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Fitting Interatomic Potentials to Reproduce Phase

Transitions

Martin Schlegel

Abstract

Due to the high computational demand of quantum mechanical simulations, researchers
still rely on models for atomic interactions to simulate a large number of atoms. These so
called “interatomic potentials” take a variety of forms ranging from the simple Lennard-Jones
potential to machine learning potentials. They are usually fitted for specific structures as well
as pressure and temperature realms and do not necessarily reproduce the full experimentally
known solid and liquid phase diagram. There have been limited trials of fitting the parameters
of interatomic potentials to phase transitions. In this work, I present improvements upon two
already existing potentials from the literature — a CuAu potential and a Ti potential. These
potentials are modified so that they reproduce experimental phase transitions better than
before. For the CuAu potential, I fit the eutectic melting curve using my own implementation
of the Nelder-Mead algorithm. The Ti potential is modified to predict a triple point which
is in qualitative agreement with experimental predictions. To calculate phase transitions,
I use the nested sampling algorithm which was already established in the literature. The
Ti nested sampling results are verified with thermodynamic integration. My Nelder-Mead
implementation allows for semi-automatic submission and analysis of the nested sampling
runs. Both potentials are improved considerably. The new CuAu potential now accurately
reproduces the melting curve for the alloy compositions used in the fitting procedure. The
new Ti potential now — as opposed to before the modifications — predicts a triple point which
is in qualitative accordance with experimental predictions. My work demonstrates how
the transferability of potentials can be improved by just slight modifications to the original
parameters using experimental data of the phase diagram. The Nelder-Mead implementation
used for the CuAu potential could be used to improve other potentials. To fit more complex

systems, the way the objective function is calculated could be upgraded in future.
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Chapter 1

Introduction and approach

1.1 Introduction

Simulations have opened a new avenue of inquiry besides the traditional experimental and
theoretical approaches. We can split the computational investigation into continuum and
atomistic approaches. For the former we ignore that materials are made of atoms and treat
the material as if it were continuous. For the latter, one simulates the materials as atoms or
molecules.

The atomic interactions can in principle be calculated quantum mechanically. However, the
more precise one wants to treat the system, the higher the computational costs become. This
means that some methods are too computationally expensive for systems with a large number
of atoms. For example, standard density functional theory is limited to ca 1000 atoms [1].
While improvements to over 16,000 thousand atoms are possible, calculations with ca. 8,000
atoms can already require a parallelization on over 60,000 processors [1]. Hence, so called
“interatomic potentials” are used instead if fast evaluations of energies are required. These
are in principle mathematical functions which describe the potential energy of a system in
dependence of the atomic positions of the system. They range from simple pair interaction
models like the Lennard-Jones model [2, 3] over more complex models like the embedded
atom method (EAM) [4, 5] and the modified embedded-atom method MEAM [6, 7] — which
consider many-body interaction — to models which also consider the behaviour of interatomic
bonds as for example the Tersoff potential [8] and ReaxFF [9]. Furthermore, a recent addition
are machine learning potentials [10—12]. The interatomic potentials have parameters which
need to be fitted. In this process, experimental or quantum mechanical data is usually used.
It is far from trivial to create an acceptable interatomic potential [13]. Indeed, interatomic
potentials are usually only fitted for a limited range of applications. Additionally, direct

use of information which is gained from simulations or experiments at temperatures higher
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than absolute zero as done for example in Ref. [14] and Ref. [15] is usually very limited
[16—-19]. This means that the potentials are only transferable to a limited extent failing to
predict the correct crystal structures in some pressure and temperature ranges as demon-
strated for example in Ref. [20] and Ref. [21]. The question is now, how one can improve
the predictions of interatomic potentials for situations where they do not predict the correct
phases and transition temperatures as found in experiments. A simple answer is to include
the phase transition temperatures and pressures of interest directly in the fitting procedure.
However, this requires the prediction of phase diagrams based on the intermediate potentials
created in each step of the fitting procedure. The fact that methods for computing the stable
phases were too computationally expensive and inconvenient was an impediment to this
line of research [18, 17]. Though not yet explicitly including phase transition temperatures
in a fitting routine, there have been recent efforts which consider more thermodynamic
behaviour of the structures of interest while optimising potentials [17, 18, 22, 23, 16, 19].
Building on an interatomic titanium potential of Ref. [24], Ackland [16] considers, apart
from how the thermodynamic behaviour of electrons might influence an interatomic potential,
also modifying a parameter which is responsible for the behaviour of the potential when
atoms are very close to each other. These modifications do not change the fact that the hcp
phase is predicted by the potential to be the ground state [16]. However, the modifications
significantly influence at which temperature the hcp and bec phases melt [16]. Ackland hence
proposes that modifying similar parts in already fitted interatomic potential functions may
make these potentials more reliable [16]. Overall, I conclude that if one can find a suitable
algorithm, optimising interatomic potentials from the literature to parts of the phase diagram
is a promising endeavour. Indeed, recent progress in applying nested sampling [25, 26] to
the constant pressure ensemble [27, 20, 28] may offer exactly the method needed for this.

As mentioned before, to fit to data of experimental phase transitions, one needs a suitable
method of predicting phase transitions of interatomic potentials [18, 17]. It is common to
present experimental data on phase transitions at constant pressure or for pressure-temperature
phase diagrams, hence the simulations need to be conducted in such a manner that one can
compare to these results. To calculate phase transitions, one has the choice between “blind
search” and “informed search” methods [27]. For “informed search” methods, one needs to
be aware of which phases are competing against each other at the temperatures and pressures
of interest before starting the computations. This is not necessary for “blind search” methods
which predict the stable phases and the transition temperatures and pressures themselves. In
general, “informed search” methods require much less computational resources than “blind
search” methods. However, if one fails to include a relevant phase in one’s calculations

the “informed search” method will lead to a wrong result. Given that I want to optimise
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interatomic potentials to experimental phase transition data, it is crucial to avoid this with
the potential parameters created during the fitting. Hence, if a “blind search” algorithm is
available which is not too computationally expensive, this will be the best choice.

To fit interatomic potentials to experimental phase diagrams, one may need a high amount
of phase diagram calculations based on potentials with different parameters. The method
used for calculating the phase diagrams must therefore be as efficient and fast as possible.
For calculating P-T phase diagrams, nested sampling [25, 26], Wang-Landau sampling [29]
and parallel tempering [30, 31] are the “blind search” methods of interest [27, 20]. Of these
three, nested sampling requires the least amount of computational resources [32, 27, 20]. Ad-
ditionally, the calculation of phase diagrams is very convenient and phases can be identified
in the analysis after the simulation has been conducted [27, 20, 28, 21]. Indeed, Baldock
et al. in Ref. [20] and I in Ref. [33] see an interatomic potential fit with the help of nested
sampling to phase transition data gathered by experiments as a possible research avenue.
Gola et al. [34] optimise a CuAu EAM with the Nelder-Mead algorithm [35] — an algorithm
which I use as well for my fitting in Chapter 3 — and test their melting curve predictions via
nested sampling. To conclude, nested sampling, may offer an excellent way of conveniently
and efficiently including information of experimental phase diagrams in the fitting procedure.
Nested sampling was invented in the field of statistics [25, 26], but has been used as mod-
elling tool for among others Lennard-Jones particles [27, 20, 32, 28, 36], hard spheres [37],
aluminium [27, 20], iron [21], the CuAu melting curve [28, 34], nickel-titanium alloy [20]
and peptides[38]. I conducted preliminary research on titanium using nested sampling based
on an atomistic model in Ref. [33].

Previous work which uses more than the usual amount of thermodynamic fitting data does
usually either rely on other more conventional data as well, or usually modifies or proposes to
modify potentials which have already been fitted [17, 18, 22, 23, 16]. Ref. [19] differs from
these as the basis of the potential optimisation are zero temperature properties deduced from
experiments at finite temperature. As I want to fit directly to phase transition temperatures, |
follow the first approach and present work on modifying two interatomic potentials from the
literature, a CuAu potential [39—41] and a Ti potential [15], to reproduce phase transitions
by relying to a large extent on nested sampling. CuAu shows a eutectic melting curve and
various different solid phases [42]. The eutectic curve alone is an interesting characteristic
to study: a certain composition ratio of Cu and Au shows a melting temperature which is
smaller than the melting temperature of pure Cu as well as the one of pure Au [42]. Also,
there exist already nested sampling simulations on the CuAu melting curve showing that an
investigation with nested sampling is feasible [28, 34]. Additionally, the nested sampling
parameters used by Baldock et al. [28] for the CuAu EAM [39—41] which are available under
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Ref. [43] serve as basis for my own calculations. Titanium is a good material to study as
even though there exists a high amount of discussion regarding certain parts of the phase
diagram, the qualitative behaviour is known, sufficient data for fitting is available and there
exists a triple point which is interesting to model [44]. Additionally, fitting an interatomic
potential for it is challenging [15], making it a good benchmark material for my optimisation
approach. The potential created by Hennig ef al. [15] serves as basis for my modifications.
The structure of this thesis is as follows: The following section elaborates further on
the fitting approach for the different potentials. In Chapter 2, I consider some interatomic
potentials, various methods of investigating phase transitions with atomistic calculations, the
Nelder-Mead algorithm [35] as well as the materials and transitions of interest. Chapter 3
contains the results and technical details of the methodology of the CuAu potential optimi-
sation. I conduct fitting to single melting transitions and fitting to three melting transitions
simultaneously. The Ti results and technical details of the relevant methodology are given in
Chapter 4. Here, I particularly focus on converging the results. I also conduct an explorative
adjusting of the potential. In Chapter 5, I discuss first the CuAu results and then the Ti
results. Finally, I end with a conclusion and an elaboration on future work in Chapter 6. I
acknowledge programs, scripts and libraries used in this thesis in the appendix Section A.1

in which I also consider how the different interatomic potentials are evaluated.

1.2 Approach

The aim of this work is to test the viability of fitting interatomic potentials directly to phase
transition temperatures. The approaches for the CuAu eutectic melting curve and the Ti solid
phase P-T phase diagram are shown in Figure 1.1. For the CuAu system, I use an EAM
[39—41] and for the Ti system a MEAM [15] as starting point of my fitting. After the system
and an interatomic potential is chosen, I investigate them with nested sampling [28, 45] for
different numbers of atoms. All thermodynamic methods used in this thesis use a simulation
cell with periodic boundary conditions. The number of atoms N contained in this cell can
have strong effects on the results. These effects are known as “finite size effects”. The
number of atoms used per simulation cell in nested sampling is limited by the computational
cost of the algorithm. For example for 64 iron atoms, the computational costs are between
640 and 8820 h depending on the transitions involved [21]. For too small numbers of atoms,
atomistic computational methods for the predictions of phase diagrams could in principle
predict phase diagrams which are far from those predicted for the thermodynamic limit
of N — oo. Baldock et al. showed a lowering of the melting temperature predicted by an

interatomic potential for aluminium [46] by more than 200 K when increasing the number of
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atoms from 32 to 128 in Ref. [47]. In such a case, it would not make sense to directly use
the results from nested sampling calculations for small numbers of atoms to fit to transition
temperatures. Even modifications to change the qualitative nature of the phase diagram could
be futile. Hence, it is important to first gain insight in the strength of the finite size effects for
the different transitions.

In the case of CuAu eutectic, I start with the melting temperature of pure gold and repeat the
procedure including the fitting for different transitions. If not already conducted in an earlier
cycle, the melting transition temperature for N — oo is determined through extrapolating
the nested sampling predictions for melting temperatures of various different numbers of
atoms per simulation cell N. The evaluation of the Ti P-T phase diagram is too expensive
to allow for this. Hence, I use an informed search method, thermodynamic integration
(specifically a nonequilibrium version [48, 49]), to investigate the behaviour of the system
for a large number of atoms. For Ti, I also compare the energies predicted with the original
interatomic potential [15] to the energies predicted with density functional theory (DFT)
for some structures sampled with nested sampling. This is done to see how the potential
performs for the different phases expected in the phase diagram [44, 50, 51], but is not strictly
necessary for the fitting (signified by using a white box for the process in Figure 1.1).

The next step is to conduct the fitting procedure. For the CuAu eutectic, for which an extrap-
olation of the melting temperatures is possible, I approximate the melting temperature of a
slight modification of an interatomic potential for N — oo in the following manner: I assume
that the ratio between the extrapolated melting temperature and the melting temperature
calculated with nested sampling for a finite number of N atoms stays constant for such slight
modifications to the interatomic potential. I refer to this ratio as “extrapolation constant”.
This ratio is calculated from the original potential [39—41]. I then use the Nelder-Mead
algorithm [35] to fit to a single experimental melting temperature or several experimental
melting temperatures. The evaluation of the melting temperatures predicted by the modified
potentials is done via nested sampling using a small number of atoms N per simulation cell.
The temperature for N — oo is estimated via the aforementioned “extrapolation constant”. If
the resulting potential does not sufficiently reproduce the eutectic melting curve, the process
is started again by changing to a more appropriate transition or set of transitions for the
fitting. The aim is to increase the complexity (if necessary) by first fitting the gold melting,
then the melting of CuAu at a 50:50 atomic ratio and finally fitting simultaneous the melting
temperature of pure gold, copper and CuAu at a 50:50 ratio. The fitting of only pure gold is
seen as trial which does not aim to reproduce the full eutectic curve.

For Ti, the fitting process is different. After verifying that the qualitative behaviour of the

(solid phase) P-T phase diagram is not affected too much, I can use small numbers of atoms to



6 Introduction and approach

test different modifications with nested sampling. Here, the potential is modified with Fourier
modes. The amplitude of this modification is modified in the qualitative fitting process.
As I do not have a precise way of extrapolating the transition temperatures, the solid-solid
transition phase diagram prediction of the promising candidate must be calculated for larger
number of atom with informed search methods. This way, I can investigate the extent to
which the new potential makes improved phase diagram predictions. In the specific case
I use thermodynamic integration (a nonequilibrium version [48, 49] as before) and testing
whether a phase is stable under a molecular dynamics (MD) simulation at certain pressures
and temperatures. This allows to test in which respect the new potential has improved in the
description of the experimental phase diagram. I investigate how the energy predictions of
the new potential perform against the DFT results for the sample structures. This could help
to understand the phase diagram predictions of the new potential. Again, I use a white box
for the process in Figure 1.1 to denote the fact that this is not strictly necessary for the fitting.
Finally, for the functions of the interatomic potential which have been changed, the modi-
fied potential functions are displayed together with the original ones for both approaches.
Additionally, the predictions for elastic and lattice constants, the volume per atom of the
new potentials for CuAu and Ti are compared to the predictions of the original potentials
and experiments for important structures. This is done to show in which respect the new
potentials have been changed and how it performs for basic properties in comparison to the
original potentials.
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Y

> Choose transition(s) to fit

v
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Final modified
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Fig. 1.1 A flowchart of the two approaches to fitting potentials presented in this work. It
is explained in detail in the text. The basic steps are investigating the system with nested
sampling and investigating of finite size effects. This is followed by the actual fitting
procedure which needs to take account of the finite size effects or at least investigate them
for the resulting potential. Eventually, the basic features of the new potentials need to be

compared to the the original potentials.

!

[ Final modified Ti potential ]







Chapter 2
Literature review

The following chapter starts with a section on Molecular Dynamics, followed by short
overview on a number of interatomic potential models. Here, I will also shortly present the
MEAM potential of Hennig ef al. [15] which I use in my work. Followed by this, I consider
the Nelder-Mead algorithm [35], as well as a short summary of the relation between some
thermodynamic quantities and the respective partition functions. Afterwards, I introduce the
reader to the nested sampling algorithm for atomistic systems. Additionally, thermodynamic
integration and the quasi-harmonic approximation are covered. I finish with a section on the
phase diagram of titanium and a section on the melting curve of CuAu which I will both
investigate in this thesis.

2.1 Molecular Dynamics

Molecular Dynamics (MD) is one of the most important methods for the simulation of
materials on the atomistic or molecular level. The idea is to calculate the force on each
particle via a method of choice. Based on Newton’s equation of motion, one can approximate
the new position of each particle after a time step Ar. However, it is to note that Molecular
Dynamics is not an exact representation of reality. Even if we knew the exact positions of a
number of particles, the velocities of all atoms to exact precision as well as the exact forces,
we would not be able to predict the exact positions of the atoms over time using Molecular
Dynamics. This is due to the fact that we need to numerically find a solution to Newton’s
equations of motion which leads to numerical errors [52]. Ref. [52] offer a more detailed
analysis of this problem. In the following I cover the salient points: The aforementioned
errors lead to a Lyapunov instability which means that the numerical prediction of the particle
position, orientation and velocity differs from the hypothetical behaviour if the errors did

not exist over a relatively short time. The size of these numerical errors is irrelevant for the
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question whether the instability occurs or not. However, using an appropriate scheme to solve
the equations of motion of an atomic system, Molecular Dynamic is useful for statistically
computing the mean of its features over time [52]. I consider a simple but useful integration
scheme in Section 2.1.1. Molecular Dynamics simulations can also be used to predict phase
transitions as I explain in Section 2.1.2. Some examples of models used for evaluating the

forces on the atoms are covered in Section 2.2.

2.1.1 The Verlet scheme

In most cases, the optimal scheme for conducting Molecular Dynamics is the Verlet scheme
[52]. According to this scheme, the position of an atom with mass m after a time step At > 0
is given by [52]

1d%F
?(r+m):27(t)—?(r—At)+55§Aﬂ+0(m4) . 2.1)
Here, ¢ is the time before the step. The time r — At is the time before the last two steps. Given
the force F on the atom, we can determine the acceleration of the atom @ = d’7/dr? = F /m.
If needed, the velocity is approximated as [52]

(1) = LA ;?(I_M +0(a) . (2.2)

We ignore terms of order Ar* for the calculation of the atom position and terms of order
At? for the velocity [52]. To reduce the error in Equation 2.2, another similar scheme is in
principle available [52].

A derivation is of the Verlet scheme is for example given in Ref. [52], on which the following

short derivation is based: First, we Taylor expand 7 (7 + x) for small x:

1 1da
F(t+x)=7()+V(t)x+ Ec_z’x2+6d—jx3—l—0(x4) (2.3)

Here, v = d7/dt is the velocity of the atom. To eliminate the velocity, we now add the Taylor
expansions 7 (7 + At) and 7 (¢t — Ar). Rearranging the result leads to Equation 2.1. Equation

2.2 is gained similarly, just that we substract the two Taylor expansions from each other.

2.1.2 MD simulations for phase transitions

One of the simplest ways of investigating the phase transitions of materials is to just let a

phase evolve at a certain temperature as well as pressure or volume. Hennig et al. [15] for
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example use this to calculate their phase diagram. At certain pressures and temperatures the
titanium bcc phase transforms into the hcp and the titanium @ [53] phase [15]. (I consider
titanium and its phases [50] in more detail in Section 2.9.) As Hennig et al. however point
out, the hcp phase does not transform in this situation to the @ phase when they would expect
it to [15]. If a structure is at least metastable it can take a long time until it transforms to a
more stable structure if we simulate a small number of atoms. This is the explanation Hennig
et al. [15] give for the abovementioned lack of hcp to  transformation. However, it is not
clear how many MD steps one should conduct until one is sure of the stability of a phase.
This means that even if a phase A transforms to a phase B, the phase B may be itself only
metastable and transform to C after a certain time. Hence, it is difficult to determine whether
B or C is stable with this method.

Another method is to create an interface between to phase A and B. Examples for the usage
of this for liquid-solid transitions are Hennig ef al. [15] and Ref. [54]. It is also possible to
investigate solid-solid transitions in this manner as for example shown in Ref. [15]. Setting
up solid-solid interfaces can be relatively complicated as one can see for example in the work
of Hennig et al. [15] in which they set up the interface according to the likely phase transition
path [55, 56]. This assumes that the interatomic potential actually favours this transition
path which is in general not necessarily guaranteed. Hennig et al. however, include this path
explicitly when optimising their potential [15]. Additionally, the lattice parameters between
two phases may not match. This means that it is likely that the lattice parameters of at least
one of the phases are not as they should be for the equilibrium at the simulated temperature
and pressure or volume. This leads to a different Gibbs free energy of that structure which
in turn could affect the stability of a phase. In the worst case, a phase which is stable may

transform into an unstable one.

2.2 Interatomic potentials

Interatomic potential models are important in physics, materials science and engineering.
There have been many developments for efficient but still applicable potential models. In the

following, I want to give a short overview of a few potential forms.

2.2.1 Lennard-Jones potential

Lennard-Jones potential, dates back to 1924 [2, 3] and is one of the most basic and well

known interatomic potentials. It describes the potential energy between a pair of atoms with
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distance of r from each other. It is widely used in the following forms:

o) 2(2)) - ()-() e

The parameters € and r,, — or for the second form € and ¢ — need to be fitted for the system at
hand. If the interatomic distance r is equal to r,, the force between the atoms becomes zero:
We have reached the minimum with Uy = —€. Forr =0 =r,,/ 21/6_ the potential energy is
Urs = 0. The total potential energy is then calculated by the sum over all atom pairs:

EE N
E=Yel|Z) —2(Z2 2.5
,-;j <(rij> (rij) ) 22

Here, the distance between atom i and j is denoted as r;;.

2.2.2 The embedded atom method

One way to include more than just the pair potential effects is the embedded atom method
which, additional to pair interactions, uses an embedding energy U (Ph,i) for each atom i
[4, 5]. The other atoms give rise to an electron density, whose interaction with atom i the
embedding function takes into account [4, 5]. An atom j at a distance r;; from atom i leads
to an electron density of p, (ri j) at the coordinate of i which determines the so called “host
density” [4, 5]:

Pni =Y Pa(rij) (2.6)

J#i

Adding the embedding function for each atom i to the pair potential contributions, the sum
of ¢ (ri;) over all atom pairs, we arrive at [4, 5]

1
E=3)9(r)+2U (Pni) @7
i,j i

for the potential energy of the system. The EAM can also be used for alloys of metals [57-59].
Here, one needs to consider which atom species interacts with which species. The function
for the electron density becomes p, ;; (r,- j) and the pair interaction becomes ¢, ;; (ri j) as
now these functions themselves depend on the species of atoms i and j. Additionally, we
now need to use an embedding function U; (phﬂ-) whose form depends on the species of
atom i. For two species A and B for example, assuming that the functions are symmetric

under the exchange of i and j, we get eight different functions which make up the potential,
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namely: ¢, 44 (7ij), 9a.88 (¥ij)s PaaB (rij) = 0aa (rij)> Pnaa (rij)> Pu8 (rij)> Pnas (rij) =
Pn.8a (rij)» Ua (Pn,;) and Ug (pn.;).-

2.2.3 The modified embedded atom method

The modified embedded atom method is a modification of the embedded atom method
described in Section 2.2.2 [6, 7]. Baskes et al. use the term “modified EAM” or “MEAM”
for the first time in Ref. [7]. However, in Ref. [7], Baskes ef al. actually further improve on a
potential published earlier in Ref. [6]. We therefore turn our attention to this earlier model:
Shearing of Silicon cannot be described by a classical EAM [6]. This is due to the fact that
the host density does not explicitly depend on the angle 6; enclosed by the bonds ij and ik
[6]. The EAM hence ignores any effect of how the bonds are situated with regards to each
other on the electron density contributed by them at the position of atom i [6]. Therefore,

Baskes proposes to add the term [6]

Ph,iCorrection = _kangle Z (1 - 3C052 (ejik)) Pa (rij) Pa (rik) (2.8)
JFLkF

to the EAM host density [4, 5] given in Equation 2.7. Here, the bond length are again given
by rij and rig. kangre 18 an empirical parameter [6]. Extensive work was conducted in the
literature to make the potential model more applicable [7, 60].
Let us now consider the MEAM potential for titanium by Hennig ef al. [15] which I consider
in this thesis. Their potential is based on a silicon MEAM potential [61]. The different
functions of the potentials are described by splines [61, 15]. Due to this, the potential is very
fast [15]. The host density takes the form of [15, 61]:

Pni= Y Pa(rij)+ Y, g(cos(6i)) f(rij) f (ri) (2.9)

J#i JFiLkF
Hennig er al. claim that opposed to other potentials, it can describe all usually expected
titanium phases [50] (a, B and @ [53]) very well [15]. I consider the different titanium
phases in Section 2.9. Note that the possibility to describe all phases with good accuracy is
very important for my studies and is a important reason for choosing the potential. As I want
to modify an already established potential to fit it to a phase diagram, I want to start with a

potential which describes the phase diagram already very well.
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2.3 The Nelder-Mead method

Many minimization methods use a gradient to minimize a function. This can be difficult if
the gradient of the function to be minimized is not known analytically and would be very
expensive to calculate numerically. Methods which do not use a gradient are a potential
solution to this problem. The Nelder-Mead algorithm [35] is such a method. Ref. [62] gives
a very detailed summary which I will rely on in the following. I present the Nelder-Mead
algorithm for minimising the objective function while they use it for maximising. However,
the steps are in principle the same. In the Nelder-Mead algorithm, n+ 1 vertices form a
simplex which explores the n dimensional space. The Nelder-Mead algorithm has four
parameters in its modern form: «, 3, ¥ and 8 [63]. In the original paper, the most success
had been with the values ¢ =1, B = 1/2, y=2 and § = 1/2 [35]. These values are kept in
the vast majority of implementations [64]. The algorithm for minimising a function f (),

the objective function, works as follows [62]:

1. Initialisation: We start with n + 1 vertices. For each, we calculate the value of the
objective function f(X). Ref. [62] recommends to calculate these vertices as X; =
X1+ A;-é wherei € {2,3...,n,n+ 1}. Here, X| is chosen so that it is likely close to the
minimum, A; is a suitable parameter and the vectors €; represent the unit vectors of our

space [62]. Our iteration begins with a reflection.

2. Reflection: Now, we need to consider the ordering of the vertices with regards to f (X).
We take the vertex X, with the greatest value fiuqx = f (Xmax ), the vertex X5,,4 with the
second greatest value fr,q = f (X2,4) and X, with the smallest value f,in = f (Xmin)-
We calculate the centre coordinate X, of the vertices excluding the vertex x;,,,. The

reflection vertex is then

frefl = fcentre +a (fcentre - fmax) . (2 10)

We choose one of the following three options:

(a) We conduct an expansion in the case of fr.p; = f (xre ﬂ) < fmin-

(b) We accept x,f;, discard Xy, and determine whether the minimum has been
reached in the case of fiin < frepi < fona-

(c) We conduct a contraction in the case of f2,4 < fref1-

3. Expansion: We try an expansion of our simplex with a new vertex

zexpan = zcentre +Y (zrefl - fcentre) . (2.11)
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We now replace X;qy in our simplex by Xexpan in the case of foxpan = f (Xexpan) < frefi
and by X, in all other cases. Afterwards, we determine whether the minimum has
been reached.

4. Contraction: We first need to decide which point besides the centre point we use in
our contraction. We use X,z in the case of f5,4 < fref1 < fmax (outer contraction) and

Xmax for all other cases (inner contraction). The new vertex is then

fcontr = )_C'centre + ﬁ ()_C'refl/max - fcentre) . (2~12)

Now, we replace Xy by Xcontr if feontr = f (Xcontr) < frepi for the outer contraction
or if feonr < fmax for the inner contraction. If the respective conditions do not apply,
we shrink the simplex. If they apply, we determine whether the minimum has been
reached.

5. Shrink: We now shrink the simplex by replacing each vertex X; except for X,,;;, by
)_C’; = Xmin + 0 (fl _)_C)min) . (213)

This means that our best vertex is used as the centre of the shrinking procedure.
Afterwards, we determine whether the minimum has been reached.

6. Determine whether the minimum has been reached: We terminate the algorithm if it is
sufficiently converged. If this is not true, we conduct the next iteration starting with a
reflection.

The Nelder-Mead method does not converge to a local minimum for all functions and starting
positions, as there can be rare occasions when the vertex continues to shrink in size, but does
not come closer to the minimum [65, 62]. Perhaps the easiest way to still find the minimum is
to just change the initialisation vertices and start the algorithm anew, but a more sophisticated
method of dealing with the problem, an “oriented restart” step [66], is in principle available
[62]. The Nelder-Mead method does usually determine f (X) roughly twice as many times as
the total number of iterations [62]. Additionally, even the classical Nelder-Mead algorithm

deals well with moderate statistical noise [63].

2.4 Partition functions and thermodynamic quantities

We want to shortly recapitulate a few thermodynamic quantities: For the canonical ensemble

the internal energy U of a system, the average total energy (E) of the system, is related to
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the partition function Z via:

_ dIn(2)

= BT
Here, f3 is defined as B = 1/ (kgT') with the Boltzmann constant kg and the temperature 7.
We can now calculate the heat capacity at constant volume:

(2.14)

oU

“=5r

(2.15)

One can easily calculate that the heat capacity Cy can also be written in dependence of the

energy variance:
1

Cy =——=
v kpT?

((E%) - (£)) (2.16)

The Helmbholtz free energy is:
F =—kgTIn(Z) (2.17)

In the NPT -ensemble, the enthalpy H depends on the NPT -ensemble partition function A as
follows:

dln (A)
255

Similar to the canonical case, we arrive at the heat capacity at constant pressure via

H =

(2.18)

JH 1

C = —_— =
P31 ™ kg2

(¢~ ) . (2.19)

The Gibbs free energy is
G = —kgTIn(A) (2.20)

2.5 Nested sampling

The partition function of a system allows the calculation of important thermodynamic
quantities which one can use to calculate phase diagrams as shown with success for example
in Ref. [32], Ref. [20] and Ref. [21]. Nested sampling allows for an easy calculation of the
partition functions [27, 32]. As already mentioned in Section 1.1, we do not need to supply
the phases which could be expected in the phase diagram beforehand [27, 20]. This makes
nested sampling an excellent method for computing phase diagrams if little information about
the behaviour of the system is available [20, 21, 27, 28]. However, as also already considered
in Section 1.1 such blind search algorithms are considerably more expensive than informed
search methods. Even though nested sampling is more efficient than its competitors Wang-
Landau sampling [29] and parallel tempering [30, 31] [20, 27], the interatomic potential is
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still typically called on the order of 108 to 1019 times [20, 21, 27, 28]. This means that the
number of atoms per simulation box is limited making the estimation of finite size effects
more difficult than for informed search methods. Consider for example that finite size effects
were considered for up to only 128 atoms in Ref. [47]. Indeed, nested sampling calculations
for the calculation of phase transitions at constant pressure for metals and alloys are usually
conduct with less than 100 atoms [20, 21, 27, 28, 34]. In the following, I want to introduce
the reader to the basics concepts of nested sampling for atomic systems. More detailed work
can be found in Ref. [27].

