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Abstract
Circadian clocks have evolved to synchronise an organism’s physiology
with the environmental rhythms driven by the Earth’s rotation on its axis.
Over the past two decades, many of the genetic components of the 

 circadian oscillator have been identified. TheArabidopsis thaliana
interactions between these components have been formulized into
mathematical models that describe the transcriptional translational
feedback loops of the oscillator. More recently, focus has turned to the
regulation and functions of the circadian clock. These studies have shown
that the system dynamically responds to environmental signals and small
molecules. We describe advances that have been made in discovering the
cellular mechanisms by which signals regulate the circadian oscillator of
Arabidopsis in the context of tissue-specific regulation.
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Introduction
A circadian oscillator is a biological system that generates free-
running rhythms of near 24 h. The period probably arises from 
delays in the oscillator network rather than network structure, 
and regulatory events might be needed to keep the period close 
to 24 h. Because the system is subject to regulation, plant cir-
cadian period is not fixed but rather is variable depending on  
conditions1. The ability of the circadian oscillator to respond to 
signals has been termed “dynamic plasticity” because period is  
plastic and the degree of plasticity changes throughout the day1. 
Whilst it is convenient to measure circadian period in constant 
conditions, the evolutionary importance of changes in circadian 
period has probably arisen to ensure the correct timing of events 
in light and dark cycles. Dynamic plasticity might allow the cir-
cadian system to adjust to cues from the rhythmic environment 
to ensure the correct entrained phase, which is the time of cel-
lular events with respect to the environment. This ensures that  
internal events are timed appropriately (for example, that inter-
nal dawn matches external dawn). Entrainment also ensures that 
the circadian oscillator can track the change of time of dawn 
and dusk which occurs throughout the seasons in higher lati-
tudes. Because the day and night lengths vary throughout the  
seasons, the relative phase of these internal dawn and dusk events 
changes with respect to each other and also with the phase of 
other components in the oscillator as a result of dynamic plas-
ticity. We describe the small molecules and environmental  
signals that have recently been demonstrated to alter circadian 
period; where known, we outline the mechanisms that regulate  
the circadian oscillator to set the period.

Transcriptional and post-transcriptional mechanisms 
adjust circadian period in response to environmental 
changes
Circadian oscillator components oscillate in either abundance 
or activity under constant conditions, they feedback to regu-
late the activity of other oscillator components and therefore if 
the oscillating abundance or activity is clamped to a high steady  
state this can abolish circadian rhythms. In addition to the Arabi-
dopsis core oscillator components that meet these definitions2,3,  
there are genes that are not strictly oscillator components 
but nevertheless can affect circadian period. These include  
genes affecting gene regulation and protein stability. For exam-
ple, RNA splicing is strongly implicated in the regulation of 
circadian period, and SICKLE (SIC) has a role as a regulator  
of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE 
ELONGATED HYPOCOTYL (LHY) splice variants, affect-
ing the temperature regulation of the PSEUDO RESPONSE 
REGULATOR 7 (PRR7) promoter4. RNA splicing and circadian  
period are also regulated by the PLANT U-BOX 59 and PLANT 
U-BOX 60 (MAC3A and MAC3B) proteins demonstrated by 
an innovative assay for identification of E3 ligases that bind  
to clock components5. MAC3A and MAC3B are orthologous 
to the animal E3 ubiquitin ligase Pre-mRNA Processing factor 
19 (Prp19). E3 ligases have a central role in the oscillator, and  

ZEITLUPE (ZTL) acts as an E3 ligase that directs degrada-
tion of TIMING OF CAB EXPRESSION 1 (TOC1) and PRR5, 
resulting in a long circadian period in ZTL loss-of-function  
plants6. By contrast, mutants in the deubiquitinases UBIQUI-
TIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13 have a 
short circadian period7 through effects on ZTL8. BIG, a gene 
with homology to the mammalian E3 ligase UBR4, regulates  
circadian period in a photoperiod-dependent manner9, but, to our 
knowledge, BIG has not been demonstrated to have functional  
E3 activity.

In addition to ubiquitination, the SMALL UBUIQUITIN-LIKE 
MODIFIER (SUMO) proteins regulate circadian period through 
post-translational modification of target proteins. Depend-
ent on temperature, increased global cellular SUMOylation  
increases circadian period whereas decreased SUMOylation  
reduces period10. This temperature dependence has led to the  
suggestion that SUMOylation participates in buffering the oscil-
lator against changes in temperature. Whereas ubiquitination  
affects protein stability, SUMOylation might affect function 
because increased SUMOylation of CCA1 reduced its affinity  
for the promoters of target genes11.

Changes in circadian period in response to temperature are 
not mediated only by SUMOylation; several genes associated 
with different biological processes have been associated with 
the effects of temperature on circadian period. HEAT SHOCK  
PROTEIN 90 (HSP90) is induced in response to high tem-
perature stress to regulate the circadian oscillator through a 
GIGANTEA (GI)-dependent mechanism12. HSP90 also has a  
GI-independent effect in regulating circadian period and has 
a circadian phenotype that is greater in seedlings entrained 
in hot–cold cycles and a phase shift caused by warmth in the  
morning13. COLD-REGULATED GENE27 and 28 (COR27/28), 
which are typically associated with the cold response of Ara-
bidopsis, are required for low temperature-dependent regula-
tion of circadian period. cor27/28 mutants have a long period 
in blue light and low temperature14. COR27/28 act as night-time 
repressors of PRR5 and EARLY FLOWERING 4 (ELF4) and are  
regulated by CCA1 and, in turn, bind to the TOC1 and PRR5 
promoters. COR27 and COR28 are required for the functions of 
PRR7 and PRR9 in entrainment, suggesting a role for COR27 and  
COR28 in temperature entrainment of the circadian clock15.

