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ABSTRACT 

DEVELOPMENT AND PERFORMANCE OF SELF-HEALING AND SELF-

IMMUNE SOIL-CEMENT SYSTEMS SUBJECTED TO FREEZE-THAW CYCLES 

Jingtao Chen 

Soil-cement systems are used in a wide variety of engineering projects. However, soil-cement 

systems are vulnerable to cyclic freeze-thaw deterioration. The engineering properties of soil-

cement systems, such as strength and permeability, can be substantially degraded under the 

action of freeze-thaw cycles. This durability problem substantially impairs the sustainability 

of soil-cement systems and raises their maintenance and repair costs. Thus, when subjected to 

freeze-thaw cycles, civil infrastructure projects that use soil-cement systems can suffer from 

decreased reliability. Although extensive research has been carried out to improve the freeze-

thaw durability of soil-cement systems, no method associated with significant improvement 

has been developed thus far.  

Biological systems have recently provided inspiration for scholarly attempts to develop smart 

materials that comprise sustainable and resilient systems, which similarly can continually 

adapt and respond to their environment. Most of these efforts so far have focused on self-

healing properties in polymers and concrete, and many of them have shown promising results. 

However, to date there has been very little work reported on the development of effective 

smart systems for geotechnical applications and there is very little literature focusing on the 

specific damage scenario caused by freeze-thaw cycles. Those systems (and their 

geotechnical applications) pose challenging problems that are distinct from those of, for 

instance, concrete. For this reason, they require a complete reimagining of how such smart 

systems ought to be designed. Therefore, the focus of this PhD project is on the development 

and performance of self-healing and self-immune soil-cement systems that can respond and 

adapt to freeze-thaw cycles.  

Two different materials, microcapsules (produced by Lambson, UK) and LUVOMAG MgO 

pellets (produced by Lehmann & Voss, Germany), were used to develop self-healing soil-

cement systems, and their self-healing capability was investigated. It was found that the 

addition of Lambson microcapsules improved the self-healing capability of soil-cement 

systems considerably in terms of unconfined compressive strength (UCS). The addition of 

MgO pellets not only substantially improved the self-healing capability of soil-cement 



iv | P a g e  

 

systems in UCS, but also showed great potential in terms of crack sealing. The microstructure 

investigations revealed that brucite and different types of hydrated magnesium carbonates, 

such as hydromagnesite and dypingite, were produced in the self-healed MgO pellet-

embedded soil-cement samples after freeze-thaw cycles.  

Biological systems, provided insights that aided the development of a self-immune soil-

cement system. This is a system that can protect itself from cyclic freeze-thaw action before 

damage is initiated, thus preventing the occurrence of the damage, partially or entirely. A 

special admixture, SikaAer
®
 Solid air entraining microcapsules was introduced to develop 

such systems. These uniformly distributed small compressible microcapsules can serve as 

pressure vessels by buffering the excess pressure generated during water freezing. Although 

initial dry density and strength properties generally decreased with the addition of the 

microcapsules, the final results demonstrate that the freeze-thaw resistance of soil-cement 

systems was substantially improved. Based on the results of the physical properties of soil-

cement systems after freeze-thaw cycles, the microscopic analysis and the high resolution X-

ray computed microtomography, the self-immune mechanism of soil-cement with SikaAer
®

 

Solid microcapsules and its behaviour during freeze-thaw action was revealed. 

A superabsorbent polymer (BASF SAP A) was also used to develop self-immune soil-cement 

systems. Compared to SikaAer
®
 Solid microcapsules, the addition of SAPs had little effect on 

the initial dry density, strength properties, and permeability of the soil-cement mixes, and the 

self-immune mechanism was slightly different. SAPs can absorb water during the mixing of 

soil-cement and they have the ability to release the absorbed water during the hydration and 

hardening processes. As a result, small cavities are created in the soil-cement system as the 

water within SAPs is donated for cement hydration. These uniformly distributed small pores 

can serve as small reservoirs and pressure vessels for water to enter and expand within the 

soil-cement matrix during the freeze-thaw process. This quality is captured in the results of 

the experiments, which demonstrated that the freeze-thaw resistance can be substantially 

improved by the addition of SAPs.  

Overall, the self-healing and self-immune systems developed in this study showed promising 

results in terms of improving the self-healing and self-immune capability of soil-cement 

systems subjected to freeze-thaw cycles. More broadly, these smart systems contribute to 

attempts to build more resilient and sustainable soil-cement systems that may undergo freeze-

thaw deterioration in the engineering practice.   
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 Introduction Chapter 1

1.1 Background and motivation 

1.1.1 Soil-cement systems 

Soil-cement was first used in 1935 to improve the roadbed for State Highway 41 near 

Johnsonville, South Carolina (PCA, 2005). Since then, Portland cement (PC) has been used 

to stabilise soils and aggregates for thousands of miles of pavement applications all over the 

world (PCA, 2005). Today, as shown in Figure 1.1, the applications of soil-cement systems 

have been expanded to include geotechnical and infrastructure projects. For example, soil-

cement systems are used in pavement stabilisation, grouting applications, cut-off walls, 

foundations, slopes, embankments, environmental remediation projects (e.g. soil 

stabilisation/solidification), and other projects. In various geotechnical applications, adding 

cement to soil to form a soil-cement system is an effective and economical technique to 

improve the engineering properties of soils that are unsatisfactory for construction in their 

natural state. The addition of cement can substantially improve the engineering properties of 

soft or contaminated soil that would be unsatisfactory for construction in its natural state. 

Cement can fortify soil by increasing its strength, decreasing its permeability, or limiting its 

deformation (Nicholson, 2015; Porbaha et al., 1998). Soil-cement systems also have 

historically been used for volume stability, settlement reduction, increased durability to 

dynamic/repeated loads, and dust control. For example, cement stabilisation techniques have 

been adopted in the stabilisation of ice-rich frozen soils in China for the construction of 

subgrade (Chai et al., 2017). This study’s authors reported the unconfined compressive 

strength (UCS) of 15% cement-stabilised soil increased from 0.65 MPa to 1.2 MPa compared 

to unstabilised soil.  

The soil-cement system has several important advantages over potential alternatives. First, 

mixing cement with soil is a quick operational technique associated with rapid solidification, 

and thus it can help lower construction times. For example, the application of cement can 

significantly reduce the time required for soil’s consolidation settlement. Secondly, soil can 

be stabilised by either mixing with cement in situ or mixing ex-situ in a production plant. 

Furthermore, the cement can be applied in situ by a variety of means, including shallow 

mixing, deep mixing, grouting, and injection. Thus, engineering properties like strength, 

stiffness, and permeability can be dramatically enhanced in a wide range of contexts. 
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Moreover, in most cases, these improvements are permanent (Nicholson, 2015). The strength 

of soil-cement systems can be changed by adjusting the ratio of cement to soil in order to 

meet, for instance, the requirement of loading, soil type, and desired serviceability (Porbaha, 

1998). Additional advantages of soil-cement systems include their relatively low 

environmental impact and the low amount of noise and vibration produced during their 

construction (compared to comparable alternatives) (Porbaha, 1998). 

Figure 1.2a shows the effect of cement addition on several different types of soils. Generally, 

the quantity of cement required increases with the clay content of the soil. Figure 1.2b 

presents the effects of increasing cement content on the strength development index (SDI) of 

a soft clay. SDI is defined as the UCS ratio of the treated and untreated samples. It is 

conceivable that the SDI increase with the addition of cement. In addition, as with concrete, 

the strength of cement-treated soil tends to increase with time (Figure 1.2c). In terms of 

permeability, Figure 1.2d shows that the permeability of soil-cement reduces significantly as 

their cement content increases.  

The soil-cement systems adopted in infrastructural and geotechnical practices are generally 

expected to maintain their engineering properties for decades. For example, cement-treated 

bases in pavement construction are required to retain a UCS of over 2.1 MPa over their 

service life (Garber et al., 2011). In addition, a low permeability value, which has been used 

in the UK for in-ground barriers of <10
-9 

m/s (Al-Tabbaa and Evans, 1998) and in the US of 

<10
-8 

m/s (USEPA, 1997) is also required for the solidification/stabilisation mix. However, 

soil-cement systems can deteriorate over time due to external effects such as freeze-thaw 

cycles, wet-dry exposure, and excessive loading. For this reason, Examinations on the 

durability including wet-dry and freeze-thaw exposure tests have been routinely conducted 

[e.g., (ASTM D559/D559M-15, 2015) and (ASTM D560/D560M-16, 2016)]. Among all, 

freeze-thaw action is considered to be one of the most destructive actions that can induce 

significant damage to soil-cement systems (Al-Tabbaa and Evans, 1998; Kamei et al., 2012; 

Khoury and Zaman, 2007; Shihata and Baghdadi, 2001; Wang et al., 2016). Consequently, 

the sustainability and durability of soil-cement systems subjected to freeze-thaw cycles are a 

matter of both scholarly and practical concern. 
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(a)                                                                       (b) 

   

(c)                                                                       (d) 

Figure 1.1 Cement stabilisation in (a) pavement construction, (b) 

solidification/stabilisation of industrial contaminants, (c) foundation construction of a 

school in Florida, US, and (d) cut-off wall construction (courtesy of Hayward Baker). 
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(a)                                                                        (b) 

 

(c)                                                                          (d) 

Figure 1.2 Effects of several variables on the strength of soil-cement systems: (a) soil 

type (Taki and Yang, 1991), (b) cement content (Uddin et al., 1997), and (c) curing 

period (Endo, 1976), and (d) variation of permeability with cement content (Porbaha et 

al., 2000). 
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1.1.2 Sustainability and durability challenges of soil-cement systems subjected to 

freeze-thaw cycles  

Offering an early definition for sustainable development, the World Commission on 

Environment and Development argued in 1983 that ―humanity has the ability to ensure that it 

meets the needs of the present without compromising the ability of future generations to meet 

their own needs‖ (World Commission on Environment and Development, 1983). Cement is 

the most widely used man-made construction material on earth, with 4.1 billion metric tons 

produced globally in 2017. Global cement production is expected to increase to almost 5 

billion tonnes by 2030 (USGS, 2019). Portland cement (PC) is currently the most common 

binder material used in the construction of essential civil infrastructure around the world, to 

meet the basic needs of the development of humanity (e.g. buildings, bridges, roads, etc.). 

However, the production of cement emits a substantial amount of CO2, accounting for 8–10% 

of global anthropogenic CO2 emissions (Suhendro, 2014). As such, cement production is 

believed to contribute heavily to global climate change. Thus, in recent decades, the cement 

industry has been subjected to tremendous pressure in the form of carbon reduction initiatives 

(Anderson et al., 2008; Quadrelli and Peterson, 2007).  

Durability, which is defined as the ability of a material or system to retain stability and 

integrity over years of exposure to destructive forces and weathering, is a crucial quality of 

most construction materials (Dempsey and Thompson, 1968). In cold regions, freeze-thaw 

durability is crucial for geotechnical infrastructure, as many of them undergo at least one 

freeze-thaw cycle annually, and many experience extensive repeated cycling. Deterioration 

due to freeze-thaw cycles result in civil infrastructures being out of service unpredictably. 

In cold regions, freeze-thaw deterioration poses a serious threat to geotechnical infrastructure 

projects, as many undergo at least one freeze-thaw cycle annually, with others experiencing 

repeated cycling. A soil-cement system is naturally much more vulnerable to degradation and 

weathering than concrete due to these freeze-thaw cycles, as its volume fraction and the 

interspace of its internal voids are much larger. Water freezing inside pores usually 

contributes to an initial increase in volume of 9%, which can enlarge micro-cracks and 

generate internal pressure within the soil-cement system (thus producing bigger cracks). 

Physical properties of soil-cement systems, such as void ratio, water content and density, and 

permeability deteriorate with increasing numbers of freeze-thaw cycles, along with 

mechanical properties like strength and stiffness. For example, the UCS of 10% cement-
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stabilised soil can be reduced by up to 95% after 12 freeze-thaw cycles (Jamshidi et al., 

2015a).  

Many studies have addressed the freeze-thaw cycle problem, but its underlying mechanisms 

are still unclear and no method for significantly improving freeze-thaw durability has been 

proposed. As the damage induced by freeze-thaw cycles usually manifests inside soil-cement 

systems, mitigation and repair are often unfeasible. After several freeze-thaw cycles, 

degradation can be severe, which can mean that the only responsible option available is to 

rebuild the entire structure, which is costly. Currently, such issue is addressed either through 

initial overdesign, implementation of maintenance programs, or both (Harbottle et al., 2014).  

However, these measures are uneconomical and time-consuming. In the past, to minimise the 

damage of freeze-thaw cycle, stabilised soils were sometimes covered by protection layers to 

protect the system from frost penetration. However, the US Federal Highway Administration 

performed frost penetration analysis for 41 sites and reported that maximum frost depth 

varied from about 0.37 m to 2.42 m (Selezneva et al., 2008). This deep frost penetration 

makes the construction of protection layers costly and inconvenient, and in many cases, the 

protection layer itself can even be susceptible to freeze-thaw exposure (Guthrie and Lay, 

2007).   

Consequently, the associated cost of maintenance, repair, and reconstruction of civil 

infrastructures is tremendous. Approximately £200 billion (in 2010 pounds) is needed for the 

maintenance and renewal of transportation networks alone in the UK from 2011 to 2030 

(Mills et al., 2011). Roughly $10 billion is spent each year on the maintenance and repair of 

railway bridges and tunnels in Japan (Ahn and Kishi, 2010). $320 billion is needed each year 

in the US to maintain the country’s infrastructure (Natale, 2010). In 28 OECD countries, the 

share of public maintenance funds dedicated to road expenditures was between 25%–35% in 

2011 (OECD/ITF, 2013). Moreover, indirect costs due to traffic jams and the associated 

productivity loss indicated by comprehensive life cycle analyses can be 10 times the direct 

cost of maintenance and repair (Breugel, 2007). Besides the tremendous expenditure, the 

large amounts of Portland cement used for the maintenance, repair, and reconstruction of 

civil infrastructure result in enormous CO2 emissions. Thus, it is imperative to the well-being 

of the planet (and of humanity itself) for researchers to develop more durable and sustainable 

soil-cement systems. 
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1.1.3 New approaches to develop durable and sustainable soil-cement systems 

subjected to freeze-thaw cycles  

Historically, construction materials have been designed to meet fixed specifications, and 

material degradation has been viewed as inevitable. However, recently, inspiration from 

biological systems has fuelled research in the built environment to develop sustainable and 

resilient systems. These imagined systems comprise materials and structures that, like 

biological systems, can continually adapt and respond to their environment. This fundamental 

change in material design philosophy has led to the introduction of a host of ―smart‖ 

materials. Self-healing materials count among the ranks of ―smart‖ materials, which are 

defined by RILEM in terms of ―any process by the material itself involving the recovery and 

hence improvement of a performance after an earlier action that had reduced the performance 

of the material‖ (de Rooij et al., 2013). Currently, most literature focuses on self-healing in 

polymers or concrete, and many studies have shown promising results (Ahn and Kishi, 2010; 

Dry et al., 2003; Joseph et al., 2010; Kanellopoulos et al., 2015; Li et al., 1998; Qureshi et al., 

2016; White et al., 2001; etc.). However, to date, there has been very little work on the 

development of effective smart systems for geotechnical applications, and there is very little 

literature focusing on the damage caused specifically by freeze-thaw cycles. Fortunately, an 

EPSRC-funded Resilient Materials for Life (RM4L) project was carried out in collaboration 

between the Universities of Cardiff, Cambridge, Bath and Bradford along with more than 20 

international industrial partners to develop innovative construction materials. The concept of 

applying smart materials to soil-cement systems in geotechnical applications emerged as part 

of this collaboration (Al-Tabbaa and Harbottle, 2015). A self-healing soil-cement system is a 

―smart‖ material that is able to detect, adjust, and repair its damage automatically and without 

any external intervention after being damaged. Self-healing materials can heal damage that 

manifests deep within the material as well, which is particularly helpful when damage is not 

externally visible or accessible. Furthermore, self-healing mechanisms are only triggered 

when damage occurs. For instance, microcapsules, once embedded in concrete, will remain 

stable before being triggered. Thus, the healing agent will only be released when triggered by 

damage. These qualities make self-healing mechanisms particularly auspicious candidates for 

addressing the freeze-thaw deterioration of soil-cement systems. Lambson microcapsules and 

LUVOMAG MgO pellets were used to develop such self-healing soil-cement systems. 

The concept of self-immunity is also key to this research. In biological systems, an immune 

system is a system comprising many structures and processes within an organism that 
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protects against disease. Inspiration from biological systems, especially the immune system 

of the human body, provides insights into how a ―self-immune‖ soil-cement system might be 

developed. Such a system would be able to respond and adapt to freeze-thaw cyclic action 

before damage is initiated, thus preventing the occurrence of the damage either partially or 

entirely. The self-immune soil-cement system resisting freeze-thaw cycle is then designed 

according to the properties of soil-cement systems as well as the damaging mechanism of 

freeze-thaw cycles. This study represents the first attempt to apply the concept of self-

immunity to soil-cement systems undergoing freeze-thaw cycles and investigate this 

application via a detailed experimental framework. In this study, SikaAer
®
 Solid air 

entraining microcapsules and superabsorbent polymers (SAP) were used to develop self-

immune soil-cement systems by providing pressure vessels or reservoirs to accommodate the 

excess pressure generated during freezing.  

In sum, this research applies the concepts of self-healing and self-immunity to soil-cement 

systems and investigates their performance under freeze-thaw conditions. The successful 

development of such nature-inspired self-healing, and self-immune soil-cement systems has 

the potential to yield substantial repair and maintenance savings and to enhance the durability, 

serviceability, sustainability, and safety of geotechnical applications subjected to freeze-thaw 

cycles. 

1.2 Aims and objectives 

The aim of this research is to improve the freeze-thaw durability of soil-cement systems by 

improving their self-healing and self-immune capabilities through the use of microcapsules, 

pellets, and SAP. As it is inspired by and intended to build on prior research, the objectives of 

this study are:  

1. To develop self-healing soil-cement systems using suitable healing agents and embedding 

methods, and to investigate their self-healing performance subjected to freeze-thaw cycles. 

2. To optimise the self-immune soil-cement systems subjected to freeze-thaw cycles using 

SikaAer
®
 Solid microcapsules. 

3. To investigate the development and performance of self-immune soil-cement systems 

subjected to freeze-thaw cycles by using SAP. 

4. To reveal the mechanism and behaviour of the developed self-healing and self-immune 

soil-cement systems subjected to freeze-thaw cycles. 
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Ultimately, this research aims to promote the development of ―smart‖ self-healing and self-

immune soil-cement systems to resist freeze-thaw deterioration and provide insight on their 

performance and mechanisms.  

1.3 Thesis outline 

This thesis consists of seven chapters. Chapter 1 introduces the background of the problem, 

the purpose of this thesis, and the study’s aims and objectives. Chapter 2 presents an in-

depth critical literature review discussing the state-of-the-art work done by others on soil-

cement systems subjected to freeze-thaw cycles and self-healing materials. The mechanism of 

the freeze-thaw process, the air-entraining technique, the applications of the self-healing 

concept, and the applications of SAP in cementitious materials are explored. Chapter 3 

characterises the materials and experimental techniques used in the subsequent study. 

Chapter 4 covers the development and performance of self-healing soil-cement systems 

subjected to freeze-thaw cycles using Lambson microcapsules and LUVOMAG MgO pellets. 

The optimisation and performance of self-immune soil-cement systems subjected to freeze-

thaw cycles using two different agents, SikaAer
®
 Solid microcapsules and BASF SAP A, are 

presented in Chapter 5 and Chapter 6, respectively. Finally, Chapter 7 concludes the thesis 

by summarising the main findings of this research and offers recommendations for future 

work. 
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 Literature Review Chapter 2

This chapter critically reviews various literature relevant to the topic of this research. It starts 

with the degradation of soil-cement systems subjected to freeze-thaw cycles and the factors 

that may influence the freeze-thaw durability of soil-cement systems are reviewed in detail. 

However, until now, there is no satisfactory solution to tackle these challenges in soil-cement 

systems. It then elucidates the application and mechanism of the air entraining, as a technique 

that is adopted in concrete to improve the freeze-thaw durability. The latter part introduces 

the concept of self-healing and covers the mechanisms and applications of self-healing in 

cementitious materials, as a possible solution to the challenges stated. Finally, as a potential 

agent for developing self-healing and self-immune soil-cement system, the perspective of the 

application of superabsorbent polymers (SAPs) in cementitious materials is introduced and 

illustrated. The chapter concludes by summarising the research gaps and the rationale behind 

the PhD work.  

2.1 Degradation of soil-cement system subjected to freeze-thaw cycles  

2.1.1 Overview of freeze-thaw degradation 

Geotechnical materials located in the upper ground in seasonal frost regions suffer from 

freeze-thaw cycles, which leads inevitably to the deterioration of any associated structures. In 

large areas of Asia, northern Europe, Alaska, Canada, and about a third of the continental US, 

cement-stabilised shallow ground is frequently subjected to freezing and frost heaving in the 

winter, and thaw settlement and weakening during spring. Frost heaving is the upward 

swelling of soil during freezing conditions due to the ingress of subsurface water and the 9% 

volume expansion of that water within the soil as it turns into ice.  

The uptake of water from warmer underlying soil into the frost front is due to two main 

mechanisms. Generally, the controlling mechanism is capillary rise (Guthrie and Lay, 2007; 

Peppin and Style, 2013). The formation of ice and the ensuing reduction of water pressure in 

the freezing front cause a dramatic increase in capillary suction. Thus, liquid water migrates 

from warmer to colder regions within the system (Dash et al., 2006). The transportation of 

water through the soil matrix can be a controlling parameter for the growth of ice lenses. The 

other mechanism is caused by the vapour in frozen soil condensing into liquid water and 

ultimately crystallising into ice. When this occurs, the vapour flows towards the cold front, as 

the vapour pressure in the warmer underlying ground is greater than in the cooler ground 
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(Guthrie et al., 2006). However, it should be noted that much of the existing literature has not 

considered the effect of water ingress in their experiments therefore may lead to distinct 

freeze-thaw degradation results.  

After freeze-thaw cycles, the engineering properties of soil (including its strength and 

permeability) can substantially deteriorate (Guthrie and Lay, 2007; Jamshidi and Lake, 2014). 

Craeye et al. (2018) argued that freeze-thaw deterioration is one of the most destructive 

actions for subgrade damage and the impact of freeze-thaw cycles usually defines the bounds 

of the environmental impact on the performance of the pavement. A typical example of the 

formation of a pothole after several freeze-thaw cycles is presented in Figure 2.1. Zhang et al. 

(2016) reported that the upper 0.3 m of pavement materials can be subjected to 10–50 freeze-

thaw cycles annually in Iowa, US. However, many soil-cement systems survive fewer than 3 

freeze-thaw cycles (Al-Tabbaa and Evans, 1998). Therefore, for construction projects 

involving soils exposed to cyclic freeze-thaw, care must be taken to improve freeze-thaw 

resistance. For instance, as reported in Eigenbrod(1996), in the Canadian province of Quebec, 

it is common practice for newly constructed highways to be left unpaved for several years. 

This practice is to allow the settlement caused by freeze-thaw action to occur before the 

grading and application of the final road surface so as to reduce the possibility of 

reconstruction. However, this practice is time-consuming and inefficient for obvious reasons.  

Many studies have suggested that soil-cement systems are more resistant to freeze-thaw 

weakening than unstabilised soils (Altun et al., 2009; Liu et al., 2010; Shibi and Kamei, 

2014). However, many studies have suggested that although soil-cement systems are more 

resistant to freeze-thaw cycles than unstabilised soils, they still suffer significant degradation 

(Altun et al., 2009; Davis et al., 2007; Jamshidi and Lake, 2014; Janoo et al., 1999; Qi et al., 

2008; Shibi and Kamei, 2014; Wang et al., 2007). In addition, how (and to what extent) the 

engineering properties of soil-cement systems are affected is a matter that is still under 

investigation, as are the factors that influence freeze-thaw durability. 



13 | P a g e  

 

 

(a) 

 

(b) 

Figure 2.1 (a) Formation process of pothole (Rabine Toolbox, 2014) and (b) pothole 

formed in pavement after freeze-thaw cycles (waynetimes.com). 
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2.1.2 Effects of freeze-thaw cycles on the properties of soil-cement systems 

2.1.2.1 Strength 

Strength is a crucial parameter for the serviceability, stability, and durability of most soil-

cement systems adopted in engineering practice (Eskişar et al., 2015; Jamshidi and Lake, 

2014; Liu et al., 2010; Mardani-Aghabaglou et al., 2015; Portland Cement Association, 2001). 

Shihata and Baghdadi (2001) stated that UCS is among the most informative of the factors 

used to evaluate the freeze-thaw durability of soil-cement systems. A number of studies show 

that the UCS of cemented soils inevitably decreases with an increase in the number of freeze-

thaw cycles (Eskişar et al., 2015; Jamshidi et al., 2015b; Kamei et al., 2012; Mardani-

Aghabaglou et al., 2015). Table 2.1 summarises strength losses for different types of soils 

stabilised with different amounts of cement and subjected to various numbers of freeze-thaw 

cycles (as reported in the literature). Generally, the strength of cement-stabilised soil 

deteriorates dramatically after freeze-thaw cycles. For example, a field test on a subgrade 

stabilised with 3.5% Portland cement was conducted by Janoo et al. (1999), revealing that 

UCS losses of up to 50% were caused by freeze-thaw cycles during the winter of 1996–1997 

in Stratford, Connecticut, US. Jamshidi et al. (2015a) reported that the UCS of 10% cement-

stabilised soil was reduced by up to 95% after 12 freeze-thaw cycles. Wang et al. (2016) also 

found that 6% cement-stabilised loess specimens showed obvious cracking after 7 freeze-

thaw cycles and were destroyed after 9 freeze-thaw cycles.  
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Table 2.1 Summary of reduction of strength properties of soils stabilised with different 

amounts of cement and subjected to various numbers of freeze-thaw cycles. 

Soil type 
Cement 

content (%) 

Number of freeze-

thaw cycles 

Reduction in 

strength (%) 
Reference 

On-site soil 3.5 a winter 50 (Janoo et al., 1999)  

Soft clay 5 2 and 5 48–50  (Shibi and Kamei, 2014) 

Clay soil 6 10 27 (Liu et al., 2010) 

Silty sand 

3 3 20–40 
(Lake et al., 2016) 

6 3 10–20 

10 12 52–95 

(Jamshidi et al., 2015a; 

Jamshidi and Lake, 

2014) 

Kaolin 

5 6 15 

(Mardani-Aghabaglou et 

al., 2015) 

10 6 14 

15 6 5 

5 12 27 

10 12 23 

15 12 13 

Recycled 

base 

materials 

4 3–6 50 (Ebrahimi et al., 2012) 

Fat clay 
5 

5 

50 

(Eskişar et al., 2015) 
Lean clay 

Fat clay 
10 

42 

Lean clay 37 

Note: the definition of fat clay (CH) and lean clay (CL) is presented in Table 3.1. 
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2.1.2.2 Permeability 

The permeability of soil/cemented soil can increase considerably when subjected to freeze-

thaw cycles (Jamshidi and Lake, 2014; Lake et al., 2016; Mardani-Aghabaglou et al., 2015), 

and the first cycle generally exerts the greatest influence (Jamshidi et al., 2011; Othman and 

Benson, 1993; Viklander, 1998). Jamshidi et al. (2011) indicated that an increase of up to two 

orders of magnitude in the permeability of cemented soil can be observed after 4 freeze-thaw 

cycles (as shown in Figure 2.2). Jamshidi and Lake (2014) reported that both minor 

reductions and increases of up to 5250 times were observed in the permeability of soil-

cement systems after freeze-thaw cycles and suggested that the reduction in permeability may 

be due to the continued hydration of the cement. Lake et al. (2016) reported that the 

permeability of 3–6% cement-stabilised soil increased less than an order of magnitude after 3 

freeze-thaw cycles. The least damage was recorded in soil-cement compacted at dry of 

optimum water content. This indicates that increased water content may increase permeability 

damage for soil-cement systems exposed to freeze-thaw cycles. Wong and Haug (1991) 

reported that the permeability of soft fine-grained soils can be increased by 1–2 orders as a 

result of the fissures and joints induced by up to 5 freeze-thaw cycles. Many studies show 

similar findings with regards to the magnitude of the increase in permeability (Chamberlain 

et al. 1990; Pamukcu et al., 1994; Jamshidi et al., 2011). Othman and Benson (1993) reported 

that the change in permeability of soil after freeze-thaw cycles can be reduced by isotropic 

loading during thawing, and a 70 kPa pressure was sufficient to prevent the increase in 

hydraulic conductivity. However, Viklander (1998) argued that the effect of this isotropic 

loading was largely depended on temperature gradient, water content, and test configuration. 

Chamberlain et al. (1990) argued that the increase in permeability after freeze-thaw cycles is 

caused by the enlargement of pores within soils as micro-fissures are enlarged by freezing ice 

and drainage of water as well as fine particles moving out of large pore space during thawing. 

The freezing of water inside pores contributes to an initial increase in volume, which can 

generate an internal pressure within the soil-cement matrix and induce cracks. Moreover, 

when the ice inside the soil-cement system thaws, the swelled system is unable to constrict or 

compress, and more cracks can thus be produced due to external forces or gravity. The cracks 

propagate in the soil matrix, leading to an increase in permeability. However, some 

researchers found that increased permeability can be observed while the soil is densified by 

freeze-thaw cycles (Chamberlain and Gow, 1979; Kim and Daniel, 1992). They reported that 

freezing and thawing reduce the void ratio but increase the vertical permeability of four fine-
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grained soils. It appears that freeze-thaw cycles do not necessarily increase the void ratio of 

soil, and an increase in permeability after freeze-thaw exposure is possibly due to changes in 

soil structure and the interconnection of a network of micro-cracks that enable the flow of 

fluids. 

 

Figure 2.2 Hydraulic conductivity of soil-cement samples after freeze-thaw cycles 

(Jamshidi et al., 2011). 

2.1.2.3 Volume and water content 

It has been reported that soft fine-gained soils can experience maximum volume changes of 

up to 10–30% after cyclic freeze-thaw (Chamberlain et al. 1990). The factors that affect the 

variation in this change include initial moisture content, the plasticity of the clay, and the rate 

and mode of freezing (Eigenbrod K.D., 1996; Wong and Haug, 1991). Li et al. (2017) 

reported that the volume increase of densely compacted loess samples exposed to 7–8 one-

dimensional freeze-thaw cycles was 16%. The researchers also found that a volume decrease 

of 2% was observed for loose samples after 31 freeze-thaw cycles. This result is in line with 

Viklander's (1998) position that loose soils tend to compact after freeze-thaw cycles, while 

dense soils tend to expand. As shown in Figure 2.3, Viklander's (1998) proposed a residual 

void ratio eres for freeze-thaw action, meaning that both loose and dense soils may approach a 

similar void ratio after a sufficient number of freeze-thaw cycles for a specific kind of soil. 

Wang et al. (2007) conducted lab tests on subgrade fill material from the Nagqu Logistics 

Center Yard along the Qinghai-Tibet Railway and also obtained similar findings. The study 

demonstrated that there was a critical compactness level for the soil samples after repeated 
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freeze-thaw cycles. Since the density of soil is usually increased by adding cement, it is 

anticipated that the volume of soil-cement systems will generally increase after freeze-thaw 

cycles.  

 

Figure 2.3 Void ratio of soil versus the number of freeze-thaw cycles in loose and dense 

states (Viklander, 1998). 

Shibi and Kamei (2014) reported that the volume of cement-stabilised very soft clay 

increased slightly with increasing numbers of freeze-thaw cycles. Liu et al. (2010) measured 

the height of cemented clay samples before and after being subjected to freeze-thaw cycles, 

finding that the height of the sample increased slightly but became steady after 3 cycles (as 

shown in Figure 2.4a). A cement content of 6% and a water content of approximately 18.4% 

were used in the study. The researchers also suggested that the height change in cement-

modified samples was about 40% less than in untreated clay samples as a result of the larger 

bond force. Davis et al. (2007) carried out a study on the effect of fines content on four 

cement-treated aggregates and found that fines content appeared to confer a protective effect 

on the durability of the specimens subjected to freeze-thaw cycles. Their study implies that a 

reduction in porosity may exert a positive effect on the resistance of soil-cement systems to 

freeze-thaw cycles. In addition, it should be noted that expansion and rupture may deteriorate 

after several freeze-thaw cycles due to water ingress in the cracks. 

Liu et al. (2010) assessed the water content changes of cemented clays after freeze-thaw 

cycles and suggested that the water content decreased with an increasing number of freeze-

thaw cycles, stabilising gradually after 8 cycles (as shown in Figure 2.4b). However, Shibi 

and Kamei (2014) reported that freeze-thaw action had little influence on the water content of 
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cement-stabilised clay containing bassanite and coal ash. It should be noted that in the studies 

performed by Shibi and Kamei (2014) and Liu et al. (2010), the freeze-thaw cycles were 

conducted under closed systems, which means no external water source was accessible 

during the freeze-thaw process. However, a closed system fails to account for the water 

ingress common to freeze-thaw cycles in natural environments.  

 

(a) 

 

(b) 

Figure 2.4 (a) R (ΔH/H0) and (b) T (Δw/w0) vs. the number of freeze-thaw cycles (Liu et 

al., 2010). ΔH and Δw are the changes in height and water content obtained in thawed 

soil after n cycles, respectively. H0 and w0 are the initial height and water content of the 

samples, respectively.  
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2.1.3 Factors that affect the freeze-thaw resistance of soil-cement systems 

The degree to which the engineering properties of soil-cement systems are altered by freeze-

thaw cycles depends on a number of factors including the soil type, cement content, initial 

permeability, void ratio, water content, and the intensity of the freeze-thaw cycles. In this 

section, the effects of some of important factors are reviewed.   

2.1.3.1 Cement content of soil-cement systems 

Cement content is a crucial factor that can affect the freeze-thaw resistance of soil-cement 

systems, and it has thus been the subject of many studies (Eskişar et al., 2015; Jamshidi et al., 

2015a; Liu et al., 2010). A cement content of 3–6% was used by Davis et al. (2007) and they 

found that the freeze-thaw resistance of cement-treated aggregate increased as the cement 

content increased. Liu et al. (2010) also reported that the freeze-thaw resistance of cemented 

clay increased considerably with increases in cement content, as shown in Figure 2.5. They 

reported that the critical dynamic stress attenuation coefficient for clayey soils stabilised with 

0%, 3%, 6%, 9%, and 12% cement subjected to up to 10 freeze-thaw cycles were 0.35, 0.58, 

0.73, 0.80, and 0.82, respectively. Zhang et al. (2016) reported that for the recycled subbase, 

frost heave rates decreased as the cement content was increased to 5% and 10%, while there 

was little improvement at 2.5% cement content. Mardani-Aghabaglou et al. (2015) 

investigated the effects of freeze-thaw action on the UCS of kaolin stabilised with different 

amounts of cement. The results of this study are presented in Figure 2.6. They demonstrate 

that the freeze-thaw resistance of cemented clay (i.e., the UCS) increased as the cement 

content increased for both a magnesium sulphate solution and a water environment. 

Examining permeability, Jamshidi et al. (2015) suggested that the freeze-thaw durability of 

cemented silty sand improved as the cement content increased. Lake et al. (2016) also 

reported that less permeability damage was recorded in 6% cement content samples when 

compared to 3% cement content samples. However, the amount of cement added to a given 

soil should not be selected arbitrarily. Guthrie and Lay (2007) performed laboratory tests on a 

silty subgrade soil treated with cement contents of 2.0, 3.5 and 5.0 percent. The results 

suggested that too much cement may cause shrinkage cracking while too little cement may 

cause worse frost heave behaviour than that observed in untreated specimens. Similar results 

indicating little improvement on freeze-thaw resistance for 2.5% cement stabilised soil were 

reported by Zhang et al. (2016). To sum up, most research to date has suggested that the 

freeze-thaw durability of soil-cement systems improves with an increase in cement content, 
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though some reported that the freeze-thaw durability of soil-cement can be reduced if cement 

content is relatively low (e.g. <3%).  

 

Figure 2.5 Critical dynamic stress of cement-modified clay vs. number of freeze-thaw 

cycles (confining pressure is 20 kPa) (Liu et al., 2010). 

 

Figure 2.6 Reduction in 7-day UCS of specimens via freeze-thaw action (Mardani-

Aghabaglou et al., 2015). The abbreviations C, PC, Mg, and W indicate the percentage 

of cement, ordinary Portland cement, magnesium sulphate solution, and water 

environment, respectively.  
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2.1.3.2 Water content 

Water content also plays an important role in the susceptibility of soil-cement systems to the 

effects of freeze-thaw cycles. Only a few studies examine the effects of water content on the 

freeze-thaw durability of soil-cement systems. Among these, some reported that higher water 

content led to inferior freeze-thaw durability (Jamshidi et al., 2016, 2015a; Jamshidi and Lake, 

2014), while others argued that water content had little effect on the freeze-thaw durability of 

soil-cement systems (Eskişar et al., 2015). Kim and Daniel (1992) found that permeability 

can be increased by two orders of magnitude after freeze-thaw cycles if soil sample are 

compacted wet of optimum water content, but are increased by only two to six times if 

compacted dry of optimum. As shown in Figure 2.7, Jamshidi et al. (2015a) also reported 

that a soil-cement system was less susceptible to freeze-thaw cycles as water content 

decreased. It is also interesting to note that the permeability for samples with lower water to 

solids ratio (LWS) also may have even decreased after 12 freeze-thaw cycles compared to the 

permeability after 4 cycles. The decrease in permeability for samples with low water content 

is possibly due to the continuing hydration of the excess cement. However, Eskişar et al. 

(2015) carried out a study to assess the freeze-thaw performance of cement-treated clays at 

different water contents and reported that water content exerted little effect on freeze-thaw 

durability in terms of UCS. It also had little effect on permeability, although lower water 

content was associated with higher UCS for cement-treated clays. Therefore, it is hard to 

confirm the effect of water content on the freeze-thaw durability of soil-cement systems from 

the available literature. Thus, this effect should not be oversimplified. It appears that water 

content can be treated as a damaging factor that affects expansion inside the matrix, or a 

factor that affects the hydration of cement, or as a lubricant that affects the degree to which 

soil-cement systems are able to mix. 
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Figure 2.7 Summary of permeability results for different exposure scenarios and mix 

designs (Jamshidi et al., 2015a). “04” and “12” refer to the number of freeze-thaw cycles, 

and “-2”, “-10”, and “-20” refer to freezing temperatures; “20%” and “LWS” refer to 

20% cement content and “lower water to solids ratio” conditions.  

2.1.3.3 Intensity of freeze-thaw exposure  

The degradation of soil-cement systems is highly related to the intensity of freeze-thaw 

exposure. The intensity of freeze-thaw exposure depends on the number of freeze-thaw 

cycles, freezing and thawing temperatures, duration of cycles, and other factors (Kamei et al., 

2012).  

It is commonly believed that soil-cement systems continually deteriorate with increased 

number of freeze-thaw cycles (Eskişar et al., 2015; Jamshidi et al., 2015; Shibi and Kamei, 

2014). For the durability test suggested by ASTM: D560/D560M-15 (2015), specimens tested 

should be subjected to 12 freeze-thaw cycles. Previous research also indicates that 8 to 12 

cycles of freeze-thaw can be considered adequate for investigating the effects of freeze-thaw 

cycles on various engineering parameters, including strength and hydraulic conductivity 

(Jamshidi et al., 2015a; Musharraf and Khoury, 2003; Shihata and Baghdadi, 2001). Jamshidi 

et al. (2015b) reported that freezing temperature also posed an influence on the change of 

UCS (Figure 2.8a) and permeability (Figure 2.8b) for cemented soils subjected to freeze-

thaw cycles. This trend suggests that the lower the freezing temperature, the more significant 
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the increase in permeability and the greater the reduction in UCS that can be observed. In 

general, increasing intensity of freeze-thaw exposure (that is, a greater number of freeze-thaw 

cycles, a lower freezing temperature, a higher thaw temperature, and longer freeze-thaw 

exposure) causes the deterioration of soil-cement systems to accelerate.  

 

(a) 

 

(b) 

Figure 2.8 Changes of two properties subjected to various number of freeze-thaw cycles 

(Jamshidi et al., 2015a): (a) UCS ratios and (b) hydraulic conductivity ratios. 
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2.1.3.4 Curing time 

In general, mature samples (that is, samples that have cured for longer) can be more 

vulnerable to freeze-thaw cycles than immature ones (Jamshidi et al., 2015a; Jamshidi and 

Lake, 2014). As shown in Figure 2.8, mature specimens (i.e., those cured for over 110 days) 

exhibited greater increases in permeability values and a greater UCS ratio reduction than 

immature specimens (cured for 16 days) after freeze-thaw cycles. There are two possible 

explanations for the vulnerability of mature soil-cement systems. Firstly, the brittleness of 

cemented soil increases as curing time increases. Therefore, mature samples could be more 

susceptible to deformations induced during freezing. Moreover, continuing hydration is less 

pronounced within the mature soil-cement systems than within the immature samples 

(Jamshidi and Lake, 2014).      

2.1.4 Microscopic analysis of soil-cement systems subjected to freeze-thaw cycles 

Microscopic techniques were used by Klich et al. (1999) to investigate how freeze-thaw 

cycles can cause cracking of cement-treated stabilisation/solidification materials. They 

posited several advantages for using microscopic analysis to evaluate the weathering of 

stabilisation/solidification wastes. First, microscopic analysis can observe the exact area of 

chemical analysis without disturbing the nature of the sample. Secondly, microscopic features 

like cracks and the relationships between minerals can be observed and analysed. 

Furthermore, material changes like the mode of alteration, alteration pathways, and secondary 

products of alteration under weathering conditions can be identified through microscopic and 

mineralogical analysis. As a result, the degradation of soil-cement systems subjected to 

freeze-thaw cycles can be better understood by microscopic analysis. Surface analyses of the 

morphology, shape, and size of cracks and materials can be conducted by using equipment 

like microscopy and scanning electron microscope (SEM).  

Wang et al. (2019) used these techniques to investigate the effect of crumb rubber on the frost 

resistance of soil-cement. Using SEM, the authors found that rubber powder can prevent 

micro-crack generation and delay the development of existing cracks (Figure 2.9). Jamshidi 

et al. (2011) conducted crack analysis on cemented soil samples after freeze-thaw cycles and 

reported that the disruption of an extended longitudinal-crack network with a spacing of 

approximately 1.2 mm was observed in as little as one freeze-thaw cycle. They also reported 

that the crack network propagated further into the matrix with additional freeze-thaw cycles. 

