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Summary 

Splenic red pulp macrophages (RPM) contribute to erythrocyte homeostasis and are 

required for iron recycling. Heme induces the expression of SPIC transcription factor 

in monocyte-derived macrophages, and promotes their differentiation into RPM 

precursors, pre-RPM. However, the requirements for differentiation into mature RPM 

remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated 

with erythrocytes and co-cooperated with heme to promote the generation of mature 

RPM through activation of the MyD88 adaptor protein and ERK1/2 kinases 

downstream of the interleukin 33 receptor, IL1RL1. IL-33 and IL1RL1 deficient mice 

showed defective iron-recycling and increased splenic iron deposition. Gene 

expression and chromatin accessibility studies revealed a role for GATA transcription 

factors downstream of IL-33 signaling during the development of pre-RPM that 

retained full potential to differentiate into RPM. Thus, IL-33 instructs the development 

of RPM as a response to physiological erythrocyte damage with important 

implications to iron recycling and iron homeostasis. 
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Introduction 

The development of tissue-resident macrophages from yolk sac-derived pre-

macrophages (Mass et al., 2016) or bone marrow-derived monocytes (Scott et al., 

2016) requires local specification by instructive signals coming from the tissue 

microenvironment (Amit et al., 2016; Gautier et al., 2014; Okabe and Medzhitov, 

2014). This is the case for some locally generated metabolites like retinoic acid, 

which is required for the polarisation of peritoneal macrophages, and heme which 

plays an essential role in the commitment of monocytes to a pre-red pulp 

macrophage (RPM) phenotype, dependent on the transcription factor SPIC (Amit et 

al., 2016; Haldar et al., 2014; Okabe and Medzhitov, 2014). An important 

physiological function of RPM is the regulation of iron metabolism through 

erythrocyte clearance and iron recycling. RPM phagocytose other blood-borne 

particulates and express several innate immune receptors, and may therefore be 

involved in the regulation of immune-inflammatory responses. RPM are also involved 

in type I interferon production in response to parasites (P. Chabaudi), and are able to 

cross-prime early effector T cell responses against viruses, and may therefore play a 

role in the defense against infections (Borges da Silva et al., 2015; Enders et al., 

2020; Kurotaki et al., 2015). 

Cytokines are important modulators of macrophage phenotype and function during 

inflammation and tissue repair (Bosurgi et al., 2017; Howangyin et al., 2016; Ip et al., 

2017; Jenkins et al., 2011; Minutti et al., 2017). However, the requirement for a local 

sources of cytokines during the homeostatic development and local specification of 

tissue-resident macrophages is not established (Amit et al., 2016). For example, local 

production of interleukin-34 (IL-34) in brain and skin is required for the development 

of microglia and Langerhans cells (Wang et al., 2012). However, in this case IL-34 
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mostly acts as a local colony stimulating factor-1 receptor (CSF1R) ligand required 

for monocyte and/or macrophage survival and proliferation rather than being involved 

in the functional specialisation to the microglial or Langerhans cell phenotype. 

Transforming growth factor-β1 (TGF-β1) is also essential for the acquisition of 

microglia and Langerhans cell signatures (Butovsky et al., 2014). However, the 

source of TGF-β1 has not been defined, and it is still unknown whether TGF-β1 

signaling is required for microglia development in a cell-autonomous manner. 

Furthermore, granulocyte macrophage-colony stimulating factor (GM-CSF) plays a 

specific role in the development of alveolar macrophages (Guilliams et al., 2013; 

Hashimoto et al., 2013), though it is unclear whether a specific local source of GM-

CSF is required for this effect. In addition, IL-10 is essential for the control of 

macrophage inflammatory responses through metabolic reprogramming of 

macrophages, inhibition of mammalian target of rapamycin (mTOR) signaling, and 

promotion of mitophagy (Ip et al., 2017). IL-4 is also involved in the proliferation of 

tissue-resident macrophages in response to type 2 inflammation (Jenkins et al., 

2011), and is required together with IL-13 for the induction of a tissue repair 

macrophage phenotype after type 2-mediated macrophage activation (Bosurgi et al., 

2017; Minutti et al., 2017), and aseptic ischemic injury (Howangyin et al., 2016). 

However, those cytokines are not required for the establishment of tissue-resident 

macrophages under homeostatic conditions. 

IL-33 is a member of the IL-1 cytokine family which plays a crucial role in initiation 

and amplification of immune responses to combat injury and infection (Cayrol and 

Girard, 2018; Liew et al., 2016; Scott et al., 2018b). IL-33 is constitutively expressed 

in the nucleus of epithelial cells in barrier tissues and endothelial cells of blood 

vessels. On release from damaged cells IL-33 activates many different immune cell 
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types via its receptor, interleukin receptor-like 1 (IL1RL1 also known as ST2). 

However, direct roles for IL-33 activity in regulating cellular differentiation and 

functions of mononuclear cell functions have remained poorly understood. It has 

been reported that IL1RL1 is not expressed on macrophages at steady state but can 

be induced (Kearley et al., 2015) and IL-33 signaling has been implicated in 

regulating osteoclast and macrophage foam cell formation (Kiyomiya et al., 2015; 

McLaren et al., 2010; Velickovic et al., 2015; Zaiss et al., 2011). Recent studies have 

highlighted the role of stromal-derived IL-33 in the generation of a pro-tumorigenic 

M2-like macrophage phenotype (Andersson et al., 2018), and the role of astrocyte-

derived IL-33 in promoting microglial-dependent synapse engulfment and depletion, 

thereby affecting neural circuit function (Vainchtein et al., 2018). 

The identity of the instructive signals required for the differentiation of pre-RPM into a 

mature RPM phenotype remains unknown. Given the prominent roles of cytokines in 

the modulation of macrophage phenotype and function, we hypothesised their 

potential involvement in the generation of RPM. Here, we show that IL-33 signaling 

plays a previously unappreciated role in the development of iron-recycling 

macrophages. 

 

Results 

We used previously validated assays of hemin-mediated induction of monocyte 

differentiation into an iron-recycling macrophage phenotype (Haldar et al., 2014) to 

survey potential roles of type 1 and type 2 cytokines on this process in the presence 

and absence of heme. We found that only IL-33 produced a significant increase in 

gene expression of markers of RPM phenotype (Figure 1A, and Figure S1A). IL-33 

alone had a limited impact. However, co-stimulation of macrophages with IL-33 and 
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hemin led to a substantial increase of hemin-induced expression of Spic (Figure 1A). 

Other prototypic genes of iron-recycling macrophages, including Treml4, Vcam1, 

Hmox1, were significantly upregulated (Figure 1A), whereas the expression of Bach1, 

a transcriptional repressor of Spic (Haldar et al., 2014), was not altered (Figure 1A). 

Of note, IL-33 alone substantially induced the expression of Lcn2 (Figure 1A), which 

encodes a protein (Lipocalin-2) that regulates iron transport and limits microbial 

growth through sequestration of iron-containing siderophores (Xiao et al., 2017), 

further supporting a role for IL-33 in the induction of an iron-recycling red pulp 

macrophage (RPM) phenotype. We obtained similar results with IL-33 in human 

CD14+ monocyte-derived macrophages (Figure S1B). 

We then purified splenic monocytes, pre-RPM and RPM, and stimulated them in vitro 

with hemin in the presence or absence of IL-33. First, we confirmed using the 

Spicigfp/igfp reporter mice (Haldar et al., 2014) that splenic RPM (CD11blo/- F4/80hi) are 

Spic-EGFPhi whereas splenic pre-RPM (CD11bhi F4/80lo) are Spic-EGFPlo/int (Figure 

S1C), and splenic monocytes (CD11bhi F4/80-) express little SPIC (not shown). This 

was further confirmed by gene expression analysis on sorted populations of splenic 

monocytes, pre-RPM and RPM, which revealed intermediate expression of RPM-

associated genes in pre-RPM compared to monocytes and RPM (Figure S1D). This 

supports the previous demonstration of a developmental continuum between these 3 

cell subsets (Haldar et al., 2014). Furthermore, we found that IL-33 had a substantial 

impact on hemin-induced Spic expression only in purified pre-RPM (Figure S1E), 

with no detectable effect in splenic monocytes (Figure S1E) and splenic RPM (data 

not shown). These results suggested a potential requirement of IL-33 to induce the 

differentiation of pre-RPM into RPM. To test this hypothesis in vivo, we treated mice 

with hemin, IL-33, or both, and assessed the induction of pre-RPM and RPM. In 
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agreement with previous work (Haldar et al., 2014), we found that hemin 

administration for 3 days increased the population of CD11bhi Spic-EGFPlo F4/80lo 

(Figure 1B-1E and Figures S1F-S1H) pre-RPM, but was unable to induce the 

generation of CD11b lo/- F4/80hi Spic-EGFPhi RPM (Figure 1B-1E and Figures S1F-

S1H). In contrast, co-administration of IL-33 with hemin led to a substantial increase 

of the CD11b lo/- Spic-EGFPhi F4/80hi RPM (Figure 1B-1E and Figures S1F-S1H). 