The JUMONJI DOMAIN CONTAINING 5 (JMJD5) his-
tone demethylase contributes to temperature compensation16 
but does not directly methylate histones at circadian loci,  
indicating another role for this potential demethylase protein  
within the circadian system.

The endogenous circadian and cell cycle oscillators 
are coupled
In addition to the new insights concerning the integration of the 
circadian clock with environmental signals, the oscillator has 
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recently been discovered to be associated with the endogenous 
cell cycle. TOC1 is required for the G

1
–S transition in leaves17,  

similar to the interrelationship between Metazoan circadian 
and cell cycles18. TOC1 regulates CDC6 and the DNA pre-rep-
licative machinery to ensure that growth is resonant with the 
environment. A slow-running circadian oscillator causes a  
slower progression through the cell cycle, and vice versa, 
potentially indicating coupling rather than gating17. Possibly  
related to the link between plant cell and circadian cycles is the 
recent finding that repair of ultraviolet light–induced lesions 
in DNA is modulated by the circadian clock19, contributing  
to between 10 and 30% of transcription-coupled DNA repair.

Small molecules and hormones are regulators of 
circadian period
Metabolites, hormones and ions are also endogenous regulators of 
circadian period1. The plant hormones abscisic acid (ABA), eth-
ylene, jasmonic acid (JA) and salicylic acid (SA) all affect circa-
dian period, seeming to act through different pathways. Ethylene 
reduces circadian period through a pathway that involves GI20. 
SA conversely slightly increases period and causes strong 
phase delays following transient stimulation21. These delays 
are reduced in NONEXPRESSER OF PATHOGENESIS-
RELATED GENES 1 (NPR1) mutants, indicating that the effect is  
mediated by this common SA transcription factor. Exogenous 
JA-isoleucine, a bioactive form of JA, also increases circa-
dian period22. The response to JA seems to be mediated through 
the canonical JA signalling pathway requiring the JA receptor 
COI122. Exogenous application of ABA reduces circadian period  
dependent upon PRR723. ABA signalling to the oscillator involves 
MYB96, which regulates the gating of ABA responses, and 
TOC1 is required for the correct induction of some ABA-respon-
sive genes24. TOC1 also participates in the regulation of circadian  
period by changes in the cytosolic-free Ca2+ concentration, 
which was demonstrated by the epistasis of TOC1 mutants with 
mutations in the CALMODULIN-LIKE 24 gene that encodes  
a Ca2+ sensor25.

Sucrose sustains circadian oscillations in continuous dark through 
stabilisation of the GI protein, which also inhibits effects of  
ethylene20. Exogenous sugars also reduce circadian period in 
plants that have had their internal levels of sugars lowered by 
low light or inhibition of photosynthesis26. A short pulse of  
exogenous sucrose advances circadian phase in the early pho-
toperiod because period and phase are related aspects of  
oscillator function1,26,27. Loss of function of either the early  
morning–expressed CCA1 or the later-expressed PRR7 renders 
circadian period insensitive to sugars26,28. In a mathematical sim-
ulation, the response of the circadian oscillator to sugars can be 
explained by a simple loop involving an early-expressed gene 
activator (representing CCA1) and a later-expressed repres-
sor (representing PRR7)29. The first transcriptional response 
to low sugars is an increase in PRR7 transcript abundance  
leading to the proposal of PRR7 as an entry point for sugar 
signalling in the circadian system26. The sugar status– 
sensitive transcription factor BZIP63 binds and regulates PRR7 

to change phase in response to sugars27. Genetic data suggest 
that trehalose 6 phosphate (T6P) is the signalling sugar that 
reports sugar status to the oscillator27, and it has been proposed 
that regulation of SNrK1 kinase activity by T6P controls the  
binding/activity of bZIP63 at the PRR7 promoter. Whether 
the regulation of CCA1 by sugars is through PRR726 or more 
directly through the PHYTOCHROME INTERACTING FAC-
TORS (PIFs)30 will be resolved through further experimen-
tal testing, which will also establish whether transcriptional 
changes in either CCA1 or PRR7 are sufficient to explain  
the changes in circadian period and phase.

Sugars and light signalling can also affect the timing of out-
puts of the oscillator. For example, the clock- and energy- 
regulated promoter of DARK-INDUCED 6 has peak activity at 
night but in constant light this shifts to subjective day27, whereas 
the phosphorylation of RIBOSOMAL PROTEIN S6 (RPS6) nor-
mally peaks in the day but at subjective night in constant light31.  
In both cases, sucrose added to the media interferes with the 
different light and clock signals; as a result, the timing of the  
peak is the same in light–dark cycles and constant conditions.

It has been proposed that sugars entrain the oscillator to set the 
clock to a “metabolic dawn” as an adjustment to changes in 
photosynthate production caused by altered light intensity26 or 
it might contribute to the regulation of carbon homeostasis by  
regulating transitory starch reserves32. Alternatively, the regula-
tion by sugars is a form of retrograde signalling from the plas-
tid to the nucleus33. A plastid-based signal might be found in the 
diurnal accumulation of tetrapyrrole, the core molecule of chlo-
rophyll to link plastid signalling to cold signalling34. This sig-
nal is proposed to inhibit HSP90, the chaperone that stablises  
ZTL. This inhibition leads to an increase in expression of  
ELONGATED HYPOCOTYL 5 (HY5) and PRR5 which repress 
C-REPEAT BINDING FACTORS (CBFs), giving a mechanism 
for loss of downstream cold-responsive gene expression during  
the photoperiod.

