Bayesian Analysis (2019) 14, Number 3, pp. 937-1012

A Bayesian Conjugate Gradient Method
(with Discussion)

Jon Cockayne*, Chris J. Oates’, Ilse C.F. Ipsent, and Mark Girolami®

Abstract. A fundamental task in numerical computation is the solution of large
linear systems. The conjugate gradient method is an iterative method which offers
rapid convergence to the solution, particularly when an effective preconditioner
is employed. However, for more challenging systems a substantial error can be
present even after many iterations have been performed. The estimates obtained
in this case are of little value unless further information can be provided about, for
example, the magnitude of the error. In this paper we propose a novel statistical
model for this error, set in a Bayesian framework. Our approach is a strict gen-
eralisation of the conjugate gradient method, which is recovered as the posterior
mean for a particular choice of prior. The estimates obtained are analysed with
Krylov subspace methods and a contraction result for the posterior is presented.
The method is then analysed in a simulation study as well as being applied to a
challenging problem in medical imaging.

Keywords: probabilistic numerics, linear systems, Krylov subspaces.

MSC 2010 subject classifications: 62C10, 62F15, 65F10.

1 Introduction

This paper presents an iterative method for solution of systems of linear equations of
the form
Ax* = b, (1)

where A € R?*? is an invertible matrix and b € R? is a vector, each given, while 2* € R?
is to be determined. The principal novelty of our method, in contrast to existing ap-
proaches, is that its output is a probability distribution over vectors & € R? which reflects
knowledge about «* after expending a limited amount of computational effort. This al-
lows the output of the method to be used, in a principled anytime manner, tailored to re-
flect a constrained computational budget. In a special case, the mode of this distribution
coincides with the estimate provided by the standard conjugate gradient method, whilst
the probability mass is proven to contract onto * as more iterations are performed.
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938 A Bayesian Conjugate Gradient Method

Challenging linear systems arise in a wide variety of applications. Of these, partial
differential equations (PDEs) should be emphasised, as these arise frequently throughout
the applied sciences and in engineering (Evans, 2010). Finite element and finite differ-
ence discretisations of PDEs each yield large, sparse linear systems which can sometimes
be highly ill-conditioned, such as in the classically ill-posed backwards heat equation
(Evans, 2010). Even for linear PDEs, a detailed discretisation may be required. This can
result in a linear system with billions of degrees of freedom and require specialised algo-
rithms to be even approximately solved practically (e.g. Reinarz et al., 2018). Another
example arises in computation with Gaussian measures (Bogachev, 1998; Rasmussen,
2004), in which analytic covariance functions, such as the exponentiated quadratic, give
rise to challenging linear systems. This has an impact in a number of related fields, such
as symmetric collocation solution of PDEs (Fasshauer, 1999; Cockayne et al., 2016), nu-
merical integration (Larkin, 1972; Briol et al., 2018) and generation of spatial random
fields (Besag and Green, 1993; Parker and Fox, 2012; Schéfer et al., 2017). In the latter
case, large linear systems must often be solved to sample from these fields, such as in
models of tropical ocean surface winds (Wikle et al., 2001) where systems may again
be billion-dimensional. Thus, it is clear that there exist many important situations in
which error in the solution of a linear system cannot practically be avoided.

1.1 Linear Solvers

The solution of linear systems is one of the most ubiquitous problems in numerical
analysis and Krylov subspace methods (Hestenes and Stiefel, 1952; Liesen and Strakos,
2012) are among the most successful at obtaining an approximate solution at low cost.
Krylov subspace methods belong to the class of iterative methods (Saad, 2003), which
construct a sequence (x,,) that approaches &* and can be computed in an efficient
manner. Iterative methods provide an alternative to direct methods (Davis, 2006; Allaire
and Kaber, 2008) such as the LU or Cholesky decomposition, which generally incur
higher cost as termination of the algorithm after m < d iterations is not meaningful. In
certain cases an iterative method can produce an accurate approximation to x* with
reduced computational effort and memory usage compared to a direct method.

The conjugate gradient (CG) method (Hestenes and Stiefel, 1952) is a popular iter-
ative method, and perhaps the first instance of a Krylov subspace method. The error
arising from CG can be shown to decay exponentially in the number of iterations, but
convergence is slowed when the system is poorly conditioned. As a result, there is interest
in solving equivalent preconditioned systems (Allaire and Kaber, 2008), either by solv-
ing P~1Az* = P~!b (left-preconditioning) or AP~'Pz* = b (right-preconditioning),
where P is chosen both so that P~1A (or AP~!) has a lower condition number than
A itself, and so that computing the solution of systems Py = c¢ is computationally
inexpensive for arbitrary y and c. Effective preconditioning can dramatically improve
convergence of CG, and of Krylov subspace methods in general, and is recommended
even for well-conditioned systems owing to how rapidly conjugacy is lost in CG when im-
plemented numerically. One reasonably generic method for sparse systems involves ap-
proximate factorisation of the matrix, through an incomplete LU or incomplete Cholesky
decomposition (e.g. Ajiz and Jennings, 1984; Saad, 1994). Other common approaches
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exploit the structure of the problem. For example, in numerical solution of PDEs a
coarse discretisation of the system can be used to construct a preconditioner for a finer
discretisation (e.g. Bramble et al., 1990). A more detailed survey of preconditioning
methods can be found in many standard texts, such as Benzi (2002) and Saad (2003).
However, no approach is universal, and in general careful analysis of the structure of
the problem is required to determine an effective preconditioner (Saad, 2003, p. 283).
At worst, constructing a good preconditioner can be as difficult as solving the linear
system itself.

In situations where numerical error cannot practically be made negligible, an esti-
mate for the error x,, — * must accompany the output x,, of any linear solver. The
standard approach is to analytically bound ||x,, — *|| by some function of the residual
|| Az, — b||, for appropriate choices of norms, then to monitor the decay of the relative
residual. In implementations, the algorithm is usually terminated when this reaches
machine precision, which can require a very large number of iterations and substantial
computational effort. This often constitutes the principal bottleneck in contemporary
applications. The contribution of this paper is to demonstrate how Bayesian analysis
can be used to develop a richer, probabilistic description for the error in estimating
the solution x* with an iterative method. From a user’s perspective, this means that
solutions from the presented method can still be used in a principled way, even when
only a small number of iterations can be afforded.

1.2 Probabilistic Numerical Methods

The concept of a probabilistic numerical method dates back to Larkin (1972). The
principal idea is that problems in numerical analysis can be cast as inference problems
and are therefore amenable to statistical treatment. Bayesian probabilistic numerical
methods (Cockayne et al., 2017) posit a prior distribution for the unknown, in our case
x*, and condition on a finite amount of information about x* to obtain a posterior
that reflects the level of uncertainty in x*, given the finite information obtained. In
contemporary applications, it is common for several numerical methods to be composed
in a pipeline to perform a complex task. For example, climate models (such as Roeckner
et al., 2003) involve large systems of coupled differential equations. To simulate from
these models, many approximations must be combined. Bayesian probabilistic numerical
methods are of particular interest in this setting, as a probabilistic description of error
can be coherently propagated through the pipeline to describe the structure of the overall
error and study the contribution of each component of the pipeline to that error (Hennig
et al., 2015). As many numerical methods rely on linear solvers, understanding the error
incurred by these numerical methods is critical. Other works to recently highlight the
value of statistical thinking in this application area includes Calvetti et al. (2018).

In recent work, Hennig (2015) treated the problem of solving (1) as an inference prob-
lem for the matrix A~!, and established correspondence with existing iterative methods
by selection of different matrix-valued Gaussian priors within a Bayesian framework.
This approach was explored further in Bartels and Hennig (2016). There, it was ob-
served that the posterior distribution over the matrix in Hennig (2015) produces the
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same factors as in the LU or Cholesky decompositions.! Our contribution takes a fun-
damentally different approach, in that a prior is placed on the solution * rather than
on the matrix A~!. There are advantages to the approach of Hennig (2015), in that so-
lution of multiple systems involving the same matrix is trivial. However we argue that
it is more intuitive to place a prior on «* than on A~!, as one might more easily reason
about the solution to a system than the elements of the inverse matrix. Furthermore,
the approach of placing a prior on * is unchanged by any left-preconditioning of the
system, while the prior of Hennig (2015) is not preconditioner-invariant.

Contribution The main contributions of this paper are as follows:

e The Bayesian conjugate gradient (BayesCG) method is proposed for solution of
linear systems. This is a novel probabilistic numerical method in which both prior
and posterior are defined on the solution space for the linear system, R%. We argue
that placing a prior on the solution space is more intuitive than existing proba-
bilistic numerical methods and corresponds more directly with classical iterative
methods. This makes substitution of BayesCG for existing iterative solvers simpler
for practitioners.

e The specification of the prior distribution is discussed in detail. Several natu-
ral prior covariance structures are introduced, motivated by preconditioners or
Krylov subspace methods. In addition, a hierarchical prior is proposed in which
all parameters can be marginalised, allowing automatic adjustment of the pos-
terior to the scale of the problem. This discussion provides some generic prior
choices to make application of BayesCG more straightforward for users unfamiliar
with probabilistic numerical methods.

e It is shown that, for a particular choice of prior, the posterior mode of BayesCG
coincides with the output of the standard CG method. An explicit algorithm is
provided whose complexity is shown to be a small constant factor larger than that
of the standard CG method. Thus, BayesCG can be efficiently implemented and
could be used in place of classical iterative methods with marginal increase in
computational cost.

e A thorough convergence analysis for the new method is presented, with computa-
tional performance in mind. It is shown that the posterior mean lies in a particular
Krylov subspace, and rates of convergence for the mean and contraction for the
posterior are presented. The distributional quantification of uncertainty provided
by this method is shown to be conservative in general.

The structure of the paper is as follows: In Section 2 BayesCG is presented and its
inputs discussed. Its correspondence with CG is also established for a particular choice
of prior. Section 3 demonstrates that the mean from BayesCG lies in a particular Krylov
subspace and presents a convergence analysis of the method. In Section 4 the critical

IRecall that the Cholesky decomposition is a symmetric version of the LU decomposition for sym-
metric positive-definite matrices.
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issue of prior choice is addressed. Several choices of prior covariance are discussed and a
hierarchical prior is introduced to allow BayesCG to adapt to the scale of the problem.
Section 5 contains implementation details, while in Section 6 the method is applied to
a challenging problem in medical imaging which requires repeated solution of a linear
system arising from the discretisation of a PDE. The paper concludes with a discussion
in Section 7. Proofs of all theoretical results are provided in the electronic supplement
(Cockayne et al., 2019).

2 Methods

We begin in Section 2.1 by defining a Bayesian probabilistic numerical method for the
linear system in (1). In Section 2.2 a correspondence to the CG method is established.
In Section 2.3 we discuss a particular choice of search directions that define BayesCG.
Throughout this paper, note that A is not required to be symmetric positive-definite,
except for in Section 2.2.

2.1 Probabilistic Linear Solver

In this section we present a general probabilistic numerical method for solving (1). The
approach taken is Bayesian, so that the method is defined by the choice of prior and
the information on which the prior is to be conditioned. For this work, the information
about x* is linear and is provided by search directions s;, it = 1,...,m < d, through
the matrix-vector products

y; := (8] A)x* = s/ b. (2)

The matrix-vector products on the right-hand-side are assumed to be computed
without error,? which implies a likelihood model in the form of a Dirac distribution:

plyle) = 6(y — S, A=), (3)
where S,, denotes the matrix whose columns are si,..., s,,. This section assumes the
search directions are given a-priori. The specific search directions which define BayesCG
will be introduced in Section 2.3.

In general the recovery of * from m < d pieces of information is ill-posed. The prior
distribution serves to regularise the problem, in the spirit of Tikhonov (1963); Stuart
(2010). Linear information is well-adapted to inference with stable distributions® such
as the Gaussian or Cauchy distributions, in that the posterior distribution is available
in closed-form. Optimal estimation with linear information is also well-understood (cf.
Traub et al., 1988). To proceed, let  be a random variable, which will be used to
model epistemic uncertainty regarding the true solution *, and endow a with the prior
distribution

p(@) = N (@20, o), (4)

2j.e. in exact arithmetic.

3Let X1 and X be independent copies of a random variable X. Then X is said to be stable if, for
any constants «a, 8 > 0, the random variable a X7 + X2 has the same distribution as vX + J for some
constants v > 0 and 4.
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where xy and Yy are each assumed to be known a-priori, an assumption that will
be relaxed in Section 4. It will be assumed throughout that 3¢ is a symmetric and
positive-definite matrix.

Having specified the prior and the information, there exists a unique Bayesian proba-
bilistic numerical method which outputs the conditional distribution p(x|y.,) (Cockayne
et al., 2017) where Yy, = [y1,...,Ym] " satisfies y,, = S, Az* = S} b. This is made clear
in the following result:

Proposition 1 (Probabilistic Linear Solver). Let A,, = S, AYATS,, and 7o = b —
Axy. Then the posterior distribution is given by

p(xlym) = N(x; T, X)),
where

T = @0 + oA S ALS, T (5)
Yo =0 — BoAT S, ALLS ] A, (6)

This provides a distribution on R? that reflects the state of knowledge given the
information contained in y,,. The mean, «,,, could be viewed as an approximation to
x* that might be provided by a numerical method. From a computational perspective,
the presence of the m x m matrix A;;! could be problematic as this implies a second
linear system must be solved, albeit at a lower cost O(m?). This could be addressed to
some extent by updating A! iteratively using the Woodbury matrix inversion lemma,
though this would not reduce the overall cost. However, as the search directions can be
chosen arbitrarily, this motivates a choice which diagonalises A,,, to make the inverse
trivial. This will be discussed further in Section 2.3.

Note that the posterior distribution is singular, in that det(X,,) = 0. This is natural
since what uncertainty remains in directions not yet explored is simply the restriction
of the prior, in the measure-theoretic sense, to the subspace orthogonal to the columns
of S A. As a result, the posterior distribution is concentrated on a linear subspace of
R?. Singularity of the posterior makes computing certain quantities difficult, such as
posterior probabilities. Nevertheless, 3, can be decomposed using techniques such as
the singular-value decomposition, so sampling from the posterior is straightforward.

For a positive-definite matrix M, define the matrix-induced inner-product of two
vectors in R? by (z,z'),, = ' Ma', with associated norm || - ||»s. The following basic
result establishes that the posterior covariance provides a connection to the error of x,,
when used as a point estimator:

[@m —a g ¢
m—zog tr(zngl),
[0 — 2|5

0

Thus the right hand side provides an upper bound on the relative error of the
estimator x,, in the X7 ! norm. This is a weak result and tighter results for specific

Proposition 2.
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search directions are provided later. In addition to bounding the error x,, —x* in terms
of the posterior covariance ¥,,, we can also compute the rate of contraction of the
posterior covariance itself:

Proposition 3.
tr(, 20 Y) =d —m.

The combination of Propositions 2 and 3 implies that the posterior mean x,, is
consistent and, since the posterior covariance characterises the width of the posterior,
Proposition 3 can be viewed as a posterior contraction result. This result is intuitive;
after exploring m linearly independent search directions, £* has been perfectly identified
in an m-dimensional linear subspace of R?. Thus, after adjusting for the weighting of
R? provided by the prior covariance ¥, it is natural that an appropriate measure of
the size of the posterior should also converge at a rate that is linear.

2.2 Correspondence with the Conjugate Gradient Method

In this section we examine the correspondence of the posterior mean x,, described in
Proposition 1 with the CG method. It is frequently the case that Bayesian probabilistic
numerical methods have some classical numerical method as their mean, due to the
characterisation of the conditional mean of a probability distribution as the Lo-best
element of the underlying space consistent with the information provided (Diaconis,
1988; Cockayne et al., 2017).

The Conjugate Gradient Method A large class of iterative methods for solving linear
systems defined by positive-definite matrices A can be motivated by sequentially solving
the following minimisation problem:

T, = argmin ||z — x*|| 4,
e,

where IC,,, is a sequence of m-dimensional linear subspaces of R?. It is straightforward
to show that this is equivalent to:

T, = argmin f(x),
e,

where f(z) = 22" Az —x b is a convex quadratic functional. Let S,, € R™™ denote a
matrix whose columns are arbitrary linearly independent search directions si, ..., Sm,
with range(S,,) = Ky,. Let g denote an arbitrary starting point for the algorithm. Then
T, = T+ Spc for some ¢ € R™ which can be computed by solving V f (zg + Sy,c) = 0.

This yields:

X = o + S (ST AS,) LS (b — Axy). (7)

In CG (Hestenes and Stiefel, 1952) the search directions are constructed to simplify
the inversion in (7) by imposing that the search directions are A-conjugate, that is,
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(s79,859)4 = 0 whenever i # j. A set {s;} of A-conjugate vectors is also said to
be A-orthogonal, while if the vectors additionally have ||s;||4 = 1 for each ¢ they are
said to be A-orthonormal. For simplicity of notation, we will usually work with A-
orthonormal search directions, but in most implementations of CG the normalisation
step can introduce stability issues and is therefore avoided.

Supposing that such a set of A-orthonormal search directions can be found, (7)
simplifies to
20 = 2§ 1 559 (554) T (b~ Azf) (8)

m

which lends itself to an iterative numerical method:

of = a0 + 60000 (b A0S,

Search directions are also constructed iteratively, motivated by gradient descent on
the function f(x), whose negative gradient is given by —V f(x) = b — Ax. The initial
un-normalised search direction §$¢ is chosen to be §¢¢ = r{% = b — Az{“, so that
s$C = 59G/||84] 4. Letting 7S¢ = b — AxCY, subsequent search directions are given
by

sCG ._ ..CG cG  ,.CG ca
Sm = Tm—1— <sm717rm71>Asm71 (9)
with s¢¢ = 5°G/||5CG || 4. This construction leads to search directions s{¢,... sC&

which form an A-orthonormal set.

