley et al., 2012), although this hypothesis 

does not explain all of the discrepancies (Setó-Salvia et al., 2011). The present study 

provides further evidence against this hypothesis, as MAPT haplotypes were unrelated 

to cognition in the 4-5 years following PD diagnosis. These results are consistent with 

a similarly large-scale prospective study that had more detailed, domain-focused 

neuropsychological testing (Mata et al., 2014), and with all of the autopsy studies in 

the systematic review in this thesis that conducted an analysis of MAPT (Compta et 

al., 2011; Irwin et al., 2012; Ruffmann et al., 2016). The weight of these studies 

together indicates that MAPT H1 does not increase the risk of cognitive decline in PD. 

 

Analysis of MAPT subhaplotypes is a relatively new area of research, particularly 

within the α-synucleinopathy spectrum. In the current study, no subhaplotypes 

approached statistical significance for distinguishing PD patients with dementia from 

those without. This included H1p and H1g, which have previously been found to be 

overrepresented in PDD or DLB relative to controls (Labbé, Heckman, Lorenzo-

Betancor, Soto-Ortolaza, et al., 2016; Setó-Salvia et al., 2011). Variation in statistical 

methods, the definition of dementia, and demographics may partially explain the 

inconsistency. However, a more likely explanation is the rarity of most MAPT 

subhaplotypes combined with sub-optimal sample sizes. The current study, like the 

others above, had a relatively small sample size for a genetic association study, and 

the power analysis consistently showed limited power with rarer subhaplotypes. Thus, 

there was potential for a false-negative result, whereby a significant relationship 

between one or more subhaplotypes and dementia may have emerged with a larger 

PD sample. Future studies from other large cohorts and, in particular, meta-analyses 

of the accumulated results are needed to verify the present findings. 

 

As stated, a limitation of the study was the sample size, which was larger than the vast 

majority of other studies of PD, but small for a genetic association study. A second 

limitation of this study was the reliance on the MoCA as the sole index of cognitive 

function. This test has good psychometric properties and is recommended by the 
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MDS for global cognitive assessment in PD (Litvan et al., 2012); however, it is 

designed as a brief dementia screening instrument, and does not offer comprehensive 

coverage of individual cognitive domains, as illustrated in the previous chapter. In 

addition, the MoCA is susceptible to practice effects with repeated administrations 

(Cooley et al., 2015), as was the case in this study. This may have contributed to the 

variability in cognitive progression seen in these participants, of whom a substantial 

proportion fluctuated or improved across the three-year study period. Future 

prospective studies should take advantage of the three different versions of the test if 

repeated administrations are to be performed over time. 

 

Finally, the study had limited representativeness. Most of the participants in the 

cohort were relatively young and early in the disease course; high education was 

typical, and the analysis was restricted to those who self-reported white British 

ancestry. Further follow-up of the cohort will allow the effects of APOE and MAPT to 

be examined in the middle to late stages of the disease, when the proportion with 

significant cognitive dysfunction is higher. Additional cohort studies are needed to 

investigate whether these results are replicable in other populations. 

 

7.4.1 Conclusions 
 

A thorough analysis of the APOE and MAPT genes in a large prospective cohort of 

people with early PD found significant effects of both protective and deleterious 

variants of APOE in men only. This finding partly explains why the rate and severity 

of cognitive decline in PD is more marked in men, in contrast to AD, where women 

are more severely affected. Further research into the biological nature of the APOE-

by-sex interaction in PD is warranted; moreover, stratifying by sex is important for 

future studies of APOE in PD. In contrast to APOE, variation in the MAPT gene was 

not associated with cognition in this cohort. These results provide further evidence 

refuting earlier observations that MAPT H1 is a significant risk factor for dementia in 

PD. Novel treatment strategies directed against APOE, which are discussed in Chapter 

9, may be useful for managing cognitive decline in a subset of PD patients.  
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8 Distinct disease syndromes in cognitively 
impaired PD patients2 

 

8.1 Introduction 
 

The evidence presented in this thesis thus far shows that the pathology underlying 

cognitive decline in PD is complex. As shown in the systematic review in Chapter 3, 

Lewy pathology is the primary substrate of dementia in PD, but there is frequently a 

contribution from comorbid Alzheimer pathologies. Coexistent cerebrovascular and 

TDP-43 lesions do not have a major independent contribution to dementia in PD, 

though they are present to varying degrees in many autopsied cases, and may affect 

the rate or the neuropsychological presentation of cognitive decline. Because new 

treatments for cognitive decline in PD are targeted against the underlying pathology, 

there is an important need to define the extent of coexistent pathologies in people with 

PD in vivo. This chapter presents an observational study that aimed to achieve this. 

 

The most important development in the treatment of neurodegenerative disorders in 

recent years has been the move towards disease-modifying therapies. Current 

medications for motor impairment in PD (e.g. levodopa) and cognitive impairment 

across the spectrum of dementia disorders (acetylcholinesterase inhibitors and 

memantine) are purely symptomatic. Disease-modifying therapies, in contrast to these 

medications, are targeted against a specific neurotoxic protein pathology. As a result, 

these therapies could potentially slow or halt the progression of a neurodegenerative 

disorder, preventing further neuron death and the associated worsening of the clinical 

features (O'Hara et al., 2018). 

 

Naturally, a prerequisite for effective implementation of disease-modifying therapies 

is that they are used against the appropriate protein pathology. For example, in PD, 

treatments that target α-synuclein might ameliorate cognitive decline in a patient with 

a relatively pure α-synucleinopathy, but they would be less efficacious if there are 

                                                
2 The author acknowledges the contribution of Dr. Katherine Grosset to the conception, planning, and 
design of the work presented in this chapter. 
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coexistent AD changes also acting on cognition. As these therapies enter large-scale, 

long-term, and expensive clinical trials, this is an important element to consider. As 

shown, a high frequency of multiple pathology is to be expected in PD cohorts (Irwin 

et al., 2013), and this may confound the results of a trial by increasing the probability 

of a false negative finding. Therefore, it is essential to identify coexistent pathologies 

in prospective cohorts, and to consider their potential impact during data analysis. 

 

Objectively identifying and measuring a given protein pathology in vivo has been 

facilitated by the development of specific biomarkers, including CSF assays and 

neuroimaging methods (Blennow et al., 2016). Biomarkers are valuable methods of 

monitoring disease progression in longitudinal studies, and for quantifying outcome 

measures in clinical trials of disease-modifying therapies, as has already been done in 

Phase 3 trials of drugs that target amyloid-β aggregation (Vandenberghe et al., 2016). 

However, at present, biomarkers for neurodegenerative disorders other than AD are 

not well established. This includes PD, for which a valid α-synuclein CSF signature 

or radioligand has not yet been introduced (Blennow et al., 2016; Harada et al., 2018). 

 

Because established biomarkers for cognitive decline in PD are currently unavailable, 

characterising the severity and the nature of a patient's cognitive impairment relies on 

clinical evaluation. As reviewed in Chapter 4, the current diagnostic criteria are valid 

and reliable methods of identifying cognitive disorders in vivo, and they are widely 

used in research. In clinical care settings, a heuristic diagnosis by an expert clinician 

is the usual procedure, though the diagnostic criteria may be consulted as an aid in 

specific cases (Jack et al., 2018). 

 

The objective of this study was to use a structured clinical assessment to ascertain the 

proportion of cognitively impaired PD patients who meet criteria for a diagnosis of 

different cognitive disorders. A secondary objective was to identify specific tests that 

have value for differential diagnosis. 

 
8.2 Methods 
 

The study had a cross-sectional, observational design, and was conducted in 

compliance with the Declaration of Helsinki (World Medical Association, 1967). A 
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favourable ethical opinion was granted by the local NHS research ethics committee 

(reference code 17/NS/0049) and by the Health and Social Care research and 

development departments at NHS Greater Glasgow and Clyde and NHS Lanarkshire 

(reference code GN17NE086). Recruitment took place between October 2017 and 

February 2019. Funding was given by the Neurosciences Foundation, a registered 

charity based in Scotland (charity number SCO11199). Reporting followed the 

Strengthening the Reporting of Observational Studies in Epidemiology guidelines for 

cross-sectional studies (Vandenbroucke et al., 2007; von Elm et al., 2007). 

 

8.2.1 Participants 
 

All participants had PD diagnosed by a specialist neurologist in movement disorder 

clinics in Glasgow and Lanarkshire, Scotland, in addition to cognitive problems either 

self-reported or documented in the medical notes. Further inclusion criteria were age 

between 18 and 90 (inclusive), capacity to provide informed consent, and objective 

evidence of potentially significant cognitive impairment on screening, defined by a) a 

score below 27 on the MoCA (Nasreddine et al., 2005), b) a score above 3.3 on the 

IQCODE (Jorm, 1994), or c) functional impairment resulting from cognitive 

problems reported on the MDS UPDRS 1.1 (Goetz et al., 2008). 

 

Each participant nominated one person to complete informant-rated questionnaires. 

The informant had to have known the participant for 10 years or more, to be aged 

between 18 and 90 (inclusive), and to have capacity to provide informed consent. 

 

8.2.2 Materials 
 

Potentially eligible patients were screened, and eligible participants then completed a 

multi-domain neuropsychological assessment incorporating selected subtests from 

various test batteries that are suitable for people with PD (Table 8-1). The assessment 

lasted around 90 minutes, and included at least two tests in each cognitive domain, in 

line with MDS guidelines (Litvan et al., 2012). 
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Table 8-1. List of neuropsychological tests by cognitive domain. 

Cognitive domain Test 

Memory KBNA word lists (free recall, delayed recall, and recognition); 

KBNA picture recognition 

Executive function KBNA phonemic and semantic fluency; KBNA practical problem-

solving and conceptual shifting; DKEFS color-word interference 

Attention and speed WAIS-IV digit span forwards and backwards; SDMT (spoken 

version) 

Visuospatial skills RBANS line orientation; VOSP incomplete letters; VOSP object 

decision; interlocking pentagons 

Language KBNA picture naming; KBNA auditory comprehension 

Praxis KBNA praxis test 
 

DKEFS = Delis-Kaplan Executive Function System (Delis, Kaplan, & Kramer, 2001), KBNA = 
Kaplan-Baycrest Neurocognitive Assessment (Leach, Kaplan, Rewilak, Richards, & Proulx, 2000), 
RBANS = Repeatable Battery for the Assessment of Neuropsychological Status (Randolph, Tierney, 
Mohr, & Chase, 1998), SDMT = Symbol Digit Modalities Test (A. Smith, 1982), VOSP = Visual 
Object and Space Perception Battery (Warrington & James, 1991), WAIS-IV = Wechsler Adult 
Intelligence Scale, Fourth Edition (Wechsler, 2008). 
 

 

Participants also completed several questionnaires to explore various other diagnostic 

features. Hyposmia was defined by a score below 23 on the Hyposmia Rating Scale 

(Millar Vernetti, Perez Lloret, Rossi, Cerquetti, & Merello, 2012). Anxiety and 

depression were measured with the Hospital Anxiety and Depression Scale (Stern, 

2014; Zigmond & Snaith, 1983): scores of 0-7 were normal, 8-10 indicated mild 

impairment, and greater than 10 indicated marked impairment. A positive response to 

items 6-10 on the Psychosis and Hallucinations Questionnaires for PD (Shine et al., 

2015) indicated the presence of visual, auditory, tactile, olfactory, and gustatory 

hallucinations, respectively; a positive response to any of items 11-13 indicated 

delusions. RBD was defined by a score above 5 on the RBD screening questionnaire 

(Stiasny-Kolster et al., 2007) and excessive daytime fatigue by a score above 9 on the 

Epworth Sleep Scale (Johns, 1991). 

 

Height and weight were recorded and converted to body mass index. Constipation 

was defined by self-report as fewer than one bowel movement per day or the use of 
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laxatives. Urinary incontinence, falls, syncope, smoking history, and demographics 

were also self-reported. 

 

Participants’ medication plans, medical histories, motor scores, and neuroimaging 

data were retrieved from electronic medical records. These were used to fill in 

missing data if possible, and to corroborate self-reported items. Anti-Parkinson 

medications were converted to LEDD, as previously (Tomlinson et al., 2010). 

 

Informants completed three questionnaires concurrently with the patient assessment. 

The PD Cognitive Functional Rating Scale identified functional impairment due to 

cognitive decline; a score of 2-8 indicated mild impairment, and a score above 8 

indicated marked impairment, consistent with MCI and dementia respectively 

(Kulisevsky et al., 2013; Ruzafa-Valiente et al., 2016). Cognitive fluctuations were 

identified by a positive answer to three of the four discriminating items on the 

Dementia Cognitive Fluctuation Scale (D. R. Lee et al., 2014). Behavioural changes 

(disinhibition, apathy, loss of empathy, stereotypy, and hyperorality) were evaluated 

with the Cambridge Behavioural Inventory (Wear et al., 2008); total scores for each 

variable were divided into percentage ranks (0-25% normal, 26-50% mild, 51-75% 

moderate, 76-100% severe) based on a previously published method (Lillo, Mioshi, 

Zoing, Kiernan, & Hodges, 2011). 

 

8.2.3 Procedure 
 

Anonymised data were transferred to a panel with expertise in movement disorders 

neurology, psychiatry, and clinical neuropsychology. Each participant was evaluated 

with reference to diagnostic criteria for various dementia disorders (Albert et al., 

2011; Emre et al., 2007; Gorno-Tempini et al., 2011; Litvan et al., 2012; McKeith et 

al., 2017; McKhann et al., 2011; Rascovsky et al., 2011; Sachdev et al., 2014). 