The ability of the circadian oscillator to change period might 
be associated with the function of PRR7. Loss of function of 
PRR7 renders the circadian oscillator insensitive to sucrose  
and nicotinamide35 and more responsive to ABA23. Nicotinamide 
increases circadian period through inhibition of Ca2+ signalling 
in a blue light–dependent manner35. PRR7 is not essential for 
the response to nicotinamide since plants in which both PRR7 
and PRR9 are lost are hyper-responsive. Systems identification  
and a new modelling approach that pinpoints the areas of a sys-
tem which are being perturbed suggested that the regulation 
between PRR7 and PRR9 and the activity of TOC1 might be  
important for changes in circadian period in response to  
nicotinamide35.

Photoperiod is a regulator of circadian period
As photoperiod lengthens (and conversely the skotoperiod 
decreases), there is an increase in the period of the Arabi-
dopsis circadian oscillator9. This is an example of so-called  
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aftereffects in which the free-running period is affected by the  
prior entrainment conditions36. It is likely that aftereffects rep-
resent a change in oscillator behaviour that occurs to regu-
late the phase relationship between the internal oscillator and 
the light–dark cycle in different seasons to ensure the correct 
timing of events in different photoperiods by integration of  
circadian and light signalling37. The mechanisms by which the 
oscillator changes its timing in response to seasonal changes 
might include BIG9. The regulation of growth in different pho-
toperiods might involve the binding of TOC1 to PIFs to stop  
activation of growth until pre-dawn in short days38. The activity  
of PIFs to dawn is also gated by binding of both PIFs and  
PRRs to G boxes in target promoters39.

PIFs might be associated with responses to photoperiod because 
they affect the pace of the circadian oscillator30,40. Under high 
fluence rate of light, a PIF1,3,4,5 quadruple mutant has a  
longer circadian period than wild-type plants and the various 
over-expressor lines have a slightly shorter period30. The effect 
of PIFs on circadian period is dependent on the concentration 
of sucrose in the media30. HY5, a transcription factor that acts  
downstream of blue light signalling, also seems to be involved 
in the regulation of circadian period because hy5 mutants  
have short free-running circadian rhythms in monochromatic  
blue light but not red or in darkness41.

The regulation of clock gene expression by PIFs and other regu-
lators is an example of how the cell might be entrained to pho-
toperiod parametrically through light signalling, but circadian  
phototransduction might also be integrated from the nucleus to 
the chloroplast. First, there is the report that PHOTOTROPIN 
mutants do not affect clock gene expression in either the morn-
ing or evening complexes42 but do affect circadian photosynthetic  
rhythms, indicating a possible role in transducing circadian 
light signals to the chloroplast. Second, it is found that the chlo-
roplast transcription response to light mediated by SIGMA  
FACTOR 5 (SIG5) integrates circadian phototransduction with 
chloroplast transcription by relaying information on blue light 
dependent upon CRYPTOCHROME43.

The correct alignment of circadian time to the external environ-
mental rhythm provides advantage to the plant44 and therefore  
it might be expected that changes in photoperiod, with the  
associated change in circadian timing, have a consequence for  
the performance of the cell. Evidence for this is provided by  
“circadian stress” in plants with reduced cytokinin levels or  
defective cytokinin signalling, which have increased leaf  
death in response to changes in photoperiod45. It appears that  
one function of cytokinins is to suppress the stress caused 
by the changing oscillator period and the relationship between 
the internal and external time that occurs during photoperiodic  
transitions.

Organ- and cell-specific regulation of circadian 
period
The plasticity of the circadian oscillator in response to light, 
hormones and metabolites might predict that the circadian 

clock functions differently in different cell types and tissues.  
There is experimental evidence to support this hypothesis. Imag-
ing of luciferase reporters of promoter activity separated the 
function of the circadian systems of the roots and shoots46. The 
oscillators in the roots respond to light more strongly than those 
in the leaves because of greater sensitivity to red light47. It has  
been proposed that the roots in the soil are not in total  
darkness since light is piped through the vasculature to the root 
cells47. There is also enrichment in the expression of evening-
expressed genes in the roots, and mutations in clock genes  
give organ-specific phenotypes, such as the dampening of the  
root clock in gi-248.

With high-resolution quantitative time-lapse microscopy of CCA1–
YFP fusion proteins, it was possible to detect robust single-cell 
circadian oscillations in planta that become desynchronised in 
constant conditions because of the oscillators in different cells  
running at slightly different speeds49. Whilst cells become 
desynchronised, there is some weak coupling between the  
oscillators which results in two waves of clock gene expres-
sion going up and down the root in constant conditions49. The 
different period in individual cells might be explained by local 
cellular conditions, such as the relative levels of hormones or  
metabolites. The effect of local cellular conditions on the oscil-
lator might explain the different free-running circadian period 
that is measured in different organs, such as in older leaves in 
which the oscillator runs faster than in younger tissue50 and the  
very fast circadian oscillator measured in the root tip51. The adap-
tive nature of the differential regulation of the oscillator in dif-
ferent tissues is demonstrated by the discovery that oscillator  
period differs between tissues both in constant conditions and 
in entraining light and dark cycles and this results in phase  
differences between different tissues which are explained 
by models evoking weak local coupling and regulation by  
tissue-specific environmental conditions51.

Summary remarks
The sensitivity of circadian behaviour to cell type and condi-
tions, including osmolarity52, requires that there is careful report-
ing of the experimental protocols, conditions and data captured.  
Open science platforms such as Biodare2 (https://biodare2.
ed.ac.uk/) that enable high-quality archiving, analysis and pres-
entation of circadian datasets will facilitate the sharing of  
protocols and data for analysis between the community53. For 
much of the past two decades, the focus of plant circadian 
research has been to identify the components of the oscillator and 
understand the network structure that generates the oscillatory  
dynamics. In recent years, a wealth of investigations have dem-
onstrated that the circadian oscillator is sensitive to cellular  
conditions and this can result in different entrained phases depend-
ent on tissue type (Figure 1). The future challenge will be to 
consider which cell types and environmental conditions will be 
most appropriate for the circadian response to be investigated.  
Greater focus on cell type–specific responses will help iden-
tify the signalling pathways by which signals regulate the  
oscillator. These studies might provide insight into why the 
oscillator has such dynamic plasticity and identify the output  
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pathways whose phase is being adjusted and for what  
purpose.

