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Abstract

We study the 2D turbulent mixing of a passive scalar in the ocean mixed layer.
As an example, we examine a steady-state convective mixed layer in which the
boundary conditions are chosen so that the system reaches a dynamical equilib-
rium. In this idealized case, we parameterize the horizontally and temporally
averaged fluxes as a functional of the horizontally and temporally averaged
property gradients. Here, 〈w′c′〉 = −

∫
dz′K(z|z′)∂〈c〉/∂z′, where K(z|z′) is

the eddy diffusivity kernel which describes the vertical transport by eddies at
any vertical location z. The full kernel K(z|z′) is computed by adding passive
scalars to a buoyancy-driven flow field in a 2D DNS of the ocean surface layer.
This functional form of the eddy diffusivity highlights both local and non-local
effects of the mixing of a passive scalar, and is based on an unapproximated
representation of the idealized physics. This type of formulation can be further
extended to other problems in turbulence concerning the mixing of a passive
scalar to determine a parameterization based on an accurate representation of
ocean physics.
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1. Introduction

The ocean mixed layer mediates the exchange of mass, momentum and en-
ergy between the ocean and the atmosphere (Kantha and Clayson, 1994). The
depth of these layers can range from tens to thousands of meters and exhibits
large seasonal variations depending on the latitude. The mixing within the sur-5

face layer is driven by a range of factors. In the winter or at night, the mixing
is largely driven by the convection due to radiative heat loss to the atmosphere,
whereas during the summer, the mixing is mainly shear-driven, since the wind
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stress at the surface is the primary mixing agent. Although the surface wind
stress acts to stir light water downwards, most of this energy dissipates rapidly10

within the top 25−30 m of the ocean. During the summer, increased solar heat-
ing of the surface water leads to more stable density stratification, reducing the
penetration of wind-driven mixing. Wintertime cooling over the ocean always
reduces stable stratification, allowing a deeper penetration of wind-driven tur-
bulence but also generating plumes that can penetrate to great depths (Kraus15

and Turner, 1967). Therefore, regionally, the mixed layer can become much
deeper when convective processes are active (Kara et al., 2003).

From a biological perspective, the ocean mixed layer is nutrient-poor, and
its depth determines the average level of light seen by phytoplankton. There-
fore, the mixing at the base of the ocean mixed layer is crucial for biological20

productivity. Since marine biological net primary production is the first step in
the food chain of marine organisms, its decline could have severe consequences
for fish stock and fisheries (Kuhlbrodt et al., 2009). Biological productivity is
also important from a climate point of view: carbon fixation by phytoplankton
constitutes a biological pathway for removing some of the anthropogenic CO225

introduced into the atmosphere. Therefore primary production is also of consid-
erable interest to oceanographers because it contributes significantly to global
photosynthesis and ocean carbon uptake (Riebesell et al., 2007; Takahashi et al.,
2009).

Proper parameterization of turbulent mixing in the ocean surface layer is cru-30

cial to simulate dynamics in the ocean interior, air–sea exchanges, and sea sur-
face temperature correctly. If model parameterizations are to describe the upper
ocean mixing processes accurately, they must be strongly physically based. The
existing parameterizations of mixed layer dynamics range from the simple bulk
mixed layer models (Kraus and Turner, 1967; Niiler and Kraus, 1977; Price35

et al., 1986) to models including non-local effects of mixing (Large et al., 1994).
The bulk mixed layer model of Kraus–Turner uses an integrated form of the
turbulent kinetic energy (TKE) equation, in which the balance is between the
generation of turbulence by wind driven mixing and convection, with the work
done in overturning the deep stable stratification (Kraus and Turner, 1967). Al-40

though such bulk models are popular, they might lose distinctive features such
as the non-local transport because of the vertical integrals, and the assumption
of homogenization may breakdown.

Other models require equations for turbulent kinetic energy and its rate of
dissipation to estimate the vertical eddy diffusivity. These equations come from45

carrying out Reynolds decomposition on the Navier-Stokes equations, into a
mean flow and a fluctuating component. Since these equations are no longer
closed, closure assumptions are required (Acreman and Jeffery, 2007). Common
to several of the first-order closure schemes is the assumption that the fluxes
depend linearly on the property gradient, with an appropriate constant of pro-50

portionality, which is the eddy diffusivity. Other parameterizations have repre-
sented the eddy diffusivity as a function of the Richardson number (Pacanowski
and Philander, 1981). Mellor and Yamada (1982) present a second-order turbu-
lent closure model which solves equations for the turbulent kinetic energy and its