The IL-33 receptor, IL1RL1, mediates IL-33 signaling. IL1RL1 deficiency did not alter 

hemin-induced gene expression in monocyte-derived macrophages in vitro, but 

completely abrogated IL-33-dependent upregulation of Spic and other RPM-

associated genes (Figure S2A). To address the requirement of IL1RL1 in RPM 

development in vivo, we analysed IL1RL1-deficient mice (Figure S2B for IL1RL1 

expression on RPM) at different time points. We found that both the percentage of 

RPM (Figure 2A) and SPIC expression (Figures S2C and S2D) increased with age 

from neonatal day 1 and day 2 to 4 weeks or 6 weeks of age in wild type (WT) mice. 

IL1RL1 deficiency had no impact on RPM number in neonates but resulted in a 

significant ∼50% and ∼80% reduction in RPM number compared to WT mice at 6 and 

42 weeks of age, respectively (Figure 2A and Figure S2E). This was supported by a 

substantial reduction of F4/80+ staining in spleen sections of IL1RL1 deficient mice 

compared to WT mice at 42 weeks (Figure 2B). There was no impact of IL1RL1 

deficiency on other splenic cell types (Figure S2F) or liver Kupffer macrophages 

(data not shown). Consistent with these data, we found that treatment of adult 

Spicigfp/igfp reporter mice with murine soluble IL1RL1-Fc fusion protein for 6 weeks, to 

block IL-33 signaling, significantly reduced the percentage of Spic-EGFPhi CD11blo/- 

RPM (without affecting pre-RPM number) in comparison with mice that received 

murine IgG1 (Figures 2C). We then generated mixed bone marrow chimeras (50% 
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CD45.2 WT or 50% IL1RL1 deficient  CD45.2 bone marrow + 50% CD45.1 WT bone 

marrow into irradiated CD45.2 WT mice) to address the cell-autonomous requirement 

of IL1RL1 expression in bone marrow-derived monocytes for their differentiation into 

RPM (Figure S3A). We found that splenic monocytes and pre-RPM were generated 

at similar frequencies from the CD45.1 and CD45.2 bone marrow, under the basal 

state or after combined hemin and IL-33 stimulation, whatever the status of IL1RL1 

expression (Figure S3B). By contrast, most RPM in the 50% CD45.2 IL1RL1 deficient 

+ 50% CD45.1 WT group originated from the CD45.1 bone marrow (Figure S3C), 

indicating a profound alteration of RPM generation in the absence of IL1RL1 

expression in monocytes and pre-RPM. We also lethally irradiated CD45.1 WT mice 

and reconstituted them with CD45.2 bone marrow originating from either WT or 

IL1RL1 deficient mice. Similarly, we found a marked defect in RPM generation from 

the CD45.2 IL1RL1 deficient bone marrow compared to CD45.2 WT bone marrow 

(Figures S3D-S3F). 

We then addressed the functional impact of these findings. We found that the uptake 

of PKH26-labeled red blood cells (RBCs) in vivo was reduced in RPM, but not pre-

RPM or other cell types, in the absence of IL1RL1 (Figures S4A and S4B), 

suggesting defective iron-recycling capacity. Next, we measured iron stores in young 

(6 weeks old) and old (42 weeks old) WT and IL1RL1 deficient mice. While we found 

no difference in serum iron concentrations between mouse groups (Figure 3A), we 

detected a significant increase of spleen weight (Figure 3B) and a 3-fold increase of 

splenic tissue iron concentration in 42 week old IL1RL1 deficient mice compared to 

WT controls (Figure 3C). Substantial iron accumulation was confirmed histologically 

on splenic tissue sections (Figure 3D). In case of defective iron recycling in spleen, 

the liver can increase its iron-recycling capacity through increased recruitment of 
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circulating monocytes and their differentiation into iron-recycling macrophages 

(Theurl et al., 2016). We found iron concentrations in liver were also substantially 

increased in old IL1RL1 deficient compared to WT controls (Figure 3E), suggesting 

that the iron-recycling capacity of liver macrophages was overwhelmed. Old IL1RL1 

deficient mice (42 weeks) did not show evidence of anemia (Figure S4C). However, 

serum ferritin concentration was substantially higher in old IL1RL1 deficient mice 

compared to WT controls (Figure S4C). Taken together, our data identify a major role 

for the IL1RL1 signaling pathway in the differentiation of monocytes to iron-recycling 

RPM. 

We sought to examine which intracellular signaling pathways are involved in the 

process downstream of IL1RL1 activation. Myd88-/- mice displayed reduced numbers 

of RPM (but not monocytes or pre-RPM, not shown) at steady state, and did not 

increase their RPM after in vivo administration of IL-33 and hemin (Figure 4A). 

Several signaling pathways are activated downstream of MyD88 following IL1RL1 

engagement by IL-33 (Liew et al., 2016; Pinto et al., 2015). Using a human 

phosphokinase assay, we found that the combination of hemin and IL-33 led to 

increased ERK1/2 phosphorylation in monocyte-derived macrophages in vitro, 

compared to IL-33 alone (Figure 4B). MSK1/2 phosphorylation was also marginally 

increased in presence of IL-33 and hemin, however, there was no combined effect on 

any other signaling pathways surveyed (data not shown). We confirmed the effect of 

IL-33 and hemin on ERK1/2 phosphorylation in mouse bone marrow monocyte-

derived macrophages (Figure 4C). Next, we investigated the impact of in vivo 

inhibition of ERK1/2 for 6 weeks on RPM number. The MEK inhibitor U0126 

prevented ERK1/2 phosphorylation in spleen lysates (Figure 4D) and reduced RPM 
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(CD11b lo/- F4/80hi Spic-EGFPhi) number compared to vehicle-treated mice (Figure 

4E), without altering pre-RPM (CD11bhi Spic-EGFPlo F4/80lo) (Figure 4E).  

We next addressed the role of endogenous IL-33 in the modulation of RPM. Similar 

to IL1RL1 deficient mice, young and old IL-33 deficient mice displayed a substantial 

reduction of RPM compared to WT controls (Figures 5A, S2E, and S5A), and we 

were able to partially restore RPM counts in IL-33 deficient mice after treatment for 4 

days with IL-33 alone (Figure S5B), an effect that was further enhanced by the 

addition of hemin (Figure S5B). Like IL1RL1 deficient mice, old IL-33 deficient mice 

showed a significant increase of spleen weight, splenic tissue iron concentration, and 

liver iron accumulation compared to control mice (Figure 5B), strongly suggesting 

reduced iron-recycling capacity in the absence of IL-33. IL-33 deficient rats also 

showed a substantial reduction in CD11bloEMR1hi splenic macrophages (EMR1 is 

the homologue of F4/80) compared to control animals (Figure S5C), further 

supporting a role for IL-33 signaling in the development and/or maintenance of RPM. 

Next, we investigated the potential source of endogenous IL-33 that could modulate 

RPM. As IL-33 and hemin co-operated to promote the iron-recycling macrophage 

phenotype, we hypothesized that IL-33 might be co-expressed with hemin in 

erythrocytes. We therefore analysed IL-33 expression in RBCs and their progenitors. 

We detected a ~31 kDa full length form of IL-33 protein (Cayrol et al., 2018; Scott et 

al., 2018a) in WT, but not IL-33 deficient murine erythrocyte lysates (Figure 5C). 

Human IL-33 was weakly detectable in full length form but was predominantly 

detected as a ~29 kDa form in human erythrocyte lysates (Figure 5C, and data not 

shown). This ~29 kDa form was also seen in the recombinant full length control 

(Figure 5C and Figure S6A), and was detected in highly enriched CD235a+ human 

erythrocytes using 2 additional anti-IL-33 antibodies (Figure S6A). IL-33 protein 
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expression in human erythrocyte lysates was confirmed by ELISA (Figure 5D and 

Figure S6B). We explored mechanisms for the association of IL-33 by erythrocytes. 

One possibility is that erythroid precursors express IL-33. Another possibility is that 

erythrocytes bind IL-33, either via IL1RL1 dependent or independent pathways. 