Abbreviations
ABA, abscisic acid; CCA1, CIRCADIAN CLOCK ASSO-
CIATED 1; COR27, COLD-REGULATED GENE 27; GI,  

GIGANTEA; HSP90, HEAT SHOCK PROTEIN 90; HY5, 
ELONGATED HYPOCOTYL 5; JA, jasmonic acid; PIF,  
PHYTOCHROME INTERACTING FACTOR; PRR, PSEDUO 
RESPONSE REGULATOR; SA, salicylic acid; SUMO, 
SMALL UBUIQUITIN-LIKE MODIFIER; T6P, trehalose 6  
phosphate; TOC1, TIMING OF CAB EXPRESSION 1; ZTL, 
ZEITLUPE

Figure 1. The period of the Arabidopsis thaliana circadian clock is regulated extensively by the cellular environment. (A) Cellular 
factors that affect the free-running period length of the Arabidopsis circadian clock include organ, age, post-translational modifications such 
as ubiquitination and SUMOylation, metabolites such as sucrose, hormones and phototransduction. (B) In turn, the circadian clock regulates 
the duration and integrity of the cell cycle, as entry into S phase around dusk is gated by the clock through TOC1, and DNA double-strand 
break repair occurs during G phase when transcription is active. JA, jasmonic acid; PIF, PHYTOCHROME INTERACTING FACTOR; Su, 
SUMOylation; TOC1, TIMING OF CAB EXPRESSION 1; Ub, ubiquitin.

Page 6 of 9

F1000Research 2020, 9(F1000 Faculty Rev):51 Last updated: 27 JAN 2020



References F1000 recommended

1.	 Webb	AAR,	Seki	M,	Satake	A,	et al.:	Continuous dynamic adjustment of the 
plant circadian oscillator.	Nat Commun.	2019;	10(1):	550.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

2.	 Ronald	J,	Davis	SJ:	Making the clock tick: the transcriptional landscape of the 
plant circadian clock [version 1; peer review: 2 approved].	F1000Res.	2017;	6:	
951.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

3.	 McClung	CR:	Wheels within wheels: new transcriptional feedback loops in the 
Arabidopsis circadian clock.	F1000Prime Rep.	2014;	6:	2.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

4.	 Marshall	CM,	Tartaglio	V,	Duarte	M,	et al.:	The Arabidopsis sickle Mutant 
Exhibits Altered Circadian Clock Responses to Cool Temperatures and 
Temperature-Dependent Alternative Splicing.	Plant Cell.	2016;	28(10):	2560–75.	
PubMed Abstract |	Publisher Full Text |	Free Full Text 

5.	 	Feke	A,	Liu	W,	Hong	J,	et al.:	Decoys provide a scalable platform for the 
identification of plant E3 ubiquitin ligases that regulate circadian function.	
eLife.	2019;	8:	pii:	e44558.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

6.	 	Fujiwara	S,	Wang	L,	Han	L,	et al.:	Post-translational regulation of the 
Arabidopsis circadian clock through selective proteolysis and phosphorylation 
of pseudo-response regulator proteins.	J Biol Chem.	2008;	283(34):	23073–83.	
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

7.	 Cui	X,	Lu	F,	Li	Y,	et al.:	Ubiquitin-specific proteases UBP12 and UBP13 act in 
circadian clock and photoperiodic flowering regulation in Arabidopsis.	Plant 
Physiol.	2013;	162(2):	897–906.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

8.	 	Lee	CM,	Li	MW,	Feke	A,	et al.:	GIGANTEA recruits the UBP12 and UBP13 
deubiquitylases to regulate accumulation of the ZTL photoreceptor complex.	
Nat Commun.	2019;	10(1):	3750.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

9.	 Hearn	TJ,	Marti	Ruiz	MC,	Abdul-Awal	SM,	et al.:	BIG Regulates Dynamic 
Adjustment of Circadian Period in Arabidopsis thaliana.	Plant Physiol.	2018;	
178(1):	358–71.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

10.	 	Hansen	LL,	van	den	Burg	HA,	van	Ooijen	G:	Sumoylation Contributes to 
Timekeeping and Temperature Compensation of the Plant Circadian Clock.		
J Biol Rhythms.	2017;	32(6):	560–9.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

11.	 	Hansen	LL,	Imrie	L,	Le	Bihan	T,	et al.:	Sumoylation of the Plant Clock 
Transcription Factor CCA1 Suppresses DNA Binding.	J Biol Rhythms.	2017;	
32(6):	570–82.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

12.	 	Cha	JY,	Kim	J,	Kim	TS,	et al.:	GIGANTEA is a co-chaperone which 
facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock.	Nat 
Commun.	2017;	8(1):	3.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

13.	 	Davis	AM,	Ronald	J,	Ma	Z,	et al.:	HSP90 Contributes to Entrainment of the 
Arabidopsis Circadian Clock via the Morning Loop.	Genetics.	2018;	210(4):	
1383–90.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

14.	 Li	X,	Ma	D,	Lu	SX,	et al.:	Blue Light- and Low Temperature-Regulated COR27 
and COR28 Play Roles in the Arabidopsis Circadian Clock.	Plant Cell.	2016;	
28(11):	2755–69.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

15.	 	Wang	P,	Cui	X,	Zhao	C,	et al.:	COR27 and COR28 encode nighttime 
repressors integrating Arabidopsis circadian clock and cold response.	J Integr 
Plant Biol.	2017;	59(2):	78–85.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