2.5.1 Nested sampling at constant volume

For simplicity, we will first consider nested sampling at constant volume. If we calculate the
partition function of a system, we sum or integrate the relevant Boltzmann factor over all
possible states of the system. In the canonical ensemble for example, the partition function Z
of a system with N different microscopic states is well known as:

N
z=Y e P (2.21)
i=1

As before, we use B = 1/ (kgT). E; represents the energy of the state .
In the case of the atomic systems with N particles, this sum transforms into an integral:

/ / e PH@P) 4545 (2.22)

1
N'h3N

The Hamiltonian H (g, p) describes the whole system and hence depends on all configura-
tional coordinates g and all momentum coordinates p. The factor of 1 /N! accounts for the
fact that the particles are indistinguishable. 4 is the Planck constant.

Nested sampling [25, 26] allows us to approximate this partition function as a sum over a
number of sampled states i [32, 37]:

Z=C-Y we Ph (2.23)

The constant C is irrelevant for the determination of phase transitions as we apply logarithms
and/or derivatives when calculating the heat capacity, energy and free energy as seen in
Section 2.4 [37]. Hence, we do not need to know its exact value. Each sample state i accounts
for an infinite number of states with a similar energy. This is taken account for by the weight
factor w; [32].
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We now look at the algorithm itself [37, 27]: Salient to the algorithm are the sample systems
(e.g. 64 atoms in a box with periodic boundary conditions) which are referred to as walkers
in the following. The number of walkers is denoted as K. To initialize our algorithm, we
distribute these walkers uniformly in phase space, limited only by a maximum walker energy
ceiling, Eg. In the canonical case this means choosing uniformly random atom positions and
momenta in our simulation box. We want to include ideal gas like states in our calculation
which requires a sufficiently high energy ceiling. The iteration variable i starts at 0. The
algorithm is as follows [37, 27]:

1. Cull the walker with the highest energy which we denote as E; ;| —i.e. delete it from
the list of walkers.

2. Make a copy of a walker from the not culled walkers and ensure that it does not correlate
anymore with the original using a suitable method. This walker must be randomly
selected. The energy ceiling for this process is E;;;. This newly created walker
replaces the culled walker. The distribution of walkers should again be sufficiently

uniform in phase space.

3. Repeat the whole loop with i set to i 4 1 until sufficient amount of data has been
gathered.

Let us now consider the derivation given by Partay et al. [37] on which the remainder of
this section is based. For each iteration i, we can calculate the average volume of the phase
space which is still available for walkers fulfilling E < E; : Every iteration, it decreases by
a factor of K/ (K + 1) [26, 32, 37]. We will call this volume remaining phase space volume

and denote it by {. The remaining phase space volume in each iteration is then [26, 32, 37]:

K i
Gi=0 ( r&n| 1) (2.24)

A different way to see the remaining phase space volume § under a total energy limit E is to
see it as an integral of the density of states Q (E’) over all energies E’' < E:

E
C(E)= / Q(E")dE’ (2.25)

—o0

It becomes clear now that the density of states can be written as derivative:

Q(E) = %ﬁf) (2.26)
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Similar to Ref. [37], where however only the configurational part of the integral is considered,
instead of integration over all phase space coordinates as in Equation 2.22, we consider the

space of total energies E:

1 _ 1 _gpdC(E)
—_ BE - BE
Z_N!h3N/e Q(E)dE—N!hw/e 1E dE (2.27)
An easy substitution of E by { leads to an integral over remaining phase space volume. The
nested sampling algorithm presented above has sampled energies and their remaining phase

space volumes which allows for a numerical integration of the partition function [37, 27]:

1 B 1 - A
Z= N!hSN/e ﬁE(C)dC ~ N!h3Nzl."(Ci_ Git1)e PE(G) (2.28)

Note that Ref. [37] and Ref. [27] do only consider the potential energy in the sum of Equation
2.28 and include the kinetic part in a factor before the sum. We can see that we have arrived
at Equation 2.23 with the weight @; = {; — {;, ;. The phase space volume in between two
consecutive energy ceilings i and i + 1 can be interpreted as this weight [37]. In practice, we
can set §y = 1 as the resulting constant factor is then absorbed in the constant C in Equation
2.23 [37].

2.5.2 Constant pressure case

As Baldock showed in [27], we can calculate the partition function for the constant pressure
P case in a similar way as the constant volume case in Section 2.5.1: We do not just sample
over atom momenta and positions, but have to also include simulation box volume as well as
shape in our decorrelation steps as well. I now shortly summarise how Baldock calculates
the partition function based on the “fully flexible cell ensemble” [67] which can be used to
approximate the NPT ensemble [27, 20]. Let us consider the linearly independent vectors hi,
ho, hs defining a parallelepiped. Together, they define our periodic simulation box. Further,
we define:

h= (ﬁl,ﬁz,fz3> (2.29)

Using the volume V of the simulation cell, the normalised cell matrix }zzo is then given by:

‘ =i

hy = (2.30)

3

—_
~

Vv
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Here, V is given by V = ‘det (}:z) ‘ The partition function is the given by [67, 68]:

N'h3N/d /dq/dpe (2.31)

Here H = E + PV is the enthalpy of our system. Baldock [27] uses the fractional coordinates
5; = hq; (i stands for atom i here) and presents the partition function in the following form
[27, 67, 68]:

= ey | avv? [ aios (det (fo) ~1) [ a5 [ ape? (232)

Here, 6 (x) is the Dirac delta function.
Our algorithm in principle stays the same as in Section 2.5.1. However, now our phase space
over which we sample also includes cell volume and cell shape and consider enthalpies H;

instead of energies [27]. Equivalently our partition function becomes [27, 20, 28]

A=C-Y e P (2.33)

Here, C is again a constant. The remaining phase space volume is {; and is determined in the
same way as before leading to the weight @; = {; — {; 1. Note that Ref. [27] and Ref. [20]
do not consider the total enthalpy, but the enthalpy without the kinetic energy and include the
kinetic part in C.

2.5.3 Parallelizing

There exist two ways of parallizing nested sampling in pymatnest [45] which I explain in the
following.

First, instead of letting only one walker undergo the decorrelation scheme of length L, we can
let ny,q1king number of walkers undergo a decorrelation scheme of length L/ny,qiking [27, 47].
The second option is to cull more than one walker per iteration [27, 69, 36].

In the case of n.,;; > 1, we have to adjust our remaining phase space volume calculation
[69, 36]: Again, we set {y = 1 for simplicity. We cull the walkers consecutively. After culling
the first walker, the remaining phase space volume will be by a factor of K/(K + 1) smaller
[37, 26] as it is the case in Section 2.5.1. For the next walker, there are only K — 1 walkers
left to start with. Hence, after culling, the remaining phase space volume is again reduced by
a factor of (K —1) /(K — 14 1). The next factor will be (K —2) /(K —2+ 1) and so forth

(assuming n.,;; and K are sufficiently high. Denoting the modulo operation via %, we arrive
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at the following formula for the remaining phase space volume after the n-th culling of a

walker [36]: i
K— i%ncull

= 2.34
6 ll;(l) K —i%ng,;;+1 ( )

As before, the weight is @, = §, — {1 [36].

2.6 Thermodynamic integration

Theoretically, we do not need to consider the different competing phases of our model or
material when we set up the nested sampling algorithm. Opposed to this, informed-search
methods require some knowledge about the competing phases. Examples for informed-search
methods are thermodynamic integration, quasi-harmonic approximation and coexistence
molecular dynamic simulations. The advantage of informed-search methods is that they are in
general less computationally expensive. However, it is difficult to test all possible competing
phases, especially as some atomic interaction models may stabilize phases which are not
expected in nature. In the following I consider how to calculate the Helmholtz free energy
of a system with thermodynamic integration. Besides not covering certain low temperature
quantum mechanical contributions which we will cover in Section 2.7, thermodynamic
integration also assumes that the phases which are investigated are at least metastable at
the temperatures and pressures in question. As it does not sample the whole phase space, it
requires much less computational resources than nested sampling or similar methods. This
means larger numbers of atoms per simulation box can be considered than for the nested
sampling algorithm from the previous Section 2.5. For example, Freitas ef al. conducted
calculations for 54000 atoms [48] while nested sampling calculations at constant pressure
are rarely conducted with much more than 100 atoms [20, 21, 27, 28, 34, 47]

2.6.1 The equilibrium approach to thermodynamic integration

We will follow the explanation given in Ref. [52]. It is not usually possible to analytically
calculate and impossible to directly measure the free energy of a system. Instead we need to
calculate the free energy difference to a reference state, for example the Einstein crystal [70].
The Einstein crystal is a model in which the atoms are described as independent harmonic
oscillators centred on their position in the crystal. It is useful for the calculation of the free
energy of crystals. To calculate the free energy, we gradually change the potential governing

the atomic interactions so that it describes the reference system at the end [71]. An example is
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the switch from a crystal governed by an interatomic potential to the Einstein crystal [72] as
for example used in Ref. [48] with nonequilibirum thermodynamic integration calculations.
The idea is the following: A parameter A is used to change the potential from state A to B
by going from O to 1. The potential energy U,,; in dependence of A is then given via the
“Frenkel-Ladd path” [72, 52]:

Upor (A) = (1= A) Uy + AU (2.35)

Here, U4 and Up are the potential energies of state A and B respectively. Let us now use
system A as reference. To get the free energy Fp of B we will integrate the derivative of the

free energy:

BoF
Fp = A ﬁdl + Fy (2.36)

Here, Fy is the free energy of the reference system. The kinetic term Ey;, of the Hamiltonian
H (A) = Egj +Upy (A) does not depend on the potential and hence also not on A. Using the

relation between canonical partition function Z and free energy F', we see that the following
holds:

OF 9 9z
— == (—kpTIn(Z)) = —kpT %= 2.37
o1~ ox \keTIn(Z) =~k (2:37)
If we now insert the definition of the canonical partition function,
1 -
Z= s | [ exv (-BH (A)dddj (2.38)
we arrive at U
OF _ [ [ 5 exp (~BH (1)) dgdp 2.39)
IA J Jexp(=BH (A))dgdp '
This is nothing else than an ensemble average of dU,,;/dA. To shorten it, we can write it
the following way [52]:
JdF OUpot (A)
= =P 2.40
E < ), (2.40)

We can now numerically integrate Equation 2.36 and calculate the free energy of system B.
Equation 2.36 becomes

B
Fy = / Wpar M\ 43 4 F, (2.41)
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A problem with the thermodynamic integration method presented above is that we have to

< OUpor (1) > (2.42)
A

calculate

ar
for every A value required by our numerical integration by an appropriate sampling scheme.
One may be able to speed up the simulations by using nonequilibrium methods [73, 49,

48]. We will consider a nonequilibrium scheme [49] which was recently implemented in
LAMMPS [74] by Freitas et al. [48].

2.6.2 A nonequilibrium approach

In the previous section, we saw an equilibrium approach to thermodynamic integration.
As mentioned before in Section 2.6, the number of calculations necessary to conduct the
thermodynamic integration may be reduced through the use of nonequilibirum approaches
[73, 49, 48]. In this Section, we will follow the explanation of a specific nonequilibrium
approach [49, 48] given in Ref. [48].

Here, A depends explicitly on the time in the simulation. Over the course of the time span
tparhs A (t) changes from O to 1 switching system A to B. Let us reconsider the integral in
Equation 2.41 for the Hamiltonian instead of the potential energy. This is the reversible work
needed to go from state A to B [48]:

B /oH (A
Wreversible7A—>B = / <%> dA (243)
A A

The irreversible work needed to go from state A to B without intermediate equilibration over

a time 7,4, 1s given by [48]

o dAL OH (A (1))

R R (2.44)

Wirreversibl e,A—B — /0

This integral is again calculated numerically. Now, we need to connect Wj,,yersipie t0 the free

energy difference. The free energy difference is [48]

AF = Fp — FA = Wreversible.,A—>B = vVirreversible,A—>B - Edissipation,A—>B . (245)

The energy Eyigsipation.a—p Which dissipates in that process from A to B is not generally the
same as Egjssiparion,B—sA for the path from B back to A [49]. However, for large enough 7,
the equality Eyjssipation A—sB = Edissipation,B—A4 18 true [49]. This means that we can now easily
calculate the free energy difference and the energy which dissipated in the process A — B
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and B — A [48, 49]:
vvirreversible,A%B - ‘/Virreversible,BHA
2

o . VVirreversible,AﬁB + ‘/Virreversible,B%A 24
Edissipation.,A—>B - Edissipation,B—>A - 2 ( . 7)

AF =

(2.46)

To summarize, we now have a nonequilibrium method which for large enough ¢, can

calculate the free energy of system B using a reference system A via [48, 49]

I/Virreversible,A—>B - VVirreversible,B—>A

Fp=Fy+ 5

(2.48)

The remaining question is how exactly do we parametrize H (A1). Ref. [48] uses a simple
linear interpolation, the Frenkel-Ladd path [72, 52] as in Equation 2.35 (just with the
Hamiltonian instead of the potential energy) and then proposes to describe A(¢) through
either

At)=t (2.49)

or [75,76]
A (1) =1 (70 — 3156 4 540¢% — 420 + 126) . (2.50)

2.7 Quasi-harmonic approximation

Another way to calculate the Gibbs free energy of a system is quasi-harmonic approximation.
For this, we approximate the solid via non-interacting quantum harmonic oscillators. The
phonons are assumed to not interact with each other and are treated as quantum harmonic
oscillators. These assumptions are only valid for sufficiently low temperatures. Additionally,
the phases must not have any phonon wave vector with imaginary phonon frequencies which
would lead to unphysical imaginary contributions to the free energy. Such frequencies are a
well known sign of instabilities. As we will see in the following, quasi-harmonic approxi-
mation does however consider quantum mechanical contributions which are relevant at low
temperatures and ignored by purely classical approaches like thermodynamic integration and
nested sampling.

Let us now start with the derivation of the Helmholtz free energy. The eigenvalues of the

quantum harmonic oscillator are well known:

Eo n=ho, (n + —) 2.51)

Ly



2.7 Quasi-harmonic approximation 25

Here @, 7 is the frequency of phonon i and n € Ny and k denotes the reciprocal vector in the
first Brillouin zone. The canonical partition function of one oscillator with frequency o, 7

then becomes:

o Bhog(ntd) _ pk ]
Za,; = Y e PR = P —has (2.52)
0 1—e Lk
The Helmholtz free energy due to one phonon is
ho. -
Fay = —ksTin (Z, ) = £+ kg Tn (1-ePras) . (2.53)

The free energy is greater than 0eV even at T — 0 K due to the zero-point energy 7@, /2.
As the phonons are not interacting with each other, the partition function part due to phonons

for the whole system is

thonons = HHZ‘”[% (2.54)
i % ’
The free energy due to phonons is
thonons = —kgTIn (thonons) (2.55)
ho.
= Z < ZI’k +kpTIn (1 — e_ﬁhwff>) . (2.56)
ik

The overall Helmholtz free energy is then

F=U _ " ~pho,;
= Upor + thonons = Upor + Z 3 +kgTIn <1 —e€ b ) . (2.57)
ik

Here, Uy, is the potential energy of our structure in the ideal form. Now, we only need to sam-
ple the phonon frequencies sufficiently well. To compare to other free energy calculations we
need to consider the difference in approach to phonons. For the quasi-harmonic calculations,
we considered the phonons as independent quantum harmonic oscillators. However, MD
simulations just solve Newton’s Equation of motion. Hence, the system is purely classical.
This means that to be able to compare to results gained from for example thermodynamic
integration, we need to use the classic harmonic oscillator to approximate the phonons. The
energy of the classic harmonic oscillator centred at ¢ = 0 in one dimension in dependence of
the spatial coordinate g and the momentum p is

lp2

2m

1
E;;(q,p) = sma’q’ +

2.
Smo, (2.58)
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Here, m is the mass of the oscillator, @, ; is its angular frequency. The partition function then

becomes the following:

1 2

1 -B <§mwi2~q2+%%)
Zwif’ classical — E//e . dqdp =

(2.59)
ho, B
The remaining steps are analogue to the steps for the quantum harmonic oscillator leading to

the free energy for MD simulations of

Felassical = Upol + Zln (hwi,%ﬁ) . (2.60)
ik

Let us consider the free energy difference between a classical and a quantum oscillator.
After a few steps one sees that for T — 0, the difference becomes Ziha)i} /2, the sum of
the zero-point energies of each oscillator mentioned before. We do however want to know
which structures are dominant in the NPT ensemble. This means that we have to consider
the Gibbs free energy of a structure. In the case of structures relaxed at a certain pressure P,
the equation for the Gibbs free energy is well known:

G=F+PV 2.61)

Here, V is the volume of the system and F is the Helmholtz free energy. In the case of a
lattice which is a slightly strained version of a relaxed reference lattice with volume V), the
following formula can be applied [77]:

G=F+PV -V¢g/0;; (2.62)

Here, €/ ; are the elements of the deviatoric Cauchy’s strain tensor and o! ; are the elements of
the deviatoric stress tensor. In Equation 2.62, I sum over repeating indices. The elements of
the deviatoric strain tensor &;; and the deviatoric stress tensor o;; are defined as

V-V,
p P

Here, g;; are the elements of Cauchy’s strain tensor, 0;; are the elements of the stress tensor
and §;; is the Kronecker delta. We can sample over different possible lattices of a certain
phase calculating the Gibbs free energy of the lattice with equation 2.62 provided we have a

suitable reference structure so that the strain is sufficiently small. For example for a hcp phase
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with lattice constants a and ¢, one could sample over the possible ¢/a ratios and volumes.
Under the constraint that phase transitions are inhibited, the lattice with the minimum Gibbs
free energy at the specific pressure and temperature is the one the phase will show. This
means that the Gibbs free energy of a phase is the minimum Gibbs free energy of all possible
lattices of that phase:

G (P ) T) = MiNatice (Glattice (R T)) (2.65)

Here, minjygice (...) denotes that we take the minimum overall possible lattices. The Gibbs
free energy of a specific lattice is Giayice (P, T). As before, the stable phase is the phase with
the lowest Gibbs free energy. This allows us now to describe solid-solid phase transitions
at temperatures for which the quasi-harmonic approximation still holds and to predict P-T
phase diagrams in this temperature realm.

2.8 Discussion of the use of the different methods of phase

transition determination

In this section, I want to compare the different methods for determining phase transitions
presented in this chapter.

Letting a phase evolve under MD simulations at certain temperatures and pressures does not
work on metastable structures which could take an unknown and very long time to transform
as explained in Section 2.1.2. However, as a simple MD simulation, the method is not very
computationally expensive and finite size effects can be easily investigated. Additionally, it
does not require that the investigated phase is metastable.

In the case of solid-solid transitions, setting up two competing phases in coexistence simu-
lations (see Section 2.1.2) can lead to problems due to the interface. Due to different sizes
of the crystals one may have to choose lattice constants which are not in accordance with
the equilibrium lattice constants at the specific temperature and pressure. This can lead
to artificially favouring one of the phases. This method also does not require a very large
computational resources and can therefore be used to investigate transitions even for large
number of atoms. For example, Smirnova et al. [78] conduct such simulations with their
interatomic potential with 20250 atoms for the solid-liquid transition and with 16800 atoms
for the transition between two crystal phases.

Thermodynamic integration (see Section 2.6) calculates the free energies of different phases
which can then be compared to calculate the phase transitions. However, these phases need
to be metastable as it is assumed that the phases do not transform during the MD simulations

used for equilibration and sampling. Freitas et al. [48] calculated the free energy of systems
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with up to 54000 atoms with thermodynamic integration which shows that very large systems
can be investigated.

The free energies predicted by quasi-harmonic approximation (see Section 2.7) include quan-
tum mechanical contributions that are ignored in the other methods mentioned in the current
section. However, with increasing temperature, the assumption of non-interacting phonons
becomes less valid making quasi-harmonic approximation increasingly unreliable. A phase
with imaginary phonon frequencies for some phonon wave vectors cannot be calculated as
the free energy would not be a real number anymore.

To calculate phase transitions with any of the above mentioned methods, one needs at least
some information about the phases involved. This is not the case for nested sampling which
predicts the phases by itself [27, 20]. As one does not need to provide the nested sampling
algorithm with the phases involved in the transition, it is very useful for exploring unknown
phase diagrams [27, 20, 28, 34, 21] and a possible method for fitting interatomic potentials
[20]. Fitting interatomic potentials simultaneously to phase transition temperatures at various
pressures or alloy compositions requires in principle the evaluation of unknown phase dia-
grams as a new iteration of the potential could predict a totally new phase. The other methods
mentioned in this section are not as useful for the prediction of unknown phase diagrams —
and in extension fitting interatomic potentials to experimental phase diagrams — as they could
miss phases which one did not consider when setting up the calculations. This means that the
phase diagram would be wrong, but one would not have any knowledge of this fact. Making
matters worse, as explained above, these other methods do not work for all phases and have
a different accuracy depending on the temperature. This means that one would have to use
a combination of these methods. If one does not have much information of the different
phases one would like to consider, one would not know which method to use for these. This
means that a researcher would first need to spend significant amount of time testing which
method might be applicable for each phase transition. However, nested sampling has high
computational costs [21], which can make it hard to investigate finite size effects and would
make the use of nested sampling even unnecessary if we could be sure about the phases
involved in the phase diagram. Baldock ef al. consider the effect of number of atoms up
to 128 atoms in Ref. [47], but usually less than 100 atoms are used in the calculation of
P — T phase diagrams for metals and alloys [27, 20, 28, 34, 21]. The computational cost of
nested sampling depends on the computational cost of evaluating the specific interatomic
potential as well as on the transitions and systems in question [20, 28, 21]. Depending on the
situation, an investigation of finite size effects might not be possible. Even if an investigation
is possible, the error of the prediction for the thermodynamic limit may still be relatively

large. This means that it is necessary to rely on informed search methods, like the other
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methods of this section, as these can conduct investigations for larger numbers of atoms.

The nested sampling results can indicate which phases need to be investigated. The choice of
the method then depends on the phases involved. If the phases of interest are metastable in
the temperature or pressure realm of interest, thermodynamic integration, quasi-harmonic ap-
proximation and coexistence MD simulations become candidates. The difficulty in creating a
correct interface without stretching or compressing one phase inappropriately leads to errors.
This can be avoided by the other two candidates, quasi-harmonic approximation and ther-
modynamic integration. For low temperatures, it would be advisable to use quasi-harmonic
approximation as it covers quantum contributions like the zero-point energies. However, with
increasing temperature, the assumption of phonons as non-interacting harmonic oscillators
becomes less valid and the quantum mechanical contributions decrease in importance. Even
though quasi-harmonic approximation does not immediately fail, thermodynamic integration
will become more accurate and therefore preferable. Additionally, quasiharmonic approxi-
mation cannot calculate the free energy of structures with imaginary phonon modes which
limits its usage. In the case of phases which are not metastable, we can consider the two
MD simulations methods from the start of this section: Especially for solids, a simple MD

simulation is more convenient to set up than an interface between phases.

2.9 Titanium phase diagram

There exist three well known titanium phases [44]: a bce phase called 3, an hcp phase
called a and second hexagonal phase called @ [53]. Figure 2.1 shows the 2 atom cubic unit
cell of the B phase marked by black lines. The darker blue spheres represent the atoms of
the unit cell. The 2 atom unit cell of the & phase is displayed in Figure 2.2a in side view
and from the top in Figure 2.2b. It is denoted with black lines. Blue and orange coloured
spheres denote different layers. Darker colours in each layer signify the atoms of the unit
cell. The ¢/a ratio is 1.588 at room temperature [79]. The @ phase has three atoms per
unit cell [44]. The crystal structure and much detailed information about the @ phase can
be found in Ref. [80]. It can be seen from the side in Figure 2.3a and from the top Figure
2.3b. As for the o phase, layers are distinguished by orange and blue colouring with darker
colours in each layer denoting the atoms which are part of the unit cell. The unit cell is
marked with black lines. The room temperature and 1 atm pressure ¢/a ratio is ca 0.608
according to the lattice constants given by Ref. [50]. There are indications of other phases
at very high pressures [44]. Figure 2.4 depicts different experimental predictions for the
equilibrium phase transition lines from the literature. Errandonea ef al. [81] present 12

experimental melting temperature values for pressures up to ca 80 GPa. Their fit to these
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presented in Ref. [81] (fit data from Ref. [82]), is denoted by an orange dashed line. The
melting transition temperature curve fitted to experimental data by Stutzmann et al. [83] is
given by a brown dashed line. I also present various experimental predictions for the solid
part of the phase diagram with solid lines. The linear extrapolations of the ¢ to w transition
lines are denoted by the dashed continuations. One sees the predictions according to Bundy
[84] (cyan), Zil’bersteyn et al. [85] (magenta), Tonkov and Ponyatovsky [50] (blue) and
Zhang at al. [51] (red). The experimental o to @ transition line slope found by Zhang et
al. is 345 K/GPa [51]. This is very different from 93 K/GPa, the value reported by Tonkov
[50]. Based on this new slope, Zhang et al. recalculate the phase diagram of Tonkov [86]
as quoted by them [51] correcting the position of the triple point from 8.0 0.7 GPa and
913£50 K reported by Tonkov [86] as quoted by Zhang et al. [51] to 7.5 GPa and 913 K [51].
As explained in Ref. [44], an experimental consensus has been reached only for few parts
of the solid part of the phase diagram. Especially, the onset of the w- transition is under
discussion [44]. At room temperature, different experimental studies place the transition
pressure in the relatively broad range from 2 GPa to 12 GPa [44].

Fig. 2.1 Sketch of the titanium 3 phase unit cell (marked with black lines). The 8 phase has
a bec structure. The dark blue coloured atoms are part of the two atom cubic unit cell.
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(a) (b)

Fig. 2.2 Sketches of the titanium o phase seen from the side (a) and from the top (b) lattices.
The a phase has an hcp structure with a ¢/a ratio of 1.588 at room temperature [79]. The
orange and blue coloured atoms denote different layers. The atoms coloured in a darker
colours in each layer are part of the two atom unit cell which is denoted with black lines.

o—90
o—9Q, Qo—QO
Q o
a
QO—90 QO—90
O—O0
(@) (b)

Fig. 2.3 Sketches of the titanium @ phase lattice from the side (a) and from the top (b). The
unit cell is marked with black lines. At room temperature, the @ phase has a ¢/a ratio of ca
0.608 based on the lattice constants given by Ref. [50]. As in Figures 2.2a and 2.2b, layers
are distinguished by orange and blue colouring. The darker colouring in each layer denotes
atoms within the unit cell.
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Fig. 2.4 Experimental titanium equilibrium phase transition line predictions. The melting
line predicted by Errandonea ef al. [81] provided via Ref. [82] is denoted by an orange
dashed line. The melting line of Stutzmann et al. [83] is given by a brown dashed line.
The other solid lines are predictions for the solid-solid transitions from Bundy [84] (cyan),
Zil’bersteyn et al. [85] (magenta), Tonkov and Ponyatovsky [50] (blue) and Zhang et al. [51]
(red). Dashed continuations of the solid-solid transition lines are linear extrapolations of
the specific a to @ transition lines towards 0 K. The curves given for the melting are from
fits to different experimental data [81-83]. The different titanium phases are labelled in the
diagram. The slope of the & to @ phase is under discussion [51, 44].
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2.10 The CuAu system — an example for eutectic behaviour

The CuAu phase diagram shows many different solid phases and an interesting melting
curve [42]. The melting behaviour is shown in Figure 2.6. We see the liquidus and solidus
temperature found by Bennett [87] quoted in Okamoto et al. [42] plotted against the atomic
percentage of copper apart from the melting temperatures of pure Au and pure Cu which
are from Ref. [88]. Above the liquidus temperature, the system is fully liquid. Conversely,
below the solidus temperature, the system is fully solid. In between these two temperatures,
solid phase and liquid phase coexist. The results for pure gold and copper are the ITS-
90 definitions [88] and represented by magenta empty squares. The ITS-90, the “The
International Temperature Scale of 19907, defines among others gold and copper as fixed
points for the experimental determination of temperatures [88]. The solidus values found
by Bennett [87] quoted in Okamoto et al. [42] are given by blue crosses. The liquidus
values found by Bennett [87] quoted in Okamoto et al. [42] are denoted by downwards
pointing orange triangles. The small dashes connecting the solidus points and the longer
dashes connecting the liquidus points are only helplines. We can see the minimum resulting
from the mixing at a Cu part of ca 44 % and at a temperature of ca 1183 K found by Bennett
[87] quoted in Okamoto et al. [42]. This is an example of an eutectic system: The alloy
melts at a lower temperature than its pure constituents. This is due to the different enthalpies
of mixing for solids and liquids. More specifically, the enthalpy of mixing for the solid is
greater than the one for the liquid [89]. In the opposite case when the enthalpy of mixing
is smaller for solids than for liquids, we would see a maximum melting temperature for
one of the intermediate alloy compositions [89]. The minimum is the so called “eutectic
point”. At this point the liquid transforms directly to the solid. However, if we either lower
or increase the proportion of one of the alloy elements, one discovers regions where a liquid
phase of the alloy coexists with a solid phase of the alloy. We see from Figure 2.6 that
the phase of coexistence between the solidus and liquidus lines is however quite narrow in
temperature for CuAu. The maximum difference between the solidus temperature and the
liquidus temperature at any Cu percentage presented by Bennett [87] quoted in Okamoto et
al. [42] 1s 23 K at 90.8 % atomistic percentage Cu. Directly below the solidus, CuAu at any
atomic composition is in the fcc structure for which the species of the atoms is randomised,
while it shows a variety of ordered phases at lower temperatures [42]. The fcc unit cell is
shown in Figure 2.5. Dark green coloured atoms denote the atoms within the unit cell which

18 denoted with black lines.
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Fig. 2.5 The CuAu fcc unit cell below the solidus. The species of the atoms at each position
is randomised throughout the lattice. Dark green atoms denote the atoms within the unit cell
which is marked by black lines.
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Fig. 2.6 The eutectic curve of CuAu according to experiments. The y-axis is the temperature
in Kelvin. The x-axis denotes the atomic proportion of Cu in percent. Magenta empty
squares denote the melting temperatures according the ITS-90 definition [88]. Downwards
pointing orange triangles depict experimental values for the liquidus of Bennett [87] quoted
in Okamoto et al. [42]. The solidus experimental results of Bennett [87] quoted in Okamoto
et al. [42] are given by blue x symbols. The dashed black lines connecting the data points
(short dashes for the solidus, longer dashes for the liquidus) are only a guide for the eyes.






