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Optimisation of chaotically perturbed acoustic limit cycles

Francisco Huhn · Luca Magri∗

Abstract In an acoustic cavity with a heat source, the thermal energy of the heat
source can be converted into acoustic energy, which may generate a loud oscil-
lation. If uncontrolled, these acoustic oscillations, also known as thermoacoustic
instabilities, can cause mechanical vibrations, fatigue and structural failure. The
objective of manufacturers is to design stable thermoacoustic configurations. In
this paper, we propose a method to optimise a chaotically perturbed limit cycle
in the bistable region of a subcritical bifurcation. In this situation, traditional
stability and sensitivity methods, such as eigenvalue and Floquet analysis, break
down. First, we propose covariant Lyapunov analysis and shadowing methods as
tools to calculate the stability and sensitivity of chaotically perturbed acoustic
limit cycles. Second, covariant Lyapunov vector analysis is applied to an acoustic
system with a heat source. The acoustic velocity at the heat source is chaotically
perturbed to qualitatively mimic the effect of the turbulent hydrodynamic field. It
is shown that the tangent space of the acoustic attractor is hyperbolic, which has a
practical implication: the sensitivities of time–averaged cost functionals exist and
can be robustly calculated by a shadowing method. Third, we calculate the sensi-
tivities of the time–averaged acoustic energy and Rayleigh index to small changes
to the heat–source intensity and time delay. By embedding the sensitivities into
a gradient–update routine, we suppress an existing chaotic acoustic oscillation by
optimal design of the heat source. The analysis and methods proposed enable the
reduction of chaotic oscillations in thermoacoustic systems by optimal passive con-
trol. Because the theoretical framework is general, the techniques presented can
be used in other unsteady deterministic multi-physics problems with virtually no
modification.

1 Introduction

Gas-turbine and rocket-motor manufacturers strive to design engines that do not
experience thermoacoustic instabilities [1, 2, 3, 4, 5]. Thermoacoustic instabilities
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occur when the heat released by the flame is sufficiently in phase with the acoustic
pressure [6] such that the thermal energy of the flame that is converted into acous-
tic energy exceeds dissipation mechanisms. The first objective of manufacturers
is to design a thermoacoustic system in which small acoustic perturbations decay
after some time, i.e. all the eigenvalues are stable. Eigenvalue analysis is routinely
used in industrial preliminary design and parametric studies because it can be
run quickly [e.g., 1]. However, when nonlinearities become active, thermoacoustic
systems exhibit rich behaviours both via supercritical bifurcations, i.e., when an
eigenvalue becomes unstable, and subcritical bifurcations, i.e., when eigenvalues
are stable but the nonlinearity is triggered by a finite-amplitude acoustic perturba-
tion. When the bifurcation parameter is varied, thermoacoustic systems may dis-
play periodic, quasi periodic and chaotic oscillations [7, 8, 9, 10, 11, 12, 13, 14, 15].
Chaotic acoustic oscillations originate from two main physical nonlinearities, which
are deterministic:

1. The heat released by the flame is a nonlinear function of the acoustic per-
turbations at the flame’s base, i.e. the flame saturates nonlinearly [16, 17].
Both experimental investigations [7, 8, 9, 10] and numerical studies [11, 12, 14]
showed that the nonlinear flame saturation may cause an acoustic limit cycle
to become chaotic, by either period doubling, or Ruelle-Takens-Newhouse, or
intermittency scenarios [13, 15], which are common to other fluid dynamics
systems [18, 19, 20]. The numerical studies of Kashinath et al. [11], Waugh
et al. [12], Orchini et al. [14] showed that the nonlinear flame saturation may
generate chaotic acoustic oscillations even in laminar flame models, where the
turbulent hydrodynamics is not modelled. The optimisation of this type of
chaotic oscillations was proposed by Huhn and Magri [21].

2. The geometry of the combustor promotes hydrodynamic instabilities, such as
vortex shedding and shear-layer instabilities [22], which result in energetic co-
herent structures. In turbulent combustors, turbulence unpredictably perturbs
the dynamics of coherent structures, which, in turn, unpredictably perturb the
flame dynamics, thereby changing the heat release that feeds into the acoustics.

The objective of this paper it to generalise the method of [21] to tackle both
nonlinear sources 1-2. We showcase the proposed method for the optimisation of
chaotic oscillations of type 2.

Such unpredictable and erratic behaviours can be physically modelled as noise.
Stochastic models have been proposed in thermoacoustics to determine the linear
growth rate by system identification of raw signals [e.g., 23, 24, 25]; and to phe-
nomenologically model the turbulent hydrodynamics to capture the intermittent
bursts that occur before thermoacoustic instabilities [13, 26]. On the one hand,
stochastic methods are particularly well suited to dealing with experimental data,
which are contaminated by random disturbances and uncertainties, such as those
from the environment and instrumentation. On the other hand, the thermoacoustic
problem is governed by the compressible Navier-Stokes equations equipped with
energy, continuity and chemistry equations. These equations are deterministic: For
exactly the same parameters and initial / boundary conditions, the solution is
unique (if it exists). However, because of the chaotic nature of these flows, almost
every small perturbation to the systems exponentially diverges [27] and the instan-
taneous solutions will be completely different after a characteristic time, which
scales with the inverse of the maximal Lyapunov exponent [e.g., 28, 29, 30]. This
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extreme sensitivity to small perturbations is popularly known as the “butterfly
effect” [31]. From a dynamical systems perspective, the turbulent hydrodynamic
field, which changes the heat-release dynamics, is deterministic and unpredictable,
i.e., it is chaotic. Indeed, large-eddy simulations, which solve deterministic equa-
tions, showed that the power density spectrum of turbulent combustors during
thermoacoustic instability has a high peak centred around the most excited acous-
tic frequency with a broadband content [e.g., 32, 33, 34]. Importantly, laboratory
experiments have shown that thermoacoustic systems behave like deterministic
systems when they become unstable, as thoroughly reviewed in Section 4.2 of Ju-
niper and Sujith [5]. This experimental evidence has recently motivated the use
of tools from dynamical systems theory for the analysis of chaotic thermoacous-
tic oscillations, such as nonlinear time series analysis [9, 10, 35], multi-fractal
analysis and Hurst exponents [13, 36], complex networks [37], synchronisation
theory [38, 39], to name only a few.

