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Abstract. We compute the �rst two symplectic quadratic K-theory groups of the integers
or equivalently, the �rst two stable homology groups of the group of symplectic integral
matrices preserving the standard quadratic re�nement. The main novelty in our calculation
lies in its method, which is based on high-dimensional manifold theory.

1. Introduction

The algebraic K-theory groups K∗(Z) of the integers are the homotopy groups of the
algebraic K-theory spectrum K(Z). The zero component of its in�nite loop space agrees
with the plus construction of the stable general linear group BGL∞(Z), so one has

K∗(Z) � π∗BGL∞(Z)+ for ∗ > 0.

The hermitian K-theory groups of the integers can be de�ned similarly through the group
completion of the automorphism groups of (ϵ,Λ)-quadratic modules for a form parameter
(ϵ,Λ) à la Bak [Bak81]. For instance, in the case (ϵ,Λ) = (−1,Z), the automorphism groups
are the symplectic groups Sp2д(Z), giving rise to the symplectic K-theory groups KSp∗(Z).

Away from the prime 2, many of these hermitian K-groups have been computed by
Karoubi [Kar80]. More recently, with work of Schlichting [Sch19] and forthcoming work
by Calmès, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus, and Steimle [CDH+19],
computations at the prime 2 became tractable by relating hermitian K-theory to the
homotopy orbits of a C2-action on K(Z) and certain L-theory spectra.

In this note, we observe that some of these groups can be computed in a very di�erent,
somewhat surprising way: via parametrised high-dimensional manifold theory. We carry
out the �rst case that is approachable from this point of view and was not known—
the second hermitian K-group corresponding to the form parameter (ϵ,Λ) = (−1, 2Z).
The automorphisms of the associated hyperbolic quadratic modules are the �nite index
subgroups Spq2д(Z) ⊂ Sp2д(Z) of the symplectic groups that preserve the standard quadratic
re�nement q : Z2д → Z/2 of Arf invariant 0, sending

∑д
i=1(aiei +bi fi ) to

∑д
i=1 aibi (mod 2)

for ai ,bi ∈ Z and (ei , fi )1≤i≤д the standard symplectic basis of Z2д . Hence, the associated
hermitian K-theory groups are given as

KSpq∗ (Z) � π∗BSpq∞(Z)+ for ∗ > 0.

The torsion free quotient of KSpq2 (Z) is closely related to Meyer’s signature class sgn ∈
H2(BSp∞(Z)), which measures the signature of total spaces of manifold bundles over sur-
faces [Mey72, Mey73]. Its pullback to BSpq∞(Z) induces a morphism sgn : H2(BSpq∞(Z)) →
Z which is not quite an isomorphism, but we show that it is close to it.

Theorem. In degrees ∗ ≤ 2, the Hurewicz map

KSpq∗ (Z) −→ H∗(BSpq∞(Z)+) = H∗(BSpq∞(Z))

is an isomorphism and we have

H1(BSpq∞(Z)) � Z/4 and H2(BSpq∞(Z)) � Z,

where the second isomorphism is given by the signature morphism divided by 8.

2010 Mathematics Subject Classi�cation. 19G38, 57S05, 55P47.
1



2 MANUEL KRANNICH AND ALEXANDER KUPERS

Remark.
(i) Keeping track of the stability ranges that appear in the proof of the theorem, our

argument proves the more re�ned result that

H1(BSpqд (Z)) � Z/4 for д ≥ 5, and H2(BSpqд (Z)) � Z for д ≥ 7.

These stability ranges di�er from those resulting from a homological stability result
of Charney [Cha87, Cor. 4.5] by one degree, which is due to an improvement of a
connectivity range in Charney’s argument contained in [GRW18].

(ii) The abelianisation H1(BSpq∞(Z)) was computed via very di�erent methods in
[End82, JM90], and the group H2(BSpq∞(Z)) can, up to 2-torsion, be deduced from
[Kar80]. The new part of our theorem is the method of proof, and the lack of
2-torsion in the second homology group H2(BSpq∞(Z)).