Chapter 3
CuAu results

In this chapter, I present my work on improving a CuAu EAM [39-41] by fitting it with a
Nelder-Mead algorithm [35] to reproduce the melting curve. The salient parameters for the
nested sampling calculations are listed in Section A.3. I have elaborated on the approach in
Section 1.2. The main idea is to start with a relatively easy target—fitting the pure Au melting
temperature—and then increase the complexity by fitting anew to different transitions until
the eutectic curve is sufficiently predicted by the fitted potential. However, before I cover the
results of the fitting procedure for the interatomic potential, I present a number of technical
details as well as some demonstration of the analysis of the nested sampling simulations.
First, I present technical details of the EAM [39—41], of nested sampling with pymatnest [45]
and of the analysis of the nested sampling calculation outputs in Section 3.1 to 3.4. Section
3.5 is a demonstration of identifying the phase below the melting temperature. Section
3.6 deals with the extrapolation of the melting temperature with respect to the number of
atoms per simulation box in a nested sampling simulation. After covering details of the
methodology of the actual fitting procedure in Section 3.7 to Section 3.10, we turn our
attention to fitting of the pure Au part of the potential to the Au melting transition in Section
3.11. Section 3.12 covers experimental results used in the fitting considered after this section.
Following this, the fitting of CuAu at a 50:50 ratio is covered in Section 3.13. Finally, in
Section 3.14, the results for simultaneously fitting the melting temperatures of pure Au, pure
Cu and CuAu at a 50:50 ratio are considered. I finish this section with a comparison of the
latest fitted potential and original potential [39—-41] as well as their performance on basic
properties of the fcc structure for pure Cu and Au. The nested sampling parameters are
based on the parameters used in Ref. [28] available in their supplementary material [43]
and are only very slightly modified compared to theirs. I use a pressure of 0.1 GPa for all
nested sampling runs presented in this chapter. To calculate a melting temperature, I use five

independent nested sampling runs. If not denoted differently, I use the standard error of the
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mean (SEM) from these five runs as its error. This error is then used in the error propagation
and in the extrapolation procedure to estimate the standard errors (SE). However, five values
lead to a large fluctuation in SE error estimate. To gain a more consistent estimate for the SE
of the temperatures calculated with nested sampling runs (especially for determining the end
of the fitting procedure), I use an average over the relative SEM gained from five independent
runs from several slightly modified potentials. I discuss the validity of this in Section 5.1.
I identify a disordered fcc phase just below the melting as expected from the experimental
phase diagram [42] (see Section 2.10). My fitting procedure did not change this.

3.1 A short note on the CuAu potential used in the thesis

The CuAu EAM potential (referred to also as original potential) on which I base my fitting
for CuAu presented in this thesis is itself a refit by Ward et al. [39] with a change to the
forms of some functions of an earlier potential by Zhou et al. [41]. It was used in Ref. [28]
to investigate the eutectic curve with nested sampling and can be found under Ref. [40].
The form of the potential is inspired by the EAM of Finnis and Sinnclair [90] which means
that ¢cyau (1) = Ocuau (1), but pg cuau (1) # Paaucu (r). This makes overall nine different
functions which make up the potential.

3.2 Details of the pymatnest nested sampling implementa-

tion and basic terminology

My nested sampling calculations presented in this thesis are conducted with pymatnest [45] of
Bernstein et al. which for my purposes relies on LAMMPS [74] to conduct the decorrelation
steps. In this work, LAMMPS [74] is used to evaluate interatomic potentials for all nested
sampling runs (see Section A.1 for more details on how interatomic potential are evaluated
in this thesis). In the following, I want to elaborate on certain details of this implementation.

pymatnest [45] can conduct several kinds of decorrelation walks: an enthalpy based
Markov chain Monte Carlo method (MCMC) applied on each atom separately [20], a
Galilean Monte Carlo method (GMC) [91, 92] [28] and a Hamiltonian Monte Carlo method
(HMC) [93] based method which considers the total enthalpy (TE-HMC) [28]. The first

method conducts a random walk of a single atom and then evaluates the enthalpy. The
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third method uses a MD walk to decorrelate the sample system, thereby moving all atoms
at the same time. In the following, N is the number of atoms per simulation cell. Even
when accounting for the fact that one would need N times as many MCMC steps to update
every atom, it was shown that TE-HMC is more efficient in converging nested sampling
[27, 28]. I therefore choose the TE-HMC options for all my Ti nested sampling calculations
and keep it for my CuAu nested sampling parameters which are slight modifications of the
nested sampling parameters used for CuAu [43] in Ref. [28]. The choice of HMC over
GMC is justified by the indication that, compared to TE-HMC, GMC likely requires more
computational resources for small number of atoms [28]. pymatnest offers to either conduct
the decorrelation scheme in blocks with a set number of steps or without these blocks. These
steps are a single MD step, volume step, cell shear step, cell stretch step and atom swap step
(necessary for systems with different atom types). In the case of blocks, the number of each
steps is in principle set while without blocks the moves are drawn at random. However, the
ratio of the moves to each other stays on average ideally the same. Additional to the number
of volume steps ny, cell shear steps 7,4, cell stretch step n e, and atom swap Steps ngyap,
one can also set the length of our MD trajectories L;,,; and the number of MD trajectories
per block. As mentioned before, even without using blocks, these numbers will then be used
to determine the relative step ratios.

Again, n,;; denotes the number of walkers culled per iteration. In the following, I will use
the expressions “calls per iteration”. It is always implied that this is the number of calls
per iteration per culled walker. In this case, “calls” denotes the total number L of potential
calling steps. A MD trajectory of length 4 is counted as 4 calls. A cell step also counts as 1
call. The number of atoms is always counted per simulation cell.

One can also profile a process by setting the “profile” option to a number starting from O to
Nproc — 1 where np. 1s the number of processes. pymatnest [45] allows us to analyse the
resulting files via its script ns_profile_analyse. This is very helpful for estimating the wall
time of a nested sampling run. It is also very useful for the investigation of the scaling with
number of processors.

Let us now consider the output of a nested sampling run. The files with the suffix “.energies”
incorporate the iteration number and the enthalpy of the respectively culled system. The
data of the systems culled by process number #proc can be found in the files with the suffix
“traj.#proc.extxyz”. These details include the atom position and cell vectors. The fraction
of saved systems per file can be controlled via the input parameters. Similarly, there exist
“.snapshot.#iter.#proc.extxyz” files where #iter represent the current iteration number. When
the nested sampling run finishes or whenever a certain controllable iteration interval has

passed, it saves the systems associated with each process to the respective files and deletes
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the previous file. One can restart a nested sampling run from the iteration of the respective
snapshot files by combining them to one file. The name of this file can then be used for the
input parameter “restart_file”. For some runs I have used a pymatnest [45] version which I
have modified slightly (more specifically the function “ns_run.py”) to reduce the output and
to enable only the process number O to save the trajectories. This is however abandoned later.
If not a single trajectory is used for analysis, I combine the trajectories via ns_process_traj, a

script shipped with pymatnest.

3.3 Parallelization - implementation

The two methods for parallelizing nested sampling with pymatnest [45] have been explained
in detail in Section 2.5.3. I now will consider their usage.

In all cases, pymatnest [45] decorrelates one walker per processor. I could confirm earlier
findings [33] for the TE-HMC decorrelation that indicated that the number of calls per
iteration can be kept relatively low for my calculations with the MEAM of Hennig et al. [15]
and that increasing the number of walkers is a more important factor for convergence. This
means, that the first method is limited as at some point the ratio L/ Nyalking between total walk
length L and number of walkers which are decorrelated per iteration 72,4, Will become
so small so that other parts of the program will dominate the computational cost. However,
as we can see in Section 4.4, n,;; also has to be kept small to allow for convergence. The

solution is a combination of both methods.

3.4 Identifying phase transitions

To identify phase transitions with nested sampling, I always calculate the heat capacity curve
at constant pressure. Peaks in the heat capacity are usually a sign that a phase transition
occurs. However, as for example demonstrated in Ref. [20], they may also indicate a Widom
line [94, 95]. As I focus on solid-solid and solid-liquid transitions, this is not of concern for
me. Due to the latent heat, the peak in heat capacity should be relatively clear for first order
transitions. Second order transitions should show a discontinuity in the heat capacity [89].

As nested sampling is a statistical algorithm, the peak position has a statistical fluctuations.
Hence, I estimate the transition temperature by averaging over a certain number of runs
(usually five). The standard error of the mean calculated from these runs (assuming a
Gaussian distribution for the fluctuations) is usually taken as an error estimate in this work.

Note that the results need to be sufficiently converged for this. One important criterion is
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that the independent runs for the same nested sampling parameters are relatively similar.
The more similar the resulting curves become, the better is the convergence. However, it is
possible to have similar runs which are not converged. For example, especially for a small
number of runs, all runs may miss a transition if the number of walkers are too small [32].
The identification of the phases is done via XRD patterns. For this, I usually thermally
average the trajectory samples with a weight from nested sampling. For this I created a
program which is now part of pymatnest [45] (see Section A.1). This program has already
been used to calculate thermally averaged XRD patterns to successfully identify phases in
Ref. [21].

To average quantities like the XRD pattern via the nested sampling trajectory file, one must
assign a probability to them. Let i;yq currens be the iteration number of the system in question.
itrajnext denotes the iteration number of the system following the current system in the
trajectory file. Similar to Equation 2.33, I approximate the probability of the current system

effectively as
- Hr /. CUTTFe
Ptrajcurrent = (OF (Ckcuwm — Cknm) e BHirajcurren . (3.1

Here Hyraj current 18 the enthalpy of our current system. I also use Keurrens = irraj current * Neull
and kpexr = ltrajnext - Newtt With ng,; equal to the number of culls per iteration. Chorrreny @0
8., are effectively the phase space volumes calculated during nested sampling. C is defined
by normalising the sum over all probabilities of the trajectory systems to 1. Note that |
assume that n.,; is considerably smaller than the interval at which culled walkers are saved.

3.5 A demonstration of phase transition identification for

pure Cu

To demonstrate the identification of the fcc phase for the different CuAu composition
calculations, I present thermally averaged XRD patterns averaged over 5 nested sampling
runs for 36 Cu atoms at different temperatures in Figure 3.1 as explained in Section 3.4.
This can only be done if the same phase is shown for all runs used in the averaging at
the temperature which one considers. If a phase does not appear or appears at a different
temperature, the mean over several runs cannot be used. (This averaging was not yet used for
the pure Au fitting of Section 3.11, but it is usually used during the other fitting procedures
presented in this Chapter.) I effectively use the original CuAu EAM [39-41] during the
nested sampling runs (vertex 1 in Section 3.14). The temperatures for the XRD pattern
predictions based on the nested sampling runs are 600 K (solid dark blue line), 700 K (solid
cyan line), 800 K (solid light blue line) and 900 (solid orange line). I also compare it to the
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XRD patterns of two reference structures: the fcc lattice (solid magenta line) and the ideal
hcp lattice (dashed grey line). The volume used in the construction of the reference lattices
is the thermally averaged volume at 600 K for run number 1 of the runs. The runs used for
averaging are the same as used for calculating the Cu melting temperature of vertex 1 in
the fitting of the melting curve in Section 3.14. The fcc XRD pattern becomes clearer with

decreasing temperature.

3.6 Melting extrapolation

In the following, I investigate the dependence of the melting temperature predicted by nested
sampling on the numbers of atoms N per simulation box. If not denoted differently, I use
the original CuAu EAM [39-41]. I fit two functions to melting temperatures for different
numbers of atoms to extrapolate the melting temperature for N — . To my knowledge,
such fitting has not yet been conducted in this form in the literature, though Baldock et
al. discuss the effects different numbers of atoms have on heat capacity peaks of phase
transitions based on nested sampling calculation results in Ref. [47]. In Figure 3.2a, we
see that the number of atoms has a strong effect on the melting temperature. The melting
temperature from nested sampling 7, is shown in Kelvin against the number of atoms N.
Error bars are statistical estimates from 5 independent runs. Red “+4’-symbols show data
which I will incorporate in an extrapolation scheme as I will explain in the following. The
blue “x” symbols depict values which will be excluded from the extrapolation schemes. The
fits from the different extrapolation schemes are signified with lines. Starting from 48 atoms,
the melting temperature decreases with increasing number of atoms. However, this is not
true for lower numbers of atoms. We see a decrease in melting temperature going from 24
atoms to 32 atoms. However, for 36 atoms the melting temperature increases again only to
decrease for 40 atoms. For 48 atoms the melting temperature increases again. Following this,
the melting temperature decreases monotonically. I attribute the aforementioned jumps in
melting temperature for small numbers of atoms to finite size effects. The next step is the
determination of the melting temperature value for N — oo. In the following I present two
empirical ways of extrapolating the temperature values.

For numbers of atoms greater or equal than 48, 1 linearly fit an k/N + h dependence as seen
in Figure 3.2b. Here, I show T, ;s Versus 1/N. T, n.s is the average melting temperature
of 5 nested sampling runs for a certain number of atoms N per simulation box. For N — oo,
one gains an extrapolated value for the melting temperature 7;, .. = h. We see that for
1/N > 1/40 = 0.25, the behaviour is not in line with the fitted k/N + h function. This is the

realm of the jumps as mentioned before when describing Figure 3.2a. The fitting results are
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mean Cu XRD, 900 K
mean Cu XRD, 800 K
mean Cu XRD, 700 K
mean Cu XRD, 600 K
ideal fcc XRD at 600 K for run 1
ideal hcp XRD at 600 K for run 1
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Fig. 3.1 Pure Cu XRD patterns averaged over 5 36 atoms nested sampling runs for 600 K
(solid dark blue line), 700 K (solid cyan line), 800 K (solid light blue line) and 900 K (solid
orange line). The runs are the same as the ones used for Cu for vertex 1 in Section 3.14. For
pure Cu, these use effectively the original CuAu EAM [39-41]. The reference structures
for the fcc reference XRD pattern (solid magenta line) and the hcp reference XRD pattern
(dashed grey line) are calculated with the volume thermally averaged for 600 K for run
number 1 of the 5 runs used for averaging. For the c¢/a ratio, I used the ideal value. We see
that the fcc phase can be clearly identified.
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=12700+2900K and 7 = 1052 £ 52 K.

In Figure 3.2c, we can see the same principle as for Figure 3.2b, just that 1/N? is used
on the horizontal axis. I fit T, exrapor (N) = k/N? +h. Again, temperature values for N
below or equal 40 and hence values for 1/N? > 1/40%> = 6.25-10~* are not part of the
fitting. We see however that for N values greater or equal 48, which is equivalent to
1/N? < 1/48% ~4.34-1074, the data follows the linear fit, the relation k/N? + h, relatively
well. The results are k = 427 +£49K and & = 1138 4+ 17 K. We can see that the k/N? + / fit
has much lower relative errors that the k/N + & fit. This indicates that k/N? 4/ is in principle
a better fit.

However, our potential fitting results which use the k/N + h fitting from Sections 3.13.1
and 3.13.2 are still of use. The main focus of these potential fittings is to demonstrate that the
fitting of potentials to experiments works in principle with my methodology. Recalculating
the extrapolation of retroactively is relatively easy for single transition fitting as long as the
resulting transition temperature is either always greater or smaller than the fitted value. This
is conducted in Section 3.13.2.

We have seen how one can extrapolate a melting temperature from a number of nested
sampling calculation. There is a relatively large finite size effect on the melting temperature
calculated with nested sampling with different number of atoms N for the CuAu EAM
[39—41] used in this thesis. Similarly strong dependence of the melting temperature and the
boiling temperature were shown before for nested sampling for the Lennard-Jones potential
[47]. However, it would be far too expensive to redo the aforementioned extrapolation for
every vertex of our fitting algorithm. Instead, I make the assumption that, for a specific alloy
composition, the ratio of the melting temperature predicted by a number of atoms N referred
to as T;, v and the predicted melting temperature for N — oo, T}, .., does not change much if
one only slightly changes the parameters of the potential. This “extrapolation constant” is
given by

TinN

kextrapol,N = T (3.2)
m,oo

and does depend on our extrapolation scheme as well as the number of atoms N used in the
reference nested sampling calculation. The nested sampling simulations used to determine
T,y are independent from the ones used to fit the behaviour of the melting temperature with
increasing number of atoms N. Indeed, the number of atoms used to calculate 7;, y in this
thesis is always lower than the minimum number of atoms used in the extrapolation. I am

able to estimate the melting temperature predicted by a slightly modified potential by

modified modified
Ty o éstimate = Kextwapol, N * Ty v : (3.3)
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Fig. 3.2 The melting temperature 7, in Kelvin predicted by nested sampling against the
number of atoms N for pure Au (a), the inverse of the number of atoms 1/N (b) and the
inverse of number of atoms squared 1/N? (c) for pure Au. Blue “x” symbols denote data
which is not included in the fits. The data signified for red “+’-symbols is included in the
fits. The different fits are given by lines as denoted in the figures. One can find a general
extrapolation rule for N < 48 which corresponds to 1/N > 1/48 ~2.1-1072 in Figure
b) and 1/N? < 1/48? ~ 4.34-10~* in Figure c). Finite size effects make the prediction
increasingly difficult for very small numbers of atoms. I conduct linear fits for Figure b) and
¢), fitting the function Ty, extrapor (N) = k/N +h and T, extrapor (N) = k/N? + h respectively.
The intersection of these fits with the vertical axis is the predicted melting temperature for
N — oo, Itis 1052 £ 52K for the 1/N fitting and 1138 4 17 K for the 1/N? fitting. I use the
original EAM [39—41] for these calculations.
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Here, the superscript “modified” denotes that we consider the results of the slightly modified
potential. This means that I only have to submit a batch of nested sampling calculations
for a relatively small number of atoms per simulation box whenever I want to approximate
the melting temperature of a slightly modified potential if I have already conducted an
extrapolation for the unmodified potential for this transition. The assumption that the
“extrapolation constant” does not change much for slight changes of the potential is supported
by the data presented in Tables 3.1a and 3.1b. Here, I list various “extrapolation constants”
for melting transitions with the original potential [39—41] and a modified version gained
from fitting to the CuAu 50:50 melting transitions in Section 3.13.2 (vertex 28). Here,
Kextrapol original denotes the constants gained from the calculations with the original potential
and Kextrapol modifiea denotes the constants gained from the calculations with the modified
potential. I use 36 atoms as the reference system for which I calculate Trf: K,dif ed for all results
presented in these tables. The two tables represent the different extrapolation schemes: Table
3.1a the 1/N scheme, Table 3.1b the 1/N? scheme. The last column represents the difference
between the extrapolation constants. For the 1/N extrapolation in Table 3.1a, the absolute
value of the difference is smaller than the error for all systems. For 1/N? in Table 3.1b,
the errors of the differences as well as of the extrapolation constants are as expected to be
smaller due to the smaller errors of 7}, . due to the 1 /N 2 fitting as mentioned earlier. The
absolute value of the difference is only smaller than the error for pure Cu. For CuAu 50:50
the absolute value of the difference is still smaller than twice the error. For Au however, with
my current error estimate, the difference lies outside the 2 SE realm. I estimate the error
for all melting temperatures used here from 5 nested sampling runs. However, as this error
estimate is only based on 5 runs, it fluctuates considerably. If one were to take the averaged
relative error from Section 3.14 for the 36 atoms calculations for the different transitions, the
difference would be 0.016 +0.009. This would be within the 2 SE realm. Overall, I conclude
that my assumption, that the extrapolation constant for a specific system stays the same for
small changes to the potential, is usable for the fitting conducted in this chapter. Given the
great disparity of my melting temperature predictions of the original EAM [39-41] from
experimental data (see for example Ref. [96], Ref. [88], Ref. [97] and the results of Bennett
[87] quoted in Okamoto et al. [42]) which is demonstrated for example in Figures 3.6 and
3.10 it is a suitable way to extrapolate the nested sampling calculations without conducting

runs for different numbers of atoms for each new potential.

3.7 The objective function used in the fitting procedure
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SyStem kextrapol,original kextrapol,modi fied kextrapol ;modified — kextrapol ,original
Au 0.7574+0.026  0.772+£0.02 0.0154+0.033
CuAu 50:50 | 0.731+0.03  0.750+£0.038 0.019+0.049
Cu 0.753+0.03  0.719+£0.048 —0.034+£0.056

(a) “extrapolation constant” Key qpor for 1 /N linear fits for different systems and EAM parameters as
well as differences between them with regards to the modification of the potential.

SyStem kexlrapolpriginal kexlrapol,modified kextrapol,modified — kextrapol,original
Au 0.8224+0.006  0.838 £0.004 0.016 +=0.007
CuAu 50:50 | 0.795+£0.013  0.82140.012 0.026 +0.017
Cu 0.806 £0.009 0.803+0.015 —0.003+0.018

(b) “extrapolation constant” Koyt qpo; for 1 /N 2 linear fits for different systems and EAM parameters as
well as differences between them with regards to the modification of the potential.

Table 3.1 The extrapolation constants for 36 atoms for different proportions of Cu and Au
and for different potentials and extrapolation schemes. Additionally, the tables show the
difference in extrapolation constants with regard to modification of the potential. I present
the “extrapolation constants™ for the original potential [39-411, kextrapot original> and the final
accepted vertex of the CuAu 50:50 fitting from Section 3.13.2, kexirapot modi fied (Vertex 28).
In Table (a), we see the extrapolation constants for the 1/N extrapolation scheme, while
Table (b) portrays the results for the 1 /N2 extrapolation scheme. The difference between
“extrapolation constants” is within 1 SE for the 1/N extrapolation. For the 1/N? extrapolation,
the difference is within the 1 SE realm for pure Cu, within the 2 SE realm for CuAu 50:50
and just outside of the 2 SE realm for pure Au.

I choose the Nelder-Mead method [35] for fitting the potential. I have elaborated on this
algorithm in Section 2.3. Firstly, I need an algorithm which does not need a derivative as
these are not known. Secondly, I need an algorithm which is sufficiently stable when the
data has a certain amount of statistical fluctuation, as all our phase transition temperature
predictions have a certain statistical error (see Section 3.4). As one can see from the algorithm
steps which are shown in Section 2.3, the order of the objective function values ordering
is the critical part of the Nelder-Mead algorithm [35]. It deals relatively well with random
noise, provided that this noise is not too strong, exactly due to this feature [63].

Inspired by least squares fitting, I choose the square root of the sum of quadratic differences

as the objective function for the case of fitting N phase transitions:

N
f ()_C’) = \/E (Ti,exp - Ti,extrapol (2))2 (3.4)

Here X represents the parameters of the model or the change from the original parameters of
the model. exp denotes experimental values while extrapol denotes values extrapolated from
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the nested sampling calculations. The sum is taken over the N phase transitions individually
counted by the index i. These phase transitions i can be of different kinds, for example
solid-solid or solid-liquid. Other parameters like alloy compositions or pressure can be
changed, as well. In principle, one could also not use a squared root and just use the sum as
for example done in Ref. [98] for a different kind of fitting data. The Nelder-Mead algorithm
does not use any derivatives but only relies on the ordering of the objective function values
[35]. Additionally, the function /x is a strictly increasing function for values x > 0. Hence,
the use of the square root does not make a difference as the order of objective functions of the
different vertices is not changed. My choice of objective function can however be interpreted
as a difference in temperature fitting space to the set of experimental temperatures. This
viewpoint is also closer to my geometric interpretation of the stopping criterion elaborated

on in Section 3.8.

3.8 Ending the Nelder-Mead algorithm

In this thesis, I use the abbreviation “SE” for the “standard error” and “SEM” for the
“standard error of the mean”. The standard error of the extrapolated melting temperature is
an important part of my criterion for ending the Nelder-Mead algorithm [35] as I will explain
in this Section.

In the original Nelder-Mead paper [35], a limit 4;;,, is chosen and the average f over all
objective functions f; of the current simplex is calculated. Nelder and Mead terminate the
algorithm as soon as the estimate of the standard deviation o for the distribution of objective

functions fulfils the following condition [35]:

v (F-f)°

of = N

< hyim (3.5)
Here we sum over all vertices i of the simplex. N is the number of dimensions of our problem.
The overall number of vertices per simplex is N + 1.

As my objective function values have a statistical fluctuation, I choose a different scheme. If
one fits only one transition temperature, the objective function of Equation 3.4 becomes just
the absolute value of the difference between experimental value and extrapolated transition
temperature. The statistical error of the difference is only due to the calculation of the
transition temperature with nested sampling. If the aforementioned absolute difference is

equal to two statistical standard errors of the difference, I consider the extrapolated transition
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temperature not to be significantly different from the experimental transition temperature.
Hence, the algorithm is stopped in this case. For the number of transitions N > 1, we
can consider the Mahalanobis distance [99]. The extrapolated transition temperatures are
independent. If we now assume that the estimate for the mean transition temperature for each
transition follows a Gaussian distribution with the SE which I calculate being equal to the

standard deviation of this distribution, we get the following function for the Mahalanobis

distance [100]:
o i T;’,exp - Ti,extrapol ()_C)) 2 (3.6)
i AT; |

Here, the notation is the same as for Equation 3.4 and AT; is the statistical error of T; ¢y rapor (X).

For a multidimensional Gaussian, a Mahalanobis distance of 2 is equivalent to 2 standard
deviations in one dimension [100]. Hence, I decide to accept a vertex as the final vertex if it
is the first vertex for which dy; < 2 is fulfilled. If we use the condition dj; < 2 together with
Equation 3.6, we arrive at the following equation which shall be my requirement to stop the
Nelder-Mead algorithm:

N Toxp—Ti @) >
) i,exp i,extrapol )
> \/ 2 ( AT (3.7)

i

Given that

I; exp — T; extrapol ()_C‘) ?
: : >0, 3.8
( AT, - 9

this is equivalent to

lextrapol _’) Tt'7exp 2
1> Z AT, : (3.9)

In the following, the i-th element of the vector T‘ex,mp,,l is defined as T; ¢xrqpor- The vector
Texp is defined equivalently. Let us now consider the N dimensional coordinate frame of all
considered transitions. For N = 2, Equation 3.9 requires that the point defined by T’mm pol
lies within an ellipse centred at the point defined by Texp. In this interpretation 2A7; and
2AT, are, depending on which one is larger, the semi-minor and semi-major axis of this
ellipse. These axes are oriented parallel to the x-axis and y-axis respectively. Similarly, for
N = 3, Equation 3.9, requires that Texm, pol lies within an equivalently defined ellipsoid.

3.9 Details of my own Nelder-Mead implementation
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The Nelder-Mead algorithm [35] is used for fitting the melting temperatures of melting
transitions for different alloy compositions. Even for calculating only the melting temperature
of one of the CuAu compositions, a converged nested sampling run which samples down to a
temperature sufficiently low to identify the solid phase below the melting can take very long,
for example over 6 hours with the parameters employed in Section 3.14 for 36 atoms. To
this, one also has to add a waiting time on the high performance computing cluster which
fluctuates depending on the time of day and date of submission. This means that I cannot just
use an existing implementation of the Nelder-Mead method and just calculate the objective
function via nested sampling. Instead, I have created my own implementation of the Nelder-
Mead method. The iteration is split in various substeps. If the objective function needs to
be evaluated, the relevant submission files are created and nested sampling simulations are
submitted. Then the program ends. These nested sampling simulations are conducted with
“pymatnest” [45]. Once the nested sampling simulations have finished, the user needs to
start the Nelder-Mead program again. The analysis is conducted in a similar fashion by my
implementation of the Nelder-Mead method. During the analysis the heat capacity curves
are calculated with the heat capacity calculation script of “pymatnest” [45]. XRD patterns
are calculated with the XRD pattern creation script of “pymatnest” [45] which I created
(see Section 3.4 and Section A.1). The XRD patterns are calculated for temperatures of the
user’s choice. Reference structures are automatically calculated as well. I use fcc and bece as
reference structures for the fitting presented in Section 3.11. For the other fittings presented
in Chapter 3, I also use an ideal hcp structure. Matplotlib [101] is used to show the heat
capacity curves and the XRD patterns. The user needs to confirm that the curves and the
XRD patterns are acceptable before the algorithm can proceed. This is done to discover any
convergence problems of nested sampling or the emergence of an unexpected phase during
the fitting. The algorithm can not yet fit potentials if the transition it is supposed to fit is not
predicted anymore by the modified potential. I also use various functions which I created
from the collection of miscellaneous functions misc_calc_lib.py [45] (see Section A.1). 1
tested the Nelder-Mead part of my implementation using the Rosenbrock function [102]
implementation of SciPy [103] against the SciPy [103] implementation of the Nelder-Mead
algorithm. I chose the Rosenbrock function as Nelder and Mead demonstrate the behaviour
of the Nelder-Mead algorithm among others with it [35]. During this process, new potential
files need to be created and the original CuAu potential [39-41] file needs to be read in. The
reading and writing in the required format, “eam/fs” [104], is done with the help of matscipy
[105]. The modification of the potential parameters is explained in Section 3.10.
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3.10 Fitting procedure

The CuAu potential [39-41] has 9 different functions with p, cuau (r) # Pa.aucy (r) but with
Ocuru (r) = Qaucy (r) (see Section 3.1). T simplify the potential for my fitting by replacing
Pa,CuAu () With Py aucy (7) as soon as I start with a modification of the functions. In principle,
one could refit the different parameters of the CuAu potential [39—41] functions [39, 41].
However, as the fitting is supposed to be a proof of principle, the modifications are kept simple.
Hence, I only changed the parameters by multiplying the functions Ua, (Pn), Pa.Audu (7).
Oauau (1), Ucu (Pn)s Pa,cucu (1), Ocucu (1), Paaucy (r) and @aucy (r) with parameters x; ,. The
index 7 in x; , denotes the vertex number. The index i stands for the coordinate dimension.
This defines the vector of the vertex X,,. The mapping of the original functions [39-41] to the

new once of vertex »n is as follows:

UAu7n (ph) UAu,orginal (Ph)
Pa.AuAun (I’) Pa,AuAu.orginal (l’)
¢AuAu,n (r) ¢AuAu70rginal (I’)

UCu,n (Ph) T UCu,orginal (ph)

(3.10)
pa,CuCu,n (I’)

pa,CuCu,()rginal (l’)

¢CuCu,n (l’) (Z)CuCu,orginal (I’)
Pa.AuCu.n (l’) Pa,AuCu.orginal (I”)
(PAuCu,n (r) ¢AuCu7orginal (r)

Here, the subscript “original” denotes that the function is the function of the original potential
[39-41]. The index n denotes that this is the function for the potential of vertex n. The
superscript T denotes a transposition of the vector X,,. For fitting pure Au, only the first
three elements of the vectors are used. The original potential file [39—-41] is used as basis
for definition of the functions. It approximates the parameters via spline nodes which I just
multiply to create the new potential. The parameter file format is “eam/fs” [104]. In general,
to write to the CuAu potential file and to extract the function values of the functions which
make up the potential, I use matscipy [105] (specifically, the “calculators” part). This is for
example used in my implementation of the Nelder-Mead algorithm (see Section 3.9) and for

the plotting of the functions in Section 3.14.1.