Lake et al. (2016) conducted optical microscopy in thin sections and suggested that the 
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increased permeability was possibly due to the localised porosity increase after freeze-thaw 

cycles. Figure 2.10 presents the ice lens (blue region) formation in a soil-cement system with 

3% cement content after exposure to 3 cycles in their study. 

 

(a)                                                                      (b) 

Figure 2.9 SEM images showing rubber powder particles (a) changing the direction of a 

micro-crack’s path and (b) preventing micro-crack expansion (Wang et al., 2019). 

 

Figure 2.10 Thin section images of ice lens formation in soil-cement (3% cement and 14% 

water) after exposure to 3 cycles of freeze-thaw (Lake et al., 2016). 
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2.1.5 Additives used to improve freeze-thaw resistance of soil-cement 

Although the freeze-thaw resistance of soils can be improved by the addition of cement, the 

performance of ordinary soil-cement systems is still inadequate for a sustainable design. 

Increasing the cement content could be considered as an approach to improve the freeze-thaw 

resistance of soil-cement systems. However, in a closed-system experiment, Mardani-

Aghabaglou et al. (2015) increased cement content from 5% to 15% and found that the 

reduction in UCS after 12 freeze-thaw cycles only decreased from 27% to 13%. This 

indicates that, despite the benefits of the practice, adding excess cement into soil-cement 

systems is unlikely to be a cost-effective solution to freeze-thaw deterioration. There have 

also been attempts by some researchers to improve the freeze-thaw durability of soil-cement 

systems by adding extra minerals. Mineral additives such as bassanite (Kamei et al., 2012; 

Shibi and Kamei, 2014), fly ash (Bin-Shafique et al., 2010; Shibi and Kamei, 2014; Wei et al., 

2015), and silica fume (Yarbaşi et al., 2007) have been employed to serve this purpose. 

2.1.5.1 Bassanite and fly ash 

Recycled bassanite (2CaSO4∙H2O) is produced from gypsum waste material. It was first used 

in Japan as an additive in ground improvement projects (Ahmed et al., 2011; Kamei et al., 

2012; Shibi and Kamei, 2014). Shibi and Kamei (2014) conducted tests on 5% cement-

stabilised soft clay containing fly ash and bassanite subjected to freeze-thaw cycles and found 

that the UCS of the 5% cement-stabilised clay decreased approximately 50% after five 

freeze-thaw cycles. As shown in Figure 2.11, they found that UCS decreases 35–45% for 

samples stabilised by either recycled bassanite or fly ash. This number is only 15–35% for 

samples with both recycled bassanite and fly ash added. These results indicate that the 

addition of bassanite and fly ash can improve the freeze-thaw durability of soil-cement 

systems and that a combination of multiple additives may lead to still greater improvement. 

However, as shown in Figure 2.11, even when the soil-cement system incorporates 20% 

bassanite and fly ash, the UCS reduction after 5 freeze-thaw cycles is still in the range of 15–

35%.  
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Figure 2.11 Effects of repeated freeze-thaw (F-T) cycles on unconfined compressive 

strength and at various bassanite/soil (B/S) ratios for: (a) specimens without coal ash, (b) 

specimens with 10% coal ash content, and (c) specimens with 20% coal ash content 

(Shibi and Kamei, 2014).  

2.1.5.2 Silica fume 

Silica fume, which is also known as microsilica, is a by-product of the manufacture of silicon 

or ferrosilicon alloys from high-purity quartz with coal in an electric arc furnace. It has been 

widely adopted for the production of high-strength concrete and it has recently been applied 

in soil-cement systems to improve their durability and engineering properties. Yarbaşi et al. 

(2007) conducted experiments on soils modified by red mud, lime, fly-ash, silica fume, and 

cement that were subjected to freeze-thaw cycles. The authors found that freeze-thaw 

durability was improved considerably in terms of UCS, California bearing ratio, ultrasonic 

pulse velocity, and damping ratio. They also suggested that a silica fume-lime mixture was 

the best stabiliser for granular soil that subjected to freeze-thaw cycles. However, their 

freeze-thaw tests were conducted in a closed system without access to additional water. 
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Despite this, a considerable reduction in California bearing ratio, UCS, ultrasonic pulse 

velocity, and damping ratio was recorded after 10–30 freeze-thaw cycles. 

Although additives such as fly-ash, bassanite and silica fume have been applied in soil-

cement systems to improve freeze-thaw performance, there are still many deficiencies and 

uncertainties regarding the capability and long-term performance of the mixtures. Moreover, 

even though some healing ability is implied by soil-cement systems containing additives, the 

self-healing concept is seldom mentioned. Very little literature incorporating the self-healing 

concept in studies of soil or soil-cement systems exists. 

2.1.5.3 Autogenic healing in soil-cement systems 

Some researchers believe that soil-cement systems possess a natural self-healing ability that 

derives from the cement itself. Jamshidi et al. (2015) reported that the permeability for soil-

cement samples with low water content decreased after 12 freeze-thaw cycles when 

compared to the permeability after 4 cycles. As presented in Figure 2.12, Jamshidi and Lake 

(2014) allowed a post-exposure healing period of over 120 days for 10% cement-stabilised 

soil specimens damaged by 12 freeze-thaw cycles and observed some reduction in 

permeability. In addition, the healing phenomenon is more noticeable for immature 

specimens than mature specimens. The decrease in permeability for samples with low water 

content is possibly the result of continued hydration of the cement. However, the recovery of 

permeability is insignificant even for a healing period of over 120 days. Compared to other 

cementitious materials like concrete, mortar and cement paste, the cement content in soil-

cement systems is relatively low, and their water content, void ratio, and pore space can be 

much higher. As a result, autogenic healing is unlikely to provide adequate self-healing 

capability for the aims of this study. 
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Figure 2.12 Hydraulic conductivity recovery of freeze-thaw exposed specimens after 

over 120 days of post-exposure healing period (Jamshidi and Lake, 2014). 

2.2 Air entrainment in concrete 

Air entrainment in concrete was discovered (by accident) in the 1930s (Du and Folliard, 

2005). The idea of air entrainment is that creating tiny air bubbles in concrete mixes relieves 

the internal pressure generated by water expansion during freezing. The freeze-thaw 

durability of concrete can be significantly improved by air entraining (Gokce et al., 2004; 

Shang and Yi, 2013). For example, Shang and Yi (2013) reported that the relative dynamic 

modulus of elasticity only decreased to 94.35 and 98.75 percent for C25 and C30 air-

entrained concrete after 100 cycles of freeze-thaw, while that of the plain concrete decreased 

to 64 percent. The mechanisms of air entrainment and the freeze-thaw process are still under 

investigation. The following sections, however, attempt to offer a critical review of the theory 

and hypothesis reported in the literature. 

2.2.1 Mechanisms of air entrainment to protect against freezing 

According to the hydraulic pressure theory proposed by Powers (1945), the formation of ice 

from liquid water, which experiences a 9% volume increase while freezing, produces an 

increase in hydraulic pressure. In concrete, this pressure expels free water into any 
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surrounding fissures or pore networks. In a fully saturated system without air entraining, the 

hydraulic pressure generated and the expanding pressure becomes high and causes cracking 

of capillary pores and expansion of fissures if the tensile stress reached the material strength. 

Powers (1945) suggested that the air pores in air-entrained concrete act as reservoirs that can 

receive water expelled from freezing sites and therefore relieve the pressure generated. This 

mechanism is presented in Figure 2.13, where the upper pressure distribution corresponds to 

the case wherein air pores act as reservoirs for the expelled water. The water that enters the 

air pores is subsequently depressurised and freezes instantaneously, as the air pressure inside 

the pores is approximately equal to atmospheric pressure.  

Another mechanism (Figure 2.13, lower pressure distribution) suggested by other researchers 

is the theory of microscopic ice lens growth (Powers and Helmuth, 1953; Coussy, 2005; 

Eriksson et al., 2018; Zuber et al., 2000). These researchers have suggested that larger air 

pores also act as cryo-pumps due to the inequilibria of chemical potential among ice, liquid 

water, and water vapor. The propagation of ice in the porous network was demonstrated 

theoretically by Scherer (1999, 1993) and has been observed in low-temperature calorimetry 

studies of ice formation in concrete (Zuber et al., 2000). These studies suggested that ice 

formed progressively in the porous network, starting with the largest water-filled pores 

during freezing and then propagating into smaller pores. The ice crystals in the larger pores 

then induced a negative liquid pressure in the vicinity of the confined ice crystals, creating a 

so called cryo-suction effect (Coussy, 2005; Eriksson et al., 2018; Penttala, 2009; Zeng et al., 

2016). As a result, water was sucked into the bigger pores from surrounding capillary pores.  

As a result of these two mechanisms, the excess hydraulic pressure in the freezing site is 

reduced. Consequently, the capillary pores and air pores do not suffer from breaking pressure 

as long as the excess water in the capillary pores can be expelled opportunely and the air 

pores have enough space to store the ice crystals. The building rate of excess hydraulic 

pressure therefore depends on the cooling rate compared to the capability of the pore 

network’s ability to drain extra liquid to nearby voids (Coussy, 2005). Therefore, the 

effectiveness of the air pores and the pressure level depends on the distance from the freezing 

site to the air pores, the permeability of the material, and the rate of ice formation. In terms of 

distance, it is well established that appropriately spaced entrained air pores significantly 

increase the freeze-thaw durability of concrete (Powers, 1949; Penttala, 2009). Powers (1949) 

proposed a spacing factor equal to the longest distance between each pair of adjacent air 

pores to estimate the efficiency of an air pore system. Several other spacing factors have been 
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proposed in the literature as well. The suggested value is generally smaller than 0.35–0.45 

mm (ASTM C457/C457M-16, 2016; Penttala, 2009). This spacing factor therefore requires 

air pores to be homogeneously distributed in the matrix.  

The spacing factor and pore size distribution can be assessed optically from a thin section test 

(Penttala, 2009). Moreover, the spacing factor to some degree reflects the minimum volume 

fraction that should be adopted in an air-entrained system. The relationship between air 

content and the durability factor of concrete is presented in Figure 2.14. In the general 

practice, air entraining requires the air pores to account for 3–7% of the concrete volume 

(ASTM C457/C457M-16, 2016). Penttala (2009) also suggested that the air content measured 

in normal concrete should exceed 4.5% in fresh concrete. A sufficient average value should 

be 5.5% if the distribution of the spacing factors is taken into consideration. However, air 

voids tend to decrease the compressive strength of concrete, with about a 5% reduction for 

each 1% increase in the volume of air voids (as shown in Figure 2.15) (Popovics, 1998). In 

terms of the size of the air pores, Penttala (2009) argued that the optimal diameter can range 

from 0.02–0.1 mm. Medium-sized air pores provide enough air space for ice formation, 

which can also hinder the capillary flow of water in concrete. In addition, a reasonable size 

air pore can minimise the strength reduction that air-entrained concrete usually suffers.  

 
Figure 2.13 Schematic illustration of the effect of air pores during the freezing of 

concrete (Eriksson et al., 2018; Zeng et al., 2016). Upper pressure distribution refers to 

the case where the air pore solely acts as a reservoir for the expelled water, while the 

lower distribution refers to the case where it also acts as a cryo-pump.  
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Figure 2.14 Air content vs. freeze-thaw durability of concrete (Cordon, 1967). 

 

Figure 2.15 Air content of concrete vs. compressive strength (Mohammed and Pandey, 

2015). 

2.2.2 Critical saturation ratio 

As is the case for the relationship between air content and the freeze-thaw durability of 

concrete, some researchers have suggested that the susceptibility of concrete to freeze-thaw 

damage is related to the degree of its saturation (Fagerlund, 1973; Li et al., 2012; Litvan, 

1988). This claim is based on the fact that freeze-thaw damage is generally caused by water 
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expansion during freezing, and saturated pores are more vulnerable to the freeze-thaw 

damage. To define the level of saturation at which freeze-thaw damage begins to initiate, 

researchers have suggested a critical degree of saturation (Scr). Once the degree of saturation 

exceeds Scr, damage to the material will occur during freeze-thaw action (Fagerlund, 1977, 

1973; Litvan, 1988). For soil-cement systems, Scr appears to be a more predictive metric than 

the concrete’s air content, as these systems are often exposed to an open freeze-thaw system 

where water or moisture can be absorbed into the soil-cement matrix. Li et al. (2012) 

suggested that the critical degree of saturation for concrete was 86-88%. In specimens that 

have a degree of saturation higher than 86–88%, damage can be observed after a few freeze-

thaw cycles. Therefore, as discussed in Section 2.2.1, the freeze-thaw resistance of the 

system depends on the quality of air distribution and the volume of the air in the concrete. 

Theoretically, assuming the water is completely frozen during freezing and the excess 

volume of water can be fully accommodated by the air pores, the volume of protective pores 

should be not less than 9% of the volume of the water.   

Although extensive research has been conducted on the air entrainment of concrete, no 

literature on the use of air entrainment in soil-cement systems exists. This lack of 

investigation may be due to the nature of soil-cement systems, which are considered to have 

relatively low strength and high initial porosity, and which are expected to endure more 

extreme environmental conditions than traditional above-ground concrete. As a result, the air 

entrainment of soil-cement system is more complex than for concrete, which necessitates that 

it be in a more controlled and smarter way. Nonetheless, the mechanisms and the successfully 

application of air entrainment in concrete provide insights for the development of soil-cement 

systems with high freeze-thaw resistance.   

2.3 Self-healing in cementitious materials 

2.3.1 Introduction 

Smart materials, are defined as the materials that have the instinctive capability to sense and 

respond to environmental conditions or stimuli. The development of smart materials has 

thrived in the past decades. Self-healing materials are man-made smart materials, which have 

the ability to repair themselves autogenously or with the minimal help of an external stimulus. 

The development of self-healing materials is inspired by the biological processes that 

commonly exist in nature. A typical example of the self-healing phenomenon is the damaged 

skins of living plants and animals, which can autonomously heal themselves (Wu et al., 2012). 
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Self-healing as defined by RILEM is ―any process by the material itself involving the 

recovery and hence improvement of a performance after an earlier action that had reduced 

the performance of the material‖ (de Rooij et al., 2013). Self-healing processes within 

cementitious materials can be generally divided into two categories: autogenic and autonomic. 

2.3.2 Autogenic healing 

Autogenic self-healing is a recovery process wherein a material can heal its own cracks by 

virtue of inherent components that are not specifically designed for self-healing. The self-

healing of cement-based materials is not a completely new concept. It was reported by the 

French Academy of Science as early as 1836, which documented self-healing in water 

retaining structures, culverts and pipes (de Rooij et al., 2013). Cement-based materials have a 

certain built-in capacity, termed autogenic healing, to fill and seal structural damage without 

any external operations and stimulus (Jacobsen et al., 1996; Ramm and Biscoping, 1998). As 

presented in Figure 2.16a, the causes of autogenic healing can be mainly divided into 3 

categories (de Rooij et al., 2013): physical, chemical, and mechanical.  

Physical healing is caused by the swelling of hydrated cement paste near the crack surface. 

However, the effect of the swelling is marginal. The effect typically only results in a fluid 

flow reduction of less than 10%.  

Chemical causes can be attributed to two underlying mechanisms. Firstly, continuing 

hydration is the main driving force for autogenic healing at the early age. This is due to the 

relatively high content of unhydrated cement. The continued hydration of cement commonly 

occurs in cementitious materials due to lack of water. When new hydration products are 

formed, they grow into the free space of the cracks, as the hydration products occupy about 

twice the space of the original cement grain (de Rooij et al., 2013; Ramm and Biscoping, 

1998). The most common hydration product is believed to be calcium silicate hydrate (C-S-

H). The generalised equations for its formation are: 

2Ca3SiO5 + 6H2O → 3CaO ∙ 2SiO2 ∙ 3H2O + 3Ca(OH)2                                        (2.1) 

2Ca2SiO4 + 4H2O → 3CaO ∙ 2SiO2 ∙ 3H2O + Ca(OH)2                                                              (2.2) 

Over time, the dissolution and subsequent carbonation of Ca(OH)2 becomes dominant (Hearn 

and Morley, 1997; Ramm and Biscoping, 1998). The associated chemical reaction process for 

CaCO3 is illustrated by Eqs. 2.3-2.5 (Qureshi and Al-Tabbaa, 2014; Wu et al., 2012): 

H2O + CO2 ↔ H2CO3 ↔ H
+
 + HCO3 

-
 ↔ 2H

+
 + CO3

2-
             (2.3)  
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Ca
2+

 + CO3
2-

 ↔ CaCO3 (pHwater > 8)                (2.4) 

Ca
2+

 + HCO3
-
 ↔ CaCO3 + H

+
 (7.5 < pHwater < 8)               (2.5) 

Besides these two chemical mechanisms, autogenic healing may also be induced by the 

swelling of the matrix and the filling of the crack due to debris or fine particles present in 

ingress water resulting from cracking. (Hua, 2010; Van Tittelboom and De Belie, 2013). 

Water is crucial for all autogenic self-healing because water is important for the all 

aforementioned processes (i.e., swelling, continued hydration, crystallisation of CaCO3, and 

transportation of fine particles). The overall degree of autogenic self-healing depends on the 

age of cementitious materials and the crack width. However, it has been widely documented 

that the regain of mechanical properties is slow and requires water-immersion for several 

weeks (Granger et al., 2007; Jacobsen and Sellevold, 1996). Moreover, it is rare for 

autonomic-healed specimens to fully regain their original mechanical properties. Therefore, 

the slow process and limited capacity of autogenic self-healing has led researchers to explore 

suitable engineered autonomic self-healing techniques.  

2.3.3 Autonomic healing 

As shown in Figure 2.16b, a recovery process that involves any engineered additions or 

measures intended to improve the self-healing capabilities of the materials is referred to as 

autonomic self-healing (Van Tittelboom and De Belie, 2013). For autonomic healing, any 

agent used to promote healing is engineered and cannot be found within the original materials. 

Currently, most literature in the field of civil and environmental engineering has focused on 

the self-healing of cementitious material. Many studies have shown promising results (Ahn 

and Kishi, 2010; Dry et al., 2003; Eigenbrod, 2003; Joseph et al., 2010; Kanellopoulos et al., 

2015; Kessler et al., 2003; Li et al., 1998; Qureshi et al., 2016; etc.). Chemicals in hollow 

tubes, chemical encapsulation, bacterial encapsulation, and mineral admixtures are four 

common applications for autonomic healing (Li and Herbert, 2012). Chemicals in hollow 

tubes are unsuitable for soil-cement systems like highway pavement projects and other deep-

mixing projects, so this application will not be considered in this study. Self-healing by 

bacterial encapsulation will also not be considered. Due to the nature of the freeze-thaw 

process, the survivability of bacterial in low temperature could be a problem. The other two 

categories, chemical encapsulation and mineral admixture and additives, are reviewed in the 

following sections.   
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(a) 

 

(b) 

Figure 2.16 Schematic representation of the mechanisms of (a) autogenic self-healing 

(de Rooij et al., 2013) and (b) autonomic self-healing (Souza, 2017). 

2.3.3.1 Capsule-based chemical self-healing 

In some studies, chemical healing agents are introduced to concrete via tiny microcapsules. 

An autonomic polymeric system embedded with microcapsules filled with healing agent and 

randomly dispersed catalyst was firstly proposed by (White et al., 2001). As shown in Figure 
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2.17, when damage (i.e. cracks) propagates in the self-healing system, the healing mechanism 

is triggered though the rupture of capsules and the release and reaction of healing agents in 

the damaged area. The behaviour of healing agents after release can be summarised via four 

categories (Van Tittelboom and De Belie, 2013): (1) The healing agents react upon contact 

with moisture or air or due to heating (Figure 2.18A,B); (2) the healing agents react upon 

contact with the cementitious matrix itself (Figure 2.18C,D); (3) the healing agents react 

when making contact with a second component present in the matrix (Figure 2.18E,F); (4) 

the healing agents react when making contact with a second component delivered by other 

capsules (Figure 2.18G,H).  

Various kinds of healing agents have been used in microcapsule-based self-healing systems. 

The healing agents used most-commonly to date include cyanoacrylate (CA), polyurethane, 

methyl methacrylate (MMA), epoxy resin, silicone, foam, sodium silicate (Na2SiO3) solution, 

bacterial solution, and expansive minerals. In Table 2.2, an overview of the most relevant 

properties of a variety of healing agents used for cementitious materials is presented. 

 

Figure 2.17 The concept of autonomic healing using microcapsules (White et al., 2001). 
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Figure 2.18 Microcapsule-based self-healing approaches. Reaction of spherical or 

cylindrical encapsulated agent while contact with: (A,B) moisture, or air, or due to 

heating; (C,D) the cementitious matrix itself; (E,F) a second component present in the 

matrix (small, light-coloured inclusions) or (G,H) a second component delivered by 

additional capsules (big, light-coloured inclusions) (Van Tittelboom and De Belie, 2013). 
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Table 2.2 Overview of the healing agents that have been reported in literature (adapted from Van Tittelboom and De Belie, 2013). 

Agent 

Number of 

components 
Viscosity 

(mPas) 
Way of curing Curing time 

Expansion Strength 

(MPa) 
References 

1 >2 Yes No 

CA √ – <10 Moist Seconds – √ 20 
(Li et al., 1998; Van Tittelboom and 

De Belie, 2010) 

Epoxy 

– √ 150 Contact component 30 min – √ 5.1 

(Van Tittelboom and De Belie, 2010) – √ 80 Contact component 30 min – √ 4.2 

– √ 360 Contact component 40 min – √ 45 

√ – – Contact component 3 days – √  (Wang et al., 2013) 

MMA 
– √ ±1 Contact component – – √ – (Yang et al., 2011) 

– √ 34 Contact component 1 h – √ 50 (Van Tittelboom et al., 2011) 

Polyacrylate – √ 7 Contact component 40 s – √ – (Van Tittelboom and De Belie, 2010) 

Polyurethane 
√ – 7200 Moist 40–180 min √ – – (Van Tittelboom and De Belie, 2010) 

– √ 600 Contact component 50–300 s √ – – (Van Tittelboom and De Belie, 2010) 

Foam √ – – – – √ – – (Dry et al., 2003) 

Na2SiO3 

solution 
√ – – Ca(OH)2 matrix, moist 

Several 

days/weeks 
– √ – 

(Giannaros et al., 2016; Huang and 

Ye, 2011; Kanellopoulos et al., 2015; 

Pelletier et al., 2010) 

Silicone √ – – Air – – √ – (Dry et al., 2003) 
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Colloidal silica √ – – Ca(OH)2 matrix, moist – – √ – 
(Kanellopoulos et al., 2015; Litina, 

2016) 

Na2SiO3 

powder 
√ – – Ca(OH)2 matrix, moist 

Several 

days/weeks 
– √ – (Mao, 2018) 

Ca(NO3)2 

solution 
√ – – Matrix – – √ – (Dry and Corsaw, 1998) 

Na2FPO3 

solution 
√ – – 

Hydration and 

carbonation products 
28 days – √ – (Sisomphon et al., 2011) 

Silica fume √ – – Ca(OH)2 matrix, moist – – √ – (Litina, 2016) 

MgO, 

bentonite, and 

quick lime 

– √ – 
Hydration, swelling and 

carbonation products 

28 days/ 56 

days 
– √ – (Qureshi et al., 2016) 
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Non-native organic healing agents like epoxy and MMA are less compatible with soil-cement 

matrices and may negatively affect hydration kinetics. Moreover, high water content and 

water ingress into soil-cement system during the freeze-thaw process may affect the 

functionality and durability of organic healing agents. In addition, organic healing agents can 

contaminate ground water sources if used in geotechnical applications. Therefore, more 

effective, durable healing can be expected in soil-cement systems with chemical agents like 

sodium silicate, as these healing products are more compatible with a cementitious matrix.  

Sodium silicate has been used in cements to improve early strength and density. In recent 

years, encapsulated sodium silicate solutions have been used in cementitious materials. Many 

studies have found these applications to lead to crack closure and considerable recovery of 

the material’s engineering properties (Giannaros et al., 2016; Huang and Ye, 2011; 

Kanellopoulos et al., 2015; Pelletier et al., 2010). Pelletier et al. (2010) encapsulated sodium 

silicate solution in PU microcapsules (40–800 μm) to concrete specimens and found that the 

2% (by volume) microcapsule-containing specimen showed 10–12% higher flexural strength 

recovery than the control samples. In a study performed by Huang and Ye (2011), sodium 

silicate solution was encapsulated within wax shells and embedded in concrete. As shown in 

Figure 2.19, the specimens with capsules exhibited significant recovery in terms of 

deflection capacity, stiffness, and flexural strength, and recovery efficiency increased with 

increasing concentration of sodium silicate solution. In terms of durability, Giannaros et al. 

(2016) reported that a 4% volumetric fraction of Lambson microcapsules containing sodium 

silicate solution reduced sorptivity by 15% after 7 days of healing compared to control 

samples. However, he also found that microcapsule-containing samples absorbed slightly 

more water than control samples after 28 day of healing. This observation is important, as 

greater water ingress can be detrimental for soil-cement systems subjected to freeze-thaw 

cycles. Kanellopoulos et al. (2015) encapsulated three liquid (sodium silicate, colloidal silica 

and tetraethyl orthosilicate) and one powdered (magnesium oxide) minerals in thin-walled 

soda glass capsules for cement-based composites. The researchers reported that crack area 

closure ranged from 85% to 100% for all mineral-treated samples cured in water and the 

measured reduction in both sorptivity and intrinsic gas permeability varied from 18% to 69%, 

depending on the parameter measured and the mineral type. Images showing self-healing of a 

prism with sodium silicate-containing capsules are presented in Figure 2.20. The researchers 

also suggested that colloidal silica and sodium silicate were more efficient and consistent 

healing agents and can thus be used more readily than the alternatives. The chemical 
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reactions for the healing action associated with each mineral are demonstrated in Eqs. 2.6–

2.9: 

Sodium silicate 

Na2SiO3 + Ca(OH)2 
+𝐇𝟐𝐎
→    x (CaO ∙  𝐒𝐢𝐎𝟐) ∙ H2O + Na2O     (2.6) 

Colloidal silica  

SiO2 + Ca(OH)2 
+𝐇𝟐𝐎
→    x (CaO  ∙  𝐒𝐢𝐎𝟐) ∙ H2O + Na2O                                                 (2.7) 

Ethyl silicates 

Si(OC2H5)4 + 4H2O 
𝐎𝐇−

→   Si(OH)4 + 4C2H5OH      (2.8) 

Si(OH)4 + Ca(OH)2 
+𝐇𝟐𝐎
→    x (CaO ∙  𝐒𝐢𝐎𝟐) ∙ H2O        (2.9) 

Qureshi et al. (2016) encapsulated expansive mineral powders (magnesium oxide, bentonite, 

and quicklime) for self-healing in cement-based mortars. In the study, mortar samples 

containing concentric macrocapsules with different mineral combinations were cracked and 

healed under three different curing regimes: ambient conditions, high humidity exposure, and 

immersion in water. The optimum healing efficiency, with ~95% crack sealing and ~25% 

strength recovery in 28 days, was found for samples immersed in water. 

 

Figure 2.19 Recovery of mechanical properties for sodium silicate-embedded self-

healing cement paste (Huang and Ye, 2011). 
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(a)                                                                     (b) 

Figure 2.20 Representative images from a prism with sodium silicate-containing 

capsules: (a) crack area on the day of cracking and (b) crack filled after 28 days of 

healing (note: the hashed band corresponds to 500 m) (Kanellopoulos et al., 2015). 

The encapsulation of sodium silicate solution as a healing agent in cementitious materials is 

reported to be a very promising technique. The reaction of calcium cations with dissolved 

sodium silicate, which leads to the crystallisation of excess sodium silicate, promotes the 

main mechanism of self-healing (Huang and Ye, 2011; Litinia and Al-Tabbaa, 2013). Sodium 

silicate can also react with calcium hydroxide produced by cement hydration to produce more 

C-S-H gel (the main hydration product in cement). Therefore, cracks can be filled and the 

cementitious material’s strength can be partially recovered (Huang and Ye, 2011; Pelletier et 

al., 2010). C-S-H gel is not only the main hydration product of cement, but also the main 

contributor to most of the engineering properties of cement paste. However, it should be 

noted that the C-S-H gel itself is not an intrinsically strong or stable material. It provides 

strength for cementitious materials by binding particles and forming continuous layers in the 

matrix (Thomas and Jennings, 2006). Calcium hydroxide is the by-product of cement 

hydration, which accounts for about 10% of the total volume of hydration products (Figure 

2.21). However, soil-cement systems with a relatively low cement content can have only a 

limited amount of calcium hydroxide available. As a result, although sodium silicate can 

increase the strength of soil-cement as more C-S-H gel is produced, it may not have great 
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potential for sealing cracks, as the volume of calcium hydroxide is limited in soil-cement 

systems. In addition, it should be noted that mechanical behaviours such as flexural strength 

and deflection capacity may be reduced for samples with capsules, as presented in Figure 

2.22 (Huang and Ye, 2011). The authors reported that the flexural strength and deflection 

capacity of specimens with microcapsules were reduced by approximately 27% and 40%, 

respectively, compared to control specimens.    

 

Figure 2.21 Relative volumes of major compounds during cement hydration (Baquerizo 

Ibarra, 2015; Tennis and Jennings, 2000). 

 

Figure 2.22 Mechanical behaviours of specimens with and without microcapsules 

(Huang and Ye, 2011). 
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The latest application of sodium silicate solution (Giannaros et al., 2016; Kanellopoulos et al., 

2017, 2016, 2015) as a healing agent for cementitious material was developed by the research 

group I am part of at the University of Cambridge. A microcapsule developed at the 

University of Cambridge, which usually consists of an outer shell and inner cargo material, is 

shown in Figure 2.23. Litina (2016) and Litina et al. (2014) studied a range of 

microencapsulation techniques, including interfacial polymerisation and microfluidic and 

hydrogel processing during in the production of microcapsules. These techniques were tested 

with a range of shell and cargo materials to assess their applicability to cementitious materials. 

They suggested that shell materials must have a suitable thickness, strength, and stiffness for 

it to rupture when a crack develops in the cementitious matrix, but not to break during 

processing or mixing. Gelatine, which meets these requirements, can be used as a shell 

material to provide a controlled triggering mechanism, as it is flexible when saturated and 

brittle when dried (Kanellopoulos et al., 2017). Cargo materials such as methyl-methacrylate, 

sodium silicate, silica gel, and magnesia can be adopted in these gelatine capsules. The 

microcapsules then can be mixed with the cementitious mixture and uniformly distributed in 

the matrix without rupturing. Site-specific autonomic control of repair can then be achieved 

by a damage-induced triggering mechanism. When the cracks propagate, the healing agent is 

released and diffuses into the damaged area via either gravitational forces, capillary forces or 

both. Thus, a sodium silicate solution encapsulated in a gelatine shell appears to be a 

promising capsule-based healing material for soil-cement systems. 

 

Figure 2.23 Diagram of the self-healing capsules developed at University of Cambridge 

(Al-Tabbaa and Kanellopoulos, 2014). 
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2.3.3.2 Mineral admixture and additives  

Mineral admixtures and additives are another type of self-healing technique used to improve 

the self-healing capabilities of cement-based composites. Researchers have added pozzolanic, 

expansive minerals, and latent hydraulic materials such as fly ash, bentonite, silica fume, 

blast furnace slag, and MgO to cement-based composites. These admixtures are added to the 

cement during mixing. When cracks propagate in the cement-based composite, the mineral 

admixtures at crack surfaces react with water to form healing products and fill the cracks. The 

mineral admixtures and additives studied in relevant literature can be generally categorised 

into four groups, as seen in Table 2.3: geo-materials, expansive additives, crystalline 

additives and silica-based additives. 

Table 2.3 Categories of mineral additives used for self-healing cementitious materials. 

Category Healing material Healing mechanism References 

Geo-

materials 

Bentonite Swelling after water 

absorption 

(Qureshi et al., 2016; Sivakumar 

Babu et al., 2001)  

Montmorillonite (Ahn and Kishi, 2010) 

Expansive 

additives 

Free lime 

React with water and 

the volume of the 

reaction products is 

larger than the 

admixture itself 

(Ahn and Kishi, 2010; Jiang et 

al., 2015; Litinia and Al-Tabbaa, 

2013; Qureshi et al., 2016) 

Calcium 

sulfoaluminate 

(CSA) 

(Ahn and Kishi, 2010; 

Sisomphon et al., 2013, 2012) 

Reactive 

magnesium oxide 

(Alghamri et al., 2018; Litinia 

and Al-Tabbaa, 2013; Mao, 

2018; Qureshi et al., 2016; 

Qureshi and Al-Tabbaa, 2016) 

Crystalline 

additives 

NaHCO3, 

Na2CO3 and 

Li2CO3, etc. 

Promote crystallization 

and sedimentation in 

the matrix of cement-

based materials. 

(Ahn and Kishi, 2010; Jiang et 

al., 2015; Sisomphon et al., 2013, 

2012) 

Silica-base 

additives 
Silica fume 

React with calcium 

hydrates and produce 

C-S-H gel 

(Jiang et al., 2015; Litinia and 

Al-Tabbaa, 2013) 
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The self-healing capability of geo-materials such as bentonite has been documented in 

geosynthetic clay liners (Sivakumar Babu et al., 2001). However, for self-healing cement-

based materials, geo-materials are usually added with other additives. Ahn and Kishi (2010) 

embedded geo-materials (mainly montmorillonite), expansive additives (CSA), and 

crystalline additives in concrete. The researchers argued that the best self-healing 

performance was induced by combining the swelling effect of geo-materials, the expansion 

effect of expansive additives, and the enhanced recrystallisation induced by crystalline 

additives within the cementitious matrix. They found that complete sealing of 0.15 mm 

cracks can be observed after a re-curing time of three days (Figure 2.24) for samples 

embedded with three additives while cracks was remained open after curing for 33 days if 

only geo-materials were incorporated.  

Recently, MgO has attracted attention as a potential self-healing material due to its expansive 

properties. When it reacts with water, MgO expands, giving it great potential to seal cracks, 

as shown in Eq. 2.10.  

MgO +H2O → Mg(OH)2                      (2.10) 

In the presence of moisture and CO2, brucite can yield one or more hydrated magnesium 

carbonates (HMCs) (Al-Tabbaa, 2013), as shown in Eqs. 2.11–2.13. The volume of MgO 

increases by 117% when it turns into brucite, Mg(OH)2, which is even higher than the 

equivalent volume increase for CaO (98%) (Mao, 2018). Moreover, the volume increase 

when brucite produces HMCs can be 80–210%, depending on the carbonate formed (Al-

Tabbaa, 2013; Mo et al., 2010). Another important advantage of MgO is that its reactivity can 

be controlled, depending on the type of MgO. Therefore, it can be used to mitigate the 

shrinkage of concrete (Mo et al., 2010).   

Mg(OH)2 + CO2 + 2H2O → MgCO3 ∙ 3H2O (nesquehonite)                               (2.11) 

and/or 

5Mg(OH)2 + 4CO2 + H2O → Mg5(CO3)4 (OH)2 ∙ 5H2O (dypingite)                   (2.12) 

and/or 

5Mg(OH)2 + 4CO2 → Mg5(CO3)4 (OH)2 ∙ 4H2O (dypingite)                               (2.13) 
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Most studies concerning the self-healing capability of MgO were conducted by previous 

researchers at the University of Cambridge (Alghamri, 2017; Alghamri et al., 2018; Litinia 

and Al-Tabbaa, 2013; Qureshi et al., 2016; Qureshi and Al-Tabbaa, 2016).  

In the study performed by Litina and Al-Tabbaa (2013), limestone, silica fume, and MgO 

were added as healing agents for cement paste, and considerable healing capability was 

reported. For example, 38% healing efficiency was observed for specimens with 10% MgO, 

and 80% healing efficiency was achieved for specimens with 30% limestone. Qureshi and Al-

Tabbaa (2014) performed a study to compare the self-healing performance of cement pastes 

containing MgO and/or bentonite and found that the optimum combination of minerals for 

self-healing was 5% MgO with 5% of bentonite. Qureshi and Al-Tabbaa (2016) investigated 

the self-healing performance of drying shrinkage cracks of Portland cement embedded with 

expansive MgO. They reported that the crack area reduction was about 74%–99% after 

between 14 to 56 days of healing, which was much higher than the control samples’ 43%–79% 

reduction for the same period. They also found that the addition of MgO improved the 

recovery of durability of PC in terms of gas permeability and sorptivity coefficients, as 

shown in Figure 2.25.  

Mineral additives and admixtures have shown great potential as self-healing agents in 

cementitious materials. However, if mineral additives are added directly to the mix in powder 

form, they can react immediately, leading to consumption of the healing agent, and thus a 

decrease in the final material’s self-healing efficiency. This may even cause further negative 

side-effects for the mechanical properties of cementitious composites (Ahn and Kishi, 2010; 

Qureshi and Al-Tabbaa, 2016). To tackle this problem, some researchers have recently 

suggested to granulate power active minerals and then further to encapsulate them via a 

coating process (Alghamri et al., 2018; Hung et al., 2013; Kishi, 2013; Lee and Ryou, 2016, 

2014).  
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Figure 2.24 Self-healing process of concrete containing expansive agents, geo-materials, 

and crystalline additives (Ahn and Kishi, 2010). 
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(a) 

 

(b) 

Figure 2.25 Permeability measurements of cracked, healed, and un-cracked control 

discs’ (Qureshi and Al-Tabbaa, 2016) (a) sorptivity coefficient and (b) gas permeability 

coefficients. M and N denote two types of MgO and the number that follow indicates the 

percentages of each type used in the mixtures. 
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2.3.3.3 Pellet-based self-healing 

Pelletising is the process of agglomerating fine powders or particles into pellets. The 

pelletisation theory was developed in the 1940s and the mechanism of pellet formation is 

presented in Figure 2.26. Figure 2.26a displays the moisturisation of dry particles. In this 

process, the sprayed liquid can be either water or an organic solvent or another binder. When 

the particles are rotated in a balling drum or disc, the particles and the liquid are made to 

bond via the centrifugal and gravitational forces caused by the rotation, forming spherical 

structures (Figure 2.26b-c). With a carefully chosen rotation speed and liquid spray rate, 

uniform pellets can be produced. The size, size growth rate, and density of the pellets can be 

controlled via the feeding rate of the binder as well as the speed and angle of the centrifugal 

motion. Figure 2.27 presents a schematic illustration of the pelletisation process using the 

fluid bed technique. The technique of pelletisation has been widely used for producing oral 

drugs (e.g., granules, pellets, tablets, and capsules) (Lavanya, 2011), as these types of pellets 

can lend drugs controlled-release properties. 

Considering these advantages, the pelletisation technique has significant potential in the 

development of self-healing materials. Other applications of the technique include the 

agglomeration of fly ash, cement, and so on. Meissner et al. (1964) pelletised zinc oxide and 

found that for particles with a diameter of 0.25 or fewer microns, density and crushing 

strength could be markedly increased for pellets formed from loose powder. Baykal and 

Döven (2000) pelletised fly ash to improve its engineering performance and found that the 

pelletised fly ash was satisfactory for geotechnical applications.  

 

Figure 2.26 Mechanisms of the formation of balls (Srb and Ruzickova, 1988). 
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Figure 2.27 Schematic illustration for the pelletisation process using the fluid bed 

technique (Glatt GmbH Binzen, 2005). 

Pellets containing healing agents such as reactive MgO, silica fume, and bentonite were used 

to lend self-healing properties to cement-based composites (Alghamri, 2017; Alghamri et al., 

2018). In the study, the core materials were coated with a polyvinyl alcohol (PVA) film layer 

and were released when cracked. Promising self-healing performance for cement-based 

composites has been reported with this technique. Alghamri (2017) reported that 70–100% 

healing of 300 µm cracks in cement-based composites was obtained by utilising two types of 

commercial pellets and two types of prototype pellets containing reactive MgO. Complete 

crack closure was confirmed via microscopic inspection. In terms of water sorptivity, the 

inclusion of MgO pellets reduced the water capillary uptake by 30–65% with respect to the 

control sample. A considerable improved flexural strength regain of 9–23% was also reported 

by Alghamri (2017).  

For healing agents in powder form, such as reactive MgO, Bentonite, lime (CaO), and cement, 

pellets represent an appropriate encapsulation technique. Pelletisation of cargo materials can 

be achieved by using a spray coating method. The thickness of the coating can be determined 

by the number of coating cycles the pellet is subjected to. Specific grading of pellets can be 

achieved by crushing pellets and sieving. Thus, the pellets can have dimensions comparable 

to grains of sand. This allows them to be easily mixed into cement grout and thus serve as a 

healing agent in soil-cement systems. Another advantage of pellets is that, as solid healing 

agents, they can release more healing materials into damaged matrix than encapsulated 

mineral solutions of similar size. In addition, pellets make it easier to ensure that healing 

agents are only released when triggered (e.g., by cracks or excess pressure induced by freeze-

thaw cycles).   
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2.4 SAPs in cementitious materials 

2.4.1 Introduction 

Superabsorbent polymers (SAPs) are cross-linked polymers that can absorb and retain a large 

amount of water within a few minutes and swell to form a soft, insoluble gel (F. Buchholz 

and A. Graham, 1998; Hwang and Damodaran, 1996; Snoeck et al., 2015). When water 

molecules are drawn into the polymer network across a diffusion gradient, the polymer chains 

are not able to straighten, as they are cross-linked. As a result, water molecules begin to fill 

the empty spaces within the network, causing the particles to expand. Figure 2.28 shows an 

example of the structure of a superabsorbent polymer and its reaction with water. 

 

Figure 2.28 Chemical structure of a synthetic polyacrylamide with potassium salt base 

superabsorbent polymer and its reaction with water (Mao et al., 2011). 

SAPs can generally be grouped into four categories based on the presence or absence of 

electrical charges located in the cross-linked chains (Zohuriaan-Mehr and Kabiri, 2008). The 

four groups of SAP include (i) Non-ionic, (ii) Ionic, which includes both anionic and cationic, 

(iii) Amphoteric electrolyte (ampholytic), containing both acidic and basic groups, and (iv) 

Zwitterionic (polybetaines), containing both anionic and cationic groups in each structural 

repeating unit. The majority of commercial SAP hydrogels are anionic.  

2.4.1.1 Water sorption ability of SAPs 

Water-absorbing ability varies for different types of SAPs. For a given SAP, water absorption 

depends on the properties of liquid, including its temperature, pressure, and ionic 

concentration of the aqueous solution. In deionised and distilled water, a SAP may absorb up 

to 1500 times its weight and can become up to 99.9% liquid. However, when added to a 0.9% 

saline solution, the SAP’s absorbency can drop to approximately 50 times its weight (V. 