Although oscillations in thermoacoustic systems may be nonlinear and chaotic,
industrial preliminary design is based on linear analysis [1, 5]: the first objective
is to design eigenvalue-stable thermoacoustic systems. Sensitivity methods have
recently been developed to calculate the effect that a small change to the system
has on the eigenvalue. Sensitivity analysis [40] quantitatively informs the practi-
tioner, among others, on (i) how to optimally change design parameters, such as
geometric quantities [41]; (ii) which passive device is most stabilising [42]; and (iii)
how large is the uncertainty of the stability calculations [43, 44, 45]. When the
gradient provided by sensitivity analysis is embedded into an optimisation routine,
it is possible to calculate the optimal arrangement of acoustic dampers [46] and a
stable set of geometric parameters [47]. However, eigenvalue analysis is necessary
but not sufficient to prevent large acoustic oscillations. This is the case of subcrit-
ical bifurcations, where the system can self-sustain finite-amplitude oscillations in
the bistable region, where all eigenvalues are stable. In this paper, the focus is on
deterministic systems. We provide a method to calculate the sensitivity of chaotic
acoustic oscillations to stabilise a nonlinearly unstable, yet eigenvalue-stable, ther-
moacoustic system. Therefore, we regard the action of turbulence as that of chaot-
ically perturbing an acoustic limit-cycle. Hence, we propose a qualitative reduced
order model of a chaotically perturbed limit cycle to test the optimisation method
that we propose.

The paper is structured as follows. Section 2 introduces the theoretical frame-
work and tools for the optimisation of time-averaged cost functionals in chaotic
thermoacoustic systems. Section 3 presents the qualitative reduced order model
of a chaotically perturbed limit cycle. In Section 4, a covariant Lyapunov vector
analysis is performed to analyse the hyperbolic behaviour of the system. The sensi-
tivities of two key time-averaged thermoacoustic cost functionals (acoustic energy
and Rayleigh index) are calculated via a shadowing method and numerically veri-
fied in Section 5. In Section 6, the sensitivities are embedded into a gradient-update
algorithm to compute the optimal change to the design parameters to suppress a
chaotically perturbed limit cycle.
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2 Sensitivity of time-averaged cost functionals in chaotic systems

In chaotic oscillations, a quantity of interest that we wish to optimise is the time
average of a cost functional, J

〈J (s)〉 , lim
T→∞

1

T

∫ T

0

J (s; q(t))dt, (1)

where q is the state vector, t is the time, 〈·〉 represents the time average oper-
ation, which is equal to the expected value in ergodic systems (Birkhoff ergodic
theorem [48]), and s is the parameters’ vector. Physically, J may be an acoustic
energy, which we want to minimise to make the combustor operate in stable con-
ditions. Therefore, the objective is to calculate the sensitivity of the time-averaged
cost functional given a perturbation to the parameters’ vector, i.e. ∇s〈J 〉. Whereas
sensitivity analysis of eigenvalues is robust, traditional sensitivity methods fail in
chaotic systems because of the butterfly effect [49]. The gradient of the time-
averaged cost functional (1) explicitly reads

∇s〈J 〉 ,
d

ds

(
lim
T→∞

1

T

∫ T

0

J (s; q(t))dt

)
. (2)

In a chaotic attractor, the operations of differentiation and time average do not
commute, i.e., ∇s〈J 〉 6= 〈∇sJ 〉, where

〈∇sJ 〉 = lim
T→∞

1

T

∫ T

0

(
∂J
∂s

+
∂J
∂q

∂q

∂s

)
dt. (3)

The term ∂q/∂s can be thought as the distance between a trajectory obtained with
s = s0 and another trajectory s = s0 + δs. In chaotic systems, it grows exponen-
tially, rendering 〈∇sJ 〉 unbounded. This behaviour is observed in small systems
with at least three degrees of freedom [31], to large-scale turbulent simulations
with tens or hundreds of millions of degrees of freedom [30].

The unboundedness of (3) can be avoided with the use of ensemble meth-
ods [50], which consist in applying (3) to short trajectories, before ∂q/∂s becomes
too large. The result is then the average of the results of the various trajectories.
However, these methods suffer from low rate of convergence. A more efficient al-
ternative to ensemble methods that has been recently proposed to carry out sensi-
tivity analysis of chaotic systems is the class of shadowing methods [51, 52, 53, 54].
By noting that changing a parameter of a chaotic system has a similar effect to
changing the initial condition, shadowing methods find a perturbed (shadow) tra-
jectory that does not diverge from the unperturbed trajectory. Such a trajectory
is guaranteed to exist by the Shadowing Lemma [e.g., 55, 56, 57] and the sensi-
tivity calculation is enabled because the expectation (1) is a smooth function of
the parameters in hyperbolic dynamical systems, as explained in Ruelle’s linear
theory [58]. A hyperbolic strange attractor is an invariant set whose tangent space
can be decomposed in stable, unstable and neutrally stable subspaces, Eu, En, Es,
respectively, at almost every point. One basis for this decomposition consists of the
covariant Lyapunov vectors [59, 60]. Hyperbolic attractors are also ergodic and, im-
portantly, they have differentiable expectations [58], 〈J 〉, whereas non-hyperbolic
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systems may not. Thus, the sensitivities of time-averaged cost functionals are well-
defined in hyperbolic systems, but may be ill-defined in non-hyperbolic systems.
For chaotic sensitivity methods to work in thermoacoustics, it is crucial that the
hyperbolicity assumption is verified.