(iii) For comparison, it is known that

KSp1(Z) � H1(BSp∞(Z)) = 0, and KSp2(Z) � H2(BSp∞(Z)) � Z,

where the second isomorphism is given by the signature divided by 4. The �rst
statement follows from the perfectness of Sp∞(Z). The fact that the second group is
free of rank 1 is well-known (see e.g. [Put12, Thm 5.1]) and the explicit isomorphism
in terms of the signature is a consequence of Meyer’s work [Mey72, Mey73].

Acknowledgements. This note grew out of a question about KSpq2 (Z) asked to us by
Fabian Hebestreit at the 2019 Clay Research Conference, and we would like to thank him
for encouraging us to make our computation available and for useful comments on an
earlier version of this note. The �rst author was supported by O. Randal-Williams’ Philip
Leverhulme Prize from the Leverhulme Trust and by the ERC under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 756444). The
second author was supported by NSF grant DMS-1803766.

2. The computation

2.1. An elementary lemma. At several points in the proof, we shall make use of the
following direct consequence of the Künneth theorem and the fact that the �rst k-invariant
of a double loop space vanishes (see e.g.[Arl90]). When applied to the in�nite loop space
BSpq∞(Z)+, it in particular shows that the �rst part of the theorem is an immediate conse-
quence of the second, using that the second homology of a cyclic group vanishes.

Lemma 2.1. Let X be a connected double loop space. The natural sequence

0 −→ π2X
h
−→ H2(X )

t
−→ H2(K(π1X , 1)) −→ 0

is split exact, where t is the Hurewicz homomorphism and t is induced by 1-truncation.

2.2. Relation to mapping class groups. The symplectic group Sp2д(Z) and its �nite
index theta subgroup Spq2д(Z) ≤ Sp2д(Z) as de�ned in the introduction are closely related
to the topological group Di�∂(W

2n
д,1) of di�eomorphisms of the manifold

W 2n
д,1 B ]

дSn × Sn\ int(D2n)

for n odd that �x a neighborhood of the boundary pointwise. Indeed, the action of
Di�∂(W

2n
д,1) on the homology Hn(W

2n
д,1) � Z2д gives rise to a homomorphism

Di�∂(W
2n
д,1) −→ GL2д(Z)

whose image agrees with Sp2д(Z) if n = 1, 3, 7 and with Spq2д(Z) ≤ Sp2д(Z) for n , 1, 3, 7
odd. This is well-known for n = 1 and a consequence of [Kre79, Prop. 3] for larger n. This
morphism evidently factors over the mapping class group

Γnд,1 B π0 Di�∂(W
2n
д,1)
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and the kernel of the resulting map Γnд,1 → GL2д(Z) is the Torelli subgroup of Γnд,1. In
contrast to the case n = 1, this subgroup is for n ≥ 3 well understood: Kreck [Kre79]
determined it up to an extension, and the remaining ambiguity was resolved in [Kra19].

In the case n ≡ 5 (mod 8) the Torelli subgroup is particularly simple as it agrees with
the subgroup of isotopy classes supported in a codimension zero disc, which is in turn
isomorphic to the group Θ2n+1 of homotopy (2n + 1)-spheres. The resulting extension

(1) 0 −→ Θ2n+1 −→ Γnд,1 −→ Spq2д(Z) −→ 0

is central, since every di�eomorphism ofW 2n
д,1 �xes a disc up to isotopy.

A priori, the homology of the mapping class group seems no less di�cult to compute
than that of Spq2д(Z), but work of Galatius–Randal-Williams [GRW14, GRW18] allows us
to access the homology of the classifying space BDi�∂(W

2n
д,1) of the full di�eomorphism

group in a range, which we shall use below to deduce information about the homology of
Γnд,1 in low degrees and ultimately about that of Spq2д(Z), via the extension (1).