Participants reporting cognitive decline prior to or contemporaneously with motor 

onset were classified as DLB. MCI-LB was defined analogously to PD-MCI, except 

with cognitive onset preceding or co-occurring with motor onset. Multiple diagnoses 

were permitted in a single participant. Diagnoses were conferred with two levels of 

confidence: probable and possible. Final diagnoses were by consensus. 
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To obtain an indication of the panel’s diagnostic accuracy against autopsy, three 

pathologically-confirmed cases with various forms of dementia were identified from 

published reports that presented detailed neuropsychological workup on individual 

subjects (Eratne et al., 2018; Gurd et al., 2000; Price et al., 1993). Motor scores were 

fabricated so that the cases appeared to have PD (and thereby met inclusion criteria), 

but cognitive and other clinical data were not modified. These cases were included 

randomly with the participants in the study in a blinded fashion. 

 

8.2.4 Data analysis 
 

Results are reported as descriptive statistics and proportions. 95% confidence 

intervals (CI) were calculated using the formula 

𝑝 ± 1.96'
𝑝(1–𝑝)
𝑛 	 

where p is the sample proportion and n is the sample size. 

 

8.3 Results 
 

The screening and eligibility assessment process is provided in Figure 8-1. Consensus 

clinical diagnosis was correct for each of the pathologically-confirmed dementia cases 

drawn from previously published reports. 
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Figure 8-1. Flow diagram showing the recruitment process. 

 

 

8.3.1 Descriptive statistics 
 

Table 8-2 provides descriptive statistics for the 45 participants in the study. All had a 

diagnosis of idiopathic PD by a movement disorder neurologist. Thirty-nine (86.7%) 

had clinically established PD by MDS diagnostic criteria (Postuma et al., 2015), and 

the remaining six (13.3%) had probable PD. The sample was well educated, and 24 

(53.3%) were or had been professionals, according to a standardised classification 

scheme (International Labour Organization, 2012). 

 

In 16 participants (35.6%), the clinical diagnosis of PD was supported by FP-CIT 

SPECT; in the remaining 29 (64.4%), no functional scans had been performed. Eleven 

participants (24.4%) had had a structural brain scan: MRI only in seven, CT only in 

two, and both in two. 

Approached for screening, n = 114

Declined screening, n = 50

Agreed but not contactable, n = 5

Consented and screened, n = 59

Ineligible (normal cognition), n = 4

Eligible, n = 55

Declined full assessment, n = 3

Withdrew, n = 1

Not contactable, n = 6

Study sample, n = 45
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Table 8-2. Descriptive statistics for the observational sample. 

Variable Value 

Sample size 45 

Male sex (n, %) 33 (73.3%) 

Age in years 69.1 (8.3) 

Disease duration in years 8.9 (6.0) 

Education in years 13.2 (2.9) 

LEDD 567 (318) 

MoCA 21.9 (3.6) 

IQCODE 3.5 (0.7) 

MDS UPDRS 1.1 1.9 (0.9) 

PD-CFRS 2.4 (1.7) 
 

Data are mean (standard deviation) unless otherwise specified. The IQCODE was missing for 9 
participants, and PD-CFRS for 7. IQCODE = Informant Questionnaire on Cognitive Decline in the 
Elderly, LEDD = levodopa equivalent daily dose, MDS = Movement Disorder Society, MoCA = 
Montreal Cognitive Assessment, PD = Parkinson’s disease, PD-CFRS = Parkinson’s Disease Cognitive 
Functional Rating Scale, UPDRS = Unified Parkinson’s Disease Rating Scale. 
 

 

Core DLB features were common, with cognitive fluctuations in 27 patients (60.0%), 

RBD in 24 (53.3%), and visual hallucinations in 14 (31.1%). Other non-motor 

features were hyposmia in 28 patients (62.2%), constipation in 25 (55.6%), excessive 

daytime fatigue in 23 (51.1%), one or more falls in the previous three months in 19 

(42.2%), hallucinations in a non-visual modality in 14 (31.1%), clinically significant 

anxiety in 12 (26.7%), depression in nine (20.0%), and urinary incontinence in seven 

(15.6%). Two (4.4%) were current smokers, and seven (15.6%) were ex-smokers. 

 

8.3.2 Consensus panel diagnoses 
 

The consensus panel diagnosed MCI in 26 (57.7%), and dementia in 19 (42.2%). 

Cognitive status, clinical diagnosis, and other key findings are in Table 8-3. 
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Table 8-3. Clinical features and diagnoses for individual participants. 

  

Diagnosis Status Case

PD 
duration 
(years)

MDS 
UPDRS 

3 MoCA M
em

or
y

Atte
ntio

n

Exe
cu

tiv
e

Visu
os

pati
al

Lan
gu

ag
e

Pra
xis

Beh
av

iou
r

Vas
cu

lar

DLB fe
atu

res

No coexistent 
diagnosis

Probable Lewy-related pattern
MCI 1 20+ NA 21 + – – + – – – + 1

2 4 26 22 + – – – – – – – 1

3 20+ 15 23 – – – + – – ++ ++ 2

4 11 32 23 – + – – – – NA + 1

5 2 NA 23 – – – – – – NA – NA

6 4 20 24 – – – – – – – – 1

7 8 36 24 – – + – – – ++ + 3

8 11 28 25 – – – – – + – – 1

9 9 NA 25 – ++ + + + – + + 3

10 1 NA 26 – – – – – – – + 2

11 10 30 27 – – – – – – – – 2

12 2 NA 27 – – + – – – – – 1

Dementia 13 7 19 13 ++ ++ + ++ – – NA – 1

14 14 25 18 – + + – – – – – 3

15 9 33 19 + ++ – ++ – – – – 1

16 17 30 20 ++ + + + + – NA – 2

17 18 NA 22 – – + ++ + + – + 2

18 15 NA 23 + – – ++ – – – + 3

19 4 45 23 + ++ ++ + – – – + 1

MCI 20 4 19 21 + – ++ – – – – – 2

21 11 37 23 – – – – + – + – 2

22 2 44 23 – + + – + – – + 2

23 6 29 23 ++ – ++ – + – ++ – 2

24 10 31 24 + – + – – – – + 1

25 10 39 24 – – + – – – NA + 1

Dementia 26 7 NA 13 ++ – – – + – ++ + 3

27 9 48 13 ++ – + ++ + + ++ ++ 2

28 15 NA 14 + – ++ + + + NA + NA

29 6 NA 18 + + ++ ++ ++ – – – 1

30 4 NA 20 ++ ++ – + – – NA – 0

31 10 44 20 – + + ++ ++ + – – 3

32 15 33 21 + – ++ – + + ++ – 1

33 12 25 23 + – + – ++ – – – 1

MCI 34 17 26 22 – – – – – – – + 0

35 1 36 23 + – – – – – + ++ 2

36 2 NA 23 – – ++ + + – – ++ 2

37 20+ NA 23 – ++ + + – – NA ++ NA

38 8 25 26 – – – – – – + ++ 1

39 6 NA 26 – – + + – – ++ ++ 3

Coexistent AD 
+ vascular

MCI 40 8 29 22 + – ++ + ++ – – ++ 1

AD MCI 41 8 19 25 + – – – + – + – 0

42 1 22 27 – – – – – – – + 0

Dementia 43 6 28 19 – – + – ++ – – + 2

AD + vascular Dementia 44 5 29 19 ++ ++ ++ – + – – ++ 1
FTD Dementia 45 4 16 22 – – – – – – ++ – 2

No coexistent 
diagnosis

Coexistent AD

Coexistent 
vascular

Possible Lewy-related pattern
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Behavioural features are disinhibition, apathy, loss of empathy, stereotypy, and hyperorality. Vascular 
burden is derived from vascular risk factors and medical history. The three core DLB features are 
cognitive fluctuations, visual hallucinations, and RBD. For cognitive features: – no impairment, + mild 
impairment (1-2 SDs below the mean), ++ marked impairment (2+ SDs below the mean). AD = 
Alzheimer’s disease, DLB = dementia with Lewy bodies, FTD = frontotemporal dementia, MCI = mild 
cognitive impairment, MDS = Movement Disorder Society, MoCA = Montreal Cognitive Assessment, 
NA = not available, PD = Parkinson’s disease, RBD = rapid eye movement sleep behaviour disorder, 
SD = standard deviation, UPDRS = Unified Parkinson’s Disease Rating Scale. 
 

 

Forty of the 45 participants (88.9%, [95% CI: 79.7, 98.1]) had probable Lewy-related 

cognitive decline, which developed within established PD in 37, and before or around 

the time of motor onset in three (Figure 8-2). 

 

The cognitive profile was Lewy-type, without comorbid disease, in 19 participants 

(42.2% [27.7, 56.6]). Neuropsychological impairments were to visuospatial abilities 

in nine, executive function in eight, memory in seven, and attention in seven. Three 

showed language deficits, and three had possible ideomotor apraxia. RBD, cognitive 

fluctuations, and hallucinations affected 11 participants each; the hallucinations were 

primarily visual in eight. Behavioural symptoms were mild or absent, except for 

moderate apathy and/or loss of empathy in three participants. 

 

In the remaining 21/45 participants (46.7% [32.1, 61.3]) with a probable Lewy-related 

cognitive pattern, there were additional features indicating other disease processes. 

AD was the most common, being present in 15 (33.3% [19.5, 47.1]), of whom seven 

had MCI and eight had dementia. The primary deficits were in memory, language, 

and executive function. Semantic fluency was universally worse than phonemic 

fluency. Four had RBD, four were moderately depressed, three had fluctuations, and 

two had prominent psychosis. 
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Figure 8-2. Consensus clinical diagnoses in each disease category. 

Lewy body disease was a probable cause of cognitive decline in 40 patients. Nineteen 
of these cases had no comorbidity; 15 had coexistent AD; and 7 had coexistent VCD. 
Lewy body disease was not a primary cause of cognitive impairment in 5 patients, of 
whom 4 had AD and one had behavioural variant FTD. 
*One patient had PD-MCI plus possible AD and possible VCD. AD = Alzheimer’s 
disease, DLB = dementia with Lewy bodies, FTD = frontotemporal dementia, MCI = mild 
cognitive impairment, PD = Parkinson’s disease, PDD = Parkinson’s disease dementia, 
VCD = vascular cognitive disorder. 
 

 

In the seven participants with comorbid probable AD, cognitive deficits were 

typically global, and there was also substantial non-cognitive morbidity. Memory was 

universally affected, and none benefited significantly from cueing, indicating a 

hippocampal encoding deficit (Economou et al., 2016). Posterior cortical deficits were 

common: six had impaired object naming, and three showed signs of ideomotor 

apraxia. Semantic fluency was consistently poor, and in the impaired range in four. 

Total sample
45

Probable Lewy-related 
cognitive decline

40 / 45 (89%)

Without 
coexistent disease

19 / 45 (42%)

PD-MCI
+ possible VCD

6*

PD-MCI

11

PDD

7

MCI-LB

1

MCI-LB
+ possible VCD

1

With coexistent 
AD

15 / 45 (33%)

With coexistent 
VCD

7 / 45 (16%)

DLB
+ probable AD

1

PD-MCI
+ probable AD, 2
+ possible AD, 5*

PDD
+ probable AD, 6
+ possible AD, 1

Possible Lewy-related 
cognitive decline

5 / 45 (11%)

AD-MCI

2

AD dementia

1

AD dementia
+ possible VCD

1

Behavioural 
variant FTD

1
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Five had cognitive fluctuations, four had hallucinations, and one had delusions. Five 

reported excessive daytime fatigue, though only one had RBD. Behavioural 

symptoms were also common: three of these participants had moderate or severe 

apathy and loss of empathy, and two showed signs of disinhibition, stereotypy, and/or 

hyperorality. Five reported multiple recent falls, and all had autonomic dysfunction 

(constipation in six, urinary incontinence in two, and orthostatic hypotension in one). 

 

In 5/45 participants (11.1% [1.9, 20.3]), the cognitive profile was such that the panel 

rated Lewy-related cognitive decline as possible, rather than probable. In four, an AD 

pattern was identified. All had a clear amnestic profile, with limited or no cueing 

benefit. Semantic fluency was much worse than phonemic fluency, and three had 

impaired language. Typical features of Lewy body dementia were relatively 

infrequent: two had RBD, one had cognitive fluctuations, and none had hallucinations 

in any sensory modality. 

 

Possible VCD was diagnosed in 8/45 participants (17.8% [6.6, 29.0]), of whom seven 

had probable Lewy-related cognitive decline, and one had an AD pattern. All had 

characteristic deficits in areas of executive function and attention, including 

processing speed, cognitive flexibility, and response inhibition. Vascular morbidity 

was frequent in this subgroup, and included one or more vascular events in five, 

hypertension in five, diabetes in three, obesity in two, long-term smoking history in 

two, and hypercholesterolaemia in one. Neuroimaging data were available for two; 

both showed evidence of small vessel disease. In all of these patients, cerebrovascular 

disease was not considered to be the primary cause of the cognitive symptoms. 

 

Finally, the panel diagnosed probable behavioural-variant FTD in a single participant 

(2.2% [0.0, 6.5]) who had marked behavioural change, including severe disinhibition, 

apathy, loss of empathy, stereotypy, and hyperorality. Neuropsychological scores 

were generally in the average to high average range, consistent with education and 

work history. However, most executive tests, as well as processing speed and line 

orientation, were low average. 