2.1 Numerical verification of hyperbolicity

In order to verify hyperbolicity in a numerical simulation, the method described in
Takeuchi et al. [61] is used here. The angles between the three pairs of subspaces,
θu,n = ∠(Eu, En), θu,s = ∠(Eu, Es), θn,s = ∠(En, Es), are computed. These an-
gles are computed by using the principal angles, cos

(
θA,B

)
= σ̄(QAQB), where

matrices QA and QB define the orthonormal bases of any subspaces A and B (not
only Eu, En, Es), respectively, and σ̄ is the largest singular value. Then, a prob-
ability density function of each of these angles is extracted via a histogram of the
time series. The system behaves hyperbolically if there are no tangencies between
the subspaces, i.e. the value of the probability density functions at θ = 0 is 0.

2.2 Lyapunov exponents and covariant Lyapunov vectors

This section introduces the key concepts to perform stability and sensitivity anal-
ysis of chaotic thermoacoustic systems. In particular, we present the key results
of Oseledets’ theorem [62] to lay out the fundamentals of covariant Lyapunov
vector analysis [60]. The thermoacoustic problem is governed by partial differ-
ential equations, i.e., the compressible Navier-Stokes equation with equations for
the chemistry, and mass and energy conservation. After spatial discretisation, the
thermoacoustic problem is formally an autonomous dynamical system{

q̇(t) = F (q(t))

q(0) = q0

, (4)

where the overdot (̇ ) is Newton’s notation for time differentiation; q ∈ RN is the
state vector (e.g., pressure and velocity at each discrete location), where the integer
N denotes the discrete degrees of freedom; the subscript 0 denotes the initial
condition; and F : RN → RN is a nonlinear smooth function, which encapsulates
the discretised boundary conditions. We are interested in the evolution of small
perturbations, therefore we split the solution as

q(t) = q̄(t) + q′(t), (5)

where q̄(t) is the unperturbed solution of (4), and q′(t) is the small perturbation
such that ||q′(t)||/||q̄(t)||∼ O(ε), where ε→ 0. The perturbation is governed by the
tangent equation {

q̇′ = J(t)q′,

q′(0) = q′0,
(6)
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where J(t) ≡ dF
dq

∣∣
q̄(t)

is the Jacobian. To define the Lyapunov exponents, it is

convenient to introduce the tangent propagator, which maps the perturbation, q′,
from time t to time t+ t̃, as

q′(t+ t̃) = M(t, t̃)q′(t). (7)

The tangent propagator is governed by the matrix equation{
dM
dt̃

= J(t̃)M ,

M(t, 0) = I,
(8)

where I is the identity matrix. Setting t = 0 without loss of generality, the norm of
an infinitesimal perturbation, q′0, to the initial condition, q̄0, asymptotically grows
(or decays) as

||q′(t̃)|| ∼= ||q′0||eλ(q′
0,q̄0)t̃, (9)

where ∼= means “asymptotically equal to”, and

λ(q′0, q̄) = lim
t̃→∞

1

t̃
log
||M(0, t̃)q′0||
||q′0||

(10)

is the characteristic Lyapunov exponent. Oseledets’ theorem [62] shows that there
exist N Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λN , which are constants of the
attractor. A Lyapunov exponent corresponds to an unstable / neutral / stable
mode if it is positive / neutral / negative. The Lyapunov exponents are the average
exponential contraction/expansion rates of an infinitesimal volume of the phase
space moving along the attractor. On the one hand, if the attractor is a fixed
point, the Lyapunov exponents are equal to the real part of the eigenvalues of the
Jacobian at the fixed point; on the other hand, if the attractor is a limit cycle, the
Lyapunov exponents are equal to the real part of the Floquet exponents [21]. A
chaotic system has at least one positive Lyapunov exponent.

To each Lyapunov exponent, λj , there is an associated covariant Lyapunov
vector, φj . If q′0 is decomposed in the basis of all the covariant Lyapunov vectors,
{φ1, · · · ,φN}, the ratio in the argument of the logarithm of (10) is dominated by
the largest non-zero component of the decomposition. Consequently, λ(q′0, q̄) = λj ,
where j is the index of the first non-zero component of q′0 in the covariant Lyapunov
vector basis. Furthermore, it can be shown [21] that a bounded covariant Lyapunov
vector, φ, associated to a Lyapunov exponent, λ, is governed by

dφ

dt̃
= Jφ− λφ. (11)

Equation (11) illustrates that a covariant Lyapunov vector is evolved by the tan-
gent system, with the second term on the right-hand side ensuring that it stays
bounded. Figure 1 pictorially describes the evolution of perturbations in the di-
rection of different covariant Lyapunov vectors. Three covariant Lyapunov vectors
are shown at two different instants, each associated with a different Lyapunov ex-
ponent, which can be positive, zero or negative along the unstable (red), neutral
(orange) and stable (green) covariant Lyapunov vectors, respectively. The resulting
perturbed trajectories (dashed lines), converge, stay constant or diverge, respec-
tively, to/from the unperturbed trajectory, depending on the sign of the Lyapunov
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exponent. This explains why trajectories emanating from two very close initial
conditions will almost surely diverge in chaotic systems – it is highly unlikely for
the vector connecting the two initial conditions not to have a component in the
direction of the unstable covariant Lyapunov vector.

3 Chaotic thermoacoustic model

We present a model of a chaotic thermoacoustic system, which consists of coupling
a generator of chaotic disturbances that perturb the acoustic velocity of a nonlin-
ear heat-release model (Figure 2). The acoustics are longitudinal and governed by
the linearised Euler equations. The chaotic perturbation is provided by the Lorenz
system, which behaves like a hyperbolic chaotic system to qualitatively mimic the
effect of the hydrodynamic field. The chaotic model does not attempt to quanti-
tatively reproduce a turbulent hydrodynamic field – this is not the objective. The
objective is to capture the essential dynamical systems feature of the chaotic per-
turbation induced by the hydrodynamics, which is hyperbolic chaos (Section 1).
The stability, sensitivity and optimisation framework presented in this paper can
be used in more realistic hydrodynamic models1 with virtually no modification.

1For example, in large-eddy simulations, the nonlinear operator F in the dynamical system
formulation in Eq. (4) is provided by the spatial discretisation of the momentum, mass and
energy conservation laws and chemistry equations [63].