16.	 	Jones	MA,	Morohashi	K,	Grotewold	E,	et al.:	Arabidopsis JMJD5/JMJ30 
Acts Independently of LUX ARRHYTHMO Within the Plant Circadian Clock to 
Enable Temperature Compensation.	Front Plant Sci.	2019;	10:	57.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

17.	 	Fung-Uceda	J,	Lee	K,	Seo	PJ,	et al.:	The Circadian Clock Sets the Time of 
DNA Replication Licensing to Regulate Growth in Arabidopsis.	Dev Cell.	2018;	
45(1):	101–113.e4.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

18.	 	Laranjeiro	R,	Tamai	TK,	Letton	W,	et al.:	Circadian Clock Synchronization of 
the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a 
Period-phase Locking Process.	J Biol Rhythms.	2018;	33(2):	137–50.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

19.	 	Oztas	O,	Selby	CP,	Sancar	A,	et al.:	Genome-wide excision repair in 
Arabidopsis is coupled to transcription and reflects circadian gene expression 
patterns.	Nat Commun.	2018;	9(1):	1503.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

20.	 Haydon	MJ,	Mielczarek	O,	Frank	A,	et al.:	Sucrose and Ethylene Signaling 
Interact to Modulate the Circadian Clock.	Plant Physiol.	2017;	175(2):	947–58.	
PubMed Abstract |	Publisher Full Text |	Free Full Text 

21.	 	Li	Z,	Bonaldi	K,	Uribe	F,	et al.:	A Localized Pseudomonas syringae Infection 
Triggers Systemic Clock Responses in Arabidopsis.	Curr Biol.	2018;	28(4):	
630–639.e4.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

22.	 	Zhang	C,	Gao	M,	Seitz	NC,	et al.:	LUX ARRHYTHMO mediates crosstalk 
between the circadian clock and defense in Arabidopsis.	Nat Commun.	2019;	
10(1):	2543.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

23.	 Liu	T,	Carlsson	J,	Takeuchi	T,	et al.:	Direct regulation of abiotic responses by 
the Arabidopsis circadian clock component PRR7.	Plant J.	2013;	76(1):	101–14.	
PubMed Abstract |	Publisher Full Text 

24.	 Lee	HG,	Mas	P,	Seo	PJ:	MYB96 shapes the circadian gating of ABA signaling 
in Arabidopsis.	Sci Rep.	2016;	6:	17754.	
PubMed Abstract |	Publisher Full Text |	Free Full Text 

25.	 Martí	Ruiz	MC,	Hubbard	KE,	Gardner	MJ,	et al.:	Circadian oscillations of 
cytosolic free calcium regulate the Arabidopsis circadian clock.	Nat Plants.	
2018;	4(9):	690–8.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

26.	 	Haydon	MJ,	Mielczarek	O,	Robertson	FC,	et al.:	Photosynthetic entrainment 
of the Arabidopsis thaliana circadian clock.	Nature.	2013;	502(7473):	689–92.	
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

27.	 	Frank	A,	Matiolli	CC,	Viana	AJC,	et al.:	Circadian Entrainment in Arabidopsis 
by the Sugar-Responsive Transcription Factor bZIP63.	Curr Biol.	2018;	28(16):	
2597–2606.e6.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

28.	 Philippou	K,	Ronald	J,	Sánchez-Villarreal	A,	et al.:	Physiological and Genetic 
Dissection of Sucrose Inputs to the Arabidopsis thaliana Circadian System.	
Genes (Basel).	2019;	10(5):	pii:	E334.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

29.	 Ohara	T,	Hearn	TJ,	Webb	AAR,	et al.:	Gene regulatory network models in 
response to sugars in the plant circadian system.	J Theor Biol.	2018;	457:	
137–51.		
PubMed Abstract |	Publisher Full Text 

30.	 	Shor	E,	Paik	I,	Kangisser	S,	et al.:	PHYTOCHROME INTERACTING FACTORS 
mediate metabolic control of the circadian system in Arabidopsis.	New Phytol.	
2017;	215(1):	217–28.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

31.	 	Enganti	R,	Cho	SK,	Toperzer	JD,	et al.:	Phosphorylation of Ribosomal 
Protein RPS6 Integrates Light Signals and Circadian Clock Signals.	Front Plant 
Sci.	2017;	8:	2210.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

32.	 Seki	M,	Ohara	T,	Hearn	TJ,	et al.:	Adjustment of the Arabidopsis circadian 
oscillator by sugar signalling dictates the regulation of starch metabolism.	Sci 
Rep.	2017;	7(1):	8305.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

33.	 Dodd	AN,	Belbin	FE,	Frank	A,	et al.:	Interactions between circadian clocks and 
photosynthesis for the temporal and spatial coordination of metabolism.	Front 
Plant Sci.	2015;	6:	245.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

34.	 Norén	L,	Kindgren	P,	Stachula	P,	et al.:	Circadian and Plastid Signaling 
Pathways Are Integrated to Ensure Correct Expression of the CBF and COR 
Genes during Photoperiodic Growth.	Plant Physiol.	2016;	171(2):	1392–406.	
PubMed Abstract |	Publisher Full Text |	Free Full Text 

35.	 Mombaerts	L,	Carignano	A,	Robertson	FC,	et al.:	Dynamical differential 
expression (DyDE) reveals the period control mechanisms of the Arabidopsis 
circadian oscillator.	PLoS Comput Biol.	2019;	15(1):	e1006674.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

36.	 Dodd	AN,	Dalchau	N,	Gardner	MJ,	et al.:	The circadian clock has transient 
plasticity of period and is required for timing of nocturnal processes in 
Arabidopsis.	New Phytol.	2014;	201(1):	168–79.		
PubMed Abstract |	Publisher Full Text 