Using Il33-Citrine reporter mice, we found that only ∼5% of erythrocyte progenitors 

expressed IL-33 (Figure S6C), broadly consistent with low amounts of IL-33 in 

mature erythrocytes. Among bone marrow cells, IL1RL1 was preferentially expressed 

in erythroid progenitors (stage B erythroblasts (Koulnis et al., 2011)), but not mature 

erythrocytes (Figure S6D and data not shown), and was capable of binding and 

internalising recombinant IL-33 (Figure S6E). Consistent with this observation, we 

found that IL-33 was significantly lower in erythrocyte lysates of IL1RL1 deficient 

mice compared to WT mice (Figure 5D). We then addressed the in vivo relevance of 

erythrocyte-associated IL-33 to the development of RPM. Notably, reconstitution of 

IL-33 deficient mice with WT, but not IL-33-deficient erythrocytes predominantly 

restored RPM without affecting pre-RPM numbers (Figure 5E), whereas 

reconstitution of IL-33 deficient mice with erythrocytes from IL1RL1 deficient mice 

partially restored RPM numbers (Figure S6F). Thus, erythrocytes can provide both 

heme and IL-33 to induce the development of monocyte-derived RPM. However, it is 

plausible that IL-33 expressed by other cell types in the spleen may also contribute 

IL-33 to enable the development of RPM.  

To provide further mechanistic insight into how IL1RL1 dependent IL-33 signaling 

promotes the development of monocyte-derived RPM, we compared the 

transcriptomes of splenic monocytes, pre-RPM and RPM from WT and IL1RL1 

deficient mice (Figure 6 and Tables S1 to S3). The global gene expression profile of 

each cell-type was very similar for WT and IL1RL1 deficient mice (Figure 6A and 6B, 
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respectively). However, we identified a small number of differentially expressed 

genes between WT and IL1RL1 deficient splenocytes, with most differences in the 

pre-RPM cell population (Table S2), consistent with our prior observations that IL-33 

promotes the development of RPM from pre-RPM in vivo.   

We performed pathway analysis to identify potential transcriptional regulators of the 

genes that were differentially expressed between monocytes and pre-RPM and 

between pre-RPM and RPM. Many of the same upstream regulators were identified 

in WT and in IL1RL1 deficient mice (Figure 6C). However, we noted that the 

transcription factors GATA2 and ETS1 (which is potentially regulated by GATA2 

(Linnemann et al., 2011)), were implicated in the differentiation of monocytes to pre-

RPM and down-regulated in IL1RL1 deficient pre-RPM (Figure 6D and Table S2).  

To further investigate the changes in gene expression that govern the differentiation 

of monocytes to RPM, we assessed chromatin accessibility by ATACseq and then 

performed motif enrichment analysis to identify potentially important transcription 

factor binding sites in accessible regions, in splenic monocytes, pre-RPM and RPM 

from WT and IL1RL1 deficient mice (Figure S7A and Table S4). There was a high 

degree of overlap in the accessible chromatin regions of each cell-type between WT 

and IL1RL1 deficient mice (Figure S7A). However, GATA motifs were specifically 

enriched in monocytes, in genes that were down-regulated from monocytes to pre-

RPM, and in pre-RPM, in genes that were down-regulated from pre-RPM to RPM, 

from WT but not IL1RL1 deficient mice (Figure 7A and Table S4). Indeed, accessible 

regions of chromatin that were unique to WT (i.e. inaccessible in IL1RL1 deficient 

mice) were enriched for GATA motifs within 100kb of genes that were dynamically 

regulated in monocytes to pre-RPM and in pre-RPM to RPM (Figure 7A). Thus, 

analysis of chromatin accessibility by ATAC-seq provided independent evidence for a 
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role of GATA transcription factor signaling downstream of IL1RL1 in the development 

of monocyte-derived RPM. 

Expression of Gata2 and Gata3 was strongly down-regulated, whilst Gata1 

expression was induced, in the differentiation of monocytes to RPM, in both WT and 

IL1RL1 deficient mice (Figure 7B). This pattern of gene expression is consistent with 

a ‘GATA switch’, in which GATA1 replaces GATA2 at regulatory elements to affect 

changes in gene expression, as is well documented in other pathways of 

hematopoiesis (Bresnick et al., 2010). GATA1 was identified, alongside GATA2, as 

another potentially upstream regulator of the genes differentially expressed from 

monocytes to pre-RPM, indicating a GATA switch may indeed be involved in 

regulating this transition. However, there was a marked difference in the dynamics of 

Gata2 expression in WT and IL1RL1 deficient mice (Figure 7B). In WT mice, Gata2 

expression was down-regulated upon differentiation of pre-RPM to RPM, however, in 

IL1RL1 deficient mice, expression of Gata2 was down-regulated earlier, upon 

differentiation of monocytes to pre-RPM (Figure 7B). It is likely that such a decrease 

in Gata2 expression at this earlier stage would accentuate the GATA switch 

dependent changes in gene expression in the transition of monocytes to pre-RPM, in 

IL1RL1 deficient mice compared to WT mice. Indeed, although the transcriptomes of 

WT and IL1RL1 deficient pre-RPM were very similar, pathway analysis identified 

GATA2 and ETS1 as potential upstream regulators of most of the genes that were 

differentially expressed in WT versus IL1RL1 deficient pre-RPM (Figure S7B). 

However, most compellingly, almost all of the genes that were differentially 

expressed between WT and IL1RL1 deficient pre-RPM could be accounted for by 

accentuated changes in gene expression in the transition of monocytes to pre-RPM 

in IL1RL1 deficient mice compared to WT mice (Figure 7C).Combined, this data 
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supports a role for IL1R1 dependent signaling in regulating the expression of GATA2, 

which is a key orchestrator of the transcriptional events in the development of 

monocyte-derived pre-RPM that are capable of maturing to RPM.   

 

Discussion 

Local environmental cues are important in the specification of tissue-resident 

macrophages. This is the case for erythrocyte-derived heme that induces the 

expression of SPIC in monocytes, and contributes to the RPM differentiation 

programme by establishing a precursor pre-RPM phenotype (Haldar et al., 2014). 

Here, we have shown that IL-33 signaling via its receptor, IL1RL1, is required for the 

optimal generation of mature monocyte-derived RPM. Mechanisms for how IL-33 

regulates the functions of mononuclear cells have remained obscure despite roles in 

regulating mononuclear cell phenotypes (Andersson et al., 2018; Kiyomiya et al., 

2015; McLaren et al., 2010; Vainchtein et al., 2018; Velickovic et al., 2015; Zaiss et 

al., 2011). Here, we implicated a role for IL-33 signaling in maintaining GATA2 

activity that is important in regulating the changes in gene expression which, at least 

in part, instructed the transition of monocytes to pre-RPM. By regulating GATA2 

expression, IL-33 signaling influenced this transition to produce pre-RPM that were 

competent to go on to fully differentiate to RPM. In contrast, in the absence of IL-33 

signaling, aberrant GATA2 expression led to terminal differentiation at a pre-RPM-

like stage. Further resolution of the signaling pathways involved in the cooperation 

between heme and IL-33 for the development of mature RPM will require additional 

investigations, however, our studies highlight a role for IL-33 combined with hemin in 

driving ERK1/2 activation, which culminates in fine-tuning of Gata2 expression. The 
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implication of ERK1/2 in the process was inferred from studies using a MEK inhibitor, 

and will therefore require validation using genetic silencing.  

GATA2 is an established regulator of myelopoiesis, with well-documented context 

and dose-dependent effects on stem and progenitor cell proliferation, quiescence, 

self-renewal and differentiation (Kitajima et al., 2006; Ling et al., 2004; Nandakumar 

et al., 2015). Gata2 expression is highest in stem and progenitor cells and down-

regulated during commitment in the monocyte lineage (Akashi et al., 2000). Further 

studies are required to ascertain the downstream effects of GATA2 that confer 

competency to pre-RPM to continue to differentiate to RPM, although our data 

implicate a potentially important role for a GATA switch, similar to those previously 

shown to regulate the expression of a number of GATA2 target genes, including 

Gata2 itself and some lineage specific transcription factors, such as the monocyte 

and macrophage lineage transcription factor PU.1 (also known as Sfpi1) (Chou et al., 

2009). Interactions between GATA1 and heme have previously been implicated in 

the control of erythropoiesis, notably in regulating the expression of genes involved in 

heme biosynthesis (Tanimura et al., 2016), and many of these genes were 

differentially expressed in the development of monocytes to RPM (data not shown). 

Previous studies have also highlighted a role for a ‘definitive-hematopoiesis-specific’ 

enhancer region, containing GATA, Ets, and AP-1 binding sites, 9.5kb downstream of 

the Gata2 transcriptional start site (Gao et al., 2013; Johnson et al., 2012). We found 

this region was accessible in WT but not IL1R1 deficient pre-RPM (data not shown). 