 

The percentage of the sample meeting probable and possible diagnoses for each 

cognitive disorder is shown in Figure 8-2. 
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Figure 8-3. Frequency of different cognitive disorders in PD. 

Disease categories are not exclusive; participants could be counted in more than one. 
Data are percentages with 95% confidence intervals. PD = Parkinson’s disease. 
 

 

8.4 Discussion 
 

This study demonstrates that neuropsychological assessment is a practical method of 

identifying distinct disease profiles in people with PD and cognitive impairment. 

Most participants had a Lewy-type clinical and cognitive profile, but more than half 

of patients had features fulfilling the clinical criteria for other cognitive disorders. 

Almost 45% had signs of coexistent AD, graded probable in around 30%, and 

possible in around 15%. Possible VCD was diagnosed in just under a fifth of 

participants. These proportions are comparable to autopsy studies (Irwin et al., 2013; 

Toledo et al., 2013), though these have sometimes reported higher figures, 

presumably due to the advanced age and disease duration of autopsy samples leading 

to a higher incidence of multiple pathology (Jellinger & Attems, 2010b; Kovacs, 

Alafuzoff, et al., 2008). This study, in conjunction with pathological reports, indicates 
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that cognitive impairment in PD is frequently multifactorial. Other disorders 

contribute in approximately half of patients, and in around 10%, another disorder may 

be the primary explanation for cognitive impairment in PD. 

 

AD was the most common secondary diagnosis, consistent with autopsy studies 

(Irwin et al., 2013), and various factors emerged as useful clinical indicators of AD 

comorbidity in PD. Cognitively, participants with comorbid AD consistently had 

poorer semantic fluency than phonemic fluency, as well as a free recall deficit that did 

not improve with cueing. Both of these are indicative of temporal lobe dysfunction 

and characteristic of AD (Economou et al., 2016; Glikmann-Johnston, Oren, Hendler, 

& Shapira-Lichter, 2015). A language deficit, generally manifesting as impaired 

object naming, was also frequent. Along with semantic fluency, this is a typical 

feature of early AD (Verma & Howard, 2012), and in α-synucleinopathy cases with 

dementia, object naming is significantly worse in those with pathological AD 

compared to those without (Coughlin et al., 2019). In the current study, poorer 

semantic fluency and naming were both seen in the context of MCI as well as 

dementia, indicating that they are useful AD markers at an early stage of cognitive 

decline. In the dementia group alone, comorbid AD was linked to a higher frequency 

of falls, behavioural disturbances, and possible ideomotor apraxia. 

 

These results suggest that coexistent AD is detectable in PD even at the MCI stage by 

a neuropsychological evaluation comprising free recall, semantic fluency, and object 

naming items. Selective impairments to these tests are indicative of comorbid AD, 

particularly in participants who lack key features of the Lewy-type cognitive profile. 

Furthermore, these findings show that establishing the coexistence of AD at an early 

stage has important prognostic implications, as AD comorbidity is associated with 

more widespread cognitive deficits, as well as falls and behavioural changes. 

Considering the clinicopathological evidence that coexistent amyloid-β and tau induce 

a more rapid cognitive decline and earlier mortality in PD (discussed in the systematic 

review in Chapter 3), the markers of coexistent AD identified in our study are likely 

to be predictors of a worse prognosis. 

 

These findings have implications for ongoing clinical trials of disease-modifying 

therapies that target α-synuclein. Even if these are effective at reducing α-synuclein 
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pathology in PD, they may not attenuate cognitive decline in patients with coexistent 

tau and amyloid-β changes. Potential AD comorbidity is therefore an important 

variable to consider during data analysis, particularly when cognitive function is a 

study outcome. The incorporation of domain-focused neuropsychological assessment 

into these trials would be useful for excluding or stratifying participants according to 

the likelihood of comorbid AD. Therapies targeting α-synuclein have the greatest 

chance of showing efficacy if they are applied in a relatively homogeneous group of 

patients, without significant comorbidity. 

 

Cerebrovascular pathology was not the primary cause of cognitive decline in any 

participant in this study, though it played a contributory role in almost a fifth. This is 

consistent with the studies presented in the systematic review in Chapter 3, which 

found that cerebrovascular pathology was not a major independent cause of dementia 

in PD. Prospective studies have reported that cardiovascular disease and increasing 

vascular risk are linked to lower executive and attentional scores in PD (Pilotto et al., 

2016), which is also consistent with the current results. Again, it is possible that 

cerebrovascular lesions influence the rate and/or presentation of cognitive impairment 

in the early stages of PD, but by the later stages, this is obscured by the burden of 

extensive Lewy and/or Alzheimer lesions. 

 

A single participant was diagnosed with behavioural-variant FTD. This diagnosis was 

based on severe behavioural changes and a possible dysexecutive neuropsychological 

profile, covering all six key features of this disorder (Rascovsky et al., 2011). The 

coexistence of PD and FTD has not been the subject of much research, and is clearly 

an uncommon event. However, this participant illustrates that attention to behavioural 

as well as motor and cognitive change in PD is important to consider in clinic. 

 

Strengths of this project included the detailed neuropsychological assessment, the use 

of questionnaires that are well validated in PD populations, and the reliance on an 

interdisciplinary panel comprising four expert clinicians. The primary limitation was 

the lack of biomarker assessment, which would provide a more objective measure of 

coexistent disease processes. As discussed, biomarkers for α-synuclein and tau are 

currently limited (Blennow et al., 2016; Harada et al., 2018), and the comparatively 

well-established biomarkers for amyloid-β are subject to limitations including high 
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cost and restricted accessibility (de Almeida et al., 2011; S. A. Lee, Sposato, 

Hachinski, & Cipriano, 2017; Shi et al., 2018). The lack of structural neuroimaging 

for all patients in the study was another limitation; this would have allowed for a more 

accurate assessment of the degree of cerebrovascular comorbidity. As a result of these 

limitations, replication of these findings using AD biomarker measurement or autopsy 

follow-up would be very useful. Large, well-funded clinical trials of new disease-

modifying therapies in PD should consider incorporating amyloid-β biomarkers as an 

adjunct to detailed neuropsychological testing. 

 

8.4.1 Conclusions 
 

This study extends previous autopsy findings by showing that pathological variation 

underlying cognitive impairment in PD is detectable in vivo using clinical assessment. 

A quarter of this sample had a diagnosis of probable AD, identifiable by early and 

marked amnestic and linguistic deficits and behavioural changes. Smaller percentages 

of the sample met criteria for possible AD or vascular cognitive disorder, and one 

participant had behavioural-variant FTD. The presence of coexistent diseases is an 

essential feature to consider when designing and analysing trials of disease-modifying 

therapies in PD, as the probability of misleading negative findings could be increased 

significantly in unstratified samples. A clinical assessment comprising selected 

neuropsychological and behavioural items is a practical method of distinguishing 

different disease processes in vivo, and this should be incorporated into new drug 

studies of PD when cognitive function is included as a study outcome. 
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9 General discussion 
 

This thesis has used several methods to explore the contribution of comorbid disease 

mechanisms to cognition in PD. The accumulated results show that PD is a highly 

complex neurodegenerative disorder that varies substantially between different 

patients in terms of its underlying neuropathology, its clinical manifestation, and its 

genetic influences. This heterogeneity has major implications for basic and applied 

research, as well as clinical practice. The most important implications are for ongoing 

clinical trials of disease-modifying therapies, which represent the best hope for 

impeding the progression of PD, including the decline in cognition that ultimately 

leads to dementia. 

 

This chapter synthesises the findings presented in this thesis and discusses the ways in 

which they can inform current treatment strategies and clinical trials of new therapies 

for PD. Firstly, a brief review of disease-modifying therapies for amyloid-β, tau, and 

α-synuclein pathologies to date is provided. The results in the thesis are then used to 

make recommendations for trialling new therapies, and for implementing them in 

clinic once efficacy has been demonstrated. Strategies for managing the contribution 

of cerebrovascular pathologies to cognitive function in PD are then discussed. Gene 

therapies, which may benefit PD patients whose cognition is affected by variation in 

the APOE gene, are described. Finally, a general conclusion summarises the major 

themes of this thesis. 

 

9.1 Disease-modifying therapies for amyloid-β, tau, 
and α-synuclein 

 

The current generation of treatments for neurodegenerative diseases provides only 

symptomatic relief. This includes levodopa-based drugs for motor impairment in PD, 

and acetylcholinesterase inhibitors and memantine for cognitive impairment in 

dementia disorders. As discussed in Chapter 1, these drugs have various crucial 

limitations: they are only effective for a reasonably short period of time (typically 

fewer than three years); they are not effective for treating MCI; and they may 
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exacerbate autonomic and sleep-related symptoms that occur naturally in PD and 

similar disorders (Petersen et al., 2005; Tricco et al., 2013; Zemek et al., 2014). 

Disease-modifying therapies would be significantly more useful, as these could 

impede the progression of neurotoxic protein pathologies, thereby preventing further 

neurological and clinical deterioration (O'Hara et al., 2018). 

 

Multiple mechanisms of action have been suggested for disease-modifying therapies. 

These include inhibiting the target protein’s production or aggregation; promoting its 

degradation in and around neurons; and reducing its uptake from the extracellular 

space by unaffected neurons (Brundin, Dave, & Kordower, 2017). Immunotherapies 

are a class of promising disease-modifying treatments that exploit antibodies in order 

to target specific proteins. These may be divided into active immunotherapies, 

whereby the body’s innate immune system is stimulated to produce antibodies against 

a target (i.e. a vaccine), and passive immunotherapies, whereby antibodies are 

administered directly to patients (O'Hara et al., 2018). Several drugs based on these 

mechanisms have been developed to target amyloid-β, tau, and α-synuclein. Many of 

these have been or are being tested in large-scale phase 2 and 3 clinical trials 

involving AD or PD cohorts. These novel treatments will be briefly reviewed here. 

 

9.1.1 Summary of clinical trials to date 
 

So far, disease-modifying therapies targeting amyloid-β are the most extensively 

trialled. Several trials with very large sample sizes and biomarker assessments have 

shown that various passive immunotherapies, including aducanumab, solanezumab, 

bapineuzumab, crenezumab, and gantenerumab, are well tolerated, and some reduce 

cerebral amyloid-β pathology in patients across the spectrum of clinical AD (Blennow 

et al., 2012; Farlow et al., 2012; Ostrowitzki et al., 2012; Salloway et al., 2018; 

Sevigny et al., 2016). However, phase 3 trials of all of these treatments failed to show 

efficacy at the primary endpoint of impeding cognitive decline (Cummings et al., 

2018; Honig et al., 2018; Ostrowitzki et al., 2017; Selkoe, 2019; Vandenberghe et al., 

2016). The sole exception is aducanumab; trials of this therapy were initially to be 

abandoned following a futility analysis, but according to a recent press release, later 

analyses of larger datasets indicated that the drug is effective for reducing clinical 
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decline in AD. Consequently, the manufacturer intends to submit a regulatory filing to 

the Food and Drug Administration to license aducanumab for clinical practice 

(Biogen, 2019). 

 

Other putative AD-modifying treatments have targeted amyloid-β pathology by 

inhibiting cleavage of the amyloid precursor protein by the β-secretase enzyme, 

thereby reducing amyloid-β production. These include atabecestat, lanabecestat, and 

verubecestat. Again, these universally failed in phase 2 and 3 trials in large AD 

cohorts (Panza et al., 2018). Indeed, the use of some of these agents was actually 

associated with more cognitive decline, in addition to various adverse events affecting 

liver metabolism, mood, and sleep (Henley et al., 2019). 

 

Because the dominant amyloid cascade hypothesis suggests that tau pathology occurs 

downstream of amyloid-β aggregation in AD, tau has attracted less attention as a 

target for disease-modifying therapy. However, some tau treatments have reached 

phase 2 and 3 trials (Logroscino et al., 2019; Panza et al., 2019). Leuco-methyl 

thioninium, a methylene blue derivative that inhibits tau aggregation, reached phase 3, 

but here it failed to improve cognitive outcomes in both AD (Gauthier et al., 2016) 

and behavioural-variant FTD cohorts (TauRx Pharmaceuticals, 2016). One active 

immunotherapy, AADvac1 (Axon Neuroscience SE, NCT02579252), and two passive 

immunotherapies – ABBV-8E12 (AbbVie, NCT02880956) and BIIB092 (Biogen, 

NCT03352557) – are currently in phase 2 trials in AD. BIIB092 is also in a phase 1 

trial (NCT03658135) involving patients with various primary tauopathies, and a phase 

2 trial (NCT03391765) in a cohort of patients with progressive supranuclear palsy. 

All of these trials have estimated end dates between 2019 and 2024. 

 

Several disease-modifying therapies that target α-synuclein in PD are being trialled. 

Two passive immunotherapies – prasinezumab (Prothena/Roche; NCT03100149) and 

BIIB054 (Biogen; NCT03318523) – are currently in phase 2 trials, after safety was 

demonstrated in phase 1 (Brys et al., 2019; Jankovic et al., 2018; Schenk et al., 2017). 

Both are projected to end in 2021. Another passive immunotherapy, MEDI1341 

(AstraZeneca, NCT03272165), is currently in phase 1. Two active immunotherapies, 

PD01A and PD03A (Affiris, NCT02267434) have been well tolerated in phase 1, and 

secondary analysis showed that most participants began producing serum antibodies 
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against both oligomeric and fibrillar α-synuclein. Although the latter study was not 

powered to assess clinical efficacy, motor scores for the immunised PD patients were 

stable over a four-year period, according to conference data (Poewe, 2018). 

 

Additionally, several therapies that exploit non-immunological mechanisms of action 

are currently being tested. NPT200-11 (Neuropore, NCT02606682), a small molecule 

inhibitor of α-synuclein, is in phase 1. Various other non-immunological therapies 

target α-synuclein indirectly. Increased α-synuclein aggregation has been associated 

with underactivity of the β-glucocerebrosidase enzyme (Schapira, Chiasserini, 

Beccari, & Parnetti, 2016), overactivity of c-Abl, a tyrosine kinase (Karuppagounder 

et al., 2014; Simuni et al., 2019), and oxidative damage caused by excess intracellular 

iron in the substantia nigra (Moreau et al., 2018). Ambroxol (NCT02914366) and 

ibiglustat (Sanofi/Genzyme, NCT02906020) are two drugs designed to modulate the 

activity of β-glucocerebrosidase to reduce α-synuclein aggregation. The ambroxol 

trial includes PDD patients, while the ibiglustat trial only includes patients with a 

mutation in GBA, the β-glucocerebrosidase gene, which is an established genetic risk 

factor for PD and for rapid motor and cognitive progression in PD. Nilotinib 

(NCT03205488), a licensed drug for certain forms of leukaemia, is a c-Abl inhibitor. 

Finally, deferiprone (NCT02655315; NCT02728843) is an iron-chelating drug that 

translocates iron from cells in which iron is overexpressed to cells where it is 

underexpressed. All of these therapies are currently in phase 2 trials in PD cohorts. 

Numerous additional candidates for α-synuclein therapy are being tested in preclinical 

trials (O'Hara et al., 2018; Savitt & Jankovic, 2019). 

 

9.1.2 Recommendations for clinical trials in PD cohorts 
 

The increasing number of disease-modifying therapies against α-synuclein represents 

an encouraging step towards the introduction of much more effective treatments for 

motor and cognitive progression in PD. However, there are lessons to be learned from 

the failures of equivalent therapies in AD. The reasons for the lack of efficacy of 

amyloid-β therapies in AD despite target engagement are numerous, and have been 

extensively reviewed (Mullane & Williams, 2018a, 2018b). One hypothesis, which 

can generalise to PD, is that monotherapy is probably insufficient to impede further 
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deterioration in diseases that are characterised by such extensive and diverse 

neuropathology (Selkoe, 2019). As a result of this, achieving disease modification in 

AD is likely to require combination therapy, in which multiple treatments are targeted 

against several different pathophysiological targets, minimally including both 

amyloid-β and tau (Cummings, Tong, & Ballard, 2019; Tomaszewski, Gauthier, 

Wimo, & Rosa-Neto, 2016). 

 

Results in Chapters 3 and 8 of this thesis show that PD is frequently complicated by 

tau and amyloid-β comorbidities, and these are major contributors to cognitive 

decline. Therefore, an immediate recommendation for clinical trials of α-synuclein 

therapies is that they are designed to control for potential confounding by coexistent 

Alzheimer pathologies whenever cognitive function is included as an outcome. As 

shown in Chapter 8, a detailed clinical assessment that includes domain-focused 

neuropsychological testing can be used to identify comorbid AD in PD cohorts. Well-

funded studies should also employ AD biomarkers for this purpose. A recent 

clinicopathological study showed that the ratio of total tau to Aβ42 in the CSF had 

100% specificity and 90% sensitivity for distinguishing Lewy body disorder cases 

with comorbid AD from those without (Irwin et al., 2018). CSF collection is therefore 

a very valuable procedure to add into the design of a clinical trial of a PD cohort. 

Typically, ongoing trials in PD cohorts (e.g. of prasinezumab and BIIB054) do not 

included detailed cognitive assessments or AD biomarkers, reflecting their focus on 

motor decline in PD. However, the design of the ongoing ambroxol trial could be 

used as a model for future studies. This trial incorporates a number of well-validated 

tests spanning multiple cognitive domains, as well as structural neuroimaging and 

CSF measures of tau and amyloid-β. 

 

Sensitivity to the potential effect of comorbid AD is also important during data 

analysis of clinical trials in PD cohorts. Stratifying the cohort into those with a high 

versus low probability of comorbid AD is likely to be beneficial, as these subgroups 

can be expected to respond differently to the same treatment. Specifically, participants 

with a significant burden of tau and/or amyloid-β are likely to have more severe 

cognitive impairment and a more rapid cognitive decline than those without, even if a 

novel therapy is successful in attenuating cerebral Lewy pathology. Trials of α-

synuclein therapies therefore have the greatest chance of showing efficacy if they are 



   9-162 

based on well-defined, homogeneous samples comprising participants with minimal 

tau and amyloid-β comorbidity. Additionally, clinical trials of aducanumab in PD 

cohorts may now be justified, given the recent announcement of that drug’s efficacy 

in AD. Naturally, such trials should include PD patients who have moderate to high 

amyloid-β comorbidity. Future clinical trials that plan to stratify PD cohorts by the 

degree of comorbid AD should ensure that the sample size is adequately powered to 

permit appropriate subgroup analyses. 

 

A very valuable task for the future would be to develop and validate a brief cognitive 

test that has high sensitivity and specificity for distinguishing PD patients with 

comorbid AD from those without. This would minimise the need to rely on biomarker 

methods, which are often expensive and difficult to access. Efforts to create a 

universal cognitive assessment battery for use in PD are underway (Hoogland et al., 

2018), and this battery should be able to distinguish these groups, for the reasons 

outlined above. As shown in Chapter 6, the MoCA is not suitable for this purpose, 

primarily due to its lack of variance outside of moderately or severely impaired 

patients. Therefore, the MoCA should be reserved for screening MCI and dementia in 

PD, without making any statements about aetiology. A new test designed to identify 

the presence of comorbid AD in PD should comprise relatively difficult measures of 

free recall, cued recall and language, including semantic fluency and object naming 

items. Well-validated executive, attentional, and visuospatial measures should also be 

incorporated. Combining such a test with brief questionnaires that probe additional 

diagnostic features (e.g. RBD and hallucinations) is likely to have good sensitivity 

and specificity for comorbid AD, potentially to the extent where this could substitute 

for biomarker assessment in clinical trials if necessary. 

 

Once disease-modifying therapies begin to show efficacy in trials, and subsequently 

enter routine clinical settings, the results in this thesis can be used to guide their 

effective implementation. Successful disease modification in PD will probably require 

combination therapy, given the extent of neuropathological heterogeneity. Many 

patients will need a combination of α-synuclein, tau, and amyloid-β therapies in order 

to preserve their cognitive abilities throughout the disease – although, given the 

interactions between these pathologies (discussed in Chapter 3), it is possible that 

attending to one may inhibit propagation of the others. Continuing research in human 
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cohorts, more so than animal models and cell cultures, is essential to identify the best 

way to exploit these interactions therapeutically. 

 

9.2 Targeting cerebrovascular comorbidity in PD 
 

The accumulated results in this thesis show that, in contrast to α-synuclein, tau, and 

amyloid-β pathologies, cerebrovascular diseases are not a major independent cause of 

dementia in people with PD. However, they are relatively common, affecting 

approximately a fifth of patients with and without dementia. Importantly, none of the 

studies in the systematic review in Chapter 3 evaluated the extent to which comorbid 

cerebrovascular pathology might have influenced the rate or expression of cognitive 

impairment in PD in vivo – for example, by causing a faster decline, as was the case 

for amyloid-β, or by causing a selective decline in some cognitive domains, while 

leaving others relatively intact. 

 

Results from the clinical study in Chapter 8 indicated that, while vascular factors are 

not a frequent cause of dementia in PD, they do contribute to the neuropsychological 

expression of a significant minority of patients. The most common effects of vascular 

comorbidity were deficits in specific components of executive function and attention, 

such as processing speed and response inhibition. Such deficits are closely associated 

with cerebrovascular pathologies, including infarcts, haemorrhages, and white matter 

lesions (Prins et al., 2005; Tullberg et al., 2004; Uiterwijk et al., 2016). Additionally, 

previous research has shown that vascular comorbidity exacerbates both motor and 

cognitive progression in PD. White matter leukoaraiosis and vascular risk factors – 

particularly hypertension – lead to more marked axial and gait impairment and a 

higher rate of conversion from the tremor dominant to the postural instability and gait 

disorder phenotype (Malek et al., 2016; Schwartz, Halliday, Soh, Cordato, & Kril, 

2018). White matter leukoaraiosis is also associated with greater cognitive decline 

and cortical atrophy – particularly in the frontal lobe – in PD patients (Dadar et al., 

2018). Executive function and attention are prominently affected as a result (Pilotto et 

al., 2016). Finally, in all elderly individuals, vascular factors are aetiologically related 

to leading causes of death, such as heart disease and stroke (Brown, Allik, Dundas, & 

Leyland, 2019; Patel, 2017). 
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Despite the impact of vascular comorbidity in PD, there is evidence that these factors 

are underrecognised and undertreated in routine care. One combined analysis of the 

Tracking Parkinson’s and Oxford PD Centre cohorts (n = 2909) found that almost 

two-thirds of PD patients had medium or high vascular risk (Swallow et al., 2016), for 

which statin usage is indicated (Rabar, Harker, O'Flynn, Wierzbicki, & Guideline 

Development Group, 2014). However, statins were prescribed in only a quarter of the 

at-risk group. Even in patients with established cardiovascular disease, only three-

quarters were prescribed statins, and statin non-use was linked to significantly lower 

MoCA scores in this group. Potential reasons for low statin use include interference 

from muscle cramps and the reduced rate of smoking in PD populations, which may 

mislead a clinician conducting a vascular risk assessment (Swallow et al., 2016). 

 

Together, these findings indicate that attention to vascular factors in PD should be 

emphasised in clinical care settings. Estimating a patient’s long-term risk of a 

vascular event is a relatively simple procedure due to the introduction of validated 

predictive algorithms (e.g. the QRISK3-2018 calculator) that have been recommended 

in consensus statements (Hippisley-Cox, Coupland, & Brindle, 2017; Rabar et al., 

2014). Routine application of algorithms such as these, and appropriate clinical 

decision-making with patients at a medium or high risk, has the potential to improve 

motor and cognitive prognosis in PD. In research settings (e.g. clinical trials), it may 

be beneficial to stratify participants into those with low versus high likelihood of 

cerebrovascular disease, but this should not be essential for most projects. 

 

The ability to impede cognitive decline resulting from cerebrovascular pathology is 

currently limited, as is also the case for α-synuclein, tau, and amyloid-β. Vascular 

treatments do not consistently lower the incidence of all-cause dementia in at-risk 

patients (Peters et al., 2008; Tariq & Barber, 2018). In PD specifically, data on this 

topic are limited, though some ongoing clinical trials are exploring the potential utility 

of vascular medications to impede PD progression. One ongoing phase 2 trial 

(NCT02787590) is examining the value of simvastatin for ameliorating motor and 

cognitive decline in moderate PD (Carroll & Wyse, 2017). The results of this study, 

which is due to end in 2020, will be useful for further characterising the extent to 

which targeting vascular morbidity is beneficial in PD. 
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In addition to prescribing treatments for symptomatic elderly patients, long-term 

preventative methods have an important role in reducing the burden of vascular 

pathologies. A modest reduction in modifiable vascular factors, such as midlife 

hypertension and obesity, smoking, diabetes, and physical inactivity, could reduce the 

number of new dementia cases by several million globally (Barnes & Yaffe, 2011; 

Baumgart et al., 2015). The value of national policies and guidelines for improving 

outcomes in dementia is clear from large-scale epidemiological studies in the UK, 

which show a significant and sustainable increase in the rate of diagnosis and the 

quality of care following the introduction of new public health policies (Donegan et 

al., 2017; Mukadam, Livingston, Rantell, & Rickman, 2014). Based on this, new 

strategies targeting people in midlife and aiming to promote healthier lifestyles are 

likely to be valuable for reducing the risk, and ultimately the incidence, of vascular 

diseases at a population level. 

 

9.3 Targeting APOE in PD 
 

Gene therapy is a relatively recent innovation that could be very useful for moderating 

the effects of certain genetic variants that increase susceptibility to neurodegenerative 

diseases, or cause poorer outcomes in those diseases. APOE is an important target for 

emerging gene therapies, given its strong association with AD. Chapter 3 showed that, 

in PD samples, the APOE ε4 allele is associated with increased deposition of both 

amyloid-β and α-synuclein pathology, particularly in neocortical areas. As a result, it 

increases the risk of both comorbid AD and pathologically pure PDD in these samples 

(Tsuang et al., 2013). Chapter 7 indicated that, in early PD, APOE ε4 is related to 

lower cognitive scores and faster cognitive decline in men only. Further follow-up is 

needed to see if comparable effects will emerge in women at greater disease duration, 

as may be expected from the AD literature. Overall, the results of this thesis show that 

novel gene therapies targeting APOE are likely to be valuable not just for lowering 

the incidence of AD, but also for preserving cognitive function in PD. 