37.	 Dalchau	N,	Hubbard	KE,	Robertson	FC,	et al.:	Correct biological timing in 
Arabidopsis requires multiple light-signaling pathways.	Proc Natl Acad Sci  
U S A.	2010;	107(29):	13171–6.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

38.	 	Soy	J,	Leivar	P,	González-Schain	N,	et al.:	Molecular convergence of clock 
and photosensory pathways through PIF3-TOC1 interaction and co-occupancy 
of target promoters.	Proc Natl Acad Sci U S A.	2016;	113(17):	4870–5.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

39.	 	Martín	G,	Rovira	A,	Veciana	N,	et al.:	Circadian Waves of Transcriptional 
Repression Shape PIF-Regulated Photoperiod-Responsive Growth in 
Arabidopsis.	Curr Biol.	2018;	28(2):	311–318.e5.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

40.	 	Seluzicki	A,	Burko	Y,	Chory	J:	Dancing in the dark: darkness as a signal in 
plants.	Plant Cell Environ.	2017;	40(11):	2487–501.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

41.	 	Hajdu	A,	Dobos	O,	Domijan	M,	et al.:	ELONGATED HYPOCOTYL 5 mediates 

Page 7 of 9

F1000Research 2020, 9(F1000 Faculty Rev):51 Last updated: 27 JAN 2020

http://www.ncbi.nlm.nih.gov/pubmed/30710080
http://dx.doi.org/10.1038/s41467-019-08398-5
http://www.ncbi.nlm.nih.gov/pmc/articles/6358598
http://www.ncbi.nlm.nih.gov/pubmed/28690840
http://dx.doi.org/10.12688/f1000research.11319.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5482331
http://www.ncbi.nlm.nih.gov/pubmed/24592314
http://dx.doi.org/10.12703/P6-2
http://www.ncbi.nlm.nih.gov/pmc/articles/3883422
http://www.ncbi.nlm.nih.gov/pubmed/27624757
http://dx.doi.org/10.1105/tpc.16.00223
http://www.ncbi.nlm.nih.gov/pmc/articles/5134976
https://f1000.com/prime/735469790
http://www.ncbi.nlm.nih.gov/pubmed/30950791
http://dx.doi.org/10.7554/eLife.44558
http://www.ncbi.nlm.nih.gov/pmc/articles/6483598
https://f1000.com/prime/735469790
https://f1000.com/prime/1117897
http://www.ncbi.nlm.nih.gov/pubmed/18562312
http://dx.doi.org/10.1074/jbc.M803471200
https://f1000.com/prime/1117897
http://www.ncbi.nlm.nih.gov/pubmed/23645632
http://dx.doi.org/10.1104/pp.112.213009
http://www.ncbi.nlm.nih.gov/pmc/articles/3668078
https://f1000.com/prime/736478568
http://www.ncbi.nlm.nih.gov/pubmed/31434902
http://dx.doi.org/10.1038/s41467-019-11769-7
http://www.ncbi.nlm.nih.gov/pmc/articles/6704089
http://www.ncbi.nlm.nih.gov/pubmed/29997180
http://dx.doi.org/10.1104/pp.18.00571
http://www.ncbi.nlm.nih.gov/pmc/articles/6130016
https://f1000.com/prime/732192565
http://www.ncbi.nlm.nih.gov/pubmed/29172926
http://dx.doi.org/10.1177/0748730417737633
https://f1000.com/prime/732192565
https://f1000.com/prime/732192567
http://www.ncbi.nlm.nih.gov/pubmed/29172852
http://dx.doi.org/10.1177/0748730417737695
https://f1000.com/prime/732192567
https://f1000.com/prime/727343459
http://www.ncbi.nlm.nih.gov/pubmed/28232745
http://dx.doi.org/10.1038/s41467-016-0014-9
http://www.ncbi.nlm.nih.gov/pmc/articles/5431898
https://f1000.com/prime/727343459
https://f1000.com/prime/734257260
http://www.ncbi.nlm.nih.gov/pubmed/30337341
http://dx.doi.org/10.1534/genetics.118.301586
http://www.ncbi.nlm.nih.gov/pmc/articles/6283155
https://f1000.com/prime/734257260
http://www.ncbi.nlm.nih.gov/pubmed/27837007
http://dx.doi.org/10.1105/tpc.16.00354
http://www.ncbi.nlm.nih.gov/pmc/articles/5155342
https://f1000.com/prime/727124308
http://www.ncbi.nlm.nih.gov/pubmed/27990760
http://dx.doi.org/10.1111/jipb.12512
https://f1000.com/prime/727124308
https://f1000.com/prime/735118346
http://www.ncbi.nlm.nih.gov/pubmed/30774641
http://dx.doi.org/10.3389/fpls.2019.00057
http://www.ncbi.nlm.nih.gov/pmc/articles/6367231
https://f1000.com/prime/735118346
https://f1000.com/prime/732902266
http://www.ncbi.nlm.nih.gov/pubmed/29576425
http://dx.doi.org/10.1016/j.devcel.2018.02.022
https://f1000.com/prime/732902266
https://f1000.com/prime/732675743
http://www.ncbi.nlm.nih.gov/pubmed/29444612
http://dx.doi.org/10.1177/0748730418755583
http://www.ncbi.nlm.nih.gov/pmc/articles/5944076
https://f1000.com/prime/733074375
http://www.ncbi.nlm.nih.gov/pubmed/29666379
http://dx.doi.org/10.1038/s41467-018-03922-5
http://www.ncbi.nlm.nih.gov/pmc/articles/5904149
https://f1000.com/prime/733074375
http://www.ncbi.nlm.nih.gov/pubmed/28778922
http://dx.doi.org/10.1104/pp.17.00592
http://www.ncbi.nlm.nih.gov/pmc/articles/5619894