Fig. 1: Schematic diagram of covariant Lyapunov vectors and perturbations on an
unperturbed trajectory.

Chaotic modulation

Heat source

Acoustics

uf

q̇

u

Fig. 2: Schematic of the chaotic thermoacoustic model.



8 F. Huhn & L. Magri

3.1 Lorenz system

The Lorenz system [31] consists of a set of three nonlinear ordinary differential
equations

ẋL = σL(yL − xL)

ẏL = xL(ρL − zL)− yL (12)

żL = xLyL − βLzL,

where the variables, xL, yL, zL, and positive parameters σL = 10, ρL = 8/3, βL = 28
are used to generate a chaotic signal [64] to perturb the velocity at the heat source
(Section 3.2). Mathematically, the Lorenz system has some key properties that are
shared by several high dimensional systems. It is chaotic, i.e. it produces unpre-
dictable dynamics; and for the range of parameters we use, it is quasi-hyperbolic
[65, 66], which means that it behaves like a hyperbolic system for the purpose of
this analysis [53, 67]. These two conditions fulfil the chaotic hypothesis2, which
holds in high-dimensional fluids systems. Because of its properties, the Lorenz sys-
tem is used as a prototypical system in a wide range of fundamental studies on
chaos [e.g. 29, 71, 72] and in the development of new computational methods [e.g.
51, 52, 53]. Instead of being a generator of stochastic dynamics, it is a generator
of synthetic chaos3.

3.2 Acoustics and heat source

A thermoacoustic system consists of three subsystems that interact with each
other: the acoustics, flame and hydrodynamics [22, 40]. The acoustics strongly
depend on the geometry of the configuration and the boundary conditions. The
flame is governed by chemistry mechanisms and their interaction with the turbu-
lent environment. The hydrodynamics is governed by the geometry of the inlets
and flame holders, which generate large coherent structures due to flow instabili-
ties (vortex shedding, shear layer instabilities, etc.), which, in turn, are perturbed
by turbulence. To accurately model thermoacoustic instabilities, high-fidelity sim-
ulations can be employed [e.g., 4]. However, in this fundamental paper, we aim
at capturing the essential physical mechanisms of chaotic thermoacoustic insta-
bilities. Therefore, we choose a prototypical time-delayed thermoacoustic system
with a longitudinal acoustic cavity and a heat source modelled with a time-delayed
model. The main assumptions are: (i) the acoustics are small perturbations onto a
low-Mach number mean flow with uniform density; (ii) viscosity and diffusivity are
negligible; and (iii) the acoustics are one-dimensional, i.e. the cut-on frequency of
the duct is much higher than the frequency of the instability. Under these assump-
tions, the linearisation of the inviscid momentum and energy equations yields,

2It has been hypothesised by Gallavotti and Cohen [68], Gallavotti [69] that most high-
dimensional physical systems develop asymptotically on an attracting set, the dynamics of
which can be regarded as hyperbolic. This is called the chaotic hypothesis, which stems from
measure theory of turbulence of [70].

3This paper provides a method to optimise deterministic thermoacoustic systems. Including
stochastic processes in the optimisation of chaotic thermoacoustic systems is beyond the scope
of this paper and is left for future work.



Optimisation of a chaotically perturbed acoustic system 9

respectively [42, 73, 74]

∂u

∂t
+
∂p

∂x
= 0 (13)

∂p

∂t
+
∂u

∂x
+ ζp− q̇δ(x− xf ) = 0, (14)

where u, p, q̇, x and t are the non-dimensional velocity, pressure, heat-release rate,
axial coordinate and time, respectively. The reference scales for speed, pressure,
length and time are the mean-flow convection velocity, the mean-flow Mach num-
ber multiplied by the heat capacity factor, the length of the tube, and the length
of the tube divided by the mean-flow speed of sound, respectively. The damping
coefficient, ζ, takes into account all the acoustic dissipation (Section 3.2.2). The
duct has open ends, which means that the acoustic pressure is zero at the bound-
aries. The spatial extent of the heat source is assumed negligible as compared to
the acoustic wavelength [16], thus, it is modelled as a compact source of acoustic
energy through a Dirac delta (generalised) function, δ(x − xf ) localised at xf = 0.3.
The heat-release rate is provided by a modified King’s law [75, 76, 77, 78, 79]

q̇(t) = β
[(

1 + uf (t− τ)
) 1

2 − 1
]
, (15)

which is a nonlinear time-delayed model for an electrically heated wire. In this
paper, β = 0.82 and τ = 0.04, except where stated otherwise. This model has
similar features to flame models, such as the n-τ model [e.g., 5]. Because Lya-
punov analysis is valid only for smooth dynamical systems, we approximate the
heat-release law (15) by a fourth-degree polynomial in a small neighbourhood of
uf (t − τ) = −1, which enables continuity of both the function and its derivative,
to make the derivative smooth [21]. The heat parameter, β, and time delay, τ ,
encapsulate all information about the heat source, base velocity, and ambient con-
ditions. To add the chaotic perturbation of the acoustic velocity at the heat source,
and transform the time-delayed problem into a initial value problem, we model
the advection of a perturbation v with velocity τ−1 as [21]

∂v

∂t
+

1

τ

∂v

∂X
= 0, 0 ≤ X ≤ 1, (16)

v(X = 0, t) = uf (t). (17)

The time-delayed velocity is provided by the value of the dummy variable v at the
right boundary, i.e. uf (t − τ)) = v(X = 1, t). Physically, (16) represents a generic
heat source, in which the time that an acoustic perturbation from the base of the
heat source takes to release heat, q̇, is τ . More accurate reduced-order models for
premixed flames can be found in Waugh et al. [12], Orchini et al. [14], Kashinath
et al. [80, 81] and for diffusion flames in Magri and Juniper [41], Tyagi et al. [82].

3.2.1 Chaotic perturbation to the acoustic velocity

The effect of the chaotic hydrodynamics is to perturb the time delay between heat
release and velocity perturbations. To model this, the velocity at the base of the
heat source is perturbed as

v(X = 0, t) = uf (t) + αxL, (18)
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where xL is the first state variable of the Lorenz system (12), which acts as the
chaotic forcing. When α = 0, we recover the non-chaotic time-delayed model.
Physically, this means that the acoustics do not affect the hydrodynamics. The
source of chaos is one-way coupled to the thermoacoustic system, which acts as an
additive disturbance to the acoustic velocity (Figure 2). This one-way coupling is
physically justified at first order in low-Mach number flows when the acoustics and
hydrodynamics have different temporal scales. This can be shown by a multiple-
scale method applied to the reacting Navier-Stokes equations, as explained in
Section 3.4 of [83].

3.2.2 Numerical discretisation

Equations (13), (14) are discretised by a Galerkin method [84]. First, the acoustic
variables are separated in time and space as

u(x, t) =

Ng∑
j=1

ηj(t) cos(jπx), (19)

p(x, t) = −
Ng∑
j=1

µj(t) sin(jπx), (20)

where each spatial function is a natural acoustic mode of the open-ended duct.
The partial differential equation (14) is projected onto the Galerkin spatial basis
{cos(πx), cos(2πx), . . . , cos(Ngπx)} to yield

η̇j − jπµj = 0 (21)

µ̇j + jπηj + ζjµj + 2q̇ sin(jπxf ) = 0. (22)

The system has 2Ng degrees of freedom. The time-delayed velocity becomes

uf (t− τ) =

Ng∑
k=1

ηk(t− τ) cos(kπxf ), (23)

and the damping, ζj , is modelled by a modal expression that damps out higher-

frequency oscillations, ζj = c1j
2 + c2j

1/2, where c1 = 0.05 and c2 = 0.01 [42]. This
damping model originates from physical principles, as explained in Landau and
Lifshitz [85]. We have assumed that the mean flow is sufficiently slow such that
it can be neglected. Adding a mean flow may quantitatively change the phases
between acoustic waves [86], but the conclusions of this paper are qualitatively
unaffected. With a mean flow, a wave-approach can be used instead [86].

The linear advection equation (16) is discretised using Nc + 1 points with a
Chebyshev spectral method [87]. This discretisation adds Nc degrees of freedom.
The resulting discretised system is time-integrated using the 3-stage Runge-Kutta
scheme by Wray [88]. On numerical discretisation, the thermoacoustic state vector
is q =

(
η1, . . . , ηNg

, µ1, . . . , µNg
, v1, . . . , vNc

, xL, yL, zL
)
.
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3.2.3 Effect of numerical discretisation

To investigate the effect of the numerical discretisation, we perform tests on a
chaotically perturbed limit cycle (Figure 3). Figure 3a shows the standard devia-
tion of ηj(t), j = 1, · · · , Ng, for different values of Ng with fixed Nc + 1 = 11. The
dominant unstable mode is the first mode because the heat source is located at
xf = 0.3, where most of the energy excites the first mode. The calculations with
small Ng correctly capture the energy associated with each of the Galerkin modes
that they compute. When increasing the number of Galerkin modes, the accuracy
on the modes that were previously included does not improve. The benefit of in-
creasing Ng is to increase the spatial resolution by including higher wavenumbers.
The magnitude of the standard deviation decays sharply at the beginning up to
j ≈ 10, followed by a slower decay. Therefore, capturing modes of lower intensity
requires a large increase in the number of Galerkin modes. We choose Ng = 10 as
a good compromise between accuracy and computational cost.

4 Stability and hyperbolicity of the chaotically perturbed acoustic limit

cycle

In Section 5, the sensitivities of the time-averaged acoustic energy and Rayleigh
index with respect to the heat-source parameters are computed in a chaotically
perturbed acoustic limit cycle. Subsequently, such sensitivities are embedded into
an optimisation routine to suppress a large chaotic oscillation in a bistable re-
gion (Section 6). However, as discussed in Section 2, first, we wish to show that
the thermoacoustic chaotic attractor is hyperbolic, otherwise the sensitivities of
(1) may not exist. The initial condition is q0 = [1 · · · 1]. The acoustic velocity is

1 5 10 15 20
𝑗

0.0

0.5

1.0

S
D

[𝜂
𝑗(𝑡

)]

𝑁𝑔 = 5
𝑁𝑔 = 10
𝑁𝑔 = 15
𝑁𝑔 = 20

(a) Varying Ng , with fixed Nc + 1 = 11.

1 2 3 4 5 6 7 8 9 10
𝑗

0.0

0.5

1.0

S
D

[𝜂
𝑗(𝑡

)]

𝑁𝑐 = 5
𝑁𝑐 = 10
𝑁𝑐 = 15
𝑁𝑐 = 20

(b) Varying Nc, with fixed Ng = 10.

Fig. 3: Convergence study on the standard deviation of the Galerkin modes, ηj(t),
on a chaotically perturbed acoustic limit cycle (α = 0.01). The tenth mode is of
the order of machine precision.
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chaotically perturbed by setting the coupling parameter to α = 0.01 in (18), which
corresponds to a chaotic disturbance of approximately 1-10% of the first mode’s
amplitude. In a chaotic solution, only covariant Lyapunov vector analysis can cal-
culate the linear dynamics of the attractor. Eigenvalue and Floquet analyses are
not valid. The acoustic velocity at the base of the heat source, uf (t), is oscilla-
tory (Figure 4) but aperiodic. The Lyapunov spectrum is shown in Figure 5. The
first Lyapunov exponent, λ1 ≈ 0.91038, is positive, and is close to the positive
Lyapunov exponent of the Lorenz system [64] because the chaotic disturbance is
one-way coupled to the thermoacoustic system (Figure 2). This means that the
Lyapunov exponent of the chaotic perturbation is virtually unaffected when feed-
ing the thermoacoustics, i.e. it acts similarly to a chaotic external forcing. φ2(t)
is the neutral covariant Lyapunov vector because λ2 = 0 to numerical error. Most
of the other Lyapunov exponents come in pairs, except for λ3, λ4 and λ23, each
corresponding to one one-dimensional Lyapunov subspaces. The unstable, neutral
and stable subspaces are

Eu(t) = Span[φ1(t)] (24)

En(t) = Span[φ2(t)] (25)

Es(t) = Span[φ3(t), · · · ,φ33(t)], (26)

respectively. The probability density functions of the angles between the three pairs
of elements from Eu, En, Es are shown in Figure 6. In all cases, the probability for
a tangency to occur is zero, which shows that the attractor is hyperbolic. However,
it must be noted that while no tangencies are present, the minimum observed value

0 5000
t

−1

0

1

u
f

Fig. 4: Acoustic velocity at the heat-source location, uf (t).

1 5 10 15 20
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0 ×10−3

Fig. 5: Lyapunov spectrum (first 22 exponents out of 33). Lyapunov exponents:
λ1 ≈ 0.903, λ2 ≈ −4.2 × 10−5 (corresponds to the neutral covariant Lyapunov
vector). λ23 ≈ −14.6 and Lyapunov exponents of higher index are in the range
[−240,−90].
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of the angle θu,n is 1.2 o, which is very small. As shown by Ni [89], the bound on
the error of the non-intrusive least-squares shadowing method is controlled by
the minimal angle – the smaller it is, the larger the bound – and an indicative
threshold of approximately 5o, which is not verified here, is suggested for accurate
results. This issue is tackled with the use of the filtering parameter by Blonigan
and Wang [54] and is further developed in Section 5.

In conclusion, the chaotic thermoacoustic system behaves hyperbolically. The
nonlinearity of the heat-release response does not change the hyperbolic nature
of the chaotic perturbation of the hydrodynamic subsystem. Physically, this means
that time-averaged cost functionals of chaotic acoustic oscillations respond smoothly
to small changes in the design parameters. This is a key result because it implies
that the sensitivities exist. As previously explained, to determine whether a sys-
tem is hyperbolic, the complete spectrum should be computed to construct the
unstable, neutral and stable subspaces. This is possible with the reduced-order
model of this paper, but it could be prohibitively expensive in high-dimensional
systems, such as large-eddy simulation [4]. For the latter, only a portion of the
Lyapunov spectrum and covariant vectors is typically calculated [e.g., 90, 91].

5 Sensitivity and optimisation of chaotic acoustic oscillations

5.1 Time-averaged cost functionals

We analyse the chaotic acoustic oscillation of Section 4. Because thermoacoustics
is a multi-physical phenomenon, there are different norms [92, 93], semi-norms [94,
95], and functionals to define a physical measure. For thermoacoustic systems with
negligible mean flow, which cannot advect flow inhomogeneities like entropy spots,
the acoustic energy and Rayleigh index are two suitable quantities of interest. The
instantaneous acoustic energy of the whole system is defined as

Eac(t) ,
1

2

∫ 1

0

(
u2(t) + p2(t)

)
dx, (27)

which is the sum of the acoustic kinetic and potential energies, i.e., it is the Hamil-
tonian (constant of motion) of the natural acoustic system. Because of Parse-
val’s theorem, the acoustic energy is related to the Galerkin modes as Eac(t) =
1
4

∑Ng

j=1

(
η2
j (t) + µ2

j (t)
)
. The acoustic energy, Eac, is (half) the Euclidean norm of

the thermoacoustic system under investigation. In chaotic acoustic oscillations, we
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Fig. 6: Probability density function of angles between Eu, En, Es.
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are interested in calculating the sensitivity of the time-averaged acoustic energy,
〈Eac〉.

The Rayleigh index can be derived by (i) multiplying the acoustic momentum
equation (13) by u; (ii) multiplying the acoustic energy equation (14) by p; (iii)
adding them up; and (iv) integrating in the space domain. This procedure yields
an equation for the evolution of the acoustic energy

dEac
dt

= −
∫ 1

0

ζp2 dx+ pf q̇, (28)

where the Rayleigh index is defined as

IRa , pf q̇(t), (29)

which, on numerical discretisation, reads

IRa = −q̇ (vNc
(t))

Ng∑
j=1

µj(t) sin(jπxf ). (30)

The Rayleigh index is a key cost functional that determines the stability of
acoustic oscillations fed by a heat source. Physically, (28) states that the acoustic
energy grows in time when the pressure at the heat source is sufficiently in phase
with the heat release rate to exceed damping mechanisms. The acoustic energy
grows up to nonlinear saturation, after which the self-sustained acoustic oscillation
persists. This mechanism is commonly referred to as the Rayleigh criterion [6]. In
chaotic oscillations, we are interested in calculating the sensitivity of the time-
averaged Rayleigh index, 〈IRa〉. Applying the infinite time average to (28), and
considering that the acoustic energy is a bounded quantity on a strange attractor,
yields

0 =

〈
dEac
dt

〉
+

〈∫ 1

0

ζp2 dx+ pf q̇

〉
= lim
T→∞

1

T

∫ T

0

dEac
dt

dt+

〈∫ 1

0

ζp2 dx

〉
−
〈
pf q̇
〉

= lim
T→∞

Eac(T )− Eac(0)

T
+

〈∫ 1

0

ζp2 dx

〉
−
〈
pf q̇
〉
, (31)

which physically means that the damping mechanism exactly balances the acoustic
source at regime, i.e.,

〈IRa〉 , 〈pf q̇〉 =

〈∫ 1

0

ζp2 dx

〉
. (32)

Thus, the time-averaged Rayleigh index can be expressed either from the heat-
source contribution or the dissipation term. From a computational point of view,
the calculation of the sensitivity of 〈pf q̇〉 is difficult because the chaotic perturba-
tion, which is imposed exactly at x = xf , makes 〈pf q̇〉 erratic. To overcome this

computational problem, we advise using
〈∫ 1

0
ζp2 dx

〉
(bearing in mind the equality

(32)), which numerically behaves regularly because it is an integral quantity. Note
that the cost functional 〈IRa〉 is neither a norm nor a semi-norm. The sensitivity
and optimisation framework we propose can tackle general cost functionals.
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5.2 Sensitivities

We compute the sensitivities of the time-averaged acoustic energy and Rayleigh
index with respect to the heat-source parameters β and τ . Because we have two
quantities of interest and two parameters, we use a forward sensitivity method, i.e.,
an adjoint method would not reduce the number of computations [40, 42, 96]. The
nominal parameter values are β0 = 0.82 and τ0 = 0.04. We simplify the notation
by representing the finite time-averaged statistics with the same symbol as the
infinitely time-averaged ones, 〈J 〉, since the former are used as a proxy for the
latter.

5.2.1 Non-Intrusive Least Squares Shadowing

We apply the Non-Intrusive Least Squares Shadowing (NILSS) over 100000 seg-
ments, with a run-up time of 500 time units. Each segment is 200 time steps long
(time step of 2 × 10−3 time units), which is between one third and half of the
Lyapunov time (see Fig. 5). With the NILSS, the time domain is partitioned in
multiple segments, the length of which scales with the Lyapunov time (inverse of
the leading Lyapunov exponent).

Figure 7 reports the evolution of ∂〈Eac〉/∂τ versus the segment number. The ε
in the legend refers to the filtering parameter of Blonigan and Wang [54], which we
describe here briefly. Part of the NILSS algorithm is the minimisation of the norm
of a vector. This is done by solving a linear system Sx = b, where S is a Schur
complement matrix. If a system exhibits tangencies, this matrix becomes rank-
deficient and there is no solution to the linear system. In systems that exhibit
near-tangencies (small non-zero minimal angle), such as ours (see Fig. 6), the
ratio of the largest eigenvalue of S over the smallest becomes very large. In other
words, S becomes ill-conditioned. By adding εI to S, where I is the identity
matrix, for a range of small ε, the smallest eigenvalue becomes approximately
equal to ε, while the largest is virtually unaffected. Thus, if a large enough ε is
chosen, the conditioning of the linear problem is improved. Figure 7 shows that
the unconditioned (ε = 0) NILSS oscillates widely and does not converge in 100000
segments. By making ε = 10−6 6= 0, the behaviour is greatly stabilised. However, if
ε is increased to 10−5, the value of the converged sensitivity is different from that
of 10−6. By successively increasing ε to 10−1, a trend emerges where the difference
of the sensitivities becomes smaller and smaller, implying that the sensitivities
approach a limit, which should correspond to the true sensitivity. This is evidence
that the use of the NILSS method in systems with small minimal angle can be
greatly improved with the use of the filtering parameter. For the remainder of
this paper, ε = 10−1 is used. The converged values of the sensitivities for the two
time-averaged cost functionals, 〈Eac〉 and 〈IRa〉, versus the two parameters, β and
τ , are shown in Table 1.

5.2.2 Finite differences

To compute the reference sensitivity solution, we use forward finite differences
(first-order) at β = β0(1+∆β/β0) and τ = τ0(1+∆τ/τ0), where ∆β/β0 and ∆τ/τ0
are varied over {10−2.5, 10−2, 10−1.5}. The statistics of each point are obtained
from an ensemble of 300 simulations of 1000 time units each. At the lower end of the
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Fig. 7: Evolution of ∂〈Eac〉/∂τ versus the number of segments, while varying the
filtering parameter, ε, in from 10−6 to 10−1 (red) by steps of one order of magni-
tude, along with ε = 0 (blue). As ε is increased, the converged sensitivities tend to
a limit, which is the sensitivity of the system.

s ∂〈Eac〉/∂s ∂〈IRa〉/∂s

β 2.34 0.161

τ 43.6 2.78

Table 1: Sensitivities obtained via the NILSS method.

perturbation range, the uncertainty over the cost functional variation is relatively
large (Appendix A describes how the uncertainty is calculated). This is due to
finite-time averaging error – the smaller the parameter perturbation, the larger
the time needed to obtain accurate time averages. Thus, obtaining sensitivities of
time averages of unsteady cost functionals via finite differences is computationally
expensive and not robust. The chosen range of perturbation values is shown to
exhibit a trend close to linear, while its values are relatively large that convergence
issues are minimised.

Figure 8 shows the finite difference results with the error bars representing
the limits of the interval of confidence (see Appendix A). Notice that a change
in sensitivity becomes a vertical shift in these graphs. The shaded region corre-
sponds to values within the uncertainty bounds, such that any line inside it can
explain the results of the finite differences under the calculated uncertainty. This
region is capped at the top by the largest possible sensitivity. The closer a line
is to the points, the better it explains the variations of the time-averaged cost
functionals. The red lines, which correspond to the sensitivities calculated with
the NILSS method, fit the points well. This verifies that the NILSS method can
accurately calculate the sensitivities of time-averaged cost functionals in a chaotic
thermoacoustic system.

6 Suppression of a large chaotic acoustic oscillation by optimal design

The thermoacoustic model under investigation displays a bistable region, also
known as hysteresis, with a co-existing stable fixed point and a limit cycle, i.e.,
the Hopf bifurcation is subcritical. Subcritical bifurcations, which are common in
thermoacoustic systems [12, 14, 21, 97, 98, 99], are more challenging to control
than supercritical bifurcations. On the one hand, ensuring linear stability is nec-
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Fig. 8: Comparison between sensitivities obtained by finite differences (blue
crosses) and NILSS (red line).