2.3. Analysing the extension. The right hand side of (1) is independent of the choice of
dimension n ≡ 5 (mod 8), so to compute something about Spq2д(Z), we may pick whichever
dimension ofW 2n

д,1 is most convenient. It turns out that n = 5 is the best choice for our
purposes, because certain bordism groups appearing in our calculation are especially
well-understood for n = 5 and the cokernel of the J -homomorphism coker(J )2n+1 vanishes
in this case, so the group of homotopy spheres Θ11 agrees with its cyclic subgroup bP12
of homotopy spheres that bound parallelizable manifolds (see [KM63]). This group is
generated by the 11-dimensional Milnor sphere ΣM ∈ bP12, which is the boundary of the
E8-plumbing in dimension 12 (see [Lev85, §3] and [Bro72, V.2]). In the case n = 5, the
Hochschild–Serre spectral sequence of (1) thus induces an exact sequence of the form

H2(BΓ5
д,1) −→ H2(BSpq2д(Z))

d2
−→ bP12 −→ H1(BΓ5

д,1) −→ H1(BSpq2д(Z)) −→ 0.

Using the description of the di�erentials on the E2-page of the Hochschild–Serre spectral
sequence of a general group extension with abelian kernel in terms of the extension class
(c.f. [HS53, Thm 4]), it follows from [Kra19, Thm B] that the di�erential d2 is given by

(sgn/8) · ΣM : H2(BSpq2д(Z)) −→ bP12,

where sgn : H2(BSpq2д(Z)) → Z is the signature morphism (see e.g. [Kra19, Sect. 3.4]).
As H2(BSpq2д(Z)) contains for д ≥ 2 a class that realises the minimal signature 8 by

[Kra19, Lem. 3.14]1, this di�erential is surjective as long as д ≥ 2. Under this assumption,
we thus have an isomorphism H1(BΓ5

д,1) � H1(BSpqд (Z)) and a commutative diagram with
exact rows and vertical epimorphisms

(2)
H2(BΓ5

д,1) H2(BSpq2д(Z)) bP12 0

0 Z Z bP12 0,

sgn/(8 |bP12 |)

(sgn/8)·ΣM

sgn/8
|bP12 | ΣM

so to prove the theorem, it su�ces to show that H1(BΓ5
д,1) � Z/4 and that the left vertical

map in the diagram is injective. Instead, we shall consider the full di�eomorphism group
BDi�∂(W

10
д,1) and prove H1(BDi�∂(W

10
д,1) � Z/4 as well as that the divided signature

sgn/(8|bP12 |) : H2(BDi�∂(W
10
д,1)) −→ Z

is injective. This implies the previous claims on the homology of BΓ5
д,1 since the canonical

map BDi�(W 10
д,1) → BΓ5

д,1 induced by taking path components is 2-connected.

1See the end of the proof of [GRW16, Thm 7.7] for a di�erent proof of this fact for д ≥ 4.
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2.4. Low-degree homology of BDi�∂(W
10
д,1). The discussion above reduces the proof

of the theorem to a question about the homology of BDi�∂(W
10
д,1), which is in a range

accessible through the work of Galatius–Randal-Williams [GRW18, GRW14]. Their results
in particular show that the parametrised Pontryagin–Thom collapse map

(3) BDi�∂(W
10
д,1) −→ Ω∞0 MTString(10)

induces an isomorphism in degrees ∗ ≤ (д−3)/2. Here MTString(10) is the Thom spectrum
�(−θ ∗γ ) of the inverse of the pullback of the universal bundle over BO(10) along the
canonical map θ : BString(10) → BO(10). For д ≥ 5, we therefore obtain an isomorphism
H1(BDi�∂(W