https://f1000.com/prime/732604748
http://www.ncbi.nlm.nih.gov/pubmed/29398214
http://dx.doi.org/10.1016/j.cub.2018.01.001
http://www.ncbi.nlm.nih.gov/pmc/articles/5820129
https://f1000.com/prime/732604748
https://f1000.com/prime/735978066
http://www.ncbi.nlm.nih.gov/pubmed/31186426
http://dx.doi.org/10.1038/s41467-019-10485-6
http://www.ncbi.nlm.nih.gov/pmc/articles/6560066
https://f1000.com/prime/735978066
http://www.ncbi.nlm.nih.gov/pubmed/23808423
http://dx.doi.org/10.1111/tpj.12276
http://www.ncbi.nlm.nih.gov/pubmed/26725725
http://dx.doi.org/10.1038/srep17754
http://www.ncbi.nlm.nih.gov/pmc/articles/4698719
http://www.ncbi.nlm.nih.gov/pubmed/30127410
http://dx.doi.org/10.1038/s41477-018-0224-8
http://www.ncbi.nlm.nih.gov/pmc/articles/6152895
https://f1000.com/prime/718153957
http://www.ncbi.nlm.nih.gov/pubmed/24153186
http://dx.doi.org/10.1038/nature12603
http://www.ncbi.nlm.nih.gov/pmc/articles/3827739
https://f1000.com/prime/718153957
https://f1000.com/prime/733764688
http://www.ncbi.nlm.nih.gov/pubmed/30078562
http://dx.doi.org/10.1016/j.cub.2018.05.092
http://www.ncbi.nlm.nih.gov/pmc/articles/6108399
https://f1000.com/prime/733764688
http://www.ncbi.nlm.nih.gov/pubmed/31052578
http://dx.doi.org/10.3390/genes10050334
http://www.ncbi.nlm.nih.gov/pmc/articles/6563356
http://www.ncbi.nlm.nih.gov/pubmed/30125577
http://dx.doi.org/10.1016/j.jtbi.2018.08.020
https://f1000.com/prime/727551268
http://www.ncbi.nlm.nih.gov/pubmed/28440582
http://dx.doi.org/10.1111/nph.14579
http://www.ncbi.nlm.nih.gov/pmc/articles/5458605
https://f1000.com/prime/727551268
https://f1000.com/prime/732609974
http://www.ncbi.nlm.nih.gov/pubmed/29403507
http://dx.doi.org/10.3389/fpls.2017.02210
http://www.ncbi.nlm.nih.gov/pmc/articles/5780430
https://f1000.com/prime/732609974
http://www.ncbi.nlm.nih.gov/pubmed/28814797
http://dx.doi.org/10.1038/s41598-017-08325-y
http://www.ncbi.nlm.nih.gov/pmc/articles/5559614
http://www.ncbi.nlm.nih.gov/pubmed/25914715
http://dx.doi.org/10.3389/fpls.2015.00245
http://www.ncbi.nlm.nih.gov/pmc/articles/4391236
http://www.ncbi.nlm.nih.gov/pubmed/27208227
http://dx.doi.org/10.1104/pp.16.00374
http://www.ncbi.nlm.nih.gov/pmc/articles/4902621
http://www.ncbi.nlm.nih.gov/pubmed/30703082
http://dx.doi.org/10.1371/journal.pcbi.1006674
http://www.ncbi.nlm.nih.gov/pmc/articles/6377142
http://www.ncbi.nlm.nih.gov/pubmed/24102325
http://dx.doi.org/10.1111/nph.12489
http://www.ncbi.nlm.nih.gov/pubmed/20615944
http://dx.doi.org/10.1073/pnas.1001429107
http://www.ncbi.nlm.nih.gov/pmc/articles/2919914
https://f1000.com/prime/726281582
http://www.ncbi.nlm.nih.gov/pubmed/27071129
http://dx.doi.org/10.1073/pnas.1603745113
http://www.ncbi.nlm.nih.gov/pmc/articles/4855547
https://f1000.com/prime/726281582
https://f1000.com/prime/732470579
http://www.ncbi.nlm.nih.gov/pubmed/29337078
http://dx.doi.org/10.1016/j.cub.2017.12.021
https://f1000.com/prime/732470579
https://f1000.com/prime/727161845
http://www.ncbi.nlm.nih.gov/pubmed/28044340
http://dx.doi.org/10.1111/pce.12900
http://www.ncbi.nlm.nih.gov/pmc/articles/6110299
https://f1000.com/prime/727161845
https://f1000.com/prime/734083576
https://f1000.com/prime/736478568
https://f1000.com/prime/732675743


blue light signalling to the Arabidopsis circadian clock.	Plant J.	2018;	96(6):	
1242–54.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

42.	 Litthauer	S,	Battle	MW,	Jones	MA:	Phototropins do not alter accumulation of 
evening-phased circadian transcripts under blue light.	Plant Signal Behav.	
2015;	11(2):	e1126029.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

43.	 	Belbin	FE,	Noordally	ZB,	Wetherill	SJ,	et al.:	Integration of light and circadian 
signals that regulate chloroplast transcription by a nuclear-encoded sigma 
factor.	New Phytol.	2017;	213(2):	727–38.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

44.	 	Dodd	AN,	Salathia	N,	Hall	A,	et al.:	Plant circadian clocks increase 
photosynthesis, growth, survival, and competitive advantage.	Science.	2005;	
309(5734):	630–3.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

45.	 Nitschke	S,	Cortleven	A,	Iven	T,	et al.:	Circadian Stress Regimes Affect the 
Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-
Deficient Arabidopsis Plants.	Plant Cell.	2016;	28(7):	1616–39.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