2



product with the turbulent length scale. This second-order closure comes from55

an assumption that the turbulent energy produced by shear and convection
is balanced locally by turbulent dissipation. The K-Profile parameterization
(KPP) scheme represents the turbulent mixing of buoyancy using a diffusion
equation which has a vertically varying diffusivity along with a counter-gradient
term which accounts for non-local transport, whereas the transport of passive60

tracers is still treated locally (Large et al., 1994). There have also been signif-
icant advancements towards enhancement of the KPP scheme, to include the
effects of bottom boundary layer (Durski et al., 2004) and Langmuir turbulence
(McWilliams and Sullivan, 2000; Smyth et al., 2002). Non-local effects have also
been incorporated into schemes other than KPP such as the bulk mixed-layer65

models (Price et al., 1986), but these are generally ad-hoc.
Recent efforts to parameterize mixing in the ocean boundary layer include

the works of Qiao et al. (2004), McWilliams et al. (2009), Li and Fox-Kemper
(2017), Reichl and Hallberg (2018), and Reichl and Li (2019). On the other
hand, some plume type atmospheric models include a non-local aspect for the70

transport of a passive tracer since the plumes transport the tracer from the
level they start from (Romps and Kuang, 2011; Tan et al., 2018). The work on
transilient theory (Stull, 1984; Stull and Kraus, 1987; Stull, 1993) is valuable
in describing the theory and the merits of such an approach to model the non-
local vertical transport by eddies in the upper ocean. The transilient matrix75

K describes the vertical transport by eddies, where each column corresponds
to an initial height and each row corresponds to a final height: the element
Kij describes transport from zj to zi. If this matrix can be diagnosed for a
convecting fluid, it can provide valuable information on the transilient (i.e.,
non-local) transport by eddies (Romps and Kuang, 2011).80

We begin with a general statement of the relationship between the ensem-
ble mean gradients Gi(x, y, z, t) and the ensemble mean fluxes Fi(x, y, z, t) of a
scalar (where the subscript represents different components). The equation for
the fluctuations (the deviations from the mean) is linear and is forced by the
advection of the mean gradients by the fluctuating velocity; therefore the scalar85

fluctuations and the fluxes are linear functionals of the mean gradients:

Fi(x, y, z, t) = −
∫
Kij(x, y, z, t|x′, y′, z′, t′)Gj(x′, y′, z′, t′) dx′ dy′ dz′ dt′ (1)

where the summation convention is used for repeated indices.
In this paper, we focus on estimating this exact formulation of the flux

as a functional of the property gradient, using high resolution simulations to
determine the form of the functional. For the mixed layer, we can reduce the90

order of the kernel by assuming that the statistics have no horizontal variation
so that it becomes K(z, t|z′, t′). Finally, to further simplify the computation and
the portrayal of the kernel, we will deal with the statistically steady state. This
will be appropriate if the time-scales for the changes in the tracer distribution or
the other mixed layer properties are slow enough. Furthermore, we use temporal95

and spatial averages instead of ensemble averages. In this idealized case, the
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appropriate eddy diffusivity kernel K(z|z′) describes the vertical transport by
eddies at any vertical location z arising from gradients at z′. We emphasize that
the work here does not propose a new parameterization; to do that, many of
the effects such as winds and time-dependence would need to be brought back100

in and examined carefully. Instead, our study provides insight into how fluxes
are related to gradients, gives an example of such a calculation, and, we hope,
suggests approaches to parameterization.

For simplicity, we restrict our focus to convection-driven mixing using an
idealized 2D surface layer of the ocean, where a balance of fluxes persists long105

enough for the system to reach a dynamical equilibrium. Although 3D effects
appear soon after the onset of convective instability, the 2D problem can de-
scribe both the instability and some of the effects of non-linearity. For example,
Taylor and Ferrari (2010) find good agreement of the mean profiles and turbu-
lent features between 2D and 3D large eddy simulations of slantwise convection110

with a horizontal buoyancy gradient, forced by either surface wind stress or
surface buoyancy flux. Furthermore, while 2D simulations do not work well for
fingering convection in the limit of low Prandtl number Garaud and Brummell
(2015), Schmalzl et al. (2004) find that, for higher values of the Prandtl number
(Pr > 1), the flow structure and global quantities (e.g., Nusselt number and115

Reynolds number) exhibit similar behavior in 2D and 3D simulations. In the
context of atmospheric boundary layer convection, Moeng et al. (2004) have
found that certain properties, such as the vertical distribution of heat flux, are
not sensitive to the choice of 2D versus 3D, although the same may not hold
true when there is a mean shear. The authors argue that 2D models can be120

themselves thought of as a parameterization of 3D physics.
In §2, we discuss the basic equations governing the 2D system and derive

an equation for the mixed layer depth (MLD), based on a balance between the
imposed flux es. We also present the results from our 2D DNS to describe
the evolution of buoyancy in the domain. In §3, we use passive tracers to de-125

scribe the turbulent mixing in terms of an eddy diffusivity kernel, and propose a
method to compute the kernel based on a proper representation of the physics.
Although the analysis in this section corresponds to a 2D model of ocean turbu-
lence, the framework described here applies equally well to a fully turbulent 3D
case. Finally, in §4, we discuss the relevance of this study and indicate further130

directions for future work.

2. Governing equations

We begin with the two-dimensional Boussinesq equations.

∇ · u = 0 (2a)

∂u

∂t
+ (u · ∇)u = −∇p

ρo
+ ν∇2u + bẑ (2b)

∂b

∂t
+ u · ∇b = κ∇2b+

d

dz
(Q(z)) (2c)
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where u = (u,w) is the fluid velocity, p is the pressure, ρo is the mean density,
ν is kinematic viscosity, and κ is thermal diffusivity. We assume that the fluid135

buoyancy b is a function only of temperature T , so that b = αgT , where α is
the coefficient of thermal expansion and g is acceleration due to gravity. The
equation governing buoyancy has an added internal heating term to account
for penetrative solar radiation. This flux is represented as Q(z) = Qoe

z/l,
where Qo = Ho(αg)/(ρoCp), Ho is the surface heat flux, Cp is the specific heat140

capacity of the fluid, l is the vertical decay scale, and z is the vertical space
coordinate, negative downward with origin at sea level. The attenuation length
l for solar radiation of short wavelength is approximately 20 m, whereas longer
wavelengths get absorbed over a much shallower depth, approximately 0.5 m
(Paulson and Simpson, 1977). Therefore, we use l = 20 m. In general, the145

surface heat flux varies both diurnally and seasonally, but here we restrict our
attention to a constant surface heat flux to study the statistical steady state.

We assume that the top and bottom boundaries are free-slip and imperme-
able. The buoyancy flux at the bottom boundary is that necessary to maintain
the Brunt–Väisälä frequency of the thermocline.150

w = 0,
∂u

∂z
= 0, κ

∂b

∂z
= κN2 at z = −H

w = 0,
∂u

∂z
= 0 at z = 0

 (3)

with H � l. We further assume that a radiative cooling at the surface is
specified so that the net flux in the system is zero, and the system reaches a
statistical steady state. This simplification allows us to estimate a kernel that is
stationary in time and only depends on the stationary statistics of the flow field.
Furthermore, although we use this specific scenario in which a quasi-steady state155

approximation applies because of a net balance of fluxes, we emphasize again
that subsequent approach to represent mixing in the surface layer as a functional
of the mean gradients can be extended to a more general time-varying problem,
where the eddy flux kernel is given as K(z, t|z′, t′) (cf. equation (1)).

Taking the horizontal average of equation (2c), where ∗ = L−1
∫ L

0
∗ dx160

denotes horizontal average, we obtain the boundary condition for buoyancy at
z = 0, i.e., the radiative cooling at the surface,

∂b

∂t
= − ∂

∂z

(
w′b′ −Qoez/l − κ

∂b

∂z

)
(4)

where b′(x, z, t) is the buoyancy perturbation (b = b(z, t)+b′(x, z, t)). Assuming
a quasi-steady evolution so that ∂b/∂t = 0, and integrating over the depth of
the domain from z = −H to z = 0 gives the boundary condition for buoyancy165

at z = 0,

κ
∂b

∂z

∣∣∣∣∣
z=0

= κN2 −Qo(1− e−H/l) (5)
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Table 1: Values of dimensionless parameters used in simulations, where h is the MLD.

Lx Lz Pr F Φ (Nx, Nz) h = ln F
Φ

4 16 10 8× 106 8× 105 (128,512) 2.302
4 16 10 1.6× 107 8× 105 (128,512) 2.996
4 16 10 2.4× 107 8× 105 (128,512) 3.401
4 16 10 3.2× 107 8× 105 (128,512) 3.689

The system is in dynamical equilibrium, and so we expect it to reach a sta-
tistical steady state. If ∂b/∂z < 0 at the surface, we have colder fluid overlying
hotter fluid. Therefore, Qo/κN

2 > 1 is a necessary condition for convection to
occur, but it is not a sufficient condition since the fluid also needs to overcome170

viscous forces, as defined by the Rayleigh number. We non-dimensionalize the
problem by defining the following dimensionless variables.1

t̃ =
tκ

l2
, ũ =

ul

κ
, b̃ =

bl3

κ2
, p̃ =

pρol
2

κ2
(6)

The dimensionless equations are (dropping the tildes)

∇ · u = 0 (7a)

∂u

∂t
+ (u · ∇)u = −∇p+ Pr∇2u + bẑ (7b)

∂b

∂t
+ u · ∇b = ∇2b+ Fez (7c)

where the following non-dimensional parameters are defined

F = Pr Raf =
Qol

4

κ3
, Pr =

ν

κ
, Raf =

Qol
4

νκ2
, Φ =

N2l4

κ2
(8)

where Pr is the Prandtl number and Raf is the flux Rayleigh number. The175

dimensionless boundary conditions are now given by,

w = 0,
∂u

∂z
= 0,

∂b

∂z
= Φ at z = −Lz

w = 0,
∂u

∂z
= 0,

∂b

∂z
= Φ− F (1− e−Lz ) at z = 0

 (9)

where Lz = H/l is the dimensionless depth of the domain. The domain extends
from 0 to Lx in the horizontal direction. We assume zero base flow so that
the fluid velocity is given by the perturbation velocity u′ (u = 0 + u′, where
u′ = (u′, w′)).180

1Note that our particular choice of non-dimensionalization is arbitrary since we do not
make any approximations on the basis of the non-dimensionalization.
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Figure 1: (Color figure) The panels show the evolution of the deviation of buoyancy field,
b(x, z, t)− Φz, at four times, t = 0.03, 0.04, 0.49, 1.10 for F/Φ = 20.

We solve equations (7a–c) using the Dedalus pseudo-spectral code (Burns
et al., 2019). We discretize the domain using Nx Fourier modes in the horizontal
direction and Nz Chebyshev modes in the vertical direction, so that the smallest
length scales in the vertical are O(10) mm and the resolution at the base of the
mixed layer is O(100) cm for our chosen parameter values. For time-stepping,185

we use a two-stage second-order Runge-Kutta method, where the linear terms
are treated implicitly, and non-linear terms are treated explicitly. The time-step
size is set by a Courant-Friedrichs-Lewy condition with prefactor 0.5. We choose
a sufficiently large domain depth in order to mitigate the effects of internal
gravity waves, generated by turbulent plumes hitting the base of the mixed layer,190

reflecting off of the bottom boundary. Table 1 shows the range of parameter
values used in the simulations.

We initialize the problem by specifying a linear buoyancy field b = Φz, and
adding a small perturbation. Because of the surface cooling, the perturbation
to buoyancy field produces horizontal buoyancy gradients which, in turn, begin195

to produce vorticity. The flows will further lift the light fluid and draw the
heavier fluid down; the layer tries to overturn. Figure 1 shows the evolution of
the deviation of buoyancy field, b − Φz, in the domain. In figure 1(a)-(d), the
four panels show convective plumes descending from the surface, and generating
dipolar vortices which increase the downward speed. Note the internal waves,200

generated as the plume hits the stratified base of the convective region. The
plumes drive the turbulent mixing of the linear buoyancy field forming a fairly
homogeneous region – a mixed layer – which deepens over time. Figure 2(a)
shows the time-evolution of the horizontally averaged buoyancy field b in the
domain, starting with an initially linear profile. The depth of this mixed region205

initially grows as
√
t as expected of penetrative convection (Van Roekel et al.,

2018), but eventually settles to a constant value (figure 2(b)).
We can estimate the MLD, h, using convective adjustment ideas; however,

the naive approach of adjusting the diffusive profile that matches the boundary
condition ends up with non-zero heat flux divergence. Instead, we can solve the210

initial value problem starting with the constant stratification and turning on
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Figure 2: (Color figure) (a) Horizontally averaged buoyancy b plotted at various times as
represented by the different colors, starting with a linear profile (black line) at t = 0. (b)
The variation of MLD h versus time t. The horizontal line represents h = ln(F/Φ) and the
blue curve represents h ∼

√
t. Here, the ratio of the penetrating shortwave heat flux to the

diffusive heat flux in the deep thermocline is F/Φ = 20.

the radiative heat flux in the interior and boundary conditions, with convective
adjustment occurring whenever ∂b/∂z < 0. However, the end state can be
found by setting ∂b/∂t = 0 in the non-dimensional form of equation (4) and
integrating up from the bottom to find215

w′b′ − Fez − ∂b

∂z
= −Φ (10)

(neglecting the radiative flux at the bottom of the domain, i.e., e−H/l ≈ 0 for
H � l). When Fe−h = Φ, the flux balance in the water below the mixed layer
will be achieved for ∂b/∂z = 0 at z = −h. In the convecting layer, we must also
have w′b′ − ∂b/∂z = 0 at that depth. This is consistent with the mixed layer
buoyancy being constant and the eddy flux vanishing at the base of the mixed220

layer. Thus we settle to a constant flux state when

h = ln

(
F

Φ

)
(11)

so that the mixed layer descends to the depth where the gradient of b in the
diffusive solution changes sign.2 Overshooting plumes may lead to some mixing
below this depth resulting in a reversal in sign of the buoyancy flux; however,
that is weak in the experiments since the mixed layer depth is comparable to the225

attenuation length for solar radiation. Choosing the base of the mixed layer to
be where w′b′ = 0 still gives the value given by equation (11) since the gradient
of b is nearly zero at z = −h (see figure 2(a)). Near the surface, the eddy flux

2From equation (4), the deepening effectively halts and we reach a steady state when the
buoyancy flux from the convective plumes can balance the heat fluxes.
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w′b′ vanishes so that the balance is between the diffusive flux and the solar
heating. Correspondingly, the horizontally averaged buoyancy profile shows a230

negative gradient close to the surface. In contrast, within the mixed layer, the
vertical convective flux nearly balances the heating throughout the mixed layer.

Henceforth, we describe the mixed layer depth (MLD) using the non-dimensional
parameter, F/Φ, which is the ratio of the penetrating heat flux to the diffusive
heat flux in the deep thermocline (see table 1).235

3. The eddy diffusivity kernel

3.1. Mixing of a passive scalar

Equation (7c) is analogous to an advection–diffusion equation for a passive
scalar given by

∂c

∂t
+ u · ∇c = ∇2c+

d

dz
(f(z)) (12)

where c(x, z, t) is the concentration of tracer, and f(z) is a forcing function or240

source term for the tracer. Additionally, we define the boundary conditions for
the tracer,

∂c

∂z
= 0 at z = 0,−Lz (13)

Taking a horizontal average of equation (12) and using the continuity equa-
tion,

∂c

∂t
+

∂

∂z
w′c′ =

∂2c

∂z2
+

d

dz
(f(z)) (14)

Splitting the concentration into a horizontally averaged part and a fluctu-245

ating part (c = c(z, t) + c′(x, z, t)) and substituting this into equation (12) we
obtain (after subtraction of equation (14))(

∂

∂t
+ u.∇−∇2

)
c′ − ∂

∂z
w′c′ = −w′ ∂c

∂z
(15)

The integro-differential operator on the left-hand side is linear if we have
a specified flow field u, so we can easily show that c′ and the eddy flux w′c′

will be a linear functionals of ∂c/∂z. This implies that the horizontally and250

temporally averaged fluxes are a functional of the horizontally and temporally
averaged gradients,

〈w′c′〉 = −
∫
K(z|z′)∂〈c〉(z

′)

∂z′
dz′ (16)

with 〈∗〉 = lim
τ→∞

τ−1
∫ τ

0
∗ dt (see appendix A).
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Figure 3: (Color figure) (a) and (b) show the horizontally averaged eddy fluxes and gradients
of tracer concentration corresponding to fn(z) where n = 1, 2, 3, 4, 5. (c) Convergence of
the kernel K(z|z′) with n in terms of the maximum eigenvalue (multiplied by 100 for scale,
green curve), sum of the absolute values of K(z|z′) (red curve), and the sum of the squares of
K(z|z′) (blue curve). The vertical line represents n = 128. Here, the ratio of the penetrating
shortwave heat flux to the diffusive heat flux in the deep thermocline is F/Φ = 10.
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Figure 4: (Color figure) (a) K(z|z′). (b) log10 |K(z|z′)|. Here, the ratio of the penetrating
shortwave heat flux to the diffusive heat flux in the deep thermocline is F/Φ = 10, and the
kernel is computed using n = 128 tracers.

In the discrete form used for the numerics, equation (16) can be written for
a particular forcing function fk as255

〈w′c′〉ik = −K(zi|zj)
∂〈c〉j
∂z′k

∆zj = −Kij
∂〈c〉j
∂z′k

∆zj (17)

with the appropriate summation convention; the goal is to find the matrix Kij .
We solve equation (12) from zero initial conditions, holding f = f1(z) fixed,
and compute to a statistical steady state giving one pair of 〈w′c′〉i,1 and 〈cz〉i,1
vectors. We repeat the experiment n times, using n passive tracers to reach n
linearly independent statistically steady states (see appendix B).260

Collecting the experiments into m × n matrices, with m = 512 being the
number of modes used to discretize the domain in z and n being the number
of tracers, gives F ≡ 〈w′c′〉ik and G ≡ ∆zj

(
∂〈c〉j/∂zk

)
. The eddy diffusivity

kernel K can be estimated using a least-squares fit of the discrete data as K =
−F(GTG)−1GT .265

Figures 3(a),(b) show the fluxes and gradients of the passive scalar for n =
1, 2, 3, 4, 5. Figure 3(c) shows the convergence of the kernel with n as we add
more tracers to compute the fluxes and gradients. We choose n = 128 tracers
since the results do not vary significantly as we add more tracers (figure 3(c)).