essary and sufficient in supercritical bifurcations: if the system has no unstable
eigenvalue, no large self-sustained acoustic oscillation can appear. On the other
hand, ensuring linear stability is only necessary in subcritical bifurcations: the
system may have large self-sustained acoustic oscillations in the bistable region,
where all eigenvalues are stable. Such a situation occurs in the bistable region,
where the large self-sustained oscillation may be triggered by a sufficiently large
perturbation to the state vector. Nonlinear optimisation has to be employed in
the bistable region to find a set of design parameters for which the system is sta-
ble to all perturbations. The objective of industry is to operate in the linearly
stable region outside the bistable region. In other words, we want to provide a
method to answer the question: What is the minimal change of design parameters
for which no large oscillation? The answer is provided by either calculating the
bifurcation diagram in the multidimensional parameter space, which is computa-
tionally cumbersome, or by solving a constrained nonlinear optimisation problem
of a time-averaged cost functional, which is computationally affordable. Following
the latter route, the optimisation problem is formulated as

minimise
β,τ

〈J (β, τ)〉

subject to (13), (14), (15), (16), (19), (20)
(33)

where J is either the acoustic energy (27), Eac, or the Rayleigh index (32), IRa.
The set of parameters can be updated by a steepest descent method

sn+1 = sn − γ∇s〈J 〉|s=sn
, (34)

where s = [β̃ τ̃ ]T . The normalised parameters vector and the relaxation factor, γ,
enable stable and accurate numerical convergence. The normalisation is such that
β = β̃β0 and τ = τ̃ τ0, where β0 and τ0 are the starting points of the optimisation.
The normalisation makes the orders of magnitude of both parameters the same,
which enables robust optimisation despite the gradients in τ being one order of
magnitude higher than gradients in β. The relaxation factor γ is 0.01 for the
optimisation on the acoustic energy, 〈Eac〉, and 0.2 for the optimisation on the
Rayleigh index, 〈IRa〉. The algorithm stops when the condition

〈J (β, τ)〉 < ε · 〈J (β0, τ0)〉 (35)

is met, where ε = 5%. This condition physically signifies that the optimisation is
successful when the thermoacoustic system vibrates around the fixed point, with
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the energy content being related to the chaotic perturbation of the hydrodynamic
field only. The sensitivities are calculated with the NILSS method over 20000
segments, each of 200 time steps (time step of 2× 10−3 time units), a run-up time
of a 1000 time units and the filtering parameter is set to 10−1.

Figures 9a and 9b show the suppression of the chaotically perturbed acoustic
limit cycle by optimally changing the heat-source parameters. The stopping condi-
tion (35) is satisfied after 3 (acoustic energy) or 2 (Rayleigh index) iterations and
an extra iteration is performed to ensure that the time-averaged cost functional
does not change. This routine can be used to accurately detect the fold point by
reducing the relaxation factor, γ, at the cost of more iterations. An optimisation
using sensitivities of the eigenvalues at the fixed point would have stopped at the
initial design point, (β0, τ0), because all the eigenvalues would be stable (located in
the bistable region). However, because we used the sensitivities of the chaotically
perturbed acoustic limit cycle, we were able to stabilise the chaotically perturbed
thermoacoustic limit cycle to all perturbations.
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Fig. 9: Suppression of a chaotic acoustic oscillation in the bistable region. The
optimisation route is overlayed (red line) on top of the upper branch (blue) and
the lower branch (green). The labels correspond to the optimisation step. The
optimisation starts at β0 = 0.82, τ0 = 0.04, where two attractors co-exist: a chaotic
attractor around the fixed point, q̄ = 0, and a chaotically perturbed acoustic limit
cycle.
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7 Conclusions

The preliminary design of thermoacoustic systems is traditionally based on eigen-
value analysis [5, 40]. Recent developments in eigenvalue sensitivity methods [40]
have enabled gradient-based optimisation of thermoacoustic systems. These meth-
ods allowed the optimal design parameters to be computed to ensure that the sys-
tem operates in a linearly stable region [46, 47]. Linear stability, however, cannot
guarantee that a nonlinear thermoacoustic oscillation will not occur. This is the
case of subcritical bifurcations, in which a large-amplitude thermoacoustic limit

cycle can be triggered from a linearly stable solution. To complicate the picture,
realistic combustors operate in a turbulent environment. The action of turbu-
lence in a thermoacoustic oscillation is that of chaotically perturbing the limit
cycle. Consequently, high-fidelity-simulation-driven optimal design calls for non-
linear tools that are able to tackle chaotic systems. In this paper, we propose a
framework to optimise a chaotically perturbed limit cycle. The effect of turbulence
is qualitatively modelled as a chaotic perturbation to the heat released by a source.
Covariant Lyapunov vector analysis is employed to calculate the sensitivity of

the chaotic thermoacoustic solutions. We show that the nonlinear heat-release re-
sponse does not change the hyperbolic nature of the chaotic perturbation. The
chaotically perturbed thermoacoustic system is hyperbolic, thus, time-averaged
thermoacoustic cost functionals respond smoothly to small changes to the design
parameters. By exploiting hyperbolicity, we apply the non-intrusive least-squares
shadowing method [53] to calculate the sensitivities of the time-averaged acoustic
energy and Rayleigh index, which are two key cost functionals used in thermoa-
coustics. The sensitivities are employed as gradients in an optimisation routine to
suppress a chaotically perturbed acoustic limit cycle by changing the heat-source
parameters. This result cannot be achieved by only stabilising the eigenvalues, nor
can it be achieved by traditional sensitivity methods that work in non-chaotic os-
cillations. This work opens up new possibilities for the control of unsteady acoustic
oscillations in turbulent combustors. The method proposed can be used with vir-
tually no conceptual modification in unsteady high-fidelity simulations with the
aid of high-performance computing. Because the theoretical framework is based on
dynamical systems theory, the techniques presented can be used in other unsteady
deterministic multi-physics problems.
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A Uncertainty on the estimation of infinitely time-averaged cost

functionals

We wish to estimate the value of an infinitely time-averaged cost functional, 〈J 〉, from a

collection of N independent samples of the time-averaged cost functional, {〈J 〉(i)T }, where the
subscript T and superscript (i) represent the finite time used in the averaging and the index
of the sample, respectively. From the Central Limit Theorem, we assume that the error in the
estimation of 〈J 〉 decays with the number of samples used to the power of −1/2. Thus, we set
a nonlinear constrained minimisation problem

minimise
a,b

b

subject to a−
b
√
n
<

1

n

n∑
i=1

〈J 〉(i)T < a+
b
√
n

∀n ∈ {1, · · · , N}

. (36)

Thus, 〈J 〉 should be in the range
(
a− b/

√
N, a+ b/

√
N
)

.
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