 

Emerging gene therapies that target APOE are all in the preclinical stages, but some 

encouraging results have been found. Many target the relationship between ε4 and 

amyloid-β metabolism. For example, immunotherapies using anti-apoE antibodies 
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have been used to reduce amyloid-β pathology in murine models (J. Kim et al., 2012; 

Liao et al., 2014). Another study administered a synthetic peptide to transgenic ε4 

mice that blocked the interaction between apoE4 and amyloid-β, and thereby reduced 

amyloid-β accumulation and memory deficits (Pankiewicz et al., 2014). Based on the 

results of clinical trials that have targeted amyloid-β directly, it is uncertain if these 

methods will show efficacy in humans. An alternative approach would be to induce 

expression of the protective ε2 gene and the corresponding apoE2 protein isoform, in 

order to offset the deleterious effects of ε4. This has been safely accomplished in mice 

and non-human primates by administering a viral vector directly into the brain (Hu et 

al., 2015; Rosenberg et al., 2018). Further in the future, genome editing of APOE ε4 

to ε2 or ε3 may be a realistic treatment option (Zhao, Liu, Qiao, & Bu, 2018). 

 

In addition to suggesting potential utility of APOE-based therapies for PD, the results 

of this thesis have immediate implications for clinical trials. Specifically, 

determination of APOE status is important for trials where cognitive function in PD is 

an outcome, as both the ε2 and ε4 alleles may act as confounders in these analyses (at 

least in men). Controlling for APOE is particularly important in light of findings from 

clinical trials in AD cohorts, which have sometimes shown different drug effects in ε4 

carriers versus non-carriers. For example, retrospective analyses of bapineuzumab 

trials found that the drug reduced biomarker indices of tau and amyloid-β in ε4 

carriers only, but it was also related to a higher incidence of amyloid-related imaging 

abnormalities in this group (Salloway et al., 2014; Sperling et al., 2012). Therefore, 

stratifying by APOE status should be considered for future trials of amyloid-β 

therapies. Given the associations between APOE and α-synuclein reported in Chapter 

3, APOE-based stratification might also be valuable for trials of α-synuclein therapies, 

though at present, the implications of doing so are uncertain.  

 

Finally, one of the most interesting findings in Chapter 7 was that the effects of APOE 

were markedly different in men and women. Furthermore, the sex-based effects were 

opposite to those seen in AD, in that APOE ε4 had a more pronounced deleterious 

effect in men rather than women. Indeed, ε4 was actually associated with some higher 

cross-sectional cognitive scores in women, showing that APOE may have no value as 

a therapeutic target in women with PD. Again, further follow-up and replication is 

needed to assess the robustness of this novel finding. It was not possible to identify 
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the biological basis of these sex differences in this thesis, but this would be a very 

valuable goal for future studies. These results indicate that stratifying by sex is 

important for studies focused on APOE, as the gene's effects are not identical in men 

and women. This reinforces the need to consider sex as an important biological 

variable in biomedical and neuroscientific research, as has been recommended in 

consensus guidelines (National Institutes of Health, 2015). 

 

9.4 General conclusions 
 

A major contributor to the difficulty in treating cognitive decline in PD is the marked 

heterogeneity that it shows. The results of this thesis indicate that the majority of 

cognitively impaired PD patients have an advanced α-synucleinopathy. However, a 

significant number have additional tau and amyloid-β changes that often justify a 

secondary diagnosis of AD. Current clinical diagnostic criteria are valid, reliable, and 

efficient methods of identifying the different cognitive disorders in PD patients in 

vivo. At present, most brief cognitive screening tests are inadequate for distinguishing 

different disease profiles. The development of a standardised assessment battery for 

PD that is valid for identifying comorbid AD is very important for future research. 

 

As a result of the frequent coexistence of AD, it is also important that clinical trials of 

disease-modifying therapies for PD are designed and powered in such a way that the 

cohorts can be stratified by the presence of comorbid AD. Therapies that target α-

synuclein have the greatest chance of showing efficacy if they are trialled in a well-

defined, homogeneous group in which participants are without significant comorbid 

disease. Patients with comorbid AD will ultimately need complex combination 

therapy to target the additional burden of tau and amyloid-β pathologies. If and when 

tau and amyloid-β therapies show efficacy in AD cohorts, replicating these trials in a 

carefully selected PD group will be required. 

 

In addition to tau and amyloid-β changes, cerebrovascular pathology is common in 

PD. Its contribution to overt dementia is modest, but evidence suggests that vascular 

morbidity is undertreated in clinic. The numerous benefits of appropriately managing 

vascular diseases, particularly in people with PD and other neurodegenerative 
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diseases, mean that greater attention to vascular factors should be emphasised in 

current clinical practice. Careful consideration of individual patient presentations will 

also facilitate the detection of rarer coexistent disease processes, such as FTD, which 

may impair cognition and behaviour in a small percentage of patients. 

 

The move towards disease-modifying therapies for α-synuclein, tau, and amyloid-β is 

an exceptionally promising step towards a paradigm shift in the treatment of PD and 

other neurodegenerative diseases. Similar advancements in gene therapy mean that it 

might soon be possible to ameliorate the effects of deleterious variants of certain 

genes, such as APOE. Finally, increasing clinical and biomarker characterisation of 

the prodromal stages of these diseases means that they can frequently be identified 

before any clinically significant signs or symptoms have emerged. Together, these 

strategies can be used to refine a targeted medicine approach in the future, whereby 

new treatments are directed against specific biological disease mechanisms, rather 

than simply at symptom management. Ultimately, these emerging therapies represent 

a real hope that it will eventually become possible to slow, halt, or prevent motor and 

cognitive decline in PD.
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Appendix 1: Systematic review search strategies 
 

The following search strategies were used to identify relevant articles for the 

systematic review. 

 

 

Medline / Embase 
 

1. Parkinson disease/pa [Pathology] 

2. Dement*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, an, ui, 

sy] 

3. Cogniti*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, an, ui, 

sy] 

4. 2 or 3 

5. 1 and 4 

6. limit 5 to humans 

7. remove duplicates from 6 

 

 

Literatura Latino-Americana e do Caribe em Ciências da Saúde 
 

      Parkinson* disease AND dement* OR cogniti* 

Filters – LILACS, Humans 

 

 

Cumulative Index to Nursing and Allied Health Literature 
 

      S1: (MH “Parkinson Disease/PA) 

      S2: “Dement*” 

      S3: “Cogniti*” 

      S4: SR OR S3 

      S5: S1 AND S4 

Limiters – Human; Exclude MEDLINE records 
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Cochrane Library using advanced search 
 

#1 MeSH descriptor: [Parkinson disease] explode all trees with 

qualifier(s): [Pathology – PA] 

      #2  dement* 

      #3  cogniti* 

      #4  #2 or #3 

      #5  #1 and #4 
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Appendix 2: Potentially relevant articles in other languages 
 

The following articles were excluded from the systematic review during preliminary 

screening because they were not fully available in English. 

  

 

Dubois, B., Hauw, J. J., Ruberg, M., Serdaru, M., Javoy-Agid, F., & Agid, Y. (1985).  
Dementia and Parkinson’s disease: biochemical and anatomo-clinical 
correlation. Revue Neurologique, 141(3), 184-193. [French]. 

 
Iwatsubo, T. (1999). Parkinson’s disease, dementia with Lewy bodies, multiple  

system atrophy and alpha-synuclein. Rinsho Shinkeigaku – Clinical 
Neurology, 39(12), 1285-1286. [Japanese]. 

 
Jansen, E. N., & de Vos, R. A. (1994). Dementia in Parkinson disease: Lewy body  

disease or Alzheimer’s disease? Nederlands Tijdschrift voor Geneeskunde, 
138(26), 1305-1309. [Dutch]. 

 
Kretzschmar, H. A., & Neumann, M. (2000). Neuropathological diagnosis of  

neurodegenerative and dementia diseases. Pathologe, 21(5), 364-374. 
[German]. 

 
Yoshimura, M. (1997). Diffuse Lewy body disease. Rinsho Shinkeigaku – Clinical  

Neurology, 37(12), 1134-1136. [Japanese]. 
 
Yoshimura, M., Mori, H., Tomonaga, M., Yamanouchi, H., & Kuzuhara, S. (1984).  

Loss of neurons in the nucleus basalis of Meynert in Parkinson disease with 
dementia, “diffuse Lewy body disease” and senile dementia of Alzheimer 
type. Nihon Ronen Igakkai Zasshi, 21(6), 580-587. [Japanese]. 
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Appendix 3: Articles excluded from the systematic review 
 

Twenty studies were judged to have little or no detail that would be relevant to the 

systematic review, and these were consequently excluded. A list of these articles is 

provided below. 

 

 

Ala T.A., Yang K.H., Sung J.H., & Frey W.H. II (2000). Inconsistency between  
severe substantia nigra degeneration with Lewy bodies and clinical 
parkinsonism in dementia patients: a cliniconeuropathological study. Acta 
Neuropathologica, 99(5), 511-516. 

 
Arendt, T., Bigl, V., Arendt, A., & Tennstedt, A. (1983). Loss of neurons in the  

nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans, and 
Korsakoff’s disease. Acta Neuropathologica, 61(2), 101-108. 

 
Armstrong, R. A. (2017). Laminar degeneration of frontal and temporal cortex in  

Parkinson disease dementia. Neurological Sciences, 38(4), 667-671. 
 
Colloby S.J., McParland S., O'Brien J.T., & Attems J. (2012). Neuropathological  

correlates of dopaminergic imaging in Alzheimer's disease and Lewy body 
dementias. Brain, 135(9), 2798-2808. 

 
Gaspar P., & Gray F. (1984). Dementia in idiopathic Parkinson's disease. A  

neuropathological study of 32 cases. Acta Neuropathologica, 64(1), 43-52. 
 
Hishikawa N., Hashizume Y., Yoshida M., & Sobue G. (2003) Clinical and  

neuropathological correlates of Lewy body disease. Acta Neuropathologica, 
105(4), 341-350. 

 
Horimoto, Y., Matsumoto, M., Nakazawa, H., Yuasa, H., Morishita, M., Akatsu, H., 

Ikari, H., Yamamoto, T., & Kosaka, K. (2003). Cognitive conditions of 
pathologically confirmed dementia with Lewy bodies and Parkinson’s disease 
with dementia. Journal of the Neurological Sciences, 216(1), 105-108. 

 
Jellinger K.A. (2004). Lewy body-related alpha-synucleinopathy in the aged human  

brain. Journal of Neural Transmission, 111(10-11), 1219-1235. 
 
Jellinger K.A. (2007). Morphological substrates of parkinsonism with and without  

dementia: a retrospective clinico-pathological study. Journal of Neural 
Transmission, S72, 91-104. 

 
Mastaglia F.L., Johnsen R.D., Byrnes M.L., & Kakulas, B. A. (2003). Prevalence of  

amyloid-beta deposition in the cerebral cortex in Parkinson's disease. 
Movement Disorders, 18(1), 81-86. 

 
Monsell, S. E., Besser, L. M., Heller, K. B., Checkoway, H., Litvan, I., Kukull, W. A. 
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(2014). Clinical and pathologic presentation in Parkinson’s disease by 
apolipoprotein e4 allele status. Parkinsonism and Related Disorders, 20(5), 
503-507. 

 
Neumann, J. (2009). Glucocerebrosidase mutations in clinical and pathologically 

proven Parkinson’s disease. Brain, 132(7), 1783-1794. 
 
Papapetropoulos S., Lieberman A., Gonzalez J., & Mash D.C. (2005). Can  

Alzheimer's type pathology influence the clinical phenotype of Parkinson's 
disease? Acta Neurologica Scandinavica, 111(6), 353-359. 

 
Parkkinen L., Neumann J., O'Sullivan S.S., Holton J.L., Revesz T., Hardy J., & Lees  

A.J. (2011). Glucocerebrosidase mutations do not cause increased Lewy body 
pathology in Parkinson's disease. Molecular Genetics, 103(4), 410-412. 
 

Pedersen K.M., Marner L., Pakkenberg H., & Pakkenberg B. (2005). No global loss  
of neocortical neurons in Parkinson's disease: a quantitative stereological 
study. Movement Disorders, 20(2), 164-171. 

 
Pletnikova O., West N., Lee M.K., Rudow G.L., Skolasky R.L., Dawson T.M., Marsh 

L., & Troncoso J.C. (1994). Abeta deposition is associated with enhanced 
cortical alpha-synuclein lesions in Lewy body diseases. Neurobiology of 
Aging, 26(8), 1183-1192. 

 
Postuma, R. B., Adler, C. H., Dugger, B. N., Hentz, J. G., Shill, H. A., Driver- 

Dunckley, E., Sabbagh, M. N., Jacobson, S. A., Belden, C. M., Sue, L. I., 
Serrano, G., & Beach, T. G. (2015). REM sleep behaviour disorder and 
neuropathology in Parkinson’s disease. Movement Disorders, 30(10), 1413-
1417. 

 
Seidel K., Mahlke J., Siswanto S., Kruger R., Heinsen H., Auburger G., Bouzrou M.,  

Grinberg L.T., Wicht H., Korf H.W., den Dunnen W., & Rub U. (2015). The  
brainstem pathologies of Parkinson's disease and dementia with Lewy bodies. 
Brain Pathology, 25(2), 121-135. 

 
Sugiyama, H., Hainfellner, J. A., Yoshimura, M., & Budka, H. (1994). Neocortical  

changes in Parkinson’s disease, revisited. Clinical Neuropathology, 13(2), 55-
59. 

 
Toledo J.B., Gopal P., Raible K., Irwin D.J., Brettschneider J., Sedor S., Waits K.,  

Boluda S., Grossman M., Van Deerlin V.M., Lee E.B., Arnold S.E., Duda  
J.E., Hurtig H., Lee V.M., Adler C.H., Beach T.G., & Trojanowski J.Q. 
(2016). Pathological alpha-synuclein distribution in subjects with coincident 
Alzheimer's and Lewy body pathology. Acta Neuropathologica, 131(3), 393-
409. 
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Appendix 4: Supplementary tables for Chapter 6 
 
Table A1. Distribution of responses for each MoCA item. 
 