We speculate that IL-33 mediated activation of ERK1/2 may regulate the recruitment 

of transcription factors to Gata2 regulatory elements, such as the +9.5 enhancer, to 

regulate Gata2 expression in the development of monocytes to pre-RPM. 
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Here we sought to clarify sources of IL-33 required for RPM development. We have 

discovered that native erythrocytes accumulate IL-33 and that erythrocyte-associated 

IL-33 is sufficient for RPM development in vivo. Erythrocytes have been shown to 

play a role in the storage and release of cytokines although IL-33 was not 

investigated (Karsten et al., 2018). To date evidence for expression of IL-33 on 

hematopoietic cells is very limited, however, its noteworthy that platelets and in vitro 

cultured CD34+ erythroid progenitors were reported to express IL-33 (Takeda et al., 

2016; Wei et al., 2015). Here we have provided evidence for the existence of IL-33 in 

erythrocytes, using multiple techniques and supported by specificity controls, 

including samples from IL-33 deficient mice and highly purified erythrocyte 

preparations. In contrast to the detection of full length IL-33 in murine erythrocytes, 

we found IL-33 in human erythrocyte preparations was highly susceptible to 

proteolytic processing. Full length IL-33 is biologically active, however, it is possible 

that proteolytic processing might regulate IL-33 activity (Lefrancais et al., 2014; Scott 

et al., 2018a). We could not rule out this processing might have occurred during ex-

vivo handling and further work is required to understand the nature of this processing 

and its biological relevance. 

We explored mechanisms underlying the accumulation of IL-33 in erythrocytes. IL-33 

localises to the nucleus in nucleated cells, and it is unclear how IL-33 is stored in 

erythrocytes lacking a cell nucleus. We have found evidence for IL-33 gene 

transcription in bone-marrow-derived erythrocyte precursors consistent with studies 

in related hematopoietic cell precursors (Takeda et al., 2016; Wei et al., 2015). We 

also observed a partial role for IL1RL1 in acquiring and/or maintaining IL-33 in 

erythrocytes. However, overall our data is inconsistent with IL-33 detected in mature 

erythrocytes being maintained on the cell surface by IL1RL1. The ELISA used to 
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measure IL-33 in erythrocyte lysates does not detect IL-33 in complex with IL1RL1 

(I.C.S, E.S.C. personal communication) and we were unable to detect endogenous 

IL-33 on the surface of erythrocytes or erythrocyte precursors (data not shown). We 

demonstrated the expression of IL1RL1 with binding activity on erythrocyte 

precursors in the bone marrow. Although the function of IL1RL1 during erythrocyte 

development is poorly understood, there is evidence for a role for IL-33 signaling in 

enucleation of erythroid precursors (Lopez-Yrigoyen et al., 2019). Still, additional 

studies will be required to elucidate mechanisms by which erythrocytes maintain a 

store of IL-33 in the absence of a nucleus, and further investigate the role of IL1RL1 

in the bone marrow during the development of erythrocytes.  

In conclusion, we have shown that IL-33 is unique in its local requirement for the 

development and specification of a tissue-resident macrophage phenotype, and in its 

cooperation with an essential biochemical compound (heme) generated by the same 

source, to fulfil its homeostatic function. This pathway is essential for the normal 

regulation of iron recycling. Similarly to its role as an alarmin in initiating immune 

responses during tissue damage, IL-33 appears to act as an alarmin during 

physiological damage of senescent erythrocytes, thereby instructing the 

differentiation of a specific subset of tissue-resident macrophages involved in the 

clearance of senescent erythrocytes and the recycling of their iron content. Beyond 

its role in iron homeostasis and the response to erythrocyte damage, IL-33 might also 

be involved in other immunological properties of RPM, including the response to 

infections (Kurotaki et al., 2015).   
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Figure legends 

 

Figure 1. IL-33 upregulates hemin-induced Spic expression and promotes the 

development of a red pulp macrophage (RPM) phenotype in vitro and in vivo. A, 

Gene expression in mouse bone marrow-derived macrophages stimulated in vitro for 

4 days with hemin (40 µM), IL-33 (10 ng/mL), or a combination of hemin + IL-33, 

compared to no treatment (NT). Data represent mean ± SEM and are representative 

of 5 independent experiments. **P<0.01, ****P<0.001. B-E, Representative examples 

(B) and quantification (among CD45+ CD11clow Ly6Glow NK1.1low SSC-Alow cells) of 

flow cytometry staining for splenic monocytes (CD11b+ F4/80-) (C), pre-RPM 

(CD11b+ F4/80lo) (D) and RPM (CD11blo/- F4/80hi) (E) in mice injected 

intraperitoneally once a day for 3 days with either phosphate buffered saline (PBS), 

IL-33 (1 µg), hemin (500 µg), or IL-33 + hemin. ****P<0.001. Data representative of at 

least 5 independent experiments. Please also see Figure S1. 

 

Figure 2. IL1RL1 signaling controls the development of splenic red pulp 

macrophages (RPM). A, Quantification (% among CD11clow Ly6Glow NK1.1low SSC-

Alow cells) of splenic pre-RPM (CD11bhi F4/80lo) and RPM (CD11blo/- F4/80hi) in 

neonates (Day 1), young (6 weeks), and old (42 weeks) WT and Il1rl1-/- mice. Each 

dot represents a separate mouse. ****P<0.001. B, Staining of RPM (F4/80 shown in 

green) in spleen sections of 42 week WT and Il1rl1-/- mice. C, Flow cytometry staining 

and quantification of splenic RPM (CD11blo/ Spic-EGFPhi) and pre-RPM (CD11b+ 

Spic-EGFPlo/int) (percentages among CD11clow Ly6Glow NK1.1low SSC-Alow cells) after 

6 weeks treatment of Spicigfp/igfp reporter mice with control murine IgG1 (mIgG1) or 
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soluble IL1RL1-murine Fc fusion protein (soluble IL1RL1). Each dot in the 

quantification panels represents a separate mouse. ****P<0.001. Please also see 

Figures S2 and S3. 

 

Figure 3. Impact of IL1RL1 signaling on the iron-recycling capacity of splenic 

red pulp macrophages (RPM). Quantification of serum iron (A), spleen weight (B), 

and spleen iron (C) in young (6 weeks) and old (42 weeks) WT and Il1rl1-/- mice. D, 

Representative examples (6 mice per group) of Perl’s blue staining (to detect iron) in 

spleen sections of young (6 weeks) and old (42 weeks) WT and Il1rl1-/- mice. Scale 

Unit: 300µm. E, Quantification of liver iron in young (6 weeks) and old (42 weeks) WT 

and Il1rl1-/- mice. Each dot represents a separate mouse. **P<0.01, ****P<0.001. 

Please also see Figure S4. 

 

Figure 4. MyD88 and ERK1/2 signaling downstream of IL-33 control the 

development of red pulp macrophages (RPM). A, Quantification of RPM (% 

among CD11clow Ly6Glow NK1.1low SSC-Alow cells) in spleens of wild type (WT) and 

Myd88-/- mice with or without treatment with hemin alone or IL-33 + hemin (one daily 

injection for 3 days, see Methods). B, Human macrophages (generated by culture of 

CD14+ monocytes from blood) treated for 5 min with phosphate buffered saline (NT), 

hemin (40 µM), IL-33 (10 ng/mL), or a combination of hemin + IL-33, and assessed 

using a phospho-kinase array. pERK1/2 is shown in red boxes. Quantification of the 

intensity of ERK1/2 phosphorylation signal (pixel density) was performed using 

ImageJ. Data represent mean ± SEM and are representative of 3 independent 

experiments. C, Mouse bone marrow-derived macrophages of WT and Il1rl1-/- mice 

treated in vitro for 5 min with PBS (NT), hemin, IL-33, or a combination of hemin + IL-
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33, and assessed for pERK1/2, ERK1/2 and phospho-p65 (NF-κB) using western 

blotting. Semi-quantification of signal intensity (mean ± S.E.M.) of ERK1/2 

phosphorylation (pERK/Total ERK) using ImageJ yielded WT IL-33: 0.74 ± 0.02 vs 

WT IL-33+Hemin: 1.24 ± 0.09, P<0.05. Semi-quantification of signal intensity (mean 

± S.E.M.) of p65 phosphorylation using ImageJ yielded WT IL-33: 11750 ± 3500 vs 

WT IL-33+Hemin: 12607 ± 4500, P=0.09. D, E, C57/Bl6 Spicigfp/igfp reporter mice 

were treated with ERK1/2 inhibitor U0126 or DMSO control for 6 weeks (see 

Methods). ERK1/2 phosphorylation in splenic extracts (D) and splenic CD11blow Spic-

EGFPhi RPM and CD11b+ Spic-EGFPint pre-RPM (percentages among CD11clow 

Ly6Glow NK1.1low SSC-Alow cells) (E) were quantified at the end of the experiment.  A 

control non-reporter untreated mouse (C57/Bl6) is included as control in D. Each lane 

in C and D represents a separate mouse. Each dot in E represents a separate 

mouse. ****P<0.001.  

 

Figure 5. Red blood cell-derived IL-33 controls the development of splenic red 

pulp macrophages (RPM). A, Quantification of RPM and pre-RPM (% among  

CD11clow Ly6Glow NK1.1low SSC-Alow cells) in spleens of young (6 weeks) and old (42 

weeks) wild type (WT) and Il33-/- mice. B, Quantification of serum iron, spleen weight, 

spleen iron, and liver iron in young (6 weeks) and old (42 weeks) WT and Il33-/- mice. 