Equation (8) makes clear the following proposition, which shows that for a particular
choice of prior the CG method is recovered as the posterior mean from Proposition 1:

Proposition 4. Assume A is symmetric and positive-definite. Let g = 0 and X9 =
A=Y, Then, taking S,, = SEC, (5) reduces to x,, = xSC.

This result provides an intriguing perspective on the CG method, in that it represents
the estimate produced by a rational Bayesian agent whose prior belief about x* is
modelled by  ~ N (0, A=1). Dependence of the prior on the inaccessible matrix inverse
is in accordance with the findings in Hennig (2015, Theorem 2.4 and Lemma 3.4), in
which an analogous result was presented. As observed in that paper, the appearance of
A1 in the prior covariance is not practically useful, as while the matrix inverse cancels
in the expression for x,,, it remains in the expression for ¥,,.

2.3 Search Directions

In this section the choice of search directions for the method in Proposition 1 will
be discussed, initially by following an information-based complexity argument (Traub
et al., 1988). For efficiency purposes, a further consideration is that A,,, should be easy to
invert. This naturally suggests that search directions should be chosen to be conjugate
with respect to the matrix AYgAT, rather than A. Note that this approach does not
require A to be positive-definite, as AXgA " is positive-definite for any non-singular A.
Two choices of search direction will be discussed:
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Optimal Information One choice is to formulate selection of S, in a decision-theoretic
framework, to obtain optimal information in the nomenclature of Cockayne et al. (2017).
Abstractly, denote the probabilistic numerical method discussed above by P[; u, Sp] :
R? — P(R?), where P(R?) is the set of all distributions on R¢. The function P[b; y1, S,y,]
takes a right-hand-side b € R?, together with a prior u € P(RY) and a set of search di-
rections S, and outputs the posterior distribution from Proposition 1. Thus P[b; t, Sp,]
is a measure and P[b; i, Sp,](d) denotes its infinitesimal element.

For general p € P(R?), define the average risk associated with the search directions
S, to be

R(Sp. 1) = / / Lz, @")PlAz"; 1, ) (da)u(dz”), (10)

where L(x,x*) represents a loss incurred when x is used to estimate x*. This can be
thought of as a measure of the performance of the probabilistic numerical method, aver-
aged both over the class of problems described by p and over the output of the method.
Optimal information in this paper concerns selection of S, to minimise R(S,,, 1). The
following proposition characterises optimal information for the posterior in Proposition 1
in the case of a squared-error loss function and when &g = 0. Let A=" = (A~!)T, and let
M2 denote a square-root of a symmetric positive-definite matrix M with the property
that M= M?2 = M, where M % = (M%)T.

Proposition 5. Suppose = N(0,X¢) and consider the squared-error loss L(x,x*) =
|lx — z*||3, where M is an arbitary symmetric positive-definite matriz. Optimal infor-
mation for this loss is given by

S =A"TMZ,,,

where ®,,, is the matrix whose columns are the m leading eigenvectors of M%EOM%,
normalised such that ® | ®,, = I.

The dependence of the optimal information on A~ " is problematic except for when
M = AT A, which corresponds to measuring the performance of the algorithm through
the residual || Az,, — b||3. While this removes dependence on the inverse matrix, finding
the search directions in this case requires computing the eigenvectors of AXgAT, the
complexity of which would dominate the cost of computing the posterior in Proposi-
tion 1.

Conjugacy A second, more practical method for obtaining search directions that di-
agonalise A,, is similar to that taken in CG. Search directions are constructed which
are conjugate to the matrix AXgA " by following a similar procedure to that described
in Section 2.2.

Proposition 6 (Conjugate Search Directions = Iterative Method). Assume that
the search directions are AXgAT -orthonormal. Denote r,,, = b— Ax,,. Then, ,, in (5)
simplifies to

T T
T = Tm—1 + 204 S (8,,Tm—1)

while to compute ¥, in (6) it suffices to store only the vectors EOATsj, forj=1,....m.
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On the surface, the form of this posterior differs slightly from that in Proposition 1, in
that the data are given by s, 7, 1 rather than s ry. However, when search directions
are conjugate, the two expressions are equivalent:

s;rm,l = s;,';b - s;Awm,l
=5 b—sl Axg —s) ASGATS] 1o =8 7. (11)
=0

Use of s, 7,1 reduces the amount of storage required compared to direct application of
(5). It also helps with stability as, while search directions can be shown to be conjugate
mathematically, the accumulation of numerical error from floating point precision is
such that numerical conjugacy may not hold, a point discussed further in Section S4.1
of the supplement.

An approach to constructing conjugate search directions for our probabilistic linear
solver is now presented, again motivated by gradient descent.

Proposition 7 (Bayesian Conjugate Gradient Method). Recall the definition of the
residual T, = b — Axy,. Denote 81 = 1o and 81 = 51/||81|| gz a7 For m > 1 let

Sm = Tm—-1 — <3m—17 T‘”’L—1>AEOAT Sm—1-

Further, assume 8,, # 0 and let $,, = 81,/||Sm || ax, a7 - Then for each m, the set {s;}.",
is AXoAT -orthonormal, and as a result A, = I.

This is termed a Bayesian conjugate gradient method for the same reason as in
CG, as search directions are chosen to be the direction of gradient descent subject to
a conjugacy requirement, albeit a different one than in standard CG. In the context
of Proposition 4, note that the search directions obtained coincide with those obtained
from CG when A is symmetric positive-definite and ¥y = A~!. Thus, BayesCG is a
strict generalisation of CG. Note, however, that these search directions are constructed
in a data-driven manner, in that they depend on the right-hand-side b. This introduces
a dependency on x* through the relationship in (1) which is not taken into account in
the conditioning procedure and leads to conservative uncertainty assessment, as will be
demonstrated in Section 6.1.

3 BayesCG as a Krylov Subspace Method

In this section a thorough theoretical analysis of the posterior will be presented. Fun-
damental to the analysis in this section is the concept of a Krylov subspace.

Definition 8 (Krylov Subspace). The Krylov subspace K,,(M,v), M € R¥*4 ¢ ¢ R4
is defined as
K (M, v) := span(v, Mv, M?v,..., M™v).

For a vector w € R?, the shifted Krylov subspace is defined as

w + K, (M, v) := span(w + v,w + Mv,w + M?v, ..., w + M™v).
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It is well-known that CG is a Krylov subspace method for symmetric positive-definite
matrices A (Liesen and Strakos, 2012), meaning that

xz,,” = arg min le — x| a.
xwexo+Km—_1(A,r0)

It will now be shown that the posterior mean for BayesCG, presented in Proposition 6,
is a Krylov subspace method. For convenience, let K, := xg + Km(ZOATA, ZOATTO).

Proposition 9. The BayesCG mean x,, satisfies

Ty = irgr*nin [l — :c*HEgl.

m—1

This proposition gives an alternate perspective on the observation that, when A is
symmetric positive-definite and Xy = A~!, the posterior mean from BayesCG coincides
with £58: Indeed, for this choice of ¥g, K, coincides with x¢ + K,, (A, 7) and further-
more, since under this choice of ¥ the norm minimised in Proposition 9 is || - || 4, it is
natural that the estimates @, and % should be identical.

Proposition 9 allows us to establish a convergence rate for the BayesCG mean which
is similar to that which can be demonstrated for CG. Let k(M) = || M||2||M ~||2 denote
the condition number of a matrix M in the matrix 2-norm. Now, noting that (oA ' A)
his well-defined, as ¥y and A are each nonsingular, we have:

Proposition 10.

lom — 2l (VREATA) — 1 "
lzo — & gr R(SoATA)+1)

This rate is similar to the well-known convergence rate which for CG, in which
k(ZgAT A) is replaced by x(A). However, since it holds that x(ATA) > k(A), the
convergence rate for BayesCG will often be worse than that for CG, unless ¥ is
chosen judiciously to reduce the condition number of k(XgATA). Thus it appears
that there is a price to be paid when uncertainty quantification is needed. This is
unsurprising, as it is generally the case that uncertainty quantification is associated
with additional cost over methods for which uncertainty quantification is not pro-
vided.

Nevertheless, the rate of convergence in Proposition 10 is significantly faster than
the rate obtained in Proposition 2. The reason for this is that knowledge about how the
search directions S,,, were chosen has been exploited. The directions used in BayesCG are
motivated by gradient descent on f(s). Thus, if gradient descent is an effective heuristic
for the problem at hand, then the magnitude of the error x,, — x* will decrease at
a rate which is sub-linear. The same cannot be said for tr(3,,X; ') which continues
to converge linearly as proven in Proposition 3. Thus, the posterior covariance will in
general be conservative when the BayesCG search directions are used. This is verified
empirically in Section 6.1.
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4 Prior Choice

The critical issue of prior choice is now examined. In Section 4.1 selection of the prior
covariance structure will be discussed. Then in Section 4.2 a hierarchical prior will be
introduced to address the scale of the prior.

4.1 Covariance Structure

When A is symmetric positive-definite, one choice which has already been discussed is
to set X9 = A1, which results in a posterior mean equal to the output of CG. However
correspondance of the posterior mean with CG does not in itself justify this modelling
choice from a probabilistic perspective and moreover this choice is not practical, as
access to A~ would give immediate access to the solution of (1). We therefore discuss
some alternatives for the choice of ¥g.

Natural Prior Taking inspiration from probabilistic numerical methods for PDEs
(Cockayne et al., 2016; Owhadi, 2015), a natural choice presents itself: The object
through which information about «* is extracted is b, so it is natural, and mathemati-
cally equivalent, to place a relatively uninformative prior on the elements of b rather than
on x* itself. If b ~ N(0,I) then the implied prior model for * is  ~ A (0, (AT A)~1).
This prior is as impractical as that which aligns the posterior mean with CG, but has
the attractive property that convergence is instantaneous when the search directions
from Proposition 7 are used, as shown in Section S3.1 of the supplement.

Preconditioner Prior For systems in which a preconditioner is available, the precon-
ditioner can be thought of as providing an approximation to the linear operator A.
Inspired by the impractical natural covariance (AT A)~!, one approach proposed in this
paper is to set Yo = (P P)™!, when a preconditioner P can be found. Since by design
the action of P~! can be computed efficiently, so too can the action of ¥y. As mentioned
in Section 1.1, the availability of a good preconditioner is problem-dependent.

Krylov Subspace Prior The analysis presented in Section 3 suggests another poten-
tial prior, in which probability mass is distributed according to an appropriate Krylov
subspace K, (M,b). Consider a distribution constructed as the linear combination

Ty = ZwiMiQ (12)
i=0
where w = (wy, ..., w,) ~ N(0,®) for some positive-definite matrix ®. The distribu-

tion on x g induced by (12) is clearly Gaussian with mean 0. To determine its covariance,
note that the above expression can be rewritten as xx = K,w, where K,, € R4x(+1)
is the matrix whose columns form a basis of the Krylov subspace K, (M,b), as would
be given by the Lanczos or Arnoldi algorithms (Golub and Van Loan, 2013, Chapter 9).

Irrespective of choice of K,,, the covariance of xk is given by E(mKa:E) = an)K,;r
so that zx ~ N(0, K, ®K,). One issue with this approach is that the computation of
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the matrix K, is of the same computational complexity as n iterations of BayesCG,
requiring n matrix-vector products. To ensure that this cost does not dominate the pro-
cedure, it is necessary to take n < m < d. However, in this situation * ¢ K, (b, M), so
it is necessary to add additional probability mass on the space orthogonal to K, (M, b),
to ensure that z* lies in the prior support. To this end, let K;-(b, M) = R%\ K,,(b, M),
and let K;- denote a matrix whose columns span K:-(b, M). Let w}{ = K}w?, where
wr ~ N(0,pl) for a scaling parameter ¢ € R. Then, the proposed Krylov subspace
prior is given by

x (=0 +Tx +T5) ~ J\/'(:Bo,Kn‘I’K,I + @K#(K#)T) .

The selection of the parameters of this prior, and issues related to its implementation,
are discussed in Section S3.2 of the supplement.

4.2 Covariance Scale

For the distributional output of BayesCG to be useful it must be well-calibrated. Loosely
speaking, this means that the true solution «* should typically lie in a region where
most of the posterior probability mass is situated. As such, the scale of the posterior
variance should have the ability to adapt and reflect the difficulty of the linear system at
hand. This can be challenging, partially because the magnitude of the solution vector is
a-priori unknown and partially because of the aforementioned fact that the dependence
of S,, on x* is not accounted for in BayesCG.

In this section we propose to treat the prior scale as an additional parameter to be
learned; that is we consider the prior model p(x|v) = N (xo,vYg), where g, X are as
before, while v € RT. This can be viewed as a generalised version of the prior in (4),
which is recovered when v = 1. In this section we consider learning v in a hierarchical
Bayesian framework, but we note that v could also be heuristically calibrated. An
example of such a heuristic procedure is outlined in Section S4.3 of the supplement.

The approach pursued below follows a standard approach in Bayesian linear regres-
sion (Gelman et al., 2014). More generally, one could treat the entire covariance as
unknown and perform similar conjugate analysis with an inverse-Wishart prior, though
this extension was not explored. Consider then endowing v with Jeffreys’ (improper)
reference prior p(v) oc v~1. The conjugacy of this prior with the Gaussian distribution
is such that the posterior marginal distributions p(v|y,,) and p(x|y,,) can be found
analytically. For the following proposition, |G denotes an inverse-gamma distribution,
while MVT,, denotes a multivariate ¢ distribution with m degrees of freedom.

Proposition 11 (Hierarchical BayesCG). When p(z|v) and p(v) are as above, the
posterior marginal for v is given by

m 1 _
p(Vlym) =1G <57 ir(—)rSmAmls'r—rrLTO)

while the posterior marginal for x is given by

rg S\, LS, o 5 >

p(m|ym) = MVT,, (mmy
m
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When the search directions are ALgAT -orthonormal, this simplifies to

m m
p(w|ym) = MVT,, (.’Bm, VmEm) s

where vy, := ||S;L7'0H3/m-

Since r( reflects the initial error g — «*, the quantity v, can be thought of as
describing the difficulty of the problem. Thus in this approach the scale of the posterior
is data-dependent.

5 Implementation

In this section some important details of the implementation of BayesCG are discussed.

Computational Cost The cost of BayesCG is a constant factor higher than the cost
of CG as three, rather than one, matrix-vector multiplications are required. Thus, the
overall cost is O(md?) when the search directions from Proposition 7 are used. Note
that this cost assumes that A and X, are dense matrices; in the case of sparse matrices
the cost of the matrix-vector multiplications is driven by the number of nonzero entries
of each matrix rather than the dimension d.

Termination Criteria An appealing use of the posterior distribution might be to derive
a probabilistic termination criterion for BayesCG. Recall from Proposition 2 that x,,

approaches &* at a rate bounded by o, := 1/tr(%,,%; "), and from Proposition 3 that

tr(EmZ(;l) = d — m. To decide in practice how many iterations of BayesCG should
be performed we propose a termination criterion based upon the posterior distribution
from Proposition 11:

o2 = tr(XnXg ) X v = (d — m)vp,.

Thus, termination when o, < €, for some tolerance € > 0 that is user-specified, might
be a useful criterion. However, Proposition 2 is extremely conservative, and since Propo-
sition 10 establishes a much faster rate of convergence for ||x,, — m*HEal in the case
of BayesCG search directions, this is likely to be an overcautious stopping criterion in
the case of BayesCG. Furthermore, since this involves a data-driven estimate of scale,
the term v, is not uniformly decreasing with m. As a result, in practise we advocate
using a more traditional termination criterion based upon monitoring the residual; see
Golub and Van Loan (2013, Section 11.3.8) for more detail. Further research is needed
to establish whether the posterior distribution can provide a useful termination crite-
rion.

Full pseudocode for the BayesCG method, including the termination criterion, is
presented in Algorithm 1. Two algebraic simplifications have been exploited here relative
to the presentation in the main text; these are described in detail in Section S2 of the
supplement. A Python implementation can be found at github.com/jcockayne/bcg.
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Algorithm 1 Computation of the posterior distribution described in Proposition 6. The
implementation is optimised compared to that given in Proposition 6; see Supplement S2
for detail. Further note that, for clarity, all required matrix-vector multiplications have
been left explicit, but for efficiency these should be calculated once-per-loop and stored.
Y.m can be computed from this output as X, = Xy — EFZ;.

1: procedure BAYESCG(A, b, zg, X0, €, Mmax) > (e the tolerance)
2: Y p initialised to a matrix of size (d x 0) > (Mpiy, the minimum # iterations)
3: ro < b— Axg > (Mmax the maximum # iterations)
4: 81+ 1o

5: v+ 0

6: form=1,...,mpax do

7. E? < 8T ASA &,y

P 1

9: Loy — Toe1 + O D0 A T S,

10: P & Pm—1 — AT,

11: YF [ZF,EoATgm/E}

T

12: Dpn < U1 + 7@""‘,}2’"_1)

13: if H’I‘mHQ < € then

14: break

15: end if .

16: B — r,{j::,l

17: Sm+1 < Tm + BmSm

18: end for

19: U 4 U /m
20: return x,,, Xp, Uy

21: end procedure

6 Numerical Results

In this section two numerical studies are presented. First we present a simulation study
in which theoretical results are verified. Second we present an application to electrical
impedance tomography, a challenging medical imaging technique in which linear systems
must be repeatedly solved.

6.1 Simulation Study

The first experiment in this section is a simulation study, the goals of which are to
empirically examine the convergence properties of BayesCG. Additional results which
compare the output of the algorithm to the probabilistic approach of Hennig (2015) are
presented in Section S4.2 of the supplementary material.

For our simulation study, a matrix A was generated by randomly drawing its
eigenvalues A1,...,\q from an exponential distribution with parameter . A sparse,
symmetric-positive definite matrix with these eigenvalues was then drawn using the
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Figure 1: Convergence in mean of BayesCG (BCG). For several independent test prob-
lems, &* ~ pef, the error ||z, — x*||2 was computed. The standard CG method (top
left) was compared to variants of BayesCG (right), corresponding to different prior
covariances Y. The search directions used for BayesCG were either computed sequen-
tially (top right) or in batch (bottom right). For comparison, the a priori optimal search
directions for BayesCG are shown in the bottom left panel.

MATLAB function sprandsym. The proportion of non-zero entries was taken to be
20%. Subsequently, a vector x* was drawn from a reference distribution jier on R,
and b was computed as b = Ax*. Throughout, the reference distribution for x* was
taken to be prer = N(0,I). For this experiment d = 100 and v = 10. In all cases the
prior mean was taken to be &y = 0. The prior covariance was alternately taken to be
Yo =1,% = A1 and ¥y = (P"P)~! where P was a preconditioner found by com-
puting an incomplete Cholesky decomposition with zero fill-in. This decomposition is
simply a Cholesky decomposition in which the (approximate) factor L has the same
sparsity structure as A. The preconditioner is then given by P = LLT. The matrix L
can be computed at a computational cost of O(nnz(A)?) where nnz(A) is the number
of nonzero entries of A. Furthermore, P~ is cheap to apply because its Cholesky factor
is explicit. In addition, the Krylov subspace prior introduced in Section 4.1 has been
examined. While it has been noted that the choice ¥g = A~! is generally impractical,
for this illustrative example A~! has been computed directly. Additional experimental
results which apply the methodology discussed in this section to higher-dimensional
problems is presented in Section S5.

Point Estimation In Figure 1 the convergence of the posterior mean ., from BayesCG
is contrasted with that of the output of CG, for many test problems x* with a fixed
sparse matrix A. To study the impact of the numerical breakdown of conjugacy in the
search directions, two choices of search directions were used; the sequentially-computed
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search directions are those described in Proposition 7, while the batch-computed search
directions enforce conjugacy by employing a full Gram-Schmidt orthogonalisation. The
batch-computed search directions are thus given by:

m—1
e E C C
Sm =Tm—_1— <Si ’Tm_1>AEOAT sm—l
=1

Sm = §%/”§%HAZOAT-

These search directions are mathematically identical to the BayesCG search directions
{s;}™,, but explicitly orthogonalising with respect to all m — 1 previous directions
ensures that numerical conjugacy is maintained. However, note that when the batch-
computed search directions are used an additional loop of complexity O(m) must be
performed. Thus, the cost of the BayesCG algorithm with batch-computed search di-
rections is O(m?2d?).

As expected from the result of Proposition 9, the convergence of the BayesCG mean
vector when ¥y = [ is slower than in CG. In this case, the speed of convergence for
BayesCG is controlled by #x(ATA) which is larger than the corresponding x(A) for
CG. The a priori optimal search directions also appear to yield a slower rate than
the BayesCG search directions, owing to the fact that they do not exploit knowledge
of b. Similarly as expected, the posterior mean when ¥y = A~! is identical to the
estimate for x,, obtained from CG. The fastest rate of convergence was achieved when
Yo = (PTP)~!, which provides a strong motivation for using a preconditioner prior if
such a preconditioner can be computed, though note that a preconditioned CG method
would converge at a yet faster rate gated by x(P~1A).

In the lower row of Figure 1 the convergence is shown when using batch-computed
directions. Here convergence appears to be faster than when using the sequentially-
computed directions, at correspondingly higher computational cost. The batch-com-
puted directions provide an exact solution after m = d iterations, in contrast to the
sequentially-computed directions, for which numerical conjugacy may not hold.

Convergence for the Krylov subspace prior introduced in Section 4.1 is plotted in
the right-hand column. The size of the computed subspace was set to n = 20, with
M = A. The matrix ® was chosen to be diagonal, with ®;; = [20¢7]?, as discussed in
Section S3.2 of the supplement. Here 0 = ||&*||4 and £ = :Eﬁg;}, as these quantities
are easily computable in this simplified setting. The remaining parameter was set to
v = 0.01, so that low prior weight was given to the remaining subspaces. With the
sequentially computed directions significant numerical instability is observed starting
at m = 20. This does not occur with the batch computed directions, where a jump in
the convergence rate is seen at this iteration.

Posterior Covariance The full posterior output from BayesCG will now be evaluated.
In Figure 2, the convergence rate of tr(%,,) is plotted for the same set of problems
just described to numerically verify the result presented in Proposition 3. It is clear
that when the more informative CG or BayesCG search directions are used, the rate of
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Figure 2: Convergence in posterior covariance of BayesCG (BCG), as measured by
tr(2,,). The experimental setup was as in Figure 1, here with tr(X%,,)/tr(X) plotted.

contraction in the posterior mean does not transfer to the posterior covariance. In the
remaining columns of the figure, tr(3,,) appears to contract at a roughly linear rate,
in contrast to the exponential rate observed for «,,. This indicates that tightening the
bound provided in Proposition 3 is unlikely to be possible. Furthermore, in the last two
columns of Figure 2, the impact of numerical non-conjugacy is apparent as the posterior
covariance takes on negative values at around m = 20.

Uncertainty Quantification We now turn to an assessment of the quality of the un-
certainty quantification (UQ) being provided. The same experimental setup was used
as in the previous sections, however rather than running each variant of BayesCG to
m = d, instead m = 10 was used to ensure that UQ is needed. To avoid the issue of
negative covariances seen in Figure 2, the batch-computed search directions were used
throughout.

First, the Gaussian version of BayesCG from Proposition 6 was evaluated. To proceed
we used the following argument: When the UQ is well-calibrated, we could consider x*
as plausibly being drawn from the posterior distribution N(@,, ¥,,). Note that ¥, is
of rank d — m, but assessing uncertainty in its null space is not of interest as in this
space x* has been determined exactly. Since 3, is positive semidefinite, it has the
singular-value decomposition

Zm U D Od—m,m U—T7

Om,d—m Om,m

where 0, , denotes an m X n matrix of zeroes, D € R(d=m)x(d=m) jq diagonal and

U € R**? ig an orthogonal matrix. The first d — m columns of U, denoted Uy_,,, form
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Figure 3: Assessment of the uncertainty quantification provided by the Gaussian
BayesCG method, with different choices for search directions and Y. Plotted are ker-
nel density estimates for the statistic Z based on 500 randomly sampled test problems.
These are compared with the theoretical distribution of Z when the posterior distri-
bution is well-calibrated. The right panel zooms in on the estimate for £y = A~! and
Yo = (PTP)"L.

a basis of range(¥,,), the subspace of R? in which x* is still uncertain. Under this
hypothesis we can therefore derive a test statistic

Ud,mD_%U;;m(a:* — @) ~N(0,I;_p)
* -1 *
= Z(x*) =D U, (& — )3 ~ XG_m:

where here I,, € R™ ™ is the identity matrix. Note that the pre-factor Uy_,, is not
necessary in the final expression as || - ||2 is unitarily invariant.

Thus to evaluate the UQ we can draw many test problems &* ~ pef, evaluate the
test statistic Z(x*) and compare the empirical distribution of this statistic to x2_, .
If the posterior distribution is well-calibrated we expect that the empirical distribution
of the test statistic will resemble X%dfm‘ An overly-conservative posterior will exhibit a
“left-shift” in its density, as x,, is closer to &* than was expected. Likewise, an overly
confident posterior will exhibit a “right-shift”.

In Figure 3 the empirical distribution of the statistic Z was compared to its theoret-
ical distribution for different prior covariances. The empirical distributions were plotted
as kernel density estimates based upon the computed statistic for 500 sampled test
problems. Clearly the a prior: optimal directions provide well-calibrated UQ, while for
BayesCG the UQ provided by the posterior was overly-conservative for the prior covari-
ances Y9 = I, A~' and (PT P)~!. This reflects the fact that the search directions encode
knowledge of b, but this knowledge is not reflected in the likelihood model used for con-
ditioning, as discussed following Proposition 7. Furthermore, note that the quality of
the UQ seems to worsen as the convergence rate for x,, improves, with o = (PTP)~!
providing the most conservative UQ.

For the Krylov subspace prior, which encodes intuition for how search directions
are selected, better UQ was provided. Though the empirical distribution of Z is not
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Figure 4: Assessment of the uncertainty quantification provided by the multivariate ¢
BayesCG method, for the same prior covariances and search directions as in Figure 3.

identical to the theoretical distribution, the supports of the two distributions overlap.
Thus, while the Krylov subspace prior does not fully remedy the issue caused by the
use of b in the search directions, some improvement is seen through the incorporation
of knowledge of b into the prior.

Next we assessed the UQ provided by the multivariate ¢ posterior presented in
Proposition 11. A similar procedure was followed to the Gaussian case, with a different
test statistic. Let S ~ N(0,1), T ~ MVT,,(u,X) and U ~ x2,. Then, it can be shown
that

1 S
vm VU
In the present setting, p = x,,, and ¥ = %,,. Furthermore ||S||3 ~ x2_,,. Lastly,
multiplying both sides by m/(d —m) we have

EH

Udme_%Ujfm(T - IL) g U

1 1 d
—|D2U;] , (T —p)|2 =
DTG (T = )2

sz

* 1 1 d m
2(@") i= —— D UL, (@ — 2§ £

3=

The ratio on the right-hand-side is known to follow an F(d — m,m) distribution. In
Figure 4 the empirical distribution of the test statistic Z(z*) was compared to the F'(d—
m, m) distribution for each of the posterior distributions considered. Again, the posterior
distribution based on the a priori optimal search directions was well-calibrated, while
the posteriors from BayesCG trade fast convergence in mean with well-calibrated UQ. As
before, BayesCG with the Krylov subspace prior appears to provide the best-calibrated
UQ of the (practically useful) priors considered.

Note that in both Figure 3 and Figure 4, for the choice ¥y = (PTP)~!, which
has the most rapidly converging mean in Figure 1, poor UQ properties are observed,
making this otherwise appealing choice impractical. To address this we have explored
a heuristic procedure for setting v,,, which aims to match the posterior spread to an
appropriate estimate of the error ||@,, — *||2. This procedure is reported in Section S4
of the supplement, along with experimental results based upon it.
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6.2 Electrical Impedance Tomography

Electrical impedance tomography (EIT) is an imaging technique used to estimate the
internal conductivity of an object of interest (Somersalo et al., 1992). This conductiv-
ity is inferred from measurements of voltage induced by applying stimulating currents
through electrodes attached to its boundary. EIT was originally proposed for medical
applications as a non-invasive diagnostic technique (Holder, 2004), but it has also been
applied in other fields, such as engineering (Oates et al., 2019).

The physical relationship between the inducing currents and resulting voltages can
be described by a PDE, most commonly the complete electrode model (CEM) (Cheng
et al., 1989). Consider a domain D C R™ representing the object of interest, where
typically n = 2 or n = 3. Denote by 9D the boundary of D, and let o(z) denote
the conductivity field of interest, where z € D. Denote by {el}lL:1 the L electrodes,
where each ¢, C 0D and e; Ne, =  whenever | # m. Let v(z) denote the voltage
field, and let {Ii’l}lL:1 denote the set of stimulating currents applied to the electrodes.
Let {V;%}E£ | denote the corresponding voltages, and let n denote the outward-pointing
normal vector on dD. The subscript ¢ here is to distinguish between multiple stimulation
patterns which are generally applied in sequence and are of relevance to the inversion
problem for determining o(z) later. Denote by {Q}lel the contact impedance of each
electrode. The contact impedances are used to model the fact that the contact between
the electrode and the boundary of the domain is imperfect. Then the CEM is given by

=V (0(2)Vu(2)) =0 z€D
/a(z)g—:l(z)dz:[i,l =1, L
U(z)@(z):() zeaD\Oel
on =
o(2) + Go (=) (2) = Vi seenl=1,.. L. (13)

A solution of this PDE is the tuple (v(2), V;%, ..., V%), consisting of the interior voltage
field and the voltage measurements on the electrodes. The numerical solution of this
PDE can be reduced to the solution of a linear system of the form in (1), as will shortly
be explained.

Having specified the PDE linking stimulating currents to resulting voltages, it re-
mains to describe the approach for determining o(z) from noisy voltage measurements.
These physical voltage measurements are denoted by the matrix V € REX(ZE=1  where
Vi1 is the voltage obtained from stimulation pattern ¢ at electrode I. The recovery prob-
lem can be cast in a Bayesian framework, as formalised in Dunlop and Stuart (2016). To
this end, a prior distribution for the conductivity field is first posited and denoted .
Then, the posterior distribution ;Y is defined through its Radon-Nikodym derivative
with respect to the prior as

\%

3 (@) xexp(=2 (o3 V),
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where ®(o; V) is known as a potential function and exp(—®(o; V)) is the likelihood. This
posterior distribution is for an infinite-dimensional quantity-of-interest and is generically
nonparametric, thus sampling techniques such as the preconditioned Crank—Nicolson
(pCN) algorithm Cotter et al. (2013) are often employed to access it. Such algorithms
require repeated evaluation of ®(o; V') and thus the repeated solution of a PDE. Thus,
there is interest in ensuring that ®(o; V') can be computed at low cost.

Experimental Setup The experimental set-up is shown in Figure 5a and is due to
Isaacson et al. (2004). This is described in detail in Section S.6 of the supplement. In
the absence of specific data on the accuracy of the electrodes, and for convenience, the
observational noise was assumed to be Gaussian with standard deviation § = 1. This
implies a potential of the form:

. =< (%’l_ i?l)2 1 ¥ o\ T (17 o
‘I’(va):ZZTZ@(V—V) vV -v7),

i=1 [=1

where V7 is the matrix with (i,)-entry V;%. The notation V e REE=D) denotes the
vectorisation of V| formed by concatenating columns of V' into a vector as described in
Section S4.2.

Apart from in pathological cases, there is no analytical solution to the CEM and
thus evaluating ®(o; V') requires an approximate solution of (13). Here a finite-element
discretisation was used to solve the weak form of (13), as presented in Dunlop and
Stuart (2016) and described in more detail in the supplement. This discretisation results
in a sparse system of equations Ax* = b, where A is in this context referred to as a
stiffness matriz. To compute A and b, standard piecewise linear basis functions were
used, and the computations were performed using the FEniCS finite-element package. A
fine discretisation of the PDE will necessarily yield a high-dimensional linear system to
be solved. We propose to use BayesCG to approximately solve the linear system, and
propagate the solver uncertainty into the inverse problem associated with recovery of
the conductivity field. In essence, this provides justification for small values of m to be
used in the linear solver and yet ensure that the inferences for ¢ remain valid.

The Gaussian version of BayesCG was used throughout, as described in Proposi-
tion 6. Thus, assume that the output from BayesCG is * ~ N (x,,,%,,). The finite
element approximation to the voltages V;% is linearly related to the solution x* of the
linear system, so that BayesCG implies a probability model for the voltages of the form
Vo~ N (V,‘,’L, X7) for some I_/;g and X7, ; for brevity we leave these expressions implicit.
The approach proposed is to derive a new potential ®, obtained by marginalising the
posterior distribution output from BayesCG in the likelihood. It is straightforward to
show that, for the Gaussian likelihood, this marginalisation results in the new potential

1

b(o:V) = S (V= V) T(57, + 82 1) 71 (V = V7).

Thus, the new likelihood exp(—®(c; V)) is still Gaussian, but with a covariance inflated
by ¢ . which describes the level of accuracy in the BayesCG solver. It will be shown

m?
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that replacing ¢ with ® leads to a posterior distribution aY for the conductivity field
which is appropriately to account for the accuracy of BayesCG.

Throughout this section the prior distribution over the conductivity field was taken
to be a centered log-Gaussian distribution, log(c) ~ GP(0, k), with a Matérn 5/2 co-
variance as given by:

o) _ 1|2 _ o/
k<z,z/)_a<l+“5“z 2l 5]z Z”2>exp<_\/5|z z||2>.

L 302 4

The length-scale parameter ¢ was set to £ = 1.0, while the amplitude a was set to
a = 9.0 to ensure that where the posterior distribution is concentrated has significant
probability mass under the prior. Results for application of BayesCG to the solution
of this PDE, also known as the forward problem, are similar to those described in the
previous section and are presented in Section S6 of the supplement.

Inverse Problem In this section, the solution to the inverse problem when using the
BayesCG potential P is compared to the posterior obtained from the exact potential ®.
In the latter case CG was used to solve the system to convergence to provide a brute-
force benchmark. For BayesCG, the prior was centered, g = 0, and the preconditioner
prior covariance, ¥y = (PTP)™!, was used. BayesCG was run to m = 80 iterations,
for the mesh with Ny = 64. This mesh results in a linear system with d = 311, so 80
iterations represents a relatively small amount of computational effort.

In Figure 5 the posterior distribution over the conductivity field is displayed. In
Figures 5b and 5c¢, respectively, the exact posterior mean and the posterior mean from
BayesCG are plotted. Note that, as indicated in the previous section, many of the
features of the conductivity field have been recovered even though a relatively small
number of iterations have been performed. In Figure 5d the ratio of the pointwise
posterior standard deviation from BayesCG to that in CG is plotted. Clearly, throughout
the entire spatial domain, the posterior distribution has a larger standard deviation,
showing that the posterior uncertainty from BayesCG has successfully been transferred
to the posterior over the conductivity field. This results in a posterior distribution
which is wider to account for the fact that an imperfect solver was used to solve the
forward problem. Overall, the integrated standard deviation over the domain is 0.0365
for BayesCG, while for the exact posterior it is 0.0046.

This example illustrates how BayesCG could be used to relax the computational
effort required in EIT in such a way that the posterior is widened to account for the
imperfect solution to the forward problem. This setting, as well as other applications of
this method, should be explored in more detail in future work.

7 Conclusion and Discussion

In this paper we have introduced and theoretically analysed the Bayesian conjugate
gradient method, a Bayesian probabilistic numerical method for the solution of linear
systems of equations. Given the ubiquity of linear systems in numerical computation,
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Figure 5: Comparison of the posterior distribution over the conductivity field, when
using BayesCG to solve the linear system arising from the forward problem compared
to using standard CG.

the question of how to approximate their solution is fundamental. Contrary to CG
and other classical iterative methods, BayesCG outputs a probability distribution, pro-
viding a principled quantification of uncertainty about the solution after exploring an
m-dimensional subspace of R?. Through the numerical example in Section 6.2 we have
shown how this output could be used to make meaningful inferences in applied prob-
lems, with reduced computational cost in terms of iterations performed. This could be
applied to a broad range of problems in which solution of large linear systems is a
bottleneck, examples of which have been given Section 1.1.

Prior Choice Prior choice was discussed in detail. An important question that arises
here is to what extent the form of the prior can be relaxed. Indeed, in many applied
settings information is known about * which cannot be encoded into a Gaussian prior.
For example, the solution of PDEs is often known to be sign-constrained. When encoding
this information into the prior it is likely that the conjugacy properties exploited to
construct a closed-form posterior will be lost. Then, interrogating such posteriors would
require sampling techniques such as the numerical disintegration procedure of Cockayne
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et al. (2017), which would incur a dramatically higher cost. Research to determine what
prior knowledge can be encoded (either exactly or approximately) without sacrificing
numerical performance will be an important future research direction.

It was shown how a numerical analyst’s intuition that the conjugate gradient method
“tends to work well” can be encoded into a Krylov-based prior. This went some way to-
wards compensating for the fact that the search directions in BayesCG are constructed
in a data-driven manner which is not explicitly acknowledged in the likelihood. Alter-
native heuristic procedures for calibrating the UQ were explored in the supplement,
Section S4.3. An important problem for future research will be to provide practical and
theoretically justified methods for ensuring the posterior UQ is well-calibrated.

Computational Cost and Convergence The computational cost of BayesCG is only
a constant factor higher than that of CG. However, the convergence rates reported in
Section 3 can be slower than those of CG. To achieve comparable convergence rates,
the prior covariance Xo must be chosen to counteract the fact that the rate is based on
k(ZgAT A) rather than x(A), and this can itself incur a substantial computational cost.
Future work will focus on reducing the cost associated with BayesCG.

Supplementary Material

Supplementary Material for “Bayesian Conjugate-Gradient Method”
(DOI: 10.1214/19-BA1145SUPP; .pdf).
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Invited Discussion

Philipp Hennig*f

I congratulate Jon Cockayne and his colleagues for reinvigorating the thread of research
on probabilistic linear algebra methods. Linear solvers take a special role in the ongo-
ing effort to develop a consistent interpretation of numerical algorithms as autonomous
Bayesian inference agents that has come to be known under the label probabilistic nu-
merics. Linear solvers form the lowest layer of the numerics stack, used as sub-routines of
more elaborate operations like solving integrals, and differential equations; constrained
and non-linear optimization. One may thus perhaps expect them to be particularly easy
to understand and interpret as inference agents. Alas, describing linear algebra routines
in the language of probabilistic inference has proven challenging, and even the present,
deeply thoughtful paper, does not yet provide a final answer. How hard a task this
is depends on what we actually mean when we speak of a probabilistic linear algebra
method:

e Should it use novel kinds of prior information — in particular, information that
can not already be encoded via a pre-conditioner in present-day methods — to
outperform the point estimates of classic linear solvers on more specific classes
of problems, either in the worst or the average case? Such methods likely require
exploration strategies different from that of the classic iterative solvers, motivated
and constructed from internal, iteratively refined model of the problem. They will
thus be called active in this text.

e Or is our goal less ambitious, and we “only” want to endow existing linear algebra
routines with structured and calibrated uncertainty? Structured error estimates
could be used to more aggressively control the use of computational resources, or
they could be propagated up the stack, along with the solution *, to be used by
whoever called upon the linear algebra agent, similar to how a LAPACK solver
returns a matrix factorization alongside x* for later use. A method that achieves
this post-hoc kind of uncertainty while “watching” another linear solver do its
thing will be called passive below.

Cockayne and his colleagues have focused on passive functionality in their empirical
evaluation and left the construction of search directions s,, to the tried and trusted
Lanczos process. My own 2015 paper contained an active formulation (more below),
but I only succeeded in re-constructing conjugate gradients, not in improving upon it.
Active probabilistic solvers remain elusive. The first part of this comments reviews why
this advanced functionality is so hard to achieve. In the second part, I will highlight

*University of Tiibingen and Max Planck Institute for Intelligent Systems, Tiibingen, Germany,
ph@tue.mpg.de

TThe author gratefully acknowledges financial support by the European Research Council through
ERC StG Action 757275 PANAMA.
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that for passive solvers, while Cockayne and colleagues have proposed a self-contained
framework, significantly better uncertainty quantification is possible if one is willing to
use empirical Bayesian calibration with strong priors. I believe this highlights that there
is still a gap between what we have now and how good even passive solvers could be.

1 The Classic Point Estimates Remain Undefeated

A key reason why probabilistic linear solvers, especially active ones, are harder to define
than one may think is that the “linear problem”

Az* =b (1)

studied in the Discussion Paper is not actually linear where it matters: In the matrix
A. The standard recipe of probabilistic numerics is to capture a numerical problem by
assigning a probability distribution to the intractable or computationally demanding
part of the problem, then use tractable computations linked to the intractable variable
through a likelihood function to derive a posterior. In Equation (1), the matrix is the
source of computational complexity, so it would seem natural to assign a distribution
p(A) to it. But of course, if Cy* = b, then (A+ C)z* = b does not imply z* = x* + y*,
so simple models like a Gaussian distribution on A do not yield elegant frameworks
from which one could derive a posterior on x*. But we must find simple models, pre-
cisely because linear algebra is such a low-level operation that a complicated solution
is not acceptable. In my earlier paper (Hennig, 2015), I studied two different ways to
address this challenge, one of which® is to assign a Gaussian prior to the inverse A~}
(presupposing its existence)

p(A) = N(A™H A7 ),

where X is a vectorization operation on matrices, Ay e RVN*N ig a prior mean and
= e R jg symmetric positive covariance matrix.? Such a prior is convenient, first
because it allows tractable inference on A~! from linear observations in the form of
matrix-vector products AS,, =Y., (which, assuming exact computations, is equivalent
to the linear observati&?m_:)A_lYm), and secondly because any Gaussian posterior
p(A7 | S, V) = N(A™LH AL E,) on A= directly implies a posterior, also Gaussian,
on the linear projection given by the solution &* = A~'b, given by

p(&* | S, Yi) = N(a*; AL, (I @ b)), (I @ b)T). (2)

Cockayne et al. advocate for instead assigning a prior directly on the solution vector
a*. This is closely related to the matrix inverse prior in the sense of Equation (2)

IThe other option discussed in the op.cit. is to use a Gaussian prior on A, infer a posterior mean on
A, then use the convenient form of this mean estimate with the matrix inversion lemma to construct a
point estimate (with only approximately Gaussian uncertainty) for A~1b = x*. This form will be used
in Section 2.1.

2Unless stated otherwise, this comment strives to use the same notation as the discussion paper.
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but, as the Discussion Paper shows, the vector prior has some practical advantages.
In particular, it is much easier to handle, avoiding tedious derivations with Kronecker-
structured covariances on matrix-valued objects. A recent working paper (Bartels et al.,
2018) studies the connections between vector- and matrix-valued priors in detail.

Nevertheless, there are also arguments for the matrix prior, and the strongest one
may be the desire for an active probabilistic solver. The method of conjugate gradients,
like virtually all numerical methods, is not an estimation rule, but an autonomous agent
following an adaptive policy to construct its search directions. If what we are aiming for
is a probabilistic method to improve upon Conjugate Gradients (CG), we can not just
sit and watch CG (i.e. the Lanczos process) at work. We want an algorithm, roughly,
of the following form:

Algorithm 1 Template for an active probabilistic linear solver.

1 procedure SOLVE(A(.), b, po) > probabilistic linear solver with prior pg
2 xo « E,py(A™)b > initial guess
3 Ty < Awo -b

. while ||r;|| > tol, i++ do > run to convergence in residual
5 di + —E,, (A )ri > compute optimization direction
6 z; +— Ad; N > observe
7 o — — dfi’;;:_l > optimal step-size
8 T; — X1 + a;d; > update estimate for @
9 T T+ oz > new gradient at x;
10 p; < INFER(D, Z) > estimate A or A7
1 end while

12 return x;

13 end procedure

This is almost exactly the textbook skeleton of conjugate gradients, except for line
10 of this algorithm, where the Lanczos correction (,, is replaced by a probabilistic
estimate. As its input, the algorithm takes a full prior probability distribution on A~
in place of single pre-conditioner (which can be thought of as a point-estimate of A™1).
My 2015 paper contains a construction of certain choices* of Gaussian priors that turn
the above algorithm exactly into CG. They can be extended to allow for the use of a
preconditioner. But, sadly, to my knowledge no tractable prior choice has been found
yet that would improve upon the behavior of preconditioned CG either in the worst
or average case, not even on an interesting subset of the symmetric positive cone that
could not also be addressed with minor variations on CG itself. The Discussion Paper
corroborates that achieving active performance is indeed hard.

3Cockayne et al. note that the matrix prior is not invariant under left-preconditioning while the
vector prior is. One may debate whether this is a bug or a feature: As the authors note in their paper,
preconditioners amount to prior information; so it might make sense that a preconditioner should
change the prior, not vanish within it.

4The short summary is that there are two separate families of priors Pa,b(A) (using the aforemen-
tioned point estimate construction for A~1) and pc’d(Afl) on the matrix and its inverse, respectively,
both indexed by two scalars a, b, c,d € Ry, which recover CG. In Section 2.1 I will use a particularly
simple choice among them.
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2 Uncertainty Quantification Can Still be Improved

Even if we abandon the hope of beating CG at its own game — point-estimating x, —
we may still want to surround CG’s estimate with a meaningful error bar. Cockayne
et al. propose a way to do so in Section 4.2 of their paper, employing the well-known
Student-t mechanism. Their construction is elegant in its analytic simplicity, but the
problem with this approach is that conjugate Gauss-inverse-Gamma hierarchical infer-
ence assumes that the observations are iid., i.e. that the search directions are chosen at
random. A well-known property of CG (implied by Propositions 9 & 10 in the Discus-
sion Paper) is that since it is a Krylov method, its search directions, loosely speaking,®
explore the eigenvectors v; and -values A; of A in roughly descending order of the values
Aiv]7g. This behavior must be taken into account when calibrating the posterior.

A simple alternative, suggested, but not properly fleshed out in the experimental
section of my 2015 paper, is to impose some structural — potentially dangerous, but
also potentially valuable — prior assumptions on A’s eigenvalue spectrum and adapt this
model based on the numbers collected by CG. A prime candidate for useful information
for this purpose is given by the projections
sT Asp,

7 3)

) = T
which are collected by CG during its run anyway (cf. line 7 in Algorithm 1 above,
the scaling difference between s; and d; cancels) and thus are available for uncertainty
quantification at no computational overhead. I will use the remainder of this comment
to construct an indicative example of how such a process could work. For space, I will
focus on calibrating a matrix-valued prior on A. Analogous formulations can be used to
calibrate Gaussian priors on A™! and thus ..

2.1 Active Uncertainty Quantification for CG

Consider a run of CG on the problem from Equation (1), yielding a collection S,,,Y;,
of vectors as defined in the Discussion Paper, satisfying AS,, = Y,, and S7Y,, =
diag;(s]y;) (since CG’s search directions are A-conjugate. And since we assume A is
symmetric positive definite (spd), so is this diagonal matrix). For notational simplicity,
I will use the standardized form Y,, := Y;, (ST Y)~1/2.

The other way (compared to the one in Section 1) to define CG outlined in Hennig
(2015) is as arising from Algorithm 1 with a zero-mean Gaussian prior of covariance
Eijke = cov(Aij, Are) = Y2(Wo isWo e + Wo.eeWii), 4)

where W is chosen such that WS = Y. An obvious but intractable choice is Wy =
A, as Cockayne et al. note, too. We could set Wy = Aj; in what might be called
an empirical Bayesian approach. This would ensure WS = Y But then the posterior
variance vanishes, because it is given by

War = Wo — WoS(STWoS) 18Ty =YYT —YYT =0. (5)

5For a more precise statement, see, e.g. Nocedal and Wright (2006, Equation 5.29).
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I believe there is a lot left to do in the middle ground between these two extremes,
the intractable and the trivial one, to estimate a prior covariance parameter Wy that is
consistent with the choice of Ap; and achieves non-zero posterior variance according to
different desiderata for calibration. In this text, let us see how far we can go if we allow
ourselves to make regularity assumptions. What I will propose below is not unrelated
to the “heuristic calibration” proposed in Appendix S4.3 of the discussion paper; but
it uses an explicit extrapolation of error to estimate average case-error rather than an
upper bound. And it remains consistent with the actions of CG, even if it, again, can
not hope to improve upon them.

We are looking for a tractable way to choose Wy so it acts like A on the span
of S (and is thus consistent with CG’s actions), and also estimate its effect on the
complement of this space using regularity assumptions about A to achieve a calibrated
error estimate. The general form for Wy (also given in Hennig (2015), and related to
the Krylov-subspace prior of Cockayne et al.) is thus

Wo=YYT+(I—5(STS)"18T)Q(I — S(STS)~1sT), (6)

with a general spd matrix €. The projection matrices surrounding {2 ensure that it only
acts on the space not covered by Ap; = YYT In absence of further prior knowledge about
A, we might choose the simple scalar form Q = wl, which simplifies Equation (6) to

Wo=YYT 4wl —S(5TS)"1ST) and

-~ 7
Wy =Wy — Wos(STWOS)STWO =Wy—-YYT = w(I — S(STS)ilsT). ( )

The scale w can then be interpreted as scaling the remaining uncertainty over the entire
null-space of S, the space not yet explored by CG. How should w be set (this task is
related to setting the covariance scale v — Section 4.2 in the Discussion Paper)?

Figure 1 shows results constructed from a run of CG on a specific matrix: The
Sarcos dataset (Vijayakumar and Schaal, 2000)° is a popular, simple test setup for
kernel regression. It was used to construct a kernel ridge regression problem Ax = b
with the symmetric positive definite matrix

A= kXX + 0_2]' c R14828><14828’ (8)

with noise level ¢ = 0.1, and where k is the isotropic radial Gaussian kernel

2 4

K2

k(a,b) = exp (— ! (a; — bi)2> for a,b € R?! (9)

with length-scale 7 = 2. On this problem, standard CG was run for M = 300 steps. The
plot shows the sequence of projections of A arising as a(m) (cf. Equation 3) which can

6See also §2.5 in Rasmussen and Williams (2006). The data can be found at http://www.
gaussianprocess.org/gpml/data/. It contains a time series of trajectories mapping 21-dimensional
inputs in R2! (positions, velocities and accelerations, respectively, of 7 joints of a robot arm) to 7
output torques. The first of these torques is typically used as the target in R for regression, as was
done here, too. The entire training set contains 44 484 input-output pairs. For the purposes of this
experiment, to allow some comparisons to analytical values, this was thinned by a factor of 1/3, to
N = 14828 locations. The data was standardized to have vanishing mean and unit covariance.


http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
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Figure 1: Scaled matrix projections collected by CG for the Sarcos problem. The plot
shows, as a function of the iteration index m, the value of the scalar projection a(m)
(black circles). These observations for m = [3,4,...,24,50,51,...,149] (vertical lines)
are used to estimate a structured regression model for a(m) (details in text, local models
as thin black lines). The regression line is shown as a broad gray curve. The plot also
indicates the two strict upper (tr(4)) and lower (02) bounds on the eigenvalues of
A, which are clearly loose (outside the plot range). The constant value of diagonal
elements, which happens to be known for this problem, is indicated by a horizontal line.
For comparison, the plots also shows the 300 largest eigenvalues of A (dotted).

be constructed from the m-th iteration of CG (cf. Algorithm 1). From Equation (8),
there are straightforward upper and lower bounds both for elements of A and for a(m):

<trA  VveRY, (10)

But both these bounds are relatively loose, as the Figure shows. We also know from the
functional form of kxx (Equation 9) that [A];; < 1+ 024;;.

Although this experimental setup is not particularly challenging for CG, it shows
the typical and much-studied empirical behaviour of this iterative solver: The collected
projections rapidly decay as the solver explores an expanding sub-space of relevant
directions. A small number of initial steps (in this example, from m = 1 to about
m = 50) reveal large projections a,,. Then comes a ‘kink’ in the plot, followed by a
relatively continuous decay over a longer time scale. It is tempting to think of the first
phase as revealing dominant ‘structure’ in A while the remainder is ‘noise’. But since
there are N — 50 > 50 such suppressed directions, their overall influence is significant.
Also note that, while the a,, exhibit a decaying trend, they do not in fact decrease
monotonically.
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Predicting General Matrix Projections

One possible use for the posterior mean Ajp; that emerges as a “side-effect” of CG
is to construct an estimator Ap;v for matrix-vector multiplications Av with arbitrary
v € RV, If this is the target application, then w should be set to provide the right scale
for such projections. A way to achieve this is to use the auxiliary data from the CG run
shown in Figure 1 and try to predict the value vTAv for v € RV outside of the span S.

Since this statement involves aspects of the matrix not yet observed, it must hinge
on either prior knowledge or prior assumptions about A. Assumptions may be wrong, of
course. In practice, we may face a trade-off between the desires for tight error estimates
and formal guarantees. We also have to balance the cost and quality of a model: If
calibrated uncertainty matters, we may be willing to invest time into building a good
model. If error estimation is an afterthought, a loose upper bound may suffice.

Figure 1 shows such a model in grey. It was fitted as a function of the form

a(m) = o + 105 F&m 4 10fsteam (11)
with real constants &i,...,&4. The constants were fitted by an ad-hoc least squares
scheme over the transformed observations log,,a(m) on the region m = [3,4,...,24]

(for &1,&) and m = [50,51,...,149] (for &3,&4, the contribution of the previous term
can be essentially ignored in this domain, simplifying the fit). It is then possible to
estimate the average value of a,, from any particular stopping point M to N, to get
one first candidate for the scale w:

N
1 .
Wprojections +— N_M § a(m) (12)
m=M

Under the posterior p(A) = N (A; Ay, Wy @W)y), the marginal over a matrix pro-
jection Av=(I®v)TAis

p(Av) = N | Av; Axrv, 3 (Wago™Wago + (Waro)(0TW0)) | (13)

=:3

Figure 2 shows results from experiments with random directions v whose elements
were drawn from shifted Gaussian, uniform and binary distributions on the Sarcos set-
up described above. The predicted scale w = 0.02 (fitted using Equation 12) is not
perfect — indeed it would be surprising if it were, given the ad-hoc nature of the fitted
model. But it captures the scale of the vector elements quite well. The more conservative
estimate w = 1, let alone the hard upper bound w = tr A, would give radically larger
scales so wide that the corresponding probability density function (pdf) would not even
be visible in the plot.

The plot also shows that the sampled matrix projections are modeled well by a
Gaussian distribution. This is not surprising: since the elements of v are drawn iid. from
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Figure 2: Predicting the projection Awv after M = 300 steps of CG on the Sarcos
problem (Figure 1). For this plot, the elements of a vector v € R'#82% were drawn
iid. from a unit-mean Gaussian distribution, a uniform distribution, and as binary values
[v]; = {—1, 1}, respectively for each panel. To simplify computations, all steps were only
performed on a subset of 4000 randomly chosen indices of Av. The plot investigates the
standardized variable z 1= 35/? (Av — Epa;5,v)(Av)), using the matrix square root
of ¥y 1= covpal,s,v)(Av), the predictive covariance of Av under the posterior. If the
probabilistic model were perfectly calibrated, the elements of this vector should be
distributed like independent standard Gaussian random variables (solid black pdf for
reference). The plot shows three independent realizations of v, the empirical distribution
of the actual elements z; (histogram), and an empirical fit (dashed) of a Gaussian pdf to
the elements of z. These means and standard deviations of such empirical distributions
(estimated from 10 realisations of v, not shown) are printed in each plot. This figure uses
the value for the scale w fitted as described in Section 2.1, which gives wprojections(M =
300) = 0.02 (in other words, for the naive setting w = 1, the shown solid pdf would be
about 50 times wider).

a distribution p,, hence the Central Limit Theorem (CLT) applies, and the elements

[Av]; = [Alijv; (14)

J

are approximately Gaussian distributed with mean and variance

Ep, ([Av]:) = Ep, ([v];) D [Alij, and  vary, ([Av]) = vary, ([v];) D [l (1)

J J

While this Gaussian shape of the plot is not surprising, it is reassuring that the solver’s
Gaussian posterior on Av manages to capture the two moments of this distribution
rather well, even though it has no access to p,. Constructed in this way from a hand-
crafted regression model, the variance ¥, offers a simple and computationally cheap,
way to infer the right scale for the aspects of A not captured by the CG-mean esti-
mate.
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Figure 3: Contraction of the posterior measure on A during a CG run on the Sarcos
problem (cf. Figure 1). Top row: Posterior mean Aj; on a randomly sampled subset of
10 index pairs, after M = 1, 30, 250 steps of CG (the full 14 828 x 14 828 matrix is too big
to print). The target sub-matrix of A is shown for comparison on the right. Middle and
bottom row: Absolute estimation error |A — Ajy|, scaled element-wise by the posterior
standard deviation. The middle row shows the choice for the scaling w = 1 (gray-scale
from 0 to 1), the bottom row for wprejection & 0.02, the value used for Figure 2 (gray-
scale from 0 to 3). ‘Miss-scaled’ entries, were the scaled error is outside of the gray-scale
range, are marked with a cross-hatch pattern.

Predicting Individual Matrix Elements

If the CLT helped in the above section, the estimation task becomes harder when we
consider more explicit, deterministic aspects of the latent matrix A, such as individual
matrix elements [A];;. The posterior marginal distribution on these scalars under the
model (4), conditioned on CG’s observations, is

(41 1Y.8) = (14l w5 (WlalWarls + V) ). (16)

An argument in Hennig (2015, Equations (3.2)—(3.4)) shows that there is no scalar w (in
fact, not even a full spd matrix Wy) such that the posterior variance is a tight prediction
for the approximation error on all matrix elements. So we are forced to choose between
a worst-case, hard error bound on all matrix elements, and a reasonably scaled error
estimate that can be too small for some elements.

Figure 3 shows the progression of the posterior distribution for an increasing number
of CG steps on the Sarcos task (the Figure only shows a small sub-set of the matrix
elements for visibility). The top row shows the posterior mean converging towards the
true matrix A. The bottom row shows the element-wise posterior marginal variance,”

7Under the joint posterior, these matrix elements are correlated. So one should not try to build a
mental histogram of the numbers in the plotted matrix and ask about their relative frequencies.
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for the two different choices of the scale parameter w: The top row shows the result of a
choice for which the posterior standard-deviation becomes a hard upper bound on the
square estimation error,

(WalalWol + [Wal%) > [A— A} (1)

For symmetric positive definite matrices (which obey [A]7; < [A];i[A];5), a simple way
to ensure this is to set w? = max;[A]? > max;;[A];; (which can be found in O(N)).
For the example of the Sarcos matrix this bound is 1.01. The Figure confirms that the
variance provides an upper bound, but also shows this bound to be rather loose for
off-diagonal elements (i.e. by far the majority of matrix elements!). The plots’ bottom
row shows the scaling achieved by using the estimated value wprojections = 0.02 already
used in Figure 2. This is not a hard bound, but the plot shows this scaled estimate to
provide a better average error estimate for off-diagonal elements (values of value ~ 1,
note differing color scale in each row). On the diagonal, the error estimates can be far
off, though. Some of the outliers (marked by a cross-hatch pattern) can have ratios of
true to estimated error beyond 10.

3 Summary

The work of Jon Cockayne and his colleagues brings us closer to a theory of probabilistic
iterative liner solvers. But there remains a big gap between what one would like to have
from such methods and what they are currently able to do. In this comment, I have
offered an optimistic case-study: For a single, rather simple least-squares problem, it is
possible to construct a heuristic algorithm of linear cost (O(NV), for estimations involving
a symmetric positive definite matrix in RV*) that yields relatively well-calibrated,
average-case error estimates (I have focused on elements of the matrix A, but the same
methodology also allows estimating A~ and ). These experiments are anecdotal at
best; they come without theory and generalization. But I hope that they spark an
interest in others to construct exactly these formal foundations. After all, linear solvers
are the bedrock of computation. It is hard to find an area with more application leverage.

Ultimately, though, the ambition should be to build active probabilistic linear solvers,
that use strong prior information to improve upon classic (pre-conditioned) general
solvers. Such algorithms remain elusive, even though generative prior information is of-
ten available in linear problems. The key challenge here is the formulation of expressive
but tractable families of priors.
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Invited Discussion

Xudong Li* and Ethan X. Fang?,

We congratulate Cockayne and his colleagues for this nice paper. We find that it is very
interesting to interpret a classical numerical method — the conjugate gradient (CG), as
a probabilistic method from the Bayesian perspective. This approach provides natural
uncertainty quantification for the error of the solution, which is important in practice.

Purely from the numerical perspective, we provide a re-interpretation of the proposed
Bayesian CG method. In particular, we point out that the proposed method is equivalent
to applying the classical CG to the following equivalent but reformulated linear system

T T\—1
M i
This is a well-known trick in numerical analysis/optimization that when A is ill-con-
ditioned, we may use this approach to accelerate the computation by carefully choosing
a Yo. Indeed, the classical conjugate direction method (including CG as a special case),
when applied for solving (1), takes the following updating rule (e.g., equation (5.2) in
Nocedal and Wright (2006)) with respect to :

~ ~ T ~
Ty = Tim—1 + SmSm(b — Mxm_l),

where search directions s;,4 = 1,...,m, are assumed to be M-orthonormal (i.e., A¥gA”-
orthonormal). Let z,, = ($9AT)Z,, for all m > 1. We have that

T = T—1 + (ZQAT)SmS%(b — AZQATfm_l) = Tp_1 + (EOAT)smsZI(b — Axpm_1),

which is exactly the updating formula in Proposition 6. Moreover, it is not difficult to
see that ignoring the Yz and © parts, Algorithm 1 in the paper can be obtained via
applying the standard form of classical CG (e.g., Algorithm 5.2 in Nocedal and Wright
(2006)) for solving problem (1). Meanwhile, it seems that line 10 in Algorithm 1 should
be 7, = rm—1 — o ASp,.

Now from the above equivalence, we can simplify the proof of convergence results
(Propositions 9 and 10) for the Bayesian CG without much difficulty. As a simple
illustration, in the subsequent analysis, we show how Proposition 9 can be obtained by
using the above equivalence property. Firstly, we see from the classical analysis of the
CG for (1) that
Ty = arg min Iz —z*||ar,

2€T0+Km—1(M,ro)
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where 7 = b— M7y = b— Ax® and 7* = M1 = (LoAT) 1A = (BpAT) Lz
Then, it holds that

(oA"Y 2, = arg min [(Z0AT) Mz — o) || agyar.  (2)
(B0 AT)~12e(BoAT) " lag+Kpm—1(M,ro)
Since
Ky 1(M,ro) = span(rg, Mro, M?rg,..., M™ 1),
and

YoATMF = (20 AT A8 AT, VE=1,...,m—1,
we have that

EQATKm_l(M, 7‘0) = span(EoATro, EoATMT‘(), E()14T]\4'27"()7 ey EoATMmilTo)

= span(ZoATro, (EoATA)(ZQATT()), (EQATA)Q(EQAT’I“()),
ceey (ZQATA)mil(EoATTo))

= Kp1(S0AT A, S0 A ry).
Thus, we have that the constraint in (2) is equivalent to
x € xo+ XA Ky (M, 1) = g + K1 (S0 AT A, X0 AT 7).
By simple calculations, we further note that
1(20AT) " (& = &) Pagy ar = ((B0AT) " (& — a*), Ao AT (S6A7) " (a — ")
= ((S0AT) Nz — 27), Az — 2))

= (S5 (z — "), — ")

2

_ ok
- ||$ z ||EO—1'

Therefore, (2) implies that

Ty = arg min |z — 2| -1,
€x0+Km—1(Z0ATAToATrg) ©
which is exactly Proposition 9 in the paper. Proposition 10 can also be obtained in
a similar way by using the equivalent property and the classical results of the rate of
convergence for CG.

In addition to providing the above re-interpretation of the proposed Bayesian CG,
another important aspect to consider is the computational feasibility related to the
choice of ¥j. In certain case, the computational costs of the matrix/vector multipli-
cations associated with Yy can be much more expensive than those associated with A
or AT. For example, the matrix A could be sparse, but the selected prior variance-
covariance Yo could be dense. Therefore, the choice of ¥y should also be factored in
the evaluation of the computational complexity and the algorithms and the claim that
“the cost of BayesCG is a constant factor ...are required” may need to be properly
reconsidered.
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Contributed Discussion

F.-X. Briol*T, F. A. DiazDelaO?*, and P. O. Hristov?

We would like to congratulate the authors of Cockayne et al. (2019) on their insightful
paper, and welcome this publication which we firmly believe will become a fundamental
contribution to the growing field of probabilistic numerical methods and in particular
the sub-field of Bayesian numerical methods. In this short piece, we first initiate a
discussion on the choice of priors for solving linear systems, then propose an extension
of the Bayesian conjugate gradient (BayesCG) algorithm for solving several related
linear systems simultaneously.

1 Prior specification for Bayesian inference of linear
systems

In the Bayesian paradigm, once a particular observation model is agreed upon, most
of the work goes into selection of the prior. In the case of a linear system Au = b
and in particularly for conjugate gradient methods, our observation model consists of
projections of b observed without noise. The authors of Cockayne et al. (2019) place
a Gaussian prior on wu, which provides advantages to placing a prior on the inverse of
the matrix A (Hennig, 2015), including invariance to preconditioners. We agree that
this is a significant advantage, but also think one could go much further in elicit-
ing priors for solving linear systems, as is done for other Bayesian numerical meth-
ods.

In Bayesian quadrature, the task is to estimate II[f] = [, f(z)7(z)dz, given evalu-
ations of the integrand f at some locations on the domain X'. Clearly, the quantity of
interest is II[f]; yet, it is common to put a prior on f instead, which then induces a prior
on II[f]. For differential equations, the problem is to find the solution u of a system of
equations Au(z) = g(z) (where A is some known integro-differential operator), given
evaluations of g; and existing Bayesian methods also propose to specify a prior on g in-
stead of the quantity of interest u. In both cases, the main motivation for placing priors
on latent quantities is that this is more natural, or convenient, from a modelling point
of view. At the same time, it is often possible to inspect the mathematical expression
for the latent quantity, or we may at least have some additional information about it,
such as smoothness or periodicity information. In such cases, encoding this information
in the prior leads to algorithms with fast convergence rates and tighter credible inter-
vals, as demonstrated for these Bayesian integration and differential equation methods
(Cockayne et al., 2016; Briol et al., 2019). We believe that the same is likely to be true
for the case of linear systems.
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Indeed, in many applications, it is possible to know properties of A beforehand,
such as information on its spectrum, conditioning or sparsity. We argue that it is more
natural to encode this knowledge in a prior, and it may in fact lead to a better cal-
ibration of uncertainty. To illustrate this, consider some of the systems of differential
equations used in engineering to describe fluid flow and structural response to load-
ing, which are usually discretised into a linear system. In computational structural
mechanics the operator A can be used to describe the stiffness of an assembled finite
element model (FEM). Similarly, in computational fluid dynamics (CFD), A can rep-
resent mesh coefficient matrices. Since both of these matrices describe physical prop-
erties of the object under study, their sparsity patterns will be governed largely by
the object’s geometry. It is therefore common that analysts have some prior knowl-
edge about A, based on engineering insight and experience in solving similar sys-
tems.

Figure 1 provides examples of the form of A (i.e. discretisations of A) for sys-
tems taking part in a typical coupled analysis of a jet engine compressor loading.
The sparsity pattern shown in Figure 1(a) encodes the coefficients of an unstructured
mesh for a two dimensional airfoil in a CFD simulation (Davis and Hu, 2011). The
matrix in Figure 1(b) depicts the FEM stiffness matrix of the compressor disc and
blades. Both geometries were meshed with two-dimensional triangular elements. In this
context, the load on the compressor stage depends on the rotational speed and the
force produced by its blades, which in turn depends on the rotational speed of the
compressor. Employing similar chains of coupled models is not uncommon in design
and analysis of complex engineering systems, and can further complicate the choice
of a prior model. We believe that eliciting such priors for coupled systems is a cru-
cial question, very much aligned with one of the ambitions of probabilistic numer-
ics: the propagation of uncertainty through pipelines of computation (Hennig et al.,
2015).
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Figure 1: Stiffness matrices with different degrees of sparsity and non-zero patterns. The
systems described by these matrices are: (a) a laminar airfoil; (b) jet engine compressor
fan.
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2 A generalisation to multiple linear systems

BayesCG also provides an excellent opportunity to develop novel methodology for solv-
ing linear solvers. Suppose we have several linear systems which need to be solved either
simultaneously or sequentially, such that for j € {1,...,J}, we want to solve':

* __ .
ijj = bj,

where A; € R¥*4 T; € R? and b; € R? for some d € N~g. As discussed in de Roos and
Hennig (2017), this is a common problem in statistics and machine learning. Take for
example the issue of model selection for Gaussian processes: this includes calculating the
log-marginal likelihood for several choices of covariance functions or covariance function
hyperparameters, each requiring the solution of a linear system whose solutions will be
closely related (atleast for similar choices of parameters). Similarly, for Bayesian inverse
problems, the forward problem needs to be solved for several values of the parameters
(perhaps over the path of some Markov chain Monte Carlo realisation), which will boil
down to solving several closely related linear systems.

As principled Bayesians, it would be natural to construct a joint estimator on the
solutions of these J linear systems, rather than estimating the solutions independently.
This is particularly the case if we know anything about how the solutions of these lin-
ear systems relate to one another, in which case information available through search
directions in the j** system may be informative about the solution z, for j # j'. This
idea is closely related to transfer learning, which was recently advocated for problems
in numerical analysis by Xi et al. (2018) (who focused on numerical integration). Al-
though several methods exist to transfer information from one task to the other, such
as recycled Krylov spaces (de Roos and Hennig, 2017), there are no existing Bayesian
approach.

Interestingly, we show below that the BayesCG algorithm of Cockayne et al. (2019)
may be generalised straightforwardly to this setting. All expressions below are given
so as to mirror the notation of the original algorithm. The main point to make is that
all of these systems can be seen as a single, larger, linear system of the form Ax* = b
where z = ((z3)7,..., (@) )T €e R¥ b= (b],...;b])" € R¥ and A € R4 >4/ is of
the form

Ay
A = BlockDiag [Ay,..., A ] =
Ay

We define the data obtained by y; = s; Az* = s/ b for i € {1,...,m}. We will define
Sm € R¥X™ t6 be the matrix consisting of columns given by m search directions.
The data can therefore be expressed in vector form as y,, = S, b. Taking a Bayesian
approach, we select a prior of the form N (z,zo, %), for some zy € R4 and X €
R?/xdJ - Conditioning on the data v,,, we obtain a posterior of the form N(@;zm, Xm)

LFor simplicity of notation, we assume all systems are of the same size, but this could be generalised
straightforwardly.
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with 2, = 20+ 04" SpAL S r0, B = o —Z0A T SpALLS,, ASo where 1o = b— Az
and A, = EJLAEOAT&R. The search directions which allow us to avoid the matrix
inverse are AYgAT-orthogonal, and provide what we call the multi-system BayesCG
algorithm. Let 1y, = b — Az, 51 = 170 and 8y = 55 /||5m || ax, a7 for all m, then for
m > 1, assuming that 3,, # 0 = (0,...,0), these directions are:

Sm = TIm—-1— <§m—1arm—1>§2057§m—1~

At this point, most of the equations in the two paragraph above look identical to those
in the paper, but include larger vectors and matrices. We now make several remarks:

1. The search directions obtained through the multi-system BayesCG algorithm lead
to some dependence across linear systems. That is, the estimator for z7 for some
fixed j will be impacted by A, b, for some j' # j. This dependence will come
from the matrix X, the covariance matrix of our prior. This leads to a larger
computational cost, due to the fact that we are now having to perform matrix-
vector products of matrices of size dJ x dJ, but this may be acceptable if it

provides improved accuracy and uncertainty quantification.

2. Several special cases of prior matrix X, inspired by vector-valued reproducing
kernel Hilbert spaces or multi-output Gaussian processes, can be more convenient
to use in practice due to their intepretability. One example are separable covariance
functions, which were previously explored by Xi et al. (2018) for transfer learning
in numerical integration. They take the form ¥y = B ® ¥y where ® denotes the
Kronecker product, B € R7*/ and ¥, € R4*4, In this case, the matrix B can be
seen as a covariance matrix across tasks (i.e. across linear systems), whilst X is
the covariance matrix which would otherwise be used for a single linear system. In
particular, this approach would allow us to combine the algorithm with alternative
transfer learning approaches, such as the Krylov subspace recycling discussed in
de Roos and Hennig (2017) which can be used to select .

3. In the case where X, has block-diagonal form BlockDiag|[%g1,..., 30, s] for
Y0.1,- -+, 20,5 € R4 the multi-system Bayesian conjugate gradient method re-
duces to J separate instances of the BayesCG; it is therefore a strict generalisation.

4. The requirement that search directions are A¥yA "-orthogonal forces us to solve
the J linear systems simultaneously, obtaining one observation from each system
at a given iteration of the multi-system BayesCG algorithm. This prevents us from
considering the sequential case where we first solve Ay, then solve Ay and so on.
However, we envisage that alternative algorithms could be developed for this case,
and could help provide informative priors in a sequential manner.
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Contributed Discussion
T. J. Sullivan®f

1 Overview

In “A Bayesian conjugate gradient method”, Cockayne, Oates, Ipsen, and Girolami
add to the recent body of work that provides probabilistic/inferential perspectives on
deterministic numerical tasks and algorithms. In the present work, the authors consider
a conjugate gradient (CG) method for the solution of a finite-dimensional linear system
Az* = b for * € R, given an assuredly invertible symmetric matrix A € R4¥¢ and
b € RY, with d € N.

The authors derive and test an algorithm, BayesCG, that returns a sequence of
normal distributions N (x,,, X,) for m = 0,...,d, starting from a prior distribution
N (zg, X0). This sequence of normal distributions is defined using a recursive relationship
similar to that defining the classical CG method, and indeed the BayesCG mean .,
coincides with the output of CG upon choosing ¥y := A~! — this choice is closely
related to what the authors call the “natural prior covariance”, ¥y := (AT A)~!. The
distribution N (@, X,,) is intended to be an expression of posterior belief about the
true solution z* to the linear system under the prior belief N (xg,Yq) given the first
m BayesCG search directions si, ..., S,. Like CG, BayesCG terminates in at most d
steps, at which point its mean x; is the exact solution «* and it expresses complete
confidence in this belief by having ¥4 = 0. The convergence and frequentist coverage
properties of the algorithm are investigated in a series of numerical experiments.

The field of probabilistic perspectives on numerical tasks has been enjoying a resur-
gence of interest in the last few years; see e.g. Oates and Sullivan (2019) for a recent
survey of both historical and newer work. The authors’ contribution is a welcome ad-
dition to the canon, showing as it does how classical methods (in this case CG; cf. the
treatment of Runge-Kutta methods for ordinary differential equations by Schober et al.
(2014)) can be seen as point estimators of particular instances of inferential procedures.
It is particularly encouraging to see contributions coming from authors with both sta-
tistical and numerical-analytical expertise, and the possibilities for generalisation and
further work are most interesting.

2 Questions and directions for generalisation

The article raises a number of natural questions and directions for generalisation and
further investigation, which Cockayne et al. might use their rejoinder to address.

*Institute of Mathematics, Freie Universitdt Berlin, Arnimallee 6, 14195 Berlin, Germany,
t.j.sullivan@fu-berlin.de
tZuse Institute Berlin, Takustrafie 7, 14195 Berlin, Germany, sullivan@zib.de
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Symmetry and generalisations It is interesting that, for the most part, BayesCG
does not require that A be symmetric, and works instead with A¥XgAT. This prompts
a question for the authors to consider in their rejoinder: How does BayesCG behave
in the case that A € R4*? is square but not invertible? Could one even show that the
BayesCG posterior concentrates, within at most d iterations, to a distribution centred
at the minimum-norm solution (in some norm on R?) of the linear system? One mo-
tivation for this question is that, if such a result could be established, then BayesCG
could likely be applied to rectangular A € R°*? and produce a sequence of normally-
distributed approximate solutions to the minimum-norm least-squares problem, i.e. a
probabilistically-motivated theory of Moore-Penrose pseudo-inverses. (Recall that the
Moore-Penrose pseudo-inverse At € R?*¢ can be characterised as the solution operator
for the minimum-norm least squares problem, i.e.,

A'b = argmin {[|z||g«|z € argmin {|[ Az’ — b||p:|z’ € R"}}

for the usual norms on R¢ and R?.)

The authors could also comment on whether they expect BayesCG to generalise
easily to infinite-dimensional Hilbert spaces, analogously to CG (Fortuna, 1977, 1979;
Mélek and Strakos, 2015), since experience has shown that analysis of infinite-dimension-
al statistical algorithms can yield powerful dimension-independent algorithms for the
finite-dimensional setting (Cotter et al., 2013; Chen et al., 2018). A more esoteric di-
rection for generalisation would be to consider fields other than R. The generalisation
of BayesCG to C would appear to be straightforward via a complex normal prior, but
how about fields of finite characteristic?

Conditioning relations Could the authors use their rejoinder to provide some addi-
tional clarity about the relationship of BayesCG to exact conditioning of the prior nor-
mal distribution A (o, ¥g), and in particular whether BayesCG is exactly replicating
the ideal conditioning step, approximating it, or doing something else entirely?

To make this question more precise, fix a weighted inner product on R?, e.g. the
Euclidean, A-weighted, Yo-weighted, or AXyA "-weighted inner product. With respect
to this inner product, let P, be the (self-adjoint) orthogonal projection onto the Krylov
space K,,, and P := [ — P, the (self-adjoint) orthogonal projection onto its orthogonal
complement. The product measure

Hm = N(Pmm*a O) ®N(P7Jr;m07 PWJrZEOPﬂr;)

on K,, ® I} is also a normal distribution on R? that expresses complete confidence
about the true solution to the linear system in the directions of the Krylov subspace
and reverts to the prior in the complementary directions; ug is the prior, and ug is a
Dirac on the truth. The obvious question is, for some choice of weighted inner product,
does BayesCG basically output p,,, but in a clever way? Or is the output of BayesCG
something else?

Uncertainty quantification: cost, quality, and terms of reference Cockayne et al.
point out that the computational cost of BayesCG is a small multiple (a factor of three)
of the cost of CG, and this would indeed be a moderate price to pay for high-quality
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uncertainty quantification (UQ). However, based on the results presented in the paper,
the UQ appears to be quite poorly calibrated. One could certainly try to overcome
this shortcoming by improving the UQ. However, an alternative approach would be to
choose a prior covariance structure X, that aggressively sparsifies and hence accelerates
the linear-algebraic operations that BayesCG performs (particularly lines 7, 9, and 11
of Algorithm 1), while preserving the relatively poor UQ. Does this appear practical, in
their view?

In fact, the whole question of “the UQ being well calibrated” is somewhat ill defined.
Some might argue that, since * is deterministic, there is no scope for uncertainty in
this setting. However, it certainly makes sense to ask — as the authors do in Section 6.1 —
whether, when the problem setup is randomised, the frequentist coverage of BayesCG
lines up with that implied by the randomisation of the problem. The statistic Z that
Cockayne et al. introduce is intersting, and already captures several scenarios in which
the UQ is well calibrated and several in which it is not; I strongly encourage Cockayne
et al. to address in their rejoinder the Bayesian accuracy of BayesCG, e.g., to exhaus-
tively sample the true posterior on * given y4,...,y,, and see whether this empirical
distribution is well approximated by the BayesCG distribution N (@, X.,)-

As a related minor question, can BayesCG be seen as an (approximate Gaussian)
filtering scheme for the given prior N'(xg, Xo) and the filtration associated to the data
stream Yy, Yq, ... 7

Precision formulation As formulated, BayesCG expresses a Gaussian belief about the
solution of the linear system in terms of mean and covariance; Gaussian measures can
also be expressed in terms of their mean and precision. Do the authors have a sense of
whether the BayesCG algorithm be formulated as a sequence of precision updates, or
does the singularity of the covariance in the Krylov directions essentially forbid this?

One motivation for seeking a precision formulation would be to render the “natural
prior” Yo := (ATA)™! of Section 4.1 more tractable, since this prior has an easily-
accessible precision while accessing its covariance involves solving the original linear
problem.

As the authors note, their “natural prior” is closely related to one introduced by
Owhadi (2015) and applied in Cockayne et al. (2017). It seems that working with images
of Gaussian white noise, such as this “natural prior”, is presently producing considerable
analytical and computational strides forward (Owhadi, 2017; Chen et al., 2018), and so
this seems to be a topic worth further attention in the statistical community as a whole.

3 Minor comments

Rank and trace estimates Proposition 3, which states that tr(EmEo_l) =d—-m,
seems to miss the point slightly. It would be good to have a companion results to the
effect that rankY,, = d — m, and a more quantitative result for the trace such as
trX,, < Cg,(d —m) for some constant Cx,, > 0 depending only on X.
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Posterior and Krylov spaces It seems natural to ask whether the posterior nullspace
ker X,,, coincides with the Krylov space KC,,,. Put another way, is the posterior column
space the same as the orthogonal complement of the Krylov space, in the Euclidean or
A-weighted inner product?

Square roots Is the square root M'/? introduced just before Proposition 5 required
to be unique? Does it even matter whether a (unique) symmetric positive semidefinite
square root or a Cholesky factor is chosen? This is related to the above discussion of
symmetry and generalisations.

Interpretation of termination criteria In Section 5, the authors refer to “probabilistic
termination criteria”. As a matter of semantics, the termination criterion that they
propose is in fact deterministic, albeit based on a probabilistic interpretation of the
algorithmic quantities.
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Daniela Calvetti*

The authors address the task of solving large linear systems in a Bayesian framework,
with particular emphasis on the conjugate gradient method and some generalizations.
Given the growing interest in using the Bayesian framework to solve large scale lin-
ear, or linearized, inverse problems, where iterative solvers are the methods of choice,
the authors’ effort to bridge numerical linear algebra and Bayesian inference is very
timely contribution. Systematic efforts to tear down the cultural wall between these
two communities have been going on for at least a decade and a half. The desire to
provide a friendly introduction to Bayesian scientific computing that would bring the
two communities closer was the main reason behind Calvetti and Somersalo (2007), but
unfortunately many of the contributions at the interface of these research areas seem to
be falling still between the cracks. This is confirmed by the paper’s paucity of references
to the literature on Bayesian interpretation of preconditioners and on the construction
of preconditioners from a Bayesian viewpoint, as well as to other numerical contribu-
tions similar to those being proposed. In the following, I will provide a brief summary of
some results quite close to those in the paper that have been published in the literature.

1 Preconditioners from a Bayesian Perspective

Over the last 15 years, the analysis of statistically inspired and motivated precondi-
tioners has led to families of computationally efficient algorithms for posterior modes,
even when the dimensionality of the data and the unknown differ, thus breaking away
from the need to have a square forward matrix. Below is an overview of literature on
Bayesian iterative solvers, including but not limited to preconditioners, that fills the gap
in the history of the topic, so as to make it easier to assess and compare the different
approaches to selecting preconditioners.

In numerical analysis, linear preconditioners are usually selected so as to reduce the
number of iterations needed for approximating accurately the solution, thus targeting
transformations that cluster the spectrum and make the linear operator close to the
identity. The genesis of preconditioners for inverse problems followed a different route.
Once the similarities between Tikhonov regularized solution and the solution computed
with an iterative linear solver, e.g., the Conjugate Gradient for Least Squares (CGLS)
or the Generalized Minimum RESidual (GMRES) methods, equipped with a suitable
stopping rule were observed, see, e.g., Calvetti and Somersalo (2007), precondition-
ers coming from Tikhonov regularization operators started to gain popularity. As the
Bayesian framework for the solution of inverse problems started gaining acceptance in
the inverse problems community, and with it came the need to design efficient numerical

*Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve Univer-
sity, Cleveland, OH, USA, dxc57Qcase.edu
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methods for the solution of problems that did not admit analytic solutions, precondi-
tioners started to be looked at in a Bayesian way. The contributions of Calvetti and
Somersalo (2005a); Calvetti (2007) are to connect left and, especially, right precondi-
tioners to the covariance matrices of the noise and prior, in the simplified framework
where the noise is additive Gaussian and the prior is Gaussian. In the general Bayesian
setting, the prior expresses what is believed about the unknown before taking the data
into consideration. Therefore, setting the prior should be independent on how data are
collected, or if data are collected at all. This is not the case in the current paper which,
on the contrary, proposes to set the covariance of the Gaussian prior starting from a
classical preconditioner of the forward linear operator. If the spoon is the proof of the
pudding, the draws are the proof of the prior: I would imagine that draws from a prior
built on a classical preconditioner will be more representative of the characteristics of
the forward model than of the expected traits of the solution. Over the course of the last
decade and a half, preconditioners have been used to express many properties believed
to be had by the solutions, ranging from its behavior at the boundary of the domain
(Calvetti and Somersalo, 2005b), to its sparsity (Calvetti and Somersalo, 2008).

2 Statistically Inspired Stopping Rules and Statistically
Interpreted Error

Stopping rules are essential when using preconditioned Krylov subspace iterative meth-
ods to solve linear inverse problems. Classical stopping rules are based on the discrep-
ancy principle, Generalized Cross Validation (GCV), and L-curve. The stopping rule for
CGLS proposed in Calvetti et al. (2017), which is statistically motivated, seems rather
close to the criterion advocated in the paper. It would be very interesting to see whether
and how the two are related.

3 EIT and Preconditioned CGLS

Bayes-Krylov preconditioned iterative methods for posterior mode computations have
been used in different contexts, including in applications to electrical impedance tomog-
raphy (EIT). EIT is one of the most popular examples of PDE based inverse problems on
which different algorithms are tested, and there is a rich literature on Bayesian methods
from decades ago, see, e.g. Nicholls and Fox (1997, 1998); Kolehmainen et al. (1997);
Somersalo et al. (1997) for some of the earliest reports on Bayesian EIT solutions, with
more systematic summaries in Kaipio et al. (2000); Kaipio and Somersalo (2006). The
claim made by the authors that (Dunlop and Stuart, 2015) is where the Bayesian ap-
proach has been “formalized”, gives a somewhat flawed view of the research in this field,
in particular since the example in the present paper considers EIT in the discretized
outset with a FEM based forward map. In that context a reference to inverse problems
in the Hilbert space setting does not add anything to what was already thoroughly un-
derstood in the previous works on EIT and Bayesian analysis. What seems to be more
relevant on the other hand is the use of priorconditioned CGLS in connection with the
EIT problem in Calvetti et al. (2012).
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Contributed Discussion

Simone Rossi*, Cristian Rusuf, Lorenzo A. Rosasco®, and Maurizio Filippone*

We would like to congratulate with the Authors for this interesting development of
probabilistic numerical methods applied to the ubiquitous problem of solving linear
systems. We structured this discussion around two main points, namely the use of
Bayesian Conjugate Gradient (BcG) for Gaussian processes (GPs), and the possibility
to accelerate the solution of linear systems thanks to parallelization of BCG.

Bayesian Conjugate Gradient for Gaussian Processes

Consider a regression task where X and y denote the set of input points and the set of
targets, respectively, and assume a GP with an RBF kernel to model the mapping between
X and y (Rasmussen and Williams, 2006). We are going to assume that GP hyper-
parameters are optimized through standard marginal likelihood optimization, although
it is possible to reformulate the problem of optimizing GP hyper-parameters in terms of
linear systems (Filippone and Engler, 2015) where BCG could be applied. We are going
to focus on the predictive distribution and the additional uncertainty stemming from the
use of BCG. The GP predictive distribution is p(y]X,y, X, a) = N (K yo,Xy) , where
« is the solution of the linear system (K + A)a = y. As BCG provides a distribution
over the solutions for a (i.e. @ ~ N (am, X)), we can integrate out p(a) obtaining

- - T
(¥ X,y, X) :N(Kanm’ES'JFKXXZmK)Zx) )

The topic of preconditioning for solving linear systems involving kernel matrices is an
active area of research (Cutajar et al., 2016; Rudi et al., 2017), so we can leverage this
in BCG given the connections established in the paper between ¥y and preconditioners.

We report the test MNLL and the test RMSE (20% of held-out data) as a function of
BCG iterations for two datasets. Figure 1 shows that better preconditioners yield faster
convergence. Figure 2 shows the error metrics as a function of time for GPs using BCG
and sparse Gps (Matthews et al., 2017). There are configurations where BCG allows to
reach better performance for a given computational budget, so this is an interesting
possible application of this method.

