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ABSTRACT: Halide perovskites have shown great potential for light
emission and photovoltaic applications due to their remarkable electronic
properties. Although the device performances are promising, they are still
limited by microscale heterogeneities in their photophysical properties.
Here, we study the impact of these heterogeneities on the diffusion of charge
carriers, which are processes crucial for efficient collection of charges in
light-harvesting devices. A photoluminescence tomography technique is
developed in a confocal microscope using one- and two-photon excitation to
distinguish between local surface and bulk diffusion of charge carriers in
methylammonium lead bromide single crystals. We observe a large
dispersion of local diffusion coefficients with values between 0.3 and 2
cm2·s−1 depending on the trap density and the morphological environ-
menta distribution that would be missed from analogous macroscopic or
surface measurements. This work reveals a new framework to understand
diffusion pathways, which are extremely sensitive to local properties and buried defects.

Over the past 10 years, halide perovskites have
emerged as strong candidates for various light-
harvesting and light-emission applications.1−3 The

performances of perovskite-based photovoltaics (PVs) and
light-emitting diodes (LEDs) are now competing with mature,
commercial technologies.4 This rapid development has been
made possible by the design of new halide perovskite
compositions5−7 that generally share properties of remarkably
long carrier diffusion lengths (0.1−1 μm)8,9 even when simple
cost-effective fabrication techniques are employed. However,
for halide perovskites to reach their full potential, one has to
understand the microscopic heterogeneities that still limit their
performances.10,11 For instance, local defects, both at the
surface and inside of the bulk, trap charge carriers, thus limiting
their ability to diffuse through the material. It is therefore
critical to investigate the diffusion mechanisms at the local
scale to identify these trap sites and elucidate ways to mitigate
their influence on carrier diffusion and recombination.
Methylammonium lead bromide (MAPbBr3, MA =

CH3NH3
+) single crystals have remarkable photophysical

properties, as highlighted in recent reports on amplified
spontaneous emission12 and lasing phenomena,13,14 two-
photon absorption,15,16 extreme sensitivity to environment,17

excitonic properties,18,19 and long carrier diffusion lengths.20

Additionally, their optical properties are well-documented,
including their refractive index21,22 and exciton binding
energy,23 and photon reabsorption has been quantified.22,24,25

Such single crystals are ideal platforms to investigate intrinsic
charge carrier recombination and transport because they will
not be as influenced by morphological properties as their
polycrystalline film counterparts, where grain boundaries may
have a dominant impact on transport.26,27 On one hand, the
surface properties of these single crystals, such as defect
densities17 and carrier diffusion, have been reported.28,29 On
the other hand, optoelectronic properties are more difficult to
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probe within the bulk of these crystals, particularly on the
microscale, due to the large optical absorption coefficients of
these materials.22 Time-resolved photoluminescence (TRPL)
microscopy measurements allow us to study diffusive effects on

the microscale.9,29,30 Most TRPL studies on halide perovskites
to date are based on one photon (1P) excitation
techniques,8,31 which, due to the short optical absorption
depth in halide perovskites,22,24 typically probe the top ∼50−

Figure 1. Overview of the time and spatially resolved PL microscope setup for measuring local carrier diffusion. (a) Schematic of the TRPL
experimental setup (1P or 2P) to probe the diffusion properties laterally at different distance (x) from the excitation spot. (b)
Representation of the TRPL decays that can be measured with this setup, shown here for two different x positions: x0 (center, i.e., x = 0) and
xd (away from the center). (c) Artistic view of the impact of the diffusion of carriers leading to a broadening of the spatial distribution of the
PL with time, including the definition of the standard deviation σx associated with the Gaussian distributions employed in this work.