C, Detection of IL-33 in human (top panel) and mouse (lower panel) red blood cell 

(RBC) lysates using western blotting. Recombinant full-length and processed human 

and mouse IL-33 are included as positive controls. RBC lysates from Il33-/- mice are 

included as negative controls. Each lane is from a separate mouse or individual, 

representative of at least 5 independent experiments. D, Quantification of IL-33 

protein in RBC lysates of WT, Il33-/- (negative control), and Il1rl1-/- mice. E, 
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Quantification (% among CD11clow Ly6Glow NK1.1low SSC-Alow cells) of splenic pre-

RPM (CD11bhi F4/80lo) and RPM (CD11blo/- F4/80hi) by flow cytometry in WT and Il3-/- 

mice. Some Il33-/- mice were reconstituted with either WT or Il33-/- RBCs (see 

Methods) prior to assessment of splenic pre-RPM and RPM. Each dot in A, B, D and 

E, represents a separate mouse. ****P<0.001. Please also see Figure S5 and S6. 

 

Figure 6. GATA2 is implicated in the development of splenic red pulp 

macrophages (RPM) and differentially expressed in WT and Ilrl1-/- pre-RPM. 

A and B, Heatmaps showing relative expression of genes differentially expressed 

between wild-type (WT) monocytes and WT pre-RPM (693 genes) or WT pre-RPM 

and WT RPM (3079 genes) respectively (log2 fold change >1, adjusted p-

value<0.01), in splenic monocytes (CD11bhi F4/80-), pre-RPM (CD11bhi F4/80lo ) and 

RPM (CD11blo/- F4/80hi), from WT and Il1rl1-/- mice, n=4 separate mice per group. C, 

Top upstream transcriptional regulators for transcriptomic changes from monocytes 

to pre-RPM or pre-RPM to RPM in WT and Il1rl1-/- mice, identified by Ingenuity 

pathway analysis. Note: the top regulators in each group were significant in both 

groups. D, Top differentially expressed genes in pre-RPM (CD11bhi F4/80lo) from WT 

and Il1rl1-/- mice, n=4 separate mice per group; complete list available online (Table 

S2). Please see also Figure S7. 

 
Figure 7. A GATA switch may underlie changes in gene expression in the 

development of splenic red pulp macrophages (RPM). 

A, Identification of GATA motifs in accessible chromatin of splenic monocytes 

(CD11bhi F4/80-), pre-RPM (CD11bhi F4/80lo ) and RPM (CD11blo/- F4/80hi), within 

100kb of the start sites of genes differentially expressed between wild-type (WT) 

monocytes and WT pre-RPM or WT pre-RPM and WT RPM (both log2 fold change>1, 
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adjusted p-value<0.05). Motif enrichment was performed on accessible chromatin 

from each splenocyte population from WT and Il1rl1-/- mice and also from accessible 

chromatin from each splenocyte population that was unique to WT or unique to Il1rl1-

/- mice, n=4 separate mice per group. B, Relative Gata gene expression (normalised 

counts, cpm) in splenic monocytes (CD11bhi F4/80-), pre-RPM (CD11bhi F4/80lo ) and 

RPM (CD11blo/- F4/80hi) of WT (green) and Il1rl1-/- mice (red), n=4 separate mice per 

group. Data are represented as mean ± SEM. **** adjusted p (WT v -/-) < 0.001. C, 

Heatmaps showing log2 fold changes of genes differentially expressed in WT and 

Il1rl1-/- pre-RPM (adjusted p-value <0.05) between splenic monocytes (CD11bhi 

F4/80-) and pre-RPM (CD11bhi F4/80lo) or pre-RPM (CD11bhi F4/80lo ) and RPM 

(CD11blo/- F4/80hi) from WT and Il1rl1-/- mice, n=4 per group. Please see also Figure 

S7. 
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STAR Methods 

Lead author: Ziad Mallat, zm255@medschl.cam.ac.uk 

Methods, including statements of data availability and any associated additional 

references are available in the online version of the paper. 

Mice. All experiments were approved by the Home Office, UK. C57/Bl6 Spicigfp/igfp 

reporter mice were kindly provided by Kenneth M. Murphy (Washington University, 

St Louis), Balb/c background of Il1rl1-/- and Il33-/- were from Andrew McKenzie and 

C57/Bl6 background of Il1rl1-/- were from Padraic Fallon, C57/Bl6 Myd88-/- mice 

were from Bernhard Ryffel and C57/Bl6 CD45.1 mice were originally from Jackson 

Labs. For the hemin (500µg/200µl) and IL-33 (1µg/200µl) in vivo experiment, the 

mice were injected intra-peritoneally once a day for 3 days. Control mice received 

PBS (200µl) injections. For the ERK1/2 in vivo experiment, C57/Bl6 Spicigfp/igfp 

reporter mice were treated with the MEK inhibitor U0126 or DMSO control 3 times 

per week for 6 weeks. U0126 solution was prepared in DMSO as previously 

described (Marampon et al., 2009). Two hundred microliters 50 µmol/kg were 

injected intra-peritoneally into each mouse. For the soluble IL1RL1 (ST2) in vivo 

experiment, C57/Bl6 Spicigfp/igfp reporter mice were treated with soluble IL1RL1 or 

murine IgG1 control 200µg/mouse 3 times per week for 6 weeks. 

To reconstitute Il33-/- mice with erythrocyte-associated IL-33, Il33-/- mice received 

once a day for 3 days i.v. injections (200 µl) of 2x109 erythrocytes from either WT or 

Il33-/- mice. 

Hemin preparation. Hemin was purchased from Sigma-Aldrich (51280, Sigma), and 

a stock solution was prepared at 25mg/ml in 0.15M NaCl containing 10% NH4OH and 

stored at -20oC. Hemin was used at a final concentration of 40uM for cell culture 
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experiments and 500µg/200µl sterile 0.15M NaCl for i.p. injections in vivo, as 

previously described (Haldar et al., 2014). 

Bone marrow transplants. CD45.1 mice were maintained overnight with Baytril 

before irradiation with two doses of 5.5 Gy (separated by 4 h) followed by 

reconstitution with 107 bone marrow cells obtained from CD45.2 WT or Il1rl1-/- mice. 

Donor-derived cells in spleen or liver (CD45.2+) were analyzed 10 weeks after 

transfer using flow cytometry. In other experiments, CD45.2 mice were lethally 

irradiated and injected intravenously (i.v.) with 107 bone marrow cells containing 50% 

of CD45.2 WT or Il1rl1-/- mice and 50% of CD45.1 mice.  

Spleen, liver and serum iron analysis. Samples of the spleen (20-60 mg) and liver 

(40-90 mg) were digested (1 in 10) in 16% nitric acid, prepared by diluting a stock 

solution of high purity nitric acid (65% w/v p.a. plus; Sigma-Aldrich) with ultra-high 

purity water, in acid-cleaned 15 mL PTFE vials in an UltraWave Single Reaction 

Chamber Microwave Digestion System (Milestone Srl; Sorisole, Italy). The following 

digestion conditions were followed: 5 min ramp to 120°C, then 10 min ramp from 

120°C to 230°C and maintained at 230°C for 15 min. Blank samples, containing just 

the acid mixture, were similarly prepared to check for background Fe contributions.  

Digested samples were analysed for total Fe by inductively coupled plasma optical 

emission spectrometry (Jobin Yvon Horiba Ultima 2C; Instrument SA, Longjumeau, 

France), equipped with a concentric micro-nebulizer and cyclonic spray chamber. A 

sample introduction pump speed of 10 rates/min, nebulizer flow rate of 0.72 mL/min 

and a plasma gas flow rate of 10 L/min was used with low-flow sample tubing. The 

259.940 nm analytical line for Fe was used. All samples, including blank samples, 

were analyzed in a single batch with acid-based Fe standards (0-40 mg/L). Each 

sample was analysed in triplicate and the average value was used. For serum 
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measurements, 20 µl of serum was incubated with 20 µl of acid reagent for 5 min. 

Supernatant was mixed with 40 µl chromagen reagent, and absorbance at 535 nm 

was measured as described above. 

Histochemical analysis. For Perl’s Prussian blue stain, tissues were fixed with 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.0), embedded in paraffin, and 

stained with Perl’s Prussian blue and pararosaniline (Sigma). 

Differentiation of bone marrow-derived macrophages. Fresh bone marrow cells 

were used to generate BMDM. Cells were resuspended in 10 ml bone marrow 

differentiation media (RPMI1640 supplemented with 10% fetal bovine serum (Gibco, 

cat. 12657-029), 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine and 

20ng/mL of M-CSF(BioLegend)). Cells were seeded in Petri dishes (Corning Brand) 

and incubated at 37°C in a 5% CO2 atmosphere. Four days after seeding, an extra 

10 ml of fresh differentiation media were added per plate and incubated for an 

additional 3 days.  

Flow cytometry. Single-cell suspensions of bone marrow, spleen and liver were 

incubated with Fc block solution (eBioscience, clone 93), dilution of 1:200 in flow 

buffer (PBS, 1 % BSA, 2 mM EDTA, 0.01 % NaN3) for 10 minutes at 4°C. Cells were 

then stained with fluorophore-conjugated antibodies, dilution of 1:200 in flow buffer 

for 30 minutes at 4°C, prior to extensive wash and analysed using an LSRII 

Fortessa (BD) flow cytometer. The following antibodies were used in the 

experiments, Zombie Aqua Fixable Viability Kit, Alexa Flour 700 anti-mouse CD11b 

(BD Bioscience MI170), PE/Cy7 anti-mouse CD11c (BioLegend N418), Brilliant 

Violet 421 anti-mouse F4/80 (BioLegend BM8), APC-eFluor 780 anti-mouse Ly6C 

(eBioscience HK1.4), PerCP/Cy5.5 anti-mouse Ly-6G (BioLegend 1A8), Brilliant 

Violet 650 anti-mouse NK-1.1 (BioLegend PK136), Brilliant Violet 605 anti-mouse 
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CD335 (BioLegend 29A1.4), FITC anti-mouse CD169 (BioLegend 3D6.112), APC 

anti-mouse CD209b (eBioscience eBio22D1), FITC anti-mouse T1/IL1RL1 (ST2) 

(mdbioproducts DJ8), FITC anti-mouse Ter119 (BioLegend Ter119), PE-anti-mouse 

CD71 (BioLegend L5), APC anti-mouse DYKDDDDK (BioLegend RI7217), Brilliant 

Violet 570 anti-mouse CD45.1 (BioLegend A20) and Brilliant Violet 785™ anti-mouse 

CD45.2 (BioLegend 104), APC anti-mouse CD45 (BioLegend 30-F11). Cell analysis 

was done using BD FACSDiva v8.01 Software and figure displayed dot plots and 

histograms were obtained using FlowJo v10.5 software (FlowJo, LLC).  

Cytokine quantification. We used MesoScale Discovery IL-33 V-Plex assay kit 

(product code K152XBD-1) and human IL-33 Duoset ELISA  kit (DY3625, R&D 

systems) according to manufacturer's instructions. Measurements were performed 

blindly by the Core Biochemical Assay lab at Addenbrookes Hospital, the University 

of Cambridge, Cambridge, UK. 

Quantitative RT-PCR. For gene expression analysis, RNA from sorted RPM, Pre-

RPM and Monocytes were isolated using an RNAeasy mini kit (Qiagen). RT-PCR 

was performed using a QuantiTect Reverse Transcription kit (Qiagen). Real-time 

PCR was performed on 5 µl cDNA product (diluted 10 to 20 times) using SYBR 

Green qPCR mix (Eurogentec) on a Roche Lightcycler. Primer sequences are: 

human SPIC forward 5’-ACGGTAATTAACAGTGCTGCG-3’ and reverse 5’-

GCTGGAGAAGAGTGGGTTGT-3’, human HMOX1 forward 5’-

TAGAAGAGGCCAAGACTGCG-3’ and reverse 5’- 

GGGCAGAATCTTGCACTTTGTT-3’, human TREML4 forward 5’- 

AGACCAGGAAATCAAGAGCCC-3’ and reverse 5’-AAACCTCGTCACTGCTGTCC-

3’, human VCAM1 forward 5’-GTTTGCAGCTTCTCAAGCTTTT-3’ and reverse 5’-
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AGATGTGGTCCCCTCATTCG -3’, human LCN2 forward 5’-

GCCCTGAAATCATGCCCCTA-3’ and reverse 5’-TCCCCTGGAATTGGTTGTCC-3’, 

human BACH1 forward 5’-TCGCGTAAGAAAAGCCGAG-3’ and reverse 5’-

CATCAACCATATTGTGCGAGGC-3’, human IL1RL1 forward 5’- 

CCCTCTGTCTTTCAGTTTGGTTGA-3’ and reverse 5’- 

ACGACAGTGAAGGTCACCAC-3’. Mouse Spic forward 5'-

ACTGGAGAGGTGTAACAAATGGT-3' and reverse 5'-

CAAACAGCCGAAGCTTTCTCC-3', mouse Treml4 forward 5'-

AAGCACAGCCACCATCTTTATG-3' and reverse 5'-

GCACACAGAAAACTGACAGCA-3', mouse Bach1 forward 5'-

CTCTGAGACGGACACGGAAG-3' and reverse 5'-CCTTCTGCGGATGTCATGGA-3', 

mouse Itgam (Cd11b) forward 5'-GTGAGGTCTAAGACAGAGACCAA-3' and reverse 

5'-TGCCGCTTGAAAAAGCCAAG-3', mouse Hmox1 forward, 5'-

GCTAGCCTGGTGCAAGATACT-3' and reverse 5'-TGGGGGCCAGTATTGCATTT-3', 

mouse Il1rl1 forward 5'-CCAGCCCTTCATCTGGGTATC-3' and reverse 5'-

TGGCAATGGCACAGGATAGT-3', mouse Lcn2 forward 5'-

CTGTCCCAATCGACCAGTGT-3' and reverse 5'-CCAGCTCCCTCAATGGTGTT-3', 

mouse Adgre1 (F4/80) forward 5'-AATCGCTGCTGGTTGAATACAG-3' and reverse 

5'-CCAGGCAAGGAGGACAGAGTT-3', mouse Vcam1 forward 5'-

CCGGCATATACGAGTGTGAA-3' and reverse 5'-GATGCGCAGTAGAGTGCAAG-3'. 

These experiments were independently repeated three times and each treatment 

consisted of triplicate samples. 

PKH26-staining of Mouse RBCs and analysis of PKH26-stained cells. Anti-

mouse CD47 Fab antibody treated RBCs were stained with PKH26 (Sigma) 

according to the manufacturer’s protocol.  Briefly, 250 µL of RBCs were mixed with 
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2.25 mL diluent C from the PKH26 cell linker kit and incubated with 2 µM PKH26 dye 

for 5 min at room temperature. The staining reaction was stopped by the addition of 

2.5 mL FBS for 1 min, followed by further dilution with 5 mL PBS. Cells were then 

washed three times with PBS and resuspended at 1x1010/200 µL for intravenous 

injection. 24 hours after i.v. injection, spleens were collected and single-cell 

suspensions were prepared by mechanical disruption. Following incubation in Fc 

block, splenocytes were labelled with antibodies against Ly6G, CD11b and F4/80 

and analysed by flow cytometry (Fortessa) for PKH26+ cells in splenic monocytes 

(CD11bhi F4/80-) or pre-RPM (CD11bhi F4/80lo) or RPM (CD11blo/- F4/80hi) or 

neutrophil (Ly6GhiCD11b+) population. 

Crude RBC lysates preparation. Human or mouse whole blood was collected in 

EDTA-treated blood collection tubes, followed by centrifugation at 400g for 10 min. 

The RBC were transferred to new tubes and washed twice in PBS. The samples 

were incubated with RBC lysis buffer at room temperature for 10 minutes. After 

centrifugation at 13,000 g for 15 min at 4oC, the supernatants were passed through 

Amicon ultra (50 kDa) cutoff filter to remove haemoglobin (64 kDa), followed by a 

centrifugation at 7,000 g for 20 min at 4oC.  

Enriched human RBC lysates preparation. The positive selection of human 

erythrocytes from fresh human whole blood was performed using anti-CD235a 

(Glycophorin A)-conjugated microbeads and MACS LS columns (Miltenyi Biotec) 

according to manufacturer’s instructions. Enriched erythrocyte preparations (2e8 

cells/ml) were lysed in PBS/0.1% Triton X100 at 4oC and lysates snap frozen on dry 

ice.  

SDS-PAGE and western blot analysis. Samples were analysed by SDS-PAGE on 

NuPAGE Novex 4-12% or 12% Bis-Tris mini gels (Invitrogen) with MOPS running 
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buffer (Invitrogen) according to manufacturer’s instructions under reducing conditions. 

All samples were reduced by heating to 95oC for 3 min in SDS-PAGE buffer 

containing 2% beta-mercaptoethanol. Proteins were transferred to nitrocellulose 

membranes (Invitrogen) and detected by Western blotting. IL-33 was detected with 

an anti-mouse IL-33 antibody (R&D systems AF3626) and anti-human IL-33 

antibodies (R&D systems AF3626 and BioRad AHP1482, AHP1626). 

Immunoreactive proteins were identified with HRP-conjugated secondary antibodies 

(R&D systems HAF008, 005 and 109) and Supersignal West Femto substrate 

(Pierce 34095) and visualized on LI-COR cDigit. 