Mechtcherine, 2012). Lee et al. (2016) found that the absorption of SAPs in deionised water 

can be greater than 500 g/g, while this value drops to 10–20 g/g in a typical concrete pore 
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solution. Figure 2.29 presents visual and schematic illustrations of acrylic-based anionic 

superabsorbent hydrogels in dry and water-logged states. The polymer chains are cross-linked 

and collapsed in the dry state, but when they encounter an aqueous medium, water molecules 

enter the polymer and the chains are forced to expand. However, the total absorbency and 

swelling capacity depend on the type and degree of cross-linked of the polymer and the 

properties of the water solution. Once water is absorbed by a SAP, it is held tightly in the 

polymer network via hydrogen bonding (Zohuriaan-Mehr et al., 2010). 

  

Figure 2.29 Illustration of a typical acrylic-based anionic SAP material and a schematic 

presentation of SAP swelling (Zohuriaan-Mehr and Kabiri, 2008).  
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2.4.1.2 Application of SAPs 

SAPs were originally developed in the late 1930s, and they are now widely used in personal 

disposable hygiene products such as baby diapers. The global production of SAPs was 

estimated to be about 3.12 million tons in 2014, which was up 11.8% from the previous year 

(Research in China, 2015). Recently, research on SAPs has been conducted on applications 

such as agricultural (soil conditioning, water reservoirs, erosion control) (Lejcuś et al., 2018; 

Mao et al., 2011; Sayyari and Ghanbari, 2012) and waste solidification. Another important 

SAP application that has attracted attention recently is the use of SAPs in cementitious 

materials. The goals of SAP applications in mortar and concrete projects can include (i) 

enhancing strength and workability (Justs et al., 2015; Ma et al., 2017); (ii) preventing drying, 

shrinkage, cracking, and internal curing (Mignon et al., 2017; Shen et al., 2016; Snoeck et al., 

2015); (iii) self-sealing and self-healing (Hong and Choi, 2017; Lee et al., 2010; Snoeck et al., 

2014, 2012); and (iv) improving freeze-thaw resistance (Craeye et al., 2018, 2013; Hasholt et 

al., 2015; Mechtcherine et al., 2017).  

2.4.2 Characteristics of SAPs 

2.4.2.1 Particle size of SAPs 

The size of SAPs can affect the microstructural properties of the cementitious materials they 

are added to. Four types of SAPs with median particle sizes of 197 m, 59 m, 140 m, and 

60 m were used by Farzanian et al. (2016) in cement pastes. Figure 2.30 presents the SEM 

images showing the morphology (irregular shape) of two kinds of SAPs used by Snoeck et al. 

(2015) with sizes of 100 ± 21.5 m and 477 ± 53 m respectively. Snoeck et al. (2014, 2012) 

added SAPs with irregular shapes and sizes of 477 ± 53 m to self-healing cementitious 

material. Some studies have found that SAPs with sizes of roughly 500m are ideal for 

promoting the self-healing and self-sealing of cementitious materials (Gruyaert et al., 2016; 

Snoeck et al., 2014, 2012).  
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Figure 2.30 SEM images of bulk-polymerised SAP A and SAP B used in (Snoeck et al., 

2015). The scale bar amounts 100 μm. 

2.4.2.2 Swelling characteristics of SAP 

The swelling ratio of an SAP depends on factors like the degree of cross-linking in the SAP, 

the chemical structure of the monomers constituting the SAP network, and the properties of 

the solution the SAP encounters, such as its pH, ionic concentration, and temperature (Peppas 

et al., 2000). The rate of swelling for SAP particles depends on the diffusion coefficient and 

diffusion path length of the polymer. It can range from less than one minute to several hours 

(F. Buchholz and A. Graham, 1998). Hong and Choi (2017) tested the swelling 

characteristics of SAP in a range of solutions that included distilled water, tap water, and a 

filtered cement pore solution. Figure 2.31 plots the changes in particle size with time in 

different types of solutions and shows that the swelling ratio varies with the properties of the 

solution such as pH and ion concentration. The authors also found that the SAP swelled to its 

maximum size in approximately 5 minutes, regardless of the type of solution. 
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Figure 2.31 Changes in the average size of an SAP added to different types of solutions 

over time (Hong and Choi, 2017). 

2.4.2.3 SAP absorption and desorption 

Absorption is one of the key properties of SAPs (Zohuriaan-Mehr and Kabiri, 2008). SAPs 

can absorb up to 1500 times their dry mass in water (V. Mechtcherine, 2012), and this 

process can take from less than one minute to several hours (F. Buchholz and A. Graham, 

1998). Similar to the SAP swelling ratio, SAP absorption depends on the type of SAP used 

and the ionic concentration of the aqueous solution (F. Buchholz and A. Graham, 1998; 

Kiatkamjornwong and Phunchareon, 1999). The typical absorption kinetics of SAPs exposed 

to distilled water and cement filtrate are presented in Figure 2.32a and Figure 2.32b, 

respectively. SAP absorption can be reduced by a factor of 25–50 by changing the solution 

from distilled water to an extracted cement pore solution (Craeye et al., 2018; Farzanian et al., 

2016). Many researchers have reported that calcium ions within the cement pore solution 

limit the SAP’s absorption and swelling capacity (Huber, 1993; Rha et al., 1999; Schweins 

and Huber, 2001; Zohuriaan-Mehr and Kabiri, 2008). In any case, the absorption of SAP was 

found to generally have stabilised after about 20 minutes. 

Many researchers have reported that the pH of the solution affects the absorption of SAPs, as 

shown in Figure 2.33 (Craeye et al., 2018; Gruyaert et al., 2016). However, the reduction of 

SAP absorption in an acid or alkaline solution does not necessarily mean that SAP absorption 
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is determined entirely by the pH of the solution. Most research does not discount the effect of 

non-acid and non-alkaline ions. For example, in a NaOH solution, Na
+
 ions can affect the 

absorption characteristics of SAPs in addition to (or instead of) OH
-
 ions. This notion is 

supported by Snoeck et al. (2014) as the authors reported that SAP absorption in solutions 

with similar pH values can differ greatly. For instance, the absorption value was found to be 

305 g/g in deionised water (pH = 6.5) but only 30 g/g in artificial seawater (pH = 6.3). In 

addition, it has been found that the reaction between SAPs and water is reversible. For 

example, SAP absorption decreased from 105 g/g in deionised and distilled water to roughly 

20 g/g when added to a 0.9% saline solution (Hwang and Damodaran, 1996). Lee et al. (2010) 

also reported that SAP absorption generally decreased with increasing saline concentration of 

the solution. Thus, for a given type of SAP, it is only certain that absorption depends on the 

ionic concentration of the solution and that absorption generally decreases with increasing 

ionic concentration. However, this effect may vary for different types of SAPs. According to 

the reaction presented in Figure 2.28, it is possible that the kinds of ion that limit SAP 

absorption depend on the electrical charge of the SAP (anionic or cationic). In this regard, 

this process is comparable to recrystallisation. 

Another key feature of SAPs is that they can release absorbed water when dried. This process 

is called desorption. Typical desorption behaviour for SAPs is presented in Figure 2.34. 

Saturated SAPs exhibit almost linear weight loss for the first 100 minutes, but the rate of loss 

decreases noticeably thereafter. This is because the water near the surface of the SAP is held 

in place mainly by weak van der Waals forces, while the water closer to the core of the SAP 

held in place mainly by strong hydrogen bonds formed between the side chains of the 

polymer (Yun et al., 2017). 
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(a) 

 

(b) 

Figure 2.32 Absorption of SAPs in (a) distilled water and (b) an extracted cement pore 

solution, where SAP1, SAP3, and SAP4 are made of sodium salts of a crosslinked 

polyacrylic acid, and SAP2 is a potassium salt of a crosslinked polyacrylic acid-

polyacrylamide copolymer (Farzanian et al., 2016). 
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Figure 2.33 SAP absorption for a range of pH levels (Craeye et al., 2018). 

 

Figure 2.34 Desorption kinetics of SAPs (Yun et al., 2017). 

2.4.3 Self-healing applications of SAPs 

Due to their water absorption and swelling characteristics of SAPs, the polymers have shown 

potential for use in cementitious materials as self-healing agents and sealants (Gruyaert et al., 

2016; Hong and Choi, 2017; Lee et al., 2010; Snoeck et al., 2016). In most applications, 

SAPs are added directly to the cementitious mixture. The healing mechanism of SAP-
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embedded concrete was investigated by Lee et al. (2010) and is shown in Figure 2.35. The 

authors reported that the SAP swelled at a relatively small amount in a fresh cementitious 

mixture due to its highly alkaline environment. The water held within the SAPs was available 

for cement hydration later during the curing process. As the water was drawn out, the SAPs 

shrank and left behind voids near them (Figure 2.35a). When cracks propagated within the 

matrix, they tended to intersect the SAP particles and the voids nearby (Figure 2.35b). When 

the matrix was exposed to water, it penetrated the cracks and thus was absorbed by the SAPs. 

This caused the SAPs to expand, therefore clogging the crack (Figure 2.35c). This absorbed 

water was eventually released into the cementitious matrix for further hydration. The stored 

water therefore enhanced autogenic self-healing and had the potential to contribute to various 

other mechanisms of autonomic self-healing as well. 

 

Figure 2.35 Schematic representation of a potential healing mechanism using SAPs (Lee 

et al., 2010). 

The crack sealing capability of SAPs offers great potential for structures whose water-

tightness is of great importance. The typical self-sealing behaviour of a crack can be observed 

in Figure 2.36, which shows that cracks become water-tight after 28 wet-dry cycles. The 

crack sealing capability of SAPs embedded in cementitious materials depends on several 

factors such as the type, size, and dosage of SAPs. Hong and Choi (2017) reported that if 

SAPs are split by a crack, their swelling capacity is less than that of intact SAPs. Other 

factors such as curing condition and initial crack width also affect the crack sealing 

performance of concrete with SAPs. It has been found that the best healing is observed in 

samples subjected to wet-dry cycles (Hong and Choi, 2017; Snoeck et al., 2016, 2014). By 

using X-ray-computed microtomography, Snoeck et al. (2016) reported that the degree of 

healing increased in each sample according to the following order: REF (control) < (RH > 
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90%) < (SAP RH = 60%) < (SAP RH > 90%) < (REF wet/dry) < (SAP wet/dry). A reduction 

in water leakage/flow due to crack sealing has also been reported by many other researchers 

(Hong and Choi, 2017; Lee et al., 2016; Mignon et al., 2015). The typical reductions in water 

permeability for mortars embedded with SAPs are presented in Figure 2.37. Finally, it has 

been found that sealing efficiency reduces as crack width increases (Lee et al., 2016; Pelto et 

al., 2017). 

 

Figure 2.36 Images of crack before and after 28 wet-dry cycles (Gruyaert et al., 2016). 
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Figure 2.37 Water permeability results for mortars with and without addition of SAPs 

(Mignon et al., 2015). Length values between brackets show the range of crack widths. 

2.4.4 SAPs used for improving freeze-thaw resistance 

Research on the applications of SAPs for improving the freeze-thaw resistance of 

cementitious materials is relatively new. Most of the available literature has reported that 

adding SAPs in cementitious materials improves their freeze-thaw resistance (Craeye et al., 

2018, 2013; Hasholt et al., 2015; Mechtcherine et al., 2017). However, some literature has 

found that SAPs can serve as alternatives for air entrainment agents (Craeye et al., 2018), 

while other studies have suggested that SAPs used in concrete do not provide sufficient 

freeze-thaw durability on their own (Jones and Weiss, 2014).  

Regardless, the ability of SAPs to improve the freeze-thaw resistance of concrete can be 

attributed to three possible mechanisms. First, it is reported that the addition of SAPs may 

lead to an increase in the UCS of concrete (Craeye et al., 2018). If SAPs are added directly to 

concrete without additional water, they will absorb some water during mixing even though 

their ability to absorb water in an alkaline environment is limited. As a result, water/cement 

ratio is reduced, which could lead to higher freeze-thaw resistance. 
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Second, some studies have suggested that SAPs can act as air-entraining agents in concrete, 

as polymers can contain surfactant-like materials. Figure 2.38 presents the results of air 

content measurements in fresh mixtures. Mechtcherine et al. (2017) sumarised the works 

from 12 participants and posited that the additon of SAPs does not lead to additional air 

entrainment for fresh mixtures like the air-entraining agents. They suggested instead that the 

improved freeze-thaw resistance could be attributed solely to the continuous reaction of the 

SAPs at a later curing stage.  

Finally, the polymers also have the ability to gradually release absorbed water during the 

concrete’s hardening and hydration processes, thereby reducing the number of desiccation 

cracks in the concrete (Lee et al., 2016, 2010). In this process, the SAPs’ volume decreases as 

water is released, and small pores are created. These pores therefore serve as pressure vessels 

like the air voids introduced by air entraining. This is considered to be a major cause for the 

improved freeze-thaw resistance SAP additives produce in cementitious materials (Craeye et 

al., 2018, 2013; Hasholt et al., 2015; Mechtcherine et al., 2017). Figure 2.39 presents 

backscattered electron images of cement pastes containing 1% of 3 types of SAPs. The SAP 

voids can be easily differentiated from entrapped air voids, which are spherical and empty. 

Craeye et al. (2018) reported that small cavities in the concrete with diameters between 190 

mm and 370 mm were created by the addtion of SAPs. The size of the SAP voids ranged 

from 10 m to over 500 m, depending on the initial size of the dry SAP and the amount of 

swelling that occurred in the paste during mixing (Gruyaert et al., 2016; Lee et al., 2016, 

2010). The effects of SAP on the air content of hardened concrete was investigated by Riyazi 

et al. (2017), whose results are summarised in Table 2.4a-b. The authors reported that a 0.5% 

addition of SAP resulted in an air content (6%) similar to that provided by a 0.07% addition 

of air-entraining agents.  

It has been found that if SAP is added with additional water, the improvement in the freeze-

thaw resistance of concrete is insignificant. However, when SAP is added directly without 

additional water, the concrete’s performance subjected to freeze-thaw was improves to a level 

similar to that achieved by conventional air entrainment (Mechtcherine et al., 2017). At the 

same time, the reduction in strength due to the addition of SAP is less than that caused by 

conventional air entrainment. Moreover, it should be noted that during the freeze-thaw 

process, no water was made available for the concrete to absorb. However, a soil-cement 

system is very likely to absorb extra water during the freeze-thaw process. As a result, SAPs 
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in soil-cement systems not only provide air entrainment, but also can serve as sealing agents 

when water enters the cracks induced by freeze-thaw cycles. 

Table 2.4 (a) SAP concrete mix proportions and (b) bubble counter data (Riyazi et al., 

2017). 

(a) 

 

(b) 
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Figure 2.38 Air content in fresh concrete (Mechtcherine et al., 2017). 

 

Figure 2.39 Images (BSE) of 5-day-old cement pastes at 0.36 water/cement ratio 

containing 1% of 3 types of SAPs. Micrographs highlight the size, shape, and 

distribution of (1) SAP voids, (2) collapsed SAP particles, and (3) entrapped air, as well 

as the microstructure of the SAP/cement paste interface (Lee et al., 2010). 
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2.4.5 Effect of SAP addition on the engineering properties of cementitious materials  

The effect of SAPs on the engineering performance of cementitious materials depends on a 

variety of factors such as the type, dosage, and absorption/desorption behaviour of the SAPs, 

as well as the water/cement ratio of the mixture (Reinhardt et al., 2008; Sikora and Klemm, 

2015). Table 2.5 summarises the effects of different types and dosages of SAPs on the 

engineering properties of cementitious materials.  

The main effect SAPs have on the engineering properties of cementitious materials relates to 

strength properties. As shown in Table 2.5, strength was generally reduced by the increased 

addition of SAPs for cementitious materials (Farzanian et al., 2016). In addition, the 

influence on the compressive strength of cement pastes was more noticeable at lower 

water/cement ratios than higher water/cement ratios (Farzanian et al., 2016; Mignon et al., 

2015). However, it should be noted that in most of the studies reporting a strength reduction 

following SAP addition, additional water was added to the cementitious mixture to 

compensate for its decreasing workability. Thus, this reduction in strength may be due to the 

increased water/cement ratio of the mixture. Craeye et al. (2018) reported that if no additional 

water is added to soak the SAPs, the compressive strength of the concrete increases by 10% 

and 20% following the addition of 0.13% and 0.26% SAPs, respectively. If the SAP is added 

directly without additional water, the effect on strength is twofold. On one hand, SAPs can 

reduce autogenous shrinkage and improve hydration. This is achieved by releasing water into 

the surrounding area for hydration at later age. On the other hand, during the hydration of 

cement, water is released from swollen SAPs, causing a significant volume reduction and 

leaving macro/micro voids in the matrix, thereby reducing the strength of the concrete 

(Farzanian et al., 2016). In addition, the water absorbed by SAPs may not be completely 

released during hydration, which can affect the strength of cementitious materials. It should 

also be noted that if SAPs are added directly, the workability of the cementitious mixture can 

be considerably reduced, which can affect the degree of mixing (Craeye et al., 2018; Snoeck 

et al., 2016). Per Table 2.5, the amount of SAPs added to self-healing cementitious material 

falls generally in the range of 0.06% to 2%.  
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Table 2.5 Changes in strength properties and air content of cementitious materials with different dosages of SAPs. 

Reference Type of SAP 
Dosage 

(%) 

Additional 

water 

Change of UCS 

(%) 

Reduction of 

flexural 

strength 

Change of air 

content 

(%) 

(Riyazi et al., 2017) 
Partial sodium salt of cross-linked 

polypromancic acid 

0.06 

No 

0.1 

NA 

+4 

0.12 -10 +4.4 

0.25 -17 +4.5 

0.5 0.1 +5.2 

1 -6.1 +6.8 

2 -29 +13.7 

0.06 

YES 

-0.1 +1.8 

0.12 -0.1 +2.9 

0.25 -10 +3 

0.5 -21 +5 

1 -32 +5.4 

2 -34 +5.3 

(Hong and Choi, 2017) 
Spherical SAPs (polyacrylate-co-

acrylamide) 

0.5 Yes -21 NA NA 

1 Yes -44 NA NA 

(Lee et al., 2016) 
Sodium polyacrylate or  potassium 

polyacrylate-co-acrylamide 

5 Yes -87.1 NA NA 

13 Yes -87.4 NA NA 
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(Mignon et al., 2015) In-house synthesized SAP 

0.5 
Yes -26.3 -1.5 

+ 4.0 to 6.6 
No +0.5 +10.4 

1 
Yes -52.0 -25.4 NA 

No -10.3 +0.6 NA 

(Farzanian et al., 2016)  
Sodium salts of crosslinked polyacrylic 

acid 

0.3 No -23.0 +31.5 NA 

0.6 No -45 +26.1 NA 

(Craeye et al., 2018) 

Bulk polymerized, covalently 

cross-linked acrylamide/acrylic acid 

copolymers 

0.13 

No 

+10 

NA 
+0.5 (in fresh 

paste) 0.26 +20 

(Gruyaert et al., 2016) 
Cross-linked copolymer of acrylamide 

and acrylate 

0.5 
Yes 

-25 2.5 NA 

1 -47 18 NA 

Note: the dosage of SAPs is the ratio to the cement mass and the change of parameters is referenced that of the plain mix without SAP. 
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2.5 Concluding remarks 

Soil-cement systems are widely used in infrastructure projects and many other engineering 

practices to improve the engineering properties of soils. However, the engineering properties 

of soil-cement systems can be substantially degraded by freeze-thaw cycles. This durability 

problem substantially impairs the sustainability of soil-cement systems and raises their 

maintenance and repair costs. 

The behaviour of soil-cement systems subjected to freeze-thaw cycles was described in 

Section 2.1. Relevant literature documents show the freeze-thaw durability of soil-cement 

systems can be affected by factors such as cement content, water content, number of freeze-

thaw cycles, freezing temperature, and curing conditions. However, even though the freeze-

thaw durability of soil-cement systems is better than that of unstabilised soil, the degradation 

in engineering properties like strength, structure, and hydraulic conductivity is still significant. 

There is no widely accepted understanding of the mechanism of the behaviour of soil-cement 

systems subjected to freeze-thaw cycles. Moreover, although various methods have been used 

to improve the freeze-thaw resistance of soil-cement systems, no totally satisfactory 

technique has been proposed. As a result, more effective techniques for improving the freeze-

thaw resistance of soil-cement system are necessary. 

Air-entraining techniques for concrete have provided insights for improving the freeze-thaw 

resistance of soil-cement systems. However, the precise mechanisms underlying air 

entrainment and the freeze-thaw process are still the subject of investigation. Section 2.2 

presented a critical review of relevant theories and hypotheses reported in the literature. The 

entrained air pores act either as reservoirs that can receive the expelled water from the 

freezing sites or as cryo-pumps to suck water from capillary pores. By these two mechanisms, 

the excess hydraulic pressure created by the freezing of water can be relieved. As long as the 

air pores have enough space to store the ice crystals, the matrix will not suffer from breaking 

pressure. Therefore, the effectiveness of air entraining relies on having enough volume and a 

sufficiently homogeneous distribution of air pores. In addition, a critical saturation ratio has 

been proposed to determine the susceptibility of concrete to freeze-thaw damage. However, 

to date, there has been no literature written on the use of air entrainment in soil-cement 

systems. Due to the qualities that separate soil-cement systems from traditional concrete 

projects, a more carefully administered air-entraining system will likely be needed for soil-

cement systems. 
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Section 2.3 reviews the research and applications on the nature-inspired concept of self-

healing materials, with a specific focus on cementitious materials. Both autogenic and 

autonomic self-healing materials are able to heal themselves within their matrix, which is 

particularly helpful when damage is not visible or accessible. Another big advantage of self-

healing mechanisms is that they can only be triggered when damage occurs. Various healing 

agents and self-healing techniques intended for cementitious materials, such as capsule-based 

self-healing, mineral admixtures and additives, and pellet-based self-healing were reviewed. 

Many researchers reported considerable recovery of mechanical properties and crack closure. 

Among all the possible options, capsule-based self-healing and pellet-based self-healing 

appear to be the most promising for soil-cement systems subject to freeze-thaw cycles. This 

is because their triggering mechanisms can be very carefully controlled. However, to date, 

there has been little work on self-healing applications for soil-cement systems. Those systems 

and relevant applications pose different, more challenging problems than typical concrete 

projects. This suggests that a successful marriage may require a complete rethink of how to 

design such smart (self-healing or self-immune) systems. 

Finally, the properties of SAPs, their applications in self-healing and their suitability for 

improving the freeze-thaw resistance of cementitious materials were reviewed in Section 2.4. 

SAPs can absorb large amounts of water and swell when mixed with a cementitious mixture. 

The polymers also have the ability to gradually release the absorbed water during the 

hardening and hydration of cement. As a result, small pores are created, which can serve as 

pressure vessels similar to air voids created by air entraining. Moreover, when cracks 

propagate within the matrix, the SAP particles can swell in the presence of water, clogging 

the cracks. This water can eventually be released into the cementitious matrix to enhance 

autogenic self-healing and the reaction of various kinds of autonomic self-healing. However, 

SAPs have not yet been studied in soil-cement systems with regards to either to promote self-

healing or to improve freeze-thaw resistance.     

As a result, the following chapters aim to fill the gaps in the existing research by detailing the 

development of novel ―smart‖ soil-cement systems that can withstand freeze-thaw cycles. 

Various agents, including Lambson microcapsules, LUVUMAG MgO pellets, SikaAer
®
 

Solid microcapsules, and SAPs are incorporated into soil-cement systems to serve this 

purpose. 
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 Materials and Experimental Methods Chapter 3

This chapter describes details of the raw materials, sample preparation and experimental 

methods and procedures adopted in this study. 

3.1 Materials 

3.1.1 Soil-cement systems 

Several soil-cement systems with different cement contents were used in this study. Polwhite 

E China Clay and sand were used in producing the model soil-cement systems. The sand used 

is the fine sharp sand with a maximum particle size of 2 mm, D10 of 0.18 mm, D60 of 0.425, 

coefficient of uniformity of ~2.4 and coefficient of curvature of ~0.95. The particle size 

distribution for the sand is presented in Figure 3.1. The sand can be classified as poorly 

graded clean sands (Table 3.1). Polwhite E China Clay used is a high quality medium 

particle size kaolin with specific gravity of 2.6 that produced from deposits in the south west 

of England (Richard Baker Harrison Ltd, 2011). All the clay particles passing the 300 mesh 

(0.045 mm aperture) and >65% of clay particles’ diameter is smaller than 10 microns 

(Richard Baker Harrison Ltd, 2011). The model soil produced in this study composed of 85% 

sand and 15% clay by weight. According to the unified soil classification system (USCS) 

(ASTM: D2487-17, 2017), the soil used is classified as a clayey sand. As for the cement, high 

strength cement CEM-I 52.5N complying with BS EN 197-1, supplied by Hanson Limited, 

UK was used throughout this study. Images of the sand, clay, and cement used are shown in 

Figure 3.2. 
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Figure 3.1 The particle size distribution curve of the sand used. 

    

(a)                                                      (b)  

    

(c) 

Figure 3.2 Image of the (a) sand, (b) clay, and (c) cement used. 
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Table 3.1 Soil classification chart (ASTM: D2487-17, 2017). 

 

3.1.2 Additives and admixtures 

A range of different additives and admixtures were used in this study to develop both self-

healing and self-immune soil-cement systems subjected to freeze-thaw cycles. Their detailed 

description is given in the following subsections. The microscopic images of the additives 

and admixtures presented in this chapter were taken using a Leica DM2700 optical 

microscope.  

3.1.2.1 Lambson microcapsules 

Microcapsules, containing sodium silicate, manufactured by the industrial partner Lambson 

Limited were used as one of the healing agents for self-healing soil-cement systems in this 

study (Figure 3.3). The microscopic image taken by Leica DM 2700 upright optical 

microscope (Figure 3.3c) is presented in Figure 3.3a. The full production procedure as well 

as microcapsule characterisation is given by Kanellopoulos et al. (2017). The Lambson 

microcapsules consisted of a gelatine/gum Arabic blend shell materials and encapsulated 

sodium silicate in an oil emulsion. The encapsulated cargo consisted of 41% sodium silicate, 

55% mineral oil and 4% emulsifier. The microcapsules had an average diameter of ~200–300 

μm and the shell thickness was 5–20 μm and a density of 0.98 g/cm
3 

(Kanellopoulos et al., 

2016). Before being added into the soil-cement mixtures, the Lambson microcapsules were 

first collected from the preserving solution in which they were stored and then extracted and 

washed by using water, filter paper and a vacuum pump.  
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(a)                                                                     (b) 

 

(c) 

Figure 3.3 Images of the Lambson microcapsules used (a) as observed by a Leica 

DM2700 optical microscope and (b) as observed by the naked eye; and (c) Leica DM 

2700 upright optical microscope used. 

3.1.2.2 LUVOMAG MgO Pellets 

Commercial pellets, LUVOMAG MgO pellets, supplied by Lehmann & Voss, Germany were 

used in this project to develop self-healing soil-cement systems subjected to freeze-thaw 

cycles. LUVOMAG MgO pellets were well studied by Alghamri (2017) and used to develop 

a self-healing concrete, which has shown promising results. An image of the MgO pellets is 

presented in Figure 3.4. The physical properties and chemical compositions of the 

200 μm 
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LUVOMAG MgO pellets are given in Table 3.2. The particle size is 1–2 mm and the density 

is 3.25 g/cm
3
.  

 

Figure 3.4 LUVOMAG MgO pellets used in the study. 

Table 3.2 Chemical composition and properties of LUVOMAG MgO pellets. 

Chemical composition (%) 
CaO SiO2 Al2O3 Fe2O3 MgO Na2O TiO2 K2O 

3.10 2.47 0.41 1.75 91.76 0.03 0.03 0.04 

Loss on ignition LOI (%) = 4.83 

Reactivity* (seconds) = 288±6  

* As measured in laboratory by the chemical reactivity test, detailed in Section 3.1.3. 

 

3.1.2.3 SikaAer
®

 Solid Microcapsules 

SikaAer
®
 Solid (SS) microcapsules supplied by Sika Deutschland GmbH were used for 

developing self-immune soil-cement systems subjected to freeze-thaw cycles. SS 

microcapsules, with size range of ~5–80 µm, consist of prefabricated air bubbles with an 

elastic acrylonitril-polymer envelope/shell. Thus, they can provide a controlled air-

entrainment. They have a density of 0.2 g/cm
3
. Optical microscope and scanning electron 

microscope (SEM) images of SS microcapsules are presented in Figure 3.5.  

1 cm 
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(a)                                                                     (b) 

Figure 3.5 Images of the SikaAer
®
 Solid microcapsules used in this work (a) an optical 

microscopic image and (b) a SEM image. 

3.1.2.4 Super absorbent polymer (SAP) 

SAP A supplied by BASF Chemicals, Germany, a copolymer of acrylamide and sodium 

acrylate with particle size ~100 µm, and a density of ~0.75 g/cm
3
 was used in this study for 

the development of self-immune soil-cement system subjected to freeze-thaw cycles. 

According to the suppliers’ information, the polymers have irregular particle shapes as they 

were produced via the bulk polymerisation technique, followed by crushing into single 

particles. The images taken with an optical microscope as well as under SEM are presented in 

Figure 3.6.  

  

(a)                                                                     (b) 

Figure 3.6 Images of the BASF SAP A used in this study (a) observed under an optical 

microscope and (b) an SEM image. 

 

50 μm 

200 μm 200 μm 

100 μm 
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3.1.3 Chemical reactivity of the MgO pellets 

The chemical reactivity of LUVOMAG MgO pellets was measured as the time required for 

neutralisation of an acidic solution using an accelerated reactivity test as described in Shand 

(2006) and Jin (2014). A 5 g sample of the LUVOMAG MgO pellets, was reacted with 100 

ml of 1 mol/l acetic acid solution in addition to 300 ml of distilled water. The acidic solution 

with distilled water was kept stirring at a constant speed of 1000 rpm before and after the 

LUVOMAG MgO pellets were added. A digital pH meter was used to monitor the pH level 

with time and the reactivity was expressed as the time in seconds required for MgO to 

completely neutralise the acid (i.e., pH=7). 

3.1.4 The tea bag method for the sorptivity of the SAP 

The tea bag method (Gruyaert et al., 2016; Mechtcherine and Reinhardt, 2012) was used to 

measure the absorption characteristics of SAP. Dry SAP powders were placed into a 

permeable bag, where a known quantity (Msap, dry) was weighed before being submerged in 

the liquid. The permeable bag with the SAP was then submerged into an excess amount of 

solution and the weight of the wet SAPs (Msap, wet) was measured every minute for the first 10 

minutes. After 10 minutes, Msap, wet was measured for every 10 minutes until 100 minutes 

were reached to ensure the equilibrium. The Msap, wet was measured after the excess solution 

with the tea bag was removed. The SAP absorption is calculated according to Eq. 3.1. It has 

been suggested by Snoeck et al. (2012) that the fluid held by capillary forces between SAP 

particles cannot be removed thus leading to a small overestimation of the absorption capacity 

of SAP. However, SAPs used in this project were all directly mixed with soil-cement 

mixtures, where capillary forces also exist in this real situation. The method’s precision has 

been suggested to be around ±3.5% (Zohuriaan-Mehr and Kabiri, 2008). 

                                   SAPabsorption (g/g) = (Msap, wet - Msap, dry)/ Msap, dry                            (3.1) 

3.1.5 Preparation of cement pore solution 

The cement pore solution was produced with a water/cement ratio of 1.67, which is the 

water/cement ratio of soil-cement system with 25% water content and 15% cement content. 

As shown in Figure 3.7, 300 g of cement and 500 g of water was mixed firstly and then 

filtrated by using filter paper, filtration funnel, glass flask, and a vacuum pump.  
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Figure 3.7 Production of cement pore solution. 

3.2 Preparation of test specimens 

The model soil produced in this study composed of 85% sand and 15% clay. Three cement 

contents, 10%, 15% and 20% were used and the corresponding water/cement ratio used were 

2.5, 1.67 and 1.25, respectively. Samples containing the different agents (e.g. microcapsules, 

pellets and SAPs) and varying dosages were prepared. Different mix designs were prepared 

and details of mixing proportions are summarised in Table 3.3. Sample identification 

involves concatenation of the (i) mix cement content; (ii) agent used (L refers to Lambson 

microcapsules, P refers to LUVOMAG MgO pellets, S refers to SikaAer
®
 Solid and SAP 

refers to SAP A); and (iii) dosage of the agent. For instance, C10L10 represents a 10% 

cemented soil sample containing Lambson microcapsules that have been added at 10% with 

respect to the cement mass. Control mixes are identified with its cement content (e.g. C10).   

Raw materials including Portland cement, Polwhite E China Clay, sand and agents were 

mixed in an automatic mixer as shown in Figure 3.8a. A constant mixing time of 10 minutes 

was used to control the degree of mixing. Samples with a height of 100 mm and diameter of 

50 mm were prepared using plastic cylindrical moulds (Figure 3.8c) while disc samples with 

a height of 10 mm and diameter of 50 mm were prepared by using silica gel moulds (Figure 

3.8d). A vertical cut was created on the side of the plastic cylindrical moulds and a thin layer 

of Vaseline was spread on the inner wall in order to facilitate the demoulding process. The 
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soil-cement mixture was poured into to the plastic mould in 3 layers and the samples were 

oscillated for 2 minute for each layer in order to provide a uniform, adequate and similar 

compaction for each sample as shown in Figure 3.8b. As a result, relatively uniform samples 

with similar density can be made for each series of mix. Control samples and self-

healing/self-immune samples with agents were both prepared. All specimens were mixed in a 

standard laboratory environment with a temperature of 21°C (±2°C) and 50% (±10%) relative 

humidity (RH). Triplicate samples were prepared for each case to ensure repeatability.  

Table 3.3 The compositions of soil-cement mixes prepared. 

Mix ID Mix composition ratios/mass (%) 
Agent 

 Sand Clay Cement Water 

C10 

85 15 

10 

25 

- 

C15 15 - 

C20 20 - 

C10LX
*
 10 

Lambson microcapsules C15LX
*
 15 

C20LX
*
 20 

C15PX
*
 15 

LUVOMAG MgO pellets 
C20PX

*
 20 

C10SX
*
 10 

SikaAer
®
 Solid 

C15SX
*
 15 

C15SAPX
*
 15 SAP A 

Note: all the percentage in this table are proportional to the total mass of soil solid; and 

(*) X represented the dosage of the agent to the cement mass in corresponding mix. 
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(a)                                                                (b) 

    

(c)                                                                (d) 

Figure 3.8 (a) The automatic mixer, (b) samples vibrated on a vibrating table, (c) a 

plastic mould for the soil-cement samples, and (d) a silica gel mould for the disc samples. 

3.3 Curing conditions for sample preparation, freeze-thaw exposure and self-

healing 

All specimens were placed in a high humidity environment of 97% (±3%) RH and with a 

temperature of 21°C (±2°C) for curing. Before testing, specimens were generally cured for 7 

days. A high humidity was chosen for curing because soil-cement systems under frost attack 

are generally surrounded by moist soil with high humidity. The high humidity was achieved 

by placing specimens in plastic box containers, which contained 20 mm gravel at the base, 
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saturated to 15 mm with water to maintain humidity, as shown in Figure 3.9a. A relatively 

constant and high RH also prevents the potential effect of wet-dry exposure. As for the self-

healing curing, self-healing samples were allowed to self-heal for a certain period after a 

corresponding number of freeze-thaw cycles. The self-healing curing condition is the same 

with that of sample preparation. 

Damage scenarios under different numbers of freeze-thaw cycles were performed to 

specimens. The freeze-thaw curing was conducted as per ASTM: D560/D560M-15 (2015). 

During the freeze-thaw curing, each freeze-thaw cycle consisted of 24 hours of all-round 

freezing at -25°C (±1°C) and 23 hour of thawing in a room temperature of 21°C (±2°C). It 

should be noted that under the thawing process, the samples were treated in an ambience with 

a moist condition of 97% (±3%) RH so that it can absorb moisture from the atmosphere. 

During both freezing and thawing, samples were placed on absorbent pads and free potable 

water was made available under the absorbent pads (open system). The freeze-thaw curing of 

samples is presented in Figure 3.9b-c. Many studies reported that the physical properties of 

cemented soil stabilise after 8 to 10 freeze-thaw cycles (Wang et al., 2016; Wang et al., 2017). 

Therefore, most of the samples in this test experienced up to 10 freeze-thaw cycles unless for 

samples highly durable to freeze-thaw deterioration.  

 

(a) 
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(b)                                                                (c) 

Figure 3.9 (a) The curing tank with 97% (±3%) RH, (b) the freezer used in the 

experiments, and (c) samples in a thawing tank. 

3.4 Fresh properties of soil-cement  

3.4.1 Isothermal calorimetry 

A Calmetrix I-Cal 2000 HPC High Precision Isothermal Calorimeter (Figure 3.10a) 

compliant with ASTM: C1679-14 (2014) was used to measure the heat of hydration for soil-

cement samples incorporating agent additions. Heat evolution associated with endothermic or 

exothermic reactions can be measured by isothermal calorimeter. Isothermal calorimetry is an 

excellent technique to investigate the cement hydration process by quantifying the heat 

transfer. In this study, it was used to evaluate the influence of addition of pellets, 

microcapsule and SAPs on the hydration process of the soil-cement mixes. The total soil 

added is 40 g and the quantities of cement, water, and agents used were according to the 

composition of soil-cement mixtures mentioned in Section 3.2. For example, mix C15S1.67 

contains 34 g of sand, 6 g of clay, 6 g of cement, 10 g of water, and 0.1 g of SikaAer
®
 Solid 

microcapsules. Testing began by setting the thermostat to 23°C and left to stabilize for 24 

hours. Pre-conditioning of the cement powder and water took place for 2 hours before all 

ingredients were mixed together for one minute using a plastic spoon. After mixing, the 

plastic spoon was left inside the sample cup during testing to avoid loss of testing mixtures. 

Logging of the heat of hydration and the cumulative heat production was carried out for 48 

hours. A typical relationship between the thermal power released and the time since mixing is 
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given in Figure 3.10c. The peak power PP was then calculated as the maximum power (first 

peak) minus the power during the induction period (first trough). The initial setting time was 

then calculated as the time at one-third of the peak power (Figure 3.10c). Duplicate samples 

were tested for each mix and plots of cumulative energy released were also analysed.  

       

(a)                                                                (b) 

 

(c) 

Figure 3.10 (a) the Calmetrix I-Cal 2000 HPC High Precision Isothermal Calorimeter 

used, (b) a laptop connected for data logging, and (c) typical relationship between 

thermal power and time for cement hydration samples (Nelson, 1990). 
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3.4.2 Workability 

To determine the effect of adding self-healing and self-immunity agents on the flow 

characteristics of the fresh soil-cement mixes, flow table tests were conducted according to 

BS EN 1015-3:1999. The flow table apparatus used was supplied by Controls Group (Figure 

3.11). The truncated conical mould (larger base at the bottom) with its funnel was set 

centrally on the disc of the flow table. The soil-cement mix was poured into the mould in two 

layers, each layer being compacted by 10 short strokes of the tamper to ensure uniform filling 

of the mould. When the mould was filled with soil-cement mixture, excess soil-cement was 

skimmed off with a palette knife. The disc was then carefully cleaned of any paste or water. 

After 15 seconds, the mould was lifted vertically and the disc with fresh soil-cement mixture 

was jolted 15 times at a constant frequency of one per second to spread out the paste. Finally, 

the diameter of the paste spread was measured in three directions at each angle of 120° and 

the average was calculated to the nearest mm. The test was replicated for each mix.  

 

Figure 3.11 The flow table equipment used. 
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3.5 Experimental methods to verify self-healing and self-immune performance 

and mechanisms of soil-cement systems subjected to freeze-thaw cycles 

After being cured for a specific period (7 days), samples were demoulded and labelled. 

Laboratory tests were conducted on laboratory modelled soil-cement samples. The 

experimental programme for the self-healing and self-immunity performance of all soil-

cement mixes after freeze-thaw cycles is presented in Table 3.4 and Table 3.5, respectively. 

To verify the self-healing capabilities, after a certain number of freeze-thaw cycles (e.g. 10 

freeze-thaw cycles), the samples were allowed to self-heal for a certain period of time (e.g. 7, 

14, 28, and 60 days). The highest number of freeze-thaw cycles carried out depends on the 

cement content of a mix. For instance, C10, C15 and C20 mixes are subjected to up to 4, 10 

and 12 freeze-thaw cycles, respectively. As for the healing period, the Lambson samples were 

healed for 7 days as its healing rate is relatively fast. On the contrary, the healing rate of MgO 

pellets samples is relatively slow hence their healing period was prolonged to up to 90 days. 

Unconfined compressive strength (UCS) was determined for both cylindrical (with 50 mm in 

diameter ×100 mm high) samples embedded with Lambson microcapsules and MgO pellets. 

Hydraulic conductivity test were carried on MgO pellets samples as MgO pellets are 

anticipated to have the potential to seal cracks. Splitting tensile test, optical microscopic 

analysis, gas permeability and microstructure analysis of extracted samples were also 

conducted on disc (with 50 mm in diameter ×10 mm high) MgO pellets samples to verify the 

self-healing capabilities. 

As for the self-immune soil-cement samples (with SS microcapsules and SAP), their 

engineering properties were investigated and their performance was compared with the 

control samples that subjected to a same amount of freeze-thaw cycles (e.g. 0, 1, 5, and 10 

freeze-thaw cycles). The self-immunity capability of soil-cement systems were verified by 

various testing techniques. Volume measurement, moisture content, dry density, porosity, 

UCS, and hydraulic conductivity were conducted on cylindrical samples. Disc samples were 

used for tensile splitting and optical microscopy analysis. Small cubes of 3 mm×3 mm×3 

mm were used for high-resolution X-ray computed microtomography (CT) to investigate 

the microstructure of samples.   

Further details of the experimental programme for different soil-cement systems are 

presented in the second section of Chapters 4–6.  
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Table 3.4 Experimental programme for investigating the self-healing performance of soil-cement specimens. 

Specimen type Agent 

Cement content 

(% by soil 

weight) 

Number of 

freeze-thaw 

cycles 

Healing period (days) 

0 7 14 28 60 90 

 Cylinder: (Ø50×100) 

mm  

- 

10 0, 1, 2, 3, 4 UCS UCS - - - - 

15 0, 1, 5, 10 UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC 

20 0, 1, 5, 12 UCS UCS - - - - 

Lambson 

10 0, 1, 2, 3, 4 UCS UCS - - - - 

15 0, 1, 5, 10 UCS UCS - - - - 

20 0, 1, 5, 12 UCS UCS - - - - 

MgO pellets 
15 0, 1, 5, 10 UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC 

20 0, 1, 5, 12 UCS UCS - - - - 

Disc: (Ø50×10) mm 

 

- 20 0, 1, 5, 10 
ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

MgO pellets 20 0, 1, 5, 10 
ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

ST, OM, 

MA, GP 

Note: The samples are initially cured for 7 days before testing. UCS: Uniaxial compressive test; ST: Splitting tensile test; HC: hydraulic 

conductivity test; OM: Optical microscopic analysis; GP: Gas permeability; MA: Microstructure analysis of extracted samples. 
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Table 3.5 Experimental programme for investigating the self-immunity performance of soil-cement specimens. 

Specimen type Agent 
Cement content 

(% by soil weight) 

Number of freeze-thaw cycles 

0 1 5 10 20 

Cylinder: (Ø50×100) mm  

 

- 

15 

UCS, HC UCS, HC UCS, HC UCS, HC - 

SikaAer
®
 Solid UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC 

SAP UCS, HC UCS, HC UCS, HC UCS, HC UCS, HC 

Disc: (Ø50×10) mm 

 

- ST, OM ST, OM ST, OM ST, OM - 

SikaAer
®
 Solid ST, OM ST, OM ST, OM ST, OM OM 

SAP ST, OM ST, OM ST, OM ST, OM OM 

Cube: (~3×3×3) mm 

 

- CT CT    

SikaAer
®
 Solid CT CT    

SAP CT CT    

Note: The samples are initially cured for 7 days before testing. UCS: Uniaxial compressive test; ST: Splitting tensile test; HC: hydraulic 

conductivity test; OM: Optical microscopic analysis; CT: high resolution X-ray computed microtomography. 
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3.5.1 Volume, water content and dry density 

The diameter and length of the samples were measured by electronic vernier callipers as 

shown in Figure 3.12. Each dimension was measured in three directions at each angle of 

120 °  to obtain average values at the nearest 0.1 mm. Debris collected from uniaxial 

compressive strength test was dried in an oven at a temperature of 110°C (±5°C) to a constant 

mass. The loss of mass due to drying is considered to be water in the soil-cement specimen 

(ASTM: D2216-10, 2010). The water content was calculated using the mass of water and the 

mass of the dry specimen. Figure 3.13 presents the electronic balance and the oven used for 

water content measurement. The dry density of soil-cement samples was determined by using 

the direct measurement described in ASTM: D7263-09 (2009).  

         

Figure 3.12 Dimension measurements. 
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(a)                                                                          (b) 

Figure 3.13 Water content measurements using (a) electronic balance for weight 

measurements, and (b) oven for drying the samples. 

3.5.2 Porosity test 

It is commonly believed that the volume and porosity of the soil increase after experiencing  

freeze-thaw cycles if the soil does not consolidate (Xie et al., 2015). Many researchers 

suggested that the freeze-thaw resistance of concrete is highly related to the degree of 

saturation (Fagerlund, 1975, Li et al., 2011). As a result, the variation in porosity, degree of 

saturation and air content of self-healing and self-immune soil-cement systems were 

investigated. In this work, the porosity, degree of saturation, and air content  of the specimens 

were calculated according to ASTM: D7263-09 (2009).  The porosity (n) is the ratio of the 

volume of voids to the total volume of the soil: 

𝒏 =
𝑽𝐯

𝑽
=
𝑽−𝑽𝒔

𝑽
= 𝟏−

𝛒𝒅

𝟏𝟎𝟎𝟎𝑮𝐬
                                     (3.2) 

The degree of saturation (Sr) is the ratio of the volume of water to the total volume of the 

void space: 

 𝑺𝒓 =  
𝑽𝒘

𝑽𝒗
=
𝒘𝑮𝐬

𝒆
× 𝟏𝟎𝟎%                                        (3.3) 

The air content (A) is the ratio of the volume of air to the total volume of the soil-cement: 

                                               𝑨 =
𝑽𝐚

𝑽
= (𝟏 − 𝑺𝒓)𝒏 × 𝟏𝟎𝟎%                                (3.4) 
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where, 

ρd = dry density of the soil-cement specimen, kg/m
3
, as determined by the method described 

in Section 3.5.1, 

w = water content of soil-cement specimen, %, as determined by the method described in 

Section 3.5.1, 

n = porosity, %, 

e = n/(1-n), void ratio,  

𝑆𝑟 = degree of saturation, %, 

Vv = volume of voids in soil-cement specimen, cm
3
, 

Vs = volume of solids in soil-cement specimen, cm
3
, 

Vw = volume of water in soil-cement specimen, cm
3
, 

Va = volume of air in soil-cement specimen, cm
3
, 

V = volume of soil-cement specimen, cm
3
, 

A = air content of soil-cement specimen, %. 

Gs = specific gravity of soil solids in soil-cement specimen, 

The specific gravity of the soil-cement particles (Gs) was determined by the test method in 

ASTM: D854-10 (2010). The soil-cement debris was collected after UCS tests and was oven 

dried for at least 24 hours. The debris were then crushed (Figure 3.14a) so that all the soil-

cement solids pass the 4.75 mm (No. 4) sieve. At the start of the test, the mass of the 250 mL 

pycnometer and the mass of it containing 250 mL of de-air water were measured. About 50g 

of the dried and crushed soil-cement solids were weighted to nearest 0.01 g before transferred 

into the 250 mL dry pycnometer with a funnel. Soil particles remaining on the funnel was 

rinse into the pycnometer by using a wash/spray squirt bottle. Soil-cement slurry was then 

formed by adding more water into the pycnometer until the water level is between 1/3 and 1/2 

of the depth. After that, the soil-cement slurry was boiling for at least 2 hours after it came to 

a full boil (Figure 3.14b), and agitation was adopted if necessary. Finally, the pycnometer 

was carefully filled with de-aired water to its 250 mL capacity after the pycnometer and the 
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soil-cement slurry cooled down to 20℃. The mass of pycnometer with water and soil-cement 

solids at the test temperature (20℃) were recorded.  

The specific gravity of the soil-cement particles (Gs) is calculated by 

                                             𝑮𝒔 =  
𝝆𝒔

𝝆𝒘
=

𝑴𝐬

𝑴𝒑𝒘−(𝑴𝒑𝒘𝒔−𝑴𝐬)
                                   (3.5) 

where: 

Mpw = mass of the pycnometer and water at 20℃, g, 

Mp = the mass of the dry pycnometer, g, 

Vp = the volume of the pycnometer, mL, 

ρw = the density of water at 20℃ = 0.99821 g/mL, 

ρs = the density of the soil solids g/cm
3
, 

Ms = the mass of the oven dry soil solids (g) and,  

Mpws = the mass of pycnometer, water, and soil solids at 20℃, g. 

      

(a)                                                                        (b) 

Figure 3.14 (a) Mortar and pestle and, (b) boiling the soil-cement slurry on a 

thermometric device. 
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3.5.3 Strength properties 

3.5.3.1 Uniaxial compressive strength (UCS) test 

The strength of soil-cement systems may suffer a great degradation due to the freeze-thaw 

cycles. In this project, the UCS was determined in triplicates based on ASTM: D4219-08 

(2008) by using a Controls Testing Uniframe 70-T0108/E loading frame as presented in 

Figure 3.15. Cylindrical samples of diameter 50 mm ×100 mm height were used in this test. 

A plastic bag was used to surround each sample so as to avoid contaminating the surrounding 

environment. The UCS test was then started by applying a constant axial strain rate of 1% per 

minute until failure. The UCS was determined from the axial load at failure in relation to the 

initial cross sectional area of the test sample as presented in Eq. 3.6. The secant modulus E50 

can also be determined from the stress-strain curve. Regain in mechanical properties 

including UCS and stiffness of self-healing soil-cement can also be studied.   

                                                                  𝒇𝒄 = 
𝑷𝒎𝒂𝒙

𝑨
                                                          (3.6) 

 

Figure 3.15 Sample tested by Uniframe 70-T0108/E Control Machine. 

3.5.3.2 Splitting tensile strength test 

The tensile strength of specimen directly reflects the adhesion and bonding between the soil-

cement particles. Consequently, this parameter can help to examining the effect of freeze-



95 | P a g e  

thaw cycles on self-immune soil-cement systems and the healing mechanism of self-healing 

soil-cement samples. Splitting tensile strength tests were carried out following ASTM: 

C496/C496M-11 (2011). Hardened soil-cement discs of 10 mm depth and 50 mm diameter 

were used in this test. Triplicate discs were tested for each series of mix. The soil-cement disc 

was placed in the testing machine as shown in Figure 3.16. The loading was applied by using 

the same machine used for the UCS test. The peak load (F) was recorded in N, and the tensile 

strength is determined using Eq. 3.7: 

                                                                𝝇𝒕 =
𝟐𝑭

𝝅𝑳𝒅
                                                              (3.7) 

Where, 𝜎𝑡 = tensile splitting strength (N/mm
2
), L = the length of the contact line of specimen, 

and d = diameter of the cylindrical specimen. 

 

Figure 3.16 Splitting tensile test setup. 

3.5.4 Hydraulic conductivity k 

The water permeability depends primarily on the average size of the pores, which in turn is 

related to the distribution of particle sizes, particle shape and soil structure. As a result, the 

water permeability reflects the water tightness, cracking status and the change of void ratio of 

self-healing and self-immune soil-cement systems after freeze-thaw cycles. In this work, the 

hydraulic conductivity k of the specimens was measured according to ASTM: D5084-16 

(2016) (Flexible-wall method). Soil-cement cylinders with diameter of 50 mm and height of 
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100 mm were used in this test. The specimen tested was positioned on the pedestal at the base 

of a permeameter with a porous stone and paper filter placed at both ends of the sample. A 

latex rubber membrane was secured over the sample with O-rings and the permeameter was 

sealed closed and filled with water as shown in Figure 3.17. De-air water was used as the 

permeating liquid and duplicate samples were tested.  

The constant rate of flow method (method D) was adopted as the water permeability of soil-

cement sample is relatively low and method D generally requires the shortest period of time. 

Cell pressure of 400 kPa was used and maintained throughout the test. The samples were left 

to reach equilibrium at this cell pressure with the inlet and outlet taps open to the atmosphere 

overnight to allow any consolidation to take place and any build-up of pore water pressure to 

drop to zero. After that, a constant flow of water was induced using a peristaltic pump 

connected to the base of the sample flowing to the top of the sample. A transducer was 

connected to the inflow pipe to measure the pore water pressure generated and the pressure 

was recorded by a data logger taking readings every five minutes. When a constant flow rate 

was achieved the volume of water discharged and time interval was recorded. The vertical 

permeability (k) of the sample is calculated using Darcy’s Law:  

𝒌 =
𝑸×𝛄𝒘×𝐋

𝑨×𝑼
                                                                  (3.8) 

where: k = coefficient of permeability, Q = quantity of water discharged per unit time, γw = 

unit weight of water, L = length of the sample, A = cross-sectional area of the sample, and U 

= pore water pressure (as meters of head). 
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(a) 

 

(b) 

Figure 3.17 Permeability testing: (a) the permeameters, peristaltic pumps, pressure 

transducers and data loggers used, and (b) a schematic set-up for permeability test 

(courtesy of Controls Group). 

Peristaltic pumps 

Pressure 

transducers 

Data logger 

Permeameters 
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3.5.5 Gas permeability test 

The gas permeability of soil-cement specimens also reflects the tightness of specimens as the 

air permeability depends on the distribution and area of cracks as well as volume of voids. 

The gas permeability test was carried out on disc samples to measure the change in gas 

permeation performance after freeze-thaw exposure and self-healing. Gas permeability using 

liquid methanol as the gas source is one of the easiest and fastest way to measure the gas 

permeability. Cylindrical disk specimen of 10 mm thick and 50 mm diameter was prepared 

and used in the test. Gas permeability tests were conducted on soil-cement discs after a 

certain number of freeze-thaw cycles and samples that has been self-healed for a certain 

period (e.g. 7, 14, 28, and 60 days). The schematic illustration and the experimental setup of 

the test are shown in Figure 3.18.   

   

(a)                                                                            (b) 

Figure 3.18 The gas permeability tests: (a) a schematic illustration of the experimental 

setup for the gas permeability test (Yang et al., 2011), and (b) the gas permeability test 

set-up used. 

The liquid methanol gas source based technique was used to evaluate the gas permeability 

coefficient as described by and (Yang et al., 2011). Discs were fixed with epoxy sealant at the 

top of the glass pressure cells containing methanol, which were immersed in a 40℃ water 

bath (Figure 3.18b). The mass loss with time was recorded in predefined time intervals until 

a steady-state loss was reached. The air permeability coefficient (ka) is calculated using the 

following equations (Yang et al., 2011): 
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𝒌𝒂 = 𝜶
𝑳

𝑨
𝒎∗                                                        (3.9) 

𝜶 = 𝟐𝜼𝑻𝑹𝒖
𝑷𝟐

𝑷𝟏
𝟐−𝑷𝟐

𝟐                                               (3.10) 

where L= the length of the sample (m), A = the cross-sectional area perpendicular to the 

direction of flow (m
2
), m* = the rate of mass loss (g/hr), and α is a constant for methanol in a 

particular temperature and pressure difference calculated from η = the dynamic viscosity 

(Ns/m
2
), T= the absolute temperature (K), Ru = molecular weight X universal constant (8.3 

J/mol K for methanol, P1 = the inlet pressure (N/m
2
), and P2 = the outlet pressure (N/m

2
). 

3.5.6 Optical microscopy and image analysis 

Optical microscopy was used in the surface analysis of self-healing and self-immune soil-

cement samples. Surface analysis using light optical microscopy can provide insights for the 

damage formation during freeze-thaw exposure by comparing control and self-immune soil-

cement samples. Cylindrical disk specimens with 10 mm thick and 50 mm diameter were 

prepared for this purpose. A Leica LED2000 optical microscope (Figure 3.19) was used to 

observe crack width induced by the freeze-thaw cycles. Crack healing of self-healing soil-

cement samples was also observed by the optical microscopy. Physical crack sealing is an 

important factor in the self-healing process and is a primary indicator for monitoring its 

progress. The crack distribution, width, length and area, chemical and mineral admixtures 

distribution as well as the products of self-healing can be identified. This test also enables 

visualization of crystal deposition and the determination of healing rate. Images were taken 

by the microscope in several spots (e.g. 5 spots) on a disc sample and image analysis software 

was used to analyse the acquired data. The crack formation after freeze-thaw cycles as well as 

the crack healing was analysed. The crack formation after a certain number of freeze-thaw 

cycles can be calculated by: 

𝑪𝑨 (%) =
∑𝑪𝑨𝒊

∑𝑨𝒊
                                                      (3.11) 

where, 

CA = the crack percentage of soil-cement after subjected to a certain number of freeze-thaw 

cycles, CAi = the crack area calculated on the spot i and 

Ai = the total area of spot i. 



100 | P a g e  

Moreover, the crack-healing efficiency will be evaluated by the percentage of the crack area 

closure over time, CH (%) using the following equation: 

𝑪𝑯 (%) =
∑𝑪𝑨𝒊−∑𝑯𝑨𝒊

∑𝑪𝑨𝒊
                                        (3.12) 

Where, HAi = the crack area calculated after a certain healing period.  

       

Figure 3.19 The Leica LED2000 optical microscope used to measure and monitor cracks. 

3.5.7 Microstructural analysis 

3.5.7.1 Preparation of samples 

Thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDX) tests were employed to characterise the healing 

products formed as well as the microstructure of self-healing and self-immune soil-cement 

samples. For TGA, the debris of the samples with different healing period were collected and 

were ground to the fineness of 75 μm. For SEM and EDX test, small chips of about 5 mm 

thickness were collected for all the samples. All the samples used in TGA and SEM tests 

were dried in the oven at 60°C for at least 24 h and then kept in the vacuum desiccator until 

the time of testing. 
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3.5.7.2 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDX) 

The scanning electron microscope (SEM) was used to characterise the microstructural surface 

morphology of the self-healing soil-cement specimens and energy dispersive X-ray 

spectroscopy (EDX) was used to study the elemental composition. The breakage of 

embedded capsules was visualised by this test and the healing mechanism and triggering 

mechanism (freeze-thaw action) can be better understood. Small chipped pieces were 

carefully collected from the soil-cement specimens that were tested to failure during strength 

tests. The samples were mounted onto metal stubs using carbon paste and coated with gold 

film to ensure good conductivity prior to SEM testing. Phenom Pro X Desktop SEM as 

shown in Figure 3.20 was used. Samples were scanned and images were captured at different 

magnifications. EDX was carried out at the same time to determine the chemical composition 

of the material interested.  

 

Figure 3.20 The Phenom Pro X Desktop scanning electron microscope (SEM) used. 

3.5.7.3 Thermogravimetric analysis (TGA)  

TGA of extracted powder was carried out using a Perkin Elmer STA 6000 (Figure 3.21). 

TGA measures weight, temperature, and temperature change with precision while heating the 
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samples. During the TGA test, small amount of the collected powder (20±2 mg) was 

introduced into the ceramic crucible. After that, the sample was heated up from 30℃ to 

1000℃ at a constant rate of 10 ℃/min. Thermogravimetric and DTG (first derivative of the 

thermogravimetric data) curves were obtained by plotting normalised sample weight (%) with 

sample temperature (℃ ). Different materials were identified based on their thermal 

characteristics in DTG.  

 

Figure 3.21 The Perkin Elmer STA 6000 thermogravimetric analysis system used.  

3.5.8 High-resolution X-ray computed microtomography (CT) 

High-resolution X-ray computed microtomography (CT) is an experimental method that 

uses X-rays to create cross-section of a physical object, which can be used to reconstruct a 

virtual model (3D model) without damaging the original object. High-resolution X-ray CT 

provides high-resolution scanning results as the pixel size of the generated cross-sections are 

in the micrometre range. As a result, the microstructure of the soil-cement samples can be 

examined and revealed by the CT. The X-ray CT scanner used in this study was the Nikon 

XT H 225 ST industrial CT scanning apparatus (Figure 3.22). This apparatus had 225 kV 

microfocus X-ray source with 3 µm focal spot size. Thus, it was able to produce high-

resolution cross-sections of the soil-cement samples with 3 micron spot size. The obtained 

resolution is an important factor to consider and the resolution of the image obtained was 
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2000×2000 pixels. Larger objects were imaged at a lower magnification and consequently at 

an inferior resolution than smaller samples. Therefore, the soil-cement samples used in the 

CT scan has a size of 3 mm×3 mm×3 mm as previously presented in Table 3.5. Control 

samples as well as samples embedded with SS microcapsules or SAPs were scanned. 

Duplicates were tested for each series of mix. 

 

Figure 3.22 Nikon XT H 225 ST industrial CT scanning apparatus used. 
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 Development and Performance of Self-healing Soil-Chapter 4

cement Systems using Microcapsules and Pellets subjected to 

Freeze-thaw Cycles  

4.1 Introduction  

This chapter details attempts to develop a self-healing soil-cement system subjected to freeze-

thaw cycles. Based on the previous research reviewed in Chapter 2, two different materials, 

microcapsules (produced by Lambson) and LUVOMAG MgO pellets, were added to soil-

cement mixes, and their self-healing capability was investigated. These two healing materials 

were both proven to be effective for applications in cementitious materials such as concrete, 

mortar, and cement paste (Giannaros et al., 2016; Mao, 2018; Alghamri, 2017). Details of the 

Lambson microcapsules and MgO pellets were provided in Section 3.1.2. As reviewed in 

Chapter 2, the Lambson microcapsules were selected as a healing agent for soil-cement not 

only because they can survive the mixing process intact, but also because they break easily in 

hardened cementitious materials upon their intersection by a crack. Their cargo material, 

liquid sodium silicate in an oil emulsion, reacts with the cement hydration product calcium 

hydroxide to form C-S-H gel. LUVOMAG MgO pellets were also selected, as they have a 

huge potential to provide good sealing capability for the cracks generated by the freeze-thaw 

cycles. The presence of water in the freeze-thaw-induced cracks can initiate and enhance the 

healing process for the MgO pellets. 

This chapter describes a range of tests (including isothermal calorimetry tests, unconfined 

compression strength tests, tensile tests, optical microscopy tests, hydraulic conductivity tests, 

and gas permeability tests) that were performed to verify and quantify the self-healing 

capability of healing agents. Furthermore, a series of microstructural analysis techniques 

were used to characterise the healing products formed by the agents in order to reveal their 

self-healing mechanism. Scanning electron microscopy (SEM), energy-dispersive X-ray 

spectroscopy (EDX), and thermogravimetric analysis (TGA) were used for this purpose.  

4.2 Materials and mix proportions  

Soil-cement mixes, with and without healing materials, were prepared and Table 4.1–4.2 

shows the mix constituents and nomenclatures. Details regarding the preparation of the soil-

cement samples and curing conditions were given in Section 3.3. Soil-cement mixes 

containing sand, clay, cement, water and varying quantities of the Lambson microcapsules 
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and LUVOMAG MgO pellets were prepared. The soil-cement specimens were prepared with 

three cement contents, namely 10%, 15% and 20%, and with corresponding water-to-cement 

ratios of 2.5, 1.67 and 1.25, respectively. The Lambson microcapsules were added according 

to the mass fraction of cement because the reaction of sodium silicate with the cement 

hydration products is the trigger of the autonomic self-healing. Two dosages of 5% and 10% 

of the Lambson microcapsules were added in the soil-cement systems. As for the MgO 

pellets, since their diameter and crushing strength are similar to the sand (Alghamri, 2017), 

the MgO pellets were added into the soil-cement by replacing the sand that with similar 

particle size therefore minimised the influence of the particle size distribution, density, and 

mechanical properties of modelled soil-cement system. Alghamri (2017) suggested that 10% 

replacement of sand by the MgO pellets would enhance the self-healing capability of mortar 

without significantly compromising the fresh and hardened properties. Thus, in this study, the 

MgO pellets were added similarly by replacing 10% of the sand particles of the soil-cement 

mixes. All the control mixes and the self-healing mixes with different types and quantities of 

healing agents were labelled accordingly as shown in Table 4.1–4.2. For a single mix, all 

samples shared a similar dry density and triplicate samples were prepared for every single test. 

A critical and comprehensive review of Lambson microcapsules and the MgO pellets was 

given in Section 2.3.3 in terms of their properties and applications in cementitious materials. 

Characteristics of the healing agents including size, density, and morphology under 

microscope and SEM were presented in Section 3.1.2.  

The survivability of the Lambson microcapsules and MgO pellets after freeze-thaw cycles or 

after mixing within the soil-cement mixes was investigated using a light microscope. The 

hydration of the fresh soil-cement samples containing the healing materials was tested using 

isothermal calorimetry whilst the workability was measured by the flow table test. To study 

the characteristics of the volume, dry density, UCS, Young’s modulus, and water 

permeability, cylindrical samples (50mm diameter × 100mm height) were tested while disc 

samples (50mm diameter × 10mm height) were used for tensile strength, gas permeability, 

and surface analysis. The experimental programmes for investigating the self-immune 

performance of the soil-cement specimens were given previously in Table 3.4. All the soil-

cement specimens were firstly cured for 7 days before being subjected to freeze-thaw cycles. 

After 0, 1, 5, 10 (or 12) freeze-thaw cycles, the soil-cement samples were cured to regain 

their durability and mechanical properties. A variety of techniques were used to assess the 
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physical properties, strength properties, permeability and microstructure of the soil-cement 

specimens and the healing products.  

Table 4.1 Mix composition of soil-cement samples containing Lambson microcapsules. 

Mix ID 
Mix ingredients 

Ratios/mass (%) 
Admixture 

Mass fraction 

in cement, mf 

(%) 

Volume 

fraction in 

cement, vf  

(%) 
 Soil Water Cement 

C10 

100 25 

10 - - - 

C15 15 - - - 

C20 20 - - - 

C10L5 10 

Lambson 

microcapsules 

5 15 

C10L10 10 10 30 

C15L5 15 5 15 

C15L10 15 10 30 

C20L5 15 5 15 

Note: all percentages in this table are proportional to the total mass of soil solid unless 

otherwise specified. 

 

Table 4.2 Mix composition of soil-cement samples containing MgO pellets. 

Mix ID 
Mix ingredients ratios/mass 

(%) Admixture 
Mass fraction in 

sand mf (%) 

 Sand Clay Water Cement 

C15P10 85 15 25 15 
LUVOMAG MgO pellets 

(1–2 mm) 
10 

C15P10_S 85 15 25 15 
LUVOMAG MgO pellets 

(0.6–1 mm) 

10 

Note: all percentages in this table are proportional to the total mass of soil solid unless 

otherwise specified. 
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4.3 Effect of freeze-thaw cycles on the physical and mechanical properties of 

soil-cement systems 

4.3.1 Effect of freeze-thaw cycles on the UCS of soil-cement systems 

Several reports (Davis et al., 2007, Liu et al., 2010) have suggested that the freeze-thaw 

durability of soil-cement systems can be improved by increasing the system’s cement content. 

Thus, this section discusses the influence of cement content on the freeze-thaw durability of 

soil-cement systems in terms of unconfined compressive strength (UCS). Three control mixes, 

C10, C15, and C20, which have cement contents of 10%, 15%, and 20% respectively, were 

used. As shown in Figure 4.1, the 7-day UCS of the soil-cement samples increased with 

cement content, and the average 7-day UCS values for the C10, C15, and C20 samples were 

1.3 MPa, 3.6 MPa, and 5.8 MPa, respectively. This trend was anticipated, as with more 

cement added, more cement hydration products can be produced. Therefore, the bonds 

between soil particles were strengthened.   

In terms of the effect of freeze-thaw cycles on UCS, Figure 4.2 shows that higher cement 

contents not only increased the 7-day UCS values, but also had a positive effect on the UCS 

values of the soil-cement systems’ freeze-thaw samples. A higher cement content improves 

the freeze-thaw resistance of the soil-cement system because it reduces the amount of 

freezable water within the soil-cement matrix, thus increasing the strength of the structure. A 

wide range of changes in UCS were observed for the three different mixes as they were 

subjected to varying numbers of freeze-thaw cycles. However, their performance appeared to 

be dependent on the cement content of the soil-cement. For the C10 sample, UCS decreased 

from 1.3 MPa to 0.3 MPa after only 2 freeze-thaw cycles, while the UCS of the C15 sample 

decreased from 3.6 MPa to 0.6 MPa after 10 freeze-thaw cycles. The UCS of the C20 sample 

reduced from 5.8 MPa to 2.5 MPa after 12 freeze-thaw cycles. The observation that freeze-

thaw durability increases with increased cement content is consistent with the results of many 

other researchers (Altun et al., 2009; Liu et al., 2010; Shibi and Kamei, 2014).  

However, as shown in Figure 4.2, the UCS of C10 decreased by roughly 72% after as few as 

two freeze-thaw cycles. Similarly, an 84% decrease in UCS was recorded for C15 after 10 

freeze-thaw cycles. Despite having 20% cement content, the UCS of C20 reduced by 

approximately 57% after 12 freeze-thaw cycles. It appears that, while C20 can survive more 

freeze-thaw cycles due to its higher initial strength, it is still very vulnerable to repeated 

freeze-thaw action. It is also important to note that increasing the cement content beyond 
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ordinary levels represents a less economical, less environmentally friendly option. As a result, 

it appears that adding more cement to the soil-cement system is not an effective method for 

improving the freeze-thaw durability of soil-cement system. Thus, an alternative is needed.  

 

Figure 4.1 7-day UCS values for soil-cement samples with different cement contents.  

  

Figure 4.2 UCS values for soil-cement samples with 10%, 15%, and 20% cement 

content after varying numbers of freeze-thaw cycles.  
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4.3.2 Mechanisms behind the behaviour of soil-cement systems subject to freeze-thaw 

cycles 

Prior to the development of the self-immune soil-cement systems, the mechanism behind the 

behaviour of soil-cement systems subjected to freeze-thaw cycles should be understood. As 

reviewed in Section 2.1, even though many studies have examined the behaviour of soil/soil-

cement systems under freeze-thaw conditions, there is no general agreement on the precise 

mechanism by which freeze-thaw damage occurs. Therefore, after summarising the changes 

that occur in the physical and mechanical properties of control soil-cement samples during 

freeze-thaw cycles, this section attempts to illuminate the mechanism of the freeze-thaw 

process. 

First, it should be noted that availability of water is a predominant factor that affects the 

mechanism of the freeze-thaw process for soil-cement systems. In this study, an open system 

(i.e., a system where the soil-cement system can access water during freeze-thaw curing) was 

used for freeze-thaw curing, as in-situ soil-cement systems usually have access to water. Soil-

cement samples in open systems suffer more freeze-thaw deterioration than similar samples 

in closed systems, as the freezing of water causes the internal volume expansion within the 

system that drives the freeze-thaw damage process. For the control mix (C15), water content 

(Figure 4.3a) and the degree of saturation (Figure 4.3b) generally increased after freeze-

thaw cycles. This is fundamental to the damage the soil-cement system suffers in terms of 

volume (Figure 4.3a), strength, and tightness. 

During freezing, the volume of water within the cement increases by 9%. This exerts pressure 

on the soil-cement matrix, which causes minor pores and fissures to enlarge and become 

interconnected. When the system thaws, the temperature gradient enables the frozen sample 

to suck water from the water underneath through the pores and cracks formed during freezing. 

As more freeze-thaw cycles occur, more and more water is sucked into the soil-cement 

matrix, and the pores and cracks enlarge further. As a result, the water content, the degree of 

saturation, and the volume of the soil-cement samples increase with increasing numbers of 

freeze-thaw cycles. As the pores enlarge and cracks propagate, the volume, porosity (Figure 

4.3c), and hydraulic conductivity of the soil-cement increase as well. However, the dry 

density and air content (Figure 4.3d) of the soil-cement decreases. Simultaneously, the 

bonding and cohesion between soil-cement particles weakens. Therefore, the strength and 
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stiffness of the soil-cement system are reduced. The results presented in Figure 4.3 support 

this mechanism.  

  

(a)                                                                            (b) 

   

(c)                                                                            (d) 

Figure 4.3 Correlations between (a) water content and volumetric change, (b) degree of 

saturation, (c) porosity, and (d) air content of C15 for increasing numbers of freeze-

thaw cycles.  
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4.4 Development and performance of self-healing soil-cement systems subject to 

freeze-thaw cycles using Lambson microcapsules 

Having been selected as a promising healing agent for soil-cement systems subject to freeze-

thaw cycles, Lambson microcapsules were added to soil-cement mixes to provide autonomic 

self-healing. As described in Section 3.1.2, the Lambson microcapsules contained sodium 

silicate solution, which reacts with calcium hydroxide during the cement hydration process to 

produce C-S-H gel. The associated chemical reactions are provided in Eq. 2.6. The C-S-H gel 

not only doubles the volume of the original solution, but also provides adhesion between 

particles in the matrix, filling cracks and restoring the structure’s strength. The development 

of self-healing soil-cement systems using Lambson microcapsules, and their performance 

subjected to freeze-thaw cycles, are studied in this section. 

4.4.1 Survivability of the Lambson microcapsules 

The survivability of the Lambson microcapsules was investigated to determine whether the 

healing agent is able to retain its functionality until damage to the soil-cement system occurs. 

The Lambson microcapsules themselves were exposed to 5 freeze-thaw cycles and then 

observed under a microscope. Representative optical microscopy images of the Lambson 

microcapsules before and after 5 freeze-thaw cycles are presented in Figure 4.4. After 5 

freeze-thaw cycles, the microcapsules remained intact, which indicates that they do not easily 

break under the effects of aggressive freeze-thaw cycles.  

    

(a) Before freeze-thaw                                        (b) after 5 freeze-thaw cycles 

Figure 4.4 Lambson microcapsules within soil-cement mix samples (a) before freeze-

thaw and (b) after 5 freeze-thaw cycles. 

200 μm 200 μm 
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In addition, the survivability of the Lambson microcapsules after mixing with the soil-cement 

mixture was investigated. Figure 4.5 presents representative optical microscope images of 

the Lambson microcapsules in the soil-cement paste after mixing. The microcapsules appear 

as bulbs in the soil-cement samples, indicating that they are able to survive the mixing forces 

during the mixing of soil-cement.  

     

Figure 4.5 Lambson microcapsules in the soil-cement mixes before setting. 

4.4.2 SEM 

Scanning electron microscopy (SEM) was used to observe the Lambson microcapsules 

embedded in the C20L5 soil-cement mix matrix. The microcapsules were dispersed evenly 

throughout the matrix and showed clear signs of breakage in their residual shell material at 

points of fracture in the matrix (Figure 4.6). No shell debris was observed inside of the 

fractured microcapsules. By contrast, the SEM images reveal that the fractured microcapsules 

that remained well embedded in the soil-cement matrix formed a dome-like shape. These 

observations indicate that the microcapsules were not ruptured during the mixing and casting 

process. If they were, cement hydration products would have formed inside the shells, and the 

shells would not have retained their spherical shape. SEM images provide further support for 

the conclusion that Lambson microcapsules survive the mixing process and remain viable in 

the hardened matrix. Furthermore, the microcapsules were tightly bonded to the soil-cement 

matrix, and they showed no sign of interfering in the formation of nearby hydration products. 

These observations are consistent with the results reported by Kanellopoulos et al. (2017) and 

Giannaros (2017), who argue that Lambson microcapsules are able to survive the mixing 

process of concrete and mortar.  

500 μm 500 μm 

Microcapsules 

 



114 | P a g e  

 

 

Figure 4.6 SEM images of broken Lambson microcapsules within the soil-cement 

matrix. 

4.4.3 Effect of the microcapsules on the mechanical properties of soil-cement systems 

The effect of the Lambson microcapsules on the mechanical properties of the soil-cement 

mixes was investigated. The Lambson microcapsules were added to soil-cement systems with 

three different water/cement ratios: 2.5, 1.67, and 1.25 (as detailed in Section 4.2). The UCS 

values of different microcapsule-containing soil-cement mixes are presented in Figure 4.7. 

The error bars in the figures indicate the standard deviation of the means (throughout this 

Residual shell 

material  

 

Residual shell 

material  
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thesis). The results show that the addition of Lambson microcapsules generally decreases the 

UCS for soil-cement samples. For instance, the UCS values of C10L10 and C15L10 were 22% 

and 13% lower than their corresponding control mixes, respectively. As discussed in Section 

4.4.1, the Lambson microcapsules did not break during the mixing process. Therefore, the 

healing agent was not released in soil-cement system before damage. Thus, because the 

strength of the Lambson microcapsules is much lower than that of the soil-cement matrix 

itself, the addition of the microcapsules tended to reduce the strength of soil-cement system. 

These results are somewhat contrary to a previous study that suggested that the critical value 

for which the addition of Lambson microcapsules would have a low effect on the 

compressive strength of the cement was 4% (relative to the weight of the cement) (Giannaros, 

2017). Giannaros reported that for a 4% microcapsule dosage, the strength of mortar samples 

was 17% less than for control samples. For higher dosages, the decrease in UCS plateaued at 

around 27%. One possible explanation of the contrary result in this study is that the cement 

content of a soil-cement system is lower than that of mortar or cement paste. Therefore, an 

equal weight fraction of microcapsules relative to cement in soil-cement systems accounts for 

a smaller share of the volume of the whole system than for mortar or cement paste. 

 

Figure 4.7 Effects of Lambson microcapsules on the 7-day UCS of soil-cement mixes. 
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4.4.4 Self-healing performance of soil-cement systems embedded with Lambson 

microcapsules after freeze-thaw cycles 

To monitor the self-healing capability of soil-cement systems embedded with Lambson 

microcapsules after freeze-thaw cycles, UCS tests were carried out on all soil-cement groups. 

After the control samples and samples embedded with microcapsules were subjected to a 

number of freeze-thaw cycles, they were cured for 7 days to allow time for the self-healing 

process to take place. The UCS values of C20L5 and C20 samples are compared in Figure 

4.8a. Per the graph, the samples containing 5% Lambson microcapsules exhibited slightly 

lower UCS to the control samples. However, after 1 freeze-thaw cycle and 7 days healing, the 

UCS of C20L5 samples was 40% higher than their 7-day UCS, whereas this increase of the 

C20 samples under the same conditions was 12%. This indicates that the Lambson 

microcapsules did break after freeze-thaw exposure, and the sodium silicate solution within 

them was released to enhance continuous hydration. More C-S-H gel was produced as the 

sodium silicate reacted with the calcium hydroxide produced from cement hydration 

(Kanellopoulos et al., 2015; Pelletier et al., 2010). The UCS values of C20L5 samples after 5 

and 12 freeze-thaw cycles (plus the 7-day self-healing period) were 23% and 21% higher than 

that of C20 samples, respectively. The UCS of control samples gradually reduced with 

increasing numbers of freeze-thaw cycles, while that of the Lambson microcapsule-

embedded samples was higher than its initial UCS even after 5 freeze-thaw cycles. After 12 

freeze-thaw cycles, the C20L5 samples retained 86% of their 7-day UCS, while the C15 

samples retained only 71%. These results demonstrate that the addition of the Lambson 

microcapsules provided excellent self-healing capability for C20L5 soil-cement samples. The 

most effective healing was achieved after the first cycle, though the microcapsules were 

effective even after 12 cycles.  

The UCS values for the soil-cement samples with lower cement content (i.e. 10% and 15%) 

including mixes C15L5, C15L10, C10L5 and C10L10, after being subjected to freeze-thaw 

cycles and healing for 7 days are plotted in Figures 4.8b–c. However, the addition of 

Lambson microcapsules did not appear to improve the self-healing capability of these soil-

cement mixes. To the contrary: the addition of the Lambson microcapsules tended to slightly 

reduce the UCS of the soil-cement samples as the number of freeze-thaw cycles increased. 

For example, the UCS of C15L10 samples after 10 freeze-thaw cycles (7 days of healing) 

was 65% lower than for control samples. The accelerated deterioration is likely due to the 

larger pore spaces and higher water content resulting from the addition of the microcapsules 
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to the soil-cement samples. The Lambson microcapsules may have left voids within the 

cementitious matrix after breaking, thus increasing the void ratio and leading to higher 

potential for absorbing water, thereby accelerating the deterioration of the soil-cement system. 

Another explanation is that the dried residual microcapsule shell material (gelatine) within 

the soil-cement matrix tended to hydrate, thereby absorbing water from freeze-thaw-induced 

cracks. Literature, of course, has extensively documented the ways that increased water 

presence within soil-cement systems accelerates freeze-thaw deterioration.  

The change in water content of the different mixes after freeze-thaw cycles is plotted in 

Figure 4.9. These results illustrate that the water content of C15L10 samples after 10 freeze-

thaw cycles was 14% higher than that of the C15 samples. Similar findings were also 

reported by Giannaros et al., (2016), who indicated that the water sorptivity of cement paste 

after the addition of a 4% volumetric fraction of Lambson microcapsules was slightly higher 

than for control samples after a 28-day healing period.     

As for Young’s modulus, the E50 of C20 and C20L5 mixes that were subjected to freeze-thaw 

cycles and self-healed for 7 days is plotted in Figure 4.10. Similar to the UCS results, the 

E50 of C20L5 was found to be considerably higher than for the control mix after the freeze-

thaw cycles. After one freeze-thaw cycle, the E50 of 7-day healed C20L5 was 52% higher 

than in the control sample. This difference narrowed to roughly 30% after 5 freeze-thaw 

cycles and 21% after 12 cycles. Compared to the UCS results, the increase in the E50 of the 

Lambson microcapsules embedded soil-cement samples is more significant. This could be 

due to the C-S-H gel produced by the healing reaction acting as a binder to bind together the 

soil-cement matrix into a more cohesive whole. In this scenario, the C-S-H expands outward 

forms a continuous phase, increasing the stiffness of the soil-cement system. The reason for 

the reduction in E50 at 5 and 12 freeze-thaw cycles is the same as for the UCS results. The 

healing process requires time to proceed until completion. It is also more difficult to heal and 

bind the larger cracks that are generated by higher numbers of freeze-thaw cycles. Thus, as 

the number of cycles increases to 5 and 12, the efficiency of the self-healing could diminish.  
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(a) 

  

(b) 
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(c) 

Figure 4.8 UCS of the Lambson microcapsule-containing soil-cement samples after 

different numbers of freeze-thaw cycles and 7 days of healing for cement contents of (a) 

20%, (b) 15%, and (c) 10%.  
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Figure 4.9 Water content of the Lambson microcapsule-containing soil-cement samples 

after different numbers of freeze-thaw cycles and 7 days of healing. 

 

Figure 4.10 E50 of the C20L5 and control mixes after different numbers of freeze-thaw 

cycles and a 7-day healing period. 
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4.4.5 Image analysis  

The crack sealing capability of the Lambson microcapsules was monitored, and optical 

microscope images were taken on the C20L5 disc samples at different healing times after 10 

freeze-thaw cycles. Representative microscope images are presented in Figure 4.11. Very 

little crack healing was observed on the surfaces of the samples even after 60 days of healing. 

This is conceivable as the healing product produced was C-S-H gel, which only doubles in 

volume when it reacts with calcite. In addition, the release of the healing agents from the 

capsules into nearby empty spaces may have left empty space inside the capsules. 

Furthermore, as the dosage of the Lambson microcapsules was relatively low, at just 5% of 

the weight of the cement (equivalent to roughly 15% of the cement’s volume), the amount of 

C-S-H gel produced may not have enough volume to seal the cracks.  

  

(a)                                                                                    (b) 

  

(c)                                                                                    (d) 

Figure 4.11 Microscopic images of C20L5 samples that were damaged by 10 freeze-thaw 

cycles and self-healed afterward for (a) 0 days, (b) 7 days, (c) 28 days, and (d) 60 days. 

500 μm 500 μm 

500 μm 500 μm 
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4.4.6 Summary of the performance of self-healing soil-cement systems using Lambson 

microcapsules 

Per results presented above, the addition of Lambson microcapsules equalling up to 10% of 

the weight of the cement has little effect on the initial strength of the soil-cement system. For 

the C20L5 mix, the addition of the microcapsules provides good self-healing capability in 

terms of UCS after freeze-thaw cycles. However, for soil-cement samples with lower cement 

contents (e.g. 15% and 10%), the addition of the Lambson microcapsules tended to decrease 

the UCS of the soil-cement rather than increasing it after freeze-thaw cycles. Compared to 

concrete and cement paste, the water/cement ratio of the soil-cement system is much higher 

(e.g. water/cement =0.5 vs. water/cement =2.5, 1.67). Therefore, the amount of unhydrated 

cement and cement hydration products (calcium hydrate) is considerably lower than those of 

concrete, mortar, and cement paste. In addition, with higher pore space and lower overall 

strength, the microcapsules may not break as easily after freeze-thaw cycles. Thus, the cargo 

materials may not be released into the soil-cement system when the system has relatively low 

cement content. In addition, the use of Lambson microcapsules could increase the potential of 

soil-cement to absorb water due to the water absorbent nature of the capsules’ shell material 

and the increase in voids ratio in soil-cement systems. Increased water absorption during the 

freeze-thaw process is, of course, detrimental to overall durability of the soil-cement system. 

It can be concluded that the self-healing performance of Lambson microcapsules embedded 

within a soil-cement system is heavily affected by the cement content of the system. 

Lambson microcapsules can provide good self-healing ability for soil-cement subjected to 

freeze-thaw cycles, but this appears limited only to soil-cement systems with relatively high 

cement content (e.g., 20%). For lower cement contents, the addition of Lambson 

microcapsules can be detrimental to the freeze-thaw durability of soil-cement system. As a 

result, LUVOMAG MgO pellets were used as an alternative healing agent for soil-cement 

systems with lower cement content. The development and performance of these pellets are 

discussed in the following sections. 

4.5 Autonomic self-healing performance of soil-cement systems with 

LUVOMAG MgO pellets after freeze-thaw cycles  

As reviewed in Chapter 2, LUVOMAG MgO pellets react with water to yield brucite and 

hydrated magnesium carbonates (HMC). This section describes how MgO pellets were added 
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to a soil-cement mixture to develop a self-healing soil-cement system. The self-healing 

performance of this system after freeze-thaw cycles is also reported. 

4.5.1 Influence of LUVOMAG MgO pellets on the properties of soil-cement systems 

4.5.1.1 Distribution of MgO pellets embedded within a soil-cement matrix 

In order to explore the distribution of MgO pellets inside soil-cement specimens, disc 

specimens were prepared and studied. Figure 4.12 shows the distribution of MgO pellets 

across sample sections. The MgO pellets are indicated by the red arrows in Figure 4.12a. The 

pellets are not present in control samples (Figure 4.12c). Per Figure 4.12a, the MgO pellets 

in the experimental samples were uniformly distributed throughout the soil-cement matrix, 

and no segregation was observed. Close inspection revealed that the MgO pellets were well 

embedded in the soil-cement matrix, and they were strongly bonded to the soil-cement matrix 

itself, as shown in Figure 4.12b. As the particle size and the crushing strength of the MgO 

pellets were similar to those of the sand particles they replaced, no noticeable change in the 

structural properties of the soil-cement matrix were anticipated.    

 

(a) 

5 mm 
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 (b) 

 

(c) 

Figure 4.12 Image of soil-cement specimens with and without the MgO pellets. 

Microscopic observation reveals the (a) distribution and (b) embedment of MgO pellets 

inside the soil-cement samples and the lack thereof within control samples (c). 

500 μm 

5 mm 
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4.5.1.2 Effect of the MgO pellets on cement hydration  

This section primarily focuses on the effects on the hydration process of a soil-cement mix 

when replacing 10% of sand particles with MgO pellets. It includes a brief study of the 

survivability of the MgO pellets within the soil-cement matrix. This property is of special 

interest, as, if the MgO pellets do not survive the mixing and curing of the cement, they may 

react with and consume the water in the soil-cement mix. This affect the properties of soil-

cement systems.  

The thermal power produced per gram of cement during the first 48 hours for mixes 

containing 10% MgO pellets (C15P10) in comparison to the control mix (C15) is presented in 

Figure 4.13. In addition, the peak power values and the setting time calculated for all mixes 

are summarised in Table 4.3. 

Generally, the addition of the MgO pellets reduced the setting time and the peak power 

values compared to the control mix (C15). The initial setting time decreased by 9.4% (from 

4.46 to 4.04 hours), while the peak power reduced by 4.9% (from 4.28 to 4.07 mW/g). This 

result was anticipated, as the added MgO pellets absorb and consume some water, therefore 

slightly reducing the amount of water available for cement hydration. With less water in the 

soil-cement mix for cement hydration, the setting time and peak power are reduced. However, 

the reduction in setting time and peak power is marginal, which suggests that the addition of 

the MgO pellets has little effect on the hydration process of soil-cement.  
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Figure 4.13 Effects of replacing 10% of sand with MgO pellets on the isothermal (23℃) 

power and energy production of soil-cement mixes. 

Table 4.3 Initial setting time and peak power values for soil-cement samples with and 

without MgO pellets. 

Mix Initial setting time (hrs) Peak power (mW/g) 

C15 4.46±0.08 4.28±0.07 

C15P10 4.04±0.10 4.07±0.05 

 

4.5.1.3 Flowability  

The flow table values of soil-cement samples containing MgO pellets of various diameters 

are presented in Figure 4.14. The MgO pellets used in C15P10 have a diameter of 1–2 mm, 

while those used in C15P10_S have a smaller diameter of 0.6–1 mm. In both mixes, the MgO 

pellets were added by replacing 10% of the sand with particles of the same diameter. The 

control mix (C15) displayed a flow value of 190 mm, while the flow values of C15P10 and 

C15P10_S were 171 mm and 162 mm, respectively. The addition of the MgO pellets 

appeared to lead to a decrease in flow value of 10% and 15% for C15P10 and C15P10_S 
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mixes, respectively. This reduction in workability may be attributed to two causes. First, as 

previously described, the MgO pellets were able to physically absorb some water during the 

mixing stage. Second, the MgO pellets may have become involved in the hydration process 

and may have consumed some water during mixing. These results are slightly different than 

those reported by Aghamri (2017). He reported that MgO pellets reduced the workability of 

mortar mixes by a very small margin, noting that flow value reduced from 156 mm to 152 

mm. This is likely because the water/cement ratio in his mortar was 0.5. Therefore, water was 

mostly consumed by the excess cement, and any reaction with the MgO pellets was minimal. 

However, the water/cement ratio of the mix presented in Figure 4.14 was 1.67. Thus, more 

water could be absorbed and react with the MgO pellets.  

The effect of MgO pellet size on the workability of the fresh mix was also investigated. The 

change in pellet diameter also appeared to affect the workability of the mix. As shown in 

Figure 4.14, the mix with a smaller pellet diameter had lower flow values than that with a 

larger pellet diameter. A possible explanation for this is that pellets with smaller diameters 

have a larger surface area to mass ratio than those with larger diameters. The larger surface 

contact area enhanced the reaction between the MgO pellet and the water and therefore 

reduced the free water available in the mix. This led to a greater reduction in workability. In 

addition, (Huang and Ye, 2014) found that the total healing agent released from capsules hit 

by the crack increased linearly with the capsule’s diameter. Thus, to minimise the effect on 

the workability of the soil-cement mix, and to increase the likelihood of the crack hitting 

MgO pellets, pellets with diameters of 1–2 mm were selected for the self-healing soil-cement 

system.  

It was found that the incorporation of the MgO pellets reduced the workability of the soil-

cement mix. However, the reduction in flow value of only 10% was considered acceptable. 

These results match those observed by Hung and Kishi (2013), who studied the workability 

of fresh concrete containing granules of supplementary cementitious materials. They reported 

that the incorporation of self-healing granules into a concrete mix slightly decreased its 

workability. They attributed this reduction to water absorption and further reactions between 

the granules and the mixing water. However, they concluded that granules can be considered 

an effective means of alleviating the workability reduction caused by direct incorporation of 

powdered self-healing materials. 
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Figure 4.14 Flow values of different soil-cement mixes with embedded MgO pellets. 

4.5.1.4 Water content 

Figure 4.15 shows that the addition of MgO pellets slightly reduced the water content of the 

soil-cement system for both water/cement ratios (1.67 and 1.25). The 7-day water content of 

C15 was 17.9%, which decreased slightly to 17.3% for C15P10. For the sample with a 

water/cement ratio of 1.25, the 7-day water content of C20 decreased from 16.8% to 16.2% 

when 10% of the sand was replaced by MgO pellets (C20P10). This indicates that most of the 

MgO pellets did not react with the water during the mixing of the soil-cement. The difference 

in the water content of the C15 and C15P10 mixes over multiple freeze-thaw cycles is 

presented in Figure 4.16. A sharp increase in water content was observed in C15 after 10 

freeze-thaw cycles. However, the addition of the MgO pellets appeared to reduce the water 

content increase considerably. For example, the water content of C15 increased from 17.9% 

to 27.5% after 10 freeze-thaw cycles, while this increase for C15P10 was from 17.3% to 

21.6%. A possible explanation for this is that during the freeze-thaw process, some of the 

cracks generated by freeze-thaw damage were partially self-healed in C15P10 samples. 

Therefore, the soil-cement system’s water uptake was reduced. 
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Figure 4.15 The 7-day water content of different soil-cement samples with MgO pellets. 

 

Figure 4.16 The water content of the soil-cement mixes containing MgO pellets 

subjected to different number of freeze-thaw cycles. 
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4.5.1.5 Unconfined compressive strength 

The UCS of C15, C15P10 and C20P10 mixes were measured after 0, 1, 5, and 10 (or 12) 

freeze-thaw cycles. These results are presented in Figure 4.17a. The addition of MgO pellets 

generally increased the 7-day UCS of soil-cement systems. The UCS of C15P10 was 18% 

higher than the UCS of corresponding controls. This increase in 7-day UCS may be attributed 

to three possible causes. First, the addition of the MgO pellets, to a certain extent, decreased 

the water/cement ratio of the mixture, which led to a higher strength. Second, the reaction of 

the MgO pellets with water yielded Mg(OH)2, MgCO3, and hydrated magnesium carbonates, 

and those products increased the strength of soil-cement. Third, the irregular surfaces and 

water-absorbing qualities of the MgO pellets could have strengthened the bonds and 

interlocking between particles. 

As shown in Figure 4.17b, the addition of MgO pellets generally increased the freeze-thaw 

resistance of soil-cement mixes in terms of UCS. For example, after 10 freeze-thaw cycles, 

the residual UCS of C15P10 was 39% while this value of C15 was 16%. The reason for the 

favourable performance of MgO pellets samples is likely twofold. First, during the freeze-

thaw process, the reaction of the MgO pellets with water produced brucite, which swelled, 

blocking the crack and reducing water uptake into the matrix. This could be vital for the 

protection of soil-cement systems subject to freeze-thaw cycles, as water expansion during 

freezing is the predominant reason for freeze-thaw deterioration. Second, as water reacts with 

MgO to form magnesium hydrates, which can increase the strength of the matrix. The 

intrusion of water in the vicinity of the MgO pellets facilitates this reaction. To further 

explore the self-healing performance of MgO pellets embedded in soil-cement systems, their 

crack sealing capability and their ability to restore the systems’ mechanical properties were 

investigated. The results of these investigations are presented in the following sections. 
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(a) 

 

(b) 

Figure 4.17 The strength behaviour of soil-cement mixes with MgO pellets at different 

numbers of freeze-thaw cycles: (a) actual UCS values and (b) normalised UCS values. 
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4.5.1.6 Unconfined compressive strength development 

The effect of the MgO pellets on the UCS development of soil-cement over time was also 

investigated. The UCS values of soil-cement samples containing MgO pellets at curing ages 

up to 60 days are in Figure 4.18. Generally, both the C15 and C15P10 mixes demonstrated 

constant strength gain over time. Although the 7-day UCS of C15P10 was already higher 

than that of C15, a more dramatic strength gain was observed for C15P10 than for the control 

mix between 7 and 14 days. At 7 days, the UCS of C15P10 was roughly 22% higher than for 

C15 samples, and this difference widened to 42% at 14 days. At 28 days and 60 days, the 

UCS of C15P10 was approximately 39% higher than that of control samples. However, it 

should be noted that at 90 days, the difference between the two mixes became neglectable. At 

this point, both mixes displayed similar strengths of approximately 5.4 MPa.  

In sum, the replacement of 10% of the sand in the soil-cement mixture with MgO pellets 

appeared to significantly enhance the early UCS development of the soil-cement (i.e., UCS 

development before 60 days). However, it appeared to hamper UCS development at later age 

(i.e., after 60 days). There may be three possible explanations for this. First, because the MgO 

pellets react with water, albeit slowly, they may slightly reduce the water/cement ratio of the 

soil-cement mixture and therefore increase its compressive strength. This explanation is 

supported by the previous results reported in Section 4.5.1, which show that the workability, 

setting time, and 7-day water content of soil-cement were slightly reduced by the addition of 

MgO pellets. However, after 60 days, additional hydration of the cement could be hampered 

by the fact that the MgO pellets have already consumed residual capillary water, impeding 

further strength gain. It should be noted that the UCS of C15P10 at 90 days was slightly 

lower than that at 60 days. This reduction may be due to the production of expansive products 

of MgO, which could generate internal stress and damage the PC-MgO interface, leading to a 

slight reduction in strength.   
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Figure 4.18 The UCS of soil-cement samples containing MgO pellets over time. 

On one hand, the replacement of 10% of the mass of sand in the mixture with MgO pellets 

slightly reduced the workability, setting time, and 7-day water content of the resulting soil-

cement. On the other hand, the addition of the MgO pellets considerably increased the 7-day 

UCS and early strength development (up to 60 days) of soil-cement systems. This finding 

contradicts a study by Alghamri (2017), which reported that the addition of MgO pellets 

reduced the UCS of mortar samples by up to 15%. This is understandable, as the 

water/cement ratio used in that study’s mortar mix was 0.5, while the water/cement ratio used 

in this study was 1.67 (C15). For mixes with a relatively low water/cement ratio (e.g. 0.5), the 

consumption of water by MgO pellets is detrimental to the soil-cement’s strength, as not 

enough water remains late in the curing process for hydration of the cement. However, for 

mixes with relatively high water content, this water content reduction would increase the 

hardened strength of cement-related mixes. 

4.5.2 Crack sealing efficiency 

To evaluate the crack sealing efficiency of soil-cement samples containing MgO pellets, 

microscope images were taken of residual cracks in C15P10 soil-cement discs (∅10 mm × 10 

mm) that had been subjected to freeze-thaw cycles and then self-healed for varying numbers 
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of days. The residual cracks generated after 7 freeze-thaw cycles had crack widths ranging 

between 0.01 mm and 0.1 mm. As indicated in Section 3.5.6, microscope images were taken 

on samples after 7 freeze-thaw cycles and after varying healing times of up to 60 days. The 

crack-sealing process is considered to be a good indicator of the efficiency of the self-healing 

process in cementitious materials (de Rooij et al., 2013).  

Microscope images were taken of the soil-cement samples after 7 freeze-thaw cycles and 

self-healing periods of 0, 7, 28, and 60 days. Some representative images are shown in 

Figure 4.19. It is clear from Figure 4.19 that soil-cement samples containing MgO pellets 

had much better crack sealing efficiency than control samples. Autogenic healing was barely 

observed for control samples (see Figure 4.19a-b) after 7 freeze-thaw cycles and self-healed 

for 60 days. However, as shown in Figure 4.19c-d, excellent crack healing (indicated by red 

arrows) was observed for C15P10 samples. Complete healing of cracks was observed after 60 

days of healing. Evidently the addition of the MgO pellets significantly improved the sealing 

capability of the soil-cement samples. Representative microscopic images showing the 

development of healing products with times on the surfaces of freeze-thaw damaged soil-

cement samples containing MgO pellets are shown in Figure 4.20. The cracks were partially 

healed after 7 days, with further progress observable after 28 and 60 days of healing. 

Complete closure of the cracks was observed after 28 days of self-healing.  

The images were processed to measure crack area via Leica LAS Image Analysis software. 

Further investigations were conducted to measure the extent of crack generation and crack 

sealing efficiency (CSE) over time using Eq. 3.12 presented in Section 3.5.6. A summary of 

the CSE for all samples at different healing times (i.e. 0, 7, 14, 28, and 60 days) is presented 

in Figure 4.21, with error bars indicating standard deviation. The crack healing efficiency of 

the MgO pellet-containing samples was much higher than the controls, which confirms the 

microscope observations. The CSE of the C15P10 samples after 7 days of healing was 24%, 

while the CSE of the control samples was only 0.3%. The crack healing efficiency of the 

C15P10 samples increased to 81.5% after 14 days of healing, and this value increased to 88.3% 

after 28 days of healing. In contrast to the control samples, which showed a CSE value of 

12.7% after 60 days of healing, a very high CSE of 96.3% was achieved by C15P10 samples 

that had self-healed for 60 days. There is very little literature concerning the self-healing of 

soil-cement systems. However, this finding is comparable to Alghamri (2017), which 

reported that MgO pellet-embedded mortar showed 76–100% crack mouth healing, compared 

to 40.3% crack mouth healing observed in control samples.  
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(a) C15 before healing                                 (b) C15 after 60 days of healing 

      

 (c) C15P10 before healing                            (d) C15P10 after 60 days of healing 

Figure 4.19 Typical optical microscopic images of the crack-sealing patterns of control 

samples (a-b): (a) damaged by 7 freeze-thaw cycles and (b) self-healed for 60 days; and 

soil-cement samples containing MgO pellets (c-d): (c) damaged by 7 freeze-thaw cycles 

and (d) self-healed for 60 days. 

 

500 μm 500 μm 

500 μm 500 μm 
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(a) 0 days 

 

(b) 7 days 

 

(c) 14 days 

 

(d) 28 days 

 

(e) 60 days 

 

Figure 4.20 Typical optical microscopic images showing the development of crack 

sealing on the surface of C15P10 samples over healing time. 

500 μm 

500 μm 

500 μm 

500 μm 

500 μm 
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Figure 4.21 Crack sealing efficiency of soil-cement samples, including controls and 

samples embedded with MgO pellets, both subjected to 7 freeze-thaw cycles, over 

healing time. 

4.5.3 Permeability 

4.5.3.1 Water permeability 

Ten freeze-thaw cycles were conducted on the C15 and C15P10 mixes before they were 

healed in ~98% relative humidity (RH) for a variety of healing times. Plots of the water 

permeability K values of the control and C15P10 specimens are shown in Figure 4.22. To 

highlight the change of K values over the healing period, the permeability ratio is defined as 

the average of the hydraulic conductivity values of self-healed samples divided by the values 

of samples after 10 freeze-thaw cycles (Khealed/K10). It is plotted against healing time in 

Figure 4.23. The initial point, with Khealed/K10 = 1 in Figure 4.23, represents samples 

damaged by 10 freeze-thaw cycles without any healing. Per Figure 4.23, the water 

permeability of C15 increased with increasing healing duration. The permeability of soil 

increases with decreasing moisture content; therefore, the increase in the K values of the 

control samples (C15) may be due to the desiccation and decomposition of specimens in the 

early stages of healing in very high relative humidity environments. A slight reduction in the 

K values was observed for C15 specimens after 60 days of healing. However, for the C15P10 
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mix, although its permeability ratio was slightly increased after 7 days of healing, a marked 

reduction in permeability was observed after 28 days of self-healing. The hydraulic 

conductivity ratio of C15P10 was reduced to 0.27 after 28 days of self-healing, compared to a 

value of 4.0 for the control specimens.  

These results indicate that more healing products were formed in the C15P10 specimens than 

in the controls, and that these had sealed the cracks that had formed inside the soil-cement 

samples during the freeze-thaw cycles, reducing permeability. They also indicate that the 

C15P10 mix has good self-healing capability, and they confirm the crack sealing efficiency 

results discussed in Section 4.5.2. Similar results were reported by Alghamri (2017), which 

used MgO pellets in mortar samples and found that the sorptivity index decreased by 58% 

after 28 days of self-healing. Further discussion of the microstructure of the healing products 

will be presented in Section 4.5.5.  

 

Figure 4.22 Evolution of the permeability values of a soil-cement mix containing MgO 

pellets and a control sample after 10 freeze-thaw cycles for several healing periods. 
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Figure 4.23 Average permeability ratios for several healing periods.  

4.5.3.2 Gas permeability  

To further examine the self-healing behaviour of soil-cement samples containing MgO pellets, 

gas permeability tests were conducted on disc samples. As indicated in Section 3.5.5, the un-

cracked C15P10 disc samples as well as the control samples were tested at an age of 7 days. 

Other samples were subjected to 7 freeze-thaw cycles and then left to heal in ~98% RH. The 

gas permeability coefficient was calculated via Eq. 3.9 and Eq. 3.10, both presented in 

Section 3.5.5. The gas permeability coefficient ratio R is defined as the ratio between the gas 

permeability coefficient of cracked samples after healing and the gas permeability coefficient 

of un-cracked samples. The coefficient ratio R of the control samples and the samples 

containing 10% MgO pellets are plotted against healing time in Figure 4.24. Similar to the 

hydraulic conductivity results, the addition of MgO pellets led to a considerable decrease in 

the gas permeability coefficient ratio R compared to the control samples. The R values of 

both the C15P10 samples and control samples increased to roughly 2.2 after 7 freeze-thaw 

cycles. This increase was anticipated, as lots of cracks were generated by the freeze-thaw 

damage (as previously presented in Section 4.5.2). After 3 and 7 days of healing, no 

noticeable reduction in R was observed for either mix. However, after 14 days of healing, the 
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R value of C15P10 decreased from 2.2 to 1.4, while the R value of C15 remained unchanged. 

The R value of C15P10 samples continued to decrease over time, reaching approximately 1 

after 60 days of healing. This is a similar gas permeability coefficient as the un-cracked 

samples. By contrast, the R values of the control samples only decreased to 2.0 after 60 days 

of healing. These results are in agreement with the crack sealing findings, which showed 85% 

crack sealing efficiency after 14 days of healing and 96.3% after 60 days of healing.  

Overall, these findings strongly indicate that the self-healing capability of soil-cement 

samples damaged by freeze-thaw cycles can be substantially improved by adding MgO 

pellets. The effects of the pellets’ crack sealing capabilities on the mechanical properties of 

soil-cement are of significant interest because of their relevance to engineering applications, 

so they are presented in the next section.  

  

Figure 4.24 Gas permeability coefficient ratios over time for un-cracked and self-healed 

soil-cement samples after 7 freeze-thaw cycles.  

 

 

 



141 | P a g e  

4.5.4 Recovery of mechanical properties 

4.5.4.1 UCS and Young’s modulus 

The effect of pellet addition on soil-cement UCS values was discussed in Section 4.5.1. It is 

clear from Figure 4.17 that although the freeze-thaw resistance of C15P10 is higher than that 

of C15, both mixes experienced a substantial decrease in UCS after being subjected to freeze-

thaw cycles. The UCS of C15P10 decreased from 4.3 MPa to 1.7 MPa, while the UCS of C15 

decreased from 3.6 MPa to 0.6 MPa. In order to assess the degree to which they were able to 

recover their strength, the soil-cement samples were subjected to 10 freeze-thaw cycles 

before they were self-healed for a predetermined number of days. The UCS and stiffness 

recovery are the ratio between the increased value after healing and the 7-day UCS and 

stiffness, respectively.  

The UCS values of C15 and C15P10 samples over time are presented in Figure 4.25. The 

UCS values of C15 and C15P10 after 10 freeze-thaw cycles are 0.6 MPa and 1.7 MPa, 

respectively. After 60 days of healing, the UCS of C15 increased from 0.6 MPa to 0.8 MPa, 

while the UCS of C15P10 increased from 1.7 MPa to 3.1 MPa. Figure 4.25b demonstrates 

that, in terms of UCS recovery, after 7 days of healing, the C15 samples and MgO pellet-

containing samples only achieved marginal strength recovery, with increases of 1.5% and 

3.5%, respectively. However, after 28 days healing, the strength recovery of the C15P10 

samples increased to 37%, while the strength recovery of control mix was only approximately 

4%. Strength recovery appeared to remain constant prior to 28 days of healing for both mixes. 

At 28 days, however, strength recoveries of 3% and 33% were recorded for the C15 and 

C15P10 mixes, respectively. An important note is that the strength recovery of the C15P10 

samples appeared to reach its maximum at 28 days. For healing times longer than 28 days, 

additional strength recovery was not reported.  

These strength recovery results are slightly higher than those reported by Alghamri (2017), 

which showed 14–28% flexural strength recovery for mortar samples embedded with MgO 

pellets. In addition, only 8% and 17% flexural strength recoveries for mortar samples 

embedded with soda glass capsules containing MgO were recorded in Kanellopoulos et al. 

(2015) and Qureshi et al. (2016), respectively. The superior strength recovery achieved in this 

study may be due to the nature of the damage caused in the soil-cement samples by the 

freeze-thaw cycles. When the soil-cement samples were damaged, cracks were generated 

within the samples, and water was drawn into the cracks. Rather than producing the single 
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crack that usually develops in other cementitious materials, freeze-thaw cycles cause soil-

cement to develop a network of cracks through which water can permeate, thereby exposing 

nearby MgO pellets to water. Water is crucial for the healing reactions of MgO-related 

healing agents (Alghamri, 2017). Thus, since more water was available for the MgO pellets 

to react with, more healing products were produced. This indicates that MgO pellets represent 

a promising technique for the development of self-healing soil-cement system subjected to 

freeze-thaw cycles.  

As shown in Figure 4.26a, the specimens containing MgO pellets displayed a significantly 

higher stiffness recovery than the controls. The stiffness recovery values followed similar 

trends as the UCS recovery values. The stiffness of the C15 mix increased from 18 MPa to 36 

MPa after 60 days of healing, while that of C15P10 increased from 78 MPa to 235 MPa. In 

terms of stiffness recovery, the C15P10 samples showed a recovery rate of 30%, while this 

figure was just 6% for the C15 samples (Figure 4.26b). The UCS and stiffness recovery 

results are consistent with the crack sealing efficiency and permeability findings presented in 

Sections 4.5.2 and 4.5.3.    
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(a) 

 

(b) 

Figure 4.25 Results for C15P10 samples over time following 10 freeze-thaw cycles in 

terms of (a) UCS values and (b) UCS recovery (ratio between the increased value after 

healing and the uncracked 7-day UCS value). 
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(a) 

 

(b) 

Figure 4.26 E50 of C15P10 samples over time following 10 freeze-thaw cycles in terms of 

(a) E50 value and (b) E50 recovery (ratio between the increased value after healing and 

the uncracked 7-day E50 value).  
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4.5.4.2 Tensile strength 

Data from disc specimens subjected to axial splitting tests (detailed in Section 3.5.3) were 

used to obtain tensile strength values for the soil-cement samples. To assess strength recovery, 

the C15P10 mix and the control samples were subjected to 7 freeze-thaw cycles before they 

were self-healed for a predetermined number of days. The tensile strength and tensile strength 

recovery values for the C15P10 samples containing 10% MgO pellets were compared with 

those of the controls. The results are shown in Figure 4.27 along with error bars indicating 

one standard deviation.  

As shown in Figure 4.27a, tensile strength decreased dramatically after 7 freeze-thaw cycles, 

with residual tensile strength equalling only 1.7% and 1.2% of the normal 7-day tensile 

strength for the C15 and C15P10 mixes, respectively. Figure 4.27b shows that tensile 

strength recovered by 1.8% and 3.1% for C15 and C15P10 samples (respectively) after a self-

healing period of 60 days. Although a 1.3% higher tensile strength recovery was achieved by 

the pellet-containing specimens, this recovery is minimal. These results contradict those 

obtained for UCS and stiffness in the previous section, which suggested strength recovery of 

up to 38% after 60 days of healing. This contradiction could be due to the chemical nature of 

healing products. As the healing products of MgO are brucite, hydromagnesite, dypingite, 

and Mg-bearing carbonates, none of which are adhesive materials, the bonds between soil-

cement particles are not strengthened as they come into contact with these chemicals. 

However, the presence of these Mg-bearing healing products can reduce the void space and 

improve the interactions between soil-cement particles, therefore increase the compressive 

strength of soil-cement. This explains the UCS test results. In addition, although nearly 

complete crack sealing was observed for the C15P10 mix after 60 days in Section 4.5.2, this 

only resulted in approximately 72% residual UCS and 45% residual E50, compared to the 7-

day strength values. 
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(a) 

 

(b) 

Figure 4.27 Tensile strength over time for C15P10 samples after 10 freeze-thaw cycles in 

terms of (a) tensile strength values and (b) tensile strength recovery (ratio between the 

increased value after healing and the uncracked 7-day tensile strength value). 
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4.5.5 Characterisation of the healing products 

4.5.5.1 Thermogravimetric analysis of the healing products 

The previous sections reported that the healing products produced by MgO pellets were 

responsible for the significant improvements in strength recovery and crack sealing efficiency 

in the experimental samples. Microstructural analysis was carried out to identify these 

healing products. In order to characterise the healing products, thermogravimetric analysis 

(TGA) was conducted for all mixes. TGA data and the first derivative of the 

thermogravimetric data (DTG) curves for all the samples extracted from pellet-containing 

samples were compared to those for the control samples at various healing times. These 

comparisons are shown in Figure 4.28. The DTG values for the materials that decomposed in 

different peaks are shown in Figure 4.28b. The peak temperatures, temperature ranges, and 

corresponding weight losses at each step are presented in Table 4.4. Peaks related to the 

decomposition of C-S-H and Ca(OH)2 at temperatures of approximately 100℃ and 450℃ 

(respectively) were observed in all samples. Clear endothermic peaks at 370℃–380℃ were 

detected for all C15P10 samples at a range of healing times. These peaks are attributed to the 

dehydration of brucite. The weight loss resulting from brucite decomposition increased from 

1.7% to 2.4% as the healing time of C15P10 samples increased from 0 to 60 days. These 

values were much higher than the 0.64% weight loss of the control mix at the same 

temperature range (200–400℃). Note, however, that the brucite decomposition of C15P10 

after 10 freeze-thaw cycles without healing was already 1.72%, which was higher than the 

0.64% value obtained for the control sample after 60 days of healing. A possible explanation 

for this is that the healing process had already occurred during the freeze-thaw process. One 

final point of interest is that all C15P10 samples showed very weak peaks for portlandite 

compared to the control sample. 

Furthermore, all samples displayed two weight loss peaks at 540℃–580℃ and 670–690℃. 

Mo and Panesar (2012) and Thiery et al. (2007) suggest that these peaks correspond to the 

decomposition of different types of CaCO3 and HMCs. As shown in Table 4.4, the weight 

loss between 500℃ and 800℃ for C15 samples after 60 days of healing was 4.45%. For 

C15P10 samples after 0, 28, and 60 days of healing, weight losses were 3.92%, 4.16%, and 

5.32%, respectively. This confirms that the addition of MgO pellets increased the production 

of magnesium and calcite materials and that the production of these materials increased over 

time. Note, however, that while the brucite content increased from 1.72% to 2.34% over the 
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first 28 days, this value only increased to 2.40% from days 28–60. By contrast, over the first 

28 days, the CaCO3 and HMC content increased from 3.92% to 4.16%. This value further 

increased to 5.32% at 60 days. These results indicate that, during the early stages of the 

healing process, brucite is the dominant healing product, while CaCO3 and HMCs are 

produced in greater quantities later in the healing process.  

Table 4.4 Thermal decomposition of the samples collected from all mixes. 

Mix 
Healing time 

(days) 

Temperature 

range (℃) 

Peak temperature 

(℃) 

Weight loss 

(%) 

Total weight 

loss (%) 

C15 60 

40–200 108 2.01 

8.23 

200–400 NA 0.64 

400–500 439 1.77 

500–600 537 
4.45 

600–800 677 

C15P10 

0 

40–200 97 1.41 

8.75 

200–400 370 1.72 

400–500 440 1.12 

500–600 575 
3.92 

600–800 670 

28 

40–200 102 1.52 

9.48 

200–400 378 2.34 

400–500 452 1.46 

500–600 581 
4.16 

600–800 675 

60 

40–200 98 2.08 

11.30 

200–400 380 2.40 

400–500 455 1.49 

500–600 552 
5.32 

600–800 688 

 



149 | P a g e  

 

(a) 

 

 (b) 

Figure 4.28 Thermogravimetric analysis results for samples containing MgO pellets and 

controls at various healing times in terms of (a) TGA and (b) DTG curves. 

Portlandite 
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4.5.5.2 SEM/EDX 

Soil-cement samples containing MgO pellets that were self-healed for 28 days after being 

subjected to 10 freeze-thaw cycles were cracked, and small chips were extracted for analysis. 

SEM images of these solid pieces were subsequently taken. The minerals (determined by 

SEM/EDX) on the surface of the soil-cement chips are displayed in Figure 4.29. Ettringite 

and calcite were detected at several spots. Considerable quantities of Mg-rich products such 

as brucite, hydromagnesite, and dypingite were also observed in the SEM images. These 

observations confirm the TGA results showing that brucite and HMCs were the major healing 

products of the pellet-containing samples. Overall, these observations verify the TGA results 

and confirm that the MgO pellets produce the expected products during the healing process. 
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Figure 4.29 SEM images of C15P10 samples subjected to 10 freeze-thaw cycles and self-

healed for 28 days.   

Dypingite 

Hydromagnesite 

Calcite 

Ettringite 

Hydromagnesite 

Brucite 



152 | P a g e  

4.6 Mechanisms of the self-healing processes 

Two different healing agents were investigated in this study to provide self-healing capability 

for soil-cement systems that damaged by freeze-thaw cycles. Self-healing soil-cement 

systems were developed by adding new healing agents that can diffuse into cracks and 

subsequently react to form new healing products that plug the cracked section (White et al., 

2001). The mechanisms that lead to self-healing in soil-cement systems containing Lambson 

microcapsule and MgO pellets are not entirely understood. This section, however, attempts to 

provide insights into these processes.  

The mechanisms associated with the Lambson microcapsules and the MgO pellets are 

slightly different. A schematic representation of the self-healing mechanism that takes place 

when Lambson microcapsules are used is presented in Figure 4.31. When the microcapsule-

embedded soil-cement sample is frozen, the water inside the soil-cement matrix expands and 

produces internal pressure. The microcapsules can be easily ruptured by this pressure, as they 

are well-bonded with the soil-cement matrix and the material that forms their shells (dried 

gelatine) is brittle. When the capsules rupture, the cargo material, sodium silicate solution, is 

released and reacts with Ca(OH)2 to form C-S-H gel (Giannaros, 2017; Huang and Ye, 2011) 

as shown in Figure 4.31b. The C-S-H gel acts as a binding agent within minor cracks, 

increasing the strength of soil-cement matrix as a whole. This explanation is supported by the 

results in Section 4.4.4, which show a UCS increase of 40% for C20L5 subjected to 1 freeze-

thaw cycle and self-healed for 7 days. The UCS recovery decreased for C20L5 samples 

subjected to higher number of freeze-thaw cycles, however, implying that self-healing 

efficiency depends on the width of the cracks. As a result, when the samples with lower 

cement contents (C15L5 and C15L10) subjected to 10 freeze-thaw cycles, the opened cracks 

were too significant and negligible self-healing was observed. 

The self-healing mechanism that occurs in soil-cement samples embedded with MgO pellets 

differs from the Lambson microcapsule mechanisms. Figure 4.30 displays samples 

containing MgO pellets hit by cracks induced by freeze-thaw cycles. If the strength of the 

MgO pellets is lower than that of the surrounding soil-cement matrix, the MgO pellets tend to 

rupture in the presence of these cracks. If the strength of the MgO pellet is higher than that of 

the matrix, the cracks may propagate along the MgO pellet or intersect with the pellet. In both 

cases, the pellets can be exposed to water, which causes the MgO material to diffuse into the 

cracks. The reaction between MgO and water produces new healing products that are able to 

seal the crack. A conceptual illustration of this healing process taking place within a crack is 
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shown in Figure 4.32. Once a crack is created, the pellets are exposed to water, as water is 

sucked into the crack during the freeze-thaw process. Subsequently, the water dissolves and 

diffuses grains of the MgO into the crack (Figure 4.32a). The MgO reacts with water, 

yielding brucite. Hydrated magnesium carbonates are also formed in CO2-rich environments. 

Finally, the brucite and hydrated magnesium carbonate products precipitate into the crack and 

begin to fill the crack over time (Figure 4.32b).  

These healing processes depend on a variety of parameters. These include the number and 

location of Lambson microcapsules or the MgO pellets intersected by the crack, the amount 

of the healing agent diffused into the crack, the crack’s geometry, the curing conditions 

(Huang et al., 2016), the reactivity of the healing agent, the availability of water, and the rate 

of precipitation of the healing products. The probability that a given crack hits a Lambson 

microcapsule or MgO pellet depends on the shape, size, number, and dosage of the 

capsules/pellets (Huang and Ye, 2014). Examples of cracks intercepting/rapturing MgO 

pellets in soil-cement specimens can be seen in Figure 4.30. As the microcapsules and MgO 

pellets are well-dispersed within the matrix, and as large amount of cracks tend to be 

generated in soil-cement samples by freeze-thaw cycles, it is very likely that many of the 

Lambson microcapsules or MgO pellets will be ruptured by the cracks. In addition, as the 

cracks generated by freeze-thaw cycles are often interconnected, it is likely that any healing 

materials released are able to diffuse into the water in the interconnected crack network. It is 

important to note, however, that the availability of water is essential to the healing process. In 

this study, water not only acts as a reactant, but also provides a medium for the diffusion of 

ions. Fortunately, due to the water-absorbing nature of soil-cement systems subjected to the 

freeze-thaw process, the presence of water in the cracks can safely be assumed.  

     

Figure 4.30 Examples of cracks induced by freeze-thaw cycles hitting an MgO pellet in 

soil-cement specimens. 
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(a) 

 

(b) 

Figure 4.31 Schematic representation of the hypothesised self-healing mechanism 

associated with Lambson microcapsules during (a) the initial triggering process and (b) 

after freeze-thaw damage has been healed. 
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(a) 

 

(b) 

Figure 4.32 Schematic representation of the hypothesised self-healing mechanism 

associated with the use of MgO pellets during (a) the initial triggering process and (b) 

after freeze-thaw damage has been healed. 
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with water in the cracks 

MgO pellet 

Mg-related materials 
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4.7 Concluding remarks 

This chapter investigated the development and performance of self-healing soil-cement 

systems subjected to freeze-thaw cycles. Two types of healing agents were used for this 

purpose: Lambson microcapsules and LUVOMAG MgO pellets. It was found that a 5% 

addition of Lambson microcapsules (relative to the weight of the cement) had little effect on 

the 7-day UCS and E50 of soil-cement systems. However, the C20L5 mix that containing a 5% 

addition of Lambson microcapsules improved the self-healing capability of soil-cement 

considerably, with a UCS increase of 21–40% after 7 days of healing following 12 freeze-

thaw cycles. It was found that the biggest improvement was observed after the first freeze-

thaw cycle. However, for soil-cement systems with low cement content, the addition of 

Lambson microcapsules tended to slightly decrease the UCS value after several freeze-thaw 

cycles rather than increase the self-healing capability of soil-cement systems. As a result, the 

use of Lambson microcapsules as a healing agent should be limited to soil-cement systems 

with relatively high cement contents (e.g., 20%).  

The use of MgO pellets was considered an effective technique for the development of soil-

cement systems that can self-heal damage caused by freeze-thaw cycles. It was found that the 

addition of MgO pellets not only increased freeze-thaw resistance, but also significantly 

improved the self-healing capability of the soil-cement systems following freeze-thaw 

damage. A crack sealing efficiency of 96% was recorded for freeze-thaw-damaged C15P10 

samples after 60 days of healing, while a rate of only 12% was observed for the control mix. 

Furthermore, a regain of durability in terms of both water permeability and gas permeability 

was demonstrated by the MgO pellet-containing samples after multiple freeze-thaw cycles. 

The pellet-containing samples also recovered 30–40% of their UCS and stiffness after 28 

days of healing following the freeze-thaw cycles. However, tensile strength recovery was 

minimal for the pellet-containing samples, which indicates that the healing products do not 

function as adhesive materials. Microstructure investigations (including TGA and SEM/EDX) 

revealed that brucite and various hydrated magnesium carbonates (like hydromagnesite and 

dypingite) were produced in the pellet-containing samples. Overall, these qualitative and 

quantitative investigations support the notion that MgO pellets show significant potential as 

self-healing additives for soil-cement systems that experience freeze-thaw cycles. 

A few key points of contrast between the different self-healing soil-cement systems subjected 

to freeze-thaw cycles using the Lambson microcapsules and MgO pellets are apparent 

following these analyses. First, the Lambson microcapsules appeared only to be effective for 
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soil-cement systems with relatively high cement content, while the MgO pellets also worked 

for systems with lower cement content. Second, the healing mechanism of the Lambson 

microcapsule-embedded samples was primarily due to further hydration that produce C-S-H, 

while the healing that resulted from the MgO pellets samples was due to the reaction of MgO 

with water, which yielded magnesium-related materials. More time was needed for the MgO 

pellets to react and yield their hydration products, compared to the healing mechanism of the 

Lambson microcapsules. Finally, the Lambson microcapsule-containing samples appeared to 

have better performance in terms of the recovery of their mechanical properties, while the 

MgO pellet-containing samples had better performance in terms of crack sealing.    

However, freeze-thaw cycles can create large numbers of cracks and substantially deteriorate 

the engineering properties of the soil-cement system even in the presence of these additives. 

Although the self-healing capability of soil-cement was greatly improved by the addition of 

both Lambson microcapsules and MgO pellets, it was found that it is difficult to fully recover 

the engineering properties of the system regardless of the healing agent used. For this reason, 

attempts were also made to prevent the damage cause by freeze-thaw cycles. 
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 Optimisation of Self-immune Soil-cement Systems Chapter 5

Subjected to Freeze-thaw Cycles Using SikaAer
®
 Solid 

Microcapsules  

5.1 Introduction 

Taking inspiration from successful efforts to develop self-healing cementitious materials to 

date, Chapter 4 described an investigation of the self-healing performance of soil-cement 

systems subjected to freeze-thaw cycles. Magnesia pellets and sodium silicate microcapsules 

were used as healing agents in a variety of experimental analyses. However, as the self-

healing process these agents facilitate is only triggered once damage occurs, these methods 

can fail if the initial damage is sufficient to compromise the entire system. Furthermore, 

although self-healing soil-cement systems exhibited marked recovery in terms of many 

important engineering properties, it was not possible to restore full performance after severe 

freeze-thaw damage.  

As a result, another system tailored for soil-cements expected to undergo freeze-thaw cycles 

was developed. Biological systems, especially the immune system of the human body, 

provided inspiration for a ―self-immune‖ soil-cement system that can protect itself from the 

effects of freeze-thaw cycles before damage occurs, thus avoiding the damage partially or 

entirely.  

This chapter describes how a special admixture, named SikaAer
®
 Solid (SS) air entraining 

microcapsules, was used to develop such self-immune soil-cement systems. The performance 

and mechanism of this mixture’s behaviour was investigated in detail. Thus, the aims of the 

work presented in this chapter is to quantify the effect of SS microcapsules on the self-

immune capability of soil-cement systems experiencing freeze-thaw cycles and to examine 

the mechanism by which self-immune effects occur. A number of material variables were 

considered, and a variety of techniques were used. The latter include isothermal calorimetry, 

flow table tests, uniaxial compression tests, splitting tensile tests, optical microscopy, 

hydraulic conductivity tests, porosity tests and high-resolution X-ray computed 

microtomography (CT).  

This chapter is mainly divided into four parts. The first discusses the effects of freeze-thaw 

cycles on the physical and mechanical properties of soil-cement systems. In the second part, 

the influence of SS microcapsules on the initial fresh properties, physical properties, and 
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mechanical properties of soil-cement systems are investigated. In the third part, the freeze-

thaw durability of SS microcapsule-embedded soil-cement systems is assessed in terms of the 

systems’ physical properties, including volume, water content, and dry density, and 

mechanical properties including unconfined compressive strength (UCS), tensile strength, 

and stiffness. Finally, durability is assessed in terms of cracking ratio and hydraulic 

conductivity. The results suggest a relationship between the proportion of SS microcapsules 

added to the soil-cement system and the self-immune capability of the system under freeze-

thaw conditions. This information combined with the effect of microcapsule addition on the 

intrinsic properties of the soil-cements supports arguments about the best dosage of SS 

microcapsules for soil-cement applications. In the fourth and final part of the chapter, the 

mechanism of the freeze-thaw process and the corresponding self-immune mechanism of 

soil-cement systems using SS microcapsules are discussed.   

5.2 Mix design of the soil-cements 

Details of the preparation of soil-cement samples were given in Section 3.2. A list of mix 

names and compositions is presented in Table 5.1. The control soil-cement specimens were 

prepared with three cement contents of 10%, 15% and 20%, and with corresponding 

water/cement ratios of 2.5, 1.67 and 0.8, respectively. The 15% cement content soil-cement 

was then mixed with varying quantities of SS microcapsules of between 0.67% and 6.66% by 

mass of the cement and labelled accordingly as shown in Table 5.1. The volume fraction, of 

0.8% to 7.5% is also included in the table. The dosage of the admixture is given in mass 

fraction (mf) of cement because air entraining agents are commonly believed to function 

during cement hydration. Moreover, the influence of air entraining agent on improving 

freeze-thaw durability is commonly believed to be related to the air space they create in the 

matrix therefore the volume fraction (vf) was also calculated and given. For a single mix, all 

the samples share a similar dry density and triplicate samples were prepared for every single 

test. 

The SS microcapsules, which are small prefabricated air bubbles with an elastic plastic 

envelope, were selected following a critical review of air entraining mechanism in Section 

2.2 for building self-immune soil-cement systems that subjected to freeze-thaw cycles. 

Characteristics of the SS microcapsules including size, density and morphology under 

microscope and SEM were presented in Section 3.1.2.3.  
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The hydration of fresh soil-cement samples containing a varying proportion of SS 

microcapsules was tested using isothermal calorimetry whilst the workability was measured 

by the flow table test. For volume, dry density, UCS, Young’s modulus, and hydraulic 

conductivity, cylindrical samples (50 mm diameter × 100 mm height) were tested while disc 

samples (50 mm diameter ×  10 mm height) were used for flexural strength and surface 

analysis. In addition, small cubes of 3 mm×3 mm×3 mm were used for high-resolution X-ray 

computed microtomography (CT). The experimental programmes for investigating the self-

immune performance of soil-cement specimens were given previously in Table 3.5. All the 

soil-cement specimens were firstly cured for 7 days before being subjected to freeze-thaw 

cycles. After 0, 1, 5, 10 and 20 (if necessary) freeze-thaw cycles, a variety of techniques were 

used to assess the physical properties, strength properties, tightness and microstructure of the 

soil-cement specimens.  

Table 5.1 Mix composition of soil-cement samples containing SikaAer
®
 Solid 

microcapsules. 

Mix ID 
Mix ingredients 

Ratios/mass (%) 
Admixture 

Mass fraction 

in cement, mf 

(%) 

Volume 

fraction in 

soil-cement, vf  

(%) 
 Soil Water Cement 

C10 

100 25 

10 - - - 

C15 15 - - - 

C20 20 - - - 

C15S0.67 15 

SikaAer
®
 Solid 

microcapsules 

0.67 ~0.8 

C15S1.67 15 1.67 ~1.8 

C15S3.33 15 3.33 ~3.8 

C15S6.67 15 6.67 ~7.5 
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5.3 Influence of SikaAer
®
 Solid microcapsules on the properties of soil-cement 

systems 

5.3.1 Survivability and distribution of SikaAer
®
 Solid microcapsules within soil-

cement matrices 

To develop a system that could confer self-immune qualities to soil-cement during freeze-

thaw cycles, SS microcapsules were added to soil-cement systems. Unlike the conventional 

air-entraining agents commonly used in concrete, SS microcapsules are solids and do not 

dissolve in water. Therefore, they have excellent survivability during soil-cement mixing, 

compaction, and hydration. The addition of the SS microcapsules aims to build a self-

immune soil-cement system via controlled air entrainment. The microcapsules’ elastic, 

compressible shells (containing air) do not break during freeze-thaw cycles; thus, they create 

space for water within the system to expand and contract, thereby relieving the excess 

pressure generated within the soil-cement matrix.  

This section investigates the survivability of SS microcapsules within soil-cement systems 

after mixing and during freeze-thaw cycles. SS microcapsules have diameters of 5–80 µm. 

This makes them difficult to observe within soil-cement systems using the naked eyes. 

Therefore, in order to examine the survivability and distribution of SS microcapsules inside 

the soil-cement matrix, samples were observed using an optical light microscope and 

scanning electron microscope (SEM). Representative optical microscopic and SEM images 

are presented in Figure 5.1. Favourable results for embedment, distribution, and survivability 

of SS microcapsules were observed for several different dosages (e.g., 1.67 and 3.33%). 

Figure 5.1 (a-c) presents a typical distribution of SS microcapsules within the soil-cement 

samples. The SS microcapsules are indicated by the red arrows. Debonding was observed 

between the microcapsules and the soil-cement matrix, which allows water to enter the space 

between them. This debonding is probably due to the tendency of the capsules to act as 

surfactants during cement hydration. They were observed throughout the soil-cement matrix, 

suggesting good distribution. However, the optical microscope can only observe a very small 

region of the sample surface. Thus, the distribution of SS microcapsules inside the sample 

cannot be known with certainty using optical microscopic or SEM images alone. A more 

detailed sense of the distribution of SS microcapsules inside the soil-cement system can be 

obtained via High resolution X-ray computed microtomography (CT). This is discussed in 

Section 5.5.4.  
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To function properly, the SS microcapsules are required to not only survive the mixing 

process, but also to survive cyclic freeze-thaw exposure. Therefore, the survivability of SS 

microcapsules after multiple freeze-thaw cycles was also investigated. Microscopic images of 

samples embedded with microcapsules that have been subjected to 10 freeze-thaw cycles are 

presented in Figure 5.1b and Figure 5.1d. The microcapsules appear to have very good 

survivability, as, after 10 freeze-thaw cycles, all observed microcapsules remained intact 

within the soil-cement matrix.  

   

(a)                                                                           (b)  

     

(c)                                                                           (d) 

Figure 5.1 Microscopic images and SEM images of SikaAer
®
 Solid microcapsules within 

the soil-cement matrix. Images depict microcapsules before freeze-thaw cycles (a and c) 

and after 10 freeze-thaw cycles (b and d). 

100 μm 50 μm 
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5.3.2 Fresh properties of the SikaAer
® 

soil-cement mixes 

5.3.2.1 Calorimetry 

This section primarily focuses on the effects of SS microcapsules on the hydration processes 

of Portland cement within soil-cement mixes. This was considered necessary, as the addition 

of SS microcapsules may affect the hydration process as they increase the void ratio within 

the mix, potentially impeding heat transfer. The thermal power produced per gram of cement 

for mixes containing mf = 1.67% (C15S1.67), 3.33% (C15S3.33) and 6.67% (C15S6.67) SS 

microcapsules relative to the control mix (C15) are presented in Figure 5.2. In addition, 

calculated values of the setting time and peak power values for all mixes are summarised in 

Table 5.2. 

Generally, it can be seen from Figure 5.2 and Table 5.2 that the addition of SS 

microcapsules up to 6.67% had little effect on the setting time, and that the capsules slightly 

increased the peak power values of the cement compared to the control mix. This is a 

coherent result, as the capsules do not react with materials of the soil-cement mix. C15S1.67 

exhibited a similar setting time (4.46 hours) as that of the control mix (4.44 hours). However, 

a slight change in the calorimetry results was observed for mixes with a higher microcapsule 

content. Additionally, the peak power values were slightly increased for all mixes following 

the addition of SS microcapsules. An explanation for this might be that SS microcapsules act 

as lubricants and surfactants, thereby facilitating the hydration of cement, reducing the setting 

time, and increasing the peak power values. However, the increased addition of SS 

microcapsules, coincides with an increase in the void ratio of the soil-cement system. This 

increased void ratio would disturb the hydration of the cement by disrupting the connections 

between cement particles. In addition, the increased void ratio could provide a greater volume 

of mass to dissipate exothermic heat. At dosages higher than 1.67%, the setting time of the 

mixes increased with the addition of SS microcapsules, which indicates that the effects of the 

excess void ratio became more dominant than other effects. The setting time for C15S6.67 

was roughly 4.8 hours. This represents an increase of approximately 7.8% relative to the 4.5 

hours observed for the control mix. Based on these results, a recommended microcapsule 

dosage of 3.33% relative to the weight of the cement can be added to the soil-cement mix to 

ensure only a negligible delay in the hydration process. 
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Figure 5.2 Effects of SikaAer
®
 Solid addition on isothermal (23℃) power and energy 

production of soil-cement mixes. 

Table 5.2 Initial setting time and peak power values for soil-cement mixes containing 

different dosage of SikaAer
®
 Solid microcapsules compared to the control. 

Mix Initial setting time (hrs) Peak power (mW/g) 

C15 4.46±0.08 4.28±0.07 

C15S1.67 4.44±0.06 4.39±0.05 

C15S3.33 4.57±0.04 4.49±0.04 

C15S6.67 4.81±0.08 4.39±0.08 

 

5.3.2.2 Flowability 

The flowability of soil-cement mixes embedded with different dosages of SS microcapsules 

was measured via the flow table tests described in Section 3.4.2. Figure 5.3 illustrates the 

effects of the addition of different dosages of SS microcapsules on the flow values. 

Flowability is considered an important parameter in this study, as it affects not only the 

distribution of SS microcapsules within soil-cement mixtures, but also the workability of 
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those mixtures. The control mix (C15) showed a flow value of 190 mm. The flow values of 

mixes C15S1.67, C15S3.33, and C15S6.67 were 187 mm, 193 mm, and 186 mm, 

respectively. These values indicate that the addition of SS microcapsules does not reduce the 

workability of the soil-cement mix. This corroborates the manufacturer’s claim that addition 

of SS microcapsules can improve the workability of cementitious materials (Sika 

Deutschland GmbH, 2014). Moreover, this result is predictable, as the SS microcapsules do 

not react with the materials in soil-cement. Therefore, the water/cement ratio within the mix 

remains unchanged. SS microcapsules may even have positive effects on the workability of 

soil-cement. By performing a lubricating function, they can reduce friction between 

aggregates. However, the water/cement ratio for the mix studied is 1.67, which is relatively 

high. Therefore any lubricating function the microcapsules perform will be minimal. These 

results are considered favourable as high flowability not only makes the soil-cement easy to 

mix, but also helps the SS microcapsules to disperse in soil-cement systems.  

 

Figure 5.3 Flow table values for soil-cement mixes with different dosages of SikaAer
®
 

Solid microcapsules compared to the control mix. 

5.3.3 Physical properties 

5.3.3.1 Water content 

The water content of soil-cement systems embedded with SS microcapsules was measured 

after 7 days of curing. These data are presented in Figure 5.4. Figure 5.4 shows that the 

addition of SS microcapsules generally has little effect on the water content of soil-cement 

systems. This result was anticipated, as the microcapsules, prefabricated air bubbles with an 
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elastic acrylonitril-polymer envelope, react with neither cement nor water. As discussed in 

Section 5.3.2.1, the addition of SS microcapsules was revealed to have little effect on the 

calorimetry of the soil-cement systems. However, C15S1.67 showed a lower water content 

than the control. This decrease may be due to the lubricant effect of SS microcapsules in the 

soil-cement matrix, which accelerates the hydration process, thus consuming more water. 

This would corroborate the calorimetry results previously discussed in Section 5.3.2.1, which 

showed that setting time decreased and peak power increased for C15S1.67. For 

microcapsule dosages of 3.3% and 6.67%, the water content increases slightly from 17.9% 

(the control result) to 18.4% and 18.6%, respectively. An explanation for this result may be 

that the higher volume of SS microcapsules and increased air content slightly delay the 

hydration of cement, therefore causing less water to be consumed after 7 days. These results 

are also consistent with the calorimetry analysis results for mixes C15S3.33 and C15S6.67.   

 

Figure 5.4 Water content of soil-cement mixes with different dosages of SikaAer
®
 Solid. 

5.3.3.2 Dry density 

Dry density values were calculated from the mass, moisture content, and volume of the 

specimens. As expected, a gradual decrease in the soil-cement samples’ dry density was 

observed for increasing quantities of microcapsules. The mean and normalised dry density 

values of all mixes are given in Figure 5.5. The 7-day dry density of soil-cement decreased 

by 1.9%, 3.5%, 8.2%, and 12% for C15S0.67, C15S1.67, C15S3.33 and C15S6.67, 

respectively. There are several possible explanations for these results. First, SS microcapsules 
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have a relatively low density, so their addition directly reduces the dry density of soil-cement. 

In addition, SS microcapsules can act as air-entraining agents when mixed with cement and 

water therefore air-voids are generated around them. Consequently, the air content of the soil-

cement systems embedded with SS microcapsules increased considerably, reducing the 

systems’ dry density. However, this reduction in dry density is not significant unless a large 

amount of SS microcapsules is added. Considering that a large decrease in dry density is not 

favourable, a microcapsules dosage of less than 3.33% is recommended. 

   

(a)                                                                          (b) 

Figure 5.5 (a) Dry density and (b) normalised dry density for soil-cement mixes with 

different dosages of SikaAer
®
 Solid. 

5.3.4 UCS and Young’s modulus 

The effects of the addition of SS microcapsules on strength properties like UCS and Young’s 

modulus were also investigated. The mean 7-day UCS for all mixes is shown in Figure 5.6a. 

Generally, the addition of SS microcapsules reduced the 7-day UCS of soil-cement samples. 

The reduction had a mostly linear relationship with increasing dosage. For example, only a 7% 

reduction was observed at mf = 0.67%, while the strength reduction was 27% and 36% after 

adding 3.33% and 6.67% dosages of microcapsules, respectively. This was anticipated, as the 

addition of SS microcapsules increases the void ratio of the system, therefore reducing its 

compactness. Similar results were also reported by Giannaros (2017), which found 13% and 

28% UCS reductions for mortar specimens embedded with mf = 2.5% and 5% dosages of SS 

microcapsules, respectively. These results are consistent with the results highlighted in 
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Section 5.3.3.2, which found a noticeable reduction in dry density when SS microcapsules 

were added to the soil-cement system.  

The effects of the addition of SS microcapsules on the stiffness and stress-stain curves for all 

mixes are presented in Figure 5.6b and Figure 5.6c, respectively. Unlike the 7-day UCS 

results, the Young’s modulus of the SS microcapsule-containing samples was observed to 

slightly increase. For example, compared to the control, the E50 values of C15S0.67 and 

C15S1.67 increased by 18% and 9%, respectively. The E50 increase contradicts the decrease 

observed in the 7-day UCS. This result may be explained by the fact that the addition of SS 

microcapsule facilitates the early hydration of cement, as discussed in Section 5.3.2.1. 

Therefore, as more hydration products were produced in the C15S0.67 and C15S1.67 mixes 

over 7 days, their stiffness increased relative to the control. However, although more 

hydration products were produced, the increased void ratio caused by the SS microcapsules 

would eventually lead to overall reductions in strength and stiffness. As shown in Figure 5.6c, 

C15S6.67 samples were much more ductile than controls, and their E50 was 30% lower. With 

the addition of excess SS microcapsules, the positive effects of enhanced cement hydration 

become less important and the negative effects of higher void ratio begin to dominate. A 

significant reduction in strength and stiffness is undesirable for soil-cement systems in 

engineering practice. Thus, it is recommended that the dosage of SS microcapsules be kept as 

low as possible once the soil-cement samples demonstrate self-immunity to freeze-thaw 

deterioration.   
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(a) 

 

(b) 

 

(c) 

Figure 5.6 Mechanical properties of soil-cement samples containing varying dosages of 

SikaAer
®
 Solid microcapsules: (a) 7-day UCS, (b) Young’s modulus, and (c) stress-stain 

curves.  
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5.3.5 Unconfined compressive strength development 

The effects of the addition of SS microcapsule on UCS development were also investigated. 

The UCS values of soil-cement samples containing SS microcapsules at curing times of up to 

90 days are presented in Figure 5.7. Results show that the addition of 1.67 % of 

microcapsules reduces the 7-day UCS of soil-cement but accelerates UCS development 

between 7 and 14 days. At 14 days, the UCS of C15S1.67 was 13% higher than for C15 

samples of the same age. However, the difference became negligible at the age of 28 and 60 

days. At 90 days, the C15 samples displayed higher strength (namely, 5.4 MPa compared to 

4.5 MPa observed for C15S1.67 samples). This is likely caused by the air voids created by 

the SS microcapsules, as air voids within the cement matrix hamper hydration at later ages 

(e.g., after 60 days). In sum, the addition of 1.67% SS microcapsules appears to slightly 

enhance the early UCS development of soil-cement (before 14 days) while hampering UCS 

development at later age (after 60 days).    

 

Figure 5.7 UCS of soil-cement samples containing different proportions of SikaAer
®
 

Solid microcapsules over time. 
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5.4 Evaluation of the self-immune capability of SikaAer
®
 Solid microcapsules 

embedded soil-cement systems subjected to freeze-thaw cycles 

In this section, the freeze-thaw durability of the soil-cement systems embedded with SS 

microcapsules was evaluated in terms of physical properties, mechanical properties and 

permeability.   

5.4.1 Physical properties 

5.4.1.1 Surface crack characterisation  

The crack characteristics of the soil-cement systems were observed using a light microscope 

to examine disc samples. The light microscope was used to investigate the extent of the 

disruption in the soil-cement specimens after different numbers of freeze-thaw cycles (e.g. 0, 

5, 8, and 10). Representative optical microscopic images of the samples, with cracks 

indicated by red arrows, are presented in Figure 5.8. Images were taken with the Leica 

LED2000 optical microscope. A location on the surface of the soil-cement specimen was 

marked so that the changes after repeated freeze-thaw cycles could be compared consistently. 

Thus, the images presented in Figure 5.8 show only small, specific regions of the sample 

surface.  

Damage and cracking can be clearly observed on the surfaces of the C15 samples (Figure 

5.8a) after 5 freeze-thaw cycles. Significant damage was observed after 8 cycles—disc 

samples were too weak to handle more than 8 freeze-thaw cycles. For the C15S1.67 sample 

(Figure 5.8b), cracks were barely observable after 5 freeze-thaw cycles, but minor cracks 

were observed after 10 freeze-thaw cycles. However, for C15S3.33 mixes (Figure 5.8c), no 

cracks were observed at all, even after 20 freeze-thaw cycles. Based on these observations, 

SS microcapsules embedded in the soil-cement systems seem to provide self-immunity to 

crack formation caused by freeze-thaw cycles. The results of the microscopic analysis and the 

crack area ratio values revealed that the addition of SS microcapsules significantly improved 

the freeze-thaw resistance of the soil-cement systems in terms of preventing crack initiation. 

For microcapsule dosages of 3.33%, the soil-cement systems appeared to be entirely self-

immune to up to 20 freeze-thaw cycles, and crack formation was completely eliminated. 
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No freeze-thaw cycles                                          5 freeze-thaw cycles 

 

8 freeze-thaw cycles 

(a) 

 

 

 

5 mm 5 mm 

5 mm 
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No freeze-thaw cycles                                          5 freeze-thaw cycles 

 

10 freeze-thaw cycles 

(b) 

 

 

 

 

 

5 mm 5 mm 

5 mm 
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No freeze-thaw cycles                                          5 freeze-thaw cycles 

 

20 freeze-thaw cycles 

(c) 

Figure 5.8 Typical microscopic images of cracking patterns in (a) control samples and 

self-immune samples embedded with (b) 1.67% and (c) 3.33% microcapsule dosages 

after repeated freeze-thaw cycles. 

5.4.1.2 Porosity, degree of saturation (Sr) and air content  

The specific gravity (Gs) of the soil-cement particles was determined according to ASTM: 

D854-10 (2010), and the porosity, degree of saturation, and air content of the soil-cement 

samples were calculated according to ASTM: D7263-09 (2009). The porosity directly reflects 

the number of voids in the soil-cement matrix. Thus, change in porosity can reflect changes 

in crack generation and opening during the freeze-thaw process. Taken together, the degree 

of saturation and porosity can give insights on the behaviour of internal water when soil-

5 mm 5 mm 

5 mm 
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cement samples are subjected to cyclic freeze-thaw action. As presented in Figure 5.9a, the 

porosity of C15 increases with increasing numbers of freeze-thaw cycles: its value changes 

from 0.37 to 0.44 after 10 cycles, for instance. This increase in the porosity of the soil-cement 

system is mainly caused by the expansion of ice during freezing, as pores are enlarged and 

cracks are generated within the system via this process.  

While the initial porosity of soil-cement samples in this study did indeed increase with the 

addition of SS microcapsules, the change in porosity after repeated freeze-thaw cycles was 

greatly reduced. For example, the porosity of C15S0.67 remained steady for 5 freeze-thaw 

cycles, and this value only had increased slightly (from 0.38 to 0.39) at 10 freeze-thaw cycles. 

For other mixes, including C15S1.67, C15S3.33, and C15S6.67, porosity did not increase 

even after 20 freeze-thaw cycles.  

The degree of saturation (Sr.) reflects the saturation status of internal air voids and the degree 

to which water can enter soil-cement samples during the freeze-thaw process. The degree of 

saturation was calculated using Eq. 3.3. Sr. values for all soil-cement mixes are presented in 

Figure 5.9b. The initial degree of saturation for C15 samples was 84%, and this value 

increased to 100% after 10 freeze-thaw cycles. This indicates that the C15 specimens were 

fully saturated after 10 freeze-thaw cycles, which is consistent with the water content trends 

discussed in Section 5.4.1.3. Cyclic freeze-thaw exposure causes a pumping effect that 

increases the moisture content and degree of saturation of the pore system. If the air void 

volume is not enough to accommodate a volume expansion of about 9% that occurs when 

water freezes, or the air pores are situated far apart (over 0.4mm) (Penttala, 2009), hydraulic 

overpressure occurs. As a result, in the control samples, capillary pores keeps opening during 

freezing, and water migrates into the matrix via the pumping effect that occurs during 

thawing. After several cycles, internal water content reaches a high level and the soil-cement 

becomes progressively more vulnerable to freeze-thaw exposure. However, for C15S1.67, 

C15S3.33, and C15S6.67 samples, the Sr. increase after freeze-thaw cycles was greatly 

reduced. With dosages of 3.33% or higher, the Sr. of the system did not increase even after 

20 freeze-thaw cycles.  

Air content is calculated by using Eq. 3.4. The values for all the soil-cement mixes are 

presented in Figure 5.9c. The air content of C15 decreased with increasing numbers of 

freeze-thaw cycles, and this value dropped from 6% to almost zero after 10 freeze-thaw 

cycles. The addition of SS increased the initial air content of the soil-cement system. 
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C15S0.67 and C15S1.67 still experienced a decrease in air content, but the decrease was 

smaller than that of C15. However, mixes C15S3.33 and C15S6.67 exhibited little variation 

in air content even after experiencing 20 freeze-thaw cycles. As a result, in terms of Sr. and 

air content, the recommended dosage of SS microcapsule for a soil-cement system that is 

self-immune to freeze-thaw cycles is 3.33%. 

  

(a) 
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(b) 

 

(c) 

Figure 5.9 (a) Porosity, (b) degree of saturation, and (c) air content of SikaAer 

microcapsule-embedded soil-cement systems over repeated freeze-thaw cycles.  
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5.4.1.3 Water content 

The water content of each mix was measured by oven-drying the fractured specimens 

following their uniaxial compressive strength testing. Li et al. (2011) argued that fluid ingress 

is a primary cause of freeze-thaw damage in concrete. Similarly, water content is also an 

important parameter of soil-cement systems, and it is an important indicator of the 

progression of freeze-thaw damage. Water migration plays a key role in freeze-thaw 

deterioration, as the damage is primarily caused by the freezing of water. The water content 

of soil-cement mixes with varying dosages of SS microcapsules added over multiple freeze-

thaw cycles is shown in Figure 5.10. A sharp increase was observed in the moisture content 

of the control mix (C15) after several freeze-thaw cycles. However, this increase was reduced 

with the addition of SS microcapsules. After 10 freeze-thaw cycles, the moisture content of 

C15 was increased by 9.5%, from 18% to 27.5%, but this increase drops to only 2.7% when 

0.67% of SS microcapsules are added. With the addition of 1.67% or greater, the moisture 

content of the soil-cement samples only changes slightly even after 20 cycles.  

As discussed in Section 4.3, the increased moisture content for the C15 samples was related 

to water absorption and pore/crack expansion that occurred during the freeze and thaw 

process. During freezing, the water inside the soil-cement expands by approximately 9%, 

which enlarges pores and fissures and make them interconnect and forms a flow path within 

the soil-cement matrix. After this occurs, the temperature difference between the frozen 

sample and relatively warm water in nearby soil causes a dramatic capillary suction effect. 

Thus, liquid and vaporous water migrates from warmer to colder areas though the pores and 

fissures (Guthrie et al., 2006). In this way, the frozen samples tend to suck water from the 

underlying warm water that is made available during the thawing process, and the soil-

cement’s water content increases.  

However, water content for the four different SS microcapsules dosage mixes (C15S0.67, 

C15S1.67, C15S3.33, and C15S6.67) was much more stable after the freeze-thaw cycles than 

in the control mix (C15). An explanation for this might be that the incorporation of SS 

microcapsules reduces the water migration into soil-cement systems that normally occurs 

during freeze-thaw cycles. However, the water permeability results in Section 5.4.3 show that 

the initial hydraulic conductivity of samples embedded with SS microcapsules is actually 

higher than that of the control samples. Therefore, the reduced water uptake is likely not due 

to a change in hydraulic conductivity. Another possible explanation is that the creation of 
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interlinked cracks during freeze-thaw cycles is prevented by the SS microcapsules, which are 

able to relieve the pressure generated by water freezing. Moreover, the SS microcapsules 

themselves are impermeable, so their simple presence may also hinder water ingress. Finally, 

it bears mentioning that the SS soil-cement system itself could have a sufficiently low 

hydraulic conductivity to resist the capillary suction generated by the temperature gradient.   

 

Figure 5.10 Water content of soil-cement samples containing different dosages of 

SikaAer
®
 Solid microcapsules subjected to repeated freeze-thaw cycles. 

5.4.1.4 Volume 

The volume of each sample before and after repeated freeze-thaw cycles was recorded, and 

the resulting volumetric change was calculated. The volumetric change of a sample is defined 

as the change of volume (dv) compared to its original volume (V0). Volumetric change is 

recorded as a percentage. Volume change is a metric that is commonly studied for soil-

cement systems, as frost heave presents an important hazard for geotechnical infrastructure 

projects (e.g. pavement) that undergo freeze-thaw cycles. As shown in Figure 5.11, the 

volume of the C15 samples increased over multiple freeze-thaw cycles. An increase of 11% 

was observed after 10 cycles. This result is consistent with many studies that have reported 

that the volume of soil/soil-cement systems increases over repeated freeze-thaw cycles (e.g., 

Liu et al., 2010; Shibi and Kamei, 2014). The volume increase is likely to be caused by the 
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ingress of water that occurs during freeze-thaw cycles as well as the expansion of water 

during freezing. This explanation is corroborated by the strong correlation between 

volumetric change and water content presented in Figure 4.3a.  

By adding SS microcapsules, the volumetric change of all soil-cement mixes was greatly 

reduced. Only <2% volumetric change was measured for C15S0.67 after 10 freeze-thaw 

cycles. Per Figure 5.11, for mixes C15S1.67, C15S3.33, and C15S6.66, volumetric change 

remains negligible after 20 freeze-thaw cycles. These results indicate that the SS 

microcapsules greatly reduce the volumetric change caused by the phase change of water. 

Thus, the addition of at least 1.67% SS microcapsules appears to make the soil-cement 

system self-immune to the volumetric change caused by freeze-thaw cycles. Frost heave 

effects can apparently be completely prevented for self-immune soil-cement systems 

embedded with SS microcapsules. These results further support the results reported in 

Section 5.4.1.2. 

 

Figure 5.11 Volumetric change of soil-cement samples embedded with different dosages 

of SikaAer
®
 Solid microcapsules over repeated freeze-thaw cycles. 
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5.4.1.5 Dry density 

Dry density was measured for each soil-cement sample subjected to repeated freeze-thaw 

cycles, as this metric is an important engineering property for soil-cement systems used in 

engineering. The change in dry density for all mixes is plotted in Figure 5.12. The dry 

density of C15 was observed to decrease rapidly over increasing numbers of freeze-thaw 

cycles. The C15 samples’ residual dry density was only 89% after 10 freeze-thaw cycles.  

As discussed in Section 5.3.3.2, the initial dry density of soil-cement is decreased by the 

addition of SS microcapsules. However, the reduction in dry density that occurs following 

freeze-thaw cycles greatly decreased for soil-cement systems embedded with SS 

microcapsules. For C15S0.67, dry density only decreased by 3% after 10 freeze-thaw cycles. 

For soil-cement mixes embedded with a dosage of 1.67% of SS microcapsules or higher, dry 

density did not decrease even after 20 cycles. For mix C15S3.33, dry density even increased 

as the number of freeze-thaw cycles increased: a 4% increase in dry density was observed 

following 20 freeze-thaw cycles. This increase is likely due to the continuous hydration of 

cement within the system. These dry density results are consistent with the volume and water 

content results discussed in previous sections. 

 

Figure 5.12 Dry density of soil-cement systems embedded with SikaAer
®
 Solid subjected 

to repeated freeze-thaw cycles.  



183 | P a g e  

5.4.2 Mechanical properties 

5.4.2.1 Unconfined compressive strength and Young’s modulus 

Strength properties are key to determining the overall effectiveness of soil-cement systems. 

Specimens were initially cured for 7 days before they were subjected to repeated freeze-thaw 

cycles. Unconfined compressive strength (UCS) testing was performed in triplicate for soil-

cement systems exposed to 0, 1, 5, 10, and 20 freeze-thaw cycles. The results are displayed in 

Figure 5.13a. To highlight UCS change in these soil-cement systems, the normalised UCS is 

plotted over the number of freeze-thaw cycles in Figure 5.13b. Demonstrating results 

consistent with those reported in Jamshidi et al. (2015a), Kamei et al. (2012), and Wang et al. 

(2017). Figure 5.13a shows a general trend of decreasing UCS in control samples (C15) for 

increasing numbers of freeze-thaw cycles. UCS decreases of approximately 50% and 84% 

were observed after 5 and 10 freeze-thaw cycles, respectively. However, a remarkable 

increase in freeze-thaw resistence was observed for soil-cement samples embedded with SS 

microcapsules, even at dosages as low as 0.67%. The normalised UCS for C15S0.67 was 102% 

at 5 freeze-thaw cycles and 75% at 10 freeze-thaw cycles, whereas those values for C15 were 

55% and 16%, respectively. For 1.67%, 3.33%, and 6.67% microcapsule dosages, remarkably, 

samples’ UCS values increase rather than decreasing over repeated freeze-thaw cycles. The 

UCS values for C15S3.33 and C15S6.67 even exhibit their highest UCS measurements at 20 

freeze-thaw cycles. In any case, the UCS values for C15S1.67, C15S3.33, and C15S6.67 all 

achieve 130-140% of their 7-day UCS results after 20 freeze-thaw cycles. This strength 

increase associated with increasing freeze-thaw cycles could be a result of continuous cement 

hydration, which is consistent with the trends observed for strength development described in 

Section 5.3.5. However, for C15S1.67, UCS began to decrease after 20 freeze-thaw cycles, 

with a drop from 4.20 MPa to 3.96 MPa observed. This result indicates that the C15S1.67 

mix may not be entirely self-immune to freeze-thaw deterioration. As a result, the 

recommended dosage of SS microcapsules should exceed 1.67% for self-immune soil-cement 

systems. 

Young’s modulus, E50 values for soil-cement samples with varying SS microcapsule dosages 

over repeated freeze-thaw cycles are plotted in Figure 5.14. Representative stress-strain 

curves for all mixes are presented in Figure 5.15. The stress-strain behaviour of C15 

becomes progressively more ductile as the number of freeze-thaw cycles increases. The 

addition of SS also significantly increases the freeze-thaw durability of soil-cement in terms 
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of stiffness. The E50 trend for all the mixes is very similar to the trend observed for UCS. 

Yarbaşi et al. (2007) suggested that the more brittle a material is, the more susceptible it is to 

cracking when frozen. However, for mixes C15S0.67 and C15S1.67, the addition of SS not 

only increases the stiffness of the soil-cement, but also increases its freeze-thaw resistance. 

Thus, brittleness appears to have little effect on the freeze-thaw resistance of self-immune 

soil-cement systems.  

  

(a) 

  

(b) 

Figure 5.13 Strength behaviour of soil-cement mixes with various dosages of SikaAer
®
 

Solid microcapsules over repeated freeze-thaw cycles in terms of (a) actual UCS values 

and (b) normalised UCS values.  
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Figure 5.14 E50 values for soil-cement samples over repeated freeze-thaw cycles. 
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(a)                                                              (b) 

            

(c)                                                             (d) 

 

(e) 

Figure 5.15 Stress-strain behaviour after repeated freeze-thaw cycles for (a) control mix 

C15, (b) mix C15S0.67, (c) mix C15S1.67, (d) mix C15S3.33, and (e) mix C15S6.67.   
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5.4.2.2 Tensile strength 

The tensile strength of the soil-cement samples was obtained from triplicate disc samples 

using a splitting tensile test. The mean tensile strength of the samples is given in Figure 5.16. 

Similar to the UCS, the tensile strength of C15 tends to decrease sharply over repeated 

freeze-thaw cycles. After about 6 cycles, the tensile strength of the C15 disc sample reached 

nearly zero, indicating a complete loss of tensile strength. Note that the C15 disc samples 

reached tensile strength failure in fewer freeze-thaw cycles than the cylindrical C15 samples 

tested for UCS. This is likely due to the smaller height of the disc samples compared to the 

cylindrical samples (10 mm vs. 100 mm). During freeze-thaw curing, water was sucked from 

the bottom of the sample. Therefore, thinner samples would be associated with greater water 

ingress, which would lead to greater overall damage after repeated freeze-thaw cycles.  

As shown in Figure 5.16, C15S1.67 retained 64% of its original tensile strength after 10 

freeze-thaw cycles, while no reduction in tensile strength was observed for C15S3.33. 

However, these samples’ initial tensile strength was slightly lower than that of the controls. 

These results indicate that the addition of SS microcapsules can significantly improve the 

freeze-thaw durability of soil-cement system in terms of tensile strength. 

 

Figure 5.16 Tensile strength of soil-cement samples with different dosages of SikaAer
®
 

Solid microcapsules over repeated freeze-thaw cycles. 
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5.4.3 Permeability 

Permeability (k) was measured in duplicate for mixes C15, C15S1.67, and C15S3.33, which 

were all subjected to 20 freeze-thaw cycles. Permeability measurements were performed in 

general accordance with method F described in ASTM: D5084-16 (2016) (i.e., using a 

constant rate of flow method). This method is described in greater detail in Section 3.5.4. 

Figure 5.17 shows the change in permeability for all mixes after repeated freeze-thaw cycles 

(i.e. 0, 1, 5, 10, and 20). The figure demonstrates that the permeability of soil-cement systems 

is very sensitive to freeze-thaw deterioration. The k value of C15 increased by approximately 

6 times (or half an order of magnitude) after 1 freeze-thaw cycle. This increase reached 100 

times the original value after 5 cycles (approximately 2 orders of magnitude) and finally 

reached roughly 270 times the original value after 10 cycles (approximately 2.5 orders of 

magnitude). This increase is likely due to the expansion of voids, crack formation, and 

subsequent structural degradation caused by the freeze-thaw process. These results also agree 

with the earlier observations, which showed that the water content, volume, porosity, degree 

of saturation, and crack area ratio continued to increase for C15 over repeated freeze-thaw 

cycles. The creation of cracks resulted in a much higher permeability value for the control 

than in the un-cracked samples, as these cracks were much larger than the pores of the intact 

specimens. This constant increase in permeability over multiple freeze-thaw cycles is 

consistent with previous studies of soil-cement systems (Guney et al., 2006, Lake et al., 

2016).  

Figure 5.17 shows that the addition of SS microcapsules slightly increased the initial 

permeability of the soil-cement systems. A possible explanation for this might be that the 

addition of SS increased the porosity of the systems, therefore creating greater space for 

water to pass through. For a given soil/soil-cement system, permeability is a function of the 

void ratio. However, the freeze-thaw resistance of soil-cement systems in terms of 

permeability significantly increased with the addition of SS microcapsules. The permeability 

increase observed in the control samples amounted to 2.5 orders of magnitudes after 10 

freeze-thaw cycles. By contrast, the permeability increased in mixes C15S1.67 and C15S3.33 

was negligible. For C15S1.67, permeability increased after 1 and 5 freeze-thaw cycles, but 

this value decreased afterwards. For the C15S3.33 mix, permeability increased only slightly 

after the first freeze-thaw cycle and continued to decrease afterwards. After a total of 20 

freeze-thaw cycles, the k value of mix C15S3.33 was lower than its original k value. A 

possible cause for this relates to the progression of the hydration process in soil-cement 
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systems, which generates more hydration products. The results show that both C15S1.67 and 

C15S3.33 possessed good self-immunity to freeze-thaw cycles in terms of permeability. They 

suggest that the water-tightness of self-immune soil-cement systems can be retained even 

after 20 freeze-thaw cycles.  

Another key finding is that, for all the mixes, k values increased after the first freeze-thaw 

cycle exposure, which is consistent with the literature (Eigenbrod, 1996; Eskişar et al., 2015). 

This suggests that the first freeze-thaw cycle usually exerts an unavoidable effect on soil-

cement samples. One explanation may be that the existing water within some of the saturated 

pores inevitably expands during the first freezing, causing minor disruption of the soil-

cement matrix.    

 

Figure 5.17 Evolution of the permeability values of SikaAer
®
 soil-cement samples over 

repeated freeze-thaw cycles. 

Compared with the control mix, the impact of the addition of the SS microcapsules on 

changes in the behaviour of the soil-cements subjected to freeze-thaw cycles was examined in 

a number of aspects. Together with the results of physical properties, strength properties and 

surface analysis, the results of the permeability investigations reveal that the integrity of the 

structure of the self-immune soil-cement systems can remain undamaged during freeze-thaw 
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cycles. The addition of SS microcapsules confers a noticeable improvement in terms of the 

freeze-thaw resistance of soil-cement systems, although their initial engineering properties 

may slightly deteriorate. In light of these findings, the self-immune mechanisms of soil-

cement systems using SS microcapsules are described in the following section. 

5.5 Mechanisms of self-immune soil-cement systems using SikaAer
®
 Solid 

microcapsules under freeze-thaw conditions 

In this work, the concept of self-immunity is firstly introduced to the soil-cement systems 

subjected to freeze-thaw deterioration. This section attempts to provide an insight into the 

mechanisms of self-immunity to freeze-thaw cycles in soil-cement systems embedded with 

SS microcapsules. The basic principle underlying self-immunity to freeze-thaw exposure is 

that when water freezes and expands within the soil-cement matrix, the SS microcapsules can 

respond and act as a buffer against the excess pressure generated, therefore protecting the 

system from damage. As the pores and fissures inside the matrix thus do not expand during 

freezing, water ingress is also hindered during the thawing process. In addition, while SS 

microcapsules increase the void ratio of the system, they do not increase the capillary suction 

(and thus the potential to absorb water) thanks to their impermeable shells. 

5.5.1 Validation of temperature-responsive behaviour 

The SS microcapsules are elastic, light, waterproof, and compressible, which allows them to 

serve as a buffer for the effects of freezing water. Microscopic images were taken of the exact 

same locations on the soil-cement samples embedded with SS microcapsules in both frozen 

and thawed states. The typical characteristics and morphology of the SS microcapsules within 

the soil-cement system in frozen and thawed states are presented in Figure 5.18. The SS 

microcapsule is compressed when the sample is frozen. Figure 5.18 presents the area 

measurements of the SS microcapsules in both frozen and thawed states. These show that the 

SS microcapsules are compressed by roughly 30–40% during freezing in terms of the area 

measurements. 

 

 

 

 



191 | P a g e  

Frozen Thawed 

  

  

  

  

Figure 5.18 Representative microscope images of SikaAer
®
 Solid microcapsules in soil-

cement in frozen and thawed states with area measurements. 
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5.5.2 Air content and freeze-thaw resistance  

The air content (by volume) of soil-cement samples was calculated. These results, along with 

the porosity values of soil-cement samples with different dosages of SS microcapsules, are 

shown in Figure 5.19. The porosity and air content of the soil-cement system clearly increase 

with the addition of SS microcapsules, and this increase is largely linear. This was anticipated, 

as the SS microcapsules are essentially artificial air bubbles.  

The air content values of C15, C15S0.67, C15S1.67, C15S3.33, and C15S6.67 were 6.1%, 

7.4%, 9.4%, 11.1%, and 15.5%, respectively. Per the previous sections, the freeze-thaw 

durability of soil-cement significantly improves with an increasing dosage of SS 

microcapsules. The previous sections demonstrated that C15S3.33 is the mix with lowest 

dosage of SS microcapsules that is completely self-immune to freeze-thaw damage. 

Compared to C15, the air content of C15S3.33 is 5% higher. Thus, to build a soil-cement 

system that is self-immune against freeze-thaw effects, a 5% greater-than normal level of air 

pores is recommended.     

This outcome contradicts certain past studies (Khoury and Zaman, 2007; Wang et al., 2017) 

that have suggested that increased pore space makes soil-cement systems more vulnerable to 

freeze-thaw deterioration. The authors argued that additional pore spaces would facilitate the 

ingress of water, thus increasing ice formation within the matrix and, consequently, inducing 

more cracks and fissures. However, entrained air is not identical to entrapped air. The SS 

microcapsules used in this study are impermeable, have a regular (and small) size and are 

evenly dispersed. Therefore, they create proper air entraining for soil cement-systems. The 

reason for this will be further explained in the following sections. 
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Figure 5.19 Air content and porosity of soil-cement systems with different dosages of 

SikaAer
®
 Solid microcapsules.  

5.5.3 Critical degree of saturation 

The change in the degree of saturation (Sr.) for all mixes under freeze-thaw conditions was 

discussed in Section 5.4.1.2 Sr. is another important parameter of self-immunity for soil-

cement systems. Another explanation for why increased air content and porosity do not 

impair the freeze-thaw resistance of soil-cement systems is that increased air content does not 

necessarily correspond to water ingress. For example, the air content of mix C15S3.33 is 5% 

higher than that of C15. However, the Sr. value of C15S3.33 decreases from 73% to 70% 

after 20 freeze-thaw cycles, while the Sr. value of C15 increases from 84% to 100% after 10 

cycles.  

According to the results presented in Figure 5.9b, the critical degree of saturation for the 

soil-cement system in this study is 73%. Soil-cement systems are self-immune to freeze-thaw 

damage if their initial degree of saturation is lower than the critical degree of saturation. For 

samples (C15S3.33) with an initial degree of saturation less than 73%, Sr. values did not 

increase with increasing numbers of freeze-thaw cycles. Thus, the addition of an adequate 

amount of SS can reduce the degree of saturation for soil-cement systems. With a Sr. value 

lower than the critical value, the SS microcapsule can provide enough buffer for the water 
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inside the soil-cement system to expand during freezing. However, it should be noted that this 

value of critical degree of saturation is only applicable to the SS microcapsule-embedded 

soil-cement system studied.  

5.5.4 High resolution X-ray computed microtomography (CT) 

The self-immune capabilities of soil-cement systems under freeze-thaw conditions depend on 

several parameters, such as the sizes, the quantity, and distribution of SS microcapsules. The 

distribution of SS microcapsules is hard to analyse via naked-eye or microscope inspection, 

the microcapsules have a size of 5-80 m. Thus, to investigate the distribution of SS 

microcapsules within the soil-cement matrix, high resolution X-ray computed 

microtomography (CT) was conducted. Figure 5.20a presents a representative cross-section 

of a C15 specimen. The C15 specimen is close-grained, with only a few air pores and small 

fissures identifiable in the matrix. However, in the cross section of the C15S3.33 specimen, 

shown in Figure 5.20b, a large number of SS microcapsules can be clearly identified within 

the matrix. Moreover, the figure shows that the SS microcapsules are uniformly distributed in 

the soil-cement matrix. As the size of the pores is thus well-regulated, and as the distance 

between microcapsules is relatively small, the strength reduction caused by the addition of 

the SS microcapsules is reasonable small. 
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(a) 

 

(b)  

Figure 5.20 Representative CT cross-section images of (a) C15 specimens and (b) 

C15S3.33 specimens with SS microcapsules. 

0.4 mm 
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5.5.5 Summary of principles underlying the development of soil-cement systems self-

immune to freeze-thaw cycles using SikaAer
®
 Solid microcapsules  

Based on the results presented in the previous sections, air entraining using SS microcapsules 

should be considered an effective technique to increase the freeze-thaw durability of soil-

cement systems. However, it should be noted that air entrainment is different from air 

entrapment. Increasing air content alone cannot directly lead to a higher freeze-thaw 

resistance. An image of the reconstructed 3-D structure of a C15S3.33 sample using X-ray 

CT is presented in Figure 5.21. The figure illustrates three key characteristics of soil-

cement systems that use SS microcapsules to become self-immune to freeze-thaw effects. 

First, air-entraining pores should have a reasonable size that is neither too big nor too small. 

Penttala (2009) suggested that the optimal dimensions of air-entraining pores in concrete 

ranges from 0.02–0.05 mm. SS microcapsules generally have diameters of 5–80 µm, which 

makes them similar to the optimal size suggested. If the size of the microcapsules were too 

big, it would be more difficult for the microcapsule to disperse during mixing. If the 

microcapsules are not uniformly distributed, they cannot provide as effective a buffer for all 

parts of the soil-cement system matrix during freeze-thaw action. In addition, big 

microcapsules may also lead to a greater reduction in important engineering properties (such 

as structural strength).  

Secondly, self-immune soil-cement systems should have enough air volume. In other words, 

they should incorporate an adequate amount of SS microcapsules to compensate for the 

volume change water experiences within the system during freezing. In concrete, the air 

content value depends on the relative volume of the binder paste, as aggregates are 

considered to be freeze-thaw durable and binder paste is usually considered the vulnerable 

component (Penttala, 2009). However, in soil-cement systems, there are usually no coarse 

aggregates used, and the soil is mixed with the cement binder. Therefore, the air content 

should be taken into consideration relative to the total volume of the soil-cement mixture. Per 

Section 5.5.2, the extra air content of a self-immune soil-cement system is recommended to 

exceed 5%, and the recommended dosage of SS microcapsule is 3.33%. 

Finally, the SS microcapsules should be uniformly distributed in the soil-cement system. 

Figure 5.20-5.21 show that SS microcapsules are compatible with the soil-cement 

composition and that the dispersion of the SS microcapsules within the matrix is sufficiently 

homogenous. In addition, the distribution of the SS microcapsules can be described in terms 
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of the critical distance from one SS microcapsule to the nearest neighbour. This distance 

should be generally small. This is necessary for the pressure generated by freezing water to 

be relieved evenly throughout the soil-cement system.  

 

Figure 5.21 3D reconstruction of a typical 7-day C15S3.33 sample using X-ray CT. 

5.5.6 Overview of the self-immunity mechanism 

Based on the preceding investigations of the physical properties of soil-cement after multiple 

freeze-thaw cycles, the microscopic analyses, and the high-resolution X-ray computed 

microtomography (CT), the self-immune mechanism of soil-cement embedded with SS 

microcapsule and its behaviour during freeze-thaw action is hypothesised and shown 

schematically in Figure 5.22. The permeability results in Section 5.4.3 revealed that the 

addition of SS microcapsules slightly increased the initial permeability of the soil-cement 

systems. This indicates that the presence of SS microcapsules themselves is less likely to 
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prevent the movement of liquid water and thus water uptake. However, during the freezing 

process, ice forms progressively in the porous network within the soil-cement matrix, started 

with the larger water-filled voids, which are the voids near the SS microcapsules embedded 

in the matrix. The hydraulic pressure is reduced in these air spaces, so the unfrozen water 

stored in capillary pores and fissures is sucked into these spaces around the SS microcapsules. 

When the volume of the water inside the air voids increases by 9% during freezing, the SS 

microcapsules are compressed, and the excess pressure is relieved. Optical microscopic 

analysis (Figure 5.18) confirmed that SS microcapsules were compressed during the freezing 

of soil-cement samples. As a result, capillary pores and fissures are not enlarged by ice 

formation during the freezing process. Here, SS microcapsules and the air-space around them 

absorb the volume expansion and the excess pressure caused by ice formation. Moreover, to 

confer comprehensive self-immunity, the combined volume of the SS microcapsules and the 

air void must be large enough to absorb the extra water volume. They must also be 

sufficiently distributed throughout the soil-cement matrix to connect to most of the pores and 

fissures filled with water. As long as the quantity of SS microcapsules is great enough and the 

capsules are evenly distributed throughout the soil-cement matrix, the soil-cement should be 

completely self-immune to freeze-thaw deterioration. 

   

(a)                                                                     (b) 

Figure 5.22 Representation of the theorised self-immune mechanism conferred by the 

use of SikaAer® Solid microcapsules in a soil-cement matrix (a) before freezing and (b) 

during freezing. 
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5.6 Concluding remarks 

This chapter detailed the development of self-immune soil-cement systems subjected to 

freeze-thaw cycles by using SS microcapsules and documented those systems’ performance. 

Soil-cement systems embedded different dosages of SS microcapsules were examined. Soil-

cement systems are susceptible to freeze-thaw damage, though their initial strength and 

freeze-thaw durability can be improved by increasing their cement content. However, even 

with 20% cement content, the UCS of soil-cement systems decreased by 50% after 12 freeze-

thaw cycles. In many cases, it can be difficult or almost impossible for soil-cement systems to 

resist freeze-thaw deterioration over time due to the nature of the freeze-thaw process. When 

water freezes within soil-cement systems, its volume expands about 9% in the capillary pores 

and fissures and exert pressure on the soil-cement matrix. This enlarges the pores and fissures. 

When thawed, the temperature gradient between the frozen sample and the warmer 

surrounding soil sucks water into the soil-cement system through the pores and cracks 

widened during freezing. As freeze-thaw cycles repeat, more and more water is absorbed into 

the soil-cement matrix, and pores and cracks continue to enlarge. Consequently, the volume 

and water content of the soil-cement system both increase. Simultaneously, the bonding and 

cohesion between soil-cement particles weakens. Therefore, the strength properties of the 

soil-cement system deteriorate.  

However, in this chapter, adding SS microcapsules to soil-cement samples was proven to be a 

promising technique for developing soil-cement systems self-immune to freeze-thaw 

deterioration. The soil-cement’s dry density and strength values initially decreased slightly 

with the addition of SS microcapsules. However, the addition of SS microcapsules 

significantly increased the freeze-thaw durability of the soil-cement system in terms of UCS, 

volumetric change, porosity, hydraulic conductivity, and surface cracking ratio after multiple 

freeze-thaw cycles. The distribution and volume of the SS microcapsules were the two most 

important factors influencing the self-immune capabilities of the soil-cement systems 

subjected to freeze-thaw cycles. The distribution of the SS microcapsules is reflected by their 

critical distance, while the quantity of the SS microcapsules can be quantified in terms of the 

soil-cement’s air content and its critical degree of saturation. The addition of 3.33% SS 

microcapsules is the lowest dosage in this study that makes a soil-cement system completely 

self-immune to freeze-thaw damage after 20 cycles. The addition of 3.33% SS microcapsules 

has little influence on the fresh properties of the soil-cement mix. However, greater additions 

of SS microcapsules will reduce the dry density, 7-day UCS, and stiffness of the soil-cement, 
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as well as increasing construction costs. As a result, this study suggests that the optimum 

dosage of SS microcapsules for the kinds of soil-cement systems this study examines is 3.33% 

of the cement’s mass.  
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 Development and Performance of Self-immune Soil-Chapter 6

cement Systems Subjected to Freeze-thaw Cycles with a 

Superabsorbent Polymer (SAP) 

6.1 Overview 

In Chapter 5, SikaAer
®
 Solid microcapsules were used to develop a self-immune soil-

cement system subjected to freeze-thaw cycles, which has presented excellent resistance to 

freeze-thaw deterioration. However, it was concluded that the addition of SikaAer
®
 Solid 

microcapsules would inevitably reduce the strength properties of soil-cement, which could be 

unfavourable to soil-cement systems in some engineering practices. It is noteworthy that the 

biggest disadvantage of the application of SikaAer
®
 Solid microcapsules in soil-cement 

system is the reduction in 7-day UCS, where 27% reduction was observed in C15S3.33 mix 

(Section 5.3.4) compared to that of control mix. Given these findings, subsequent work in 

this chapter investigated the development of an alternative technique to establish a self-

immune soil-cement system subjected to freeze-thaw cycles without deteriorating the strength 

properties.  

To serve this purpose, a superabsorbent polymer (SAP) is used. As reviewed in Section 2.4.4, 

the SAPs have the ability to absorb water during mixing and then gradually release the 

absorbed water during the soil-cement systems’ hardening and hydration processes. The later 

process creates small cavities inside the soil-cement matrix. It is hypothesised that these 

cavities can serve as expansion vessels for water to enter and expand during freezing and 

therefore develop a self-immune system against the freeze-thaw deterioration. The created air 

space and SAP, is able to enwrap the water and then digest its expansive effects during 

freezing. The general idea of this self-immune hypothesis is revealed in Figure 6.1, where 

the cavities created by SAPs serve as protective pores in the soil-cement matrix during 

freeze-thaw actions.  

This chapter firstly presents the properties of the BASP SAP A used in the research presented 

here, and in particular its absorption and desorption characteristics. After that, in the second 

part, the influence of the SAP A on the initial properties of soil-cement systems, such as the 

flowability, calorimetry, water content, and strength properties is investigated. In the third 

part, the freeze-thaw resistance of soil-cement system embedded with different dosages of the 

SAP is examined. Subsequently, the self-immune mechanism and hypothesis of the SAP-

embedded soil-cement system are revealed and validated in the fourth part. Finally, the self-
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immune system developed in this chapter is compared with those using SikaAer
®
 Solid 

microcapsules that developed in Chapter 5.  

 

Figure 6.1 Hypothesis of a self-immune soil-cement system during freeze-thaw action. 

6.2 Materials and mix proportions 

Details of the preparation of the soil-cement samples were given in Section 3.2 and the list of 

investigated mix compositions is presented in Table 6.1. All the samples prepared in this 

chapter have a constant cement content of 15% and most of them have a w/c of 1.67. Only 

mixes C15W31 and C15W31SAP2 were prepared with w/c of 2.07 as additional water was 

added to pre-soak the SAP. Most of the soil-cement was mixed with varying quantities of dry 

SAPs, namely 0.25%, 0.5%, 1%, and 2% to the mass of cement, which were labelled 

accordingly (Table 6.1). A critical and comprehensive review of SAPs was given in Section 

2.4 on their properties and applications in cementitious materials. Characteristics of the SAP 

used in this study including size, density, and morphology under microscope and SEM were 

presented in Section 3.1.2.4. The experimental programmes for investigating the self-immune 

performance of soil-cement specimens under freeze-thaw conditions were given previously in 

Table 3.5.  
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Table 6.1 Mix composition of soil-cement samples containing SAPs. 

Mix ID 
Mix ingredients Ratios/mass 

(%) Admixture 
Mass fraction in cement, 

mf (%) 

 Soil Water Cement 

C15 

100 

25 

15 

- - 

C15SAP0.25 BASF SAP A 0.25 

C15SAP0.5 BASF SAP A 0.5 

C15SAP1 BASF SAP A 1 

C15SAP2 BASF SAP A 2 

C15W31 

31 

- - 

C15W31SAP2 BASF SAP A 2 

6.3 Sorptivity of the BASF SAP A 

The properties of the BASF SAP A were first investigated before applying it in the soil-

cement systems. The SAP presents an irregular particle shape as shown in Figure 6.2a. When 

encountering water, the SAP absorbs it and swells to form a soft and insoluble gel, as shown 

in Figure 6.2b. It should be noted that this process is reversible and the swelled SAP shrinks 

when the water stored in it evaporates.  

                 

(a)                                                                               (b) 

Figure 6.2 Microscopic images showing the (a) dried SAPs and (b) soaked SAPs in the 

revisable process of the SAP absorption and desorption. 

500 μm 500 μm 
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6.3.1 Absorption kinetics 

Absorption kinetics is one of the predominant properties of SAPs. As reviewed in Section 

2.5.2, the SAP absorption is related to many factors among which the SAP, temperature, pH, 

and ionic concentration of aqueous solution, etc. The Teabag method described in Section 

3.1.4 was used to measure the absorption capacity of the SAP particles. The absorption 

kinetics of the SAP particles exposed to different aqueous solutions including deionised water, 

tap water, NaOH solution (0.1 mol/L), NaCl solution (1 mol/L), and a filtrated cement pore 

solution (Section 3.1.5) are presented in Figure 6.3. The SAP has different absorption 

kinetics in different solutions. In all the solutions tested, the absorption of the SAP increased 

rapidly in the first 10 minutes and then stabilised after approximately 20 minutes. SAP A 

showed a large absorption of 305g moisture/g SAP in distilled water while this value was 

much smaller in other aqueous solutions. The absorption value reduced to roughly 50g/g in 

tap water and 0.1 mol/L NaOH solution while the absorption was only about 20g/g in the 1 

mol/L NaCl solution and the simulated cement pore solution. These results are consistent 

with those reported in Craeye et al. (2018) and Farzanian et al. (2016), where 10–30g/g of 

SAP absorption is reported in cement pore solution. It has been suggested that the absorption 

capacity of SAPs is dependent on the pH of the fluid (Craeye et al., 2018). However, Figure 

6.4a shows the SAP absorption values against pH, where different solutions with different pH 

values were used: tap water (pH = 7.75), deionised water (pH = 8.0), NaCl solution (1 mol/L, 

pH = 8.08) and the NaOH solution (0.1 mol/L, pH = 13.1). It is evident from the figure that 

the absorption capacity of the SAP does not correlate with the pH values. The relationship 

between the ionic concentration of different solutions and the SAP absorption capacity is 

plotted in Figure 6.4b. It appears that the SAP absorption depends on the ionic concentration 

of the aqueous solution. This result is in accordance with the literature presented in Section 

2.4.2.3, which can be explained by the chemical reaction equation suggested in Figure 2.28. 

When the ionic bond in the SAP reacts with water, the ions are released in the water solution. 

Thus, as a reversible reaction, the ion within the solution will hinder the reaction and hence 

reduces the SAPs’ absorption of water. When cement encountered water, the mix will reach a 

high pH (~12.5–13) and ionic concentrations (~150–700 mmol/L). The ions released by the 

cement include Ca
2+

, K
+
, Na

+
, OH

-
, and SO4

2− (Gartner et al., 1985). As the SAPs were added 

directly into the soil-cement mixture, its absorption capacity in the mix should be 

approximately 20g/g. 
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In order to assess the volume of air space that can be created by the SAPs in the soil-cement 

matrix, the swelling capacity was investigated. This was obtained by the volume increase of 

the SAP from the dry state to the saturated state. As shown in Figure 6.5, the volume 

expansion ratio calculated for the SAP saturated in deionised water, tap water, and filtered 

cement pore solution are 264, 44, and 20, respectively.  

 

Figure 6.3 Absorption kinetics of SAP A in different types of solutions. 
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(a) 

 

(b) 

Figure 6.4 Absorption capacity of SAP A in different (a) pH values and (b) ionic 

concentration. 
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Figure 6.5 Changes in volume of SAP A in deionised water, tap water, and cement pore 

solution. 

6.3.2 Desorption and resorption kinetics 

As discussed in Section 2.4.2.3, the SAP absorption is reversible. The desorption and 

resorption behaviour of SAPs was also measured using the Teabag method and the results are 

presented in Figure 6.6. When the SAP were saturated with deionised water and 

subsequently cured in a 50% (±10%) relative humidity (RH) environment at 20℃ during the 

desorption process, the absorption value reduced to almost 0 after ~57 hours. The rate of 

reduction was found to decrease with time. This is because the surface water in the SAP is 

easier to release while the water closer to the core is held by the strong hydrogen bonds 

formed between the side chains of the polymer (Jensen and Hansen, 2002).  However, when 

the saturated SAP was cured in a 95% (±2%) RH environment at 20℃, only 11% reduction 

in the absorption value was observed. These results indicate that SAP A can retain more 

water in the wet environment than in the dry environment.  

As shown in Figure 6.6, if the SAP dehydrated in 50% (±10%) RH at 20℃ was submerged 

again in deionised water for 100 minutes to reach equilibrium, it was found that the SAP was 

able to absorb almost the same amount of water as its first saturation level. Two desorption 

and resorption cycles were conducted and the SAP showed a good resorption capability. 



208 | P a g e  

These results suggested that during cement hydration, the water absorbed by the SAP can be 

gradually donated to the matrix in contact with the SAP during the hydration process.  

For a SAP particle with a given diameter and volume expansion capacity, the volume 

difference between its dry and saturated state can be calculated. For instance, for a SAP 

particle with a diameter of 100m, if it is fully saturated in the cement pore solution, its 

diameter is expanded to ~270m. When the SAP particle releases all the stored water and 

shrinks to its original diameter, small cavities with equivalent diameter of ~265 m will be 

created in the soil-cement matrix. 

 

Figure 6.6 Desorption and resorption kinetics of the BASF SAP A in 50% (±10%) and 

95% (±2%) RH environment. 
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6.4 Influence of the BASF SAP A on the fresh, physical, and strength properties 

of the soil-cement systems 

6.4.1 Fresh properties of the SAP-containing soil-cement mixes 

6.4.1.1 Calorimetry 

The effect of the addition of the BASF SAP A on the hydration processes of Portland cement 

within the soil-cement mixes was investigated. This property would assess if the added SAP 

would absorb water and initially alter the water/cement ratio of the soil-cement mix. The 

thermal power produced per gram of cement for the first 48 hours for mixes containing 

different SAP content in comparison to the control mix (C15) is presented in Figure 6.7. In 

addition, the calculated values of the setting time and peak power values for all mixes are 

summarised in Table 6.2. 

Generally, it can be seen from Figure 6.7 and Table 6.2 that the addition of the SAP up to 2% 

significantly prolonged the setting time and significantly decreased the peak power values of 

soil-cement compared to control mix. This is understandable as the added SAP absorbed the 

water from the soil-cement mix during the early stage of mixing therefore changes in the 

hydration process are inevitable for all SAP mixes. With as little as 0.5% addition of the SAP, 

the mix C15SAP0.5 exhibited 20% longer setting time (5.36 hours) compared to that of the 

control mix (4.46 hours). The setting time of mixes C15SAP1 and C15SAP2 was 5.64 hours 

and 6.48 hours, respectively, which is 26% and 45% longer than the control mix. It is 

interesting to note that the setting time was increased by the addition of the SAP, given that 

lower w/c ratio usually leads to reduction in the setting time. A possible explanation for this 

is that the water absorbed by the SAP during mixing would be gradually released for cement 

hydration rather than kept stored in the SAP. Consequently, the real w/c ratio of soil-cement 

was not altered by the addition of the SAP. However, the cement hydration was slowed down 

as the water stored in the SAP was gradually released. Thus, the setting time of soil-cement 

mixes was increased by the addition of SAPs.  

In addition, the peak power values for all mixes were significantly decreased by the addition 

of the SAP. Following the increased addition of the SAP, the peak power values of the soil-

cement system continued to decrease. The peak power measured for mixes C15SAP0.5, 

C15SAP1, and C15SAP2 was 24%, 35%, and 53% lower than that of the control mix, 

respectively. With increased dosage of the SAP, more and more water was absorbed by the 

SAP initially and therefore the water available in the early stage of the hydration process was 
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reduced. The gradual release of water by the SAP is a relatively slow process and therefore 

the reaction between the cement and water is slower than that of the control mix. In addition, 

the increased void ratio provided greater volume to dissipate the exothermic heat. These 

characteristics indicate that addition of the SAP could promote the internal curing of soil-

cement as water can be stored in the SAP for further hydration.  

 

Figure 6.7 The effect of the BASF SAP A addition on the isothermal (23℃) power and 

energy production of the soil-cement mixes. 

Table 6.2 Initial setting time and peak power values for soil-cement mixes containing 

different dosage of SAP. 

Mix Initial setting time (hrs) Peak power (mW/g) 

C15 4.46±0.08 4.28±0.07 

C15SAP0.5 5.36±0.10 3.25±0.05 

C15SAP1 5.64±0.07 2.77±0.04 

C15SAP2 6.48±0.13 2.03±0.07 
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6.4.1.2 Flowability of the fresh mixes 

The flow table values of all the fresh mixes of the soil-cement with different dosages of the 

SAP are presented in Figure 6.8. Two water/cement ratios of 1.67 and 2.07 were used and 

the corresponding control mixes are C15 and C15W31. It was noticeable that the addition of 

the SAP reduced the flow value for all soil-cement mixes. The flow value of mixes C15, 

C15SAP0.5, C15SAP1, and C15SAP2 were 190 mm, 180 mm, 153 mm, and 126 mm, 

respectively. Figure 6.8 illustrates that the addition of the SAP decreased the flowability of 

soil-cement for both w/c ratio (1.67 and 2.07). With 2% SAP addition, the flow value of mix 

C15 (25% water) reduced from 190 mm to 126 mm while the flow value of C15W31 (31% 

water) reduced from 234 mm to 186 mm. It should be pointed out that during the preparation 

of mix C15W31SAP2, the SAP was firstly saturated with additional 6% of water before 

being added into the soil-cement mix. Additional 6% of water was added because in the 

cement pore solution, the absorption capacity of the SAP is ~20g/g (15%×2%×20 = 6%). If 

the excess 6% of water was completely absorbed by the SAP, then mixes C15W31SAP2 and 

C15 should have had similar workability. Figure 6.8 shows that the flow table values of 

mixes C15 and C15W31SAP2 were 190mm and 186mm, respectively, which are almost the 

same. This indicates that the SAP was saturated in the fresh soil-cement mix during the 

mixing if it was added directly into the mix. 

These observations on the reduction of workability with the addition of the SAP are 

reasonable as the SAP was directly added. Thus, it would absorb the water during mixing 

even though its absorption capacity in cement pore solution is limited. This agrees with the 

finding of Craeye et al. (2018), which documented that the w/c ratio reduced when SAPs 

were directly added into concrete. As the amount of free water in the fresh soil-cement mix 

reduces, reduction in workability is anticipated.  
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Figure 6.8 Flow values of different soil-cement mixes with different dosages of the BASF 

SAP A. 

6.4.2 Physical properties 

The water content measured for the soil-cement system embedded with different dosages of 

the SAP after 7 days of curing is presented in Figure 6.9a. In general, the addition of the 

SAP had little effect on the water content of the soil-cement samples for SAP dosages 

ranging from 0.25% to 2% of the cement. It is interesting to note that the addition of the SAP 

reduced the workability of the fresh mix but had little influence on the 7-day water content of 

the soil-cement system. A possible explanation for this observation is that the water was 

stored in the SAP particles during the mixing process but it was completely released for 

cement hydration at later stages. If additional water was added to saturate the SAPs before 

adding them into the soil-cement mix, i.e. mix C15W31SAP2, then the 7-day water content 

of the soil-cement would have noticeably increased.  

The degree of saturation is calculated according to ASTM: D7263-09 (2009) and the 7-day 

degree of saturation (Sr.) value of the soil-cement samples with different dosages of the SAP 

are presented in Figure 6.9b. It can be seen that the Sr. value decreased with the increased 

dosage of the SAP. From mix C15 to C15SAP2, the Sr. value reduced from 83.9% to 73.6%. 

It is noteworthy that the addition of SAP decreased the degree of saturation of the soil-cement 
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systems, given that the addition of the SAP had little effect on the 7-day water content. This 

indicates that the addition of the SAP can increase the air content of the soil-cement system 

without decreasing the water content. 

  

(a) 

  

(b) 

Figure 6.9 Effects of the BASF SAP A on the (a) water content, and (b) the degree of 

saturation of the soil-cement mixes tested. 
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The mean and normalised dry densities of all the mixes with different SAP dosages are given 

Figure 6.10. It can be seen that the addition of the SAP had little effect on the dry density of 

the soil-cement systems. For soil-cement mixes embedded with 0–2% of the SAP, their dry 

density varied in the small range between 1733kg/m
3
 to 1762kg/m

3
. It is noteworthy that the 

addition of the SAP had little effect on the dry density of the soil-cement mixes as it was 

anticipated that large quantities of air-space would be created. For example, with the 2% SAP 

addition, the water content of the C15 mix reduced from 17.9% to 17.2% and the dry density 

reduced from 1760 kg/m
3
 to 1737 kg/m

3
, respectively. The slight reduction in the water 

content could be due to the enhanced cement hydration while the slight reduction in the dry 

density is caused by the increased air content of the soil-cement by the SAP particles. 

However, these reductions are minimal. A possible explanation for this is that 2% SAP 

addition by the weight of the cement only accounted of a very small volume fraction of the 

system. Another possible explanation is that the addition of the SAP promoted internal curing 

within the soil-cement system, which reduced the number of capillary pores and fissures to 

produce a denser soil-cement skeleton.  

 

Figure 6.10  Effects of the addition of the BASF SAP A on the dry density of soil-cement 

mixes tested. 
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6.4.3 Unconfined compressive strength  

The effects of the addition of the SAP on the UCS of soil-cement mixes were investigated. 

Per Figure 6.11, the 7-day UCS of the soil-cement mixes was dependent on the content of the 

SAP. Generally, the addition of the SAP increased the 7-day UCS of soil-cement mixes, 

except for the one containing 2%, where a reduction of 8% in the 7-day UCS was recorded. 

An increase of 12–17% in the UCS values was noticed for the C15SAP0.25, C15SAP0.5, and 

C15SAP1 mixes compared to the C15 mix. It seems that the 7-day UCS slightly increased 

with the increased SAP addition but this increase then reduced when the SAP dosage 

exceeded 0.5%. The increase in UCS is probably due the enhanced internal curing offered by 

the soaked SAP particles. However, as the dosage increases, the air voids created by SAP are 

more and more significant and finally become the dominant factor to reduce the UCS of soil-

cement. This finding appears to be contradictory with the suggestion that the strength is 

generally reduced by the addition of SAPs for cementitious materials (Farzanian et al., 2016). 

However, the w/c ratio used in that study was relatively low for the cement pastes, namely 

0.35 and 0.5 respectively. The w/c ratio used in the current study is much higher at 1.67 and 

2.07. Thus, a possible explanation for this contradiction is that when the w/c ratio is relatively 

low, the addition of SAP reduces the UCS of cementitious materials while the addition of 

SAP may have little effect or increases the UCS for those with relatively high w/c ratio. This 

also agrees the work by Farzanian et al. (2016) and Mignon et al. (2015), reporting that the 

reduction in UCS of cement pastes by the addition of SAP is more noticeable at lower w/c 

ratio than higher w/c ratio.   

Soil cement mixes with two w/c ratios (1.67 and 2.07) were tested. Per Figure 6.11, the 7-

day UCS values of mixes C15 and C15SAP2 were similar, and likewise mixes C15W31 and 

C15W31SAP2. This indicates that the w/c ratio was not altered by the addition of the SAP in 

this study. Combining with the workability results in Section 6.4.1.2, it can be concluded that 

the addition of the SAP up to 2% does not decrease the 7-day UCS of soil-cement mixes 

though reduced the workability significantly. This indicates that the free water was absorbed 

by the SAP during the mixing but thereafter the water absorbed by the SAP was completely 

released for cement hydration. Thus, it can be concluded that the addition of SAP has little 

influence on the w/c ratio for the soil-cement systems used in this study if they were added 

directly. During mixing, the SAP has priority to absorb water while cement hydration 

reclaims the priority of water absorption during the cement hydration at later stage. 
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Figure 6.11 Effects of the BASF SAP A on the 7-day UCS of the soil-cement mixes used. 

The UCS values of the soil-cement mixes containing the SAP at different curing ages up to 

90 days are presented in Figure 6.12. Trends in the UCS development for the control soil-

cement mix and mixes containing 1% SAP were found to be similar but the UCS of mix 

C15SAP1 presented noticeably higher UCS values than the control mix at all ages. The 

results showed that the addition of 1% of the SAP enhanced the UCS values and development 

over time. At the age of 7, 14, 28, and 60 days, the UCS of mix C15SAP1 was 30–40% 

higher than that of the control mix (C15) at the same age. However, the difference reduced at 

90 days, where the UCS of mix C15SAP1 was only 15% higher than that of mix C15. It is 

believed that the addition of the SAP improved the internal curing and hydration of the soil-

cement mixes at early ages, leading to increase in the UCS at all curing ages (up to 90 days).  
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Figure 6.12 The UCS of the SAP-containing soil-cement mixes at different curing times. 

6.5 Development and behaviour of self-immune soil-cement systems under 

freeze-thaw cycles using BASF SAP A 

6.5.1 Physical properties 

Photos showing the soil-cement mixes subjected to ten freeze-thaw cycles are presented in 

Figure 6.13. From visual inspection, it is found that the addition of the SAP improves the 

freeze-thaw resistance of the soil-cement mixes. Fewer cracks can be identified on the surface 

of soil-cement mixes with the increased dosage of the SAP. In general, no cracks were 

observed on the C15SAP2 mix specimens while various cracks and material spalling can be 

observed on control samples (C15). 
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(a) C15 

 

(b) C15SAP0.25 

 

(c) C15SAP1 

 

(d) C15SAP2 

Figure 6.13 Photo of the soil-cement specimens after ten freeze-thaw cycles with 

highlighted cracks and spalling. 
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6.5.1.1 Porosity, degree of saturation and air content 

The porosity, degree of saturation, and air content of the soil-cement mixes were calculated 

according to ASTM: D7263-09 (2009) and plotted in Figure 6.14a. These parameters are 

firstly measured to investigate the influence of SAPs addition on the internal structure of soil-

cement system. The initial porosities of mixes C15, C15SAP0.25, C15SAP0.5, C15SAP1, 

and C15SAP2 are 0.374, 0.395, 0.392, 0.402, and 0.401, respectively. The initial porosity of 

the soil-cement mixes increased with the addition of the SAP and the increase was noticeable 

with as little as 0.25% of SAP addition. Furthermore, the changes in porosity, degree of 

saturation, and air content reflected the structural change within the soil-cement matrix 

during the freeze-thaw process. As discussed in Chapter 5, the Sr. and porosity values reflect 

how the water migrates within soil-cement samples when subjected to freeze-thaw cycles. In 

general, the porosity of the soil-cement samples increased with the number of freeze-thaw 

cycles for all mixes. This increase in porosity of the soil-cement mixes was mainly caused by 

the expansion of ice formation during freezing, where a large number of pores were enlarged 

and cracks were generated during this process. However, the increase in porosity after freeze-

thaw cycles was significantly reduced by SAP addition. For example, after ten freeze-thaw 

cycles, the porosities of mixes C15SAP0.25, C15SAP0.5, C15SAP1, and C15SAP2 were 

0.418, 0.405, 0.406 and 0.400, respectively, which were much lower than the value of 0.439 

of the control mix. For mix C15SAP1, the porosity remained constant before ten freeze-thaw 

cycles but increased by 2.7% after twenty freeze-thaw cycles. For mix C15SAP2, the porosity 

did not increase with the number of freeze-thaw cycles up to twenty, which indicated that mix 

C15SAP2 was completely self-immune to the freeze-thaw cycles in terms of porosity change.  

The Sr. values for all the soil-cement mixes with different dosage of the SAP are presented in 

Figure 6.14b. The initial Sr. value of mix C15 samples was 84% and it reached 100% 

saturation after ten freeze-thaw cycles. With the addition of the SAP, the increase in the Sr. 

values after the freeze-thaw cycles was significantly reduced. With 2% of SAP addition, the 

Sr. values of the soil-cement system did not increase even after twenty freeze-thaw cycles.  

The air content values of the soil-cement mixes with different dosages of the SAP are 

presented in Figure 6.14c. The air content of mix C15 continued to decrease with the 

increased number of freeze-thaw cycles and this value dropped from 6% to almost zero after 

ten freeze-thaw cycles. As shown in Figure 6.14c, the initial air content of the soil-cement 

mixes increased with the addition of the SAP. This indicates that air space was created by the 



220 | P a g e  

SAP and higher SAP dosages led to higher volume of air spaces. Mixes C15SAP0.25, 

C15SAP0.5, and C15SAP1 still experienced a considerable decrease in air content after the 

freeze-thaw cycles but the level of decrease was largely lower than that of the control mix. 

However, mix C15SAP2 exhibited little variation in air content even after experiencing up to 

twenty freeze-thaw cycles. Thus, in terms of porosity, degree of saturation and air content, 

the recommended SAP dosage for building a self-immune soil-cement system subjected to up 

to 20 freeze-thaw cycles is 2% by weight of the cement. 

 

(a) 
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(b) 

 

(c) 

Figure 6.14 Properties of the soil-cement mixes with different percentages of SAP 

additions against the number of freeze-thaw cycles in terms of (a) porosity, (b) degree of 

saturation, and (c) air content.  
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6.5.1.2 Water content  

As explained in Chapter 5, the water content is an important parameter of soil-cement 

systems as it is an indication of the process and damage extent caused by freeze-thaw cycles. 

Water migration plays a key role in the freeze-thaw deterioration of soil-cement systems and 

therefore the control of water ingress is considered crucial for the development of self-

immune soil-cement system. It was reported in the literature that water can be drawn into the 

frozen part of the soil from the underlying soil due to the temperature gradient between the 

frozen part and warmer part (Guthrie et al., 2006). Similarly, as discussed in Chapter 5, the 

increased moisture content in soil-cement samples was caused by the continuous water 

absorption due to the temperature gradient and the expansion of pores and cracks caused by 

the ice expansion during the freeze-thaw process. Moreover, increased water content worsens 

the damage caused by ice expansion in soil-cement and therefore large increase in water 

content is anticipated after a number of freeze-thaw cycles.  

However, for the soil-cement mixes containing the SAP including C15SAP0.25, C15SAP0.5, 

C15SAP1 and C15SAP2, the increase in water content after freeze-thaw cycles was observed 

to be slowed down. The water content of the soil-cement with varying additions of the SAP, 

subjected to different numbers of freeze-thaw cycles, is presented in Figure 6.15. The water 

ingress into the soil-cement systems after freeze-thaw cycles was significantly reduced by the 

addition of the SAP when compared with the sharp increase observed in the control mix 

(C15). For example, the initial water content for all the mixes was similar (~18%) but the 

water content of C15, C15SAP0.25, C15SAP0.5, C15SAP1, and C15SAP2 after 10 freeze-

thaw cycles was 27.5%, 22.1%, 20.6%, 18.1%, and 16.9%, respectively. After 10 freeze-thaw 

cycles, the moisture content of C15 had increased by 9.5% while this increase dropped to 3.7% 

when 0.25% of the SAP was added. The water content of C15SAP1 remained stable up to ten 

freeze-thaw cycles before increased considerably after twenty cycles. As for mix C15SAP2, 

its water content remained steady even after twenty freeze-thaw cycles, which indicates that 

water ingress was completely inhibited. Results confirm that the incorporation of the SAP can 

reduce the water movement in soil-cement systems. The water permeability results in Section 

6.5.3 show that the initial permeability of SAP-embedded samples was lower than that of the 

control mix. Therefore, the lower water uptake could be due to the lower initial permeability. 

Another possible explanation for this phenomenon is that the addition of the SAP have 

created air space for the water to expand when frozen, hence prevented the creation and 

expansion of the interlinked cracks when subjected to freeze-thaw cycles. Moreover, the SAP 
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particles were able to absorb large amounts of water and swell. Thus, the presence of swollen 

SAP may have blocked the internal cracks and hindered the water ingress. In addition, it is 

noteworthy that the soil-cement system itself should have a relatively low permeability to 

resist the capillary suction generated by the temperature gradient during the freeze-thaw 

process.   

 

Figure 6.15 The water content of the soil-cement mixes containing different dosages of 

the BASF SAP A subjected to a number of freeze-thaw cycles. 

6.5.1.3 Volumetric change 

The volumetric change of all the soil-cement systems with different dosage of the SAP after 

various numbers of freeze-thaw cycles is shown in Figure 6.16. Compared to the control mix, 

whose volume increased by 11% after ten freeze-thaw cycles, the volumetric change of all 

soil-cement mixes was significantly reduced with the increased addition of the SAP. Only 1–

3% volumetric change was measured for mixes C15SAP0.25, C15SAP0.5, and C15SAP1 

after ten freeze-thaw cycles. However, the volumetric change of mix C15SAP0.25 after 

fifteen freeze-thaw cycles increased to 8.6% and the volumetric changes of mixes 

C15SAP0.5 and C15SAP1 reached 6.5% and 3.2% after twenty freeze-thaw cycles, 

respectively. What stands out in Figure 6.16 is that for mix C15SAP2, its volumetric change 
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was still negligible even subjected to twenty freeze-thaw cycles. It is evident that 2% SAP 

addition was able to make the soil-cement systems self-immune to the volumetric change 

caused by up to 20 freeze-thaw cycles. Thus, in this case, frost heave could be completely 

prevented. 

The increased volume after freeze-thaw cycles is believed to be caused by the ingress of 

water during freeze-thaw cycles and the volume expansion of water during freezing. As water 

was absorbed into the soil-cement, the volume of soil-cement also increased with the freeze-

thaw cycles. This explanation is strengthened by the good correlation between the volumetric 

change and the water content presented in Figure 6.17, where the trends of increase for 

volumetric change and water content after freeze-thaw cycles are very similar. 

 

Figure 6.16 The volumetric change of the soil-cement mixes embedded with different 

dosage of the BASF SAP A under freeze-thaw cycles.  
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Figure 6.17 The correlation between water content and volumetric change of the        

soil-cement mixes embedded with different dosage of the BASF SAP A over repeated 

freeze-thaw cycles.  

6.5.1.4 Dry density  

Changes in dry density for all the SAP mixes with different numbers of freeze-thaw cycles is 

plotted in Figure 6.18. The dry density of all soil-cement mixes decreased with increased 

number of freeze-thaw cycles. For the control sample, the dry density decreases from 1760 

kg/m
3
 to 1575 kg/m

3
 after 10 freeze-thaw cycles. As discussed in Section 6.4.2, the addition 

of the SAP had little influence on the initial dry density of the soil-cement. However, the 

reduction in dry density due to the freeze-thaw cycles was largely reduced for SAP-

containing soil-cement systems. After ten freeze-thaw cycles, the dry density of mix 

C15SAP0.25 was 1687 kg/m
3
, which is 7% higher than that of the control samples subjected 

to a same number of freeze-thaw cycles. The reduction in dry density after freeze-thaw cycles 

continued to reduce with increased dosage of the SAP. It is interesting to note that for mix 

C15SAP2, its dry density remained constant after up to twenty freeze-thaw cycles. These 
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results in dry density are consistent with the results of the volume and water content that were 

discussed in Sections 6.5.1.2 and 6.5.1.3. 

 

Figure 6.18 The dry density of the SAP-embedded soil-cement systems over repeated 

freeze-thaw cycles. 

6.5.2 Unconfined compressive strength 

UCS testing was performed on triplicate samples for all the soil-cement mixes that were 

exposed to 0, 1, 5, 10, and 20 freeze-thaw cycles and the results are presented in Figure 6.19. 

As shown in Figure 6.19, the addition of the SAP has a positive effect on the freeze-thaw 

resistance of the soil-cement mixes in terms of UCS. In the case of C15SAP0.25 and 

C15SAP0.5 mixes, the UCS values after 10 freeze-thaw cycles was 1.7 MPa and 2.8 MPa, 

respectively, already showing a considerable improvement compared to the control mix (0.6 

MPa). Results also confirm the superior performance of soil-cement mixes with addition of 2% 

of the SAP against freeze-thaw damage. The UCS of mix C15SAP2 not only remained 

unaffected by the freeze-thaw cycles but in fact showed an increase of 33% after 5 freeze-

thaw cycles. This increase in UCS is likely to be caused by the continuous hydration of the 

cement. This implies that mix C15SAP2 became self-immune to deterioration caused by up 

to 20 freeze-thaw cycles in terms of UCS.  
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The effect of different w/c ratio on the UCS of soil-cement systems after a number of freeze-

thaw cycles is presented in Figure 6.20. It can be found that mix C15W31SAP2 also 

exhibited much higher freeze-thaw resistance than mix C15W31. This indicates that the 

addition of the SAP is beneficial for the freeze-thaw resistance of soil-cement systems with 

different w/c ratios. Notwithstanding the considerable increase in freeze-thaw resistance, it 

was shown that the UCS of mix C15W31SAP2 reduced by 56% after 10 freeze-thaw cycles. 

Thus, it should be noted that the 2% addition of the SAP should not be considered as the 

optimum dosage for the soil-cement systems with different w/c ratios.  

 

Figure 6.19 The USC of the soil-cement mixes with different dosages of the SAP over 

repeated freeze-thaw cycles. 
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Figure 6.20 The strength behaviour of the soil-cement mixes with two different w/c 

ratios that are both embedded with 2% SAP over repeated freeze-thaw cycles. 

6.5.3 Permeability  

The permeability k was measured on duplicate samples for mixes C15, C15SAP1, and 

C15SAP2 which were subjected to up to 20 freeze-thaw cycles. The change of permeability 

for all the mixes after different numbers of freeze-thaw cycles (i.e. 0, 1, 5, 10 and 20) is 

presented in Figure 6.21. Results reveal that the addition of the SAP has little effect 

(C15SAP1) on or slightly decreased (C15SAP2) the initial permeability of the soil-cements 

compared to that of control mix (C15). It is noteworthy that the addition of the SAP 

decreased rather than increased the permeability of soil-cement systems, given that the 

addition of the SAP increased the porosity of the soil-cement system, as was reported in 

Section 6.5.1.1. A possible explanation for this could be that the addition of the SAP 

enhanced the internal curing of the soil-cement system and therefore reduced the number and 

width of internal cracks and fissures (Shen et al., 2016). Moreover, when it encountered water, 

the SAP within the air space may have absorbed water and swelled thereby clogging the flow 

path of water within the soil-cement matrix. 

As discussed in Section 5.4.3, the permeability of mix C15 was largely increased due to 

freeze-thaw deterioration. Similarly with those embedded with SikaAer
®
 Solid microcapsules, 

the addition of the SAP also largely increased the freeze-thaw resistance in terms of 
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permeability of the soil-cement systems. The permeability of the control samples was up to 

2.5 orders of magnitude higher after 10 freeze-thaw cycles, while the measured permeability 

of mix C15SAP1 was only around half an order of magnitude higher. However, the 

permeability of mix C15SAP1 did increase by 2 orders of magnitudes after 20 freeze-thaw 

cycles, which indicates that mix C15SAP1 is not completely self-immune to freeze-thaw 

deterioration. As for mix C15SAP2, its permeability only slightly increased after the first 

freeze-thaw cycle but remained constant afterwards. After a total of 20 freeze-thaw cycles, 

the increase in the permeability of mix C15SAP2 was negligible and the k value was even 

lower than the 7-day k value of the control mix. The results show that mix C15SAP2 

possessed a good self-immune capability against the freeze-thaw cycles in terms of 

permeability. As is already established, the addition of the SAP generated air-space for water 

within the soil-cement system to expand and contract. With a sufficient volume of air-space, 

the soil-cement system could become self-immune to freeze-thaw deterioration and maintain 

its low permeability. It was also found that the first freeze-thaw cycle exerted an 

indispensable effect on the permeability of the soil-cement samples. This indicates that the 

existing water within some of the saturated pores would inevitably expand during first 

freezing and cause minor disruption on the soil-cement matrix. After the first freeze-thaw 

cycle, the matrix of mix C15SAP2 could reach an equilibrium and its permeability showed 

little variation when subjected to further freeze-thaw cycles. 

 

Figure 6.21 The evolution of the permeability values of the SAP-containing soil-cement 

mixes over repeated freeze-thaw cycles. 
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6.5.4 Surface crack characterisation  

An examination of the microstructure using a light microscope was performed to investigate 

the extent of disruption of the control and the SAP-embedded soil-cement specimens after a 

different number (e.g. 0, 5, 8, and 20) of freeze-thaw cycles exposure. Representative optical 

microscope images of mixes C15 and C15SAP2 after different numbers of freeze-thaw cycles 

are presented in Figure 6.22 (a-c) and (d-f), respectively. Images were taken under the 

microscope on the surface of the soil-cement disc specimens and their surface characteristics 

after a different number of freeze-thaw cycles were monitored and compared. Mix C15 

samples showed no crack without freeze-thaw cycles (Figure 6.22a). Damage and cracks can 

be easily seen on the surface of mix C15 samples after 5 freeze-thaw cycles, where the cracks 

had a width up to ~0.1mm (Figure 6.22b). Significant damage was observed after 8 freeze-

thaw cycles (disc samples were too weak to handle after the 8 freeze-thaw cycles), where 

cracks with width up to 0.2 mm have propagated across the entire surface of mix C15 

samples (Figure 6.22c). However, for mix C15SAP2 samples, although the cavities created 

by the SAP can be easily discerned, no cracks were observed on their surface before freeze-

thaw process (Figure 6.22d), after 5 freeze-thaw cycles (Figure 6.22e) and after 20 freeze-

thaw cycles (Figure 6.22f). Based on these observations, it is deduced that the 2% SAP-

embedded soil-cement systems could possess self-immunity to crack formation caused by up 

to 20 freeze-thaw cycles and crack formation can be completely eliminated.  
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(a)  

 

(b)  

5 mm 

5 mm 
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(c) 

 

(d)  

5 mm 



233 | P a g e  

 

(e) 

 

(f) 

Figure 6.22 Surface crack identification of mixes C15 (a-c) and C15SAP2 (d-f): (a) C15 

with no freeze-thaw cycles, (b) C15 after 5 freeze-thaw cycles and (c) C15 after 8 freeze-

thaw cycles, (d) C15SAP2 with no freeze-thaw cycles, (e) C15SAP2 after 5 freeze-thaw 

cycles, and (f) C15SAP2 after 20 freeze-thaw cycles. 

5 mm 

5 mm 
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6.5.5 Summary and recommended dosage of SAP addition for building self-immune 

soil-cement system 

The results presented in the previous Sections 6.5.1-6.5.4 demonstrated that the addition of 

the SAP improved the freeze-thaw durability of soil-cement systems and the SAP dosage is a 

decisive factor for this improvement. The resistance of the soil-cement systems against 

freeze-thaw deterioration increased with the increase of SAP dosage. It should be noted that 

the freeze-thaw deterioration simulated in this study was very harsh as the samples were 

frozen at -25℃ and thawed at 20℃. The temperature difference is 45℃ of sudden change and 

water is available for soil-cement samples to absorb from underneath them during both 

freezing and thawing. The results in terms physical properties, UCS, permeability and surface 

crack characterisation all suggested that for the soil-cements used in this study, an addition of 

2% is the optimum SAP dosage for developing a self-immune soil-cement system under 

freeze-thaw cycles.  

6.6 Mechanisms of self-immunity in soil-cement systems under freeze-thaw 

cycles using SAPs 

The damaging mechanisms of the soil-cement systems under cyclic freeze-thaw and the 

concept of self-immunity were introduced in Section 4.3 and 5.5. The basic principle of the 

self-immunity of soil-cement under freeze-thaw exposure is that when water freezes and 

expands in the matrix, the self-immune system can respond to this change by dissipating the 

excess volume/pressure generated by water freezing therefore protecting the system from 

damage. The results presented in the previous sections reveal that the addition of the SAP 

could provide good self-immunity to the soil-cement systems under freeze-thaw conditions. 

However, the self-immunity mechanisms of the SAP-embedded soil-cement systems under 

freeze-thaw cycles remained unknown and therefore they would be investigated and revealed 

in the following sections.  

6.6.1 Air content and freeze-thaw resistance 

As discussed in Section 2.2, it is commonly believed that air content is a crucial parameter 

for air-entraining cementitious materials. The air content and porosity values of the soil-

cement samples with different dosages of the SAP are shown in Figure 6.23. The air content 

(by volume) of the soil-cement systems increased with the addition of the SAP and this 

increase was largely linear, namely the values for mixes C15, C15SAP0.25, C15SAP0.5, 

C15SAP1, and C15SAP2 was 6.1%, 7.6%, 8.2%, 9.9%, and 10.7%, respectively. This 
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indicates that the air space was created by the added SAP in the soil-cement systems. The air 

content of mixes C15SAP1 and C15SAP2 was 4% and 5%, respectively higher than that of 

mix C15. However, mix C15SAP1 was not self-immune to freeze-thaw damage as its 

engineering properties, though improved significantly, deteriorated noticeably after 10 

freeze-thaw cycles. Conversely, no deterioration was observed for mix C15SAP2 after 20 

freeze-thaw cycles. It is found that C15SAP2 was the mix with the lowest dosage of the SAP 

that was completely self-immune to freeze-thaw damage. As a result, it can be suggested that 

5% of additional air pores is needed to build a self-immune soil-cement system against 

freeze-thaw actions.     

Khoury and Zaman (2007) and Wang et al. (2017) suggested that the increased pore space 

renders a soil-cement system more vulnerable to freeze-thaw deterioration. They argued that 

additional pore spaces would increase the ingress of water thus increase the ice lens 

evolutions and, consequently, induce more cracks and fissures during freezing. In this study, 

it should be noted that the air space created by the SAP was entrained air rather than 

entrapped air. It is believed that the air space created by the SAP was of regular reasonable 

size and was well distributed therefore creating appropriate air-entraining for the soil-cement 

systems. The evidence for this explanation will be further discussed in the following sections. 

 

Figure 6.23 Air content and porosity of the soil-cement systems with different dosage of 

the BASF SAP A.  
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6.6.2 Critical degree of saturation 

The change of degree of saturation for all the mixes with different dosage of the SAP under 

freeze-thaw cyclic action was discussed in Section 6.5.1.1. To define the level of saturation at 

the point when freeze-thaw damage initiates, a critical degree of saturation (Scr) was 

suggested in Section 5.5.3. It was reported in Section 6.5.1.1 that increased air content and 

porosity due to SAP addition do not impair the freeze-thaw resistance of soil-cement systems. 

A possible explanation is that increased air content does not necessarily increase the water 

ingress. The air content of mix C15SAP2 was 5% higher than that of the control mix C15. 

However, the Sr. values of mix C15SAP2 remained constant at ~73% even after 20 freeze-

thaw cycles while that of mix C15 increased from 84% to 100% after 10 freeze-thaw cycles.  

According to the results presented in Figure 6.14b, it can be suggested that the critical degree 

of saturation for the soil-cement systems embedded with the SAP in this study was 73%. It 

should be highlighted that the critical degree of saturation is also 73% for the self-immune 

soil-cement embedded with SikaAer
®
 Solid microcapsules as discussed in Chapter 5. For the 

soil-cement system studied, their degree of saturation did not increase after up to 20 freeze-

thaw cycles if their initial degree of saturation was less than 73%. SAP addition can reduce 

the degree of saturation of the soil-cement systems. It appears that with a degree of saturation 

lower than the critical value (~73%), the soil-cement system mixed with the SAP is able to 

provide sufficient air space for the water inside the pores and fissures to enter and expand 

during the freezing and thawing processes. However, it should be noted that this critical value 

is only applicable to the self-immune soil-cement systems studied, which are embedded with 

either SS or SAP. For other soil-cement systems with Sr. value lower than 73%, they may 

still very susceptible to freeze-thaw damage.  

6.6.3 Scanning electron microscopy  

SEM images were taken of the soil-cement samples containing the SAP that were cured for 7 

days. Representative SEM images showing the SAP particles (indicated by red arrows) in the 

soil-cement matrix are presented in Figure 6.24. The SAP particles can be easily identified in 

the SEM images. They appeared dry and shrunk in the soil-cement matrix. It can be seen 

from the images that the SAP particles were all identified within a void in the soil-cement 

matrix, where the air space was believed to be created by the SAP particles. It is believed that 

the SAP particles were saturated during the mixing of the soil-cement and the volume of the 

SAP particles expanded by ~20 times. However, during the hydration process, the water 
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stored in the SAP particles donated to the cement hydration and the SAP particles gradually 

shrunk and created air-spaces around them. This behaviour was also reported by other 

researchers (Craeye et al., 2018, 2013; Hasholt et al., 2015; Mechtcherine et al., 2017). This 

explanation is supported by the facts that the initial workability of fresh mixes was reduced 

while the 7-day water content and UCS values of the samples remained almost unchanged for 

the SAP mixes compared with the control mix.  

    

(a)                                                                         (b) 

Figure 6.24 SEM images of C15SAP2 soil-cement samples containing SAPs. The scale 

bars in (a) and (b) are 80 and 50 m, respectively.  

6.6.4 High resolution X-ray computed microtomography (CT) 

6.6.4.1 Microstructure of soil-cement samples containing the BASF SAP A 

As discussed in Section 5.5.5, the self-immune capability of soil-cement systems under 

freeze-thaw action depended on several parameters such as the size, quantity and distribution 

of the air-space. Therefore, high-resolution X-ray computed microtomography (CT) was 

conducted to investigate the size and distribution of the air-space that was created by the SAP 

particles within the soil-cement matrix. The SAP particles and the air space surrounding it 

could be visualised, which are indicated by the red arrows in Figure 6.25, and their structures 

are very similar to that presented in the SEM images (Figure 6.24). 
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Figure 6.26a presents a representative cross-section showing a close-grained soil-cement 

matrix where only a few air pores and small fissures could be identified in a typical mix C15 

specimen. In the matrix of the control specimen, air bubbles were rarely seen. However, in 

the cross-section of mix C15SAP2 specimens shown in Figure 6.26b, large quantities of air 

voids containing shrunk SAP particles could be clearly identified within the soil-cement 

matrix. The shape of these air spaces was irregular and the size of these pores varied from 

~100 m to ~400 m. It is apparent from the figure that the air-spaces were well distributed 

in the soil-cement matrix. Moreover, as the SAP particles were well dispersed in the soil-

cement matrix, the distance between the air spaces was relatively small. These air voids had 

scattered, small and irregular structures in the matrix of mix C15SAP2 specimens. As the 

SAP particles were commonly identified within the cavities, these cavities were believed to 

be generated by the addition of the SAP particles, which absorbed water during the mixing 

and then released water during the cement hydration. 

 

Figure 6.25 The BASF SAP particles identified in the soil-cement matrix using CT. 
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(a) 

 

(b) 

Figure 6.26 Representative CT cross-section images of (a) the C15 control mix 

specimens and (b) C15SAP2 specimens with 2% SAP content. 

 

0.4 mm 

1 mm 
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6.6.4.2 Development process of self-immune soil-cement system using SAPs 

The air spaces formed by the SAP particles were very recognisable as their shape is more 

irregular compared to air bubbles. As discussed in Section 6.3, the absorption capacity of the 

SAP particles in the cement pore solution was ~20 g/g, which means that 1g of the SAP could 

absorb 20g of water. With this absorption capacity, the volume of a fully saturated SAP 

particle could expand approximately 20 times, which means that its diameter would expand 

~2.7 times in equivalent diameter.  

Figure 6.27a-c presents CT images that were taken on mix C15SAP2 specimens at different 

curing ages of 20, 36, and 60 hours respectively. The SAP particles are indicated by the red 

arrows. At the curing age of 20 hours, some of the SAP particles were still in a liquid gel 

form, which could be easily identified in the soil-cement matrix (Figure 6.27a). At this age, 

many air voids (dark zone) were already created and could be easily identified in the CT 

images (black area). At the age of 36 hours, the SAP particles in liquid states were hardly 

found but the shrunk SAP particles could be easily identified in the soil-cement matrix 

(Figure 6.27b). At the age of 60 hours, only a few SAP particles could be visualised in the 

air-space they created (Figure 6.27c), which indicates that the water within the SAP particles 

was almost all completely released.     
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(a) 

 

(b) 
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(c)  

Figure 6.27 Representative CT cross-section images of mix C15SAP2 specimens, 

highlighting the SAP particles, at the curing age of (a) 20 hours, (b) 36 hours, and (c) 60 

hours.  

6.6.4.3 Behaviour of self-immune soil-cement systems during the freeze-thaw cyclic 

action 

High-resolution CT images were also taken on mix C15SAP2 specimens during the freeze-

thaw cyclic process and the behaviour of the SAP particles during the freeze-thaw cycles is 

revealed. Representative cross-sections of the frozen mixes C15 and C15SAP2 specimens 

obtained by CT are presented in Figure 6.28a and Figure 6.28b, respectively.  Ice lens in 

Figure 6.28a, which are indicated by the red arrows, can be identified in the closely grained 

soil-cement matrix. Per Figure 6.28a, it is obvious that in the closely grained soil-cement 

matrix, there is no space to compensate for the volume expansion of the ice lens. However, 

for the frozen mix C15SAP2 samples, ice was identified in the air space (dark zone) created 

by the SAP particles (Figure 6.28b). As a result, the air space created room for ice to expand 

in the soil-cement system therefore preventing the generation of cracks through excess 

1.5 mm 
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pressure. Figure 6.28c presents the CT images of partially thawed mix C15SAP2 samples. 

During the thawing stage, the SAP particles absorbed the water nearby and the swelled SAP 

particles (indicated by the red arrow) could be easily identified in the air space they created in 

the soil-cement matrix. During the next freezing cycle, the SAP gel particles would become 

frozen in the air space and they would not exert excess pressure onto the nearby soil-cement 

matrix as long as the air space was large enough to accommodate the increased volume. As a 

result, the SAP-containing soil-cement samples presented much better freeze-thaw resistance 

than the control mix. With sufficient air space created by the SAP particles, the soil-cement 

system, like mix C15SAP2, could become completely self-immune to freeze-thaw 

deteriorations.   

 

(a) 

 

3 
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(c) 

Figure 6.28 Representative CT cross-section images of (a) frozen C15 control sample, 

(b) frozen C15SAP2 sample, and (c) partially thawed C15SAP2 sample. The 

micrographs highlight the SAP voids (1), SAP particles (2), and soil-cement matrix (3). 
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6.6.5 Summary of principles of the development and mechanisms of self-immune soil-

cement system under freeze-thaw cycles using BASF SAP A 

Based on the results of the physical properties of the soil-cement mixes after freeze-thaw 

cycling, microscopic analysis and CT, the self-immunity mechanisms of soil-cement with 

SAPs and its behaviour during freeze-thaw action is hypothesised and shown schematically in 

Figure 6.29.  

6.6.5.1 Development of self-immune soil-cement system using SAPs 

The addition of BASF SAP A in soil-cement, similar to the SikaAer
®
 Solid microcapsules 

used in Chapter 5, provided room for water to expand when frozen, although through a 

different mechanism. As shown in Figure 6.29a, during the mixing, the SAP particles were 

fully saturated with water and occupied a space within the matrix. However, during the 

cement hydration process, the SAP particles also had the ability to gradually release their 

stored water completely during hardening and hydration processes in soil-cement. In this 

process, the SAP reduced its volume as water was released and small cavities were created 

(Figure 6.29b). For example, as discussed in Section 6.3.2, for a SAP particle with a 

diameter of 100 m, its diameter would swell to ~270 m when saturated in cement pore 

solution. As most of the water stored in the SAP particle is donated for cement hydration, a 

space with an equivalent diameter of 265 m can be formed. These pores serve as vessels for 

water to enter and expand when subjected to freeze-thaw cycles. An image of reconstructed 

3D structure of a C15SAP2 mix sample using CT is presented in Figure 6.30.  

6.6.5.2 Overview of the self-immune mechanism under freeze-thaw cycles 

During the freezing process, the ice was formed progressively in the porous network of soil-

cement matrix, started with the larger voids, which are the voids created by the SAP in the 

soil-cement matrix. As shown in Figure 6.29c-d, as the hydraulic pressure was reduced in 

this air space, the unfrozen water stored in the capillary pores and fissures was sucked into 

this air space and absorbed by the SAP particles. During freezing, the volume of the SAP 

particles and water expanded by 9% inside the air voids. CT images (Figure 6.28) proved 

that water was absorbed by the SAP particles within the air space as partially saturated SAP 

particles were identified in the thawing soil-cement matrix. As a result, the capillary pores 

and the fissures would not be enlarged by the ice formation during freezing. The air-spaces 

created by the SAP particles digest the volume expansion and excess pressure caused by ice 
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formation. In order to possess a comprehensive self-immune capability to freeze-thaw 

deteriorations, the volume of air space created by the SAP should be of sufficient quantity 

and should be well distributed in the soil-cement matrix so that the formed artificial voids 

become connected to most of the pores and fissures that contained water.  

 

(a)                                                                                    (b) 

 

(c)                                                                                    (d) 

Figure 6.29 A schematic representation of the hypothesised self-immune mechanism 

taking place based on the use of the BASF SAP A in a soil-cement matrix (a) during 

mixing, (b) during cement hydration, (c) at room temperature and (d) during freezing. 
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Figure 6.30 3D reconstruction of a representative 7-day C15SAP2 sample before freeze-

thaw cycles using CT. 

6.7 Comparison between the different self-immune soil-cement systems under 

freeze-thaw cycles 

Two different self-immune soil-cement systems under freeze-thaw cycles, one using 

SikaAer
®
 Solid microcapsules and the other using BASF SAP A were developed and their 

performance was investigated. In this study, the optimum dosage suggested in Chapter 5 for 

developing a SikaAer
®
 Solid microcapsules-embedded self-immune soil-cement system 

subjected to freeze-thaw cycles was 3.33% (by weight of cement) while the optimum dosage 

was 2% using the SAP. These two systems have showed excellent self-immunity capability to 
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the freeze-thaw cycles imposed, with no deterioration was observed on their various physical 

and engineering properties even up to 20 cycles.  

A comparison between the engineering properties of the soil-cement systems containing 3.33% 

SikaAer
®
 Solid microcapsules and 2% SAPs are plotted in Figure 6.31a-g. A comparison 

summarising some key properties is presented in Table 6.3. It can be seen that both systems 

with SikaAer
®
 Solid microcapsules (C15S3.33) and the SAP (C15SAP2) presented excellent 

freeze-thaw resistance in various aspects including degree of saturation, air content, water 

content, volumetric change, water content, UCS, dry density, permeability, and workability. 

The initial degree of saturation for mixes C15S3.33 and C15SAP2 were 72.8% and 73.6%, 

respectively, which are very similar and much lower than the value of 83.9% for the control 

mix. The initial air content of mixes C15S3.33 and C15SAP2 were 11.1% and 10.7%; both 

~5% higher than that of control. However, it should be highlighted that the self-immune soil-

cement systems embedded with the SAP presents better initial engineering properties than 

that with SikaAer
®
 Solid microcapsules. For example, the 7-day UCS of mix C15SAP2 was 

~27.4% higher than that of mix C15S3.33 and the dry density was ~7.4% higher. Moreover, 

the permeability of mix C15SAP2 was 7 times lower than that of mix C15S3.33.  

However, the added SAPs increased the setting time and reduced the peak power during 

cement hydration while the SikaAer
®
 Solid microcapsules has little effect on the calorimetry 

of soil-cement. Another drawback of the self-immune soil-cement system subjected to freeze-

thaw cycles developed by using the SAP is the reduction in workability. The addition of 

SikaAer
®
 Solid microcapsules had little effect on the workability of soil-cement while the 

addition of the SAP reduced the workability of the soil-cement mix. As shown in the Table 

6.3, mix C15S3.33 had a flow value of 193 mm while the flow value of mix C15SAP2 was 

only 126 mm. It should be noted that the workability of the SAP containing soil-cement 

should not be too low to ensure that it does not affect the effective dispersion of the SAP 

particles within the soil-cement. However, the result revealed by the CT images showed that 

the SAP particles were uniformly distributed in the C15SAP2 samples, which indicated that 

the reduced workability was not detrimental to the dispersion of the SAP particles in the soil-

cement mix studied. In addition, as the soil-cement systems used in the infrastructure are 

commonly mixed in-situ, a lower workability is not considered a major problem. 
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Table 6.3 Comparison of key properties among C15, C15S3.33, and C15SAP2.  

 C15 C15S3.33 C15SAP2 

Properties before subjected to freeze-thaw cycles 

Initial setting time (hrs) 4.46 4.57 ↑ 6.48 ↑ 

Flow value (mm) 190 186 ↓ 126 ↓ 

Water content (%) 17.9 18.4 ↑ 17.2 ↓ 

7-day dry density (kg/m
3
) 1760 1617 ↓ 1737 ↓ 

Porosity 0.374 0.410 ↑ 0.401 ↑ 

Sr. (%) 83.9 73.6 ↓ 73.6 ↓ 

Air content (%) 6.1 11.1 ↑ 10.7 ↑ 

7-day UCS (MPa) 3.6 2.61 ↓ 3.34 ↓ 

7-day tensile strength (kPa) 654.5 589.5 ↓ 809.7 ↑ 

Permeability k (m/s) 1.57×10
-10 

3.14×10
-10

 ↑ 4.26×10
-11

 ↓ 

Properties after subjected to 10 freeze-thaw cycles 

Water content (%) 27.5 16.3 ↓ 16.9 ↓ 

Dry density (kg/m
3
) 1575 1667 ↑ 1739 ↑ 

Volumetric change (%) 10.5 -0.8 ↓ -0.3 ↓ 

Porosity 0.439 0.392 ↓ 0.400 ↓ 

Sr. (%) 98.8 69.5 ↓ 73.5 ↓ 

Air content (%) 0.6 11.9 ↑ 10.6 ↑ 

UCS (MPa) 0.58 3.56 ↑ 4.26 ↑ 

Permeability k (m/s) 4.25×10
-8

 4.60×10
-10

 ↓ 6.45×10
-11

 ↓ 

Note: all the values are the mean test value of triplicate samples; ↑ indicates higher while ↓ 

indicates lower values than that of control mix. 
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(a) 

 

(b) 
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(c) 

  

(d) 
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(e) 

 

(f) 
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(g) 

Figure 6.31 Comparison between self-immune systems embedded with SikaAer
®
 Solid 

and BASF SAP A in terms of (a) degree of saturation, (b) air content, (c) water content, 

(d) volumetric change, (e) UCS, (f) dry density, and (g) permeability.  

6.8 Concluding remarks 

This chapter presented details of the development and performance of self-immune soil-

cement systems subjected to freeze-thaw cycles by using BASF SAP A as an alternative to 

SikaAer
®
 Solid microcapsules. The sorptivity of the SAP revealed that its absorption capacity 

in the cement pore solution was 20g/g and this absorption process was found to be reversible. 

Soil-cement systems embedded with different dosages of the SAP were examined. In 

Chapter 5, the initial dry density, strength properties of soil-cement generally decreased with 

the addition of SikaAer
®
 Solid microcapsules. However, in this chapter, it was found that the 

addition of the SAP, with a dosage of up to 2%, had little or slight effect on the initial dry 

density, strength properties and permeability of the soil-cement mixes investigated. 

Furthermore, the addition of the SAP significantly increased the freeze-thaw resistance of the 

soil-cement systems in terms of UCS, volumetric change, porosity, permeability, and surface 
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cracking ratio. It can be concluded that the addition of the SAP is an effective technique to 

improve the freeze-thaw resistance of soil-cement mixes. In general, the freeze-thaw 

resistance of soil-cement increased with the addition of the SAP up to 2%. It was found that 

the addition of 2% SAP enabled the soil-cement systems to be completely self-immune to 

freeze-thaw damage for up to 20 cycles. However, the dry density and strength of the soil-

cement began to decreases with >1% dosage of the SAP, implying that a higher addition of 

the SAP would impair the engineering properties of the soil-cement as well as increase the 

construction cost. As a result, it is recommended that the optimum dosage of the SAP for the 

soil-cement system used in this study should be 2% by weight of the cement mass.  

The mechanism of self-immune soil-cement using the BASF SAP A was revealed. The SAP 

particles were fully saturated during the mixing stage but the water was donated for cement 

hydration afterwards therefore small cavities were created in the soil-cement matrix. These 

cavities then served as vessels for water to enter and expand during freeze-thaw cycles 

therefore damage due to ice expansion was prevented. Compared with SikaAer
®
 Solid 

microcapsules embedded self-immune soil-cement system, the self-immune soil-cement 

using the BASF SAP A exhibited equivalent excellent freeze-thaw resistance. However, its 

initial engineering properties including UCS, dry density, and permeability are better than 

that of the SikaAer
®
 Solid microcapsules-embedded mixes. The only limitation for using the 

SAP is that it absorbs water during the mixing therefore reduces the workability of soil-

cement mix.   
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 Conclusions and Recommendations Chapter 7

7.1 Conclusions 

Chapter 1 presents background information regarding the durability challenges that face 

soil-cement systems subjected to freeze-thaw cycles. Soil-cement systems are widely used in 

engineering practice to improve the engineering properties of soft or contaminated soils that 

would otherwise be unsatisfactory for construction. However, they are vulnerable to freeze-

thaw cycles. Deterioration due to freeze-thaw cycles can cause civil infrastructure being out 

of service unpredictably and make future maintenance indispensable and costly. Currently, 

this issue is addressed through uneconomical and time-consuming overdesign, the 

implementation of maintenance programs, or both. Considering the large amounts of CO2 

emissions produced from cement production, developing soil-cement systems that can 

withstand freeze-thaw cycles more effectively represents a chance not only to make 

construction projects stronger and more efficient, but also to contribute to the well-being of 

the planet. Recent research has attempted to develop sustainable and resilient systems 

comprising materials and structures that, like biological systems, can continually adapt to 

their environment. This research provided insight into how this study might address the 

aforementioned problems. Therefore, this research focuses on the development and 

performance of ―self-healing‖ and ―self-immune‖ soil-cement systems that can respond and 

adapt to freeze-thaw cycles. 

The critical review of the literature in Chapter 2 reveals that the freeze-thaw durability of 

soil-cement systems can be affected by various factors, including cement content, water 

content, the intensity of freeze-thaw cycles, and curing conditions. Freeze-thaw cycles cause 

degradation of many engineering properties important to soil-cement systems, including 

strength, structure, and permeability. However, although various methods have been used to 

improve the freeze-thaw resistance of soil-cement systems, no wholly satisfactory technique 

has yet been proposed. The successful application of air-entraining techniques in concrete 

provides insight for improving the freeze-thaw resistance of soil-cement systems. Although 

the precise mechanisms of air entrainment and the freeze-thaw process itself are still under 

investigation, the entrained air pores are believed to act as reservoirs and cryo-pumps to 

accommodate the ice crystals and the excess pressure generated during freezing. The 

effectiveness of air entraining is thought to depend on the volume and distribution of air 
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pores, which can be attributed to the air content, space factor, and critical degree of saturation 

of the matrix.  

However, to date, there has been no literature covering the use of air entrainment in soil-

cement systems. Nonetheless, the proposed mechanisms for air entraining and the freeze-

thaw process provide insights for the development of self-immune soil-cement systems that 

contain protective pores. Various healing agents and techniques for cementitious materials, 

such as capsule-based self-healing, mineral admixtures and additives, and pellet-based self-

healing, were reviewed. A considerable degree of mechanical property recovery and crack 

closure was reported by many researchers. Capsule-based and pellet-based self-healing 

techniques appeared to be the most promising for soil-cement systems under freeze-thaw 

conditions, as their triggering mechanisms can be easily controlled. Furthermore, the 

properties of SAPs, their applications in terms of self-healing, and their applications in terms 

of improving the freeze-thaw resistance of cementitious materials revealed that they 

demonstrate significant potential for soil-cement systems subjected to freeze-thaw cycles. 

The materials and techniques used in this study are illustrated in Chapter 3. Lambson 

microcapsules and LUVOMAG MgO pellets were used to develop self-healing soil-cement 

systems, while SikaAer
®
 Solid (SS) microcapsules and BASF SAP A were used to develop 

self-immune soil-cement systems. The self-healing and self-immune performance and 

mechanisms of soil-cement systems under freeze-thaw conditions were verified via various 

experimental methods. Qualities and techniques of interest included UCS, porosity, gas and 

water permeability, optical microscopy and image analysis, SEM and EDX, TGA, and CT 

tests. The experimental techniques used in this study are proven effective to reveal the 

properties, behaviours, and mechanisms of self-healing and healing-immune soil-cement 

systems subjected to freeze-thaw cycles.  

Chapter 4 presents the development and performance of self-healing soil-cement systems 

subjected freeze-thaw cycles using Lambson microcapsules and LUVOMAG MgO pellets. It 

was found that a C20L5 mix containing 5% Lambson microcapsules improved the self-

healing capability of soil-cement considerably. An increase of 21–40% in UCS was observed 

after 12 freeze-thaw cycles and 7 days of healing. Moreover, the addition of 5% Lambson 

microcapsules had little effect on the 7-day UCS and E50 of the C20L5 mix. However, the 

results also revealed that for soil-cement systems with lower cement content, the addition of 

Lambson microcapsules tended to slightly decrease the UCS of soil-cement rather than 
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increasing the self-healing capability of soil-cement after multiple freeze-thaw cycles. As a 

result, the use of Lambson microcapsules as a healing agent should be limited to soil-cement 

systems with relatively high cement content (e.g., 20%). 

Another self-healing soil-cement system employs MgO pellets. The addition of MgO pellets 

not only increased the system’s initial strength, and its freeze-thaw resistance, but also 

significantly improved the self-healing capability of the system following freeze-thaw cycles. 

96% crack sealing efficiency was recorded for freeze-thaw damaged C15P10 (i.e., samples 

with 10% of the sand in the cement mixture replaced with MgO pellets) samples after 60 days 

of healing. By contrast, 12% crack sealing efficiency was observed in the control mix. Even 

with a shorter healing time of 14 days, the crack healing efficiency of the C15P10 samples 

was 81.5%. In addition, strength and stiffness recovery was found to be 30–40% after 28 days 

of healing. From microstructure investigations involving TGA and SEM/EDX, it was found 

that brucite and various hydrated magnesium carbonates, such as hydromagnesite and 

dypingite, were produced in the MgO pellet-embedded samples after freeze-thaw cycles.  

The Lambson microcapsules appeared to be only effective for soil-cement systems with 

relatively high cement content, while the MgO pellets also worked for systems with lower 

cement content. This may be due to the larger amount of healing agents contained in solid 

MgO pellets. The healing in the Lambson microcapsule-embedded samples was primarily 

due to further hydration reactions producing C-S-H, while the healing in the MgO pellet-

embedded samples was due to MgO reactions yielding magnesium-related materials. The 

MgO pellets were not uniformly superior, however. A longer time was required for the MgO 

pellets to react and yield their healing products, while the Lambson microcapsule acted more 

quickly. Moreover, the Lambson microcapsule-containing samples had better performance in 

terms of mechanical property recover, due to the production of C-S-H, while the MgO pellet-

containing samples had better performance in terms of crack sealing due to the swelling of 

MgO when reacted with water. However, in this study, the soil-cement systems were 

generally severely damaged by the freeze-thaw cycles before healing could begin. Thus, the 

engineering properties of the systems may not have been fully recoverable. In real 

applications, healing may occur after each freeze-thaw cycle, which means self-healing soil-

cement systems may display better performance.  

In Chapter 5, a novel self-immune soil-cement system embedded with SS microcapsules is 

developed. The addition of SS microcapsules slightly reduced the initial UCS, dry density, 
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and hydraulic conductivity of the soil-cement systems, which is unfavourable. However, the 

freeze-thaw durability of the soil-cement system in terms of UCS, volumetric change, 

porosity, hydraulic conductivity, and surface cracking ratio were significantly increased. The 

distribution and volume of SS microcapsule are two major factors influencing the self-

immunity of the system against freeze-thaw action. The distribution of the SS microcapsule is 

represented by the critical distance between adjacent microcapsules, while the quantity of the 

microcapsules is expressed in terms of the soil-cement’s air content and its critical degree of 

saturation. It was found that the addition of 3.33% SS microcapsules was the lowest dose that 

made the soil-cement system in this study completely self-immune to freeze-thaw damage 

after 20 cycles. Porosity measurements showed that the air content of soil-cement specimens 

increased from approximately 6% to 11% following the addition of 3.33% SS microcapsules. 

X-ray CT scan results showed that small cavities with diameters of 5–80 m were evenly 

distributed within the soil-cement system. These uniformly distributed, small, compressible 

microcapsules conferred self-immunity by serving as buffers for the excess pressure 

generated as water freezes. Even after 20 freeze-thaw cycles, little deterioration in UCS and 

hydraulic conductivity were observed, and almost no crack formation was identified by 

optical microscopy. By contrast, control samples showed an 84% reduction in UCS and a 2.5 

order of magnitude increase in hydraulic conductivity after 10 freeze-thaw cycles.  

The development and performance of self-immune soil-cement systems using BASF SAP A 

as an alternative to SS microcapsules is presented in Chapter 6. SAPs can absorb water 

about 20 times of their own weight during the mixing of soil-cement, and this absorption 

process was found to be reversible. As a result, these SAPs can gradually release the 

absorbed water during the self-desiccation processes that occurs in soil-cement during 

hardening and hydration. Therefore, the SAPs reduce in volume as they release water, 

creating small pores. This mechanism was verified by X-ray CT scan results showing that 

small cavities with diameters of roughly 250 m were evenly distributed within the soil-

cement matrix. These pores serve as reservoirs by allowing water to enter and ice crystals to 

form, much like the air voids caused by air entraining. Compared to the SS microcapsules, 

which generally reduced the initial dry density and strength properties of the soil-cement 

system, the addition of the SAP had little effect on the initial dry density, strength properties 

and permeability of the soil-cement mixes investigated for dosages of up to 2%. Moreover, 

compared to SS microcapsule-embedded soil-cement systems, soil-cement systems using 

BASF SAP A exhibited equivalent excellent freeze-thaw resistance. The addition of 2% SAP 
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was the optimum dosage recommended in terms of conferring self-immunity, as this 

produced soil-cement systems self-immune to freeze-thaw damage after 20 cycles. Similar to 

the soil-cement systems containing 3.33% SS microcapsules described in Chapter 5, 

porosity measurements showed that the air content of the 2% SAP-embedded soil-cement 

system also increased from 6% to 11%. As a result, it can be suggested that 5% additional 

protective air pores are needed to build a soil-cement system self-immune to freeze-thaw 

action.   

This thesis presents a novel philosophy for improving the freeze-thaw durability of soil-

cement systems that incorporates the concepts of ―smart‖ materials, including the concepts of 

self-healing and self-immunity. The basic design of the self-healing soil-cement systems 

developed in this thesis has been described above. Lambson microcapsules and MgO pellets 

were embedded in soil-cement systems as self-healing agents. Both systems showed 

promising results, leading to good recovery of engineering properties like strength and 

permeability. However, if severe damage was induced by freeze-thaw actions before healing, 

the system could not always fully recover its engineering properties.   

Furthermore, SS microcapsules and BASF SAP A were suggested as means to achieve soil-

cement systems self-immune to freeze-thaw cycles. The soil-cement specimens containing SS 

microcapsules and BASF SAP A showed remarkable performance under freeze-thaw 

conditions compared to control specimens. The treated samples fared better in terms of UCS, 

volumetric change, porosity, hydraulic conductivity, and surface crack analysis. There was, 

however, a small initial decrease in the mechanical properties of the soil-cement specimens 

when SS microcapsules were used. BASF SAP A had a smaller effect on the mechanical 

properties of the soil-cement specimens than the SS microcapsules. However, using BASF 

SAP A reduced the workability of the soil-cement mixes, as it absorbed water during mixing, 

while the SS microcapsules had little effect on the workability.  

7.2 Recommendations for practice and future research 

This thesis has investigated various possibilities for improving the freeze-thaw durability of 

soil-cement systems. It found that this can be achieved by either developing self-healing soil-

cement systems using Lambson microcapsules and MgO pellets or by developing self-

immune soil-cement systems using SS microcapsules and BASF SAP A. For soil-cement 

systems with 20% cement content or greater, the addition of Lambson microcapsules can 

significantly improve self-healing after freeze-thaw cycles. However, for soil-cement systems 
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with cement content less than 20%, the use of Lambson microcapsule is not recommended. 

For soil-cement systems with lower cement content (e.g., 15%), it is better to use MgO 

pellets to develop a self-healing soil-cement system.  

For self-immune soil-cement systems, SS microcapsules or BASF SAP A is recommended. 

Soil-cement systems using either additive can self-immune to up to 20 freeze-thaw cycles. It 

should be noted that the freeze-thaw process conducted in this study was extremely severe, so 

the self-immune soil-cement systems described in this study would likely be able to survive 

more freeze-thaw cycles under milder freeze-thaw conditions.  

Further research is also recommended. For the self-healing soil-cement systems in this study, 

healing was permitted only after they were subjected to a certain number of freeze-thaw 

cycles (e.g., 12). As a result, the damage induced by a large number of freeze-thaw cycles 

may have been too significant to heal completely. In a future study, it would be worthwhile to 

investigate the performance of soil-cement systems allowed to heal themselves after each 

cycle. It is anticipated that, for self-healing soil-cement systems using MgO pellets, healing 

could initiate after every freeze-thaw cycle. In such circumstances, the freeze-thaw durability 

and sustainability of MgO pellet-embedded self-healing soil-cement systems could improve. 

Furthermore, it would also be productive to evaluate the self-healing performance of soil-

cement systems incorporating both Lambson microcapsules and MgO pellets. Finally, further 

investigations could be carried out for soil-cement systems incorporating other kinds of 

healing agents. 

It also should be noted that only one kind of soil-cement system was modelled in this study. 

Investigations could be conducted on the applicability of these self-healing and self-immune 

agents on other kinds of soil-cement systems. It would be useful, for instance, to study SS 

microcapsules and BASF SAP A in soil-cement systems using different cement contents and 

different types of soils. Furthermore, the properties of SS microcapsules and BASF SAP A 

suggest that they have potential to provide self-immune capabilities for soil-cement systems 

that are heavily compacted. As discussed in Chapter 6, the only limitation documented for 

the SAP was that it reduced the workability of the soil-cement. Therefore, superplasticisers 

could potentially be added along with the SAP to improve the workability of the ensuing soil-

cement mix. In addition, incorporating both SS microcapsules and BASF SAP A together in 

soil-cement systems could yield unexpected results. It is possible that the reduction in 

mechanical properties like dry density due to the addition of SS microcapsules and the 
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reduction of workability due to the addition of SAP could be minimised in some optimum 

combination.  

Finally, this research was carried out at a laboratory scale. Thus, future studies should 

investigate the application and performance of these self-healing and self-immune soil-

cement systems in field tests. Given that the Lambson microcapsules, the MgO pellets, the SS 

microcapsules, and the SAPs used in this study’s soil-cement systems are all produced 

commercially, it should be easy to test these systems at a larger scale. Similarly, a life cycle 

analysis could be carried out to evaluate the benefits these self-healing and self-immune soil-

cement systems convey in real engineering applications.  
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