Figure 2. Surface diffusion properties in MAPbBr3 single crystals. (a) TRPL decay curves at selected collection positions x with 405 nm (1P)
excitation at x = 0, t = 0 (repetition rate of 10 MHz and fluence of 1.3 μJ·cm−2). From these data, we extract the normalized PL intensity
profiles IPL as a function of time, overlaid in (b). The standard deviation σx(t) extracted from Gaussian fits to the data at each time snapshot t
and the corresponding PL intensity I(σ) are also highlighted in (b). (c) Evolution of the σx profile broadening as a function of time extracted
from the Gaussian TRPL diffusion profiles for carriers traveling to the left (x < 0, blue) and to the right (x > 0, red) of the excitation pulse.
Dashed lines indicate fits to the data using eq 1 that were used to extract the diffusion coefficient values (D) stated in the panel.
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100 nm of the sample with most commonly used visible
excitation wavelengths. These techniques are therefore
particularly sensitive to effects that are most prominent on
the surface,32−34 which include surface defects,35 light
soaking,30 waveguiding,36 and surface irregularities.37 There-
fore, it is not possible to observe the diffusion of charge carriers
deeper in the crystal using a 1P technique. Furthermore, many
studies deduce diffusion properties8,38,39 from macroscopic 1P
TRPL measurements, missing crucial local variations in carrier
lifetime and diffusion properties that are ultimately responsible
for power losses in devices.
Recently, we combined 1P and two-photon (2P) TRPL

confocal microscopy with excitation and emission fixed at the
same spatial location to unveil local, buried carrier recombi-
nation sites in halide perovskites that cannot be observed
through 1P measurements alone.40 Here, we further adapt a
1P/2P TRPL confocal microscope setup to collect the photons
emitted at locations at a controllable distance away from the
excitation area using a scanning collection setup.41 By
performing these diffusion measurements as a function of
depth on MAPbBr3 single crystals, we determine the diffusion
properties in the bulk of the crystals and compare these
findings with their surface diffusion properties. We use this
technique to reveal a spatially and depth-dependent heteroge-
neous distribution of carrier diffusion properties. We then
construct time and spatially resolved images of carrier diffusion
and use these images to visualize buried crystal defects that
have an impact on carrier transport. These results give critical
insight into the factors that limit carrier transport in halide
perovskite materials.
In Figure 1a, we show a general schematic of our

experimental setup to probe carrier diffusion in four
dimensions (time and 3D space). In general, we adjust the
depth at which we generate photoexcited carriers (and probe
diffusion) by using either 1P excitation (z = 0) or 2P excitation
(z > 0). At a given depth, we measure a series of TRPL decay
curves at different positions at distance x away from the fixed
excitation spot (at x = 0) by raster scanning the PL collection
(Figure 1b; see Supporting Information (SI) for details). In
Figure 1c, we show a schematic representing the impact of the
carrier diffusion on the width of the PL spatial distribution,
characterized by the standard deviation σx of a Gaussian PL
profile.

We grew MAPbBr3 single crystals using an inverse
temperature crystallization method42,43 (see the SI for
experimental details). We show in Figure 2a a series of
example decay curves for 1P excitation (z = 0) in a crystal at
distance x away from the local excitation spot (x = 0) (see
Figure S3 for the full series of PL decays). We use an excitation
wavelength of 405 nm and fluence of 1.3 μJ·cm−2, which
generates local excitation charge carrier densities on the order
of ∼1017 cm−3 (see the SI for details); the PL emission peak in
these samples is at ∼540 nm.22,24 From these decay curves, we
determine the PL intensity IPL(x,t) corresponding to each
position x and time t after excitation. We see in Figure 2a that
the IPL values decrease with x as we move away from the
excitation center at x = 0. From the TRPL curves, we can select
a given time snapshot t and reconstruct the spatial profile
IPL(x,t) of the emitted photons over the horizontal x axis (see
the dotted line in Figure 2a). In Figure 2b, we show the
evolution of the extracted spatial distributions in x at selected
time snapshots after the initial excitation (t = 0) at x = 0 (see
Figure S2 for a larger series). This spatial distribution broadens
as a function of time as carriers transport away from the
excitation spot.
To characterize the diffusion, we apply a Gaussian fit to the