RNA-sequencing analysis in splenocytes. RNA was extracted from freshly 

sorted splenic monocytes, pre-RPM and RPM, using the RNEasy plus micro kit 

(Qiagen). RNA libraries were prepared using the SMARTer stranded total RNA-

Seq v2 kit (Takara) and sequenced using Illumina NovaSeq (2x50bp), obtaining 

approximately 20 million reads per sample.  

ATAC-sequencing analysis in splenocytes. ATAC-seq was performed according 

to the published Omni-ATAC protocol (Corces et al., 2017). Briefly, nuclei were 

purified from 5x104 freshly sorted splenic monocytes, pre-RPM and RPM. 

Transposition reactions were performed in 50ml using Tn5 transposase (Illumina) 

for 30 min at 37oC. Libraries were prepared using the recommended Nextera 

barcodes (Corces et al., 2017) and the number of PCR amplification cycles was 

determined empirically as the number of cycles required to generate 25% of the 

maximum of a 5µl aliquot, as recommended (Corces et al., 2017). Libraries were 

cleaned up using the Minelute PCR purification cleanup kit (Qiagen) followed by 

AMPure XP beads (Beckman Coulter) and quantified using quantitative PCR (Kapa 
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Biosystems). 5nM libraries were multiplexed and sequenced using Illumina 

NovaSeq (2x50bp), obtaining approximately 80 million reads per barcoded sample. 

Differential gene expression (DGE) analysis. Reads were mapped to 

Ensembl/GRCm38.95 using STAR (v2.5.1) 

(https://github.com/alexdobin/STAR/releases/tag/2.5.1b) with default parameters, 

trimmed with cutadapt 2.5 (https://pypi.org/project/cutadapt/2.5/) under Python 

3.6.2 (parameters: --nextseq-trim=20 -m 15 for the R1 reads and --nextseq-trim=20 

-m 15 -u 3 for the R2 reads) and counted using Subread-Feature Counts (v1.6.2) 

(https://sourceforge.net/projects/subread/files/subread-1.6.2/). DGE analysis was 

performed using DESeq2 (v1.25.9) 

(http://bioconductor.org/packages/release/bioc/html/DESeq2.html). Heatmaps were 

generated using the heatmap.2 function from the R Package gplots version 

3.0.1.1 (https://cran.r-project.org/src/contrib/Archive/gplots/). Lists of differentially 

expressed genes were submitted to Pathway analysis using Ingenuity Systems 

Pathway analysis software (Qiagen).  

ATAC peak calling & Meme. Reads were quality trimmed using TrimGalore 

(https://github.com/FelixKrueger/TrimGalore/releases/tag/0.6.4) with a quality 

Phred score cutoff of 20 and a minimum required sequence length for both reads 

before a sequence pair gets removed set to 20 bp. Trimmed reads were mapped to 

Ensembl/GRCm38.95 using Bowtie2 (https://sourceforge.net/projects/bowtie-

bio/files/bowtie2/2.3.5.1/) with standard parameters. Peaks were called using 

Genrich (https://github.com/jsh58/Genrich#quick) and excluding mitochondrial 

reads. Differential peak analysis was performed using BEDtools 2.29.0 

(https://github.com/arq5x/bedtools2/releases/tag/v2.29.0). Motif enrichment was 

performed using Meme-Chip (Ma et al., 2014) with default parameters. 
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Statistical analysis. Data are represented as mean ± SEM. Differences between 

values were examined using the parametric two-tailed unpaired Student's t-test or 

two-way ANOVA. 

Data and code availability. All sequencing data have been deposited in the 

National Centre for Biotechnology Information Gene Expression Omnibus (GEO) and 

are accessible with series accession number (GSE146782). All other relevant data 

and scripts are available on request. 
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Supplemental Information 

Supplemental Information includes seven figures and four tables can be found with 

this article online at XXX. 

Table S1 related to Figures 6 and 7. Differentially expressed genes in wild-type (wt) 

and Il1rl1-/- (ko) monocytes, adjusted p-value<0.05. 

Table S2 related to Figures 6 and 7. Differentially expressed genes in wild-type (wt) 

and Il1rl1-/- (ko) pre-RPM, adjusted p-value<0.05. 

Table S3 related to Figures 6 and 7. Differentially expressed genes in wild-type (wt) 

and Il1rl1-/- (ko) RPM, adjusted p-value<0.05. 

Table S4 related to Figure 7. Motifs significantly enriched in accessible chromatin of 

splenocytes from wild-type (wt) and Il1rl1-/- (ko) mice. 
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Figure S1 related to Figure 1. IL-33 up-regulates hemin-induced Spic expression and promotes the development 
of a red pulp macrophage (RPM) phenotype in vitro and in vivo. A, Spic mRNA expression in mouse bone marrow-
derived (BMDM) macrophages stimulated in vitro for 4 days with individual cytokines (10ng/mL), hemin (40µM), or a 
combination of hemin and individual cytokines, compared to no treatment (NT). Data are representative of 3 independent 
experiments. B, Human macrophages were developed in culture from isolated blood CD14+ monocytes (HuCD14+) and 
were treated in vitro for 4 days with hemin, IL-33, or a combination of hemin + IL-33, and were assessed for mRNA 
expression of Spic and other typical red pulp macrophage-associated genes, including Treml4, Lcn2, Hmox1, Il1rl1 and 
Vcam1. Data are representative of 3 independent experiments. C, Representative examples of flow cytometry staining 
for Spic-EGFP, CD11b and F4/80 in splenocytes of C57/Bl6 Spicigfp/igfp reporter mice. Splenic RPM are CD11blo/– F4/80hi

Spic-EGFPhi, whereas most Spic-EGFPint cells are CD11bhi F4/80lo/– pre-RPM and monocytes. Data are representative 
of more than 3 independent experiments. D, Splenic monocytes (CD11bhi F4/80–), pre-RPM (CD11bhi F4/80lo) and RPM 
(CD11blo/– F4/80hi) were cell-sorted by flow cytometry and were assessed for mRNA expression of Spic and other typical 
RPM-associated genes. Data are representative of 3 pooled mice per group. E, Cell-sorted (flow cytometry) splenic 
monocytes (CD11bhi F4/80–) and pre-RPM (CD11bhi F4/80lo) were treated in vitro for 4 days with hemin (40 µM), IL-33 
(10 ng/mL), or a combination of hemin + IL-33, and compared to untreated cells for the expression of Spic and Hmox1. 
Data are representative of 3 pooled mice per group. F, C57/Bl6 Spicigfp/igfp reporter mice were injected intraperitoneally 
once a day for 4 days with either phosphate buffered saline (PBS), IL-33 (1µg), hemin (500µg), or IL-33 + hemin, and 
spleens were assayed by flow cytometry for splenic RPM (CD11blo/- Spic-EGFPhi) and pre-RPM (CD11bhi Spic-
EGFPlo/int). Quantification of (G) pre-RPM and (H) RPM (percentages among CD11clow Ly6Glow NK1.1low SSC-Alow cells). 
Each dot in G and H represents a separate mouse. ****P<0.0001; ***P<0.001.



WT Il1rl1-/- Il33-/-

Figure S2

SpiC EGFP Day 1 SpiC EGFP Day 2 SpiC EGFP 4 weeks

Day
 1

Day
 2

4 w
ee

ks
0.0

0.3

0.6

0.9

1.2

1.5

Day
 1

Day
 2

4 w
ee

ks
0.0

0.2

0.4

0.6

0.8

1.0

Day
 1

Day
 2

4 w
ee

ks
0.0

0.1

0.2

0.3

0.4

0.5

%
F4

/8
0hi
S
pi
c-

E
G

FP
hi

%
F4

/8
0in

t S
pi
c-

E
G

FP
in

t

%
F4

/8
0lo
S
pi
c-

E
G

FP
lo

B

C

****

A

R
el

at
iv

e 
ex

pr
es

si
on

WT Il1rl1-/-

D

E

WT Il1rl1-/-
0

2

4

6

8

10

WT Il1rl1-/-
0

20

40

60

80

100 ns

ns

%
 F

O
B

%
 M

ZB

WT Il1rl1-/-
0

20

40

60

80

%
C

D
3+

C
D

4+
%

C
D

3+
C

D
8+

ns

ns

WT Il1rl1-/-
0

10

20

30

40

ns
ns

****

****

****

**** ****

****

F

WT Il1rl1-/-
0.0

0.2

0.4

0.6

0.8 ns

%
 M

M
 C

D
16

9+
%

 M
ZM

 C
D

20
9b

+

WT Il1rl1-/-
0.0

0.5

1.0

1.5 ns
A

bs
 N

o 
of

 R
P

M
 (x

10
3 )

A
bs

 N
o 

of
 P

re
-R

P
M

 (x
10

3 )

****
ns

Spic
0

10

20

30

Hmox1 Lcn2
0
20
40
60
80
100

Spic
0

10

20

30

Hmox1 Lcn2
0
20
40
60
80
100

****

ns
****

ns

NT IL-33 Hemin IL-33 Hemin

WT Il1rl1-/- Il33-/-
0

200

400

600

800

WT Il1rl1-/- Il33-/-
0

100

200

300



Figure S2 related to Figure 2. IL1RL1 (ST2) signalling controls the development of splenic red pulp 
macrophages (RPM). A, Spic, Hmox1 and Lcn2 mRNA expression in wild type (WT) and Il1rl1–/– mouse 
bone marrow-derived macrophages stimulated in vitro for 4 days with IL-33 (10 ng/mL), hemin (40 µM), or a 
combination of hemin and IL-33, compared to untreated cells (NT). Data are representative of 5 independent 
experiments per group. B, Representative examples of IL1RL1 (ST2) expression in splenic RPM (CD11blo/¾

F4/80hi) of wild-type (WT), Il1rl1–/– (negative control), and Il33–/– mice. C, Representative examples of Spic-
EGFP and F4/80 expression by flow cytometry in spleens of neonates (Day 1 and Day 2) and young (4 
weeks old) mice. D, Quantification of F4/80hi Spic-EGFPhi, F4/80int Spic-EGFPint and F4/80lo Spic-EGFPlo

cells (percentages among CD11clow Ly6Glow NK1.1low SSC-Alow cells). E, Quantification of RPM and pre-
RPM (absolute numbers) in spleens of 6 weeks and 42 weeks old wild type (WT), Il33–/–, and Il1rl1–/– mice. 
F, Quantification of other immune cell types in spleens of 6 weeks old wild type (WT) and Il1rl1–/– mice. 
FOB= Follicular B cells; MZB= marginal zone B cells; MM= Metallophilic macrophages; MZM= Marginal 
zone macrophages. Each dot in D, E and F represents a separate mouse. ****P<0.0001.



Figure S3 A

C
D

45
.1

 R
at

io
 (R

P
M

/M
on

oc
yt

es
)

C
D

45
.1

 R
at

io
 (P

re
-R

P
M

/M
on

oc
yt

es
)

%
C

D
45

.1
 in

 s
pl

en
ic

 m
on

oc
yt

es

%
C

D
45

.1
 in

 s
pl

en
ic

 R
P

M

B

0

1

2

3

0

1

2

3

WT Il1rl1-/-WT Il1rl1-/-
IL-33 & Hemin - + - + - + - +

C

0

20

40

60

80

0

20

40

60

80

****

**

****

****

D

%
C

D
45

.2
 in

 R
P

M

CD45.2 WT into CD45.1

CD45.2 Il1rl1-/- into CD45.1

+
+

+
+

%
 R

P
M

 (C
D

11
blo

/¾
F4

/8
0hi

)

0.0

0.5

1.0

1.5

2.0

0

20

40

60

80 ******

%
C

D
45

.2
 IN

 P
re

-R
P

M

0.0

0.5

1.0

1.5

2.0

CD45.2 WT into CD45.1

CD45.2 Il1rl1-/- into CD45.1

+
+

+
+

%
 P

re
-R

P
M

(C
D

11
bhi

F4
/8

0lo
)

0

20

40

60

80

100F

E

50% 50%

100%



Figure S3 related to Figure 2. Cell-autonomous requirement of IL1RL1 expression in bone marrow-derived 
monocytes during the development of splenic red pulp macrophages (RPM). A, Representative scheme of 
lethal irradiation and reconstitution of CD45.2 WT mice with either 50% CD45.1 + 50% CD45.2 WT or 50% CD45.1 + 
50% CD45.2 Il1rl1–/– bone marrow. 10 weeks later, mice were injected intraperitoneally once a day for 3 days with 
either phosphate buffered saline (PBS), or IL-33+hemin (see Methods), before they were assayed for CD45.1 and 
CD45.2 positive cells by flow cytometry. B, C, Quantification of CD45.1 positive cells among splenic monocytes 
(CD11bhi F4/80–), pre-RPM (CD11bhi F4/80lo) and RPM (CD11blo/– F4/80hi) by flow cytometry. Each dot represents a 
separate mouse. **P<0.01, ****P<0.001. D-F, CD45.1 wild-type (WT) mice were lethally irradiated and reconstituted 
with either 100% CD45.2 WT or 100% CD45.2 Il1rl1–/– (D) bone marrow. 8 weeks after bone marrow reconstitution, 
spleens were assayed for CD45.1 and CD45.2 positive RPM (CD11blo/– F4/80hi) and pre-RPM (CD11bhi F4/80lo) by 
flow cytometry. Quantifications (percentages and absolute numbers) are shown in (E) for RPM, and in (F) for pre-
RPM. Each dot in E and F represents a separate mouse. **P<0.001. ****P<0.0001.
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Figure S4 related to Figure 3. Impact of IL1RL1 (ST2) signalling on the function of splenic red pulp 
macrophages (RPM) . Representative examples (6 mice per group) of flow cytometry staining (A) and 
quantification (B) of uptake of PKH26-labelled red blood cells by splenic RPM, pre-RPM, monocytes and 
neutrophils after injection into WT and Il1rl1–/– mice. C, Quantification of hematocrit (HCT), red blood cell 
(RBC) counts, serum (TIBC), hemoglobin (HGB), transferrin and ferritin in young (6 weeks) and old (42 
weeks) WT and Il1rl1–/– mice. Each dot in B and C represents a separate mouse. ****P<0.001.
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Figure S5 related to Figure 5. IL-33 signaling controls the development of red pulp macrophages 
(RPM). A, Representative examples of flow cytometry staining and quantification of RPM and pre-RPM 
(% among  CD11clow Ly6Glow NK1.1low SSC-Alow cells) in spleens of wild type (WT) and Il33–/– mice, 9 
mice per group. Data are representative of at least 5 independent experiments. B, Representative 
examples and quantification (among CD11clow Ly6Glow NK1.1low SSC-Alow cells) of flow cytometry 
staining for splenic pre-RPM (CD11b+ F4/80lo) and RPM (CD11blo/– F4/80hi) in mice injected 
intraperitoneally once a day for 3 days with either phosphate buffered saline (PBS), IL-33 (1 µg), hemin 
(500 µg), or IL-33 + hemin, 5 mice per group. Data are representative of at least 4 independent 
experiments. C, Representative examples and quantification of splenic RPM (CD11blo/– EMR1hi) in wild-
type and Il33–/– rats. Each dot in C represents a separate rat ****P<0.001, data are representative of 2 
independent experiments.
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Figure S6 related to Figure 5. IL-33 in red blood cell (RBC) progenitors and mature RBCs. A, Detection of IL-33 in 

human red blood cell (RBC) lysates using western blotting and 2 different anti-IL-33 antibodies. Recombinant full-length 

human IL-33 is included as a positive control. B, Quantification of IL-33 protein in RBC lysates. Normal human bronchial 

epithelial cells (NHBE) are used as positive controls. C, Representative examples of flow cytometry showing Il33-Citrine+

RBC progenitors (Ter119+/CD71+ or CD71–) in RBC-depleted bone marrow of wild type (WT) and Il33Citrine/Citrine reporter mice. 

D, Representative examples of flow cytometry staining for pro-erythroid cells (ProE, Ter119int/CD71hi), and erythroblast 

subsets A (less mature, Ter119hi CD71hi FSC hi), B (intermediate maturation, Ter119hi CD71hi FSClo) and C (most mature, 

Ter119hi CD71lo/– FSClo) in the bone marrow of wild type mice. IL1RL1 (ST2)+ cells are enriched in pro-erythroid cells and 

erythroblast B subset. E, recombinant murine IL-33-Flag was incubated with whole bone marrow cells of WT and Il1rl1–/– mice 

for 60 min, which was followed by extracellular and intracellular staining for Flag. Results are gated on Ter119hi cells 

(erythroblasts) and mean fluorescence intensity (MFI) is shown. Data are representative of 3 independent experiments. F, 

Quantification (% among CD11clow Ly6Glow NK1.1low SSC-Alow cells) of splenic RPM (CD11blo/– F4/80hi) by flow cytometry in 

WT and Il33–/– mice. Some Il33–/– mice were reconstituted with either WT, Il33–/–, or Il1rl1–/– RBCs (see Methods) prior to 

assessment of splenic RPM. **P<0.05, ***P<0.01, ****P<0.001.
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Figure S7 related to Figures 6 and 7. ATAC-sequencing and RNA-sequencing of splenic monocytes, pre-RPM and 
RPM. A, Examples of peak calling of accessible chromatin by ATAC-seq from splenic monocytes (CD11bhi F4/80–), pre-RPM 
(CD11bhi F4/80lo ) and RPM (CD11blo/– F4/80hi) from WT and Il1rl1–/– mice, n=4 per group. B, Top upstream transcriptional 
regulators for differentially expressed genes (DGE) in WT and Il1rl1–/– pre-RPM (adjusted p-value <0.05), identified by 
Ingenuity pathway analysis.