Item Full sample MoCA<26 MoCA<21 

Trail-making 79.6 64.2 29.3 

Phonemic fluency 67.8 52.8 30.6 

Abstraction 1 79.8 66.8 37.6 

Abstraction 2 82.0 70.6 44.6 

Lion 99.5 99.0 97.5 

Rhinoceros 91.2 86.2 72.6 

Camel 98.9 97.9 94.9 

Repetition 1 90.3 83.4 67.5 

Repetition 2 82.5 70.8 51.6 

Recall 1 50.9 29.2 9.6 

Recall 2 64.2 40.8 19.1 

Recall 3 54.9 29.3 8.3 

Recall 4 41.9 18.9 5.1 

Recall 5 54.3 29.4 10.2 

Digits forward 95.3 91.3 84.1 

Digits backward 90.6 83.8 67.5 

Vigilance 88.5 79.9 65.0 

Cube 76.6 60.0 29.3 

Date 90.7 84.4 73.9 

Month 99.3 98.9 97.5 

Year 99.1 98.1 93.0 

Day 98.4 96.7 91.7 

Place 99.0 98.4 96.2 

City 99.8 99.6 99.4 
 

Table continues on next page. 
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Table A1 (continued). 

Item Full sample MoCA<26 MoCA<21 

Subtractions (0 correct) 2.4 5.0 12.7 

Subtractions (1 correct) 7.2 13.4 25.5 

Subtractions (2-3 correct) 26.4 33.8 36.3 

Subtractions (4-5 correct) 64.1 47.8 25.5 

Clock (0 elements correct) 0.9 2.0 5.7 

Clock (1 element correct) 4.5 9.9 23.6 

Clock (2 elements correct) 18.5 29.9 42.7 

Clock (3 elements correct) 75.6 58.2 28.0 
 

All values are percentages. For all items except subtractions and clock, values 
represent correct responses. 
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Table A2. Loadings for each item by factor (2-factor model). 

Item Memory Attentional-Executive 
 

Trail-making 
 

0.63 (0.02)** 
 

Phonemic fluency 
 

0.41 (0.02)** 
 

Abstraction 1 
 

0.54 (0.02)** 
 

Abstraction 2 
 

0.53 (0.02)** 
 

Animals 0.32 (0.02)** 
  

Repetition 1 0.38 (0.02)** 
  

Repetition 2 0.42 (0.02)** 
  

Recall 1 0.54 (0.02)** 
  

Recall 2 0.67 (0.02)** 
  

Recall 3 0.72 (0.01)** 
  

Recall 4 0.67 (0.02)** 
  

Recall 5 0.66 (0.02)** 
  

Digits forward 
 

0.37 (0.02)** 
 

Digits backward 0.33 (0.02)** 
  

Vigilance 
 

0.43 (0.02)** 
 

Subtractions 
 

0.43 (0.02)** 
 

Cube 
 

0.64 (0.02)** 
 

Clock 
 

0.57 (0.02)** 
 

Temporal 0.35 (0.02)** 
  

Spatial 0.22 (0.03)** 
      

This model was tested in the full sample (n = 1738). Values are correlation coefficient (standard error). 
*p < 0.05, **p < 0.001. 
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Table A3. Loadings for each item by factor (6-factor model). 

Item Executive Language Recall Attention Visuospatial Orientation 

Trail-making 0.65 (0.02)** 
     

Phonemic fluency 0.29 (0.04)** 0.16 (0.05)* 
    

Abstraction 1 0.55 (0.02)** 
     

Abstraction 2 0.55 (0.02)** 
     

Animals 
 

0.33 (0.03)** 
    

Repetition 1 
 

0.63 (0.02)** 
    

Repetition 2 
 

0.74 (0.02)** 
    

Recall 1 
  

0.55 (0.02)** 
   

Recall 2 
  

0.70 (0.02)** 
   

Recall 3 
  

0.78 (0.01)** 
   

Recall 4 
  

0.69 (0.02)** 
   

Recall 5 
  

0.69 (0.02)** 
   

Digits forward 
   

0.46 (0.02)** 
  

Digits backward 
   

0.60 (0.02)** 
  

Vigilance 
   

0.53 (0.02)** 
  

Subtractions 
   

0.46 (0.02)** 
  

Cube 
    

0.68 (0.02)** 
 

Clock 
    

0.62 (0.02)** 
 

Temporal 
     

0.37 (0.02)** 

Spatial† 
     

1.00 (8.8x10-18)** 
       

This model was tested in the full sample (n = 1738). Values are correlation coefficient (standard error). 
*p < 0.05, **p < 0.001. † Error variance constrained to 0. 
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Table A4. Loadings for each item by factor (1-factor model). 

Item Executive Language Recall Attention Visuospatial Orientation 

Cognition 0.99 (0.02)** 0.71 (0.03)** 0.60 (0.02)** 0.80 (0.02)** 0.85 (0.02)** 0.33 (0.02)** 

Trail-making 0.62 (0.02)** 
     

Phonemic fluency 0.34 (0.05)** 0.12 (0.05)* 
    

Abstraction 1 0.57 (0.02)** 
     

Abstraction 2 0.56 (0.02)** 
     

Animals 
 

0.34 (0.03)** 
    

Repetition 1 
 

0.65 (0.02)** 
    

Repetition 2 
 

0.70 (0.02)** 
    

Recall 1 
  

0.54 (0.02)** 
   

Recall 2 
  

0.69 (0.02)** 
   

Recall 3 
  

0.78 (0.01)** 
   

Recall 4 
  

0.69 (0.02)** 
   

Recall 5 
  

0.69 (0.02)** 
   

Digits forward 
   

0.46 (0.02)** 
  

Digits backward 
   

0.60 (0.02)** 
  

Vigilance 
   

0.53 (0.02)** 
  

Subtractions 
   

0.46 (0.02)** 
  

Cube 
    

0.70 (0.02)** 
 

Clock 
    

0.60 (0.02)** 
 

Temporal 
     

0.37 (0.02)** 

Spatial† 
     

1.00 (2.0x10-17)** 
       

This model was tested in the full sample (n = 1738). Values are correlation coefficient (standard error). 
*p < 0.05, **p < 0.001. † Error variance constrained to 0. 
 
  



   179 

Table A5. Loadings for each item by factor (3-factor model). 

Item Executive Recall Verbal Attention 
 

Trail-making 0.66 (0.02)**   
 

Phonemic fluency 0.40 (0.02)**   
 

Abstraction 1 0.54 (0.02)**   
 

Abstraction 2 0.54 (0.02)**   
 

Repetition 1   0.77 (0.02)** 
 

Repetition 2   0.62 (0.02)** 
 

Recall 1  0.54 (0.02)**  
 

Recall 2  0.70 (0.02)**  
 

Recall 3  0.78 (0.02)**  
 

Recall 4  0.69 (0.02)**  
 

Recall 5  0.69 (0.02)**  
 

Digits forward   0.47 (0.02)** 
 

Digits backward 0.44 (0.02)**   
 

Subtractions 0.45 (0.02)**  0.00 (0.00) 
 

Cube 0.65 (0.02)**   
 

Clock 0.57 (0.02)**   
 

 

This model was tested in the full sample (n = 1738). Values are correlation coefficient (standard error). 
*p < 0.05, **p < 0.001. 
 

 
 
  



   180 

Table A6. Loadings for each item by factor (2-factor model, MoCA<26 sample). 
 

Item Memory Attentional-Executive 
 

Trail-making 
 

0.56 (0.04)** 
 

Phonemic fluency 
 

0.15 (0.04)* 
 

Abstraction 1 
 

0.31 (0.05)** 
 

Abstraction 2 
 

0.35 (0.05)** 
 

Animals –0.06 (0.04) 
  

Repetition 1 –0.01 (0.04) 
  

Repetition 2 –0.01 (0.04) 
  

Recall 1 0.38 (0.04)** 
  

Recall 2 0.61 (0.03)** 
  

Recall 3 0.68 (0.03)** 
  

Recall 4 0.59 (0.03)** 
  

Recall 5 0.55 (0.03)** 
  

Digits forward 
 

0.04 (0.04) 
 

Digits backward –0.15 (0.04)** 
  

Vigilance 
 

0.16 (0.04)** 
 

Subtractions 
 

0.27 (0.04)** 
 

Cube 
 

0.41 (0.04)** 
 

Clock 
 

0.41 (0.04)** 
 

Temporal 0.00 (0.04) 
  

Spatial –0.13 (0.04)* 
      

Values are correlation coefficient (standard error). *p < 0.05, **p < 0.001. 
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Table A7. Loadings for each item by factor (3-factor model, MoCA<26 sample). 
 

Item Executive Recall Verbal Attention 
 

Trail-making 0.59 (0.04)**   
 

Phonemic fluency 0.16 (0.04)**   
 

Abstraction 1 0.33 (0.05)**   
 

Abstraction 2 0.36 (0.05)**   
 

Repetition 1†   1.00 (3.7x10-16)** 
 

Repetition 2   0.44 (0.03)** 
 

Recall 1  0.37 (0.04)**  
 

Recall 2  0.61 (0.03)**  
 

Recall 3  0.68 (0.03)**  
 

Recall 4  0.60 (0.03)**  
 

Recall 5  0.55 (0.03)**  
 

Digits forward   0.31 (0.03)** 
 

Digits backward 0.28 (0.04)**   
 

Subtractions 0.28 (0.04)**   
 

Cube 0.61 (0.04)**   
 

Clock 0.40 (0.04)**   
 

  

 

  
Values are correlation coefficient (standard error). *p < 0.05, **p < 0.001. † Error variance constrained 
to 0. Repetition 1 loaded almost perfectly onto Verbal Attention, preventing the model from 
converging. Therefore, this item’s variance was constrained to 0.  
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Table A8 Goodness-of-fit statistics for the confirmatory factor analyses (MoCA<26 
sample). 
 

Statistic 2-factor model 3-factor model 

χ2M 1966.62 796.32 

dfM 169 102 

p <0.001 <0.001 

pclose-fit H0 <0.001 <0.001 

χ2 / df 11.64 7.80 

RMSEA (90% CI) 0.12 (0.11-0.12) 0.09 (0.09-0.10) 

CFI 0.35 0.64 

TLI 0.27 0.58 

SRMR 0.10 0.07 
 

CFI = comparative fit index, CI = confidence interval, RMSEA = root mean square error of 
approximation, SRMR = standardised root mean square residual, TLI = Tucker-Lewis Index. 
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Table A9. Goodness-of-fit statistics for the new confirmatory factor analysis. 
 

Statistic New 3-factor model 

χ2M 1613.51 

dfM 101 

p <0.001 

pclose-fit H0 <0.001 

χ2 / df 15.98 

RMSEA (90% CI) 0.13 (0.13-0.14) 

CFI 0.7 

TLI 0.6 

SRMR 0.1 
 

 

This analysis was run on the full sample, subgroup 2. CFI = comparative fit index, CI = confidence 
interval, RMSEA = root mean square error of approximation, SRMR = standardised root mean square 
residual, TLI = Tucker-Lewis Index. 
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Appendix 5: Participants excluded from the 
analysis in Chapter 7 
 

 
Figure A1. Flow diagram showing exclusions for the analysis in Chapter 7. 
 
 

 

At baseline, 168 (8.4%) participants did not provide a DNA sample, and 63 (3.2%) 

were not of white British ancestry according to self-report. Excluding these 

participants reduced the sample size from 1998 to 1767. 

 

Of the 1767 participants, 781 (44.2%) did not have MoCA data at all three relevant 

timepoints. The majority of these (455, 58.3%) had withdrawn before concluding the 

Total number of recent-

onset participants

n = 1998

Excluded due to 

unavailable genetic data

n = 168

Excluded due to non-white 

or non-British ancestry

n = 63

Excluded due to missing 

MoCA at 36 months

n = 330

Excluded due to missing 

MoCA at baseline

n = 142

Participants included in the 

main analysis

n = 986

Participants with full genetic 

data and white British ancestry

n = 1767

Excluded due to missing 

MoCA at 18 months

n = 309
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three-year study period. The major reasons for withdrawals were patient choice (132, 

29.0%), death (87, 19.1%), intercurrent illness (43, 9.5%), and site closure (31, 6.8%). 

Only nine participants (2.0%) had had their diagnosis changed from PD to another 

parkinsonian disorder. 

 

A total of 326 (41.7%) participants had completed the three-year study period, but did 

not have MoCA data at all three timepoints; this included all 142 participants missing 

a baseline MoCA result. For all of these participants, one or more MoCA items were 

missing, and therefore, it was not possible to derive a total score. 

 

Following exclusions of all participants missing MoCA data from the baseline, 18-

month, or 36-month visits, the final sample size for the main analysis was 986. 
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Appendix 6: Linear and logistic regressions for 
Chapter 7 
 
Table A10. Association of APOE genotype with MoCA score (linear regression). 

Baseline Unadjusted Partially adjusted Fully adjusted 

ε2/ε2 0.8 (–1.0, 2.6) 
p = 0.38 

0.0 (–2.0, 2.0) 
p = 0.99 

0.0 (–2.0, 2.1) 
p = 0.97 

ε2/ε3 –0.3 (–1.0, 0.4) 
p = 0.34 

–0.4 (–1.1, 0.3) 
p = 0.23 

–0.4 (–1.1, 0.2) 
p = 0.22 

ε2/ε4 –0.1 (–1.1, 0.9) 
p = 0.87 

0.0 (–1.0, 0.9) 
p = 0.95 

0.0 (–1.0, 1.0) 
p = 0.97 

ε3/ε4 
–0.1 (–0.6, 0.4) 

p = 0.64 
–0.2 (–0.7, 0.3) 

p = 0.42 
–0.2 (–0.7, 0.3) 

p = 0.42 

ε4/ε4 
0.0 (–1.1, 1.1) 

p = 0.97 
–0.3 (–1.3, 0.6) 

p = 0.50 
–0.4 (–1.4, 0.6) 

p = 0.48 
18 months    

ε2/ε2 
1.4 (0.1, 2.7) 

p = 0.04* 
0.5 (–1.0, 1.9) 

p = 0.55 
0.5 (–1.0, 2.0) 

p = 0.54 

ε2/ε3 
–0.2 (–0.9, 0.5) 

p = 0.65 
–0.1 (–0.8, 0.6) 

p = 0.78 
–0.1 (–0.8, 0.6) 

p = 0.76 

ε2/ε4 –0.4 (–1.8, 1.1) 
p = 0.64 

–0.2 (–1.7, 1.3) 
p = 0.82 

–0.2 (–1.7, 1.4) 
p = 0.84 

ε3/ε4 0.0 (–0.5, 0.6) 
p = 0.89 

0.0 (–0.5, 0.5) 
p = 0.93 

0.0 (–0.5, 0.5) 
p = 0.94 

ε4/ε4 –0.5 (–2.1, 1.0) 
p = 0.51 

–1.0 (–2.4, 0.4) 
p = 0.15 

–1.0 (–2.4, 0.3) 
p = 0.14 

36 months    

ε2/ε2 1.6 (0.4, 2.8) 
p = 0.01* 

0.7 (–0.8, 2.2) 
p = 0.36 

0.7 (–0.8, 2.2) 
p = 0.36 

ε2/ε3 
0.2 (–0.5, 0.9) 

p = 0.56 
0.1 (–0.5, 0.8) 

p = 0.70 
0.1 (–0.5, 0.8) 

p = 0.70 

ε2/ε4 
–0.6 (–2.2, 0.9) 

p = 0.43 
–0.7 (–2.3, 0.9) 

p = 0.39 
–0.7 (–2.3, 0.9) 

p = 0.39 

ε3/ε4 
–0.6 (–1.2, 0.1) 

p = 0.09 
–0.6 (–1.2, 0.0) 

p = 0.06 
–0.6 (–1.2, 0.0) 

p = 0.06 

ε4/ε4 
–1.0 (–3.1, 1.1) 

p = 0.36 
–1.5 (–3.4, 0.4) 

p = 0.12 
–1.5 (–3.4, 0.4) 

p = 0.12 
 

Data are unstandardised regression coefficient (95% CI); significance level. The dependent variable is MoCA 
score. The reference category is APOE ε3/ε3. Positive values indicate a higher MoCA score than ε3/ε3 and 
negative values indicate a lower MoCA score than ε3/ε3. The model was adusted for sex, and for age, disease 
duration, and education category. *Significant at p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive 
Assessment. 
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Table A11. Association of APOE genotype with cognitive status (logistic regression). 

Baseline Unadjusted Partially adjusted Fully adjusted 

ε2/ε2 0.5 (1.0, 2.2) 
p = 0.32 

0.7 (0.2, 3.6) 
p = 0.71 

0.7 (0.1, 3.5) 
p = 0.69 

ε2/ε3 1.2 (0.8, 1.7) 
p = 0.42 

1.2 (0.8, 1.9) 
p = 0.28 

1.3 (0.8, 1.9) 
p = 0.27 

ε2/ε4 0.8 (0.4, 1.5) 
p = 0.46 

0.7 (0.3, 1.5) 
p = 0.39 

0.7 (0.3, 1.5) 
p = 0.38 

ε3/ε4 
1.0 (0.7, 1.4) 

p = 0.82 
1.1 (0.8, 1.5) 

p = 0.64 
1.1 (0.8, 1.5) 

p = 0.63 

ε4/ε4 
1.0 (0.4, 2.4) 

p = 1.00 
1.3 (0.5, 3.2) 

p = 0.58 
1.3 (0.5, 3.3) 

p = 0.56 
18 months    

ε2/ε2 
0.2 (0.0, 1.6) 

p = 0.14 
0.4 (0.0, 2.9) 

p = 0.33 
0.3 (0.0, 2.8) 

p = 0.31 

ε2/ε3 
0.9 (0.6, 1.3) 

p = 0.61 
0.9 (0.6, 1.4) 

p = 0.59 
0.9 (0.6, 1.4) 

p = 0.65 

ε2/ε4 1.0 (0.5, 2.0) 
p = 0.98 

0.9 (0.4, 1.9) 
p = 0.76 

0.9 (0.4, 1.9) 
p = 0.74 

ε3/ε4 1.0 (0.7, 1.4) 
p = 0.93 

1.0 (0.7, 1.4) 
p = 0.95 

1.0 (0.7, 1.4) 
p = 0.97 

ε4/ε4 1.3 (0.5, 3.0) 
p = 0.59 

1.7 (0.7, 4.1) 
p = 0.25 

1.7 (0.7, 4.2) 
p = 0.22 

36 months    

ε2/ε2 0.2 (0.0, 1.5) 
p = 0.12 

0.3 (0.0, 2.4) 
p = 0.25 

0.3 (0.0, 2.4) 
p = 0.24 

ε2/ε3 
1.1 (0.7, 1.5) 

p = 0.80 
1.1 (0.8, 1.7) 

p = 0.58 
1.1 (0.8, 1.7) 

p = 0.56 

ε2/ε4 
1.3 (0.7, 2.5) 

p = 0.38 
1.3 (0.7, 2.6) 

p = 0.43 
1.3 (0.7, 2.6) 

p = 0.45 

ε3/ε4 
1.3 (1.0, 1.8) 

p = 0.09 
1.4 (1.0, 1.9) 

p = 0.07 
1.4 (1.0, 1.9) 

p = 0.07 

ε4/ε4 
1.5 (0.6, 3.5) 

p = 0.41 
2.0 (0.8, 4.9) 

p = 0.14 
2.0 (0.8, 5.0) 

p = 0.13 
 

Data are odds ratio (95% CI); significance level. The dependent variable is cognitive status, defined by MoCA 
score (normal = 26-30, MCI = 21-25, dementia = 0-20). The reference category is APOE ε3/ε3. Positive values 
indicate greater odds of worse cognition than ε3/ε3, and negative values indicate lower odds of worse cognition 
than ε3/ε3. The model was adusted for sex, and for age, disease duration, and education category. *Significant at 
p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive Assessment. 
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Table A12. Association of APOE genotype with MoCA change (linear regression). 

0-18 months Unadjusted Partially adjusted Fully adjusted 

ε2/ε2 –0.6 (–1.9, 0.8) 
p = 0.40 

–0.5 (–1.7, 0.8) 
p = 0.49 

–0.4 (–1.7, 0.8) 
p = 0.50 

ε2/ε3 –0.2 (–0.7, 0.4) 
p = 0.53 

–0.3 (–0.8, 0.3) 
p = 0.39 

–0.2 (–0.8, 0.3) 
p = 0.39 

ε2/ε4 0.3 (–0.7, 1.3) 
p = 0.59 

0.3 (–0.7, 1.4) 
p = 0.52 

0.3 (–0.7, 1.4) 
p = 0.52 

ε3/ε4 
–0.2 (–0.6, 0.3) 

p = 0.49 
–0.2 (–0.6, 0.3) 

p = 0.47 
–0.2 (–0.6, 0.3) 

p = 0.46 

ε4/ε4 
0.5 (–0.6, 1.6) 

p = 0.36 
0.7 (–0.4, 1.8) 

p = 0.20 
0.7 (–0.4, 1.8) 

p = 0.20 
18-36 months    

ε2/ε2 
–0.2 (–1.0, 0.5) 

p = 0.53 
–0.1 (–0.8, 0.7) 

p = 0.83 
–0.1 (–0.8, 0.7) 

p = 0.87 

ε2/ε3 
–0.4 (–0.9, 0.1) 

p = 0.15 
–0.4 (–0.9, 0.2) 

p = 0.18 
–0.4 (–0.9, 0.2) 

p = 0.18 

ε2/ε4 0.3 (–0.9, 1.4) 
p = 0.65 

0.4 (–0.8, 1.6) 
p = 0.48 

0.4 (–0.8, 1.6) 
p = 0.47 

ε3/ε4 0.6 (0.1, 1.0) 
p = 0.01* 

0.6 (0.1, 1.0) 
p = 0.01* 

0.6 (0.1, 1.0) 
p = 0.01 

ε4/ε4 0.5 (–0.6, 1.6) 
p = 0.42 

0.6 (–0.6, 1.7) 
p = 0.32 

0.6 (–0.6, 1.7) 
p = 0.34 

0-36 months    

ε2/ε2 –0.8 (–1.7, 0.0) 
p = 0.06 

–0.5 (–1.3, 0.2) 
p = 0.16 

–0.5 (–1.3, 0.3) 
p = 0.21 

ε2/ε3 
–0.5 (–1.1, 0.0) 

p = 0.05* 
–0.6 (–1.2, 0.0) 

p = 0.04* 
–0.6 (–1.2, 0.0) 

p = 0.04* 

ε2/ε4 
0.5 (–0.8, 1.9) 

p = 0.42 
0.8 (–0.6, 2.1) 

p = 0.27 
0.8 (–0.6, 2.2) 

p = 0.27 

ε3/ε4 
0.4 (–0.1, 1.0) 

p = 0.13 
0.4 (–0.1, 1.0) 

p = 0.13 
0.4 (–0.1, 1.0) 

p = 0.13 

ε4/ε4 
1.0 (–0.5, 2.4) 

p = 0.19 
1.3 (–0.1, 2.7) 

p = 0.08 
1.3 (–0.2, 2.7) 

p = 0.09 
 

Data are unstandardised regression coefficient (95% CI); significance level. The dependent variable is MoCA 
change. The reference category is APOE ε3/ε3. Positive values indicate a greater MoCA decline than ε3/ε3 and 
negative values indicate less MoCA decline than ε3/ε3. The model was adusted for sex, and for age, disease 
duration, and education category. *Significant at p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive 
Assessment. 
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Table A13. Association of MAPT genotype with MoCA score (linear regression). 

Baseline Unadjusted Partially adjusted Fully adjusted 

H1/H2 0.1 (–0.3, 0.5) 
p = 0.56 

0.0 (–0.4, 0.4) 
p = 0.94 

0.0 (–0.4, 0.4) 
p = 0.95 

H2/H2 0.4 (–0.6, 1.4) 
p = 0.42 

0.2 (–0.7, 1.1) 
p = 0.70 

0.2 (–0.7, 1.1) 
p = 0.72 

18 months    

H1/H2 
0.2 (–0.2, 0.7) 

p = 0.32 
0.1 (–0.3, 0.6) 

p = 0.57 
0.1 (–0.3, 0.6) 

p = 0.59 

H2/H2 
0.0 (–1.0, 1.1) 

p = 0.94 
0.1 (–0.7, 1.0) 

p = 0.76 
0.1 (–0.7, 1.0) 

p = 0.78 
36 months    

H1/H2 
0.3 (–0.2, 0.8) 

p = 0.22 
0.2 (–0.3, 0.7) 

p = 0.39 
0.2 (–0.3, 0.7) 

p = 0.39 

H2/H2 
0.8 (–0.4, 1.9) 

p = 0.18 
0.7 (–0.4, 1.7) 

p = 0.21 
0.7 (–0.4, 1.7) 

p = 0.21 
 

Data are unstandardised regression coefficient (95% CI); significance level. The dependent variable is MoCA 
score. The reference category is MAPT H1/H1. Positive values indicate a higher MoCA score than H1/H1 and 
negative values indicate a lower MoCA score than H1/H1. The model was adusted for sex, and for age, disease 
duration, and education category. *Significant at p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive 
Assessment. 
 

 
Table A14. Association of MAPT genotype with cognitive status (logistic regression). 

Baseline Unadjusted Partially adjusted Fully adjusted 

H1/H2 
0.9 (0.7, 1.2) 

p = 0.43 
0.9 (0.7, 1.3) 

p = 0.67 
0.9 (0.7, 1.3) 

p = 0.68 

H2/H2 1.0 (0.5, 2.0) 
p = 0.97 

1.2 (0.6, 2.3) 
p = 0.66 

1.2 (0.6, 2.4) 
p = 0.62 

18 months    

H1/H2 0.9 (0.7, 1.2) 
p = 0.42 

0.9 (0.7, 1.3) 
p = 0.70 

1.0 (0.7, 1.3) 
p = 0.74 

H2/H2 1.0 (0.5, 1.9) 
p = 0.93 

1.0 (0.5, 2.0) 
p = 0.92 

1.0 (0.5, 2.0) 
p = 0.95 

36 months    

H1/H2 
0.9 (0.7, 1.1) 

p = 0.29 
0.9 (0.7, 1.2) 

p = 0.54 
0.9 (0.7, 1.2) 

p = 0.55 

H2/H2 
0.7 (0.3, 1.3) 

p = 0.24 
0.8 (0.4, 1.6) 

p = 0.45 
0.8 (0.4, 1.6) 

p = 0.47 
 

Data are odds ratio (95% CI); significance level. The dependent variable is cognitive status, defined by MoCA 
score (normal = 26-30, MCI = 21-25, dementia = 0-20). The reference category is MAPT H1/H1. Positive values 
indicate greater odds of worse cognition than H1/H1, and negative values indicate lower odds of worse cognition 
than H1/H1. The model was adusted for sex, and for age, disease duration, and education category. *Significant 
at p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive Assessment. 
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Table A15. Association of MAPT genotype with MoCA change (linear regression). 

0-18 months Unadjusted Partially adjusted Fully adjusted 

H1/H2 –0.1 (–0.5, 0.3) 
p = 0.56 

–0.1 (–0.5, 0.3) 
p = 0.63 

–0.1 (–0.5, 0.3) 
p = 0.63 

H2/H2 0.4 (–0.5, 1.2) 
p = 0.39 

0.3 (–0.6, 1.2) 
p = 0.49 

0.3 (–0.6, 1.2) 
p = 0.49 

18-36 months    

H1/H2 
–0.1 (–0.5, 0.3) 

p = 0.64 
–0.1 (–0.5, 0.3) 

p = 0.72 
–0.1 (–0.5, 0.3) 

p = 0.72 

H2/H2 
–0.7 (–1.7, 0.3) 

p = 0.17 
–0.8 (–1.8, 0.3) 

p = 0.14 
–0.8 (–1.8, 0.2) 

p = 0.13 
0-36 months    

H1/H2 
–0.2 (–0.6, 0.2) 

p = 0.37 
–0.2 (–0.6, 0.3) 

p = 0.47 
–0.2 (–0.6, 0.3) 

p = 0.46 

H2/H2 
–0.3 (–1.4, 0.7) 

p = 0.51 
–0.5 (–1.5, 0.6) 

p = 0.39 
–0.5 (–1.5, 0.6) 

p = 0.36 
 

Data are unstandardised regression coefficient (95% CI); significance level. The dependent variable is MoCA 
change. The reference category is MAPT H1/H1. Positive values indicate a greater MoCA decline than H1/H1 
and negative values indicate less MoCA decline than H1/H1. The model was adusted for sex, and for age, disease 
duration, and education category. *Significant at p < 0.05. CI = confidence interval, MoCA = Montreal Cognitive 
Assessment. 
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Appendix 7: Secondary analysis for Chapter 7 
 

Number of APOE ε4 alleles. When the number of ε4 alleles was the main predictor 

and cross-sectional MoCA score was the dependent variable, fully adjusted models 

found significant results only at 36 months, where one ε4 allele was deleterious 

(unstandardised coefficient [95% CI]: –0.7 [–1.2, –0.1], p = 0.03) relative to zero ε4 

alleles. 

 

There was an interaction between number of ε4 alleles and sex at 18 months and at 36 

months but not at baseline. Sex-stratified analysis found that the deleterious effects of 

two ε4 alleles were confined to men (at 18 months, –2.1 [–3.9, –0.4], p = 0.02; at 36 

months, –3.2 [–5.6, –0.8], p = 0.009). No other significant interactions were observed 

at any timepoint. 

 

When ordered logistic regression was used to predict cognitive status (normal, MCI, 

or dementia), the only significant result was found in the sex-stratified analysis at 36 

months, where the presence of two ε4 alleles was significantly associated with higher 

odds of worse cognitive status in men only (odds ratio [95% CI]: 3.9 [1.3, 11.7], p = 

0.02). The interaction of ε4 dosage with sex was not statistically significant. 

 

When the magnitude of MoCA change over time was the dependent variable, fully 

adjusted models found a deleterious effect of one ε4 allele on score change from 18-

36 months (unstandardised coefficient [95% CI]: 0.6 [0.2, 1.1], p = 0.004); in contrast 

to the main analysis, a deleterious effect of one ε4 allele was also found on score 

change from baseline to 36 months (0.6 [0.1, 1.1] p = 0.02). The baseline to 36 

months model showed a significant interaction between ε4 dosage and sex, but no 

significant interactions with age, disease duration, or education. Sex-stratified 

analysis found that decline over this period was associated with the presence of two 

ε4 alleles in men only (2.6 [0.9, 4.3], p = 0.003), and with the presence of one ε4 

allele in women only (1.0 [0.1, 1.8], p = 0.03); the latter result was not encountered in 

the main analysis. The baseline to 18 months model also showed a significant 

interaction between ε4 dosage and sex; however, sex-stratified regressions returned 

no significant results. 
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APOE ε4 positivity. Fewer statistically significant results were observed when using 

the binary category of APOE ε4 carrier versus non-carrier as the main predictor. Fully 

adjusted models showed that ε4 carriers had lower MoCA scores than non-carriers at 

36 months (–0.7 [–1.3, –0.2], p = 0.01). Ordered logistic regression with cognitive 

status as the dependent variable found a significant effect only at 36 months, such that 

ε4 positivity was associated with higher odds of worse cognitive status (odds ratio 

95% CI]: 1.4 [1.0, 1.8], p = 0.03). Additionally, ε4 positivity was associated with 

MoCA decline from 18-36 months (unstandardised coefficient [95% CI]: 0.6 [0.2, 

1.0], p = 0.003) and from baseline to 36 months (0.7 [0.2, 1.1], p = 0.01). No other 

significant results were seen, and none of the previously observed interaction effects 

were evident. 

 

MAPT H2 positivity. When MAPT H2 carriers were compared to H1/H1, there were 

no significant results in any of the fully adjusted cross-sectional or longitudinal 

regression models. A marginally significant interaction between MAPT H2 positivity 

and education was observed in the logistic regression for cognitive status at 18 

months, but education-stratified analysis did not show significant results. A 

corresponding result was not found in the main analysis, but it was seen in the 

sensitivity analysis (Appendix 10). 
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Appendix 8: Unadjusted analysis of MAPT 
subhaplotypes 
 

Table A16. Effect of MAPT subhaplotypes on odds of dementia in PD (unadjusted for 
sex and age category). 

ID Allele 
sequence 

Estimated 
frequency (%) 

OR 
(95% CI) p-value 

H1b GGGCTA 17.9 0.7 (0.4, 1.2) 0.18 

H1c AAGTTG 15.1 0.8 (0.5, 1.4) 0.44 

H1d AAGCTA 7.5 0.7 (0.3, 1.5) 0.39 

H1e AGGCTA 6.8 0.9 (0.4, 1.8) 0.71 

H1f GGACTA 0.7 2.2 (0.3, 16.1) 0.42 

H1g GAACTA 1.2 0.8 (0.1, 5.4) 0.83 

H1h AGACTA 2.8 1.3 (0.5, 3.5) 0.58 

H1i GAGCTA 4.3 1.8 (0.9, 3.6) 0.12 

H1j AGGCTG 1.0 7.3–6* 0.99 

H1l AGACTG 4.8 1.2 (0.6, 2.4) 0.63 

H1m GAGCTG 2.3 1.5 (0.6, 3.8) 0.40 

H1n GGACTG 1.0 4.2–7* 0.99 

H1o AAACTA 1.1 1.3 (0.3, 5.8) 0.76 

H1p GGGTTG 0.04 3.7 (0.7, 19.6) 0.12 

H1q AAGTTA 1.3 0.4 (0.1, 3.3) 0.42 

H1r AGGTTG 1.6 1.0 (0.2, 4.0) 0.96 

H1s GGGCTG 1.1 6.5–7* 0.99 

H1t AGATTG 1.0 1.0–6* 0.99 

H1u AAGCTG 2.5 1.7 (0.7, 3.9) 0.24 

H1v GGATTG 1.7 0.9 (0.2, 3.9) 0.94 

H1x GAATTG 1.4 1.1 (0.2, 5.4) 0.93 
 

For allele sequence, SNPs are in the following order: rs1467967, rs242557, rs3785883, rs2471738, 
rs9468 (H2-tagging), and rs7521. The reference category was H2a combined with all rare 
subhaplotypes (estimated frequency <0.3%). *Confidence intervals were not generated for these 
subhaplotypes. CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.  
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Appendix 9: Power calculations for the 
subhaplotype analysis 
 

Table A17. Power to detect a significant association with dementia in PD. 

Subhaplotype frequency Odds ratio Power 

1% 1.5 10% 

5% 1.5 18% 

10% 1.5 27% 

20% 1.5 40% 

1% 2.0 17% 

5% 2.0 42% 

10% 2.0 63% 

20% 2.0 84% 

1% 2.5 25% 

5% 2.5 64% 

10% 2.5 86% 

20% 2.5 98% 

1% 3.0 32% 

5% 3.0 79% 

10% 3.0 95% 

20% 3.0 99% 
 

The total sample size was 686, of whom 15.3% had dementia. Power to detect significance at the 0.05 
level was calculated. Calculations performed with G*Power software (Faul et al., 2009). PD = 
Parkinson’s disease. 
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Appendix 10: Sensitivity analysis for Chapter 7 
 
For the main analysis, cases with incomplete MoCA data at the baseline, 18-month, or 

36-month visits were excluded (n = 781). As a sensitivity analysis, all models were 

rerun with all available data at each timepoints. The analysis sample was still 

restricted to those with genetic data who self-reported white British ancestry. At 

baseline, the total sample size was 1767; the distribution of APOE and MAPT 

genotypes for this sample is shown in Table A18. Genotype frequencies were 

comparable in the main and sensitivity samples. MoCA data were available for 1430 

participants at 18 months and for 1155 at 36 months. The decline in sample size 

resulted from a combination of genuine withdrawals (see Appendix 5 for details) and 

the study being ongoing, meaning that some participants had not reached the 36-

month visit when data were accessed. 

 

 

Table A18. Distribution of APOE and MAPT genotypes in all participants with available 
MoCA data at baseline (n = 1767). 

 APOE genotype n (%) 

ε2ε2 11 (0.6%) 

ε2ε3 229 (13.0%) 

ε2ε4 60 (3.4%) 

ε3ε3 1050 (59.4%) 

ε3ε4 378 (21.4%) 

ε4ε4 39 (2.2%) 

MAPT genotype  

H1/H1 1169 (66.2%) 

H1/H2 539 (30.5%) 

H2/H2 59 (3.3%) 

 

 

 

APOE. Fully adjusted models with MoCA score as the dependent variable and all six 

APOE genotypes as the predictor generally found no significant results, consistent 
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with the main analysis; the sole exception was a mild deleterious effect of ε3/ε4 at 36 

months (unstandardised coefficient [95% CI]: –0.8 [–1.4, –0.2], p = 0.006). As with 

the main analyses, interactions of genotype with sex were found at each timepoint. 

The subsequent sex-stratified analysis showed the same protective effects of ε2 

homozygosity and detrimental effects of ε4 homozygosity in men, though there were 

additional marginal effects of ε4/ε4 at baseline (–1.3 [–2.5, –0.1], p = 0.04), and of 

ε3/ε4 at 36 months (–0.8 [–1.6, 0.0], p = 0.04). Significant results for women were the 

same as the main analysis. Finally, two new significant interactions emerged in the 

sensitivity analysis. Genotype marginally interacted with age at baseline, and age-

stratified analysis showed an effect of ε4 homozygosity only in the older participants 

(–2.9 [–5.1, –0.7], p = 0.009). There was also an interaction with education at 18 

months, with education-stratified analysis showing effects of ε3/ε4 (–1.3 [–2.2, –0.4], 

p = 0.007) only in those with fewer than 13 years of education. 

 

The logistic regressions found a significant effect of ε3/ε4 on worse cognitive status at 

36 months (odds ratio [95% CI]: 2.0 [0.8, 4.7], p = 0.01), but no other significant 

results were observed. Again, sex-stratified analysis showed a deleterious effect of 

ε4/ε4 only in men. Unlike the main analysis, an interaction of genotype and education 

was observed at baseline; education-stratified analysis showed deleterious effects of 

ε3/ε4 and ε4/ε4 only in lower educated participants (1.6 [1.1, 2.5], p = 0.02 and 4.9 

[1.4, 17.6], p = 0.01, respectively). 

 

When MoCA change was the dependent variable, results were again similar to the 

main analysis. Fully adjusted models showed no associations between APOE 

genotype and change from baseline to 18 months, though there was some evidence for 

an interaction with disease duration. The ε3/ε4 genotype was weakly associated with 

decline from 18-36 months (unstandardised coefficient [95% CI]: 0.6 [0.1, 1.0], p = 

0.01), and no interactions with other predictors were observed for this interval. Unlike 

the main analysis, fully adjusted models showed significant effects of ε2/ε3 and ε3/ε4 

on change from baseline to 36 months (–0.6 [1.1, 0.0], p = 0.03 and 0.6 [0.1, 1.1], p = 

0.03, respectively). For this interval, the interaction with sex crossed into non-

significance (p = 0.06), but interactions with age and disease duration were again 

observed, and subsequent stratified regressions replicated the findings of the main 

analysis. In older participants, an additional deleterious effect of ε3/ε4 was observed 
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(1.1 [0.2, 2.0], p = 0.02); ε4/ε4 had a higher coefficient, but this was not statistically 

significant (3.1 [–0.3, 6.4], p = 0.07). 

 

MAPT. Fully adjusted linear and logistic regression models replicated with main 

analysis, with no significant results found at any timepoint. However, there were two 

significant interactions of MAPT with other predictors. At 18 months, there was an 

interaction between MAPT genotype and education; the education-stratified analysis 

showed higher MoCA scores in the H2/H2 group than in the H1/H1 group (2.0 [0.9, 

3.1], p < 0.001) only in participants with fewer than 13 years of education. At 36 

months, this interaction was non-significant, but only marginally (p = 0.0504). 
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