3.11 Au fitting

Let us now consider the first fitting trial. The complexity of the fitting will be increased in

later sections. The Nelder-Mead fitting scheme is tested for simulations with 24 atoms by
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fitting the melting temperature of pure gold through modifying only the functions Uy, (ph7 Au) ,
Pa,Au(r) and ¢ (r) (see Section 2.2.2). Here, the respective functions are multiplied with
their modification parameter as explained already in Section 3.10. Based on the results from
Section 3.6 presented in Figure 3.2b, one arrives at koxrapol,original (N = 24) = 0.78 +0.04.
The constant is based on a 1/N extrapolation. The reference melting temperature value for
N =241s 1348 £ 14 K. I use a value of 0.78 during the Nelder-Mead algorithm. I also use
1344 K as experimental value which I aim to fit. This is based on the formula for the melting
temperature 7;,, from Ref. [96]:

(3.11)

0.57
T =1 I+ ——
" 339< +16.1GPA>

Here, P is the pressure. My nested sampling calculations are conducted at P ~ 0.1 GPa
which using Equation 3.11 leads to a melting temperature of ca 1344 K. The temperature
one aims to fit is hence chosen as 7T;;,;, = 1344 K. Possible errors from the experiments, from
the fitting of Equation 3.11 as well as from the rounding of 7;,, will be much smaller than
the errors in extrapolating melting temperature for the potentials. The relative estimated
error for the “extrapolation constant” used in this Nelder-Mead fit alone is ca 5 %. For a
temperature extrapolated via this constant from nested sampling runs which has the same
value as the above mentioned experimental melting temperature of 1344 K, the error due to
the extrapolation constant alone is ca 68 K.

First trial runs of the scaling of ¢, 4, (r) led to the conclusion that multiplying the function
®auau (r) with 1.04 is a good first modification. As first vertex of my Au melting temperature
fitting, I take the original potential [39—41]. The other vertices are chosen so that each
represents the multiplication of a different function by a factor of 1.04. The resulting starting

simplex (iteration number i = 0) is

1.0 1.04 1.0 1.0
So = 1.0f,] 1.0 |,]1.04],] 1.0 . (3.12)
1.0 1.0 1.0 1.04

We see the fitting history in Figure 3.3. Here, the horizontal axis shows the iteration number
i. The vertical axis represents the objective function values of the simplex after the i-th
iteration. For the current procedure, the objective function simplifies to the absolute value
of the difference between experimental value and the melting temperature extrapolated
using Kexirapol original (N = 24). The results for the aforementioned starting simplex are
shown for iteration i = 0. The algorithm needs only 3 iterations to arrive at a difference

between the aimed temperature 7;;,, and the extrapolated temperature of vertex number 9 of
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Taim — T extrapol verrex 9 = —9 £ 14 K. The objective function is hence ca 9 K. The error here
is based on using an average of the statistical relative errors of the melting temperature of
all vertices calculated in this run and then multiplying this with the particular extrapolated
melting temperature. This difference already fulfils the stopping condition as the difference
between experimental value to which we fit and the extrapolated melting temperature is even

lower than 1 SE. The modification parameters of the accepted vertex are

1.0133333333333332
Xconverged = | 0.8666666666666661 | . (3.13)
1.1333333333333335

In Figure 3.3, one also notices two expansion steps in iteration 1 and 3 which were both
successful. They are responsible for the large decreases in the objective function value.
The reflection in iteration 2 leads to a relatively low value but fails to trigger an expansion
as it still slightly higher than the previous minimum. Using a not yet rounded value of
the extrapolation constant, the predicted melting temperature for the model of vertex 9 is
T extrapol vertex 9 = 1350 =70 K (rounded to closest 10 K). Here, I use the averaged relative
error mentioned above for the melting temperature of vertex 9 as well as the error of the
extrapolation constant (without any use of averaging) to calculate the overall error. After
this successful trial refitting of the Au part of the original potential [39—41], I can turn my

attention to fitting the full interatomic potential which I cover in the following sections.

3.12 Melting temperature values used in CuAu potential
fittings

For the melting temperature fitted to for the CuAu 50:50 melting fit of Section 3.13, I used an
estimate based on the data of Bennett [87] quoted in Okamoto et al. [42]. The closest alloy
composition value of Bennett [87] quoted by Okamoto et al. [42] to a 50:50 CuAu atomic
composition is a composition with 50.8 % Cu with a solidus temperature of 1184.15 K and
a liquidus temperature of 1187.15 K. I take these as CuAu 50:50 values and estimate the
melting temperature nested sampling would predict as the mean of both. This leads to a
melting temperature of 1185.65 K. For the fitting I use the rounded value of 1186 K. Without
any pressure stated for this data in Ref. [42], I assume that the pressure is ca 1 atm. I estimate
the error of this melting temperature estimate to be half of the solidus and liquidus difference
of the data of Bennett [87] quoted by Okamoto et al. [42] at 50.8 % Cu leading to an error
of 1.5 K. For the simultaneous fitting of the pure Au, pure Cu and CuAu 50:50 melting
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Fig. 3.3 The objective function values for the different vertices versus the iteration number i
for fitting the pure Au melting temperature with 24 atoms. The iteration number i denotes the
iteration which leads to the particular simplex. For i = 0, the objective functions values of the
initialisation simplex are listed. In only 3 iterations, the algorithm arrives at a suitably low
objective function value. We see the results of two successful expansion steps for iterations 1
and 3 which decrease the objective function value significantly. Iteration 2 does not lead to a
new minimum in the reflection step, hence an expansion is not conducted. The expansion
in iteration 3 leads to a objective function value of ca 9 K. The error of the extrapolated
melting temperature of this vertex is 14 K as explained in the main text (using the average of
relative SEMs of this fitting run). This puts the difference between aimed temperature and
extrapolated temperature — the absolute value of this difference is the objective function in
this case — clearly in the 1 SE realm of its own error. Hence the algorithm is stopped.



3.13 CuAu 50:50 fitting 55

transitions of Section 3.14, I use the same estimate for the CuAu 50:50 melting transition
as for fitting only the CuAu 50:50 melting in Section 3.13. For consistency, I also base my
values for the melting temperature of pure Cu and pure Au of values under a pressure of
1 atm. The melting temperature of pure Au is then 1337.33 K under the ITS-90 definition
[88] and the melting temperature of Cu is then 1357.77 K under the ITS-90 definition [88].
The melting temperature which I use in the actual fitting for Au is the rounded ITS-90 value
for Au presented above, 1337 K [88]. The Cu value used in the fitting is 1356 K, the rounded
value of the Cu melting temperature presented in Ref. [97]. Using 1358 K, the rounded value
of the ITS-90 definition [88], should in general have only a minimal influence due to the
large errors of the extrapolated melting temperature. Indeed, adjusting the objective functions
appropriately shows that in the specific fitting run conducted for this thesis, the final vertex
would have not been any different if I had used 1358 K, the rounded value of the ITS-90
value for Cu [88].

3.13 CuAu 50:50 fitting

3.13.1 24 atoms CuAu 50:50 fitting

Given the good results in Section 3.11, I now turn to fitting the CuAu potential to the CuAu
50:50 melting point which is close to the experimental eutectic point found for a ratio of
43.7:56.3 at a temperature of ca 1183 K by Bennett [87] quoted in Okamoto et al. [42].
Now, one needs to consider all eight different functions of the EAM as opposed to only
three for pure gold. I use 1536 calls instead of 768 calls per iteration which are used for the
pure Au fitting of Section 3.11 to ensure that the CuAu 50:50 results are converged. Given
the success with the Au fitting, I use the same idea of multiplying the different functions
by a factor of 1.04 to create my initial simplex as in Section 3.11. This initial simplex Sg
(iteration number i = 0) consists out of the first 9 vertices. This means that all vertices X ;
with [ € {1,2,...,7,8} have all elements equal to 1.0 except the /-th element which is set to
1.04. Vertex 1 is however the original potential with p, cuau (7) 7# Paaucu () [39-41]. All
other vertices have p, cuau (r) = Pa.aucy (r) (see Section 3.10). The extrapolation constant
is rounded to 0.73 and based on a 1/N extrapolation (see Table 3.1a). The Nelder-Mead
method implementation is run until iteration 14. After this point, the algorithm is stopped as
insufficient progress is made.

Figure 3.4 shows the objective functions values for all vertices of a simplex i after the new
vertex was accepted in iteration i against the iteration number i. The average over all relative

SEM of the nested sampling melting temperatures calculated for all vertices occurring in
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this fitting run is ca 0.020. This leads to estimated statistical errors of the extrapolated
transition temperature of ca 19 K to 21 K. To analyse the behaviour of the fitting, I calculate
the difference between the minimum and the maximum melting temperature for each simplex.
I use the above mentioned average relative error to estimate the error of these differences. The
maximum difference occurs for the starting simplex (i = 0) with 81 =28 K. The minimum
difference is 32 £29 K after iteration 14. The vertex accepted after iteration 2 is the last
simplex for which the difference does not lie within 2 SE. I interpret it as a sign that the
algorithm struggles to distinguish between the points. For example, in a single simplex, the
vertex with the minimum objective function value and the vertex with the maximum value
could have actually switched positions in their ordering with respect to the objective function
value if one repeated the respective simulations. The Nelder-Mead algorithm however relies
on the ordering of the vertices with respect to the objective function, hence small statistical
errors can be tolerated but large ones can lead to problems [63]. This may be the reason
why our Nelder-Mead method implementation converges very slowly compared to the fitting
of pure Au in Section 3.11. To reduce the statistical error of the objective function, the

algorithm is restarted with a higher number of atoms.

3.13.2 36 atoms CuAu 50:50 fitting

As mentioned before, to decrease the statistical error for the objective function, the number
of atoms per simulation box are increased to 36. All other nested sampling parameters stay
the same. The new extrapolation ratio for 36 atoms is 0.73 (see Table 3.1a). I also keep
my starting vertices but not the melting temperatures from the 24 atom CuAu 50:50 fitting.
In Figure 3.6, I present again the minimum objective function value of the vertices of the
simplex i against the iteration number i. After iteration 16 the algorithm is stopped with a
value of ca 7 K for vertex number 28 which satisfies the convergence criterion as explained

below. The corresponding vertex is given by the following vector:

1.032057742628968
0.828184436903102
1.0615115089749447
Fog = 0.9760511015017979 (3.14)
1.0180415643786564
1.0909789009427189
0.9828558369015812

1.0758726997708434
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Fig. 3.4 The objective function values for the different vertices versus the iteration number for
fitting CuAu 50:50 with 24 atoms. The algorithm is initialised for simplex 0. We only see one
successful reflection at iteration 7. The expansion is however not successful. After iteration 7,
the algorithm does not find a vertex with a lower objective function value for the time it is run.
The spread, the difference between maximum and minimum, of the objective function values
begins to shrink after the initialisation. The successful reflection in iteration 7 increases the
spread but the shrinking continues afterwards. The spread in the last 6 iterations is below
S0 K. The error for the difference between maximum and minimum melting temperature is
however ca 29 K for these runs, based on the average relative error of ca 0.020 mentioned in
the text. This puts the difference between the maximum and minimum objective function
values of these simplices in the 2 SE realm.
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The average relative statistical error of the melting temperature is ca 0.0074. The average is
again taken over all vertices of this particular fitting run. This leads to a statistical error of
the extrapolated melting temperature between ca 7 K and ca 9 K. As the objective function is
simply the absolute difference between extrapolated melting temperature and experimental
value, one can conclude that the difference of the accepted vertex is clearly within the 2 SE
realm. The vertex 28 is created during a reflection. The expansion triggered by this increases
however the objective function value and is hence ignored. The difference between minimum
and maximum transition temperature in each simplex is greater than twice the error. The
minimum difference is 36 == 11 K at iteration 1 and the maximum difference is 114 £ 12K
at iteration 12. I take this as an indication that, as opposed to the 24 atoms calculations in
Section 3.13.1, meaningful distinctions between the melting temperatures of the different
vertices are much likelier to be drawn.

The shift of the melting temperature is demonstrated in Figure 3.6. My predictions using
the original potential [39—41] are depicted with grey upwards pointing triangles and the
predictions of the new potential are denoted by orange + symbols. Blue “x” symbols denote
the ITS-90 definitions of Au and Cu [88]. The blue downwards pointing triangle is the
approximation calculated in Section 3.12 based on the experimental data of Bennett [87]
quoted in Okamoto et al. [42]. The error due to the way I estimate it (1.5 K, see Section
3.12) is much smaller than the symbol size and hence not shown. The melting temperature
predictions for the different potentials were calculated by fitting the function k/N + h as
explained in Section 3.6. The CuAu 50:50 melting transition is fitted very well as could
already be assumed from the 1 SE accordance of the melting temperature predicted during
the fitting. It was increased by ca 206 K from 995 £39K to 1201 £ 60 K. I approximate
the value the expected experimental as 1186 K as explained in Section 3.12 based on the
values of Bennett [87] quoted in Okamoto et al. [42]. This is the value to which the potential
is fitted. It is ca 15K below our 1/N extrapolation prediction. The pure gold value was
increased by ca 280 K from 1044 £36 K to 1324 35 K just ca 14 K below the value defined
in the ITS-90 of 1337.33 K [88]. However, my new potential is not able to reproduce the
characteristic eutectic melting curve of CuAu. The pure Cu melting temperature has been
increased, but only by ca 20 K from 1095 +£43 K to 1114 £ 73 K. This means that the change
is clearly not statistically significant. This is ca 243 K below the experimental melting point
of 1357.77 K which was defined at this value by ITS-90 [88].

We now consider how a different extrapolation scheme affects the results. To fit the melting
temperature versus number of atoms curve of the nested sampling calculations, 7, comp (N) =
k/N? + h may be more suitable as explained in Section 3.6. This leads to a new, in general

greater value for Kexrapol original (N). In this specific case the value is 0.795 +0.013 (see
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Fig. 3.5 The objective function values for the different vertices of each simplex versus the
iteration number in which they are accepted for fitting CuAu 50:50 with 36 atoms using the
1/N extrapolation constant. Again, the algorithm starts with the initialisation simplex at
iteration 0. We see expansions leading to considerably lower values of the objective function
at iterations 2, 7 and 12. During iteration 16 an expansion is triggered as well, but the
objective function increases due to it. Hence, just the reflection is used. The average relative
error of the the melting temperature is ca 0.0074 leading to error expectations of ca 7K to ca

9K.



60 CuAu results

1500 \ \ \ \
Estimate based on data of Ref. [87] quoted in Ref. [42] V
ITS-90 definition [88] K
B Original EAM [39-41] (using 1/N extrapolation) i
1400 Fit vertex 28 EAM (using 1/N extrapolation)
1300 [~ B 3
€ e
E 1200 “XF
1100 |~ B
1000 [~ |
\ \ \ \ \
900

0 25 50 75 100

Proportion of Cu [%]

Fig. 3.6 The melting curve for the new CuAu potential (assuming a 1/N fitting) after fitting
to the CuAu 50:50 melting transition (vertex number 28) in comparison to experimental
and my results using the original EAM potential [39—41]. We see the melting temperature
against the percentage of Copper. The blue “x” symbols are the values for pure Cu and
pure Au as defined by ITS-90 [88]. The blue downwards pointing triangle depicts my
approximation for the value at 50:50 CuAu as explained in Section 3.12 based on the values
of Bennett [87] quoted in Okamoto et al. [42]. The grey upwards pointing triangle depict
the values which I calculated with the original potential [39—41]. Finally, the orange “+”
symbols stand for results from the new modified potential. The melting temperatures of the
potentials are extrapolated from results from different number of atoms with the 1 /N scheme
as described in Section 3.6. The lines are only meant to be guides and not to be seen as
precise interpolation. The CuAu 50:50 value is in accordance with the estimate based on
experiments. The pure Au value has also improved considerably. However, the Cu value has
increased only very little so that it is now the minimum of the three presented values.
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Table 3.1b). As I extrapolate the melting temperature during the Nelder-Mead algorithm
just by multiplying with ey apor originat (N) One can use the same data as before to get the
objective function values as if Ty, comp (N) = k/N? + h were used all along. This works
without a problem as long as the new extrapolated melting temperature is smaller or equal the
experimental melting temperature. With the 1/N 2 extrapolation scheme, the Nelder-Mead
algorithm would have stopped after iteration 7 with vertex 17 as final vertex. The parameters

are given by the following vector:

1.0106726074218755
0.950775146484375
1.033172607421875

B 0.9892272949218752

Feomverged. 171 4 6050476074218757 (5-15)
1.033172607421875

0.9831726074218752

1.033172607421875

For this vertex, the difference between the melting temperature I aim for and the one predicted
with the extrapolation constant of 0.795 is 11 £ 8 K. Here, the error is calculated by the
average relative statistical error of ca 0.0074 which was estimated for the whole potential
fitting procedure which relies on the 1/N extrapolation constant mentioned at the start of
this subsection. In Figure 3.7, we see the melting curve predictions for the new potential
parameters of vertex 17 in comparison to experimental predictions and the original parameters
[39—41]. The new potential results are depicted with orange “+” symbols. The results for
the original potential [39—41] are given by the grey upwards pointing triangles. The ITS-90
definition of the Au and Cu melting temperature [88] are shown with blue “x” symbols.
The melting temperature for CuAu 50:50 is estimated from results of Bennett [87] quoted in
Okamoto et al. [42] as shown in Section 3.12 and represented by the blue downwards pointing
triangle. Lines are only guidelines. The melting temperatures using the original parameters
[39—41] were predicted via fitting T}, (N) = k/N? 4 h linearly as presented in Section 3.6.
The melting temperature predictions using the modified potential parameters of vertex 17
for pure Cu and Au prediction were calculated via the 1 /N2 scheme for nested sampling
runs for different number of atoms N. The CuAu 50:50 melting predictions were calculated
based on the extrapolation constant for 36 atoms gained from the original parameters 1/N?
extrapolation for CuAu 50:50 (see Table 3.1b). This extrapolation constant is then applied
on the melting temperature calculated for 36 atoms for vertex 17 during the EAM fitting. Its

error is calculated by using the SEM of the melting temperature for vertex 17 and the error of
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Fig. 3.7 The melting curve for the new CuAu potential (assuming a 1 /N 2 extrapolation) after
fitting to the CuAu 50:50 melting transition in comparison to experimental values and my
results from the original potential[39-41]. Again, the experimental values for pure Au and
Cu [88] are denoted with blue “x” symbols while the estimate for the CuAu 50:50 expected
melting temperature is signified by a downwards pointing blue triangle estimated from the
results of Bennett [87] quoted in Okamoto et al. [42]. Grey upwards pointing triangles stand
for my predictions using the original potential[39—41]. The modified potential results (vertex
17) are represented by orange symbols. Orange “4” symbols represent values for which an
1/N? extrapolation has been conducted. For the empty orange square, I use an extrapolation
constant of ca 0.795 (see Table 3.1b, for the original potential). Note that the fitted potential
is different from the one presented in Figure 3.6 as the 1/N? extrapolation would have let the
algorithm stop earlier. The CuAu 50:50 predictions of the new potential are in accordance
with the experimental result as it was fitted to this value. The Au and Cu behaviour has also
been improved and the eutectic behaviour has been preserved. However, the pure Au and Cu
prediction is still significantly lower than the experimental values.
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the extrapolation constant. The extrapolation constant is 0.795£0.013 K as mentioned above.
The melting temperature predicted by the EAM of vertex 17 is 1478 £ 12 K. This yields a
predicted temperature of 1175+ 21 K. The CuAu 50:50 melting prediction is in accordance
with experiments, as it was fitted to the experimental value of 1186 K as estimated in Section
3.12 based on the results of Bennett [87] quoted in Okamoto et al. [42]. It was increased by
ca 92 K. For pure Au, the vertex 17 potential predicts a ca 110 K higher value than the original
increasing the melting temperature from 1134 £7 K to 1243 4+ 14 K. This is still ca 94K
below the value defined in ITS-90 of 1337.33 K [88]. For pure Cu, we can see an increase
of only ca 23K from 1172+ 12K to 1194 4 18 K. This is ca 163 K lower than the ITS-90
defined value for pure Au of 1357.77 K [88]. As for the potential of vertex 28 of the 36 atoms
CuAu 50:50 fitting, the improvement of the Au temperature is not significant. Opposed to
the earlier results presented in Figure 3.4, the eutectic curve was preserved. However, the
pure metal melting temperature predictions are both still significantly below the experimental
values. The preserving of the eutectic curve may have just been the fact that only 17 vertices
were calculated in this case as opposed to the 28 vertices in the 1/N extrapolation based
Nelder-Mead fitting. This means that the chance of changing the qualitative behaviour of the
melting curve is just lower for vertex 17. To conclude, even though the fitting has led to a
certain improvement of the prediction of the eutectic curve, the predicted melting curve is
not in accordance with the experimental melting curve shown in Figure 3.7. Hence, I turn to

fitting several transitions simultaneously in Section 3.14.

3.14 Fitting pure Cu, pure Au and CuAu 50:50 simultane-

ously

After having successfully fitted the CuAu melting transition for a 50:50 ratio alone, I now turn
to fitting this melting transition as well as the pure copper and pure gold melting transitions at
the same time. The hope is that fitting anew to more melting transitions yields an interatomic
potential that reproduces the eutectic curve better than the one fitted for just the CuAu 50:50
transition. For the simultaneous fitting, the objective function f, is not as simple as in the
previous sections. It is the general form defined in Equation 3.4, the square root of the sum

over the quadratic differences:

N
@)= \/ Y. (Tiexp = Ticomp)? (3.16)
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I have updated my own Nelder-Mead implementation to deal with more than one transition
and to calculate the above given objective function. To summarise, one just needs to submit
additional nested sampling and analysis runs for each additional transition and calculate the
resulting objective function. The Nelder-Mead algorithm itself does not need a modification.
['use 36 atoms, 1152 walkers and n.,;; = 8 to investigate all transitions. For the pure elements,
768 calls per iteration are used. For the CuAu 50:50 nested sampling calculations, I use
1536 calls. The extrapolation of the melting temperature is conducted as explained before in
Section 3.6. This time, I use fitting of k/N? 4 h instead of k/N + h from the start to get the
extrapolation constant. I chose the 1/N? fit, as it yields a better fit as explained in Section
3.6. The resulting extrapolation constants are 0.822 +0.006 for Au, 0.795 +0.013 for CuAu
50:50 and 0.806 £ 0.009 for Cu (see Table 3.1b). I use these constants rounded to the third
decimal place in the Nelder-Mead algorithm. I start with nearly the same vertices as in
Sections 3.13.1 and 3.13.2. However, my first vertex represents not anymore the original
potential [39-41]. Instead it represents a modification to it where p, cuau (r) is already
replaced with pg aucy (7).

In Figure 3.8, we see the objective function values of the vertices of each simplex for
each iteration. Iteration 0 shows our initialisation simplex values. There are successful
expansion steps at iteration 1, 6 and 22. These expansions lead to considerably decreases of
the objective function. During iteration 11, 12 and 14 expansions are tried by the algorithm,
but are unsuccessful. Iteration 14, the decrease of the objective function is quite large, even
though it is only due to a reflection step. Even though the algorithm fits to thrice as many
values than it does to for the CuAu 50:50 ratio fitting, it takes only 22 iterations (not counting
the initialisation) until the algorithm can be stopped. For the CuAu 50:50 ratio fitting, 16
iterations are needed.

The final accepted vertex is vertex number 38 after iteration 22 with a value of ca 11 K. It is
given by:

0.936319511505266
0.879322040542473
1.0649616570066303
Tog = 1.107900241381125 (3.17)
0.9674411022153587

1.114130915849804
1.0280473746351468
0.9825709539503822

This is the first vertex for which the 2 SE ellipsoid as defined in Section 3.8 contains the

position vector of the extrapolated melting temperatures T’mmm pol- This is demonstrated
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Fig. 3.8 The objective function values for the different vertices of each simplex versus the
iteration number. The algorithm is initialised at iteration 0. In iteration number 1, the
algorithm already conducts an expansion leading to a new vertex for which the objective
function is considerably closer to 0 K. Further successful expansion steps during iteration 6
and 22 drive the value down further. The leap at iteration 14 is due to a reflection for which
the subsequent expansion fails. There are also failed expansions st iteration 11 and 12. The
algorithm arrives at a final value of ca 11 K after iteration 22.
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Fig. 3.9 Demonstration that vertex 38 of simultaneous fitting the Au, CuAu 50:50 and Cu
melting temperatures is in the 2 SE ellipsoid based on the averaged statistical relative error.
For better visibility, the coordinate system is shifted by —T"mxxp so that 7717 exp 1s at the source
of the coordinate frame. A blue mesh indicates the 2 SE ellipsoid. Using the grey auxiliary
lines, one can see that the point defined by i
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in Figure 3.9. Here, I shifted the coordinate frame of melting temperatures by —T"m7exp, the
position vector of the melting temperatures to which I fit, and show the difference in melting

temperatures defined as follows:

ATm,Cu Tm,Cu - Tm,exp.,Cu
ATy, = ATm,Au = Tm,Au - Tm,exp,Au (3.13)
ATm,CuAu Tm,CuAu - Tm,exp,CuAu

Here, T, exp.cu/Au/cuan 18 the experimental melting temperature used in the fitting for the
different compositions of the system. They are based on the values of Bennett [87] quoted
in Okamoto et al. [42] for CuAu 50:50, on Ref. [97] for Cu and on Ref. [88] for Au as
explained in Section 3.12. T}, ¢, /4u/cuau 18 an arbitrary melting temperature for Cu, Au or

CuAu 50:50. In the new coordinate frame, the position vector T‘mﬁ,m pol becomes:

Tm,extrapol,Cu — Imexp,Cu —0.8K
—), —~
Tm,extrapol = Tm,extrapol,Au — Imexp,Au ~ 1.2K (319)
Tm,extmpol,CuAu - Tm,exp,CuAu 11.3K

T extrapol Cu/Au/Cuu 18 the melting temperature for the different compositions of the system
extrapolated from the 36 atoms nested sampling calculation via the extrapolation constant
used during the fitting. The top of the ellipsoid is indicated by a blue mesh. Its principle
semi-axes are equal to twice the statistical errors. To determine these statistical errors for
the specific transitions, I use the average relative SEM of the heat capacity peak position of
each vertex calculated during the fitting procedure. Via the grey helplines, we can see that

the point defined by the position vector T denoted with the orange “x” symbol, is

m.extrapol’
in the ellipsoid. For a more analytically measurg, we can use the Mahalanobis distance [99]
as mentioned in Section 3.8. It is ca 1.3 showing clearly that mexp and Tm7ex,,ap(,l are not
significantly different.

In Figure 3.10 we see my melting curve predictions for the modified potential (vertex 38), for
the original potential [39—41], the melting temperature estimated for CuAu 50:50 based on
experimental values of Bennett [87] quoted in Okamoto et al. [42] calculated as explained
in Section 3.12 as well as the ITS-90 definitions for pure Cu and Au [88]. The l/N2
extrapolation is used for the original potential predictions which are given by grey upwards
pointing triangles. This allows for the calculation of the extrapolation constants shown in
Table 3.1b. For the predictions for the vertex 38 potential, I use these extrapolation constants
whose rounded values were used originally for the EAM fitting. The reference values are

the melting temperatures calculated for vertex 38 during the EAM fitting procedure. The
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Fig. 3.10 The CuAu melting curve using the original potential [39—41], the modified potential
(vertex 38) and experimental data in dependence of the atomic percentage of Cu. The results
using the original potential are depicted through upwards pointing grey triangles. The blue
“x” symbols signify the melting temperature for pure Au and Cu [88]. The downwards
pointing blue triangle is my estimation based on the results of Bennett [87] quoted in Okamoto
et al. [42]. The eutectic behaviour is preserved after the optimisation. We achieved very
good accordance with the experiments increasing the melting temperature by ca 204 K for
pure Au, by ca 115 K for CuAu 50:50 and by ca 183 K for pure Cu. The original potential
[39—41] predictions and their error are calculated using the 1/N? extrapolation. The results
for the final accepted potential are calculated using the extrapolation constants gained in the
aforementioned 1/ N2 extrapolation for the original potential [39—41] (see Table 3.1b). The
errors are based on the error of the extrapolation constant and the statistical SEM of the 5
nested sampling runs used as reference for each alloy composition. For each composition,
the experimental melting temperature is within the standard error of the melting temperature
predicted by the new potential.
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resulting extrapolated values are signified by orange “+” symbols. Blue “x” symbols denote
the experimental Au and Cu values [88]. The downwards pointing triangle signifies the
melting temperature estimate based on the experimental data of Bennett [87] quoted in
Okamoto et al. [42]. The errors of the original potential melting temperatures are based
on the extrapolation as described in Section 3.6. Note that the error used to construct the
ellipsoid in Figure 3.9 is the statistical error gained from averaging the relative errors. For
the error calculation of the melting temperatures of the final vertex, I use the error originally
estimated from the 5 different nested sampling runs per transition of vertex 38, which is
different from the averaged relative error. I also included the error of the extrapolation
constants. We see that the eutectic melting curve of the CuAu alloy can be reproduced very
well for the investigated points. The pure Au melting temperature of the new potential was
increased by ca 204 K from 1134 +7 K to 1338 + 12 K. The melting temperature of the 50:50
CuAu melting transition is much higher as well for the new potential at 1197 20 K. This
is an increase of ca 115 K from the original prediction of 1083 4 13 K. For the Cu melting
temperature, the new potential predicts a melting temperature increased by ca 183 K from
1172+ 12K to 1355 4+ 16 K. For the pure Au and Cu systems, the experimental values are
the values defined in the ITS-90 for Au, 1337.33 K, and Cu, 1357.77 K [88]. The CuAu
melting temperature was estimated as explained in Section 3.12 based on the experimental
data of Bennett [87] quoted in Okamoto et al. [42] to be 1186 K. All experimental points are
within one standard error of the new melting temperature estimates. Note that this is not very
surprising as these values were fitted to values close to the experimental values presented in
Figure 3.10 in the first place. As mentioned in Section 3.12 the values fitted to are based on
values of Bennett [87] quoted in Okamoto et al. [42] and Ref. [97]. Additionally, the total
error is greater than just the statistical error which was used to terminate the Nelder-Mead
algorithm after reaching the 2 SE ellipsoid as define in Section 3.8. This is due to the fact
that we need to include the error of the extrapolation constant.

3.14.1 The new functions, elastic constants, lattice parameters and vol-

umes per atom

As the most recently created interatomic potential reproduces the eutectic curve very well, I
turn to the last step of my approach of Section 1.2: comparing basic features of the new and
original EAM [39—41]. This way, we can see how much the new potential deviates from the
original potential and see how it performs now for basics properties which are not included
directly in my fitting.

In the following, I turn my attention to the different functions which make up the original
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CuAu EAM [39—41] and the EAM of vertex 38 from the simultaneous fitting of the melting
temperature of Au, CuAu 50:50 and Cu. I compare the embedding functions in Figure 3.11
and the functions the different ¢ (r) and p, (r) functions which depend only on the distance r
between a pair of atoms in Figures 3.12 and 3.13. In all Subfigures, I have used blue dashed
lines to signify the functions for the original CuAu EAM [39—41] and orange solid lines to
signify the functions of the modified potential of vertex 38. Interestingly, the embedding
functions Uc, (py,) shown in Figure 3.11a are very different from the one shown for Au in
Figure 3.11b. The Au embedding functions show a minimum, while the Cu functions do not
show a minimum. At some point between a host density between 50 and 100, they start to
behave linearly with a negative slope. The effect of the modification on the Cu embedding
function is stronger than for the Au embedding function, though both are clearly visible. The
pair potential part of the EAM is shown in Figures 3.12a, 3.12b and 3.12c. In all cases, one
can see a minimum and a repulsive behaviour for lower radii. For the Cu-Cu interaction
(Figure 3.12a) the effect of the fit is strongest decreasing the minimum energy. The same
happens in a lesser manner for the Au-Au interaction (Figure 3.12c¢). The change of the
Au-Cu interaction modification (Figure 3.12a) is barely visible showing a very small increase
in the energy value of the minimum. The pair functions p, (r) over which one sums to create
the host density are portrayed in Figure 3.13a, 3.13b, 3.13c and 3.13d. The distance between
the atoms of a pair is given again by r. Apart from a short period which is probably due to
small numerical errors, the density pair functions do not have values below 0. The functions
show a strong increase with decreasing number of atoms below ca 4 A. The changes to
the Cu-Cu and Au-Cu pair density functions shown in Figure 3.13a and 3.13c respectively,
are barely visible. The Au-Au pair density function presented in Figure 3.13b changed
visibly. The function value is lowered which means that high function values reached with
the original potential [39—41] are now reached at a slightly lower atomic distance than before.
The behaviour of pcya, (r) is changed in a different manner as it is replaced by paucy (r). The
overall change however is relatively small. For distances below ca 4.32 A, the new potential
pair density function is smaller than the original one. For distances above ca 432 A the
original one is smaller and decreases much more quickly to a value close to O for increasing
r.

In Table 3.2, I show my results for the different elastic constants, the lattice constant and
the volume per atom for the fcc lattice for Cu (Subtable 3.2a) and Au (Subtable 3.2b) using
the original potential EAM [39—-41] and the potential of vertex 38 of the simultaneous fitting
of Cu, CuAu 50:50 and Au. Additionally, I include experimental values for comparison. The
experimental values for the elastic constants of Cu are extrapolations to 0 K conducted in

Ref. [106]. Similarly, for Au, the experimental elastic constant values were also extrapolated
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from experimental data to O K in Ref. [107]. I use finite difference to calculate the elastic
constants at 0 K. For this, I use scripts by Aidan Thompson [108] which are part of LAMMPS
[74, 109]. I adjusted them very slightly for my purposes. The starting structures are first
relaxed. After the application of finite differences, the atomic positions are relaxed again.
For these relaxations, a conjugate gradient scheme [110] is used. The lattice constants for
the starting structures of Cu and Au (3.6 Aand4.1A respectively) are rounded values of the
results of Ref. [111]. For Cu, the values predicted by the EAM potentials are in agreement,
except for the c1; value and to a lesser extent the ¢, value. The ¢y value of the newly fitted
potential is ca 28 % lower than the one for the original potential. The ¢, value of the newly
fitted potential is ca 10 % higher than the one for the original potential. For Au, the changes
are relatively strong. The modification leads to an increase of ca 30 % for ¢, ca 9 % for ¢
and ca 30 % for c44. The decrease for the lattice constant is only ca 1.5 %, leading to a volume
per atom decrease of ca 4.6 %. This is only a slight change, but clearly more than for the Cu
fcc phase, which shows decreased of ca 0.1 % for the lattice constant and and ca 0.3 % for
the volume per atom. Overall, my new potential predicts elastic constants in good agreement
with the experimental results [106, 107]: On average, the elastic constants are improved from
the predictions of the original potential [39—41], especially for the c¢;; constant of Cu. The
experimental lattice constant values for Cu [112] and Au [50] are represent both values for
ca 298 K. In the case of Au, the deviation due to modification is much stronger than for Cu
for which the deviations are very small. The modified potential value for the Au volume per
atom is ca 5 % smaller than the volume per atom value based on the lattice constants value of
Ref. [50].
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Fig. 3.11 Comparison of the embedding functions of the original CuAu [39—41] and the
potential of vertex 38 from the simultaneous Au, CuAu 50:50 and Cu melting temperature
fitting. Blue dashed lines represent the original functions while solid orange lines show the
functions of my new potential
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Fig. 3.12 The pair interaction part (¢ (r)) of the potential before and after the fitting. The
distance between a pair of two atoms is given with r. Blue dashed lines denote the functions
for the original potential [39-41]. The orange solid lines are the functions of the new potential

of vertex 38. This vertex is gotten by the potential of vertex 38 from the simultaneous fitting
of the Au, CuAu 50:50 and Cu melting temperatures.
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Fig. 3.13 Comparison of the pair interaction parts of the host density(p, (r) for the original
CuAu potential [39-41] denoted by blue dashed lines and the potential of vertex 38 from the

simultaneous Au, CuAu 50:50 and Cu melting temperature fitting denoted by solid orange
lines. Here r is the distance between an atomic pair.
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quantity | original CuAu potential [39-41] vertex 38 experiments
c11 [GPa] 280 202 176

c12 [GPa] 137 150 125

cq4 [GPa] 89 88 82
a[A] 3.614 3.610 3.615
Vi [AY] 11.80 11.76 11.81

(a) Cu elastic constants (c11, ¢12 and ca4), lattice constant (a) and volume per atom (V,,) for an fcc
lattice which I calculated for the original CuAu potential [39—41] and the potential for vertex 38
of the three transitions fitting. The experimental values reported for the elastic constants are are
extrapolations to 0 K from Ref. [106]. The experimental lattice constant value is from Ref. [112] for
ca 298 K and used to calculate the volume per atom.

quantity | original CuAu potential [39—41] vertex 38 experiments
c11 [GPa] 165 215 202

c12 [GPa] 156 170 170

ca4 [GPa] 40 60 45
a[A] 4.078 4.015 4.079
Vi [A°] 16.95 16.18 16.96

(b) Au elastic constants (c;1, ¢12 and c44), lattice constant (a) and volume per atom (V) for an fcc
lattice which I calculated for the original CuAu potential [39—41] and the potential for vertex 38 of
three transitions fitting. The experimental values for the elastic constants are are extrapolations to 0 K
from Ref. [107] based on their experiments. The experimental lattice constant value (at ca 298 K) is
taken from Ref. [50]. I use the precise value of 4.0785 A given in Ref. [50] to calculate the volume
per atom.

Table 3.2 Comparison of several basic quantities of the fcc phase. I present values which
I have calculated using the original CuAu potential [39—41] and the fitted potential based
on it for vertex 38 gained in the simultaneous fitting of the Cu, CuAu 50:50 and Au melting
temperatures. Experimental values are also included.



Chapter 4

Titanium results

4.1 Titanium results introduction

In this chapter, I present my work on the titanium MEAM potential of Hennig et al. [15] as
well as later my work relating to my modifications to it. The aim is to created a modification of
the MEAM of Hennig et al. [15] which predicts the experimental phase diagram sufficiently
well. I have listed the salient parameters for the nested sampling calculations in Section A.3.
The most important technical details relating to the methodology of my nested sampling
calculations with pymatnest [45] are already covered in Section 3.2 to Section 3.4. Hence,
these are not repeated here. First, I determine which are the important factors for convergence
of pymatnest [45] in this specific case. Afterwards, I start with the approach as given in
Section 1.2. First, the original potential [15] predictions for the phase diagram need to be
investigated. Hence, I turn my attention to the effects of different numbers of atoms on the
phase diagram predicted with nested sampling. To get a better understanding of the phase
diagram for a number of atoms per simulation box outside of the capabilities of pymatnest, 1
consider thermodynamic integration predictions in Section 4.6. In this section, I also elaborate
on the technical details of the methodology of the nonequilibirum approach [48, 49] which 1
use. [ also compare the energies predicted by the original MEAM [15] to DFT energies for a
number of sampled structures in Section 4.7. For all these calculations using an interatomic
potential which are presented in Sections 4.2 to 4.7, I only use the original potential of Hennig
et al. [15]. Once an understanding of the phase diagram predicted by the original MEAM
[15] for large numbers of atoms is reached, the actual modification of the original MEAM
can be started in Section 4.8. Here, I cover different modifications to the potential which I test
with nested sampling. As before, the finite size effects for large numbers of atoms need to be
considered. Similar to my original potential [15] calculations, I consider the phase diagram

of the final accepted version of the modified MEAM with thermodynamic integration and
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MD simulations, as the cost of the nested sampling calculations would be too high for this.
This is followed by testing how the new potential performs for the aforementioned sampled
structures (see Section 4.9). In Section 4.10, I cover how much the potential function has
changed and how the new interatomic potential performs for predicting basic quantities of
the o, B and @ phase.

Noam Bernstein and Livia Bartok-Pértay found that culling more than one walker per iteration
can lead to convergence problems [113], hence I use low numbers of culls and tested the
influence of the number of culls in Section 4.4. From my results in Section 4.4, I deduce that
the n,;; values of n.,;; = 120 and n.,;; = 480 used by myself in Ref. [33] are too high. It is
therefore not clear in which sense the conclusions of Ref. [33] are still correct. Nevertheless,
the input parameter values employed to gain the results of Ref. [33] are used as starting
points for the parameters used for the work presented in this report. Additionally, I have to
choose a number of atoms per box so that expected phases can be described [27]. This was
not the case in Ref. [33]. Due to the problems of too high n,;; values and wrong number of
atoms per simulation cell, it was necessary to repeat the convergence studies of Ref. [33]. If
not denoted differently, the error of the transition temperature is the SEM estimated via the
independent nested sampling runs with the same parameters.

4.2 Convergence with walker number

In this Section, I present convergence studies for the walker number: Figure 4.1 shows a
batch of five runs for each 3840 (Figure 4.1a), 7680 (Figure 4.1b) and 15360 (Figure 4.1c¢)
walkers. For all runs, I only culled one walker per iteration. The pressure is kept at 10 GPa
and the number of calls per iteration is 840 for Figure 4.1a and Figure 4.1b and 672 for
Figure 4.1c. The number of atoms is 54. The other parameters stay the same for all the runs.
In the majority of curves, we can identify three peaks. Their average positions for each five
runs batch are in between 500 and 600 K for the lowest peak (@ to o phase transition), in
between 1450 K and 1500 K for the second peak (¢ to B phase transition) and at ca 1900 K
for the highest displayed peak (f to liquid phase transition). The lowest peak does not appear
in two out of the five runs for 3840 walkers (Figure 4.1a). However, for the higher number
of walkers in Figure 4.1, it appears consistently. Additionally, the peaks align better with
increasing number of walkers. I conclude, that as I did in Ref. [33] increasing the number of

walkers improves the convergence.
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Fig. 4.1 The heat capacity against temperature curve convergence with number of walkers.
We can see the heat capacity curves of each five different runs for 54 atoms, at 10 GPa, with
840 (a and b) and 672 (c) calls per iteration as well as 3840 (a), 7680 (b) and 15360 (c)
walkers. I also use n.,;; = 1. The increasing convergence with increasing number of walkers
is apparent. With increasing numbers of walkers, the peaks become increasingly aligned.
Additionally, (a) does not show the first peak in two out five runs.
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4.3 The effects of different walk lengths

We now turn to the effect of various number of calls have on the appearance of the low
temperature solid-solid transition. I was not able to consistently show the appearance of the
lowest heat capacity peak by only increasing the number of calls. To demonstrate this, |
refer to Figure 4.2 where I show independent runs for different number of calls at 10 GPa
where I culled 1 walker per iteration. I have reprinted Figure 4.1a as Figure 4.2a. Instead of
using 840 calls as in Figure 4.2a, I used 3840 calls per iteration in for these runs to create
4.2b. We can see that overall convergence did not visibly improve. The lowest peak (@ to
« phase transition) is not visible for run 5 in Figure 4.2b. The increase in appearance ratio
may just be statistical fluctuation and can not be used to infer that this is due to a better
convergence. It is interesting to note, that just doubling the number of walkers leads to a
doubled runtime and cost. Ignoring the improvement of parallelization for longer walk length,
doubling the number of calls leads to a doubled runtime and cost as well. However a more
than quadrupled number of calls per iteration did not lead to convergence while doubling the
number of walkers did. It is computationally inefficient to quadruple the number of calls if
doubling the number of walkers already suffices. I have conducted studies with low number
of calls (120 calls and 240 calls) for n.,;; = 8 and number of walkers K = 7680 at 10 GPa.
For each 120 calls is conducted 5 runs and for 240 calls 6 runs. These runs have a different
relative ratio of the different steps kinds than the runs presented previously in this thesis for
titanium. Instead of using 1 MD trajectory with 4 steps, and 1 steps of each kind of cell step,
I use 1 MD trajectory of 8 steps, 32 volume steps as well as 8 steps for shear and stretch
moves each for these new runs. Nevertheless, they show that one could go as low as 240
calls per iteration and still reliably find the @ phase while 120 calls can already lead to the
disappearance of the @ phase. I conclude as already in Ref. [33] that the numbers of walkers
is the defining parameter once a minimum number of calls has been chosen for the Tt MEAM

potential of Hennig e? al. [15].

4.4 Culling more than one walker per iteration

As we have seen in Sections 4.2 and 4.3, increasing the number of walkers helps resolve the
convergence issues whereas just increasing the number of calls per iteration does not lead to
a consistent appearance of the @ phase and low temperatures. However, parallelization via
distribution of decorrelation steps on other walkers is limited by low numbers of calls per
iteration for the decorrelation walks, as explained in Section 3.3. Hence, evaluation times of

the phase diagrams become very long. Therefore, I turn to the second way of parallelizing
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Fig. 4.2 The heat capacity against temperature curve convergence with different number of
calls per iteration at 10 GPa. In both cases, we used 3840 walkers with 54 atoms and 10 GPa.
The number of calls are 840 (a) and 3840 (b). n.,;; was set to 1. We can see that convergence
does not improve visibly with increase in the number of calls.
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nested sampling in pymatnest [45]: Increasing the number of systems culled per iteration
[69, 36]. I start with low numbers of n.,;; as Noam Bernstein and Livia Bartok-Pértay have
experienced convergence problems when using n.,;; # 1 [113].

We see the results for two different n.,;; values for 3840 walkers in Figure 4.3. Figure 4.3a
shows five heat capacity curves for n.,;; = 4 as well number of walkers K = 3840. We can
see that the @ phase does not appear in all runs as the relevant peak (lowest temperature peak
in the other runs) is missing for run 1 and 2. The ® to o transition peak of run 4 and 5 are
very broad. Run 4 even shows a double peak and run 5 a shoulder at the @ to o transition
point. Setting n.,;; = 8 (Figure 4.3b) does not lead to a convergence either as run 1 does not
show an @ to « transition. Figure 4.4a shows Cp curves for 7680 walkers while all other
input parameters are kept the same. We can see that the @ phase appears in all runs. I have
also doubled n,,;; for Figure 4.4b and found that the @ phase appears in all runs. Finally, I
show the case of n.,;; = 32 in Figure 4.4c. Here, the convergence is severely affected. The
runs 1 and 7 do not show the @ phase. For the runs presented in Figure 4.3a the ratio K /n,;
1s 960 while it is 480 for the ones of Figure 4.4b. Even though that I cull more walkers per
total number of walkers K per iteration in Figure 4.4b than in Figure 4.3a, Figure 4.4b shows
convergence while Figure 4.3a does not show it. I conclude that the ratio K /n.,;; is not the

dominant factor defining whether the runs converge.

4.5 Phase diagrams with different number of atoms

We now consider the convergence of the phase diagram with nested sampling. For this, I
conducted several nested sampling runs at different pressures for 24 and 54 atoms. After
finding the phase transitions, we can use this data to draw a phase diagram [27, 20]. One can
then investigate trends related to increasing the number of atoms. Additionally to the several
24 and 54 atoms runs, I conducted several runs for 108 atoms at 12 GPa. For 24 and 54
atoms, the high temperature solid phase is not as clear to identify via the XRD pattern as for
108 atoms. Some indication of a potential 8 phase can be found for 54 atoms. I extrapolate
that this high temperature solid phase is indeed the 8 phase from my calculations for 108
atoms (see Section 4.5.2).

For each investigated combination of pressure and number of atoms, I conduct five indepen-
dent runs. The phase transition temperatures are then estimated by the mean peak position of
the relevant heat capacity peak. Additionally, I use the half width at half maximum (HWHM)
to gain a measure of the error of our nested sampling calculation [47]. Sometimes, a phase
transition does not occur for all runs. Also, for 4 GPa of Figure 4.5, an @ to o transition was

discovered for all runs, but due to restart file corruption for one run (number 1), the peak
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Fig. 4.3 n.,;; tests for 3840 walkers and 54 atoms at 10 GPa. We see independent heat
capacity curves for 240 calls per iteration and 3840 walkers for n.,;; =4 (a) and n.,;; = 8
(b). Some runs show the ® to & phase transition in the vicinity of 500 K while others do not.
This means that the runs are not converged.
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Fig. 4.4 n.,; tests for 7680 walkers and 54 atoms at 10 GPa. Independent runs for n.,;; = 8
(a), neyyy = 16 (b) and n.,;; = 32 (c) are displayed in this figure. I use 240 calls per iteration.
The convergence becomes worse with increasing n.,;;. While Figure (a) and (b) always show
the @ to o phase transition, Figure (c) does not display it for 2 of its 7 runs. If the ® to o
transition appears, this is on average a little above 500 K. We can see that increasing n.,;;
can lead to full loss of convergence as shown for the case of n.,;; = 32 (c).
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position cannot be precisely determined for this specific run, as the Cp curve would need to be
determined at lower temperatures. In these cases, the presented mean transition temperatures
only take into account the occasions when the transition temperature can be determined. For
comparison, I insert the prediction of Hennig et al. from Figure 5 of Ref. [15] into the phase
diagrams.

Figure 4.5 shows the predictions for 24 atoms. I use 840 calls per iteration, 7680 walkers and

B w <-> o from Hennig et al. Fig. 5 [15] i
5000 a <-> B from Hennig et al. Fig. 5 [15]
w <-> B from Hennig et al. Fig. 5 [15] ===~

B <-> liquid from Hennig et al. Fig. 5 [15] ======~
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Fig. 4.5 The phase diagram for 24 atoms. The x-axis depicts the pressure in GPa while the
y-axis shows the temperature in K. I use 840 calls per iteration, 7680 walkers and n.,;; = 1
for all pressures but 2 GPa. For 2 GPa, I use 240 calls per iteration, 15360 walkers as well
as nq,; = 8. 1 present the data of Figure 5 of Ref. [15] (dashed lines) together with my own
results (solid lines). The HWHM is given by the error bars. The labels «, B, ® and “liquid”
are for the phases of my nested sampling results. One run at 4 GPa was excluded from the
determination of the  to & peak position as explained in the text. In Ref. [15], Hennig et al.
show a triple point which I can not find with my calculations.

culled one walker per iteration for the pressures greater than 2 GPa. For 2 GPa, convergence
is not achieved with these parameters. One run out of the batch of five runs does not show the
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 phase but predicts the o phase at low temperatures for the above given parameters. For the
converged results shown in Figure 4.5, I use 15360 walkers, 240 calls per iteration and culled
8 walkers per iteration. Solid lines show my own predictions while dashed lines represent the
predictions of Hennig et al. [15]. The liquid to solid transition of our calculations (solid blue
line) occurs at an offset of ca 300 K higher than we would expect from Hennig et al. [15]. We
can see a slight decrease for the melting temperature from ca 2370 K at 2 GPa to ca 2080 K at
12 GPa for the nested sampling results. Apart from the aforementioned offset my prediction
for the melting curve follows the predictions of Hennig et al. [15] considerably well. I predict
(based on the 108 atoms calculations as explained at the beginning of this section) the B phase
as highest temperature solid phase which again is in line with the calculations of Hennig ef al.
From 2 GPa to 8 GPa our « to 3 phase transition temperature (solid green line) for 24 atoms
follows the predictions of Ref. [15] of a constant temperature of 1250 K well. However, I can
not find a triple point at ca 1250 K and ca 8.5 GPa as Hennig et al. do in Figure 5 of Ref. [15].
Instead of a  to B phase transition (dashed brown line) whose transition temperature is
increasing with pressure, we continue to see an ¢ to 3 phase transition (solid green line)
with a relatively constant transition temperature. After my calculations, the @ phase sets in
at ca 270 K at 2 GPa. This is much lower temperature than the ca 470 K at 2 GPa predicted
by Hennig et al. One can see a slight increase in the ® to o transition temperature of my
results up to 500 K at 12 GPa. The resulting slope of ca 24 K/GPa is visibly smaller than the
one predicted by Ref. [15].

We now consider the case of 54 atoms. As the calculations are not fully converged for 2 GPa
in the case of 24 atoms and 7680 walkers and needed 15360 walkers to converge at this
pressure, I focus on higher pressures. As we can see in Figure 4.6, increasing the number
of atoms has a limited effect on the phase diagram. Again my predictions are represented
by solid lines, whereas dashed lines stand for the results of Ref. [15]. The different colours
depict the same transitions as in Figure 4.5. My melting transition temperature (solid blue
line), has shifted considerably and is now more in line with the predictions of Hennig et al.
(dashed blue line). We can see an increasing difference between our predictions and their
results with increasing pressure. This increases the difference from the predictions from
Ref. [15] from ca 20K at 4 GPa to ca 120 K at 12 GPa. The order of my own predicted phase
transitions is the same as for 24 atoms. Again, I can not find the expected solid phase triple
point of Hennig ef al. [15]. Interestingly, the & to 8 transition for 54 atoms rose by more
than 250 K from the one calculated for 24 atoms and predicted by Hennig et al. It is also
not constant anymore, but shows a slight but clear decrease in transition temperature when
approaching 12 GPa. Again, a @ to 3 phase transition does not exist. The @ phase does not

appear at 4 GPa in my nested sampling runs. However, given that it only appears in one out of
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five runs for 6 GPa and three out of five runs for 8 GPa, it could well be that a higher number
of walkers can show the occurrence of the phase. Overall, the @ to & phase transition for 54
atoms increased slightly compared to 24 atoms. At 12 GPa the 24 atom calculations predict
504 + 16 K while the 54 atom calculations predict 633 4= 12 K. (Note that the errors given
here are the standard errors of the mean calculated from the respective five independent runs
and are not the HWHM.)

Figure 4.7 shows five independent runs for 54 atoms (all black) and five independent runs
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Fig. 4.6 The phase diagram for 54 atoms. Solid lines are the results calculated with nested
sampling while dashed lines represent phase transition lines shown by Hennig et al. in Figure
5 of Ref. [15]. I use 840 calls per iteration for the 4, 6 and 12 GPa runs as well as 672 for
the remaining pressures. n.,; is set to 1. All runs except the ones at 12 GPa use 15360
walkers. For 12 GPa, I use 7680 walkers. The convergence problems for 4, 6 and 8 GPa
are explained in the text. The phase labels o, B ,® and “liquid” represent again the nested
sampling predictions. The triple point is missing as for 24 atoms in Figure 3.4

for 108 atoms (different colours) at 12 GPa. The 108 atom melting curve peak appears to be
well converged at 1792 + 9 K. This is in accordance with the melting curve value of 1812 £8
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for the 54 atom runs. Again, I use the standard error of the mean of the five independent
runs for the error estimates of these two melting temperatures. It is also interesting to note
that the melting peak has become much sharper and higher for 108 atoms compared to 54
atoms. Similarly, the HWHM of the a to B transition is visibly smaller for 108 atoms. The
average peak position for 108 atoms of 1410450 K is in line with my 54 atoms prediction
of 1428 £ 11 K. However, is is important to note that the spread of individual peak positions
(and heights) is much bigger than for 54 atoms as we can see from the error estimates for
the average positions. This indicates convergence issues. Only run 1 and 5 show the  to o
transition with peaks at ca 835 K and ca 735 K respectively. For this case, the HWHM for
108 atoms are comparable with the ones for 54 atoms. This transition value is much greater
than the average peak position found for this transition of 634 + 12 K for 54 atoms. Here,
again, I use the standard error of the mean.
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Fig. 4.7 Heat capacity versus temperature for 54 and 108 atoms at 12 GPa. For the 54 atoms
runs (black), I use 840 calls and 7680 walkers with n.,;; = 1 while I use 240 calls, 7680
walkers and n.,;; = 8 for the 108 atoms runs (coloured runs).
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4.5.1 Using MD to average atomic positions of trajectory frames

For high temperatures, I have found that phases are not always easy to define with the
thermally averaged XRD pattern. For this case, I conduct what I call “MD averaging” in this
thesis for the structures of the nested sampling trajectory file which have a nested sampling
derived probability above a certain threshold. For each of these structures, I conduct a MD
simulation with QUIP [114] at a temperature controlled by a Langevin thermostat [115] in
the NVT ensemble. The lattice positions are averaged via an exponential moving average
(EMA) conducted by QUIP [114] during the MD simulation. The average for the starting
positions is just the start positions. For each following iteration i, the average of a quantity x
becomes:

& oy
(Vema; = X Emai1-€ +xie (1—6 g ) 4.1)

Here At is the timestep which is set to 1fs. x; is the value of quantity x at iteration i. T
controls how quickly old quantities loose in importance for the average. It is set to 1000 fs
for the calculations presented in Section 4.5.2 for which I also use 2000 MD steps. This
process estimates the lattice positions around which the atoms fluctuate at high temperatures
for each “MD averaged” system of the trajectory file.

4.5.2 Identification of phases for 108 atoms

In the following, I present an analysis for run 5 of the 108 atoms runs presented in Figure 4.7.
In Figure 4.8, I show the clear identification of the @ and & phase as well as an indication of
the B phase. The average volume predicted at 1600 K for run number 5 and the ¢/a ratios of
Hennig et al. [15] for the @ and o phase define the structures for which the reference XRD
patterns are calculated. Below the lowest temperature Cp peak of run 5, the system is in the
o phase. The XRD reference pattern of the @ phase (grey dashed lines) agrees very well
with the the 400 K XRD pattern predicted for the system by run 5 (solid dark blue line). The
1000 K XRD pattern for the system (solid cyan line) is in general in accordance with the o
XRD reference pattern. However, there are small peaks — for example one slightly below
60 °— which I attribute to a remaining ® phase while the o phase is dominant. For the 1600 K
XRD pattern prediction (solid orange line) for the system, the identification is not as easy.
The first three peaks of the f reference pattern (dashed magenta line) can be clearly seen.
The forth peak coincides with an feature the is similar to a shoulder. At higher values of 20
than this, there is no clear identifiable feature. Overall, it is still a good indication of the 3
phase. To show more clearly that the structure is indeed the 8 phase, let us consider Figure
4.9. Here, I present the XRD pattern at 1600 K for “MD averaged” trajectories as explained
in Subsection 4.5.1 for run 5 (solid orange line) in comparison with the not “MD averaged”
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trajectory XRD pattern (dashed blue line) and the reference B pattern (dashed grey line).
I used MD trajectories of length 1000. The reference pattern and the not “MD averaged”
pattern (both for 1600 K) are already shown in Figure 4.8. With the “MD averaging”, the 3
phase can be clearly identified. All but the last peak of the reference structure slightly above
150 °can be identified.

4.6 Thermodynamic integration results with the original
Ti MEAM

The problem with my nested sampling calculations in Section 4.5 is that they are conducted
with relatively small numbers of atoms. Finite size effects could potentially explain the
deviation of the phase diagram of Hennig et al. [15]. To exclude this I need to investigate the
system with a larger number of atoms. In the following, I use thermodynamic integration to
investigate the titanium phase diagram and verify my nested sampling results. As before, |
use the MEAM of Hennig et al. [15] to describe the atomic interactions. I investigate the
validity of the thermodynamic integration with quasi-harmonic approximation in Subsection
4.6.4. Before I present the results, I want to present the technical details including the
parameters of both methods in the following. The parameters and methodology stays the

same throughout this thesis.

4.6.1 Thermodynamic integration methodology

The thermodynamic integration method has been elaborated on in Section 2.6. Freitas et
al. [48] elaborated on their implementation of a nonequilibrium version [49] in LAMMPS
[74, 116]. In this thesis, I use this implementation following the instruction of Freitas et
al. [48] for my calculations and setting up of my LAMMPS MD script which I use in the
following. As they do, I combine a barostat [117, 67, 118, 119] with a Langevin thermostat
[115] and do not allow cell shape changes. During this MD run, the cell shape is fixed. I have
automated the process for calculating the Gibbs free energy of a structure via a python script.
The number of runs, the different structures to be investigated, a list of temperatures and a list
of pressures can be defined. I create the structure of interest via “quippy” [120] in python and
write it as “.extxyz” file [121]. The starting structures used for the calculations of Chapter 4
are constructed using the volume and lattice constant ratios of energy minimised structures
of Hennig et al. [15]. The conversion of “.extxyz” file to the LAMMPS format is done via a
script by Albert Bartok-Partay [122]. LAMMPS is then able to read the structure. I start a
LAMMPS molecular dynamics (MD) NPT [115, 118] calculations to first equilibrate the
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Fig. 4.8 The XRD pattern for the 108 atoms run number 5 whose Cp curve is shown in Figure
4.7 shown with differently coloured solid lines for 400 K (dark blue), 1000 K (cyan) and
1600 K (orange). The reference XRD pattern are denoted by dashed lines. Grey dashed lines
represent the @ phase XRD reference pattern, blue dashed lines represent the o phase XRD
reference pattern and magenta dashed lines show the B phase XRD pattern. An offset in
intensity is introduced for the patterns. This makes it easier to determine the phases. When
applying the offset, the XRD patterns of the different temperatures have been matched with
the reference patterns which describe the phase. The reference patterns are created from
structures with the average volume predicted by the run number 5 trajectory file at 1600 K.
The c/a ratios used for the o phase and @ phase are the zero temperature and zero pressure
values Hennig et al. present for their MEAM in Ref. [15].
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Fig. 4.9 “MD averaged” XRD pattern for 108 atoms Ti nested sampling run number 5 whose
Cp curve is presented in Figure 4.7 at 1600 K in comparison to the XRD pattern of the same
run at the same temperature without “MD averaged” and a 8 phase (bcc) reference pattern
for 1600 K. The XRD pattern of the “MD averaged” trajectory file is denoted with solid
orange lines. Dashed blue lines represent the XRD pattern without “MD averaging” as
shown already in Figure 4.8. The 8 XRD reference pattern for the average volume at 1600 K
according to run 5 is represented by grey dashed lines. The “MD averaging” leads to a much
clearer XRD pattern which is in very good accordance with the reference pattern.
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structure at the temperature and pressure of interest and after sufficient time has passed get
the lattice constants for this temperature and pressure by averaging over a number of systems
from the following MD trajectory. Then, my python script reads the averages from a file,
creates the structure of interest with the averaged lattice parameters and prints it as “.extxyz”
file using “quippy”. This file is again transformed by using the transformation script of Albert
Bartok-Pértay [122] again. In the following LAMMPS MD NPT [115, 118] simulation, the
mean squared displacement (MSD) (||7(¢) — 7||*) is calculated after an equilibration time.
Here, 7(¢) is the position vector of an atom over time ¢. The starting position vector of the
atom is given by 7. ““(...)” defines an average over all atoms in the simulation. The Mean
Squared Difference (MSD) is used to calculate the spring constant kg;,ein Of the Einstein

crystal [70] as in Ref. [48]:
3kpT

=i = 12\
(7 (2) = ol
I use the spring constant for a LAMMPS script of Albert Bartok-Pértay [123] which conducts
the thermodynamic integration. I have slightly adapted the script to enable automation.

(4.2)

kE instein —

This script conducts the thermodynamic integration along the Frenkel-Ladd path [72, 52]
as described by Freitas et al. [48]. It is conducted in a NVT ensemble using a Langevin
thermostat [115] as in Ref. [48]. The parameter A (¢) from Equation 2.36 is changed with
function number “2” [75, 76] (see Equation 2.50) which is elaborated on in Ref. [48]. In all
LAMMPS simulations mentioned in this section, 1 fs long timesteps are used.

The results are integrated using a small program of Livia Bartok-Partay [124] to get the
irreversible work according to Ref. [48]. The Einstein crystal is our reference state A. The
system we are actually investigating is system B. With these notations, based on Equation
2.48 [48, 49], the definition of the Gibbs free energy (see Equation 2.61), the Free energy of
the Einstein crystal as well as a correction term Feoprecrion [125, 48], the Gibbs free energy is
then given by [48]

koo w: , - W .
G— 3NkBTln (h Elzztemﬁ> + irreversible, A—B 5 irreversible,B—A +Fcorreczi0n + PV
4.3)
Here, I use that the Gibbs free energy G for a system relaxed at an isotrop pressure P is
related to the Helmholtz free energy F by G = F 4+ PV. Here, V is the volume. The free
energy of the harmonic oscillator has been covered before in Section 2.7. Using this, the free

energy of system A is

kr: ,
Fy = 3NkgTIn (h Einstein [3) (4.4)
m
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which leads to Equation 4.3. Here, I have used that the angular frequency of a harmonic
is 0= w’% with m being the mass of the atom. N is the number of atoms in the
simulation. Here, I use a mass of m = 47.88 u [126]. The centre of mass is fixed during the

MD calculations and hence one needs to introduce Feorrecrion [125] as explained by Freitas et
al. [48] which is [125, 48]

N [ 2mkgT \*/?
Fcorrection - kBTln (V (m) ) (45)

I conduct the scheme described in this section at the same temperature and pressure several
times. The mean of the Gibbs free energy and its standard error are calculated from these
runs. To determine the transition temperature for a certain pressure, I calculate the difference
AG, in Gibbs free energy per atom between two competing phases calculated as in Equation
4.3 for a number of temperatures. If two so created data points which follow each other in
temperature straddle the AG,; = 0eV line, the phase transition occurs between them. I hence
conduct a linear interpolation in between these two points. The intersection of the linear
interpolation with AG = 0 eV line yields the transition temperature. The error is calculated
by propagating the errors of the data points.

For the o and w phase results presented in this thesis, I use 10,000 steps each for the various
equilibrations and 10,000 steps each for each direction of the switching procedure. The
thermal averages used in the procedure are calculated using values of the MD simulation after
equilibration calculated every 10 steps during the last 10,000 steps of the MD calculation. For
the B phase, I use 1,000 steps for the equilibration, 10,000 steps for one switching direction
each, as well as values for averaging every 10 steps over 40,000 steps after equilibration. |
use 8x8x8 supercells of the respective phases. For the o phase I use a unit cell with 2 atoms.
For the @ phase, the cell contains 3 atoms. An 8x8x8 supercell of the cubic 2 atom unit cell

is used for the B phase. I use 5 independent runs for each temperature.

4.6.2 Quasi-harmonic approximation methodology

The quasi-harmonic approximation is used to test the validity of my thermodynamic in-
tegration calculations. To calculate the phonons and free energies via quasi-harmonic
approximation, I used Caesar [127]. It checks for symmetries of the lattice using SPGLIB
[128] to lower the amount of calculations. It uses QUIP [114] via a wrapper to evaluate the
forces to calculate the force constants necessary for the phonon calculation. I have added
the classical calculations of the phonon free energy for a given single phonon frequency

to my personal version of Caesar. The phonon frequencies are then sampled randomly to
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calculate the free energy of the system. For the sampling, I use 100,000 samples. The mass
of titanium is set to 47.867 u [129]. To approximate the Gibbs free energy of the o and ®
phase, I construct a grid of volumes V and lattice constant ratios ¢/a in the following way: I
relax structures at 24 pressures during two different runs. First, I start at 0 GPa decreasing in
1 GPa steps down to —6 GPa. Then, I start at 1 GPa increasing in 1 GPa steps until I finish the
relaxation for 17 GPa. For 0 GPa and 1 GPa, I conduct the relaxation starting from structures
constructed with the volumes and c/a ratios calculated by Hennig ez al. [15] in their relax-
ation at 0 GPa and OK for the Ti MEAM [15]. For the next pressure in each run, I use the
result of the previous relaxation as starting value. The relaxation is done via “quippy” [120]
using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [130, 131].
Each of the V values and c¢/a values gained from this relaxation marks a position on the
volume and c¢/a axis. Together, these axes form the aforementioned grid. In my specific
case that means that it is a 24 x 24 grid. For each point of the grid, I create the structure in
question using “quippy’’ [120] via the functions I created from misc_calc_lib.py [45] (see
Section A.1 for more general details of that library including the partial re-implementation
of a function originally written by Noam Bernstein from pymatnest [45]). Then, I relax
the atomic positions using an ASE [132] implementation of a Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method [62] for atomic relaxation while not changing the lattice. Having
prepared the structures like this, I use Caesar [127] to get the free energies. The supercell
is calculated in such a way that the minimum distance between an atom and its periodic
images is longer than twice the effective cutoff for force calculations leading to 8 x 8 x 8
supercells for the 2 atom hcp unit cell and 7 x 7 x 7 supercells for the 3 atom @ cell. For this,
I use the aspect ratio function of misc_calc_lib.py which is a partial re-implementation of
a similar function by Noam Bernstein found in pymatnest [45] (see Section A.1 for more
details). The Gibbs free energy is then calculated via Equation 2.62 as explained in Section
2.7. The reference system is always the system of the relaxed systems at various pressures
from the start with the same volume V}) as the current volume V. The free energy predictions
are however different depending on whether one uses the classical or quantum oscillator.
Hence, the Gibbs free energy has to be calculated separately for the classical and quantum

treatment.

4.6.3 MD equilibration to test the stability of phases

I ran MD simulations at a number of temperatures to determine the stability of the @ phase for
some pressures. This is mainly relevant to Subsections 4.8.1 and 4.8.2, but is also considered
briefly in Subsection 4.6.4. Such calculations are conducted for bcc by Hennig et al. [15]. In
the following I will refer to this as “MD stability tests”. I did this by running MD simulation
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for 10° MD steps of 1 fs. I use the LAMMPS MD script mentioned in Section A.1 which
follows the instructions on how to do the MD simulations by Freitas et al. [48]. Accordingly,
I apply a Langevin thermostat [115] in combination with a barostat [117, 67, 118, 119] as
they do [48]. Now however, I allow the cell shape to change during the simulations. The
XRD pattern is averaged over samples at the end of the equilibration and used to identify
the phase. I use QUIP [114] for calculating the XRDs called via misc_calc_lib.py [45] (see
Section A.1). ¢/a values for the MEAM of Hennig et al. [15] from Ref. [15] are used in the
calculation of the reference structures. The starting structure is created using the parameters
of the relaxed structure given in Ref. [15] with the original MEAM [15]. I use a mass for Ti
of 47.88u [126].

4.6.4 Comparison to quasiharmonic approximation

To validate my thermodynamic integration results, I compare it to results of quasiharmonic
approximation calculations using Caesar [127] which calls QUIP [114] for the potential
evaluation (see Subsection 4.6.2). The parameters and technical details of the thermody-
namic integration have been explained in Subsection 4.6.1 (for parameters see the end). As
mentioned earlier in Section 2.7, the thermodynamic integration method used in this thesis
does treat the system as fully classical system. This means that to compare thermodynamic
integration to quasiharmonic integration, one has to approximate the phonons via the classical
harmonic oscillator and not the quantum mechanical harmonic oscillator. In Figure 4.10, we
see the o phase Gibbs free energy per atom of thermodynamic integration (orange crosses),
of the quasiharmonic calculations based on the quantum harmonic oscillator (dashed magenta
line) and of the quasiharmonic calculations based on the classical harmonic oscillator against
the temperature (solid blue line). The temperature is given in Kelvin while the Gibbs free
energy is given in eV. The pressure is 12 GPa. The statistical error for the thermodynamic
integration results is calculated from 5 independent runs and is between 6.4 - 107%eV and
1.4-10~*eV for the temperature values up to including 800 K. This makes the error smaller
than the line size of the symbols. We see that the results of the quasiharmonic calculations
based on the classical harmonic oscillator are in very good accordance with the thermody-
namic integration predictions for low temperatures. For 200 K, the difference is still below
1 meV. For 250 meV it is bigger than 1 meV. The quantum mechanical treatment is impor-
tant for low temperatures as we can see from the visible difference to the thermodynamic
integration and classical harmonic oscillator quasi-harmonic approximation results at 150 K
and lower. However, the difference between the two quasiharmonic results becomes small
relatively quickly with increasing temperature for low temperature though the decrease is flat-
tening up again relatively soon. At 400 K the quantum mechanically treated quasiharmonic
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calculations is already less than 2 meV higher than the classically treated ones. However, at
800 K the quantum mechanical quasiharmonic Gibbs free energy is still more than 0.5 meV
higher. In comparison, at 400 K, the thermodynamic integration Gibbs free energy is al-
ready more than 0.5 meV higher than the quantum mechanical quasiharmonic approximation
treatment. At 800 K the thermodynamic integration Gibbs free energy is already more than
S meV higher than the quantum mechanical treated quasiharmonic integration. This shows

the problems of the quasiharmonic approximation for even intermediate temperatures.

T R — \ \ \ \ \
7 —— s = o quasiharmonic approx. - quantum ====*
05 - “q.\ o quasiharmonic approx. - classical = |
e s a thermodynamic integration
\ y g
B N
-0.55 \ 7
3 N
g -0.6 |~ \ 7
© \
g -065 A .
(O] N \
-0.7 [ A |
\‘\
-0.75 |~ . -
N
0.8 \ \ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800

TIK]

Fig. 4.10 The Gibbs free energy per atom of the o phase versus temperature using different
methods at 12 GPa. The results of the quasiharmonic calculation are given with magenta
dashed lines and blue solid lines. The former are the results for modelling the phonons as
quantum harmonic oscillator and the latter the results for modelling the phonons as classical
harmonic oscillators. The thermodynamic integration results are given by the orange crosses.
The statistical errors of the thermodynamic integration are smaller than the line width of the
symbols. We see that for low temperatures, the thermodynamic integration results are in
accordance with the quasiharmonic calculations using a classical harmonic oscillator. The
neglect of the zero-point energies and other quantum contributions leads to a significant error
for low temperatures, as seen by the difference to the quasiharmonic calculations which do
not neglect these contributions.

The previous results in Section 4.5 show that the competing phases are 3, & and @ for the
used MEAM [15] as also stated in Ref. [15]. In Figure 4.11, we see the difference between
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the Gibbs free energy per atom of the ¢ (Gy) and  phase (Gy), AG = G¢ — G, at 12 GPa.
The parameters used are the same as the ones given at the end of Subsection 4.6.1. An MD
simulation with 10 MD steps of 1 fs with LAMMPS [74] as explained in Subsection 4.6.3
shows that an initially set up @ phase transforms at 1400 K to the 8 phase while it is still in
the  phase after 10° steps at 1350 K. These MD simulations are started with an @ phase
with the same volume per atom and c¢/a ratio as the volume per atom and the ¢/a ratio found
by Hennig et al. [15] for the original Tt MEAM [15]. Hence, I only show thermodynamic
integration results until 1350 K in Figure 4.11. For temperatures below 731 + 12 K, we can
see that the m phase has the lower Gibbs free energy of the two phases and is hence the stable
phase. At 731 + 12K the w phase transforms into the o phase. I calculate the transition
temperature as explained in Subsection 4.6.1. Starting from this transition, until including
1350 K the « has a lower Gibbs free energy than the @ phase. For the next temperature value
of 1400 K, the @ phase is already unstable under an MD simulation as mentioned before and
hence not a candidate for the dominant phase. The thermodynamic integration method used
in this thesis can not calculate its Gibbs free energy anymore in this case. One notes that
the absolute difference in Gibbs free energy between the a and the @ phase is very small
throughout the temperature range for which the & phase is stable. The maximum absolute
Gibbs free energy difference per atom difference for the simulations presented in Figure
4.11 during the temperature range over which the o is stable is 4.03 £0.15meV at 1150 K.
This is lower than the absolute difference to either form of the quasiharmonic calculations
at 800K for the & phase presented in Figure 4.10. This indicates that one needs to conduct

thermodynamic integration to get reliable results in this temperature realm.

4.6.5 Thermodynamic integration phase diagram for the original Ti
MEAM

In Figure 4.12, I compare the phase diagram predicted by Hennig et al. [15] in Figure
5 of Ref. [15] with the solid phase diagram predicted for their potential with the help of
thermodynamic integration (TI). Grey lines and labels depict the results of Hennig et al. The
orange upwards pointing triangles depict the o to B phase transition. The parameters for the
thermodynamic integration are given at the end of Subsection 4.6.1. The blue stars signify
the  to o phase transition. The results of Hennig er al. differ significantly from mine even
though they were conducted with the same potential. I cannot reproduce the triple point
which they show at ca 8.5 GPa and ca 1250 K in their phase diagram [15]. I do not find any ®
to B transition in my phase diagram prediction. The thermodynamic integration results show

the following ordering of phases with increasing temperature: @, o and 3. This ordering
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Fig. 4.11 The difference between Gibbs free energy per atom AGuom = Ga, atom — Gw, atom
for the o and @ structures against the temperature at 12 GPa. Gg, grom and G, arom are
the Gibbs free energies per atom of the & and the ® phase respectively. Thermodynamic
integration can only be used as long as the structure are stable under molecular dynamics
simulations. Hence, the difference in Gibbs free energy is only given until 1350 K. We see
that the @ phase is stable for low temperatures. At 731 £ 12 K, titanium transforms to the o
phase.
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Fig. 4.12 The solid-solid phase transitions for the original MEAM [15] predicted by my
thermodynamic integration calculations in comparison to the predictions by Hennig et al.
from Figure 5 of Ref. [15]. The grey labels and lines depict the results of Hennig et al. [15].
The other data points are gained from my own thermodynamic integration calculations (TT).
Blue stars are used for the @ to o phase transition. Orange upwards pointing triangles
are used for the & to P transition. We see significant differences. Most importantly, my
thermodynamic integration results do not show a triple point.
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is at least in line with the result of Hennig et al. [15] for pressures below ca 8.5 GPa. Note
that Hennig ef al. state a pressure of ca 8 GPa and a temperature of ca 1200 K in the text of
their paper for the triple point [15]. For 0.0 GPa, Hennig ef al. show an @ to o transition
temperature close to ca 300 K in their diagram. This is not that far from the thermodynamic
integration result of 227.1 4 0.7 K. However, the slopes of the  to & transitions are very
different which explains in part why one never sees a triple point in the depicted pressure
realm. The o to B transition temperature is relatively constant for my predictions showing
an only slight decrease with pressure after 4 GPa. This is similar to the constant transition
temperature behaviour found by Hennig et al. However, I predict a transition temperature
which is considerably higher: From 0 GPa to 8 GPa the values range between ca 1650 and
1720K for the thermodynamic integration results while Hennig et al. found a value of ca
1250K [15].

4.6.6 Comparison of thermodynamic integration results with the orig-
inal MEAM to experimental results

We have seen in Section 4.6.5, that I predict a phase diagram which is very different from
the one predicted by Hennig et al. in Ref. [15]. Let us now compare the thermodynamic
integration predictions to predictions made by Zhang et al. [51] based on experimental
data. Both are depicted in Figure 4.13. The phase transition lines of Zhang et al. [51] are
represented by dashes line with grey short dashes. Grey labels depict the different solid
phases. The thermodynamic integration results are denoted by blue stars for the @ to
transition and orange upwards pointing triangles for the ¢ to B transition. I have also added
the melting curve fitted to experiments by Errandonea et al. [81] (fit data from Ref. [82]).
This melting curve is denoted by a dashed line with long dashes. We see that the potential
of Hennig et al. [15] misses the triple point according to the thermodynamic integration
calculations. As opposed to the experimental prediction of Zhang et al. [51], the & phase is
stable over at least a certain temperature range for all investigated pressures. A transition
from  to B is therefore not predicted by thermodynamic integration. Additionally the & to
B transition line of Zhang et al. is considerably lower than my thermodynamic integration
based predictions. The difference in slope is not as strong. The experimental predictions
according to Zhang et al. [51] show an only slightly negative slope. The thermodynamic
integration results predict a relative constant value until 4 GPa from which they too show a
slightly negative slope. Zhang et al. predict the o phase to be stable at low temperatures
and pressures. This is in opposition to my thermodynamic integration predictions with the
original MEAM [15] and the predictions of Hennig et al. [15] which both find the @ to be
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stable at low temperatures and pressures. Additionally the @ to o transition line predicted by
the MEAM of Hennig ef al. [15] is much steeper.

3000 \ \ \ \
. . Errandonea et al. Fig. 2 [81,82]
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e gt i o1
B P urs- w to o transition, TI F*— |
2500 o to B transition, Tl
2000 7
B phase
3 L SE——
— 1500
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0
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Fig. 4.13 The solid-solid transition phase diagram of the original MEAM [15] based on
my thermodynamic integration calculations in comparison to experimental results. The
solid-solid predictions of Zhang et al. [51] are given by the grey short dashes. The melting
curve of Errandonea et al. [81, 82] is signified by the grey long dashes. The grey labels
denote the phases predicted by the experiments. The blue stars are the data points of the w to
« phase transition calculated with thermodynamic integration. I also use thermodynamic
integration for the o to B transition for which I use orange upwards pointing triangles. The
triple point was not predicted by my calculations.

4.7 Comparison of original Ti MEAM energies to DFT re-

sults

We now consider how the original MEAM potential [15] compares to DFT calculations with
CASTEP [133] for the different structures of the phase diagram with the “PBE” generalized
gradient approximation (GGA) functional [134, 135]. More details of the DFT calculations
can be found in Section A.2. This comparison could potentially shed light on why my
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predictions for the solid part of the phase diagram with the original potential of Hennig
et al. [15] are so different from the experimental predictions of Zhang et al. [51]. The
evaluation of the MEAM is done using guippy [120]. However, instead of comparing to ideal
structures and defects as in Ref. [15], I consider snapshots of thermalised structures which I
gain from nested sampling runs. In detail, for 2 GPA, 6 GPA and 10 GPA, I take the 10 most
likely structures from the trajectory file of one nested sampling run for each pressure with
converged parameters at four different temperatures. The trajectory files contain every 100-th
culled system. Here, I use 24 atoms per simulation box, n.,;; = 8 and 240 calls per iteration
for all runs. For 2 GPa, I use 15360 walkers. For the other pressures, I use 7680 walkers. For
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Fig. 4.14 The cohesive energies per atom for a selected number of structures at different
temperatures and pressures calculated with DFT and with the original MEAM of Hennig
et al. [15]. The DFT energies are denoted by red stars. Blue crosses describe the MEAM
energies. A value of ca 1.7354 ¢V is added to the DFT energies. This is the difference
between the average energy of the @ structures at 2 GPa for the DFT energies and the MEAM
energies. This way, one is able to compare the different results. Qualitatively, they are in
good agreement. However, there are some slight deviations which I cover in Figure 4.15.

the temperatures, I choose 100 K for 2 GPa, 150 K for 6 GPa and 200 K for 10 GPa for the @
phase structures. For the o phase structures, I choose 500 K for 2 GPa, 600 K for 6 GPa and
750K for 10 GPa. For the f phase structures, I choose 1600 K for 2 GPa, 1550 K for 6 GPa
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and 1500 K for 10 GPa. For the liquid phase I choose 4000 K for all pressures. The cohesive
energy results for the MEAM and the DFT calculations are presented in Figure 4.14. Blue
crosses show the results for the MEAM of Hennig ef al. [15]. Red stares signify the results
using DFT. The DFT parameters are given in Section A.2. I add a value of ca 1.7354 eV to
the DFT energies so that the average energy for the @ phase structures are the same for both
DFT and MEAM calculations for 2 GPa. Qualitatively, the results of the MEAM calculation
are similar to the DFT results. The energies of the structures as well as the width of the
energy distributions for each structure increase while one goes from the low temperature @
phase to the liquid. Qualitatively, the MEAM calculations are in overall good agreement
with the DFT results, though there are some slight deviations.

Figure 4.15 shows the difference between the cohesive energies using the MEAM of
Hennig et al. [15]

Ecr)hesive,MEAM ,original (46)

and the shifted DFT cohesive energies

EcohesivaDFT,shifted (47)

presented in Figure 4.14. The vertical axis shows

AE = Ecohesive,MEAM,original - Ecohesive7DFT7shifted . (48)

The difference for the @ phase is on average only a slight overestimation for the structures
gained for 6 and 10 GPa. The fact that the difference is very small is not surprising as the
DFT energies have been shifted so that there is not any difference for the average @ phase
energy for 2 GPa. From this point of view, the & and the 8 phase are underestimated by the
MEAM. The liquid comparison is not as clear for 2 GPa and 6 GPa as the solid comparison
due to the high spread of the energy value distribution. On average, the values point to a
slight underestimation for 2 GPa and 6 GPa and a stronger as well as clear underestimation
for 10 GPa. Given that the choice of reference value for the DFT value is in a certain way
arbitrary, one could argue that the @ phase energy is overestimated by the original MEAM
[15] compared to the other solid phase structures. This may explain in parts the missing triple
point which one would expect from the results of Hennig et al. [15]. The w phase may just
not be stable enough compared to the o phase to supplant it fully at high pressures. However,
it is to note that this explanation neglects the influence of phonons and the pV term of the

Gibbs free energy which could counteract the overestimation of the w phase energies.
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Fig' 4.15 The differences AE = Ecohesive,MEAM,original - Ecohesive,DFT,shifted between the co-
hesive energies when using the MEAM of Hennig et al. [15] and DFT cohesive energies
(Ecohesive,MEAM ,original and Ecohesive,DF T,shifted respectively) from Figure 4.14 sorted by phase-
The w structure energies of 2 GPa are used as reference point as explained in the text. The
MEAM overestimates slightly the DFT calculations for the higher pressure @ structures.
With this reference point, the MEAM underestimates the & and 8 phase. The liquid phase
is not as clear as the spread of energy values is relatively large. The data points on average
towards an overall slight underestimation by the MEAM.
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4.8 Modifying the angle dependent part of the MEAM

I have shown that the Ti MEAM potential of Hennig et al. [15] does not correctly predict the
triple point of titanium [51]. I now conduct small modifications to the original MEAM of
Hennig et al. [15] with the aim of creating a modified potential which does predict the triple
point relatively close to the experimental prediction [51]. The modification to the spline
parameters of the MEAM of Hennig et al. [15] is conducted with Fourier modes to reduce
the amount of fitting parameters while still changing the function over the relevant realm. In
principle, more Fourier modes could approximate more complex changes in the future. The
modifications presented in this thesis are meant to explore the possibility of fitting. Hence
the changes are only limited to the functions f (r;;) and g (cos (6);)) of electron density
function definition of the titanium MEAM of Hennig et al. [15, 61]:

Pni =Y Pa(rij) + Y, g(cos(8ji)) f (rij) f(ri) (4.9)
J#i JFLkEL

The reasoning is that only slight changes to the potential may be necessary to reproduce the
experimental phase diagram as the potential does in some aspects already describe parts of
the experimental phase diagram well as I show in Section 4.6.6. The overall behaviour of the
potential is not meant to be changed much. Hence, I only change the part of the potential
which describes the effect of how bonds between atoms interact.
In detail, I add the respective values of the Fourier modes to the original values of the
functions f and g [15] at the specific spline node points. For this process I use MATLAB
[136]. I base all parameters on the parameter file shipped with LAMMPS [74, 137]. This is
not exactly adding Fourier modes, as the spline interpolation will lead to difference from the
values one would get by adding the Fourier inspired modes to the respective functions. For

the function g (x), I use the the modes:

27X dmx
=A _—— )+ <—) ) (4.10)
Mg (x) (cos < I, ) cos I,
and for f (x), T use:

my(x) = A (sin (2” (x_x’"‘”"f)) +sin <4” (= nax) )) @.11)
Ly Ly

x is a place holder for the respective variables used in the functions f and g. The parameter

A determines how strong the modifications are. Also, I define Ly = Xyuax, £ — Xmin,f+ Xmin, f

represents the x-position of the start node f. Similarly, x4, s represent the x-position
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of the end nodes of f. I use L, = Ly. I use the values from the parameter file shipped
with LAMMPS [74, 137] for the MEAM [15] of X, r = 2.055801767399996649 A and
Xmax.f = 4.410000000000000142 A. This means that Ly ~ 2.3541982326 A. For a future
fitting, one could experiment with modifying the position of the spline start and end nodes.
However, for simplicity, the start and end node positions are not moved in the exploratory
study presented in this thesis.

To explore how the Ti MEAM potential of Hennig ef al. [15] reacts to small changes to
the function f and g of Equation 2.9, I conduct five runs each with a variety of values of
the aforementioned modification factor A at 12 GPa. We can see the results for some of
the parameters for 24 atom in Figure 4.16. They are sorted with decreasing A, starting at
A = 0.01. Each subfigure also includes a set of five heat capacity curves for A = 0, the
original MEAM [15], for reference. The reference curves are black. For the curves for the
modified potentials, I use colours to make it easier to distinguish between different runs.

I use 240 calls per iteration and set n.,;; = 8 for all runs. For A = 0.1, A = 0.05 and the
reference runs, 15360 walkers are employed. The runs for A = —0.02, A = —0.04 and
A = —0.08 are conducted with 7680 walkers. It is very hard to identify the high temperature
solid phase for 24 atoms with the usual XRD pattern analysis. Higher numbers of atoms
yield in general a more reliable result. Hence, I refrain from making statements about the
exact nature of the high temperature solid phase in the following. In Subfigure 4.16a, for
A = 0.1, the @ to & transition peak has vanished while the other peaks have moved together
so much that they can barely be distinguished. Instead of the @ phase, only the ¢ phase
can be identified at low temperatures in the investigated realm. The results for A = 0.05
(Subfigure 4.16b) show three peaks, apart from run 3 in blue which shows more of a plateau.
Most prominently, the @ to o transition peak has shifted from ca 530 K found for the original
to ca 140 K. The shift to higher temperatures for the other visible peaks was smaller but still
considerable.

It appears that a small positive modification factor might lower the @ to « transition
temperature. The question is now whether a small positive multiplication factor increases
the @ to o transition temperature. If one increases the @ to o melting temperature enough,
one might even loose the o phase fully so that the @ phase directly transforms to the 3
phase, assuming that this phase is indeed preserved. Note that I do not prove the existence
of the 3 phase for 24 atoms. I will investigate this for 54 atoms at 12 GPa for a promising
modification candidate (A = —0.04). One can indeed see the increase in temperature up to
which the w phase is table for small negative values of A as shown in the following. For
A = —0.02 (Subfigure 4.16¢) instead of two clear peaks below 1500 K for each run, we see a

less clear picture. It is not possible to clearly determine the peak position anymore, as some
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of the smaller fluctuations may just be artefacts. This can be interpreted as the two peaks
moving together. The change in melting temperature is not significant: It changes slightly
from 2033 =23 K from the reference calculations of the original potential to 1996 + 17 K.
The errors here are the SEM of the Cp curve peak positions presented in Subfigure 4.16c¢.
For A = —0.04 (Subfigure 4.16d), we see what resembles even more a single peak than
for A = —0.02 instead of the two peaks below 1500 K for the original potential. There
are small shoulders on the low temperature side of the peak which may be indications
of the existence of two phase transitions whose peaks are just very close together. The
mean temperature of the temperatures of the peak maxima is 952 + 17 K. The new melting
temperature 1s 1964 £ 36 K. Again, the errors are the SEM of the heat capacity peak positions.
For A = —0.08 (Subfigure 4.16¢), we now have a single clear peak at 889 =3 K followed by
the melting peak at 1862 4 16 K. The errors are again the SEMs. The first peak is however
quite high in comparison to the melting peak. This might be an indication that this peak
represents actually two phase transitions which are very close to each other.

The potential with the modification factor A = —0.08 appears to be a very promising candidate
for a modified potential that reproduces a triple point. However, nested sampling runs for
4 GPa and 8 GPa for A = —0.08 with 24 atoms per simulation box continue to show only
one solid-solid peak with the @ phase as low temperature phase. This makes the existence
of a triple point above 4 GPa very unlikely. These calculations are done with 240 calls and
7680 walkers. Calculations for A = —0.04, for 24 atoms at 2 GPa with 240 calls and 15360
walkers show two solid-solid peaks with the @ phase as the low temperature phase followed
by the a phase at higher temperatures. This means that even for high number of atoms, a
triple point may exist somewhere between 2 GPa and 12 GPa.

The peak below 1500 K for the MEAM with modification factor A = —0.04 in Subfigure
4.16d is not as clear as the one for A = —0.08 in Subfigure 4.16e. However, we have seen
how increasing the number of atoms per simulation box leads to an increase in the ® to o
transition. An increase in number of atoms is therefore hoped to make the peak below 1500 K
clearer. Indeed, Figure 4.17 shows a much clearer peak for 54 atoms. Here, we see five heat
capacity curves from nested sampling calculations for 24 atoms (blue lines) and 54 atoms
(orange lines) for A = —0.04 at 12 GPa. For both 24 atoms and 54 atom, 240 calls, 7680
walkers and n.,;; = 8 is used. The temperature of the lower peak increased considerably
while the higher peak, which stands for the melting, is now found at a lower temperature. We
see that the peaks have become more defined, however, this could also be a finite size effect
due to the larger number of atoms used [47]. Nevertheless, the existence of the peak alone

indicates again the possibility of a @ to 8 transition. The XRD pattern analysis shows an
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Fig. 4.16 Cp versus temperature curves for various values of the modification factor A in
comparison to my nested sampling results for the original MEAM of Hennig et al. [15]. The
results for the original potential are given in black while the results for the different runs
with the modified potentials are given in colours to ease identification of shoulders and peak
positions. The modification factors A are given in the labels below the respective graphs.
A negative modification factor A pushes the peaks below 1500 K together while a positive
pushes them apart from each other.
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indication for a potential 8 phase at high temperatures and that the low temperature phase is
the @ phase.
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Fig. 4.17 Heat capacity for the modified MEAM with A = —0.04 at 12 GPa for different
numbers of atoms. For each number of atoms, five independent nested sampling runs are
conducted. The 24 atoms are denoted by blue lines while the 54 atoms are given by orange
lines and have clearer defined peaks. The lower peak position was raised in temperature
while the higher peak was lowered. For 54 atoms, the system is in the @ phase for low
temperatures. For temperatures above the lowest peak position, a phase which shows an
indication of the B XRD pattern is dominant for 54 atoms until the system melts. For 24
atoms we also find the @ phase at low temperatures. The peak at higher temperature denotes
the melting. For both number of atoms, I use 240 calls, 7680 walkers as well as as n.,;; = 8.

To summarise, the 54 atoms calculations with A = —0.04 showed a relatively clear peak
which indicates a potential @ to f transition at 12 GPa. Additional calculations (with 15360
walkers) show the ordering @ phase, o phase and an indication of a potential 3 phase
with increasing temperature for 6 GPa and 54 atoms. Hence, the next step is to conduct
thermodynamic integration to calculate the phase diagram at higher number of atoms to
minimise the finite size effects. I cover these in the Subsections 4.8.1 and 4.8.2.
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4.8.1 Phase diagram with the modified Ti MEAM in comparison to
one done with the original Ti MEAM

As explained in Section 1.2, the finite size effects for the solid-solid transition phase diagram
need to be minimised by using larger numbers of atoms for the promising potential candidate
with A = —0.04 to check to which extent its phase diagram prediction has been improved.
Before we compare directly to an experimental phase diagram in Subsection 4.8.2, let us
first consider how the phase diagram predictions of the modified MEAM compare to my
predictions using the original MEAM of Hennig et al. [15]. I show phase diagram predictions
of both in Figure 4.18. For both potentials I use the parameters as described at the end of
Subsection 4.6.1 for the thermodynamic integration. The stability of the @ phase against the
B phase is calculated via MD as explained in Subsection 4.6.3 by using 10° equilibration
steps similar to the calculations done by Hennig ef al. [15] with the 8 phase. However, 1
start with the  phase. I distinguish between the results by using grey labels for the phases
predicted by the original potential [15] and grey dashed lines for the phase transition lines
predicted by the original potential [15] via my thermodynamic integration calculations. All
other labels and data points (whether connected to lines or not) are from the calculations
using the modified MEAM. For the @ to « transition data points, I use blue stars. The o to
P transition is given by orange upwards pointing triangles. The o to @ transition which only
appeared for the modified MEAM is denoted by a magenta diamond. All these transitions
are calculated using thermodynamic integration (TT). The ® to B transition is not possible to
calculate with the thermodynamic integration method used in this thesis as one of the phases
always transforms under MD simulations at the investigated temperatures. Hence, I resort
to the MD calculations mentioned at the beginning of this subsection. The resulting @ to 3
transition data points are signified by downward pointing cyan triangles. I do not calculate
any melting curve. The modification of the MEAM leeds to a decrease in the 3 transition
temperature of values between ca 270 K and ca 310K for pressures from 0 GPa to 8 GPa.
Additionally, it leeds to the occurrence of the @ to 3 transition at 10 GPa and 12 GPa. The
transition from the & or @ phase to the 8 phase are roughly at a constant temperature ranging
between ca 1370 K and 1410 K. Additionally, the modified potential shows an increased ®
to o transition temperature. The increase is 260.7 1.5 K from a transition temperature of
227.1+0.7K to one of 487.8 1.4 K at 0.0 GPa. This difference increases with pressure.
At 8.0 GPa the @ to o transition temperature of 971 & 10K for the modified MEAM is
424 + 11 K higher than the transition temperature of the original MEAM of 547.9 £2.8 K. If
we take the transition temperature values at 0 GPa and 8 GPA for the modified MEAM, we
get an estimate of the slope of ca 60 K/GPa. If we do the same for the original MEAM for
0 GPA and 12 GPa, we get a slope of ca 40 K/GPa (rounded to the nearest 10 K/GPa). For
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12 GPa the modified MEAM does not predict an @ to « transition. At 10 GPa the  to o
phase transition temperature of the modified MEAM of 1183 4 14 K is higher than expected
if we consider the slope of the lower pressures. At 1210+ 12 K thermodynamic integration
predicts a transformation back to the @ phase. The difference, and hence the temperature
range where an @ would exist, is however only 27 + 25 K. The error is so large because the
« phase is only represented by one value which is used for the calculation of both transition
temperatures. Given that this difference is smaller than twice its standard error and the o
phase only appeared for one transition temperature at this pressure, it is possible that the o
phase does not even occur at this pressure and that it only occurs in the calculations due to
statistical fluctuations. This means that the triple point could potentially lie between 8 and
10 GPa. This is a very big difference to my thermodynamic integration predictions of the

original potential [15] which do not show any signs of a triple point up to including 12 GPa.

4.8.2 Comparison of modifications to experiments

In the following I consider how the modified Ti MEAM potential predictions compare to the
experimental phase diagram. In Figure 4.19, we see the experimental solid-solid transitions
according to Zhang et al. [51] denoted by grey dashed lines with small dashes. The long
grey dashes are used to depict the melting transition results of Errandonea et al. [81] (fit data
from Ref. [82]). Grey labels signify the respective experimental phases. My thermodynamic
integration predictions for the A = —0.04 modification to the MEAM of Hennig et al. [15]
are shown in comparison. Blue stars are used to depict the w ot o transition. The o to
o transition is given by a magenta diamond. The o to 8 phase transition is denoted by
orange upwards pointing triangles. All these aforementioned transitions predicted by the
modified MEAM are calculated with thermodynamic integration (TI). The @ to 3 transition
is calculated with molecular dynamic stability tests (MD) as explained before and signified by
downwards pointing cyan triangles. The modified MEAM phase diagram has been described
already in Section 4.8.1. At 10 GPa the o phase may not appear at all and hence a triple
point might exist between 8 GPa and 10 GPa. Under this premise, the modified MEAM does
predict a phase diagram which is in much better accordance with the experimental phase
diagram than the original Tt MEAM [15] which did not predict a triple point at all. Zhang et
al. predict 7.5 GPa and 913 K for the triple point coordinates [51]. For the pressure value at
least, this is relatively close to the pressure realm for which I expect a triple point. The 3
phase still becomes stable for the modified MEAM at a temperature which is considerably
higher than the experiment. However, this temperature has already been lowered considerably
by the modification as seen in Section 4.8.1. The ® to o phase transition is however not
as well reproduced. The modification leads to an increase in @ to o transition temperature
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Fig. 4.18 Comparison of original and modified MEAM solid phase diagram predictions with
thermodynamic integration and MD simulations. The dashed grey lines and the grey labels
represent the predictions using the original MEAM of Hennig et al. [15]. All other symbols,
labels and lines represent the results for the modified MEAM. The blue stars represent the @
to o transition. The o to @ transition is represented by a magenta diamond. Orange upwards
pointing triangles signify the & to 8 transitions. Finally, the @ to B transition is given by
cyan downwards pointing triangles. All transitions apart from the ® to  transition were
calculated using thermodynamic integration (TT). The @ to B transition was calculated via
“MD stability tests”. The modified MEAM predict a considerably different phase diagram.
The «a to B transition temperature is lowered while the ® to o transition temperature is
increased. Additionally, the phase diagram shows an indication of the previously missing
triple point between 8 GPa and 10 GPa as explained in the text.
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overall. If one takes the aforementioned triple point of Zhang et al. and uses that their
slope prediction is 345 K/GPa [51], one arrives at at a transition pressure of ca 4.9 GPa for a
pressure-driven transition from the o to @ phase at 0 K. At 0 K and 0 GPa the phase should
hence be the o phase not the @ phase. In this realm the modification actually leads to a
worse prediction as the ® phase is now even stable up to higher temperatures. However, it
is to note that the original Tt MEAM did predict the @ phase as O K phase as well for this

pressure range.
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Fig. 4.19 The solid-solid transition phase diagram of the modified MEAM in comparison
to experimental data. We see the phase transitions shown in comparison to experimental
results from Zhang et al. [51] and Errandonea et al. [81, 82]. Again, the @ to o transition is
given with blue stars. The upwards pointing orange triangles denote the o to 3 transition,
while the @ to 8 transition is denoted by downwards pointing cyan triangles. The magenta
diamond symbol stands for an o to @ transition at 10 GPa. The occurrence of the o phase
before this transition was questioned in Section 4.8.1. Hence, a triple point might be found
between 8 GPa and 10 GPa. All of my predictions apart from those for the @ to 8 transition
are conducted with thermodynamic integration (TT). The @ to f is calculated by MD stability
tests (MD). Grey labels and grey dashed lines represent the experimental data. Here, short
dashes denote the solid-solid transition results of Zhang et al. [S1]. The long dashes are used
to depict the melting curve results of Errandonea et al. [81, 82].
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4.9 Comparison of energies predicted by the modified Ti
MEAM to DFT results

After seeing how the phase diagram prediction have improved using the modified version
of the MEAM of Hennig et al. [15], we now turn to the DFT energies presented earlier
in Section 4.7. One might assume that the modified potential will represent the o and 3
phase structures better than the original as an indication of a triple point is found. Figure
4.20 shows the difference between cohesive energy predictions of the DFT calculations and
the modified MEAM (blue “+” symbols) as well as the original MEAM (red “x”” symbols)
of Hennig et al. [15] for the structures sampled at different temperatures and pressures as
explained in Section 4.7. As before in Section 4.7, I add ca 1.7354 eV to the DFT energies so
that the average energy predicted for the @ phase structures by the original MEAM at 2 GPa
is the same as the average energy predicted by the DFT calculations. The changes to the
energies due to the modification are relatively small. Overall, we can still say that in relation
to the other solid phases, the modified MEAM still overestimates the energy of the w phase.
To see the changes between the MEAM potentials, we now consider Figure 4.21. Here, the

differences for the cohesive MEAM energies per atom

AEMEAM = Ecohesive7MEAM,A:—O.O4 - Ecohesive,MEAM,original (412)

are shown for the different structures. Here, E opesive MEAM A—=—0.04 18 the cohesive energy
predicted by the modified MEAM with A = —0.04 and E.opesive MEAM original 15 the cohesive
energy predicted when using the original potential of Hennig et al.[15]. For the modified
MEAM the o, B and the liquid phase cohesive energies are on average decreased while
the o phase energy is on average increased. There is however one outlier at 10 GPa. To
investigate the structure, I calculated the XRD pattern as before via QUIP [114], called via
misc_calc_lib.py [45] and supported these calculations via a visualisation with OVITO [138]
using its “bond-angle analysis” [139, 140] tool. The @ phase shows a characteristic colouring
pattern. For the reference structure, I use again the ¢/a ratio of Hennig et al. [15] for their
MEAM [15]. Both methods suggest that this is an @ phase rather than an o phase which
explains the behaviour as the energy of the @ phase was decreased. As mentioned before in
Section 4.7, one needs to consider the Gibbs free energy to make a clear conclusion regarding
a phase’s stability. However, this shift in energy may explain at least in part why the area in
the phase diagram of the o phase shrinks, as this makes it energetically less favourable in
relation to the other phases. It is however noteworthy that even though the phase diagram has
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improved considerably with the modified potential, the difference from the DFT energies has

only been slightly improved when it comes to difference between @ and o phase.
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Fig. 4.20 The difference between the MEAM cohesive energies and DFT cohesive energies
per atom for a selection of structures for the original MEAM of Hennig et al.[15] and the
modified MEAM with A = —0.04. The energy difference of the original MEAM and the
DFT energies are the same as in Figure 4.15. The structures are as explained in Section 4.7.
Blue “+” symbols are the differences to the modified MEAM energies. Red “x” symbols are
the difference for the original potential. The changes are relatively small. Overall, relative to
the other solid phases, the @ phase energy is still overestimated by the modified potential. As
mentioned before, I add ca 1.7354 eV to the DFT energies to have the same average energy
values for the w phase at 2 GPa as the original MEAM. This is simply to make comparison
easier. The difference between original and modified MEAM energies are shown in Figure
4.21.

4.10 Functions of the modified MEAM and basic parame-

ters of the stable structures

As the final step of my overall procedure (see Section 1.2), I investigate how strongly the

new potential differs from the original potential of Hennig et al. [15] and how it performs for
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Fig. 4.21 The difference between modified and original MEAM of Hennig et al. [15] cohesive
energies per atom for the structures specified in the text. For the @ phase, for the 3 phase and
for the liquid, the energy is lowered by the modification of the MEAM. The & phase energies
are however increased apart from one outlier at 10 GPa which XRD pattern analysis and
OVITO [138] “bond-angle analysis” [139, 140] suggest is likely an @ structure. In summary,
the o phase energy is increased compared to the energies of the other shown phases.
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basic parameters of the phases expected for the pressures which I investigated [44, 50, 51].

Let us now consider how the functions which make up the MEAM of Hennig et al. [15] are
changed. In Figure 4.22, one can see how the new functions for f (r) (Subfigure 4.22a) and
g(cos(0)) (Subfigure 4.22b) of the new potential with A = —0.04 compares to the original
functions of the potential of Hennig et al. [15]. The original potential function values are
denoted by the dashed blue curve. The nodes of this function are given by the magenta “+”
symbols. The modified potential function values are denoted by the solid orange curve. The
changes to the functions are in general very small. For f (r) the peak at ca 2.5 A is slightly
lowered with little change to its position. The minimum value between 3.5 A and 4 A is
slightly increased while its radial position is decreased. This means that the strength of the
characteristic features of the function is lowered by a small amount. For g (cos(8)), the
changes are not as characteristic as for f (r). Most notably, the position of the maximum was
shifted by a small amount to lower values of cos (6) and barely decreased in the function
value.

In Tables 4.1, 4.2 and 4.3, we see the elastic constants, lattice constants, ratio of lattice
constants (where applicable) and volume per atom for the phases which occur in the Ti phase
diagram in pressure realm investigated in this thesis [50, 44] predicted by my calculations
for the original MEAM [15] and for my modification of it with A = —0.04 as well as some
experimental values. The calculation of the elastic constants is conducted in the same manner
as in Section 3.14.1. The starting structures of Ti which are then relaxed are based on the
volumes per atom and c/a ratios of relaxed structures at zero pressure presented for the
original MEAM [15] in Ref. [15]. The different quantities predicted by the modified MEAM
change for the most part only slightly compared to the ones predicted by myself for the
original MEAM [15]. Overall, the elastic constants change more then the lattice constants
and lattice constant ratios as well as the volume per atom. For the elastic constant I even
find deviations of over 10 % between original and modified potential. These occur all for
the o phase. The modification leads to a reduction of ¢1; by ca 13 %, an increase of ¢y, by
ca 15 % and a reduction of c44 by 14 %. The quantities I present for the original MEAM in
Tables 4.1, 4.2 and 4.3, agree, if they were given, with the once presented by Hennig ef al. in
Ref. [15] in Table II and Table III of their paper in all cases, except for the values for a of the
« phase (found in their text) and ¢ and ¢, of the @ phase. The a value they report for the
a phase is only 0.001 A larger than the value I report. In light of rounding and potentially
different tolerances for finishing the relaxation this is negligible. For the elastic constants of
the @ phase however, Hennig et al. predict ¢1; = 191 GPa and ¢, = 78 GPa [15]. This is
very different from my values of c;; = 177 GPa and c15 = 93 GPa. Interestingly, the sum of

these parameters (c11 and cy;) are nearly the same for Hennig et al. [15] and me. Potentially,
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Fig. 4.22 Comparison of the modified functions with modification parameter A = —0.04

to the functions of the original potential of Hennig et al. [15]. Dashed blue lines are the
results with the original functions. The magenta “+ symbols depict the spline nodes of
the original potential. The orange solid line represent the function values of the modified
potential. Subfigure 4.22a shows the f (r) functions and nodes. Subfigure 4.22b plots the
g (cos(0)) functions and nodes.
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quantity | original MEAM [15] modified MEAM, A = —0.04 experimental
c11 [GPa] 177 174

c12 [GPa] 93 93

c13 [GPa] 64 68

c33 [GPa] 233 230

cq4 [GPa] 48 48

alA] 4.606 4.627 4.625
c[A] 2.815 2.789 2.81

c/a 0.611 0.603 0.608
Var [A3] 17.24 17.24 17.35

Table 4.1 Ti elastic constants (cqj, ¢12, €13, ¢33 and c44), lattice constants (a and c), lattice
constant ratio (c/a) as well as the volume per atom (V) of the ® lattice which I calculate
for the original Tt MEAM [15] and modified MEAM with A = —0.04. The experimental
values of the lattice constants (at room temperature) are taken from Ref. [50] and are used to
calculate the ¢/a value and the volume per atom.

Hennig et al. use a different unit cell for their @ phase or a different orientation of their @
unit cell than I. All experimental values given here except for the elastic constant for the o
phase at 4 K [141] in Table 4.2 represent experimental values for temperatures far away from
0K [50, 79, 142] (see captions of Tables 4.1, 4.2 and 4.3 for details) which makes it harder
to compare the results. In light of this fact, the values predicted by the original [15] and the
modified MEAM are in relative good accordance with experiments for these intermediate
to high temperature values [50, 79, 142]. For the elastic constants at 4 K of the o phase
[141] (see Table 4.2) the agreement is still acceptable, the modified potential worsens the

predictions compared to the original potential [15] in most cases.
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quantity | original MEAM [15] modified MEAM, A = —0.04 experimental
c11 [GPa] 174 151 176

c12 [GPa] 95 109 87

c13 [GPa] 72 71 68

¢33 [GPa] 188 181 191

cas [GPa] 58 50 51
a[A] 2.930 2.928 2.951

c [A] 4.678 4.693 4.686
c/a 1.596 1.603 1.588

Vo [A7] 17.40 17.43 17.67

Table 4.2 Ti elastic constants (¢, €12, €13, ¢33 and c44), lattice constants (a and ¢), lattice
constant ratio (c/a) as well as the volume per atom (V,;) of the o lattice which I calculate for
the original Ti MEAM [15] and modified MEAM with modification factor A = —0.04. I also
added experimental results for comparison. For these, the results for the elastic constants (at
4 K) are from Ref. [141]. The lattice constants — which are also used to calculate the volume
per atom — and the ¢/a ratio are from experiments at ca 301 K [79].

quantity | original MEAM [15] modified MEAM, A = —0.04 experimental
c11 [GPa] 95 100 134

c12 [GPa] 111 108 110

C44 [GPa] 53 49 36
alA] 3.272 3.273 3.307

Vi [A'] 17.51 17.53 18.07

Table 4.3 Ti elastic constants (¢, ¢12 and c44), lattice constant (a) as well as the volume
per atom (V,;) of the two atom cubic bce (B8 phase) cell which I calculate for the original Ti
MEAM [15] and the modified MEAM with modification parameter A = —0.04. Experimental
results are given for comparison. For these, experiments on phonons at ca 1238 K are the
basis of the reported elastic constants [142]. The experimental lattice constant value (at
ca 1173 K) is from Ref. [50]. I calculate the volume per atom using the precise value
3.3065 A given in Ref. [50].






Chapter 5

Discussion

5.1 CuAu calculations — Discussion

Baldock et al. [28] show results using the original CuAu EAM [39—-41] for 64 atoms per sim-
ulation box at 0.1 GPa and predict a eutectic curve with some deviations from experimental
results [42] to which they compare. However, I have shown in Section 3.6 that 64 atoms are
not enough to achieve fully converged results for the melting temperature for the used CuAu
EAM [39-41]. Indeed, an extrapolation with 1 /N2 is necessary to gain a reliable result. The
64 atom results significantly overestimate the melting temperature. The extrapolation shows
that the original CuAu EAM [39-41], even though it predict a eutectic curve, underestimates
experimental melting predictions from Ref. [88] and estimates based on the results of Bennett
[87] quoted in Okamoto et al. [42] as explained in Section 3.12 considerably as shown in
Figures 3.6, 3.7 and 3.10.

The main problem of the fitting for the CuAu melting curve presented in this thesis is that it
assumes that only the melting transition temperature changes during fitting and that the solid
below the liquid does not change to a different phase. A way to consider phase changes has
not yet been included in the calculation of the objective function. However, I have made sure
that the solid phase below the melting temperature did indeed stay the same throughout the
fitting by checking the XRD pattern of the solid phase just below the melting temperature
at one or more suitable temperatures. I cover a potential upgrade of the objective function
calculation in Section 6.2.

A important limitation of the fitting is the statistical error. It is likely that a too high statistical
error leads to the slow convergence seen in the 24 atoms CuAu 50:50 temperature fitting
shown in Section 3.13.1. Convergence issues similar to this were noted in Ref. [63]. A 36
atoms fit with lower errors does not show this behaviour as seen in Section 3.13.2. However,

using more runs to calculate the mean and its error would also be a possible alternative to
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lower the statistical error of the temperature prediction. Depending on the size of the steps
usually taken during the Nelder-Mead algorithm in relation to the statistical error there may
be a systematic bias in the fitting. Let us assume one fits only one temperature. If we start at
a lower temperature than the temperature we aim to fit, it is in principle more likely that the
first vertex which is within the 2 statistical SE realm is in the lower half than in the upper half
of this realm. The statement is reversed if we start at higher temperatures. If the statistical
SE is relatively small in comparison to the step size in temperature, this should not have too
much of an effect. However, the effect will become larger if the ratio of average statistical
error to average absolute difference between the objective function of the replaced vertex
and the objective function of the replacing vertex increases. In principle, this behaviour can
be generalised for fitting to more than one transition. However, the fact that not all transition
temperatures to which one fits are necessarily approached equally fast will diminish this
effect as the temperature prediction of some transitions may already have overshot the value
which one aims to fit during the fitting. Additionally, given the statistical and systematic
errors in the extrapolation of the melting temperature as well as the systematic error due to
modelling with a pressure which is not the normal pressure, [ assume that the effect is small
in comparison to these errors. I consider the errors of the melting temperature in more detail
at a later point in this section. In addition, the algorithm requires that statistical errors in the
melting temperature are kept relatively low [63] — as I have elaborated upon already in this
section with regards to the 24 atoms CuAu 50:50 fitting — which should also lower the effect
of the problem.

Additionally, the error estimation for the average peak positions needs to be considered.
During the fitting, only 5 runs are used. This leads to fluctuations in the standard deviation
estimates. This most likely is responsible for most of the fluctuation in the error estimate
during fitting. This makes stopping the algorithm via the 2 SE ellipsoid and the Mahalanobis
distance [99] as explained in Section 3.8 less reliable as I rely on the error estimates for
this. To gain a more dependable statistical error estimate, I use the average of the relative
statistical error of the melting temperature predicted by several modified potentials (sepa-
rately for each CuAu composition). However, it is not clear whether the relative error is
indeed a constant when the potential parameters are slightly changed as during the fitting.
To compare the results to a different assumption, I calculate the average of the SE of the
melting temperatures of the vertices used in the simultaneous fitting of the Cu, CuAu 50:50
and Au melting temperatures separately for each different percentage of Cu. For vertex 38,
the eventually accepted vertex, the averaged relative error leads to an error estimate in the
melting temperature for 36 atoms of ca 10.9 K for Cu, of ca 10.7 K for CuAu 50:50 and ca
9.2 K for Au. The averages of the SEM of all vertices are ca 10.0K for Cu, ca 10.4 K for
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CuAu 50:50 and ca 8.6 K for Au. We see that the difference between the expected standard
errors of the melting temperatures for the different percentages of Cu is very small. For the
fitting run conducted for the simultaneous fitting of melting temperatures for this thesis, the
different approach to error averaging does not change the results at all and will most likely
only have very minor effects on reruns. This increases the confidence in my results.

The constant pressure nested sampling algorithm used in this thesis does not specifically
consider the liquid-solid coexistence regions found in experiments for CuAu [42] mentioned
in Section 2.10. Hence, one would not expect it to be seen for small number of atoms. The
system would need to be large enough to allow for some form of solid-liquid interfaces.
Judging from experimental data of Bennett [87] quoted in Okamoto et al. [42] presented in
Figure 2.6, the region is small for all compositions of CuAu. It does not exist at the eutectic
point and for pure Cu and pure Au. That means that, if the potential (modified or original
[39-41]) models CuAu well enough, the region should be very small for the 50:50 ratio as
this one is close to the eutectic point atomic percentage of Cu of 43.7% as determined by
Bennett [87] quoted in Okamoto et al. [42]. For 50.8 atomic % Cu, Bennett’s results [87]
quoted in Okamoto et al. [42] show a solidus to liquidus difference of 3 K. The maximum
solidus to liquidus difference of Bennett’s results [87] quoted in Okamoto et al. [42] is found
at an atomistic percentage of Cu of 90.8 % with 23 K. In light of the big underestimation
of the experimental melting temperatures, the issue of the solid-liquid coexistence is of
subordinate importance.

The usage of the extrapolation constant to take the finite size effects into account introduces
two kinds of systematic errors. First, it is not clear whether the system actually follows the
extrapolation scheme. Secondly, once a fitting scheme is chosen, the extrapolated melting
temperature for N — oo has an error. Additionally, the reference temperature calculated with
nested sampling for the reference number of atoms has an error as well. These errors lead to
the error of the extrapolation constant. The 1/N fitting shows a much larger error for both
parameters than the 1/N? fitting as I demonstrate in Section 3.6. I therefore rely on the 1/N?
fitting based extrapolation constant during my final fitting to three transitions in Section 3.14.
For the fitting of solely the Au melting temperature which relies on the 1/N extrapolation in
Section 3.11, I have demonstrated that the error due to our choice of experimental values
is negligible in light of error of the extrapolation constant alone. Let us now consider how
the case is for the 1/N? fitting to the Au, CuAu 50:50 and Cu melting temperatures from
Section 3.14. For this, using the averaged relative error in all error estimates for 36 atoms, I
retroactively expect relative error of the temperature predicted with the extrapolation constant
of ca 0.010 for the Au transition, 0.016 for the CuAu 50:50 transition and 0.014 for the

Cu transition. The extrapolation constants are the same as the ones in Table 3.1b. I used
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rounded values of these in the fitting of Section 3.14. For hypothetical melting temperatures
extrapolated with the aforementioned constants which are equal to the experimentally based
temperature values used during fitting based on the results from Ref. [88], Ref. [97] and
Bennett [87] quoted in Okamoto et al. [42] as explained in Section 3.12, this leads to errors
of ca 13K, 19K and 19 K, respectively. The nested sampling calculations are conducted at
0.1 GPa. Hence, technically, the fitting should have been conducted with the melting curve
at this pressure. For gold, the Equation 3.11 fitted in Ref. [96] yields a value of ca 1344 K.
This is ca 7 K higher than the value used in the fitting of 1337 K based on the Au melting
temperature of Ref. [88]. The fit of Ref. [143] predicts a Cu melting temperature value of
1362 K which is 6 K higher than the temperature used in the fitting of 1356 K based on the
value of Ref. [97]. Let us now assume that the change in expected melting temperature for
CuAu 50:50 is in the same realm. Also, I estimate the additional error due to the CuAu
50:50 melting temperature estimate to be ca 1.5 K as explained in Section 3.12. Overall,
I concluded that, given the aforementioned errors of the 1/N? extrapolation and the fact
that it is not sure that this is indeed the best extrapolation formula possible, the effect of the
pressure of 0.1 GPa being used for the nested sampling calculations and the approximations
and choice of values in Section 3.12 is likely negligible.

The single fitting of the CuAu 50:50 melting temperature has not been successful in also
raising the melting temperatures of pure Cu and pure Au sufficiently as shown in Figures 3.6
and 3.7. To ensure this, the pure Cu and pure Au melting temperatures are included in the
fitting as presented in Section 3.14. I present the lattice constants, the volume per atom and
the elastic constants for the Cu fcc lattice and the Au fcc lattice for a temperature of 0 K and
a pressure of 0 GPa calculated using the original EAM [39-41] as well as using the potential
of vertex 38 from the three transition fitting in Subsection 3.14.1. Apart from the value for
c11, the new potential changes for Cu only slightly. Apart from the c;; value, the change
in values is overall stronger for Au. Overall the new values are broadly in agreement with
the experimental data. Given that these values are not part of the fitting procedure, even the
changes for Au are still acceptable.

To summarise, I have shown that a Nelder-Mead algorithm is useful for optimising the phase
transition predictions of an existing EAM potential [39—41] by fitting directly to melting
temperature values based on experiments (Ref. [88], Ref. [97] and Bennett [87] quoted in
Okamoto et al.) as explained in Section 3.12. This is especially interesting considering that
the fitting scheme is very simple: I just replace p, cuau () With Py aucy (r) and multiply the
functions which make up the potential (see Section 2.2.2) with the respective parameters as
explained in Section 3.10. For the specific run for the fitting of three transition temperatures

shown in this thesis, the algorithm takes only 22 iterations. As the objective function has a
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statistical error, the number of iterations necessary to achieve convergence has a statistical
distribution as well. As the algorithm itself has more parameters which are fitted than melting
temperatures which are optimised, it is likely that there exists a set of parameters which
predict melting temperatures similarly close to the melting temperatures aimed for during
the fitting, but is very different from the vertices found in this work. This means that it is
possible that there is potential which changes the original parameters less while reproducing
the melting curve equally well as the results presented in this work. Such a set of parameters
may even lead to smaller changes in lattice constants, volumes per atom and elastic constants.
However, the cost of rerunning the Nelder-Mead algorithm several times are prohibitively

high. Hence, the range of possible potentials has not been investigated in this work.

5.2 Ti calculations — Discussion

We have seen in Sections 4.2, 4.3 and 4.4 the difficulty in converging simulations for the Ti
MEAM potential [15] for a given number of atoms. A high number of walkers is necessary.
The basin for the @ structure is likely very small during the iterations where the & phase is
dominant so that it is very likely do be lost or not even found if the number of walkers are
small [32]. The fact that the @ phase appears only at very low temperatures increases the
likelihood of the basin being lost as as the system has to undergo more culls to reach the
iterations when the @ basin increases in size relative to the o basin. This, together with the
computational expensiveness of a MEAM compared to an EAM leads very long calculation
times limiting convergence studies with regard to the number of atoms. I could not find any
indication of a triple point with converged runs up to including runs with 54 atoms. For 108
atoms runs presented in this thesis, which still show convergence issues, there is not any
indication of an @ to f transition. According to a batch of five 216 atom runs with 3840
walkers an @ to  transition and an a to 8 are both possible. However, I have not been
able to converge simulations for 216 atoms due to the high computational cost. Hence, the
heat capacity curves are not included in this thesis. It is not possible to draw conclusions
whether a triple point exists from the nested sampling runs if they are not converged. Hence,
I use thermodynamic integration based on the structures which I found with the nested
sampling algorithm with 1024 atoms for the 8 and o phase and 1536 atoms for the @ phase
to get a reliable result. My phase diagram predictions for the original MEAM [15] using
thermodynamic integration are first shown in Section 4.6. These results show that the triple
point does not exist at pressures below 12 GPa and confirm my converged nested sampling
results for 24 and 54 atom qualitatively. These means that I do not reproduce the triple point
found for the phase diagram for the Ti MEAM of Hennig et al. [15]. Hennig et al. analyse the
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NPT [144] MD trajectory of a B phase structure at various points of the pressure-temperature
space while applying a Langevin thermostat [15]. They consider the phase in which the
system settles to be the stable phase for the individual pressure-temperature point. This
allows them to infer the positions of solid-solid transitions. The initial simulation boxes
are cubes. They use 432 atoms and a maximum of 10° time steps. The time step length
is 1 fs. However, the result of this method may be influenced by the energy barrier of the
transition path. If the energy barrier for the 8 to o phase is much higher than the 8 to ®
barrier, the system may end up in a metastable w phase even though the & phase is more
favourable. In the case that the o phase is favourable long enough simulation times would
see the @ phase transform to the o phase. However, it is never clear what the appropriate
simulation time is. Indeed, Hennig et al. find that 1 ns is not enough to let an initial @ phase
transform in to the & phase and vice versa when they conduct NVT MD simulations with a
Langevin thermostat [15]. The pressure which is roughly equivalent to the volume they used
in these simulations is 10 GPa [15]. The temperature of these simulations was 1200 K [15].
Hennig et al. also conduct interface simulations in this NV T ensemble with the Langevin
thermostat, on the basis of which they conclude that the & phase is stable at ca 0 GPa and
the @ phase is stable at ca 15 GPa [15]. Hennig et al. set the temperature to 1200 K for both
simulations. As the phases have different volumes per atom for the MEAM of Hennig et
al. [15] at 0 K and 0 GPa as already shown by Hennig et al. themselves [15], these interface
simulations may have however issues with interface stresses. The thermodynamic integration
does not suffer from the issues of the two methods utilised by Hennig et al. [15] to investigate
solid-solid transitions. Given the small difference in Gibbs free energy between the o and
the @ phase for temperatures after the transition temperature at 12 GPa in Figure 4.11, it
is possible that the phase diagram prediction of Hennig ef al. [15] is not fully correct. My
thermodynamic integration calculations show inaccuracies at low temperatures due to the
classical treatment of the system as covered in Sections 2.7 and 4.6. However, this is also the
case for the methods for phase transition determination of Hennig et al. as they also rely on
the classical MD [15]. Additionally, I am mainly interested in the question whether a triple
point is predicted by the original MEAM of Hennig ef al.[15]. The phase diagram of Hennig
et al. shows it at ca 1250 K and ca 8.5 GPa while they estimate a value of ca 8 GPa and ca
1200 K in their text [15]. These temperatures are far away from the realm where one would
expect any significant error due to the classical treatment of the system as demonstrated for
12 GPa in Section 4.6 (see Figure 4.10). Hence, I am confident in my assumption for the
fitting that my thermodynamic integration predictions are correct and that the experimentally
seen triple point I try to achieve with my later modifications at a pressure of 7.5 GPa and a
temperature of 913 K [51] is not predicted by the original MEAM of Hennig et al. [15].
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To improve the Ti MEAM of Hennig et al. [15], I made changes to the functions f (r) and
g (Cos (9 j,-k)) via Fourier modes as explained at the beginning of Section 4.8. These functions
control directly and indirectly how the angle defined by the atomic bonds ij and ik influences
the potential energy. I do not modify other functions as I want to change the original potential
[15] only slightly to preserve much of its original features reported in Ref. [15] and as I want
to limit the number of influences to the modifications for my first trials for this potential.
The modification to f (r) increases or decreases the characteristic behaviour depending on
its single parameter A (see the beginning of Section 4.8) as demonstrated in Section 4.10
(see Subfigure 4.22a). The modification to g (cos (Gﬁk)), leads to a symmetric change of
the spline nodes and is also only controlled by A. In principle, one could have taken even
simpler modifications using single modes, testing various of these separately on one function
at a time. Additionally, one could define the periodic range as 2, the range of the function
cos (6;i). However, the modifications shown in this thesis are already very promising so
that these options are not explored. The current modifications are sufficient to prove that a
successful modification is possible. An additional point to make is that I only modify the
spline nodes of the Ti MEAM of Hennig et al. This is not the same as adding the Fourier
modes to the original functions directly. This limits which Functions can be approximated
via adding the Fourier modes leading perhaps to unexpected behaviour of the splines if
strong changes were necessary. However, it might also be useful in smoothing out some of
the high frequency Fourier modes which might be beneficial. Given that the modifications
are relatively small and only few modes already lead to very good results, these problems
can most likely be neglected. Out of several possible parameter values, I have settled on
A = —0.04 as elaborated on in Section 4.8. Thermodynamic integration calculations and
“MD stability tests” for the @ phase when necessary as presented in Sections 4.8.2 and 4.8.1
show a clear improvement in predicting the P-T phase diagram compared to my predictions
for the original Ti MEAM of Hennig et al. [15]. Most importantly, my calculations indicate
the existence of a triple point, likely between 8 and 10 GPa. This is close to the experimental
triple point pressure estimate of 7.5 GPa by Zhang et al. [51]. The “MD stability tests”
for the @ to B transition are the same principle as the single phase MD simulations with
which Hennig et al. [15] calculate their phase diagram, just that I start with an @ phase
in a hexagonal simulation cell instead of a cubic 8 phase. In principle, it has the same
limitations which I have already elaborated on in this section. Even though the modified
MEAM with A = —0.04 does now predict a triple point as well as an o to 8 transition
temperature which is much closer to the experimental results of Ref. [51], and is hence a
clear improvement on the original MEAM of Hennig et al. [15] in this respect, the potential

could be modified to reproduce the results of Zhang et al. [51] even better. According to
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Zhang et al. [51], the @ phase should not be stable at any temperature for low pressures as
discussed already in Section 4.8.2. The modified MEAM with A = —0.04 predicts however
exactly that. The modification even increases the temperature up to which it should be stable
for low pressures compared to my results for the original MEAM of Hennig et al. [15].
It is however to note that before the work of Zhang et al. [51] a much lower value of the
slope of the & to @ transition of 93 K/GPa was assumed [50]. Using this slope and the
previously assumed triple point positions of ca 8 GPa and ca 913 K [50], I extrapolate a
transition temperature of the @ phase to the & phase at 0 GPa at ca 169 K. Given the struggles
in determining the & to @ transition pressure at a given temperature experimentally [50], this
is naturally not a proof that there is a stable @ phase for some low temperatures at 0 GPa.
However, given the hysteresis which limits experiments on whether the @ or o phase is
stable at a given pressure and temperature greatly [50], a qualitative reproduction of the
experimentally found o to @ transition slope of Zhang et al. [51] is sufficient. In this respect,
the modification of the original MEAM [15] actually worsened the phase diagram prediction
as it increased the w to o phase transition temperature for low pressures compared to the
original MEAM as discussed in Section 4.8.1. However, in light of the fact that the modified
MEAM with A = —0.04 now reproduces the triple point, this is of lesser importance. The
lattice constants, lattice constant ratios and elastic constants which I have calculated with the
modified MEAM with A = —0.04 are overall still in good agreement with the parameters
which I have calculated using the original MEAM of Hennig et al. [15] as shown in Section
4.10 as well as in relatively good agreement with the presented experimental results. For the
original MEAM [15], this is in most parts a reproduction of the values calculated by Hennig
et al. [15]. The different values which they find for the c¢;; and ¢, elastic constants might
be due to different unit cell definitions as I already noted in Section 4.10. The quantities
tested for the new MEAM are surely not exhaustive, but nevertheless give an indication how
different the new MEAM is compared to the original MEAM of Hennig et al. when it comes
to modelling the «, B and w phases. The mostly slight changes to the lattice constants and
elastic constants combined with the considerable improvement the phase diagram prediction
indicates that the potential has been improved while possibly only slightly changing its
previously fitted behaviour when it comes to other parts.

It is also to note that I did not investigate how the melting curve prediction changed due to
the modification. This could be included in a future fitting of titanium.

It is also interesting to note that the A = 0.04 MEAM energies of the sampled structures
whose DFT results are presented in Section 4.7 did not change considerably overall as
covered in Section 4.7. However, the DFT Gibbs free energy has not been calculated in this

work. It is in principle possible that the modified MEAM Gibbs free energy is much closer
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to the DFT Gibbs free energy then the original MEAM [15] Gibbs free energy for at least
some temperatures.

These good results achieved with only slight modifications are a great motivation to apply
Nelder-Mead fitting as I have done in this thesis for the original CuAu potential [39—41] to
the Ti MEAM of Hennig et al. [15]. I elaborate on this further in Section 6.2.






Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis I presented modifications of two potentials — a CuAu EAM potential [39-41] and
the Ti MEAM potential of Hennig et al. [15] — with the aim of reproducing experimentally
found phase transitions. For both, I use the nested sampling [25, 26] implementation
pymatnest [45] to determine phase transitions. For the Ti calculations, I also rely on the
additional use of informed search methods.

For the CuAu potential, I wrote an implementation of the Nelder-Mead algorithm [35] to
iteratively fit the potential to various melting points. For each evaluation of the objective
function, I used several nested sampling runs to calculate the melting temperature for the
current version of the EAM. I was able to create a potential which reproduces the experimental
melting curve for the compositions considered in the fitting in only 22 iterations and after
calculating only 38 objective functions.

Additionally to nested sampling, I used thermodynamic integration and when needed “MD
stability tests” of the @ phase to determine the phase diagram for both the original Ti MEAM
of Hennig et al. [15] and my modification to this Ti MEAM, as it is too computationally
expensive to extrapolate the phase diagram with nested sampling for high number of atoms
as done for the CuAu potential for this system and potential. I showed that the original
MEAM of Hennig et al. [15] does not show a triple point for pressures P < 12 GPA. I made
several changes to the Ti MEAM potential using Fourier modes. Eventually, I produced a
potential (modification parameter A = —0.04) which shows an indication of a triple point
with thermodynamic integration. This means that one can now qualitatively reproduce the
experimental solid-solid transition phase diagram to a large extent with this modified MEAM.
Apart from these main results, I also would stress the importance of checking for convergence

with regards to the number of atoms per simulation box when investigating the MEAM of
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Hennig et al. [15] and my modifications to it with nested sampling. As seen in Sections
4.5 and 4.8, the Ti phase transitions showed a strong dependence on the number of atoms
per simulation box. Additionally, the melting curve of the CuAu potential [39—41] also
showed a strong dependence on the number of atoms as seen in Section 3.6. Indeed, the
potential performs far worse than assumed in Ref. [28] in comparison to experimental data.
(Ref. [28] quote data from Ref. [42]. I use data from Ref.[88] and Bennett [87] quoted in
Okamoto et al. [42] for my comparison.) For the melting temperature 7,,.;;, I was able to
establish that T,,.;; (N) = Tyo + k /N? where N is the number of atoms per simulation box is
a good fit. The melting temperature for N — oo can then be determined via fitting to melting
temperatures calculated with nested sampling for different numbers of atoms. The parameter
k is another value to be fitted. Additionally, I was able to show that the ratio T, o/ Toers, Nyef
of the specific system, where Tinelt N, s is the melting temperature for a reference number of
atoms N, r, does not change too much for small modifications to the potential (see Section
3.6). This allows fast calculation of the melting temperature during my fitting routine in the
first place, as I otherwise would need to redo the nested sampling calculations at different
numbers of atoms and repeat the fitting for each new modified potential.

For Ti, I could show that the combination of nested sampling with thermodynamic integration
is very powerful. Nested sampling, even if not fully converged, yields the relevant phases
which compete against each other. Thermodynamic integration — or any other reliable
informed search method — is then able to calculate the phase diagram to a higher precision.
This allows for a precise calculation of the phase diagram while at the same time saving
computational resources as one does not need to conduct expensive nested sampling runs
for high number of atoms. If all relevant phases are indeed discovered by nested sampling,
this combination of methods also avoids the problem of neglecting a relevant phase which is
inherent in informed search methods.

It is also interesting to note that the phases appear relatively stable in regard to small changes
to the potential parameters both for the modifications to the CuAu potential [39-41] and
for the modifications to the Tt MEAM [15]. I did not find any appearance of phases which
were not already shown in the nested sampling calculation of the original potentials in the
investigated temperature, pressure and alloy composition realm. This allows for limiting the
number of nested sampling calculations during fitting as one could potentially use informed
search methods like thermodynamic integration or coexistence simulations to replace some
nested sampling calculations during the fitting procedure.

To summarise, I successfully used nested sampling and as well as nested sampling and
thermodynamic integration to show the previous predictions of the melting curve [28]
for a CuAu potential [39-41] and the solid-solid transitions [15] for a Ti MEAM [15]
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are not fully correct and show considerable differences from experimental results. I was
able to successfully improve these interatomic potentials by modifying them to reproduce
experimental phase transition data while preserving much of the elastic constants and lattice
constants predictions of the original potentials. For the original Ti MEAM [15] the parameters
I calculated were mostly a recalculation of parameters calculated in Ref. [15]. The Ti MEAM
[15] was modified by choosing from various values of the parameter A which controls the
modification strength. However, for fitting the CuAu melting curve, I created a Nelder-Mead
[35] implementation which allows for nearly automatic scheduling and analysis of nested
sampling runs with only limited human supervision necessary. This algorithm could in
principle already fit solid-solid transitions provided that new phases do not need to appear
during the fitting and existing phases do not need to vanish during the fitting. The objective
function would need to be updated though to deal with more complex situations as explained
in Section 6.2. Concluding, I have shown that improving interatomic potentials by fitting
to experimental phase diagram data is possible and enlarged the range of transferability of
the CuAu EAM [39—41] and the Ti MEAM [15]. This opens up the possibility of improving

other existing potentials from the literature in the same manner.

6.2 OQOutlook

From my work, it appears that small modifications to the potentials do not easily stabilise
a previously unconsidered phase. It follows that a fitting scheme which combines nested
sampling with informed search methods may be faster and cheaper than the scheme used
for the CuAu potential fitting in this thesis: One could conduct nested sampling calculations
with the original potential and verify the result with informed search methods based on
the competing structures found with nested sampling. A certain number of iteration could
then be conducted with the informed search methods. Afterwards, one could again do a
nested sampling calculation to see if there is any new relevant phase and from then do new
calculations with informed search methods based on the relevant phases found with the most
recent nested sampling calculations. However, if a phase occurred which would not have
been considered in the informed search method, one might have to restart the algorithm.
In the worst case scenario, it might actually be more efficient to apply a combination of
nested sampling and informed search methods for each vertex. The addition of informed
search methods to the scheme may be especially useful for a rigorous refitting of the titanium
potential of Hennig et al.[15] using my implementation of the Nelder-Mead algorithm. Here
one would need to consider different phase transitions at different pressures instead of

different alloy compositions. The heat capacity peaks in the heat capacity curves produced
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with nested sampling have a finite width. This means that for example Ti transitioning
at different temperatures from ® to @ to B can be mistaken for showing a direct ® to 8
transition if the difference between the @ to « transition temperature and the ¢ to 3 transition
temperature is too small. In this case, the two transition peaks would add up to one peak.
Combined with the finite size convergence problem of nested sampling shown in my Ti
calculations, this means that Gibbs free energy calculations as for example thermodynamic
integration are more precise when employing the same amount of computational resources.
The fitting of the Ti MEAM [15], requires however the creation of a new phase transition,
the w to B transition to reproduce the triple point found for titanium [51]. This means that
disappearing of the o phase needs to be considered somehow in the fitting. One measure is
to introduce some kind of punishment for the missing of a transition and the existence of
other transitions which are not predicted by experiments for each pressure one considers.
The squared difference between phase transition temperatures enclosing a phase which needs
to vanish — for Ti the @ to o and the o to B transition temperature at pressures above the
triple point pressure — could also be included in the objective function calculation. This could
be a measure on how much of the unwanted phase is still predicted by the potential.
However, the method given above assumes that one does not need to create a totally new
phase during the potential fitting. Additionally, it necessitates potential specific input on
which transitions are wanted and which should be avoided. If a new phase appeared for
one of the modifications of the original potential, the objective function calculation would
need to be adjusted. A more general way which also would be much more convenient to
automatise the evaluation of the objective function could be the following: The phase diagram
is calculated for a vertex, for example with the combination of nested sampling and informed
search methods. Then a grid is created over the phase diagram. For each point of the grid,
one could calculate a measure of similarity between the most likely structures of the nested
sampling trajectory at this point to the structure predicted from experiments for this point. A
thermal average similar to the thermal average of the XRD pattern used in this thesis could
then be conducted. The work of Ref. [145] and Ref. [146] could be a good starting point for
constructing a similarity measure. This measure would need to be a number > 0 which tends
to 0 the more similar two structures become. The average of all these points would then be a
measure for how close the phase diagram predicted by the potential is to the experimental
one. It would be interesting to research if this could then be a suitable objective function to
fit.
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A.1 Programs

For this thesis, I use a variety of scientific programs, scripts and libraries. In the following I
want to mention the main ones and acknowledge the programs of others if not done in other
parts of the thesis. QUIP [114] and quippy [120] are used at various points. quippy allows
us to call QUIP as it wraps QUIP routines and functions. guippy is also necessary for some
features of pymatnest [45]. quippy was especially useful for creating atomic structures and
is hence used by my collection of miscellaneous functions misc_calc_lib.py [45]. For the
function “calc_aspec_ratio(at)” of this library, I re-implemented the calculation of the aspect
ratios from Noam Bernstein’s “min_aspect_ratio(vol, cell)” in “ns_run.py”” which is part of
pymatnest [45]. For the nested sampling calculations I use pymatnest [45] which I elaborate
on further in Section 3.2. For some calculations of the heat capacity curves, I use “analy-
sis_for_pymatnest.f90” from my previous work, Ref. [33]. “analysis_for_pymatnest.f90”
itself is a re-implementation of Noam Bernstein’s “ns_analyse.py” from pymatnest [45] as
already explained in Ref. [33]. Later calculations of the heat capacity are done directly
with “ns_analyse.py” from pymatnest [45]. pymatnest [45] has further scripts for profiling
runs and combining trajectories which I use. Additionally, I created a program that allows
for the calculation of thermally averaged radial distribution functions (RDF, disabled by
default and not used in this thesis) and the X-ray diffraction pattern (XRD pattern) using
QUIP [114] which is now part of pymatnest [45]. Additionally I included my library of
miscellaneous functions misc_calc_lib.py of which some are used in the XRD-averaging
program in pymatnest [45]. The XRD (and RDF) calculation is done via QUIP. In the current
version it is called over my aforementioned library of miscellaneous functions. For some
calculations, I use a bash script which consists of parts of a analysis script by Noam Bernstein
[147] instead. The XRD calculation is used also to identify the phase of systems gotten
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during LAMMPS [74] MD simulations described in Subsection 4.6.3.

I use my own implementation of the Nelder-Mead algorithm [35] to fit the melting temper-
atures. I cover the most important details of the implementation in Section 3.7. For my
thermodynamic integration calculations, I use a LAMMPS [74] implementation [48, 116].
Further details can be found in Subsection 4.6.1. LAMMPS [74] is also used for MD calcula-
tions to check the stability of a phase. The LAMMPS script for this is the same as used for
the NPT [115, 118] equilibration of thermodynamic integration and follows the description
on how to perform the simulations in LAMMPS of Freitas et al. [48] (see Subsection 4.6.1).
To calculate the elastic constants via LAMMPS [74, 109] and analyse the results, [ use scripts
[108] shipped with LAMMPS [74, 109] which I slightly adjust for my purposes.

The original CuAu EAM [39—41] used in this thesis and its modifications are always eval-
uated via LAMMPS [74]. This is done either directly with LAMMPS or indirectly with
LAMMPS via pymatnest [45]. The MEAM of Hennig et al. [15] and its modifications is
evaluated usually via LAMMPS [74, 137] directly or evaluated indirectly with LAMMPS
[74, 137] via pymatnest [45]. LAMMPS [74, 137] has its own parameter file (added by
Alexander Stukowski). Hennig et al. [15], though have also published their original parame-
ters [148]. For use with QUIP [114] and quippy [120], I created a new potential parameter
file [149] during the time leading up to my MPhil thesis [33] using very slightly adjusted
programs created originally for Ref. [150]. For this, parameters are taken directly from
Ref. [148]. Exceptions to the usage of LAMMPS are the calculations related to Caesar
[127] where QUIP [114] and quippy [120] are used, the calculations of the MEAM energies
(original MEAM [15] and modified MEAM) for comparison to the DFT values in Sections
4.7 and 4.9 for which I use quippy to call the QUIP implementation and the “MD averaging’
(see Subsection 4.5.1) for which I use QUIP. The modifications for the modified MEAM
to the QUIP potential file [149] and to the LAMMPS potential file [74, 137] are based
on the LAMMPS parameters [74, 137]. 1 use MATLAB [136] for the modifications of the

splines (see Section 4.8) and printing of the spline interpolations presented in Section 4.10.

b

b

Whenever necessary, a script by Albert Bartok-Partay [122] is used to transform an “.extxyz’
format file to the format which LAMMPS [74] reads. The scripts [122—124, 48] used in
thermodynamic integration are listed and elaborated on in Subsection 4.6.1. I also use SciPy
[103] and numpy [151, 152] at various points during my work. Additionally, OVITO [138],
sometimes in conjunction with its “bond-angle analysis” [139, 140], is used to investigate
some structures visually. OVITO is also used to create the sketches of the unit cell of the
different phases in Sections 2.9 and 2.10.
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A.2 DFT parameters

I use CASTEP [133] to calculate reference DFT [153—155] energies presented in Sections
4.7 and 4.9. For the DFT reference calculations, I use the “PBE” generalized gradient
approximation (GGA) functional [134, 135], a cutoff energy of 700 eV, Gaussian smearing
(see for example [156]) with a smearing width of 0.1 eV, a “k-point spacing” of 0.015 A for
the k-point grid [157], a “finite basis spacing” of 10 eV, a maximum of 300 SCF cycles, 30 %
additional bands (CASTEP parameter “PERC_EXTRA_BANDS”) and the Broyden mixing
scheme [158, 159] considering the last 10 electron densities with the CASTEP parameter
“MIX_CHARGE_AMP” set to 0.1. The energy I use is calculated by CASTEP as average
of free energy and energy which limits the effect of the smearing [160]. The finite basis set
corrections [161] are not included in the values reported in this thesis. To approximate the
energy of an isolated atom for the cohesive energy, I use a single atom in a cubic simulation

box with an edge length of 20 A with the same parameters as in the reference calculations.

A.3 Salient parameters of the nested sampling runs

In this section I present the parameters which are most important for the nested sampling
calculations used or mentioned in this thesis together with a reference to the point in the thesis
where the specific calculations are used. The values of n.,;;, the number of culls per iteration,
are kept low as Noam Bernstein and Livia Barték-Partay discovered convergence problems
when using some n.,;; values greater than 1 [113]. My trials in Section 4.4 are however a
good indication that small n.,;; values can be used. The CuAu nested sampling parameters
are based on the ones used by Baldock ef al. [28] for their CuAu calculations using the
original CuAu potential [39-41] which can be found under Ref. [43]. My parameters are
only very slight modifications to theirs. I use a pressure of ca 0.1 GPa for all my Au, Cu and
CuAu 50:50 calculations and batches of 5 runs. Further parameters are given in Table A.1.

Table A.2, shows these parameters for Ti for figures and arguments relying solely on the
original MEAM of Hennig et al. [15]. Table A.2 on the other hand is used for the parameters
for Ti used for figures and arguments considering the modification of the original MEAM of
Hennig et al. [15].
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Reference to usage \ atomic comp. gy L K  step ratios
Fig. 3.1 36:0 8 768 1152 8:16:8:8:8
Fig. 3.2 24,32,36,40 8 768 1152 8:16:8:8:8
(Not part of fit)

Fig. 3.2 48, 54,72 8 768 1152 8:16:8:8:8
(Part of fit) 64, 128 1 768 1152 8:16:8:8:8
Tab. 3.1 0:36 8 1536 1152 8:16:8:8:8
(Reference melting 18:18 8 1536 1152 8:16:8:8:8
temperatures) 36:0 8 1536 1152 8:16:8:8:8
Tab. 3.1, Fig. 3.6,3.7,3.10 48 8 1536 1152 8:16:8:8:8
(Extrapolation of 54 8 1536 1152 8:16:8:8:8
melting temperatures, 64 8 1536 1152 8:16:8:8:8
total number of atoms 72 8 1536 1152 8:16:8:8:8
given) 128 8 1536 1152 8:16:8:8:8
Sec. 3.11 0:24 8 1536 1152 8:16:8:8:8
(Fitting of pure Au)

Sec. 3.13.1 12:12 8 1536 1152 8:16:8:8:8
(Fitting of CuAu 12:12)

Sec. 3.13.2 18:18 8 1536 1152 8:16:8:8:8
(Fitting of CuAu 18:18)

Sec. 3.14 0:36 8 768 1152 8:16:8:8:8
(Fitting of Au, 18:18 8 1536 1152 8:16:8:8:8
CuAu 18:18 and Cu) 36:0 8 768 1152 8:16:8:8:8

Table A.1 Salient parameters used in the various Cu, Au and CuAu 50:50 nested sampling
runs. The label “atomic comp.” stands for “atomic composition™. It is either given as
Ncu:Nay, where N, and Ny, are the numbers of atoms per simulation box of Cu and Au
respectively, or given as the total number of atoms N;,; = N¢y, + Ny, In the latter case, it
means that all different compositions with this total atom number referred to, have the same
parameters. Further parameters are the number of culls per iteration n,;;, the total number of
calls expected during the MD scheme L (see Section 3.2), the number of walkers K and the
step ratios (see Section 3.2). The order of different steps for the step ratio is Lyq, nv, Nghear
stretchs Mswap- 1 use a pressure of ca 0.1 GPa. A single MD trajectory of length L;,,; is used.
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Reference to usage ‘ N P[GPa] ngy L K step ratios
Fig. 4.1a, Fig. 4.2a 54 10 1 840 3840 4:1:1:1
Fig. 4.1b 54 10 1 840 7680 4:1:1:1
Fig. 4.1c 54 10 1 672 15360  4:1:1:1
Fig. 4.2b 54 10 1 3840 3840 4:1:1:1
Fig. 4.3a 54 10 4 240 3840  8:32:8:8
Fig. 4.3b 54 10 8 240 3840  8:32:8:8
End of Sec. 4.3 54 10 8 120 7680  8:32:8:8
54 10 8 240 7680  8:32:8:8
Fig. 4.4a 54 10 8 240 7680  8:32:8:8
Fig. 4.4b 54 10 16 240 7680  8:32:8:8
Fig. 4.4c 54 10 32 240 7680  8:32:8:8
Fig. 4.5 24 2 8 240 15360  8:32:8:8
24 4 1 840 7680 4:1:1:1
24 6 1 840 7680 4:1:1:1
24 8 1 840 7680 4:1:1:1
24 10 1 840 7680 4:1:1:1
24 12 1 840 7680 4:1:1:1
Sec. 4.5 24 2 1 840 7680 4:1:1:1
Fig. 4.6 54 4 1 840 15360  4:1:1:1
54 6 1 840 15360  4:1:1:1
54 8 1 672 15360  4:1:1:1
54 10 1 672 15360  4:1:1:1
54 12 1 840 7680 4:1:1:1
Fig. 4.7 108 12 8 240 7680  8:32:8:8
54 12 1 840 7680 4:1:1:1
Fig. 4.8, Fig. 4.9 108 12 8 240 7680  8:32:8:8
Figs 4.14,4.15,4.20,4.21 | 24 2 8 240 15360  8:32:8:8
24 6 8 240 7680  8:32:8:8
24 10 8 240 7680  8:32:8:8
Sec. 5.2 216 12 8 240 3840  8:32:8:8

Table A.2 Salient parameters used in the nested sampling calculations mentioned in this
thesis for Ti using the original MEAM of Hennig et al. [15]. Here, N is the number of
atoms per simulation box, P is the pressure in GPa, n.,; is the number of walkers culled
per iteration, L is the overall number of calls as elaborated on in Section 3.2, the number
of walkers is given with K and “step ratios” denotes the ratio the different step kinds have
to each other. In this case, the ordering is L;4j, nv, Nghears Nsirerch With steps as explained
in Section 3.2. The length of the MD trajectory given in this ratio is made from one single
trajectory which is not broken up.
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Reference to usage ‘ N P[GPa] n.,; L K step ratios modification
Fig. 4.16 24 12 8 240 15360 8:32:8:8 A=0.1
24 12 8 240 15360 8:32:8:8 A=0.05
24 12 8 240 7680  8:32:8:.8 A =-0.02
24 12 8 240 7680  8:32:8:8 A =-0.04
24 12 8 240 7680  8:32:8:8 A =-0.08
24 12 8 240 15360 8:32:8:8 original
Sec. 4.8 24 4 8 240 7680  8:32:8:8 A =-0.08
24 8 8 240 7680  8:32:8:8 A =-0.08
Sec. 4.8 24 2 8 240 15360 8:32:8:8 A =-0.04
Sec. 4.8 54 6 8 240 15360 8:32:8:8 A =-0.04
Fig. 4.17 24 12 8 240 7680  8:32:8:8 A =-0.04
54 12 8 240 7680  8:32:8:8 A =-0.04

Table A.3 Salient parameters used in the nested sampling calculation when discussing
modifications to the original MEAM of Hennig e al. [15]. The definitions of the labels are
the same as in Table A.2, apart from the addition of the column “modification”. This column
denotes which potential is used for the calculation. The original MEAM [15] is denoted
by the label “original”. For modifications of this original MEAM, I list the modification
parameter A which is explained in Section 4.8. Again, the length of the MD trajectory given
for the “step ratio” is again from a single trajectory.
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