46.	 Bordage	S,	Sullivan	S,	Laird	J,	et al.:	Organ specificity in the plant circadian 
system is explained by different light inputs to the shoot and root clocks.	New 
Phytol.	2016;	212(1):	136–49.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

47.	 	Nimmo	HG:	Entrainment of Arabidopsis roots to the light:dark cycle by 

light piping.	Plant Cell Environ.	2018;	41(8):	1742–8.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

48.	 	Lee	HG,	Seo	PJ:	Dependence and independence of the root clock on the 
shoot clock in Arabidopsis.	Genes Genomics.	2018;	40(10):	1063–8.		
PubMed Abstract |	Publisher Full Text | F1000 Recommendation 

49.	 	Gould	PD,	Domijan	M,	Greenwood	M,	et al.:	Coordination of robust single 
cell rhythms in the Arabidopsis circadian clock via spatial waves of gene 
expression.	eLife.	2018;	7:	pii:	e31700.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

50.	 Kim	H,	Kim	Y,	Yeom	M,	et al.:	Age-associated circadian period changes in 
Arabidopsis leaves.	J Exp Bot.	2016;	67(9):	2665–73.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

51.	 	Greenwood	M,	Domijan	M,	Gould	PD,	et al.:	Coordinated circadian timing 
through the integration of local inputs in Arabidopsis thaliana.	PLoS Biol.	2019;	
17(8):	e3000407.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

52.	 	Litthauer	S,	Chan	KX,	Jones	MA:	3’-Phosphoadenosine 5’-Phosphate 
Accumulation Delays the Circadian System.	Plant Physiol.	2018;	176(4):		
3120–35.		
PubMed Abstract |	Publisher Full Text |	Free Full Text | F1000 Recommendation 

53.	 Zielinski	T,	Moore	AM,	Troup	E,	et al.:	Strengths and limitations of period 
estimation methods for circadian data.	PLoS One.	2014;	9(5):	e96462.		
PubMed Abstract |	Publisher Full Text |	Free Full Text 

Page 8 of 9

F1000Research 2020, 9(F1000 Faculty Rev):51 Last updated: 27 JAN 2020

http://www.ncbi.nlm.nih.gov/pubmed/30256479
http://dx.doi.org/10.1111/tpj.14106
http://www.ncbi.nlm.nih.gov/pubmed/26653107
http://dx.doi.org/10.1080/15592324.2015.1126029
http://www.ncbi.nlm.nih.gov/pmc/articles/4883876
https://f1000.com/prime/726853029
http://www.ncbi.nlm.nih.gov/pubmed/27716936
http://dx.doi.org/10.1111/nph.14176
http://www.ncbi.nlm.nih.gov/pmc/articles/5215360
https://f1000.com/prime/726853029
https://f1000.com/prime/1027058
http://www.ncbi.nlm.nih.gov/pubmed/16040710
http://dx.doi.org/10.1126/science.1115581
https://f1000.com/prime/1027058
http://www.ncbi.nlm.nih.gov/pubmed/27354555
http://dx.doi.org/10.1105/tpc.16.00016
http://www.ncbi.nlm.nih.gov/pmc/articles/4981127
http://www.ncbi.nlm.nih.gov/pubmed/27240972
http://dx.doi.org/10.1111/nph.14024
http://www.ncbi.nlm.nih.gov/pmc/articles/5006879
https://f1000.com/prime/732440456
http://www.ncbi.nlm.nih.gov/pubmed/29314066
http://dx.doi.org/10.1111/pce.13137
https://f1000.com/prime/732440456
https://f1000.com/prime/733526760
http://www.ncbi.nlm.nih.gov/pubmed/29949076
http://dx.doi.org/10.1007/s13258-018-0710-4
https://f1000.com/prime/733526760
https://f1000.com/prime/733113604
http://www.ncbi.nlm.nih.gov/pubmed/29697372
http://dx.doi.org/10.7554/eLife.31700
http://www.ncbi.nlm.nih.gov/pmc/articles/5988422
https://f1000.com/prime/733113604
http://www.ncbi.nlm.nih.gov/pubmed/27012281
http://dx.doi.org/10.1093/jxb/erw097
http://www.ncbi.nlm.nih.gov/pmc/articles/4861015
https://f1000.com/prime/736429931
http://www.ncbi.nlm.nih.gov/pubmed/31415556
http://dx.doi.org/10.1371/journal.pbio.3000407
http://www.ncbi.nlm.nih.gov/pmc/articles/6695092
https://f1000.com/prime/736429931
https://f1000.com/prime/732770770
http://www.ncbi.nlm.nih.gov/pubmed/29487119
http://dx.doi.org/10.1104/pp.17.01611
http://www.ncbi.nlm.nih.gov/pmc/articles/5884616
https://f1000.com/prime/732770770
http://www.ncbi.nlm.nih.gov/pubmed/24809473
http://dx.doi.org/10.1371/journal.pone.0096462
http://www.ncbi.nlm.nih.gov/pmc/articles/4014635
https://f1000.com/prime/734083576


 

Open Peer Review

   Current Peer Review Status:

Editorial Note on the Review Process
 are written by members of the prestigious  . They are commissioned andF1000 Faculty Reviews F1000 Faculty

are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible.
The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:
Version 1

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact   research@f1000.com

 C Robertson McClung
Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA

 No competing interests were disclosed.Competing Interests:

1

 Ke-Qiang Wu
Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan

 No competing interests were disclosed.Competing Interests:

2

 Motomu Endo
Graduate School of Biostudies, Kyoto University, Kyoto, Japan

 No competing interests were disclosed.Competing Interests:

3

Page 9 of 9

F1000Research 2020, 9(F1000 Faculty Rev):51 Last updated: 27 JAN 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty

