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Abstract

The usual methods for formulating and solving the quantum mechanics of a

particle moving in a magnetic �eld respect neither locality nor any global sym-

metries which happen to be present. For example, Landau’s solution for a par-

ticle moving in a uniformmagnetic �eld in the plane involves choosing a gauge

in which neither translation nor rotation invariance are manifest. We show that

locality can be made manifest by passing to a redundant description in which

the particle moves on a U(1)-principal bundle over the original con�guration

space and that symmetry can be made manifest by passing to a corresponding

central extension of the original symmetry group by U(1). With the symmetry

manifest, one can attempt to solve the problem by using harmonic analysis and

we provide a number of examples where this succeeds. One is a solution of the

Landau problem in an arbitrary gauge (with either translation invariance or the

full Euclidean group manifest). Another example is the motion of a fermionic

rigid body, which can be formulated and solved in a manifestly local and sym-

metric way via a �at connection on the non-trivialU(1)-central extension of the

con�guration space SO(3) given by U(2).
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1. Introduction

Consider a particle moving on a smooth, connected, manifold M in the presence of some

background magnetic �eld. Suppose furthermore that the dynamics is invariant under some,

connected, Lie group G of global symmetries acting smoothly onM.

The study of the quantum mechanics of such a system is complicated by two well-known

facts. The �rst complication is that it is, in general, not possible to write down a term in the

Lagrangian representing the magnetic �eld that is valid globally on M. Instead, the best that

one can do is to cover M by overlapping patches and to use multiple Lagrangians, each of

which is valid only locally on some patch. The most famous example, due to Dirac [1] and

solved by Tamm [2] (see also [3, 4]), is given by the motion of an electrically-charged particle

in the presence of a magnetic monopole, but we will see that there exists an example that is

arguably even simpler (and certainly more prevalent in everyday life!), given by the motion of

a rigid body which happens to be a fermion.

This latter example is interesting for another reason, which is that it shows that our set-up

includes systems in which there is no apparent magnetic �eld, but rather a vector potential is

being used to encode a global topological effect—spin, in the case at hand—in a manifestly

local way. Thus, we will be able to write a local term in the Lagrangian that accounts for the

extra factor of−1 that the state of the fermion acquires when it undergoes a complete rotation,

rather than arbitrarily assigning it by hand, as is usually done. This is desirable, given our

prejudice that physics should be local.

The second complication is that the corresponding Lagrangian (or Lagrangians) will not be

invariant under the action of G, but rather will shift by a total derivative. Perhaps the simplest

example, made famous by Landau [5], is given by themotion of a particle in a plane in the pres-

ence of a uniform magnetic �eld, where there is no choice of gauge such that the Lagrangian

is invariant under translations in more than one direction.

At the classical level, neither of these complications causes any problems, since they dis-

appear once we pass from the Lagrangian to the classical equations of motion. Indeed, the

equations of motion are both globally valid and invariant (or rather covariant) under G. Thus,

we can attempt to solve for the classical dynamics using our usual arsenal of techniques. But

this is not the case at the quantum level. There, our usual technique is to convert the Hamil-

tonian into an operator on L2(M) and to exploit the conserved charges corresponding to G to

solve, at least partially, the resulting Schrödinger equation. Here though, we do not have a

unique Hamiltonian, but rather several; even if we did have a unique Hamiltonian, we would,

in general, �nd that the naïve operators corresponding to the conserved charges of G do not

commute with it. The last problem is often remedied by rede�ning the conserved charges,

but then one �nds that the new charges do not form a Lie algebra, unless we add further

charges.

These two complications are apparently unrelated, at least as we have presented them.

But they are related in the sense that neither could occur in the �rst place, were it not for a

basic tenet of quantum mechanics, namely that physical states are represented by rays in a

Hilbert space. Thus, the overall phase of a vector in a Hilbert space is not physical. This is

what makes it possible, ultimately, to resolve the apparent paradox that, at a point inM where

two patches overlap, we have multiple, distinct Lagrangians, but each of them gives rise to

the same physics. Similarly, it allows us to absorb extra phases that arise from boundary con-

tributions in the path integral under a G transformation, when the Lagrangian is not strictly

invariant.

In this work we show that, by exploiting this basic property, one can formulate and solve (or

at least, attempt to solve) such quantum systems in a uni�edway, usingmethods fromharmonic
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analysis. In a nutshell, the idea is as follows. A magnetic �eld de�nes a connection on a U(1)-

principal bundle P overM. From G (which acts onM), we can construct a central extension G̃

ofG byU(1) (which depends on the connection and on P, andwhich acts onP).We reformulate

the original dynamical system onM in terms of an equivalent system (with a redundant degree

of freedom) of a particle moving on P. This reformulation allows us to circumvent both of the

complications discussed above: not only do we have a unique, globally-valid, local Lagrangian

onP, but also theHilbert space carries a bona �de representation of G̃ (in contrast to the original

theory, in which the Hilbert space carries a projective representation of G, corresponding to

the fact that a quantum state is represented by a ray in a Hilbert space). As a result, we can

attempt a solution using harmonic analysis, with respect to the group G̃.

It should be remarked that neither the formulation nor the method of solution that we

describe here can really be considered new. The formulation via central extensions has

appeared in a number of places in the literature, mainly with applications to symplectic geome-

try and geometric quantization (see e.g., [6, 7]) and the use of harmonic analysis to solve quan-

tum systems in the absence of magnetic �elds (and hence without the complications described

above) was described in [8]. What is new, we hope, is the synthesis of these ideas, which leads

to a uniform approach to solving quantum-mechanical systems, including cases with magnetic

�elds (a type of topological interaction due to its independence from the worldvolume metric)

or other non-trivial topological terms.

We remark in passing that our general formalism differs from that used in the study of inte-

grable systems. In an integrable system one requires there exist a set of mutually commuting

charges, while for us the charges are allowed to form any Lie algebra. Moreover, in our sys-

tems, the charges must correspond to the group action on the position space manifold. That

said, it is worth noting that a number of the quantum mechanics models we consider turn out

to be superintegrable, offering a complementary way of understanding their exact solvabil-

ity. For instance, the Landau system is rendered maximally superintegrable by the fact that

it is symmetric under the full Euclidean group in two dimensions, providing a set of three

independent conserved charges (which we may take to be the Hamiltonian and the two John-

son–Lippmann charges [9]), two of which are in involution [10–12]. We exploit this same

basic fact in section 4.4 to solve the Landau system, but rather using a central extension of the

2D Euclidean group.

The methods we present are most powerful in cases where G acts transitively onM (mean-

ing that any point in M can be reached from any other via the action of G) corresponding to

a special case (0+ 1 spacetime dimensions) of the usual non-linear sigma model of quantum

�eld theory on a homogeneous space G/H. The constraint that G acts transitively is a strong

one; it implies, in particular, that any potential term in the Lagrangian must be a constant. We

thus have a ‘free’ particle, in the sense that, in the absence of the magnetic �eld (and ignor-

ing possible higher-derivative terms), the classical trajectories are given by the geodesics of

some G-invariant metric. Despite the strong restrictions, one �nds that a large class of inter-

esting quantummechanical models fall into this class and can be solved in this way. Examples

discussed in the sequel include the systems considered by Landau (which, in contrast with

Landau, we solve by keeping a transitive group of symmetries—either translations or the full

Euclidean group—manifest) and Dirac (where we constrain the particle to move on the surface

of a sphere, so that the rotation group acts transitively).

In cases where G does not act transitively, the methods typically provide only a partial

solution, in that they allow us to reduce the Schrödinger equation to one on the space of orbits

of G. But even here we �nd interesting examples where a complete solution is possible.
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Since the existing literature underlying this work is somewhat arcane, and since we hope

that our results may be of interest to physicists and chemists who are not so mathemati-

cally inclined, we aim for a discussion that is both pedagogical and reasonably self-contained

(in particular, pertinent mathematical de�nitions are supplied in appendix A). Thus, we start

by illustrating the ideas with elementary (but incomplete) discussions of the examples of pla-

nar motion in a uniform magnetic �eld (section 2.1) and of rigid body rotation (section 2.2).

These examples are particularly transparent because, for the former, the bundle is (topologi-

cally) trivial, so all the effects come from the magnetic �eld, while for the latter, the magnetic

�eld vanishes (though the vector potential does not) so all effects arise from the topology of

the bundle.

After this, in section 3, we give full mathematical details of the method. We then com-

plete the discussion of rigid body rotation (section 4.1) and give a series of other examples

which illustrate the method: the Dirac monopole (section 4.2), a charged particle in the elec-

tromagnetic �eld of a dyon (section 4.3), a repeat of Landau levels on a plane, but using the

full Euclidean group (section 4.4), motion on the Heisenberg group manifold (section 4.5),

and motion in a uniform magnetic �eld with a mass that varies with position (section 4.6), the

last of which gives a completely solvable example in the case where the action of G on M is

not transitive. All the examples considered in this paper are summarised in table 1.

In section 5, we discuss one further subtlety: it has long been known [13, 14] that only

a subgroup of the symmetry of the classical equations of motion will be well-de�ned at

the quantum level, so we discuss what happens in such cases. Such anomalies can occur in

the presence of a magnetic background, dispite the absence of chiral fermions. Our conclusions

are presented in section 6.

2. Prototypes

2.1. Planar motion in a uniform magnetic field

Our �rst example is one made famous by Landau, in which a particle moves in the xy-plane

with a uniform magnetic �eld B ∈ R in the z-direction. In this example, the subtleties are

entirely due to the presence of the magnetic �eld. In particular, no matter what gauge is chosen,

the usual Lagrangian shifts by a non-vanishing total derivative under the action of the symmetry

group, which for the purposes of the present discussion we take to be translations in R2. As a

result, the usual quantum Hamiltonian does not commute with the momenta and one cannot

solve via a Fourier transform (which corresponds to harmonic analysis with respect to the

group R2).

To circumvent this we write the action, contributing to the action phase eiS, as

S =

∫
dt

(
1

2
ẋ2 +

1

2
ẏ2 − ṡ− Byẋ

)
, (2.1)

with an additional degree of freedom s ∈ R, with s ∼ s+ 2π, which shall be redundant. The

advantage of doing so is that, unlike the Lagrangian without s, which shifts by a total deriva-

tive proportional to Bẋ under a translation in y, the Lagrangian in (2.1) is genuinely invariant

under a central extension by U(1) of the translation group.

This central extension is the Heisenberg group, Hb, de�ned as the equivalence classes

of (x, y, s) ∈ R3 under the equivalence relation s ∼ s+ 2π, with multiplication law

[(x′, y′, s′)] · [(x, y, s)] = [(x+ x′, y+ y′, s+ s′ − By′x)], (2.2)
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Table 1. Summary of examples presented in this paper. The particle lives on the manifold M, with dynamics invariant under G. Coupling to a
magnetic background de�nes a U(1)-principal bundle π:P→M, on which we form a Lagrangian strictly invariant under a U(1)-central extension

of G, denoted G̃.

Section M [G] P [G̃] Lagrangian on P Spectrum

2.1 Landau levels R2 [R2] R2 ×U(1) [Hb] 1
2
ẋ2 + 1

2
ẏ2 − ṡ− Byẋ |B|(n+ 1/2), n ∈ N0

4.1 Fermionic rigid body RP3 [SO(3)] U(2) [U(2)] 1
2

(
θ̇2 + φ̇2 sin2(θ)+

(
ψ̇ + φ̇ cos(θ)

)2
)
− ṡ j( j+ 1)/2, j ∈ N0 + 1/2

4.2 Dirac monopole S2 L(g, 1) [SU(2)× U(1)] 1
2

(
θ̇2 + sin2(θ)φ̇2

)
− 1

2
χ̇− g

2
cos(θ)φ̇ 1

8
(4 j2 + 4 j− g2), j ∈ N0 + g/2

4.3 Dyon R+ × S2 R+ × L(g, 1) 1
2

(
θ̇2 + sin2(θ)φ̇2

)
− q

r
− 1

2
χ̇− g

2
cos(θ)φ̇ −q2/(2(n+ a)), n ∈ N>0,

[SU(2)] [SU(2)× U(1)] a = 1
2
(1+ ((2 j+ 1)2 − g2)1/2)

4.4 Landau levels R2 [ISO(2)] R2 ×U(1) [ĨSO(2)] 1
2
(ẋ2 + ẏ2)− ṡ− ∂xh(x, y)ẋ− ∂yh(x, y)ẏ− Byẋ |B|(n+ 1/2), n ∈ N0

4.5 R3 [Hb] R4 [H̃b] 1
2
(ẋ2 + ẏ2 + (ż− xẏ)2)− ṡ− xż+ x2

2
ẏ Anharmonic oscillator

4.6 R3 [R2] R3 ×U(1) [Hb] 1
2

(
1

a+z2
ẋ2 + 1

a+z2
ẏ2 + ż2

)
− ṡ− Byẋ

√
|B|(2n+1)(m+1/2)+a|B|(n+1/2),

n,m ∈ N0

5



J. Phys. A: Math. Theor. 53 (2020) 145302 J Davighi et al

and corresponding to R2 × S1 as a manifold. Notice that the group R2 of translations appears

not as a subgroup of Hb, but rather as the quotient group of Hb with respect to the cen-

tral U(1) subgroup {[(0, 0, s)]}. Thus we have a homomorphism Hb→ R
2, given explicitly

by [(x, y, s)] 7→ (x, y), whose kernel is the central U(1). Notice that our de�nition of the

group multiplication law depends on B ∈ R, re�ecting the fact that even though the groups

with distinct values of B are isomorphic as groups, they are not isomorphic as central

extensions.

Given (2.1), the momentum ps conjugate to s satis�es the constraint ps + 1 = 0. We

take care of this in the usual way, by forming the total Hamiltonian (see e.g. [15])

H =
1

2
(px + By)2 +

1

2
p2y + v(t) (ps + 1) , (2.3)

with px and py being the momenta conjugate to x and y respectively, and with v(t) being a

Lagrange multiplier. Upon quantizing (something we will later de�ne formally), we obtain

the Hamiltonian operator

Ĥ =
1

2

(
−i ∂
∂x

+ By

)2

− 1

2

∂2

∂y2
+ v(t)

(
−i ∂
∂s

+ 1

)
, (2.4)

which has a natural action on the space of square integrable functions on the Heisenberg group,

L2(Hb). The physical Hilbert space H must take account of the constraint (or, equivalently,

the redundancy in our description), so we de�ne it to be not L2(Hb), but rather the

subspace

H =

{
Ψ(x, y, s) ∈ L2(Hb)

∣∣∣∣
(
−i ∂
∂s

+ 1

)
Ψ(x, y, s) = 0

}
. (2.5)

Note that this subspace of L2(Hb) is closed under the action of the Heisenberg group and

under the action of Ĥ, implying that it is also closed under time evolution.

We then want to solve the time-independent Schrödinger equation (from hereon ‘SE’)

ĤΨ = EΨ. To solve the SE, we decompose Ψ into unitary irreducible representations

(henceforth ‘unirreps’) of Hb:4

Ψ(x, y, s) =

∫
dr dt

|B|
2π
πB(r, t; x, y, s) f (r, t), (2.6)

where r, t ∈ R are real numbers. Here,

πk(r, t; x, y, s) = ek(xr−s/B)δ(r + y− t), k/B ∈ Z, (2.7)

which denote the matrix elements of the in�nite-dimensional unirreps of Hb, which act on

the vector space L2(R, dt). The fact that only the unirrep with k = B appears in the decompo-

sition (2.6) follows from enforcing the constraint in (2.5), as we show in appendix B.

Notice that with this decomposition Ψ(x, y, s) may not be square integrable (as the matrix

elements of πB themselves are not). As such, once we have found our ‘solutions’ to the SE

4To say we are ‘decomposing Ψ into unirreps of Hb’ is a slight abuse of terminology; what we mean, precisely, is

discussed in section 3.1.
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with this decomposition we must check that they are square integrable (or more generally

the limit of a Weyl sequence). This subtlety will be omitted here due to the familiar form our

�nal solutions will take.

Substituting the decomposition (2.6) into the SE, and using the constraint to eliminate

the Lagrange multiplier, yields

|B|
2π

∫
dr dt

(
1

2

(
−i ∂
∂x

+ By

)2

− 1

2

∂2

∂y2
− E

)
f (r, t)ei(Bxr−s)δ(r + y− t) = 0. (2.8)

After some straightforward manipulation, this reduces to

(
1

2
B2t2 − 1

2

∂2

∂t2
− E

)
f (r, t) = 0. (2.9)

This differential equation, which we recognise as the SE for the simple harmonic oscillator,

has the solutions

f (r, t) = Hn

(√
|B|t
)
e−|B|t2/2g(r), E = |B|(n+ 1/2), (2.10)

where Hn(x) are the Hermite polynomials and g(r) is an arbitrary function of r. The corre-

sponding eigenfunctions are thus

Ψn(x, y, s) =
|B|
2π

∫
drdtHn

(√
|B|t
)
e−|B|t2/2g(r)ei(Bxr−s)δ(r + y− t). (2.11)

We can of course eliminate our redundant degree of freedom, by setting s = 0 for example,

to obtain corresponding wavefunctions living in L2(R2) (more precisely, the wavefunction is

described by a section of a Hermitian line bundle). In the above expression g(r) accounts

for the degeneracy in the Landau levels. On choosing g(r) = δ(r − α/B) for α ∈ R (and

setting s = 0) we arrive at familiar solutions to this system, of the form

Ψn,α(x, y) = eiαxHn

(√
|B|(y+ α/B)

)
e−

|B|
2 (y+α/B)2 . (2.12)

Now let us now recap what we have achieved. Certainly, our result for the spectrum is

not new; nor are our observations regarding the momentum generators. Rather, what is new

is the observation that we can reformulate the problem via a redundant description, in which

a central extension of G by U(1) acts on the con�guration space of that redundant descrip-

tion, in a way that allows us to solve for the spectrum using methods of harmonic analysis.

While this may seem like overkill, it is important to realise that Landau’s original method of

solution [5] only works for this speci�c system of a particle on R2 in a magnetic background,

and moreover works only in a particular gauge (the ‘Landau gauge’). It is not at all clear how

such an approach could be generalised to other target spaces (or gauges). In contrast, aswe shall

soon see in section 3, using harmonic analysis on a central extension can be generalised to

any group G acting on any target space manifold M, since it exploits the underlying group-

theoretic structure of the system.

2.2. Bosonic versus fermionic rigid bodies

Our second prototypical example illustrates the approach in a case where one cannot form a

globally-de�ned Lagrangian without extending the con�guration space by a redundant degree

of freedom. This prototype also provides an example where the relation to magnetic �elds

is not immediately apparent.

7
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To wit, we consider the quantum mechanics of a rigid body in three space dimensions,

whose con�guration space is SO(3), with dynamics invariant under the rotation group. Evi-

dently, such a rigid body could be either a boson or a fermion (it could, for example,

be a composite made up of either an even or odd number of electrons and protons). If it

is a fermion, then its wavefunction should acquire a factor of −1 when the body under-

goes a complete rotation about some axis and we expect, on general physical grounds,

that we can represent this effect via a local Lagrangian term. To see how it can be done,

we �rst note that the term should be both SO(3) invariant and topological. It is thus reasonable

to guess that it can be written in terms of a magnetic �eld, or more precisely, a connection

on some U(1)-principal bundle over SO(3).5 Con�rmation that this is indeed the case comes

from the fact that (up to equivalence), there are just two U(1)-principal bundles over SO(3) (to

see this, note that such bundles are classi�ed by the �rst Chern class, which is a cohomology

class in H2(SO(3),Z) ∼= Z/2). Thus we have the trivial bundle SO(3)× U(1) and a non-trivial

bundle, which we may take to be U(2), the group of 2× 2 unitary matrices. Clearly, these

are not only U(1)-principal bundles, but also they have the structure of central extensions of

SO(3) by U(1), which we need for our construction. The trivial bundle admits the zero

connection and describes the boson, while the non-trivial bundle admits a non-zero (but

nevertheless �at) connection, which accounts for the fermionic phase.

Let us now see this more clearly by means of an explicit construction. An element

U ∈ U(2) projects down to an element O ∈ SO(3) by projecting out its (U(1)-valued) overall

phase.

We parameterize a matrix U ∈ U(2) by

U = eiχ
(

ei(ψ+φ)/2 cos(θ/2) e−i(ψ−φ)/2 sin(θ/2)

−ei(ψ−φ)/2 sin(θ/2) e−i(ψ+φ)/2 cos(θ/2)

)
, (2.13)

where θ ∈ [0, π], φ ∈ [0, 2π), ψ ∈ [0, 4π) and χ ∈ [0, 2π) with the equivalence relation

(θ,φ,ψ,χ) ∼ (θ,φ,ψ + 2π,χ+ π). Now, consider the curve γ ′(t) in U(2) de�ned by

γ ′(t) =

(
eit 0

0 e−it

)
, t ∈ [0, π], (2.14)

and de�ne the curve γ(t) to be the projection of γ ′(t) to SO(3), which one might think of

as the particle worldline in the original con�guration space. The curve γ ′(t) is a horizontal

lift of γ(t) with respect to the connection, which in our coordinates can be represented by

A = dχ. For our purposes here, this simply means that the tangent vector Xγ′ to the curve γ
′(t)

satis�es A(Xγ′ ) = 0, i.e. it has no component in the χ direction.

Notice that in U(2) we have γ ′(0) = I and γ ′(π) = −I, and that these two points, while

distinct in U(2), both project to the identity in SO(3). The relative phase of π between γ ′(0)
and γ′(π) is called the holonomy of γ(t). This implies that the rigid body is in this case a

fermion, because the loop γ(t) in SO(3) corresponds to a 2π-rotation about the z-axis in R3.

If we had instead equipped the rigid body with the trivial choice of bundle SO(3)× U(1),

instead of U(2), then the phase returns to zero upon traversing any closed loop in SO(3),

thus corresponding to a boson.

5 For those readers unfamiliar with principal bundles, we note that a technical understanding should not be necessary to

follow the discussion in this section. Nonetheless, since the notion of a principal bundle shall be central to the general

formalism which we shall set out in section 3, we provide a more-or-less self-contained introduction to the relevant

concepts in appendix A.
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This fermionic versus bosonic nature is furthermore manifest in the differing representa-

tion theory of the Lie groups U(2) and SO(3)× U(1). This shall be important when we

solve for the spectrum of this quantum mechanical system in section 4.1. While the unir-

reps of SO(3)× U(1) are all odd-dimensional (as we would expect for the integral angular

momentum eigenstates of a bosonic rigid body), U(2) also contains unirreps of even dimen-

sion (for example, the de�ning 2D representation), leading to the possibility of eigenstates

with half-integral angular momentum, which is exactly what we expect for a fermionic rigid

body,via the spin-statistics theorem.

For our purposes, it will be useful to consider a different path γ̃(t) in U(2) that also projects
down to γ in SO(3), de�ned by

γ̃(t) =

(
e2it 0

0 1

)
, t ∈ [0, π]. (2.15)

While this path γ̃ is not a horizontal lift of the worldline γ, it nonetheless still projects down
to γ, but is now a closed loop in U(2) with the property that the exponential of the inte-

gral over γ̃ of the connection A = dχ is equal to the holonomy, viz e−i
∫

γ̃A = e−i
∫ π
0
dt = −1.

This means that we can represent the holonomy (which is the contribution to the action phase

from the topological term) in terms of a local action, namely the integral of the connection over

an appropriately chosen loop γ̃. Given the existence of the horizontal lift, the fact that U(1)

is connected means such a loop always exists. As we might expect from the fact that there

is a redundancy in our description, the choice of loop is, however, not unique. Nevertheless,

the integral is of course independent of this choice.

The upshot is that this topological phase, which results in fermionic statistics of the rigid

body, can be obtained from the integral of a Lagrangian (the connection) on the principal

bundle, here U(2), which is both globally-de�ned and manifestly local. Due to the topolog-

ical twisting of the bundle, there is no corresponding globally-de�ned Lagrangian on the

original con�guration space, here SO(3).

In this section we have discussed two quantum mechanical prototypes, which are at �rst

sight very different from a physical perspective. What both examples have in common is the

possibility of a topological term in the action phase. In our �rst example of quantum mechan-

ics on the plane (section 2.1), this topological term corresponded to the familiar coupling of

our particle to a magnetic �eld transverse to the plane of motion. We saw that, in order to

identify a symmetry group that commutes with the Hamiltonian, it was necessary to pass

to an equivalent description on an extended space, with that symmetry group being the

Heisenberg group. We then saw how one could obtain the Landau level spectrum by using

harmonic analysis on the Heisenberg group, a method that works in any gauge. In con-

trast, in our second example of a rigid body (in this subsection), the topological term cor-

responded to a vanishing magnetic �eld, but we nonetheless saw that the term can have

interesting effects, in this case leading to either fermionic or bosonic character of the rigid

body.

Mathematically, both examples admit a common description: the topological term in the

action phase is the holonomy of a connection on a U(1)-principal bundle P over the con�gura-

tion spaceM. Such a topological term may not correspond to any globally-de�ned Lagrangian

on M (as in section 2.2), or may not be invariant under the action of the group G which

acts on M (as in section 2.1); or, indeed, both (interconnected) issues may arise. Having

demonstrated in our two prototypes that these problems can be remedied by passing to an

equivalent descriptionon an extended space (namely, the principal bundleP) with an action by a

central extension of G, we are now ready to explain the general formalism.

9
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3. Formalism

We shall consider quantum mechanics of a point particle whose con�guration space is

a smooth, connected manifold M. This can be described by an action whose degrees of

freedom are maps φ from the one-dimensional worldline, Σ, to the target space M, viz

φ:Σ→M. We consider the smooth action α:G×M→M of a connected Lie group G onM,

which shall de�ne the (global) symmetries of the system. Since, in the path integral approach

to quantum mechanics, it is only the relative action phase between pairs of worldlines that

is physical, we are free are to consider only worldlines which are closed, without loss of

generality.

3.1. Quantum mechanics in magnetic backgrounds

Wewill now de�ne the dynamics of the particle onM by specifying aG-invariant action phase,

eiS[φ], de�ned on all closed worldlines, or equivalently on all piecewise-smooth loops inM.

The action consists of two pieces (ignoring potential and higher-derivative terms). The

�rst piece is the kinetic term, constructed out of a G-invariant metric on M. The second

piece in the action couples the (electrically charged) particle to a background magnetic �eld.

This is a topological term in the action phase (in the sense that it does not require the metric),

equal to the holonomyof a connectionA on aU(1)-principal bundleP overM (see appendixA),

evaluated over the loop φ. It is shown in [16] that for this term in the action phase to be

invariant under the action α of the Lie group G, we require that the contraction of each vector

�eld X generating α with the curvature 2-form ω is an exact 1-form. That is, we require

ιXω = d fX ∀X ∈ g, (3.1)

where each f X is a globally-de�ned function (equivalently, a 0-form) on M. This condition,

which we shall refer to as the Manton condition, is necessary for the G-invariance of the topo-

logical term evaluated on all piecewise-smooth loops inM (provided thatG is connected, as we

are assuming). This Manton condition is analogous to the moment map formula for a group

action to be Hamiltonian with respect to a given symplectic structure. The difference here,

mathematically, is that the �eld strength ω need not be a non-degenerate 2-form.

It will be of use later, when we end up constructing an equivalent action on P, to spec-

ify a local trivialisation of P over a suitable set of coordinate charts {Uα} on M. We let

sα ∈ [0, 2π) be the U(1)-phase in this local trivialisation and de�ne the transition functions

tαβ = ei(sα − sβ). Technically speaking, we need two coordinate charts on P, denote them

Vα,1 (sα 6= π) and Vα,2 (sα 6= 0), for each Uα, to cover the S1 �bre. In what follows, we will

often gloss over this technicality; from hereon, sα should be assumed to be written locally in

one of these coordinate charts, which we shall denote collectively by Vα to avoid drowning in

a sea of indices. Following this ethos, we will also tend to drop the α subscript on sα when we

turn to solving the examples in section 4.

Our objective is to solve the SE corresponding to this G-invariant quantum mechanics,

which we shall ultimately achieve by passing to a central extension of G by U(1), and using

harmonic analysis on that central extension.

Tomotivate ourmethod,we shall �rst reviewhow harmonic analysis can be used to solve the

corresponding (time-independent) SE in the absence of the magnetic background, by exploit-

ing the group-theoretic structure of the system [8]. Solving the SE amounts to �nding the

spectrum of an appropriate Hamiltonian operator Ĥ, which in this case can be quantized as

the Laplace–Beltrami operator corresponding to the choice of G-invariant metric onM, on an

appropriate Hilbert space. In the absence of a magnetic �eld, the Hilbert space can be taken to

10
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be L2(M). We can endow this Hilbert space with a highly reducible, unitary representation of

G, namely the left-regular representation de�ned by

ρ(g)Ψ(m) :=Ψ(αg−1m) for m ∈ M, g ∈ G, andΨ ∈ L2(M). (3.2)

The action of ρ allows us to decompose the vector space L2(M) into a direct sum (or, more

generally, a direct integral) of vector spaces Vλ,t, such that the restriction of ρ to each Vλ,t

yield an unirrep of G, which we label by its equivalence class λ ∈ Λ. Each unirrep may, of

course, appear more than once in the decomposition of L2(M) and so we index these by t ∈ Tλ.

We will �x a basis for each vector space Vλ,t, which we denote by eλ,tr , where r ∈ Rλ indexes

the (possibly in�nite-dimensional) basis, which does not depend on t.

In our exampleswe often specify the operator in the unirrepλ by its form in the chosen basis,

which we denote πλ(s, q), where s and q index the basis. In many cases, as in section 2.1,

it will transpire that we can set eλ,tr = πλ(r, t). In other instances were this is not the case,

one can nonetheless infer a suitable form for the eλ,tr from πλ(s, q).
It is then a consequence of Schur’s lemma that if

Ĥρ(g) f (m) = ρ(g)Ĥ f (m), (3.3)

then the operator Ĥ will be diagonal in both λ and r, and can only mix eλ,tr in the index t and

not r or λ, i.e. it only mixes between equivalent unirreps. In most cases this simpli�es the

SE by reducing the number of different types of partial derivatives present, often resulting in

a family of ODEs [8].

3.2. An equivalent action with manifest symmetry and locality

Interestingly, coupling our particle on M to a magnetic background, in the manner described

in section 3.1, may prevent one from constructing a local Hamiltonian that satis�es (3.3). As

elucidated by our pair of prototypes in section 2, there are two obstructions to this method.

Firstly, as demonstrated by our prototypical example (section 2.2), it may not be

possible to form a globally-valid Lagrangian on M. Secondly, as demonstrated by our

prototypical example (section 2.1), even when the construction of a globally-valid Lagrangian

is possible (i.e. when ω, the magnetic �eld strength, is the exterior derivative of a globally-

de�ned 1-form), the Lagrangian may vary by a total derivative under the action of G. This

means that (3.3) will fail to hold, and the Hamiltonian will not act only between equivalent

unirreps of G.

It is possible to overcome both these problems by considering an equivalent dynamics

on the principal bundle π:P→M, instead of onM, as we shall now explain.

The topological term, which is just the holonomy of the connection A on P, can be writ-

ten as the integral of A over any loop φ̃ in P which projects down to our original loop φ on

M, i.e. one that satis�es π ◦ φ̃ = φ (see appendix A). Pulling back A to the worldline using

φ̃, we obtain on a patch Vα of P

φ̃∗A =
(
ṡα(t)+ Aα,i

(
xk(t)

)
ẋi(t)

)
dt, (3.4)

where xi(t) ≡ xi(π ◦ φ̃(t)) denote local coordinates in M (with i = 1, . . . , dim M), sα(t) ≡
sα(φ̃(t)), ṡα ≡ dsα/dt & c, and A|Vα ≡ dsα + Aα,idx

i is the connection restricted to the patch

Vα. Given that we can also pull back the metric, and thus the kinetic term, fromM to P, we can

‘lift’ our original de�nition of the action from M to the principal bundle P. The contribution

11
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to the action from a local patch Vα is then

S[φ̃]
∣∣∣
Vα

=

∫
dt
{
gi jẋ

iẋ j − ṡα − Aα,iẋ
i
}
, (3.5)

where gi jdx
idx j will henceforth denote the pullback of the metric to P.

As we have anticipated, this reformulation of the dynamics on P has two important

virtues. Firstly, there is a globally-de�ned Lagrangian 1-form on P for the topological term,

namely the connection A. Secondly, this Lagrangian is strictly invariant under the Lie

group central extension G̃ of G by U(1), de�ned to be the set

G̃ = {(g,ϕ) ∈ G× Aut(P,A)|π ◦ ϕ = αg ◦ π}, (3.6)

endowed with the group action (g,ϕ) · (g′,ϕ′) = (gg′,ϕ ◦ ϕ′) [7, 17], which as a manifold

is the pullback bundle of π:P→M by the orbit map φm:G→M, g 7→ g · m, for any m ∈
M [17]. Here, Aut(P,A) denotes the group of principal bundle automorphisms of P (i.e.

diffeomorphisms which commute with the right action of the structure group on P)

which preserve A, i.e. for ϕ ∈ Aut(P,A) we have ϕ∗A = A. There is a short exact sequence

0 −→ U(1)
ι−→G̃

π′−→G −→ 0, (3.7)

with the subgroup Im(ι) central in G̃, thus exhibiting G̃ as a central extension of G by U(1).

Here ι:U(1) ∋ eiθ 7→ (id,Reiθ ) ∈ G̃, where Rg ∈ Aut(P,A) indicates the right action of U(1)

on the bundle P, and π′: G̃ ∋ (g,φ) 7→ g ∈ G. This group has a natural action on the principal

bundle P, which we denote by α̃ : G̃× P→ P, de�ned by α̃(g,ϕ)p= ϕ(p), for p ∈ P.

The price to pay for these two virtues is that we have introduced a redundancy (which

locally comes in the form of an extra coordinate sα) into our description. We must account

for this redundancy with an appropriate de�nition of the Hilbert space, to which we turn in

the next subsection.

3.3. Quantization

Equipped with this reformulation of the dynamics on P, and the extended Lie group G̃, we

are now in a position to construct a local Hamiltonian operator and solve for its spectrum by

decomposing into unirreps of G̃.

To do this, we �rst form the classical Hamiltonian by taking the Legendre transform

of the Lagrangian, de�ned on the ‘extended phase space’ T∗P. At this stage the redundancy in
our description becomes apparent, with the momentum psα conjugate to the (local) �bre coor-

dinate sα being constant, viz psα + 1 = 0, as we saw in section 2.1. We can enforce this

constraint by quantizing the so-called ‘total Hamiltonian’

H|Vα =
1

2
(pi + Aα,i)g

i j(pj + Aα, j)+ v(t)(psα + 1), (3.8)

where pi is the momentum conjugate to the coordinate xi, and v(t) is an arbitrary function of

t which plays the role of a Lagrange multiplier. This Hamiltonian is naturally quantized as
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the magnetic analogue of the Laplace–Beltrami operator, in which the covariant derivative∇
onM is replaced by∇+ A, giving

Ĥ
∣∣
Vα

=
1

2

(
−i 1√

g

∂

∂xi
√
g+ Aα,i

)
gi j
(
−i ∂
∂x j

+ Aα, j

)
+ v(t)

(
−i ∂
∂sα

+ 1

)
,

(3.9)

which is a Hermitian operator acting on the Hilbert space

H =

{
Ψ ∈ L2(P, µ̃)

∣∣∣∣
(
−i ∂
∂sα

+ 1

)
Ψ = 0 on Vα

}
(3.10)

where locally the measure is given by µ̃ =
√
gdsdx1 . . . dxn. The Hilbert space H is isomor-

phic to the space of square integrable sections on the Hermitian line bundle associated with P

with respect to the measure µ =
√
gdx1 . . . dxn [4, 18].

3.4. Method of solution: harmonic analysis on central extensions

Because the local Hamiltonian commutes with the left regular representation of G̃, we expect

to be able to use harmonic analysis on G̃ (when it exists!) to solve for the spectrum of (3.9).

The Hilbert space H is endowed with the left-regular representation ρ of G̃, under which a

wavefunctionΨ ∈ H transforms as

ρ̃(g̃)Ψ(p) ≡ Ψ(α̃g̃−1 p) ∀ p ∈ P, g̃ ∈ G̃. (3.11)

We use harmonic analysis to decompose this representation into unirreps of G̃, in analogy

with how we decomposed into unirreps of G in the absence of a magnetic background, above.

Thus, let eλ,tr (p ∈ P) now denote a basis for this decomposition, which schematically takes

the form

Ψ =
∑

λ

∫
µ(λ, r, t) f λ(r, t)eλ,tr (p) ∈ L2(P, µ̃) (3.12)

for an appropriate measure µ(λ, r, t). Note that the basis functions may not be square inte-

grable; if this is not the case one may check that the solutions are the limit of an appropriate

Weyl sequence (see e.g. [8]). In the presence of the magnetic background, we have passed

to a redundant formulation of the dynamics on P, and the crucial difference is that we must

now account for this redundancy when using harmonic analysis. It turns out (see appendix B)

that this redundancy can often be accounted for by restricting the decomposition in (3.12)

to the subspace of unirreps which satisfy the constraint (−i∂s + 1)eλ,tr (p) = 0, which we can

moreover equip with an appropriate completeness relation. In the examples that follow in

section 4, this decomposition into a restricted subspace of unirreps will serve as our starting

point for harmonic analysis.
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Then, exactly as above, the fact that the Hamiltonian commutes with the left-regular represen-

tation (of G̃, not G) means that the action of Ĥ will only mix equivalent representations (that

is, it can mix between different values of the t index, but not the r index or λ label). Thus,

the SE will be simpli�ed, often to a family of ODEs, as we shall see explicitly in a plethora

of examples in the following section.

It is important to acknowledge that performing harmonic analysis in the manner we have

described, for the general setup of interest in which a (possibly non-compact) general Lie

group acts non-transitively on the underlying manifold, is far from being a solved problem

in mathematics. For example, it is not known under what conditions the integrals denoted

in (3.12) actually exist, and whether the functions f λ(r, t) can be extracted from Ψ by

appropriate integral transform methods. Thus, much of what has been said should be taken

with a degree of caution. Fortunately, in the examples that we consider in section 4, all of the

required properties follow from properties of the usual Fourier transform, and in all cases the

method that we have outlined in this section works satisfactorily.

4. Examples

In sections 2.1 and 2.2 we explained the use of our method for planar motion in a magnetic

�eld, then pointed out the existence of a topological term for the quantum mechanical rigid

body, and explained how this term can endow the rigid body with fermionic statistics. We

will start this section where section 2.2 left off, by solving for the spectrum of this fermionic

rigid body using harmonic analysis on the group U(2). After this we will look at a series

of other examples where our method is of use. Some of these are well known systems, e.g.

charged particle motion in the �eld of a Dirac monopole, whilst others are new, e.g. the

motion of a particle on the Heisenberg manifold. The results of all the examples considered in

this paper are summarised in table 1.

4.1. Back to the rigid body

We resume the example discussed in section 2.2. On a local coordinate patch on P = U(2), we

de�ne a U(2)-invariant action incorporating a kinetic term by

S =

∫
dt

(
1

2
θ̇2 +

1

2
φ̇2 sin2 θ +

1

2

(
ψ̇ + φ̇ cos θ

)2
− ṡ

)
. (4.1)

The total Hamiltonian on this patch is

H =
1

2
p2θ +

1

2 sin2θ

(
p2φ + p2ψ − 2 cos θpφpψ

)
+ v(t)(ps + 1), (4.2)

which we quantize as the operator

Ĥ = − 1

2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

2 sin2θ

(
∂2

∂ψ2
+

∂2

∂φ2
− 2 cos θ

∂2

∂φ∂ψ

)

+ v(t)

(
−i ∂
∂s

+ 1

)
, (4.3)
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acting on wavefunctions Ψ(θ,φ,ψ, s) ∈ L2(U(2)) satisfying
(
−i ∂

∂s
+ 1
)
Ψ = 0. The unir-

reps whose matrix elements satisfy this condition when considered as functions on U(2),

are given by

π j

m,m′ (θ,φ,ψ, s) = e−isD j

m′ m(θ,φ,ψ), (4.4)

where j is a positive half-integer, m, m′ ∈ {− j,− j+ 1, . . . , j}, and D
j

m′m is a Wigner

D-matrix, de�ned (in our local coordinates) by

D
j

m′m(θ,φ,ψ) =

(
( j+ m)!( j− m)!

( j+ m′)!( j− m′)!

)1/2

(sin(θ/2))m−m
′
(cos(θ/2))m+m

′

P
(m−m′ ,m+m′)
j−m (cos θ)e−im

′ψe−imφ. (4.5)

These are matrix elements of an unirrep of U(2) and, as was the case in section 2.1, trans-

form in the corresponding conjugate representation when the left-regular representation is

applied. The Wigner D-matrices satisfy the completeness relation

∑

m′∈Z+1/2

∑

m∈Z+1/2

∞∑

j=max(|m|,|m′ |)

2 j+ 1

8π2

(
D
j

m′m(θ
′,φ′,ψ′)

)∗
D
j

m′m(θ,φ,ψ)

= δ2π(φ− φ′)δ2π(ψ − ψ′)δ(cos θ − cos θ′), (4.6)

where δ2π(· · ·) represents a Dirac delta comb with periodicity 2π, and the sum over j is over

half-integers.

Following the formalism set out in section 3, we decomposeΨ into a basis e j,m
′

m for L2(U(2)),

which in this case can be chosen to be e j,m
′

m = π j

m,m′ , the matrix elements of unirreps of

U(2) introduced above, giving us

Ψ =
∑

m′∈Z+1/2

∑

m∈Z+1/2

∞∑

j=max(|m|,|m′ |)

2 j+ 1

8π
e−isD j

m′m(θ,φ,ψ) f
j

m′m, (4.7)

with inverse

f
j

m′m =

∫
d
(
cos(θ′)

)
dψ′dφ′

(
D
j

m′m(θ
′,φ′,ψ′)e−is

)∗
Ψ(θ′,φ′,ψ′, s). (4.8)

The SE then reduces to

∑

m′∈Z+1/2

∑

m∈Z+1/2

∞∑

j=max(|m|,|m′ |)

2 j+ 1

8π

{
j( j+ 1)

2
− E

}
e−isD j

m′m(θ,φ,ψ) f
j

m′m = 0,

(4.9)

yielding the energy levels

E
j

m′m =
1

2
j( j+ 1), for jhalf− integer. (4.10)

The corresponding wavefunctions, on our local coordinate patch, can be written
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Ψ
j

m′m(θ,φ,ψ, s) = e−isD j

m′m(θ,φ,ψ). (4.11)

Setting the �bre coordinate s to zero de�nes, a section on the Hermitian line bundle associated

with the principal bundleU(2), in other words a physical wavefunction. On traversing a double

intersection of coordinate charts on SO(3), the above expression for the section will shift by a

transition function.

We note in passing that on setting s = 0 the U(2) representations appearing in this decom-

position reduce to representations of SU(2). This occurs due to a well-known happy acci-

dent, namely that the projective representations of a Lie group G (here SO(3)) whose second

Lie algebra cohomology vanishes (as is the case for every semi-simple Lie group) in fact

correspond to bona �de representations of the universal cover of G (here SU(2)). That is,

under these conditions, familiar to most physicists, we may decompose the Hilbert space into

unirreps of the universal cover ofG, without technically needing to pass to a central extension.

It is, however, important to point out that even in an example such as this, one cannot write

down a local action for the topological term on the universal cover SU(2), but must pass to the

central extension, U(2).

4.2. The Dirac monopole

Here we consider the G = SU(2)-invariant dynamics of a particle moving on the 2-sphere.

We may embed M = S2 in R3, parameterized by the standard spherical coordinates (θ ∼ θ +
π,φ ∼ φ+ 2π). We cover S2 with two charts U+ and U−, which exclude the South and North
poles respectively. At the centre sits a magnetic monopole of charge g ∈ Z. This background

magnetic �eld speci�es a particular U(1)-principal bundle Pg over S2 with connection A,

which we may write in our coordinates as

A|U+
= ds+ − g

2
(1− cos θ) dφ

A|U− = ds− − g

2
(−1− cos θ) dφ,

(4.12)

where s± denotes a local coordinate in the U(1) �bre. This can be conveniently written as

A =
1

2
dχ+

g

2
cos θdφ, (4.13)

where 1
2
χ = s+ − g

2
φ on U+ and 1

2
χ = s− +

g
2
φ on U−. The transition functions over a

trivialisation on {U+,U−} are speci�ed via the choice

(p, eiδ) ∈ U+ × U(1) 7→ (p, eiδeigφ) ∈ U− × U(1). (4.14)

For general g, this bundlePg is in fact the lens space L(g, 1), which is a particular quotient of S
3

by a Z/gZ action. When g = 1, the bundle is simply P1
∼= S3, described via the Hopf �bration

and when g = 2, the bundle is simply RP3.6

As was the case in the previous example, it is here not possible to write down a

global 1-form Lagrangian on S2. Rather, as was �rst demonstrated by Wu & Yang [3],

one must write the action on S2 as a sum of line integrals on different charts, together

6The lens spaces L(g, 1) make another appearance in physics as the possible vacuum manifolds for the electroweak

interaction [19].
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with the insertion of 0-forms (the transition functions) evaluated at points in double inter-

sections of charts. Thus, it is not possible to use the usual Hamiltonian formalism to

solve for the spectrum of the corresponding quantum mechanics problem.

Following our formalism, we should instead reformulate the problem by writing down

an equivalent, globally-de�ned Lagrangian on the U(1)-principal bundle Pg = L(g, 1)

de�ned above. The action is

S =

∫
dt

{
1

2

(
θ̇2 + sin2 θφ̇2

)
− 1

2
χ̇− g

2
cos θφ̇

}
. (4.15)

This Lagrangian is invariant under G̃ = SU(2)× U(1), the unique (up to Lie group isomor-

phisms) U(1)-central extension of SU(2), with uniqueness following from the fact that SU(2)

is a simple and simply-connected Lie group [7]. We parameterize an element g̃ ∈ G̃ by

g̃ =







ei(ψ+φ)/2 cos
θ

2
e−i(ψ−φ)/2 sin

θ

2

−ei(ψ−φ)/2 sin
θ

2
e−i(ψ+φ)/2 cos

θ

2


 , ei(gψ−χ)/2


 ∈ SU(2)× U(1).

(4.16)

The corresponding total Hamiltonian is

Ĥ =
1

2
p2θ +

1

2 sin2θ

(
pφ +

g

2
cos θ

)2
+ v(t)

(
pχ +

1

2

)
, (4.17)

which when quantized gives

Ĥ = − 1

2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

2 sin2θ

(
−i ∂
∂φ

+
g

2
cos θ

)2

+ v(t)

(
−i ∂
∂χ

+
1

2

)
,

(4.18)

where the Hilbert spaceH is the subspace of square integrable functions on L(g, 1) for which

the last term in (4.18) vanishes.

We now wish to solve for the spectrum of this Hamiltonian using harmonic analysis on

the Lie group G̃ = SU(2)× U(1). Matrix elements of unirreps of SU(2)× U(1) which are

annihilated by the constraint
(
−i ∂

∂χ
+ 1

2

)
π j

m,m′ = 0 are given by

π j

m,m′ (θ,φ,ψ,χ) = ei(gψ−χ)/2D j

m′ m(θ,φ,ψ). (4.19)

Here D
j

m′m ≡ e−im
′ψ−imφd j

m′m(θ) are the same Wigner D-matrices as de�ned in (4.5), and the

matrices d
j

m′m(θ) are conventionally referred to as ‘Wigner d-matrices’. The subspace of

these unirreps with m′ = g/2 do not depend on the coordinate ψ, and provide a suitable

basis for decomposing square-integrable functions on the lens space L(g, 1). We denote these

basis functions by e
j,g/2
m (θ,φ,χ) = π j

m,g/2(θ,φ,ψ,χ), which satisfy the constraint condition and
which transform as unirreps of SU(2)× U(1). This subspace of H carries the completeness

relation
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∑

m+g/2∈Z

∞∑

j=max(|m|,g/2)

2 j+ 1

4π

(
e j,g/2m (θ′,φ′,χ′)

)∗
e j,g/2m (θ,φ,χ)

= e−i(χ−χ
′)/2δ2π(φ− φ′)δ(cos θ − cos θ′), (4.20)

which allows us to decompose any wavefunction in Ψ ∈ H into unirreps as follows

Ψ(θ,φ,χ) = e−iχ/2
∑

m+g/2∈Z

∞∑

j=max(|m|,g/2)

2 j+ 1

4π
f jme

−imφd j
g/2,m(θ), (4.21)

where

f jm =

∫
d(cos θ′)dφ′eimφ

′+iχ′/2d
j

g/2,m(θ
′)Ψ(θ′,φ′,χ′). (4.22)

If we now substitute the decomposition (4.21) into the SE, after simpli�cation, we get

∑

m+g/2∈Z

∞∑

j=max(|m|,g/2)

2 j+ 1

4π

(
1

8
(4 j2 + 4 j− g2)− E

)
e−iχ/2e−imφd j

g/2,m(θ) = 0.

(4.23)

Thus the solution to the SE is

Ψ
j
m(θ,φ,χ) = e−iχ/2−imφd j

g/2,m(θ), E j
m =

1

8
(4 j2 + 4 j− g2). (4.24)

Notice that the eigenstates are labelled by two quantum numbers j and m, but that for a given

j the eigenstates with different values of m are degenerate in energy due to the rotational

invariance of the problem.

To write our solution in terms of a section on a Hermitian line bundle associated with Pg,

we set s+ = 0 on U+ and s− = 0 onU−, corresponding to χ = −gφ and χ = gφ respectively.

This yields

Ψ
j
m,+(θ,φ)= ei

g
2
φ−imφd j

g/2,m(θ),

Ψ
j
m,−(θ,φ)= e−i

g
2φ−imφd j

g/2,m(θ).
(4.25)

These solutions agree with the solutions of Wu and Yang [4], who solved this system by

considering local Hamiltonians on U+ and U− separately.

4.3. Charged particle orbiting a dyon

In the previous section we found the spectrum of an electrically charged particle in the presence

of a magnetic monopole.Within our formalism, it is straightforward to generalize this to study

an electrically charged particle in the background �eld of a dyon, and use harmonic analysis

to reduce the corresponding SE to an ODE.

The required modi�cation is to include an r-dependent kinetic term, where r is the radial

distance from a dyon located at the origin, together with an r-dependent potential term,

in the action (4.15). We have

S =

∫
dt

{
1

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− q

r
− 1

2
χ̇− g

2
cos θφ̇

}
. (4.26)
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where q is the electric charge of the dyon, and g ∈ Z is the (quantized) magnetic charge of

the dyon as before. The original con�guration space M of the system is R+ × S2, whilst

this action is written on the U(1)-principal bundle Pq,g = R+ × L(g, 1) where L(g, 1) is the

lens space as in section 4.2. This action is invariant under a non-transitive action of SU(2)×
U(1), as de�ned in the previous section.

The quantized total Hamiltonian corresponding to (4.26) is given by

Ĥ = − 1

2r2
∂

∂r

(
r2
∂

∂r

)
− 1

2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

2r2 sin2 θ

(
−i ∂
∂φ

+
g

2
cos θ

)2

+
q

r
+ v(t)

(
−i ∂
∂χ

+
1

2

)
(4.27)

which acts on the physical Hilbert space. The decomposition of a wavefunction Ψ(r, θ,φ,χ)
in this Hilbert space is completely analogous to the decomposition in (4.21), however

this time the f jm, which where previously constants, should be replaced with functions

f jm(r). On substituting this decomposition into the SE, we arrive at the following differential

equation for f jm(r),

(
− 1

2r2
∂

∂r

(
r2
∂

∂r

)
+

1

8r2
(4 j2 + 4 j− g2)+

q

r
− E

)
f jm(r) = 0. (4.28)

The bounded solutions to this ODE were derived in [20], giving the spectrum

En = − q2

2(n+ a)2
, n ∈ N>0, (4.29)

where a = 1
2

(
1+

(
(2 j+ 1)2 − g2

)1/2)
.

4.4. Planar motion in a uniform magnetic field (take two)

In section 2.1 we solved for the spectrum of a particle on R2 in the presence of a uniform

magnetic �eld perpendicular to the plane, by considering the group R
2 of translations in the

plane, and passing to its central extension, the Heisenberg group Hb. Of course, the symmetry

group of this system is larger thanR2, because both the kinetic term and the magnetic coupling

are invariant not just under translations, but also under rotations. Thus, in this section, we

revisit this problem (and solve it again) using a different implementation of our generalmethod,

by instead considering the particle as living on the quotient space M = ISO(2)/SO(2) ∼= R2,

with G = ISO(2) being the Euclidean group in two dimensions. Thus, our solution here shall

involve the representation theory of a central extension of G = ISO(2), which will be a four-

dimensional group, rather than the representation theory of Hb which was used in section 2.1.
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As usual, we formulate the action on a U(1)-principal bundle P over the target space

M = ISO(2)/SO(2) ∼= R2. Using coordinates (x, y, s), where (x, y) ∈ R2 provide global coor-

dinates on the base space, and s denotes a local coordinate in the U(1) �bre, the action is

S =

∫ (
1

2
(ẋ2 + ẏ2)− ṡ− ∂h

∂x
ẋ− ∂h

∂y
ẏ− Byẋ

)
dt, (4.30)

where h(x, y) is an arbitrary smooth function of x and y, which corresponds to a choice of gauge

for the magnetic vector potential. Note that in all the examples in this paper, there is a choice

of gauge made in writing down the magnetic vector potential which appears in the action.

While different choices of gauge will in general result in different central extensions G̃, gauge-

equivalent vector potentials nonetheless correspond to central extensionswhich are isomorphic

as Lie groups. In this sense, the choice of gauge has little affect on the representation theory

used in our calculations. For this example, we have chosen to make this gauge-dependence (or,

rather, independence) explicit, by formulating the action in a general gauge from the outset.

As usual, the Lagrangian is not invariant under the isometry group G = ISO(2), but rather

it shifts by a total derivative under the translation subgroup. The Lagrangian is, however, gen-

uinely invariant under a U(1)-central extension of ISO(2), which we will denote by ĨSO(2),

which is a four-dimensional group de�ned by

{
ξ′x, ξ

′
y, ξ

′
c, ξ

′
s

}
· {ξx, ξy, ξc, ξs} =

{
ξ′x + ξx cos ξ

′
c + ξy sin ξ

′
c, ξ

′
y + ξy cos ξ

′
c − ξx sin ξ

′
c,

ξc + ξ′c, ξs + ξ′s −
B

2

(
(ξx cos ξ

′
c + ξy sin ξ

′
c)ξ

′
y − (ξy cos ξ

′
c − ξx sin ξ

′
c)ξ

′
x

)}
. (4.31)

This group acts on the principal bundle P via

α̃(ξ′x,ξ′y ,ξ′c ,ξ′s) · (x, y, s) =
{
x′, y′, ξs + ξ′s −

B

2

(
(x cos ξ′c + y sin ξ′c)ξ

′
y

− (y cos ξ′c − x sin ξ′c)ξ
′
x

)
+

(
B

2
xy− B

2
x′y′
)
+ (h(x, y)− h(x′, y′))

}
,

(4.32)

where x′ = ξx
′ + x cos ξc

′ + y sin ξc
′ and y′ = ξy

′ + y cos ξc
′ − x sin ξc

′.
The corresponding total Hamiltonian is

H =
1

2

(
px +

∂h

∂x
+ By

)2

+
1

2

(
py +

∂h

∂y

)2

+ v(t)(ps + 1), (4.33)

which we quantize as the Hermitian operator

Ĥ =
1

2

(
−i ∂
∂x

+
∂h

∂x
+ By

)2

+
1

2

(
−i ∂
∂y

+
∂h

∂y

)2

+ v(t)

(
−i ∂
∂s

+ 1

)
.

(4.34)

The Hilbert spaceH is the subspace of square integrable functions on the bundle P which are

annihilated by the constraint
(
−i ∂∂s + 1

)
= 0. We shall now solve the SE for this system by

decomposing this Hilbert space into unirreps of the group ĨSO(2) de�ned above.We start from

the following unirreps [21]

20



J. Phys. A: Math. Theor. 53 (2020) 145302 J Davighi et al

πλm>n(ξx, ξy, ξc, ξs) = e−i(Sgn(B)n+λ+δ̃)ξce−iξs
(
n!

m!

) 1
2

e
iSgn(B)(m−n)tan−1

(

ξy
ξx

)

× e−
|B|(ξ2x+ξ2y )

4

(
−i
√
ξ2x + ξ2y

∣∣∣∣
B

2

∣∣∣∣
1/2
)m−n

Lm−nn

( |B|
2
(ξ2x + ξ2y )

)
, (4.35)

πλm6n(ξx, ξy, ξc, ξs) = e−i(Sgn(B)n+λ+δ̃)ξce−iξs
(
m!

n!

) 1
2

e
iSgn(B)(m−n)tan−1

(

ξy
ξx

)

× e−
|B|(ξ2x+ξ2y )

4

(
−i
√
ξ2x + ξ2y

∣∣∣∣
B

2

∣∣∣∣
1/2
)n−m

Ln−mm

( |B|
2
(ξ2x + ξ2y )

)
, (4.36)

where λ ∈ Z, m, n ∈ N0, δ̃ = 1 if B > 0 and δ̃ = 0 otherwise, and Lm−nn are the associated

Laguerre polynomials. A set of functions in the Hilbert space which transform under these

representations can be inferred by comparing the multiplication rule in ĨSO(2) with the group

action on the principal bundle P. We thus obtain the following basis of functions on P:

eλ0,mn |m>n(x, y, s) = e−i(s+h+
B
2
xy)
(
n!

m!

) 1
2

eiSgn(B)(m−n)tan
−1( yx )

× e−
|B|(ξ2x+ξ2y )

4

(
−i
√
ξ2x + ξ2y

∣∣∣∣
B

2

∣∣∣∣
1/2
)m−n

Lm−nn

( |B|
2
(ξ2x + ξ2y )

)
,

(4.37)

eλ0,mn |m6n(x, y, s) = e−i(s+h+
B
2 xy)
(
m!

n!

) 1
2

eiSgn(B)(m−n)tan
−1( yx )

× e−
|B|(x2+y2)

4

(
−i
√
x2 + y2

∣∣∣∣
B

2

∣∣∣∣
1/2
)n−m

Ln−mm

( |B|
2
(x2 + y2)

)
. (4.38)

where λ0 = −Sgn(B)− δ̃. When acted on by the left regular representation of ĨSO(2) these

functions transform under the unirrep corresponding to the conjugate of the λ = λ0 unirrep

de�ned in ((4.35) and (4.36)) above. We know it is suf�cient to consider only these unirreps

since they satisfy a completeness relation given by

|B|
2π

∑

m,n

(
eλ0,mn (x′, y′, s′)

)∗
eλ0,mn (x, y, s) = e−i(s−s

′) δ(x− x′)δ(y− y′). (4.39)

Thus, we can decompose a wavefunction in our Hilbert space into unirreps of ĨSO(2) as

Ψ(x, y, s) =
|B|
2π

∑

m,n

eλ0,mn (x, y, s) fm,n, (4.40)

where the inverse transform is given by

fm,n =

∫
dx dy(eλ0,mn (x′, y′, s′))∗Ψ(x, y, s). (4.41)
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After substituting the decomposition (4.40) into the SE, we obtain

|B|
2π

∑

m,n

(
|B|(n+ 1/2)− E

)
eλ0,mn (z, ys) fm,n = 0. (4.42)

Thus, we arrive at the familiar Landau level spectrum

Em,n = |B|(n+ 1/2), Ψm,n = eλ0,mn (x, y, s), (4.43)

where setting s = 0 in e
λ0 ,m
n gives us a suitable set of eigenfunctions on R2.

4.5. Quantum mechanics on the Heisenberg group

In this section, we turn to a new example not previously considered in the literature, of particle

motion on the Heisenberg group. We equipM = Hb with a left-invariant metric, and thus take

G = Hb also. We shall couple the particle to a backgroundmagnetic �eld, corresponding to an

Hb-invariant closed 2-form on Hb, for which the magnetic vector potential which appears in

the Lagrangian shifts by a total derivative under the action of the group Hb on itself.

While a version of the Heisenberg group appeared in section 2.1 (as the central extension

of the translation group R2), for our purposes in this section we shall rede�ne the Heisenberg

group to be the set of triples (x, y, z) ∈ R3 equipped with multiplication law

(x′, y′, z′) · (x, y, z) = (x+ x′, y+ y′, z+ z′ + yx′). (4.44)

To avoid any possible confusion, we emphasise that in this section the Heisenberg group is

taken as the original con�guration space of our particle dynamics, which we shall reformu-

late as an equivalent dynamics on a central extension of the Heisenberg group. This central

extension will be a four-dimensional Lie group which we shall denote H̃b.

Before we proceed with writing down the action for this system (and eventually solving for

the spectrum using harmonic analysis on H̃b), we �rst pause to offer a few words of motivation

for considering this system, since it does not correspond to any physical quantum mechanics

system (although there are indirect links to the anharmonic oscillator, see e.g. [22]). In any case,

our motivation is entirely mathematical. Firstly, we wanted a new example where the central

extension of Lie groups 0→ U(1)→ G̃→ G is non-trivial, i.e. G̃ is not just a direct product,

and moreover that it corresponds to a non-trivial central extension of Lie algebras 0→ R→
g̃→ g. The requirement that a Lie algebra g admits a non-trivial central extension requires,

by a theorem of Whitehead [23, 24], that the Lie algebra g cannot be semi-simple. Of course,

abelian Lie groups provide a source of such non-trivial central extensions, because their Lie

algebra cohomology is in a sense maximal (noting that the second Lie algebra cohomology of g

is isomorphic to the group of inequivalent (up to Lie algebra isomorphisms) central extensions

of g). However, we sought a more interesting example where the original group G is non-

abelian. To that end, non-abelian nilpotent Lie groups provide a richer source of suitable central

extensions, because the second Lie algebra cohomology of any nilpotent g is at least two-

dimensional [25]. The Heisenberg Lie algebra, and the corresponding Lie group Hb, provides

the simplest such example.

Since we are taking the Heisenberg group to be topologically just R3, we can cover the

target space with a single patch and write the Lagrangian using globally-de�ned coordinates

(x, y, z). The action on Hb, including the topological term, is

S =

∫
dt

(
1

2

(
ẋ2 + ẏ2 + (ż− xẏ)2

)
− xż+

x2

2
ẏ

)
. (4.45)
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The kinetic term corresponds to a left-Hb-invariant metric on Hb, as mentioned above, and

we have chosen a normalization for the (real-valued) coef�cient of the topological term

−xż+ x2

2
ẏ.7 This topological term in the Lagrangian shifts by a total derivative under the group

action (4.44). Following our now-familiar procedure,we thus reformulate the action on aU(1)-

principal bundle P over Hb, on which s provides a local coordinate in the �bre. The action on

P is written

S =

∫
dt

(
1

2

(
ẋ2 + ẏ2 + (ż− xẏ)2

)
− ṡ− xż+

x2

2
ẏ

)
, (4.46)

where the only difference is the ṡ term. By adding this redundant degree of freedom to the

action it becomes strictly invariant under the U(1)-central extension of Hb de�ned by the

multiplication law

(x′, y′, z′, s′) · (x, y, z, s) =
(
x+ x′, y+ y′, z+ z′ + yx′, s+ s′ − zx′ − y

x′2

2

)
, (4.47)

which we denote by G̃ = H̃b.

The total Hamiltonian corresponding to the action (4.45) is given by

H =
1

2
p2x +

1

2
(pz + x)2 +

1

2

(
py −

x2

2
+ x (pz + x)

)2

+ v(t) (ps + 1) , (4.48)

which quantizes to

Ĥ = −1

2

∂2

∂x2
+

1

2

(
−i ∂
∂z

+ x

)2

+
1

2

(
−i ∂
∂y

− x2

2
+ x

(
−i ∂
∂z

+ x

))2

+ v(t)

(
−i ∂
∂s

+ 1

)
. (4.49)

acting on the Hilbert space of square integrable functions on H̃b that are annihilated by(
−i ∂

∂s
+ 1
)
.

Because the group H̃b de�ned in (4.47) has a nilpotent Lie algebra, its representation the-

ory can be found via Kirillov’s orbit method [26]. The unirrep matrix elements that we are

interested in, which in this case are functions on H̃b, are in�nite-dimensional, given by

πq(r, t; x, y, z, s) = δ(t− r − x)e
i
(

−s+zr+ 1
2 yr

2
)

+q/2y
, (4.50)

which satisfy the completeness relation

∫
dqdrdt

2(2π)2
(
πq(r, t; x′, y′, z′, s′)

)∗
πq(r, t; x, y, z, s) = e−i(s−s

′)δ(x− x′)δ(y− y′)δ(z− z′). (4.51)

We thus decompose a wavefunction into unirreps using these functions as our basis elements,

eq,tr (x, y, z, s) = πq(r, t; x, y, z, s), giving us

7Note that this is not the most general Hb-invariant topological term we can write down.
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Ψ(x, y, z, s) =

∫
dqdrdt

2(2π)2
eq,tr (x, y, z, s) fq(r, t), (4.52)

where

fq(r, t) =

∫
dx′dy′dz′

(
eq,tr (x′, y′, z′, s′)

)∗
Ψ(x′, y′, z′, s′). (4.53)

Using this decomposition, and the expression (4.49) for the Hamiltonian, the SE reduces to

− 1

4(2π)3

∫
dqdrdteq,tr (x, y, z, s)

(
∂2 fq(r, t)

∂t2
+ 2E fq(r, t)−

1

4

(
(t2 + q)2 + 4t2

)
fq(r, t)

)
= 0. (4.54)

The ODE in the parentheses coincides with the SE for an anharmonic oscillator. This dif-

ferential equation can be solved order-by-order in perturbation theory (in the parameter q),

as is discussed in numerous sources, for example [27]. If the SE of this problem could be

solved using other means, this decomposition would allow one to study the eigenstates of the

anharmonic oscillator.

4.6. Trapped particle in a magnetic field

Our last examplewill demonstrate ourmethod in a case where the group actionα:G×M→M

is non-transitive (we saw another such non-transitive example, that of a particle orbiting a dyon,

in section 4.3). In particular, we will consider particle dynamics on M = R3, invariant under

the action of a subgroupG = R2 ⊂ R3 corresponding to translations in x and y. We will begin

this section by formulating the problem, and introducing the necessary representation theory, to

describe a generic such action. We will then consider a special case, in which the components

of the inverse metric on R3 vary quadratically in the z direction. This corresponds, physically,

to a z-dependent effective mass. In this special case, we shall �nd that the solutions to the SE

become localized (or ‘trapped’) around the z = 0 plane.

Consider the action

S =

∫
dt

(
1

2

(
ax(z)ẋ

2
+ ay(z)ẏ

2
+ az(z)ż

2
)
+ V(z)− Byẋ− y f ′(z)ż

)
, (4.55)

for a particle moving on R3. Here ax(z), ay(z), az(z), V(z), and f (z) are (for now) arbitrary

smooth functions of z, with ax(z), ay(z), and az(z) necessarily non-vanishing. This action is

quasi-invariant under the non-transitive action of translations in x and y, but is not invariant

under translations in the z direction. We thus consider an equivalent action on a U(1)-principal

bundle over R3, which has to be the trivial one, P = R3 × U(1), with coordinates (x, y, z, s ∼
s+ 2π). The action is given by

S =

∫
dt

(
1

2

(
ax(z)ẋ

2
+ ay(z)ẏ

2
+ az(z)ż

2
)
+ V(z)− ṡ− Byẋ− y f ′(z)ż

)
, (4.56)

which is strictly invariant under G̃ = Hb, the Heisenberg group (the uniqueU(1)-central exten-

sion of R2 up to isomorphism), which in this section we parameterize by (ζx, ζy, ζs), with its

group action on the bundle R3 × U(1) de�ned by

α̃(ζ ′x ,ζ ′y ,ζ ′s) ◦ (x, y, z, s) = (x+ ζ ′x, y+ ζ ′y, z, s+ ζ ′s − ζ ′y(Bx+ f (z))). (4.57)
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The total Hamiltonian corresponding to the above action is given by

H =
1

2ax(z)
(px + By)2 +

1

2ay(z)
p2y +

1

2az(z)

(
pz + y f ′(z)

)2
+ V(z)+ v(t)(ps + 1),

(4.58)

which we quantize as the operator

Ĥ =
1

2ax(z)

(
−i ∂
∂x

+ By

)2

− 1

2ay(z)

∂2

∂y2
+

1

2az(z)

(
−i ∂
∂z

+ y f ′(z)

)2

+ V(z)

+ v(t)

(
−i ∂
∂s

+ 1

)
. (4.59)

We decompose a wavefunction into unirreps of Hb, exactly as in section 2.1. The difference in

this non-transitive case is that the coef�cients of the unirreps will depend on z, viz

Ψ(x, y, z, s) =
2π

|B|

∫
drdteB,tr (x, y, s) f (r, t; z), (4.60)

whereas before

eB,tr (x, y, s) = eiBxr−isδ(r + y− t). (4.61)

This however, now transforms under the unirrep of Hb de�ned by

π̃−B(r, t; ζx, ζy, ζz) =
(
exp

(
i f (z)ζy

)
eB,tr (ζx, ζy, ζs)

)∗
, (4.62)

which takes account of the transformation of s which is not the same as ζs, as was the case in
our previous examples. This can be seen from

ρ((ζx
′, ζy

′, ζs
′)) · ei(Bxr−s)δ(r + y− t)

= ei
(
B(x− ζx

′)r − i
(
s− (ζs

′
+ Bζy

′ζx
′)+ ζy

′(Bx+ f ′(z)) δ(r + y− ζy
′ − t),

=

∫
dq
(
ei f

′(z)ζyei(Bζxq−ζs)δ(q+ ζy − r)
)∗
ei(Bxq−s)δ(q+ y− t). (4.63)

Upon this decomposition, the SE reduces to the following PDE

(
B2t2

2ax(z)
− ∂2t

2ay(z)
+

(
−i∂z + (t− r) f ′(z)

)2

2az(z)
+ V(z)

)
f (r, t; z) = E f (r, t; z). (4.64)

Even in this case where G acts non-transitively on M, we see that using harmonic analysis

(on a central extension) has removed derivatives with respect to the two variables x and y,

and replaced them with derivatives with respect to the single variable t, which labels distinct

copies of the unirrep (4.62) that appears in the Hilbert space.

As a speci�c example where this PDE can be solved analytically, we take f ′(z) = 0,

V(z) = 0, az(z) = 1, and ax(z) = ay(z) = (a+ z2)−1 with a ∈ R+. That is, we do not consider

the addition of a z-dependent potential, but we do consider a (speci�c) z-dependent metric

on R
3. This equation admits solutions by separation of variables, viz f (r, t; z) = f (r, t)g(z),
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after which f (r, t) is found to satisfy a simple harmonic oscillator equation (with

quantum number n ∈ Z) analogous to (2.9). Likewise, g(z) is then found to satisfy

(
−1

2

∂2

∂z2
g(z)+ |B|(n+ 1/2)g(z)(a+ z2)

)
= Eg(z), n ∈ Z, (4.65)

which is simply the harmonic oscillator equation again. As such the z-dependence may be

written in the form

g(z) = Hm

((
|B|(2n+ 1)

)1/4
z
)
e−
√

|B|(2n+1)z2/2, m ∈ Z. (4.66)

We can obtain an expression for the eigenstates by inverting the decomposition in (4.60) and

setting s = 0, to obtain functions on R3. Following a similar procedure to that in section 2.1,

we arrive at the eigenstates

Ψm,n,α(x, y, z) = Hm

((
|B|(2n+ 1)

)1/4
z
)
e−
√

|B|(2n+1)z2/2eiαx

× Hn(
√
|B|(y+ α/B))e−

|B|
2
(y+α/B)2 , (4.67)

where α ∈ R. The energy levels depend only on the two quantum numbers n andm, both in Z,

and are given by

Em,n,α =
√
|B|(2n+ 1)(m+ 1/2)+ a|B|(n+ 1/2). (4.68)

Thus, interestingly, the eigenstates for this system appear to be trapped in the z-direction (even

though naïvely one may expect the opposite).

5. Symmetry reduction in magnetic backgrounds

Back in section 3, we claimed that a certain condition (3.1) on the �eld strength 2-formω, which
we called the Manton condition, must be satis�ed in order for particle motion in that magnetic

background to result in a G-invariant quantum mechanics. Speci�cally, this condition, which

was proven (in the context of sigma models in any dimension) in [16], demands that the con-

traction of ω with each vector �eld generating the G action on M must be an exact 1-form.

In all the examples considered so far in this paper, that condition has been satis�ed, and thus,

while there might not necessarily have existed a G-invariant Lagrangian corresponding to that

topological term, we saw that there nevertheless always existed a G-invariant action.

When the Manton condition is violated, however, there will exist non-contractible word-

lines in M on which a G-invariant action cannot be written down at all (the necessity of

non-contractible cycles in M for the Manton condition to fail makes manifest the topologi-

cal character of this condition). In that sense, the symmetry group of a particle on M in the

presence of such a Manton condition-violating magnetic background is reduced from G down

to some subgroup K ⊂ G on which the Manton condition holds, which one may determine8.

Since the classical equations of motion nevertheless retain invariance under all of G, this

8 In [28], we discussed a number of analogue examples from �eld theory in which the Manton condition is violated in

a similar way, namely in four-dimensional composite Higgs models (in which the rôle of the magnetic background is

replaced by a Wess–Zumino term). In these examples, and indeed for sigma models in any number of dimensions (i.e.

not just the (0+ 1)-dimensional version that is the subject of the present paper), the result of violating the Manton

condition is the same; namely, there is a reduction in the symmetries of the quantum system.
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symmetry breaking due to the magnetic background may be interpreted as an anomaly of

the quantum theory, albeit of a kind that might be unfamiliar to many readers. In particu-

lar, this kind of anomaly does not derive from an inability to appropriately regularize the path

integral measure for fermions in a way that is compatible with the symmetry; indeed, this

anomaly is not related to fermions at all, but follows only from topological considerations.

Furthermore, the Lagrangian may still shift by a total derivative under K, in which case we

should pursue a similar strategy as in the rest of this paper and write an equivalent dynamics

which is invariant under a U(1) central extension K̃ of K.

In this section, we elucidate in more detail how this type of anomaly can arise, by dis-

cussing two examples. Firstly, we review quantum mechanics on a torus, which was discussed

in [16] (in fact, this example was considered by Manton [13, 14], where this type of anomaly

was �rst observed). We then turn to a new example where the Manton condition is vio-

lated, which is quantum mechanics on the compact Heisenberg manifold. In both cases, it is

not our goal in this section to actually solve for the spectrum of these systems using harmonic

analysis; rather, here, we content ourselves with a careful analysis of the symmetries that are

preserved in the quantum theory, i.e. with the determination of the unbroken subgroup K in

both examples.

5.1. Quantum mechanics on the torus

We start with the simpler example of quantummechanics on the 2-torus [13, 14],M = (R/Z)2,
parameterizedby two periodic coordinates x ∼ x+ 1 and y ∼ y+ 1,with translation symmetry

G = U(1)× U(1). We de�ne a magnetic background corresponding to the translation invari-

ant �eld strength 2-form ω = 2πBdx ∧ dy, for B ∈ Z (where this quantization condition on

B ensures that ω is the curvature of a well-de�ned U(1)-principal bundle over T2, for which

the �rst Chern class must of course be an integer). However, contracting this 2-form with the

vector �eld generating translations, X = ax∂x + ay∂y, yields

ιax∂x+ay∂y (2πB dx ∧ dy) = 2πaxB dy− 2πayB dx, (5.1)

which is a closed but not an exact 1-form on T2 and thus violates the Manton condition (unless

ax = ay = 0 or B = 0).

To see that one cannot indeed write down a G-invariant action (or, more precisely, action

phase), consider a loop γ on the torus at constant x = x0 which wraps around the y-direction.

On such a loop, we may introduce the vector potential A = 2πBxdy such that ω = dA, and

from here evaluate the action phase, which is the holonomy over this loop. It is here suf�cient

to integrate A over γ, yielding the action phase ei2πBx0 . Note that the value of the holonomy

of a connection (evaluated over a given loop) only depends on the curvature ω and on its

characteristic class, which may contain torsion information. Thus, the action phase that we

evaluate does not depend on our particular choice of A, for �xed ω and characteristic class.

This is sure enough not invariant under generic translations in the x direction, but only under

discrete translations x→ x+ a/B for a ∈ ZB. Similarly, we may conclude (from evaluating the

holonomy over a loop in the x direction at constant y) that the action phase is only invariant

under discrete translations in the y direction also, y→ y+ a/B for a ∈ ZB. Thus, the sym-

metry group is here reduced from G = U(1)× U(1) to the discrete group K = ZB × ZB. This

fact was �rst derived by explicitly solving the SE for this system, and �nding that the corre-

sponding eigenfunctions do not respect the continuous translation invariance of the classical

equations of motion. Rather, the eigenfunctions of the Hamiltonian become local-

ized when the magnetic �eld is switched on, preserving only the discrete ZB × ZB

symmetry [14].

27



J. Phys. A: Math. Theor. 53 (2020) 145302 J Davighi et al

5.2. Quantum mechanics on the compact Heisenberg manifold

Our second example of this type of anomaly is new, and is that of quantum mechanics on

the Heisenberg manifold. The Heisenberg manifold, to be contrasted with the Heisenberg

group discussed in sections 2.1 and 4.5, is de�ned by quotienting the (continuous) Heisen-

berg group (4.44) by its discrete subgroup in which x, y, and z are all integers. Thus, the

Heisenberg manifold, which we can denote by the coset space M = Hb(R)/Hb(Z), is param-

eterized by (x, y, z) ∈ R3 with the equivalence relation

x ∼ x+ p, (5.2)

y ∼ y+ m, (5.3)

z ∼ z+ n+ xm, (5.4)

where (p, n,m) ∈ Z
3. We shall consider quantum mechanics on this space in the presence of a

magnetic background, with symmetry group G = Hb(R), which acts on [(x, y, z)] ∈ M by left

translation (4.44).

In particular, we consider a topological term in the action for which the curvature 2-form is

ω = B dx ∧ dy, B ∈ Z, (5.5)

which is the unique topological term on M = Hb(R)/Hb(Z), as it is the only closed left-

invariant 2-form on Hb which is constant on the equivalence classes de�ned in ((5.2)–(5.4)).

The quantization condition on the coef�cient B ensures that ω is an integral 2-form on M

(meaning its integral over any 2-cycle inM evaluates to an integer), and thus theU(1)-principal

bundle overM, which de�nes the background magnetic �eld, is well-de�ned.

Despite being invariant under the action of G = Hb, the 2-form ω does not, however, sat-

isfy the (stronger) Manton condition. In our coordinates, a basis for the right-Hb-invariant

vector �elds (which generate left translations onM) is

{X1,X2,X3} = {∂x + y∂z, ∂y, ∂z}. (5.6)

When a linear combination of these vector �elds is contracted with ω, we obtain

ια1X1+α2X2+α3X3 (B dx ∧ dy) = B (α1 dy− α2 dx) . (5.7)

Just as the 1-form dθ on a circle is closed but not exact because θ ∼ θ + 2π, so dx and

dy are closed but not exact 1-forms on the Heisenberg manifold because of the identi�ca-

tions in ((5.2)–(5.4)). Thus, the Manton condition is only satis�ed for X3, hence the topo-

logical term remains invariant on the 1-parameter subgroup that corresponds to the integral

curves of X3. Indeed, it is not surprising that the Manton condition is satis�ed for X3, but not

for X1 or X2, because it was proven in [16] that the Manton condition is necessarily satis�ed

for any element in [g, g], which in this case is just X3.

Nonetheless, the continuous symmetries that are generated by X1 and X2 are not bro-

ken completely; as in the case of quantum mechanics on the torus discussed above, a

discrete subgroup of theR2 subgroup generated by X1 and X2 remains unbroken. The unbroken

symmetry group K turns out to be the subgroup
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K =

{( n
B
,
m

B
, b
)
∈ Hb | b ∈ R, (n,m) ∈ ZB × ZB

}
. (5.8)

This group is a (non-trivial) central extension (byR) of the discrete subgroupZB × ZB, de�ned

by the exact sequence

0 −→ R −→ K −→ ZB × ZB −→ r0, (5.9)

where the group homomorphisms involved should be obvious given (5.8). The Lagrangian,

including both the kinetic energy and this topological term, is in this case strictly

invariant under this subgroup K, so there is no need to pass to a U(1)-central extension.

6. Discussion

Wehave formulated the quantummechanics of a particlemoving on amanifoldM, with dynam-

ics invariant under the action of a Lie groupG, in the presence of a backgroundmagnetic �eld.

The coupling to a magnetic background,which is included via a topological term in the action,

de�nes a U(1)-principal bundle P over M with connection. We suggest that such a dynamics

should be recast using an equivalent action on this principal bundle P, for two reasons. Firstly,

a globally-de�ned Lagrangian is guaranteed to exist only on P, but not onM itself. Secondly,

even if a Lagrangian were to be de�ned (locally) on M, this Lagrangian would not in gen-

eral be invariant under the action of G; rather, due to the presence of the topological term, it

might shift by a total derivative. Once reformulated on P, we have shown that the Lagrangian

will be strictly invariant, not under G, but under a larger symmetry group G̃, which is a U(1)-

central extension of G. We show how to construct this central extension G̃, which is a bona

�de symmetry group of the system, in the general case.

We have discussed a plethora of examples in which these two (related) complications

arise in coupling a particle to a magnetic background, and in every case show explicitly

how reformulating the dynamics on the principal bundle P remedies the issues. To high-

light just one example, we have revisited the seemingly humble problem of quantizing a

rotating rigid body in three dimensions, a system that is familiar from every undergradu-

ate quantum mechanics course, which is equivalent to particle motion on the con�guration

space SO(3). What is perhaps less familiar, and which is of interest to us in this paper, is

that there is in fact a topological term in this theory. This topological term, whose existence

stems from the non-vanishing cohomology group H2(SO(3),Z) ∼= Z/2, can only be written

as a globally-de�ned term in the Lagrangian if we pass to a principal bundle over SO(3).

There are two choices of such bundle, both of which are isomorphic to central extensions of

SO(3); the bundle is eitherU(2), or SO(3)× U(1).We show that the former choice corresponds

to a term in the action phase that evaluates to −1 upon traversing closed loops in the

con�guration space, and thus has the affect of ascribing fermionic character to the rigid body.

The second main feature of this paper is the introduction of a new method for solv-

ing the Schrödinger equation for such quantum mechanical systems with magnetic back-

grounds.Ourmethod exploits the group-theoretic structure of the problem, by decomposing the

Hilbert space into unitary irreducible representations of the central extension G̃. The method

is thus very general; indeed, we show that it is a suitable match for the generality of the

problem which we are attempting to solve. Because the Hilbert space carries a bona �de rep-

resentation of the group G̃ (but not the group G, in which the Hilbert space carries only a

projective representation), we expect that such a decomposition should yield a solution for the

spectrum of the corresponding Hamiltonian. In the example of the fermionic rigid body men-

tioned above, we immediately see the appearance of spin- 1
2
representations in the spectrum
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by decomposing into representations of G̃ = U(2), thus exhibiting the non-trivial connection

between topological terms in the action and representation theory.

We proceed to illustrate in all our examples how methods from harmonic analysis can be

used to decompose the Hilbert space into representations of a central extension G̃, and in all

cases this decomposition is found to be fruitful, typically reducing the SE to a family of ODEs

whose solutionsmight be known.Our chosen examples range over somemuch-loved problems

in quantummechanics, including that of a particle moving on a plane in a uniform perpendicu-

lar magnetic �eld, a charged particlemoving in the �eld of a magneticmonopole, and a charged

particle moving in the �eld of a dyon. This last example illustrates the virtues of our method

even in cases where the group G acts non-transitively on M, in reducing the problem to one

on the space of orbits of G. We also study some new examples, including a particle moving

on the Heisenberg group in the presence of a magnetic background, for which the Schrödinger

equation is found to reduce, after decomposing into irreducible representations of a central

extension of the Heisenberg group, to that of an anharmonic oscillator.

We anticipate that there are many more quantum mechanics problems which can be

described by dynamics on a manifold with invariance under a Lie group action, and a cou-

pling to a magnetic �eld, because this setup is a very general one. For example, the cases

whereM = Rn or SO(n) appear ubiquitously in physics and chemistry, and one might describe

more realistic molecular systems moving in magnetic �elds, for example, by using a pertur-

bative analysis around these simple cases. Another possible source of examples, of interest to

condensed matter physicists and particle theorists, might be provided by quantum �eld theo-

ries admitting instanton solutions, in which great insight can be gained by solving for quantum

mechanics on the instanton moduli space. Since such theories typically also contain topologi-

cal terms in the action, the method of solution we have outlined in this paper, in which we �rst

construct the bona �de symmetry group using central extensions, and then bring to bear the

heavy machinery of harmonic analysis, would be applicable.