Figure 4(a) shows the kernel for n = 128 tracers and for a given ratio of the270

penetrating shortwave heat flux to the diffusive heat flux in the deep thermo-
cline (F/Φ = 10).. In this figure, the horizontal axis gives the center of a delta
function forcing for an arbitrary function f(z) represented as the sum of delta
functions, and the vertical axis gives the response, with the diagonal elements
(going from lower-left to upper-right) representing the local contributions. Fig-275

ure 4(a) illustrates that the mixing is strongest within the mixed layer, and
the large off-diagonal elements illustrate that both local and non-local effects of
mixing are significant within the convective region. Figure 4(b) shows the very
weak eddy flux associated with the internal gravity waves in the region below
the mixed layer.280

Figure 5 shows the kernel for four different values of the mixed layer depth
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Figure 5: (Color figure) (a)-(d) show the kernel K(z/h|z′/h) for four different values of MLD,
h = ln(F/Φ), obtained by varying the ratio of the penetrating shortwave heat flux to the
diffusive heat flux in the deep thermocline, where F/Φ = 10, 20, 30, 40 respectively.

obtained by varying the non-dimensional parameter F/Φ. The local effects
of mixing can be seen from the diagonal elements of K(z|z′); this is shown
in figure 6(a) where the vertical axis has been non-dimensionalized by MLD,
h = ln(F/Φ). The figure illustrates that the eddy diffusivity decays rapidly285

in the region outside the mixed layer, for |z/h| > 1. The non-local effects of
mixing can be interpreted by looking at a horizontal slice in figure 5; this is
shown in figure 6(b) for a location in the middle of the mixed layer. The figure
shows the contributions from forcing at different levels to the response in eddy
flux at z/h = −0.5, i.e., in the middle of the convecting layer. The figure290

illustrates that although the local effects are strongest as indicated by the peak
at z/h ≈ −0.5 i.e., that the flux at that level has the biggest contributions from
the gradient at that level, more importantly, it highlights that the flux at that
level also has leading-order contributions from gradients above that level. The
stronger contributions from gradients above the forcing location are due to the295

convective plumes descending from the surface which have large momentum.
However, we observe weak contributions from the gradients below this point
due to the upward plumes having petered out by the time they reach the top.

3.2. Eddy flux of buoyancy

The analysis presented in §3.1 is strictly only applicable for a passive scalar300

since the fluxes 〈w′c′〉 are linear in c′, whereas 〈w′b′〉 is non-linear since w′ is
a function of the buoyancy b. However, we can compare the eddy flux 〈w′b′〉
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Figure 6: (Color figure) (a) The diagonal elements of the kernel, showing the local effect of the
mixing, plotted against z/h, where h is the MLD, and (b) a horizontal slice of K(z/h|z′/h)
in the middle of the mixed layer at z/h = −0.5 illustrating the non-local effects of mixing for
four different values of MLD. In each case, the MLD is defined as the ratio of the penetrating
shortwave heat flux to the diffusive heat flux in the deep thermocline, h = ln(F/Φ).

obtained from the experiments to an estimate using the kernel K(z|z′) and the
diagnosed gradients ∂〈b〉/∂z. A comparison between the two fluxes is shown in
figure 7(a) for four values of MLD.305

It is worth noting that the flow is generated by the buoyancy b and that the
kernel K is dependent on statistics of the flow field. While figure 7(a) illustrates
that the estimate of the eddy flux using the kernel gives a consistent representa-
tion of the buoyancy fluxes, the same would not hold true if a buoyancy anomaly
was created by a different active scalar affecting the flow field since this is not310

taken into account in estimating K. Nevertheless, this calculation does indeed
show that the kernel is in fact consistent with the fluxes of buoyancy. Addition-
ally, it is also worth noting that although the fluxes do decay rapidly outside the
convective region, for |z/h| > 1, the fluxes are non-linear and we do not expect
a self-similar solution applicable to all examples of convective mixing. Indeed,315

we see that the kernel is not similar in z/h even for a passive scalar (figure 6).
We further investigate the importance of non-local effects by defining an

effective local diffusivity D(z),

K(z|z′) = D(z)δ(z − z′) =⇒ D(z) =

∫
K(z|z′)dz′ (18)

The estimates of the flux using the appropriate local diffusivity is shown in
figure 7(b), which illustrates the significance of the non-local terms in describing320

the transport both qualitatively and quantitatively.

4. Conclusions and future work

The mixing of a passive tracer in the the surface mixed layer of the ocean is
given by a non-local formulation of the eddy flux in terms of the mean gradient,
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Figure 7: (Color figure) (a) Comparison of the eddy fluxes 〈w′b′〉 (solid curve) with the
estimate from the kernel −

∫
dz′K(z|z′)∂b/∂z (dashed curve) for four different MLD. (b) An

estimate of the flux using the appropriate local diffusivity D(z) four different values of MLD.
In each case, the MLD is defined as the ratio of the penetrating shortwave heat flux to the
diffusive heat flux in the deep thermocline, h = ln(F/Φ).

〈w′c′〉 = −
∫

dz′K(z|z′)∂〈c〉/∂z′, where K(z|z′) is the eddy diffusivity kernel.325

Although several non-local parameterizations have been defined in literature,
the analysis presented in this paper does not use any closure assumptions, and
therefore the functional form of eddy diffusivity gives an unapproximated rep-
resentation of the chosen physics. We demonstrate that the eddy flux can be
expressed as a functional of the gradient, and compute the full eddy diffusivity330

kernel by resolving the small scales.
We consider an idealized 2D convection-driven mixed layer dynamics and

give an estimate for MLD as given by a balance between the surface fluxes and
the buoyancy flux of the thermocline; this analysis is therefore directly appli-
cable to situations where convection is the dominant process in causing mixed335

layer deepening. To further illustrate that this analysis is equally applicable to
a 3D case, we have looked at an example of the balanced state in three dimen-
sions and find that the structure of the gradients and fluxes of both buoyancy
and passive tracer are very similar to the 2D DNS (see figure 8).

The mixed layer deepens as the surface fluxes are increased relative to the340

buoyancy fluxes at the thermocline, in accordance with the theoretical formu-
lation of MLD. At early times, the mixed layer deepens as square root of time,
but eventually settles to a near constant value given by the location where the
fluxes due to solar heating balance the buoyancy flux of the thermocline.

The kernel describes both the local and non-local effects of mixing, illustrat-345

ing that for this flow, the non-local effects are strongest closer to the surface
because of the energy of the convective plumes detaching from the surface. The
non-local effects are therefore important in transporting properties from one
side of the boundary layer to the other as illustrated in figure 1. To further un-
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Figure 8: (Color figure) Comparison of the horizontally and temporally averaged fluxes and
gradients of buoyancy and passive tracer in 2D and 3D simulations with the same boundary
conditions. The 3D simulations are done using a finite volume code (Ramadhan et al., 2020)
whereas the 2D simulations use a pseudo-spectral code (Burns et al., 2019). In both sets of
simulations, the ratio of the penetrating shortwave heat flux to the diffusive heat flux in the
deep thermocline is F/Φ = 10, so that the MLD is h = ln(F/Φ) ≈ 2.3. The profiles for the
passive tracer are estimated by solving equation (12) where f(z) is given by equation (B.2)
for n = 1.
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Figure 9: (Color figure) The time-evolution of a passive tracer added to the flow near the
surface, as given by the 2D DNS, and solution to equations (19a) and (19b). The yellow
dotted curves represent 1 standard deviation from the mean ensemble profile (yellow curve)
obtained by averaging 100 realizations in the 2D DNS. (a) shows the initial profile at t = 0
which is given by equation (20) for d = 0.25. The ratio of the penetrating shortwave heat flux
to the diffusive heat flux in the deep thermocline is F/Φ = 10.
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derstand the mixing of a passive tracer by the flow, the importance of non-local350

effects can be illustrated by adding a tracer near the surface and studying its
distribution a short time later. To do this, we solve

∂〈c〉
∂t

=
∂

∂z

(
D(z)

∂〈c〉
∂z

)
+
∂2〈c〉
∂z2

(19a)

∂〈c〉
∂t

=
∂

∂z

(∫
K(z|z′)∂〈c〉

∂z′
dz′
)

+
∂2〈c〉
∂z2

(19b)

which describe the time-evolution of the ensemble-averaged concentration 〈c〉(z, t)
as mixed by the diagnosed local diffusivity D(z) given by equation (18) and the355

full kernel K(z|z′) respectively. Since the flow is in a statistically steady state,
we would expect that the tracer distribution given by the solution to both equa-
tions (19a) and (19b) would be very similar at late times. We begin with

〈c〉(z, t = 0) =
1

2

[
tanh(20(z + d)) + 1

]
(20)

The equivalent profiles from the 2D DNS can be obtained by adding passive
tracers to the statistically steady flow, i.e., solving equation (12) with f(z) = 0,360

and with the same initial condition for the tracer concentration c(x, z, t) (equa-
tion (20)). We add 100 tracers to the flow at different times to obtain the
ensemble and horizontally averaged profiles 〈c〉(z, t). This is shown in figure
9. As the figure illustrates, the profiles given by the full kernel better describe
the transient evolution of the tracer at early times. The profiles obtained using365

(equation (19b)) are within 1 standard deviation of the profiles obtained from
the 2D DNS, whereas the equivalent profiles from the local diffusivity (equa-
tion (19a)) lie outside this range. Although both solutions (equations (19a)
and (19b)) converge rapidly, the figure highlights that the kernel contains in-
formation pertaining to the non-locality of the flow that is missing from a local370

diffusivity. This non-local behavior might be especially important for transient
processes that occur on short timescales, where the non-local fluxes could lead
to qualitative macroscopic differences in properties in the ocean mixed layer.

The kernel K(z|z′) depends on the statistics of the flow field and is computed
here for advection of a passive scalar by a fully non-linear turbulent flow field.375

Within the mixed layer, the kernel is non-local since plumes transport properties
from one level to the other by advection. The non-local fluxes move the tracer
around with an advective timescale, whereas a purely diffusive description could
exhibit a different timescale dependence on mixed layer depth. This non-locality
could be particularly important when the mixed layer is very deep since stronger380

convective plumes will tend to transport properties over larger distances by
advection.

One further development would be to study seasonal variations of MLD by
adding a time-varying surface insolation to see if the quasi-steady approach
is adequate in describing time-varying fluxes. Although our model is missing385

important processes for the surface layer of the ocean (e.g. winds), we have
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established a framework for parameterizing fluxes using a functional form of
eddy diffusivity which is based on proper representation of the physics for dif-
ferent flow problems. While the particular example presented here is limited,
it illustrates the basic principle of using a functional approach and points to a390

way to define those functionals for other problems in turbulence concerning the
mixing of a passive scalar.

Appendix A

Let φ′ be the Green’s function for the integro-differential operator on the
left hand side of equation (15), so that395

(
∂

∂t
+ u.∇−∇2

)
φ′(x, t|x′, t′)− ∂

∂z
w′φ′ = δ(x− x′)δ(t− t′) (A.1)

Multiplying equation (A.1) by −w′(x′, t′)∂c(z′, t′)/∂z′ and integrating with re-
spect to x′ and t′ shows by comparison with equation (15) that

c′(x, t) = −
∫

dx′ dt′ φ′(x, t|x′, t′)w′(x′, t′)∂c(z
′, t′)

∂z′
(A.2)

Multiplying equation (A.2) by w′ and taking a horizontal average gives the flux
w′c′ which is a function of z and t,

w′c′ = −
∫

dz′ dt′

[∫
dx′ w′(x, t)φ′(x, t|x′, t′)w′(x′, t′)

]
∂c(z′, t′)

∂z′
(A.3)

The term in square brackets is a kernel K̃(z, t|z′, t′) for the temporally evolving,400

horizontally averaged flux. Since f(z) does not depend on time and the flow
is in a statistically steady state, ∂c/∂t is negligible. Therefore, the temporally
and horizontally averaged flux becomes

〈w′c′〉 = −
∫

dz′

[∫
dx′ dt′ 〈w′(x, t)φ′(x, t|x′, t′)w′(x, t)〉

]
∂〈c〉(z′)
∂z′

(A.4)

with 〈∗〉 = lim
τ→∞

τ−1
∫ τ

0
∗ dt. The kernel K(z|z′) which maps the gradients to

the fluxes is the term in the square brackets in equation (A.4).405

〈w′c′〉 = −
∫
K(z|z′)∂〈c〉(z

′)

∂z′
dz′ (A.5)

Ensemble (rather than spatial-temporal) averaging would lead to the same
form after invoking stationarity and horizontal homogeneity, appropriate to our
periodic domain.
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Appendix B

To obtain linearly independent data pairs for both 〈w′c′〉 and ∂〈c〉/∂z, we410

could define the forcing function f(z) as

f(z) ≡ fk(z) = F ×

(
Tk+1

(
2z

Lz
+ 1

)
−
(
z

Lz

)[
Tk+1(1)− Tk+1(−1)

])
(B.1)

where Tk(z) = cos(k cos−1(z)) are Chebyshev polynomials of first kind. This
definition of fk(z), which includes the subtraction of a linear term, ensures that
the domain averaged concentration, found by integrating equation (14) in z,
remains constant in time and the system reaches a statistical steady state.415

If we define df(z)/dz in a way that its vertical integral is not zero, i.e., with-
out subtracting the linear part from f(z), then we would have ∂c/∂t tending to
a constant. This, however, would no effect on the fluxes and gradients of tracer,
and they would still converge to statistically steady values in time. Therefore
in our simulations we have defined f(z) as420

f(z) ≡ fn(z) = F ×

[
Tn+1

(
2z

Lz
+ 1

)]
(B.2)

in order to estimate the kernel K(z|z′) given by equation (16).
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