Bayesian Model Averaging for multiple BCG solutions

One of the advantages that we see in the Bayesian formulation of conjugate gradient,
is the possibility to speedup convergence through parallelization. To test this, we solve
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Figure 1: Comparison test MNLL and test RMSE for different priors (e.g. preconditioners)
of BCG on two regression datasets. As preconditioners we consider Nystrom (Williams
and Seeger, 2000) with y/n (®) and 44/n (®) inducing points, PITC (Candela and Ras-
mussen, 2005) (@), and RANDOM svD (Halko et al., 2011) (®). Experiment repeated 25
times.

multiple linear systems with BCG using different priors (possibly concurrently) and
aggregate the solutions by means of Bayesian model averaging. Formally, let Egi) denote
one of such multiple priors (corresponding to preconditioners) and let p(x,, |E(()i)) be the
solution at iteration m corresponding to the choice of the ith prior. Assuming a prior on
the set of all E(()i), the marginalization yields the mixture p(x,) = >, p(xm\Eéi))p(Egi))
We project this back to a Gaussian distribution on p(x,,) by moment matching. We
assume a uniform prior for p(Egi)), but we could think of relaxing this by setting a prior
proportional to the complexity of (or time spent in) inverting the preconditioner.

In Figure 1, the line (®) shows this result. Using the same setup as before, we
infer the posterior distribution of a GP using a Bayesian averaging of 16 independent
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Figure 2: Analysis of the Pareto front (- -) of inference time vs error metric for full Gp
with BCG (® — Nystrom preconditioner is assumed to be precomputed) and sparse GP
(®). Points corresponds to different amount of BCG iterations and number of inducing
points (with their kernel parameters optimized). Experiment repeated 500 times.
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solutions with /n random centers for the Nystrom preconditioner (the comparison is
with @). This suggests that it is possible to benefit from combining multiple intermediate
solutions of BCG, and this is rather intuitive in the context of Bayesian model averaging.
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Rejoinder

Jon Cockayne*, Chris J. Oates', Ilse C.F. Ipsent, and Mark Girolami®

The authors are grateful to each of the discussants of our paper, “A Bayesian Conjugate
Gradient Method”. These provide valuable insight beyond our areas of expertise and
have served to highlight aspects of the method that were not discussed in detail in the
original manuscript. Below, please find our author responses to the points that have
been raised. These are structured as follows: In Section 1 we address points relating to
theoretical analysis of the method and in Section 2 the computational cost of the method
is discussed. Then, in Section 3 the prior construction is discussed and implications for
uncertainty quantification are explored in Section 4. Some extensions of the method are
raised in Section 5 and other related matters are contained in Section 6. Finally, we
summarise the rejoinder in Section 7.

1 Theoretical Results

Several discussants commented on the theoretical results presented in Cockayne et al.
(2019a). In particular, the invited discussion from Xudong Li and Ethan Fang demon-
strated an alternative method for deriving many of the theoretical results therein, while
the contributed discussion from Tim Sullivan suggested several other theoretical devel-
opments that would be of interest. Relatedly, the contributed discussion from Daniela
Calvetti commented on the stopping criteria we described in Section 5 of Cockayne et al.
(2019a).

1.1 Properties of BayesCG

Li and Fang noted in their discussion that the posterior mean from the Bayesian conju-
gate gradient method (BayesCGQG) is equivalent to the iterate produced by applying the
conjugate gradient method (CG) to the reformulated linear system MZ* = b, where
M = AYA" and * = (SgAT)1z* (i.e. by using $9A" as a right-preconditioner).
This perspective dramatically simplifies the proofs that appeared in our paper, in that
we may appeal to classical results for preconditioned CG in order to prove the results
concerning convergence of @, and its optimality properties (Propositions 9 and 10 from
Cockayne et al. (2019a)). We would like to thank Li and Fang for pointing out this ap-
proach; it is always illuminating to learn about alternative representations and proofs
of a problem, and it would have significantly simplified the writing of the paper had we
observed this ourselves.
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Sullivan made several interesting comments on the theoretical results reported.
Specifically, he asked:

1. About further properties of ¥,,, such as its rank and bounds for its trace.

2. Whether the posterior distribution from BayesCG can be obtained by an orthog-
onal projection of the prior.

3. The relationship between the nullspace of ¥, and the Krylov space from Propo-
sition 9.

To directly address these questions, we include four additional theoretical results
below, proofs of which can be found in Appendix A:

Proposition 1 (Rank of X,,). Suppose that s1,..., 8y, are linearly independent and
recall from Cockayne et al. (2019a) that X¢ is assumed to be positive-definite. Then it
holds that rank(X,,) = d — m.

[N

Proposition 2 (Trace of £,,). It holds that trace(%,,) < trace(3)2 (d — m)2.

For the next proposition we must introduce some notation. For a Krylov space
K,,(M,v) with M € R4 and v € R?, and a matrix S € R%*? define the affine space
SKpn(M,v) as

SK,.(M,v) = span(Sv, SMv,...,SM™ v).

Proposition 3 (Posterior as Projection). Let K,, = SoAT K,,,(AX0AT, 7). Let P
denote an orthogonal projector onto IC,, with respect to the inner product induced by
Zal and let P+ denote an orthogonal projector onto K:- with-respect-to the same inner
product. Let py € P(R?) denote the prior and p,, € P(R?) denote the posterior from m
iterations of BayesCG. Then we have that Py, = §(P(x*)) (i.e. a Dirac on P(x*))
and P#um = 7jg,uo.

Note that Proposition 1 can also be obtained as a direct corollary of Proposition 3
and the rank-nullity theorem, since rank(%,,) = rank(P+) = dim(R?) — nullity(P+) =
d—m.

Proposition 4 (Null-Space of ¥,,,). The null space of X, is ATK,,(AZ0AT, 10).

This last result is somewhat counterintuitive as the null-space is not
YA K, (AY0AT, 7). However, we note that the null-space of ¥, is orthogonal to
YoAT K, (AS0AT, 7o) with-respect to the inner product induced by Eal.

1.2 Stopping Criteria

The names of Thomas Bayes and Alexei Krylov were previously brought together in Cal-
vetti et al. (2018), in which the authors developed efficient iterative solvers for deploy-
ment in a more traditional Bayesian parameter inference context (i.e. inverse problems
involving noisy data). The authors are grateful to Daniela Calvetti for participating in
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this discussion and for highlighting the potential for diverse applications of numerical
linear algebra within statistics.

In her discussion, Calvetti asked whether the proposed stopping rule from Section
5 of Cockayne et al. (2019a) is related to the stopping rule presented in Calvetti et al.
(2017). This rule, termed the max, stopping criterion, is derived in the context of
noisy linear Bayesian inversion problems, in which we wish to solve A0 = y + £ for 6.
Here £ € R™ is a random variable representing observational noise, y € R" is a datum,
0 € R? is a parameter of interest and A € R"*? is a parameter-to-observation map.
Importantly the context for that paper is one in which d > n, so that the problem is
underdetermined. This setting is different to that in Cockayne et al. (2019a), in that
our paper assumes A to be invertible and the observations to be noiseless; nevertheless
it is useful to comment on those aspects of the work that are related.

In the notation of our paper, the criterion proposed in Calvetti et al. (2017) is as
follows: Let Q(t,k) = Prob(T > 2t) for T ~ x3;, ty = |73 and pp = Q(%, 452).
The authors then reason that, once sufficient iterations have been performed so that
the signal from the data has been extracted and only noise remains, it should hold that
tm ~ X?l—m' The proposed max,> stopping criterion states that the iteration should

stop at the iteration m*, where

m* € arg max py,.
1<m<d
In practice of course p,, is not computed for m = 1,...,d, but rather the algorithm
tracks p,, and terminates when it starts to decrease. Note that the rationale for the
distribution of p,, assumes that the algorithm is applied in the setting of noisy obser-
vations.

The termination criterion studied! in Cockayne et al. (2019a, Section 5) is to termi-
nate the algorithm when
(d—m)vy < e

for some € > 0, where v, = %HS,ZrOH%. To compare the two, using the conjugacy
properties of the algorithm it is straightforward to show by following the arguments in
Cockayne et al. (2019b, Section S2) that the BayesCG search directions satisfy

-
T Tm—1Tm—1

T
SnT0 = S$yTm—-1 =

18mllas,ar

Thus it holds that

1 Z rmealld
[

Smllasoar

If we suppose, in a similar vein to Calvetti et al. (2017), that 7, ~ N(0, [|3,,[51) (note
the scaling on the variance) then we would have that mv,, ~ x2,, so it is conceivable
that a similar statistical test could be applied in the present setting. On the other hand,

11t is important to note that the criterion we studied in the paper is not actually being recommended
as it was found not to be a good proxy for low error having been achieved.
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the rationale for such a supposition is less clear in the present noise-free regime. Never-
theless, it would be interesting to discuss further whether a probabilistically-motivated
termination criterion for BayesCG can be constructed by following similar arguments
to Calvetti et al. (2017) in the setting of Cockayne et al. (2019a).

2 Computational Cost

Li and Fang commented that in the case of a sparse matrix A, our statements about
the computational cost of BayesCG in Cockayne et al. (2019a) — namely, that the
algorithm has a computational complexity only a constant factor higher than CG —
may need to be reconsidered. We agree, and in hindsight should have been more specific
that our comments referred to the cost of CG in the case of dense matrices A and Xg.
Since CG is often applied to sparse matrices, a more careful consideration of the cost
in this setting is due.

When A is sparse the cost of CG is only O(nnz(A)) per-iteration where nnz(A)
is the number of nonzero entries of A. BayesCG requires two applications of A and
one application of ¥y per-iteration, where the sparsity pattern depends of ¥y on the
complexity of the prior. Of course in the case when Xg = I, or any other diagonal matrix,
the cost of an application of X ! is much lower than the cost of an application of A;
similarly if ¥ is dense the cost would be higher, as noted in Li and Fang’s discussion.

However the choice of ¥y that we advocate in Cockayne et al. (2019a, Section 4.1) is
to use a prior based on a preconditioner of A. It is difficult to make general statements
about how high a cost this will incur, as preconditioners vary in sparsity from diagonal
through to dense. For the preconditioner we have adopted in Cockayne et al. (2019a,
Section 6) — based on an incomplete Cholesky factorisation of A with zero fill-in —
assuming the incomplete factor is precomputed, the cost incurred from an application of
Yo is the cost of one pass of sparse forward substitution and one pass of sparse backward
substitution. Since the sparsity pattern of the factors L is, in this case, chosen to be the
same as the lower-triangular part of A, the cost incurred is of the same computational
order as two applications of A. Thus, while the cost incurred in BayesCG is a more
subtle matter than portrayed in the paper, for this particular preconditioner prior the
cost is only a constant factor higher than that of BayesCG even for sparse A.

An alternative perspective is to think of BayesCG with a prior covariance based
on a preconditioner as a constant factor more expensive than preconditioned CG. Pre-
conditioned CG requires one application of A and one of P~! per-iteration, whereas
BayesCG with a preconditioner prior requires two applications of A and of P~!. This
reasoning holds regardless of the cost of applying A and the preconditioner.

3 Prior Construction

An important aspect of BayesCG that we highlighted in Section 4 of Cockayne et al.
(2019a) is the choice of prior, particularly of the matrix ¥g. Several of the discussion
articles also highlighted this.
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3.1 Matrix-vs-Solution Prior

In the thoughtful and illuminating invited discussion from Philipp Hennig, the approach
taken in the present paper, in which a prior is placed on «x, is compared and contrasted
with Hennig (2015) and Bartels and Hennig (2016), in which a prior was instead placed
on A7!. We agree that there are certainly arguments for both endowing A=! (or A)
and x with a prior distribution. Among these is that, as Hennig comments, the solution
of linear systems based on A is only one possible use of the matrix A, and other uses
such as calculation of determinants or spectra cannot be realised with a prior on . We
have focussed on the problem of solving Ax = b, which makes the inference framework
presented in Cockayne et al. (2019a) less widely applicable than in Hennig (2015).

In the context of solution of a linear system we concur that incorporating more
information about A into the prior is required. To some extent our use of priors based
on preconditioners accomplishes this, but that approach is still somewhat of a black-
box unless the preconditioner is constructed carefully. A more structured prior on x
using information about A such as its sparsity pattern and spectrum might yield better
calibrated UQ), while also achieving faster convergence rates. As noted in the comment,
our joint work in Bartels et al. (2019) goes some way to bridging this gap, so to some
extent the benefits of constructing priors on A~! can be realised in the setting when
the prior is placed on x.

The discussion contributed by Francois-Xavier Briol, Alejandra DiazDelaO and Peter
Hristov also advocated for placing a prior on A or on A~!. One of their arguments for
this is that it is common in related infinite-dimensional problems to place a prior on a
latent quantity rather than the quantity of interest, and that this typically accelerates
computation in those settings. However we would argue that the appropriate analogy
with the finite-dimensional setting is to place a prior on «, and not to place the prior
on A; in solution of a partial differential equation (PDE), for example, no existing work
on probabilistic numerical methods has advocated for placing a prior on the inverse of
the differential operator. Of course this does not mean that it should not be attempted,
however we would suggest that the accelerated convergence the authors refer to could
therefore be achieved with a prior on @ rather than on A.

They also argue that in practice much is often known of the properties of A, owing to
the fact that it arises from a discretisation of a PDE. For example, its sparsity properties
or spectrum may be known, and this information could be encoded into the prior. We
agree that strong prior information on such properties of A is more challenging to encode
directly in 2. However we note that, since a distribution on A~' induces a marginal
distribution on « (Bartels et al., 2019), we expect that construction of matrix-valued
priors that encode the features of the problem would be directly applicable to BayesCG.

3.2 On Preconditioner Priors

In the context of selecting a preconditioner for use in the prior, we would like to thank
Daniela Calvetti for providing in her discussion a summary of existing literature on
Bayesian perspectives on preconditioning. Indeed, the use of the prior covariance as a
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right-preconditioner for the linear system described in Calvetti and Somersalo (2005)
resembles the alternative formulation of the linear system from Li and Fang’s invited dis-
cussion that yields iterates identical to the sequence of posterior means from BayesCG.

One distinction that is of some significance is that the works cited in the discussion
focus on construction of a prior over the solution to the inverse problem, whereas here
we are attempting to construct priors over the solution to the forward problem. Math-
ematically speaking the differences are limited; we are simply interpreting the forward
problem as a noiseless inverse problem, as described in Cockayne et al. (2019c). How-
ever the considerations that must be made when constructing the prior differ. Good
priors for the parameter in the inverse problem are not guaranteed to be good priors for
solving the linear system that arises from the forward problem. Thus we would agree
with her comment that a preconditioner for the forward problem is likely to yield draws
more representative of the characteristics of the forward problem, but also note that
this is precisely our goal in the setting of the paper!

Also in this direction, Calvetti remarked that choosing a prior based on a precon-
ditioner departs from the Bayesian paradigm, in the sense that the choice of prior is
then dependent on how the data are collected. Our view is that this is not the case for
BayesCG, since the data y; := s, b are not used to construct a preconditioner for A. In
fact, we would go further and argue that preconditioner priors are especially natural in
an inverse problem context: To be concrete, suppose data y € R™ arise as y = « + £
where x,£ € R™, and that x is related to a parameter 6 of interest via a linear system
Agx = b such that the matrix Ay € R?*? is parametrised by 6, the vector b € R? is
known and £ represents measurement noise. Such situations arise in inverse problems
constrained by PDEs, where x represents a discrete approximation to the solution of
the PDE (e.g. Biegler et al., 2003). In the context of the full inference problem for both
the solution x to the forward problem and the parameter 6, one could think of a joint
prior over the forward and inverse problems of the form

p(x,0) = p(0)p(x|0)

so that the prior over @ is specified conditional on 6 (Cockayne et al., 2016). This seems
intuitively reasonable — in general there will be a dependence of  on # — and a prior
should acknowledge that. Thus, the use of a preconditioner prior p(x|f) based on Ay
provides an automatic mechanism to encode the dependence of & on 6.

Calvetti further commented on the lack of a comparison with conjugate gradient
least squares (CGLS) methods (Calvetti et al., 2012) in Section 6.2 of Cockayne et al.
(2019c). Calvetti et al. (2012) presented fast techniques for solving the linear systems
arising in the inverse problem; these are based on using the prior covariance of a highly
structured prior as a right preconditioner, and a decomposition of the noise covariance as
a left preconditioner. As mentioned, this bears a strong resemblance to the observation
from Li and Fang. However we feel that the experimental results in Section 6.2 seek
to achieve something quite different to the goal of Calvetti et al. (2012). Our goal was
to construct uncertainty estimates for the forward problem and propagate these to the
inverse problem, rather than to produce a competitive new approach to solving the
electrical impedance tomography (EIT) inverse problem. Thus we feel the benefit of a



J. Cockayne et al. 1003

computational comparison would be limited. However we would be interested to discuss
the conceptual overlap between the two approaches further, and in particular to examine
whether techniques for constructing preconditioners for the inverse problem could also
be applied to the forward problem.

4 Uncertainty Quantification

Several authors have commented on the uncertainty quantification (UQ) issue high-
lighted in Section 6.1 of Cockayne et al. (2019a), namely that the UQ provided by the
posterior appears to be poorly calibrated. This is owing to the fact that the search di-
rections are constructed in a “data-driven” manner in that they depend on x*, and this
induces nonlinearity in the information that is not acknowledged in the conditioning
procedure we adopt. Indeed, the search directions s; depend on x*; i.e. s; = s;(x*),
i=1,...,d. Thus the information y; € R? can be considered as the output of a nonlinear
map
yi = yi(z") = si(z") T Az,

If the Gaussian prior g € P(R?) has full support then the set D := {x € R? : y;(x) =
¥i, i = 1,...,m} is a p-null set. As such, “conditioning on D” is not well-defined and
measure-theoretic notions of disintegration of measure are required (Chang and Pollard,
1997). In particular, the “exact” posterior arises from disintegrating the map x +—
[yi(x),...,ym(x)]. In BayesCG, the dependence of s; on x* is neglected. As such, the
BayesCG output fi,, arises from disintegrating a linear map x +— [s] Az, ..., s} Az,
and this explains why the UQ provided by BayesCG is not well-calibrated.