Finally, we observe that all the quantum mechanical problems studied in this paper have

had topological terms that are linear in time derivatives. This is not, however, the only possi-

bility for Lagrangians which are quasi-invariant under the action of a symmetry Lie group G.

For an example where this is not the case, consider a free non-relativistic particle. This can

be described in terms of motion in space which has a transitive action by the Galileo group,

but is such that the Lagrangian is not invariant, but shifts by a total derivative under a boost.

It turns out that the familiar kinetic term for such a non-relativistic free particle, viz 1
2
mẋ2,

which is quadratic in time derivatives rather than linear, is nonetheless the result of a topolog-

ical term in the action. To formulate and solve this example using the methods employed here

requires the use of so-called ‘inverseHiggs constraints’. These constraints are equivalent to the

removal of Goldstone bosons by the equations of motion, and they add complications to the

methods introduced in this paper; in particular, once the inverse Higgs constraint is applied we

can no longer naïvely rewrite the topological term as the holonomy of a connection on a prin-

cipal bundle. This, and the other complications that arise in such cases, will be addressed

in a future work.
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Appendix A. Mathematical prerequisites

In this appendix we will present, through an example, a brief summary of some of the mathe-

matical concepts used in this paper. A more detailed discussion is given in e.g. [29–31], which

are the main references for this appendix.

We start by de�ning a �bre bundle, using as our prototype the (principal) �bre bundle

introduced in section 4.2 to describe the magnetic monopole with unit charge. A �bre bun-

dle consists of a pair of smooth manifolds, P the total space and M the base space, and a

surjective map π:P→M between them called the projection. In our example the total space

is P = S3, which can be embedded in C2 using the parameterization (z1 = cos(θ/2)ei(χ+φ)/2,
z2 = sin(θ/2)ei(χ−φ)/2) ∈ C2, where θ ∈ [0, π], φ ∈ [0, 2π), and χ ∈ [0, 4π). The base space

is here M = S2, which we embed in R3, with the projection map π: S3 → S2 de�ned by

π (z1, z2) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). The pre-image π−1(m), for any point m ∈ M,

is diffeomorphic to the same differential manifold, F, known as the typical �bre of the

�bre bundle. For the bundle π: S3 → S2 the typical �bre is F = S1, as can be seen from

π−1 ((0, 0, 0)) =
{(

ei
χ
2 , ei

χ
2

)
|χ ∈ [0, 4π)

}
, for example.

The base space M is equipped with an open covering {Ui} and a collection, {φi}, of local
trivialisations. Local trivialisations are diffeomorphisms of the form φi:π

−1(Ui)→ Ui × F

with π ◦ φi(m, f ) = m for all m ∈ Ui. On double intersections of open sets, there are transi-

tion functions, ti j:Ui ∩ U j → G, fromM to some groupG, known as the structure group. There

is a left-action of the groupG on the �bre F de�ned such that φ−1
j (m, f ) = φ−1

i (m, ti j(m) f ). In

the context of our example π: S3 → S2, an open covering of S2 is given by the charts {U+,U−}
de�ned in section 4.2, and a valid possible set of local trivialisations over this covering is

φ+(z1, z2) =
(
(θ,φ), ei(χ+φ)/2

)
and φ−(z1, z2) =

(
(θ,φ), ei(χ−φ)/2

)
. The structure group is U(1)

with a single transition function given by t+−(θ,φ) = e−iφ. The inverse of these trivialisa-

tions are given by φ−1
+ ((θ,φ), eis+) =

(
cos(θ/2)eis+ , sin(θ/2)ei(s+−φ)) and φ−1

− ((θ,φ), eis−) =(
cos(θ/2)ei(s−+φ), sin(θ/2)eis−

)
.

In this work we make frequent use of a speci�c type of �bre bundle, known as a principal

(�bre) bundle. In a principal bundle, the structure groupG is a Lie group which, as a manifold,

is diffeomorphic to the typical �bre F. In addition, the Lie groupG has a right action, denote it

Rg, on P such that π ◦ Rg = π, and that acts both freely and transitively on each �bre. For our
example, G = U(1) which is diffeomorphic to S1 as a manifold, and we can de�ne a suitable

right action Rg, for g = eiδ ∈ U(1), by Reiδφ
−1
± ((θ,φ), eis) = φ−1

± ((θ,φ), eis+iδ), which is both

free and transitive.

Next, we de�ne the concept of a local section, σi, which is a smooth map σi:Ui → P such

that π ◦ σi = idM . In this paper we have at times described wavefunctions as sections on the

Hermitian line bundle associated with the U(1)-principal bundle P. This refers to a set of func-

tions, si:Ui → C, de�ned for each open set Ui in our cover, which on double intersections are

related by s j = ti jsi, where ti j are the U(1)-valued transition functions of the principal bundle

P.

On a principal bundle, π:P→M, we can de�ne a principal-connection 1-form (or simply

a connection for short). This is a 1-form on P with value in the Lie algebra, g, of the Lie group

G. A connection must also satisfy the following conditions

A(X#)= X,

R∗
gA= Adg−1A,

(A.1)

where X is in the Lie algebra g, and the vector �eld X# on P is de�ned by
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X# f (p) =
d

dt
f
(
ReitX · p

)∣∣∣∣
t=0

(A.2)

for p ∈ P and f :P→ R.

On the principal bundle π: S3 → S2, the 1-form A = dχ/2+ cosθdφ/2 can be seen to be a

valid connection as follows. Firstly, it is R-valued which is as required since the Lie algebra

of U(1) is R. Secondly, from the right action of eitδ ∈ U(1) on P we can deduce that the vector

�eld X# = 2δ ∂
∂χ
, which implies A(X#) = δ = X ∈ g as required. Lastly, it can be seen that

both terms of A are invariant under R∗
g, meaning the second condition is satis�ed since

Adg−1A = A for U(1).

Throughout this paper we will often resort to using local expressions for the connection,

which can be obtained using a corresponding pair of sections and trivialisations. Notably,

given local sections σi, the corresponding trivialisation, known as the canonical local trivi-

alisation, is de�ned by

φi(p) = (π(p), gi), (A.3)

where p ∈ π−1(Ui) and gi are related by p= Rgiσi(π(p)). Given this, and letting Ai = σ∗
i A,

locally

A|Ui = g−1
i π∗Aigi − ig−1

i dgi, (A.4)

where d is the exterior derivative on P. Equivalently, and going the other way, sections may be

de�ned from a given choice of local trivialisation.

It turns out that the trivialisation de�ned above for our example is the canonical local

trivialisation that corresponds to the pair of sections σ+(θ,φ) =
(
cos(θ/2), sin(θ/2)e−iφ

)
and

σ−(θ,φ) =
(
cos(θ/2)eiφ, sin(θ/2)

)
, which can be seen by simply setting s+ and s− to zero in

the formulae for φ−1
± . Then A+ = 1

2
(−1+ cos(θ))dφ and A− = 1

2
(1+ cos(θ))dφ. Furthermore

we have that g+ = eis+ and g− = eis− , which gives us the local expressions for the connection,

A|U+
= ds+ + 1

2
(−1+ cos(θ))dφ andA|U− = ds− + 1

2
(1+ cos(θ))dφ.

Finally, we must introduce the concepts of holonomy and horizontal lift. Given a connec-

tion we can de�ne the horizontal lift of a curve γ(t) in M as a curve γhl(t) in P such that

γ(t) = π(γhl(t)), and such that the tangent vector at each point, call it Yγhl(t), satis�es

A(Yγhl(t)) = 0, i.e. is horizontal with respect to the connection. The horizontal lift of a curve is

unique, up to specifying the start point in the �bre above, say, γ(0). As an example, given our

above connection A = dχ/2+ cosθdφ/2, the horizontal lift of the curve γ(t) = (cost, sint, 0)

in S2, starting at (z1 = 1, z2 = 0) ∈ S3, is given simply by γhl(t) = (1, 0), which has the

horizontal tangent vector Yγhl(t) =
∂
∂φ

− ∂
∂χ
.

Using a horizontal lift we can de�ne the holonomy. The holonomy of a loop γ(t) in M for

t ∈ [0, 2π] is de�ned as the element g ∈ G such that

γhl(2π) = Rgγhl(0). (A.5)

For the speci�c γhl in our example the holonomy is trivially 1, because γhl(2π) = γhl(0). We

can also derive an equivalent (and perhaps more familiar) formula for the holonomy which

involves integrating the connection A. To wit, let γ̃(t) be a loop in P which projects down to

γ(t) under π. For any such loop γ̃(t), the horizontal lift is related to γ̃(t) by

γhl(t) = R
(e
−i

∫ t
0
γ̃∗A

)
γ̃(t). (A.6)

32



J. Phys. A: Math. Theor. 53 (2020) 145302 J Davighi et al

Using (A.5) and (A.6), one �nds that the holonomy of γ(t) (with respect to the connection A)

is equal to e−i
∫ 2π
0 γ̃∗A. In our example, γhl(t) is an already a loop and thus, again, it is obvious

that the holonomy is 1.

Appendix B. Rudiments of harmonic analysis with constraints

In this appendix we will review, by way of an example, the form of harmonic analysis used

throughout this paper. The example we will use is that of planar motion in a magnetic �eld, as

discussed in section 2.1.

In all the examples in this paper, we decompose the left-regular representation of G̃, which

recall is a central extension by U(1) of the original group G (constructed in section 3), into

unirreps of G̃. In our prototypical example, we have G = M = R2 and G̃ = Hb, and the left-

regular representation of Hb is de�ned by

ρ((x′, y′, s′)) ·Ψ(x, y, s) = Ψ(x− x′, y− y′, s− s′ − Bx′y′ + By′x). (B.1)

forΨ(x, y, s) ∈ H, where the Hilbert space H was de�ned in (2.5).

In this example we �rst decompose a general Ψ̃(x, y, s) ∈ L2(Hb) into unirreps of Hb,

following [8]:

Ψ̃(x, y, s) =
∑

k

∫
drdt

|k|
4π2

Dk(r, t; x, y, s)gk(r, t) ∈ L2(Hb), (B.2)

where recall the unirreps Dk are

Dk(r, t; x, y, s) = eik(xr−s/B)δ(r + y− t), k/B ∈ Z, (B.3)

which transform under the left-regular representation as

ρ((x′, y′, s′)) · DB(q, t; x, y, s) =

∫
D−B(q, r; x′, y′, s′)DB(q, t; x, y, s)dq, (B.4)

i.e. in the unirrep D−B. Inverse transform is

gk(r, t) =

∫
dxdyds

(
Dk(r, t; x, y, s)

)∗
Ψ(x, y, s). (B.5)

These unirreps satisfy the Schur orthogonality relation

∫
dxdyds

(
Dk(r, t; x, y, s)

)∗
Dk′ (r′, t′; x, y, s) =

4π2

|k| δ k
B ,

k′
B

δ(r − r′)δ(t − t′). (B.6)

Enforcing the constraint (−i∂s + 1)Ψ̃ = 0, and using the orthogonality relation (B.6), imme-

diately implies gk(r, t) = 0, ∀k 6= B. We can then write

Ψ(x, y, s) =

∫
drdt

|B|
2π

DB(r, t; x, y, s) f (r, t) ∈ H, (B.7)

thus recovering the decomposition in (2.6), where gk(r, t) = 2πδ k
B ,1

f (r, t), and the inverse of

this decomposition is given by

f (r, t) =

∫
dx′dy′

(
DB(r, t; x′, y′, s′)

)∗
Ψ(x′, y′, s′). (B.8)
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In other words, we may restrict our decomposition to those unirreps which satisfy the con-

straint. This restricted subspace of unirreps (which satisfy the constraint) inherits the following

completeness relation

∫
drdt

|B|
2π

(
DB(r, t; x′, y′, s′)

)∗
DB(r, t; x, y, s) = e−i(s−s

′)δ(x− x′)δ(y− y′). (B.9)

It seems plausible that, under suitably general assumptions, one may decompose a general

state Ψ ∈ H into a basis of unirreps of G̃ which satisfy the constraint, following a similar

procedure to that used in this example.We have indeed found this to be the case in all examples

considered, as can be veri�ed on a case-by-case basis by obtaining a completeness relation on

the Hilbert spaceH, analogous to (B.9).
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