PL profiles at different time delays. This allows us to extract
the standard deviation σx(t) that can be interpreted as the
instantaneous diffusion length at time t (see Figure 2b). In
Figure 2c, we show these standard deviations as a function of
time after excitation obtained from the Gaussian fits; we do
this separately for the right (x > 0) and left (x < 0) sides of the
excitation spot to characterize any differences in diffusion
properties in each region of the crystal. The initial value of σx
≃ 440 nm at t = 0 originates from a combination of factors,
including the optical resolution of the setup (σresol ≃ 180 nm in
excitation at 405 nm and ≃240 nm in emission at 540 nm; see
the SI for details) and the possibility of early time diffusion or
reabsorbed photons emitted at early times44 within the
temporal instrument response of the setup (≃100 ps).
In a classical diffusive scenario, the quantity σx(t) follows the

form41

σ σ= +t Dt( ) (0) 2x x
2 2

(1)

where D is the carrier diffusion coefficient (see SI for
derivation). We find that the evolution of σ is well-fitted by
this linear expression in both regions (dashed lines in Figure

Figure 3. Bulk diffusion properties in MAPbBr3 single crystals at different depths and fluences. Evolution of the σx profile broadening as a
function of time extracted from the Gaussian TRPL diffusion profiles for x < 0 (blue) and x > 0 (red) at different depths (z) ascertained
using 2P excitation (1200 nm, 8 MHz repetition rate) at a fluence of (a) 580 and (b) 1300 μJ·cm−2. Solid lines are fits to the data using eq 1,
with dashed lines indicating extrapolations; the extracted values are plotted in Figure 4.
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2c). From these fits, we obtain a diffusion coefficient of D =
0.40 cm2·s−1 for the x < 0 region and D = 0.25 cm2·s−1 for the
x > 0 region. These two values are significantly different,
showing that charge carriers diffuse more efficiently on one
side than on the other, in line with local heterogeneity in
optoelectronic properties in halide perovskites.11,40 This spatial
asymmetry in the diffusion coefficient is also seen in the PL
profiles in Figure 2b, which becomes increasingly asymmetric
about x = 0 with time. The measured diffusion coefficients are
lower but of the same order of magnitude to previously
reported values on similar crystals (≃1 cm2·s−145). We observe
a higher diffusion coefficient of D = 0.57 cm2·s−1 on another
region of the same crystal (see Figure S2), further highlighting
the spatial variation of the diffusion properties and the need for
microscopic techniques to visualize such variations. We note
that here we are not considering other carrier recombination
processes that will also act to change the background local
carrier density, but the good fits of the extracted data to eq 1
suggest that diffusive processes dominate for the samples and
excitation conditions used in this work.
After elucidating the local surface diffusion properties (z =

0) using 1P excitation, we now seek to understand the
diffusion properties in the bulk of a MAPbBr3 crystal by
selectively exciting at a particular depth (z > 0) using 2P
excitation (1200 nm wavelength). For this purpose, we have
used 2P excitation to probe a different area of a MAPbBr3
crystal at selected depth (z > 0). In this configuration, our
excitation depth resolution is ≃1.5 μm, and our lateral
resolution is σlaser ≃ 0.5 μm (see the SI for details). We note
that we use a long-pass filter to extract only the low-energy tail
of the emitted photons to minimize reabsorption effects that
could attenuate the higher-energy photons. We show 2P
diffusion profiles as a function of depth z in Figure 3a with a 2P
fluence of 580 μJ·cm−2, which generates a comparable charge
excitation density in the samples to the 1P measurements (i.e.,
∼1017 cm−3; see the SI for details). For each depth, we once
again separately treat the regions to the left (x < 0) and the
right (x > 0). Near the surface at z = 1 μm, we observe a
relatively broad initial PL distribution, σx(0), for the left (x <
0) region, which stays constant over several nanoseconds,
before showing the classical diffusion dependence of eq 1 at
later times. We attribute this observation over the first few
nanoseconds to be a result of a light-soaking (photodarkening)
effect on the surface due to the extended time required for the
2P measurements, with the local extent of this effect depending
on the local PL heterogeneity and local carrier density;30,46 we
note that we also observe this effect in 1P excitation when
illuminating for extended times (Figure S4). By contrast, the
temporal evolution of σx(t) when probing deeper into the
crystal, where light-soaking effects are far less apparent,40 fits
well to the classical diffusion square root law (eq 1) across all
times (see also Figure S9), and we obtain similar diffusion
properties in both the left (x < 0) and right (x > 0) regions.
We note that the same measurements performed on different
regions and on crystals with different compositions (e.g.,
MAPbI3) reveal different behavior, suggesting that we are
indeed probing the local behavior in the specific region of
interest without experimental artifacts (see Figure S10). We
show the depth-dependent diffusion coefficients in Figure 4a,
revealing relatively homogeneous values ranging between 0.9
and 1.6 cm2·s−1 for x < 0 and x > 0 (see statistical distributions
in Figure 4c at all depths and regions). These values are
notably higher than the values obtained at the surface (≃0.3

cm2·s−1) and match the highest diffusion coefficients reported
from 1P TRPL measurements on MAPbBr3 crystals.29 The
larger values of the diffusion coefficient in the bulk than the
surface are consistent with the majority of traps residing at the
surface, which may limit carrier diffusion in that region.47,48

To investigate these observations further, we show in Figure
3b the temporal evolution of σx(t) with higher photoexcitation
density (1300 μJ·cm−2) and the corresponding extracted
depth-dependent diffusion coefficients in Figure 4b. We see a
striking increase in the diffusion coefficients at a range of
depths particularly for the left (x < 0) region when compared
to the lower fluence measurements. For some depth profiles,
the values now reach 2 cm2·s−1, thus even exceeding previously
reported values.29 Along with the global increase, we observe a
wider distribution of diffusion coefficient values (see Figure
4d). We note that as the fluence increases and the diffusion
coefficients generally increase, the measured PL decay times
globally decrease from around ≃6 ns to less than 4 ns (see
Figure S6) for most of the PL profiles. We attribute these
combined observations to a larger saturation of traps at higher
fluences,40,49,50 leading to more efficient diffusion of charge
carriers and increased bimolecular recombination (as seen
from the shorter PL lifetimes at higher fluence49). We note,
however, that this saturation of traps is not uniform across all
regions, with the diffusion coefficients at some depths
remaining relatively unchanged at ≃1 cm2·s−1 at higher

Figure 4. Statistics of the depth-dependent diffusion coefficients in
MAPbBr3 single crystals. The depth-dependent (z) diffusion
coefficients (D) obtained from fits to the diffusion plots in Figure
3 using eq 1, with excitation fluence of (a) 580 and (b) 1300 μJ·
cm−2. The regions x < 0 (blue) and x > 0 (red) are shown. The
corresponding histograms of diffusion coefficients across all depths
(z) and directions (x) are shown for the excitation fluences of (c)
580 and (d) 1300 μJ·cm−2. The diffusion coefficients for the same z
values are here binned together independently of the direction of
carriers (x < 0 or x > 0). The dashed yellow lines denote the mean
values of the distributions, which are ≃1.2 and ≃1.4 cm2·s−1,
respectively.
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fluence. This observation suggests that there are heterogeneous
distributions of trap densities and perhaps even variations in
types of traps below the surface. These local variations in
diffusion coefficient laterally and with depth would be missed
using macroscopic measurements, which would provide only
the average diffusion values denoted by the distributions (≃1.2
and ≃1.4 cm2·s−1, as shown by a yellow dashed line in Figure
4c,d, respectively). These variations would also be missed
using 1P PL measurements alone, which would probe only the
surface. Therefore, these local, depth-dependent results
demonstrate the unique insight obtained by using the 2P
microscopic technique.
To better understand these heterogeneities, we display side-

by-side in Figure 5 several important photophysical parameters
obtained from the higher-fluence (1300 μJ·cm−2) 2P measure-
ments for a range of spatial (x) and depth (z) values (see
Figure S11 for plots of other parameters). The diffusion
behavior is highly asymmetric even below the surface as large
differences can be observed between the x > 0 and x < 0
profiles (Figure 5a). This is particularly evident between z = 2
and 6 μm (see the yellow shaded area in Figure 5a,b), where
we now focus our analysis. We observe that the diffusion
coefficients are much larger for x > 0 (≃2 cm2·s−1) than those
for x < 0 (≃1 cm2·s−1). In Figure 5b, we show the PL decay
time (defined as the time taken for the PL to fall to 1/e of its
initial intensity; see the SI), averaged over the x < 0 or x > 0
lateral profile at each depth. We find that the PL decay time
follows a very different trend than that of the diffusion
coefficients as the larger decay times are found on the x < 0
side (≃4−8 ns) while the decay times for x > 0 are appreciably
shorter (≃2−4 ns). In fact, the diffusion coefficients and PL
decay times are anticorrelated in these two particular regions of
the crystal. In Figure 5c, we show an x−z image of the PL
decay times (measured after excitation at x = 0 for each
depth). We see that the longer decay times for the x < 0 region
are measured over a region of several microns (inside the blue
dashed circled region), extending in both x and z directions in
that region. On the other side of the excitation region (x > 0,
red dashed circle), the decay times are comparatively lower
and more spatially homogeneous. Additionally, the integrated
PL intensity in the x < 0 region (blue dashed circle) is a factor

of 1.7 lower than that in the x > 0 region (Figure 5d; see
Figure S12).
Given that there is a long PL lifetime but short diffusion

coefficient and lower PL counts in the x < 0 region, we propose
the presence of a defective crystal boundary between domains
(Figure 5e) in the region in the blue dashed circle in Figure
5c,d. Indeed, edges and boundaries in halide perovskite crystals
have been previously proposed to inhibit the diffusion of
charge carriers.9 Therefore, charge carriers moving through this
x < 0 area would be impeded from moving further beyond this
boundary, leading to a lower effective diffusion coefficient in
the region (see Figure 5e). Additionally, this model also
explains why the increase in local carrier excitation density
(fluence) has a negligible influence on the diffusion properties
in this x < 0 region; such a physical barrier preventing the
transport of charges may correspond to a defect type that is not
able to be saturated in the same way as other point or extended
defects, such as those in the x > 0 region. Indeed, boundaries
often present a larger concentration of nonradiative recombi-
nation sites in halide perovskite materials,11,51 and their
increased influence in that region may also explain the
extended PL lifetime albeit lower PL intensity in that local
region; such a combination is a signature of a trap-limited
regime in which there is a lower fraction of radiative
bimolecular recombination relative to nonradiative mono-
molecular processes that can have apparently longer life-
times.49 Therefore, we conclude that charges near this
boundary are significantly trapped, while the carriers at other
depths are more freely able to diffuse (see Figure 5e).
In conclusion, we have developed a microscope platform to

visualize in four dimensions (time and 3D space) carrier
diffusion in different regions and depths of a semiconducting
sample. We demonstrate its application on MAPbBr3 single
crystals, revealing local variations in charge carrier diffusion on
the microscale. At the surface, the diffusion is hindered by
charge carrier traps but deeper in the sample we observe much
larger diffusion coefficients that can even locally exceed the
highest values reported in the literature from 1P TRPL
measurements (≃1 cm2·s−129). We use this technique to reveal
a region in which carrier diffusion is impeded even deeper into
the crystal, which we interpret as a buried crystal boundary.

Figure 5. Visualizing a crystal boundary through photophysical measurements. (a) Diffusion coefficient and (b) PL decay times (defined as
the time taken to fall to 1/e of the initial intensity; see the SI), averaged over the lateral profiles in each region at each depth as a function of
depth, as extracted from the data in Figure 3. The regions x < 0 and x > 0 are denoted blue and red, respectively, and a region of interest is
highlighted by yellow shading. x−z slices of the (c) PL decay time and (d) integrated PL intensity of the same region as those in (a) and (b).
Regions of interest discussed in the text are highlighted with blue (x < 0) and red (x > 0) dashed circles. (e) Schematic showing the impact of
a buried crystal boundary on the diffusion of carriers initially excited at x = 0 (dashed line).
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This study demonstrates the capabilities of 2P TRPL
tomography to visualize buried heterogeneities that would
remain undetected with conventional 1P microscopy or
macroscopic approaches. We expect that the technique will
be useful for a variety of semiconducting systems, ultimately
providing guidance to improve the optoelectronic performance
of devices.
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