Sullivan remarks that the additional cost of BayesCG over CG would be a small price
to pay if the UQ were well-calibrated, and that it is indeed unfortunate that it proves not
to be. In light of our comments that BayesCG is not strictly Bayesian, he asks whether
it is possible to compare the distribution that forms the output of BayesCG to the exact
Bayesian posterior using techniques from our earlier paper, Cockayne et al. (2019¢). We
agree that this would be a worthwhile experiment to perform. Unfortunately we have
not been able to prepare results for this rejoinder, but we hope to present some results
in this direction in a future publication.

Hennig (2015) also commented on the UQ provided. He notes that the problem with
the hierarchical approach employed in Section 4.2 is that it violates the assumption of
independent and identically distributed observations required by the hierarchical infer-
ence framework. Indeed, the search directions, and thus the observations, are correlated
through their recursive definition, but they also represent nonlinear information owing
to their dependence on x*. Thus we are sceptical than the UQ can be repaired within
the Bayesian framework, since we have already departed from that framework by ig-
noring this nonlinearity. The difficulty of this is further highlighted by the theoretical
results highlighted in the paper; Proposition 3 of Cockayne et al. (2019a) shows that a
measure of the size of ¥, converges at a linear rate, while Proposition 10 shows that
the posterior mean converges exponentially fast.

This does not eliminate use of a more ad-hoc calibration procedure, such as the
procedure in Section 2.1 of his response that significantly expands on an approach we
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sketched in Section S4.3 of the supplement. The approach he outlines looks promising
and certainly, from the perspective of the matrix elements, looks to produce quite well
calibrated UQ. We would be interested in collaborating to develop these ideas further,
particularly since — as noted above — such efforts would be of value both in the prior
on A~! and prior on x scenarios.

4.1 BayesCG and Filtering

Sullivan further asked whether BayesCG can be interpreted as a filtering method. This
is a direction that we have investigated to some extent. Certainly, in the case that
the search directions are chosen independently of x*, the posterior distribution from
Cockayne et al. (2019a, Proposition 1) is identical to what would be obtained from
application of a Kalman filter, owing to the equivalence between conditioning Gaussians
sequentially and in a single batch procedure. However, given the nonlinearity induced
by the dependence of the search directions on x*, a natural question is whether any of
the nonlinear filters that exist in the literature could be applied to correct the UQ and
also obtain fast convergence. In particular we have investigated the extended Kalman
filter (EKF; see Law et al., 2015), and we outline our analysis here.

In the EKF the information functional y,,,1 : R — R is approximated by a lineari-
sation about the point &, of the form

OYm+1
ox
where €,, is noise introduced to relax the problem and account for the linearisation error.

The (intractable) exact posterior at iteration m + 1 is then recursively approximated
by the distribution

Ym+1(2; ) = ym+1(Tm) + @) (x— %) +em

Hmt1 = ﬂmH.’E . S’7n+1(x; @m) = ym+1}
where fig = po and &, is the mean of fi,,. Note the incorrect conditioning here; we are
conditioning on the value y,,+1 arising from the true information functional y,,+1(x*),
but relating it to f,, through the linearised information operator y,,+1 # ¥m+1. This
can be viewed as a specific instance of an approximate likelihood.

The derivatives % can be computed in closed-form and thus the above method

can be implemented and empirically assessed. Unfortunately, the results were negative;
while the UQ provided by fi,, does appear to be well-calibrated in the sense of Section
6.1 of Cockayne et al. (2019a), the mean &,, does not appear to have the exponential
convergence property exhibited by BayesCG. Moreover, the posterior distribution fi,,+1
does not appear to coincide in any sense with a classical numerical method. This does
not preclude the possibility that other variants of filters might yield more practical
numerical methods, however this is not an avenue that we are currently exploring.

5 Extensions and Generalisations

Several of the discussants asked about generalisations or presented interesting possible
extensions of Cockayne et al. (2019a). We are pleased that our paper has already inspired
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such interesting new work and some brief responses to the discussants’ proposals are
presented next.

5.1 Singular Matrices

While A is assumed to be invertible in Cockayne et al. (2019a), Sullivan asked how
the algorithm performs in the case when A is indefinite; either because it is square but
not invertible, or because it is rectangular. Naturally, in this setting the problem is
ill-posed, and so the system either has no solution or has infinitely-many solutions. In
the latter case a natural thing to do is to regularise the problem in some way to obtain
a least-squares solution to the problem.

We believe that BayesCG is robust in this setting, because the Bayesian formulation
provides such a regularisation and also provides a natural representation of uncertainty
in the solution that ought to arise from it not having a unique solution. To show that
the posterior is still well-defined, suppose that A € R?*" is an arbitrary, potentially
singular matrix. The central object that must be examined is the Krylov space K, =
xo + K (AXgAT,7ry), which determines the behavior of the iterate and the posterior
covariance as revealed in Proposition 3. Since AX AT is positive semidefinite irrespective
of A the Krylov space will still be well-defined, though the dimension of K7 ax(d,n) MY
not be max(d,n). Furthermore we note that it may be the case that . ¢ K7 4.
but Proposition 9 of Cockayne et al. (2019a) nevertheless guarantees that the solution is
optimal in that space according to the prior precision norm. Furthermore the projection
properties described in Proposition 3 of this work are maintained, so that the posterior
covariance will precisely be the prior uncertainty outside of the space that has been
explored.

We further note that the singular setting is the setting considered in many of the
works cited in Calvetti’s discussion, in which similar results are obtained to those pre-
sented in our paper, but the matrix A is assumed to arise from some underdetermined
inverse problem and thus to be rectangular. In particular, the priorconditioned CGLS al-
gorithm for solving such underdetermined systems, introduced in Calvetti et al. (2017),
reports similar results for the Krylov space occupied by the iterate in the algorithm
presented therein, though we note that the results do not appear to be identical as the
Krylov space reported is

Ty € K (ASgAT, ALD)

where L is the Cholesky factor of ¥y. This does not precisely coincide with the Krylov
space reported in our work, which is (assuming a zero-mean)

T € Do AT K, (AX0AT ) b).

However some similarities are nevertheless apparent.

5.2 Precision Updates

Sullivan also asks whether the algorithm can be formulated in terms of precision up-
dates of X, rather than covariance updates of ¥,,,. We do not believe this to be the
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case, owing to the fact that the Sherman-Morrison formula breaks down in the setting of
noiseless observations in Cockayne et al. (2019a). At a more basic level, as shown in Sec-
tion S3.1 of the supplement, when the prior ¥y = (AT A)~! is used BayesCG converges
in a single iteration; thus, if a practical update of the precision matrix were possible it
would yield an iterative method that converged in a single iteration for general linear
systems, which would be quite remarkable if the cost remained O(d?)!

5.3 Multiple Related Linear Systems

Briol, DiazDelaO and Hristov provide an interesting examination of a generalisation of
BayesCG to a setting where multiple related linear systems must be solved simultane-
ously?, i.e.

Aj(li; = bj
7 =1,...,J. The approach they suggest is to “stack” the problems into a single large
linear system Ax = b and apply BayesCG to this system in an approach they call the
multi-system BayesCG algorithm.

This is a problem that we have also considered, and which we feel may be a com-
pelling application of BayesCG. The multi-system approach they highlight is somewhat
of an extreme, as it requires solving a single problem of significantly higher dimension
than each individual problem, whereas in classical Krylov subspace recycling schemes
the problems are generally assumed to be solved sequentially (see e.g. Parks et al., 2006).
On the other hand, the stacked system is in some sense the prototypical problem, in
that if some acceleration of convergence can be achieved by solving the sub-problems
iteratively and recycling information between them then we ought to be able to observe
accelerated convergence on this stacked problem, with a suitable choice of prior.

Relatedly, if the J linear systems arise in such a way that the 7 can be considered
as approximately independent draws from some distribution in P(R9), then one may
attempt to solve a small number k < J of the linear systems to high accuracy and
then to apply BayesCG to the remainder using a prior that is based on the empirical
distribution of the xj previously obtained. In general one can envisage a number of
strategies to deal with related linear systems, up to and including the construction of a
full Bayesian hierarchical model.

5.4 Application to Gaussian Process Regression

The contributed discussion from Simone Rossi, Christian Rusu, Lorenzo Rosasco and
Maurizio Filippone investigated applying BayesCG to an inversion problem arising from
Gaussian process regression for a function f(¢), namely that of calculating the predictive
distribution for new observations of f(f) at points ¢ outside of the set of training design
points. Using BayesCG to solve the linear system that arises in computing the posterior
mean function, they show that it is possible to propagate the uncertainty from BayesCG

2As an aside, from correspondence with the authors of the comment we have determined that there
is a typographical error in their response, regarding the equivalent of the equation below.
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into the Gaussian process covariance explicitly, in much the same way as in the inverse
problem we discuss in Section 6.2 of our paper. We note that this is also related to
work in Bartels and Hennig (2016). The results they present investigate using different
choices of preconditioner from the literature on Gaussian processes to construct the
prior, and show impressive performance for the convergence of the posterior mean.

It would be interesting to see how this compared to using standard CG, as well as
preconditioned CG, to solve the inversion problem, and also to see how well-calibrated
the posterior covariance in their expression for p(g|X, y, X) is. One would expect, given
the poor calibration for BayesCG in general, that it would be a relatively poor predictor
of the uncertainty in the predicted values, but this would be useful to check. One minor
criticism of this uncertainty propagation procedure is that, unless we are mistaken, the
same linear system must be solved to compute the matrix >3 in their notation, and we
do not believe the same uncertainty propagation can be accomplished in closed form in
that case.

5.5 Model Averaging

Rossi, Rusu, Rosasco and Filippone also discussed averaging the posterior distribution
produced from different choices of prior. They suppose that a distribution p(¥) is
placed over different prior covariances that are derived, in their work, from different
choices of centre for a Nystrom preconditioner applied to an inversion problem from
Gaussian process regression. Their simulations indicate that the convergence rate of the
posterior mean is accelerated through this procedure.

This suggests a number of interesting possible extensions to BayesCG. Inspired by
multigrid methods for PDEs, suppose that we have J preconditioners P!, ..., P/, where
the computational cost of applying (P7)~! is greater than that of applying (P7~1)~1,
for j = 2,...J. Then, by placing an appropriately decaying probability distribution over
{1,...,J} one might mix these preconditioners in a probabilistic framework. Whether
this provides a particular advantage over the standard multigrid method is not imme-
diately clear, but it would be interesting to investigate. Similarly, there is a literature
on producing random preconditioners (e.g. Avron et al., 2010; Meng et al., 2014; Yang
et al., 2015; Avron et al., 2017), and the randomness in the preconditioner could be
elegantly incorporated into the solution of the linear system using this framework.

6 Other Remarks

Lastly, there are several comments from the discussions which do not fit into any of the
sections above.

6.1 Active Probabilistic Solvers

Hennig (2015) made an important distinction in his comment between what he terms
active probabilistic solvers, which attempt to use the probabilistic viewpoint to improve
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upon point estimates from classical solvers (in some sense), and passive solvers that
attempt to endow existing solvers with UQ. We concur that most existing work on
probabilistic linear algebra, including Cockayne et al. (2019a), are passive solvers by
this definition, though we do respectfully disagree with his statement in Section 3,
that the “ambition should be to build active probabilistic linear solvers”; we believe
that efficient passive solvers are equally of interest. Even should fast active solvers be
discovered, incorporating UQ into code bases that exploit classical solvers represents
much less of a drastic change to existing code if a passive solver replaces its classical
counterpart than if an entirely new numerical method is introduced.

Constructing active solvers is an interesting proposition. In the context of BayesCG
opportunities for constructing priors to accelerate convergence might come from knowl-
edge about the provenance of the underlying problem. For example, if we know the
problem to be derived from discretisation of a linear PDE, using a prior on * based on
discretisation of a smooth Gaussian process is likely to yield a faster rate of convergence,
such as those rates proven for this problem in the function-space setting in Cockayne
et al. (2016). On the other hand, as Li and Fang elucidate in their discussion, since
the iterate from BayesCG is equivalent to solution of a right-preconditioned problem
with CG, this choice of prior is equivalent to using that information to construct a
preconditioner to accelerate CG. Thus, merely constructing a more informative prior
for BayesCG is insufficient to outperform classical methods; one would need to exploit
the probabilistic perspective in a deeper and more subtle way.

From a wider perspective, the pursuit of active probabilistic linear solvers seems to
be an interesting line of research, on which we would be interested to collaborate.

6.2 Miscellanea

Sullivan asked whether the square-root M 2 introduced before Proposition 5 needs to
have a specific form, or if it is arbitrary. The choice of M is indeed arbitrary; a Cholesky
factor is equally suitable as a symmetric square root.

Sullivan also objected to our use of the phrase “probabilistic termination criteria”
in Section 5, since the criterion we use is in fact deterministic. We agree that this
was a poor choice of words on our part; perhaps instead we should have called this a
probabilistically motivated termination criterion.

Calvetti commented on the paucity of references to the existing literature on EIT
as a Bayesian inversion problem in Section 6.2 of Cockayne et al. (2019a). We apologise
for the lack of references here. Our focus was on demonstrating how the probabilistic
UQ provided over the solution to the forward problem could be used within an infer-
ence problem, a topic which, to our knowledge, the existing literature on EIT has not
considered. However our references around the history of EIT are certainly incomplete,
and we thank her for highlighting them in her discussion.



J. Cockayne et al. 1009

7 Conclusion

We would like once again to thank all of the discussants for their valuable and insightful
feedback. We are delighted to have provoked so much discussion and, indeed, original
work. This process has raised several interesting new lines of research that are worthy of
investigation, and we hope to pursue those new directions collaboratively going forward.

A Proofs

Proof of Proposition 1. Let A,, = S} AYgATS,,. First recall from Cockayne et al.
(2019a, Proposition 3) that trace(X,,%y ") = d — m. It is straightforward to show that
DIND Iy 1is idempotent, since:
YuXol =T -%0A"TS,ALS] A
(CnXoh)? = (I = S0AT S, ALSTAYT — X0AT S, A LS A)
=1 —2%0A" S A S A+ S0ATS, A LS ASGATS,, ALST A
—_————
=Am
=T —-2%0AT S, A NS A=%,,5"

We therefore have that the eigenvalues of X, 1 are either 0 or 1, and since the trace
is the sum of the eigenvalues it holds that ¥, % ! has rank d — m. Therefore YoXmEg !
has rank d — m since X is full-rank. Since this matrix is similar to X,,, it follows that
¥, is also of rank d — m, which completes the proof. O

Proof of Proposition 2. We have that
trace(X,,) = trace(ZOZngl)
= (20, Sy ) F

where (-,-)r is the Frobenius inner product, defined by (A, B)r = trace(AT B). By
applying Cauchy—Schwarz we then have

trace(X,) < |1 ZollF|Zm gt F
= trace(Eo)% HEmEalﬂp.

Lastly recall that ||A[|% is the sum of the squared singular values of A. In the present
setting the squared singular values of ¥,, %5, ! are precisely its nonzero eigenvalues, and
from Cockayne et al. (2019a, Proposition 3) we know the sum of these eigenvalues to
be d — m. Hence

trace(X,,) < trace(Eo)% (d— m)%

as required. O
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Proof of Proposition 3. Let S,, denote the BayesCG search directions and recall that
range(S,,) = K,,(AY0AT, 7). Observe that since S, are A¥A-orthonormal, it fol-
lows that $oATS,, is a Xy L_orthonormal basis of K,,. Further note that if Q denotes
an orthogonal projector with-respect-to the standard Euclidean inner-product, then
P=Q%; ! denotes an orthogonal projector with-respect-to the inner product induced
by 251. Thus the required orthogonal projection onto IC,, is P = ZOATSMSTIA. Now
note that:

PY0ATS,, =$0A"S,, ST AXGATS,,
N—————

=TI
=0A"S,,

and furthermore

P?=P%,A"S,,STA=P.

Now consider Pyft,. Owing to the conjugacy of Gaussian distributions with linear
maps, it suffices to check that Px,, = Pz and PX,,P’ = P¥,P". We have that

Px,, = Pxo+ PXyA"S,,S,] ro
= Pxo + $oA'S,, S A(x* — x)
—
= Pxog + Px* — Pxy = Pz,

PY,,P" = PXoP" — PS4A"S,,S, ASPT
= PYyP" —PY,PT =0

as required.

Next consider P# pm = (I = P)gfim. Proceeding as above, we have:

(I - P)x,, = x,, — Px*
=xo+ X9A"S,,S] A(x* — xo) — Px*
=xo + Px* — Pxy — Px* = (I — P)xg
(I=P)Spu(I-P)" = —-P)S(I-P)"
— (I = P)SyAT"S,, ST ASo(I — P)T
(I — P)%0A"S,, ST AS(I — P)T = (I — P)PXo(I - PT)
= PYy — P25y — PYoP' + P25 P"
= PYy — PXy — PSoP" + PXyP' =0

where the last line follows from the fact that P? = P. Thus P;g,um = P;gyo, which
completes the proof. O
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Proof of Proposition 4. Let S, denote the search directions from BayesCG. Then

Y =Y — B9A' S8, A%
Y ATS,, =30AT S, — S0ATS,,STASATS,,

m

=Y0A"S,, —pATS,, = 0.

Furthermore since rank(¥,,) = d — m and rank(A'S,,) = m, it must hold that
span(A'S,,) is the entire null-space of %,,. O
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