10
д,1)) � π1MTString(10) and for д ≥ 7 a split short exact sequence

(4) 0 −→ π2MTString(10) −→ H2(BDi�∂(W
10
д,1)) −→ H2(Bπ1MTString(10)) −→ 0,

as a consequence of Lemma 2.1 applied to Ω∞0 MTString(10).
Consequently, to compute the �rst two homology groups of BDi�∂(W

10
д,1) for large д, it

thus su�ces to determine the groups π1MTString(10) and π2MTString(10). To do so, we
adapt a method by Galatius–Randal-Williams [GRW16, Sect. 5.1]: writing MString for the
Thom spectrum of the universal bundle over BString, there is a canonical stabilisation map

(5) MTString(10) −→ Σ−10MString

whose homotopy �bre admits a 5-connected map from Σ∞−10 O/O(10). As O/O(10) is 9-
connected, its unstable and stable homotopy groups agree up to degree 2 ·9 by Freudenthal’s
suspension theorem, so the long exact sequence induced by (5) has in low degrees the form

(6)

π12(O/O(10)) π2MTString(10) π12MString

π11(O/O(10)) π1MTString(10) π11MString

π10(O/O(10)) π0MTString(10) π10MString 0.

Comparing O/O(10) to the Stiefel manifold O(10 + k)/O(10) of k-frames in R10+k for large
k , computations of Paechter [Pae56] (see also [HM65]) show that

π12 O/O(10) = 0, π11 O/O(10) � Z/4, and π10 O/O(10) � Z.

As the group π11MString vanishes by [Gia71], the long exact sequence (6) yields a short
exact sequence of the form

(7) 0 π2MTString(10) π12MString Z/4 π1MTString(10) 0.

As a next step, we show that the morphism π2MTString(10) → π12MString is surjective.
By [Gia71], the group π12MString is free of rank 1 and we claim that, via the Pontryagin–
Thom isomorphism, a generator of this group is represented by a String-manifold of
signature 8|bP12 |. To see this, note that every class in the bordism group π12MString can
be represented by almost parallelisable 5-connected manifold by surgery theory, so its
signature is divisible by 8|bP12 | (cf. [KM63, Ch. 7]). On the other hand, the group π12MString
does contain such a class of signature 8|bP12 |, for instance the class represented by the
12-manifold obtained from the |bP12 |-fold boundary connected sum of the E8-plumbing by
gluing a 12-disc to the boundary. As a result, we have an isomorphism π12MString � Z
given by the signature divided by 8|bP12 |, so we are left with showing that π2MTString(10)
contains a class with that signature.
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To see this, we consider the commutative square

π2MTString(10) MSO2(τ>0MTString(10))

π12MString π12MSO

In this diagram, the right arrow is the composition of the map

MSO2(τ>0MTString(10)) −→ MSO2(Σ
−10MSO)

induced by the connected cover τ>0MTString(10) → MTString(10), the stabilisation map
(5), and the canonical map MString → MSO, with the map MSO2(Σ

−10MSO) → MSO12
induced by the multiplication of MSO. The upper arrow is induced by the unit S→ MSO.
Since this unit map is 1-connected and τ>0MTString(10) is 0-connected, the upper arrow
is surjective, so it su�ces to show that the image of the right vertical map contains a class
of signature 8|bP12 |. Chasing through the Pontryagin–Thom construction, one sees that
the precomposition of the right map with the composition

MSO2(BDi�∂(W
10
д,1)) → MSO2(Ω

∞
0 MTString(10)) → MSO2(τ>0MTString(10))

induced by the counit Σ∞Ω∞0 MTString(10) ' Σ∞Ω∞τ>0MTString(10) → τ>0MTString(10)
and (3) maps a class represented by aW 10

д,1-bundle over a surface with trivialised boundary
bundle to the (oriented) bordism class of its total space.

Hence it su�ces to show that there is such a bundle whose total space has signa-
ture 8|bP12 |. This follows from the fact that the canonical map MSO2(BDi�∂(W

10
д,1)) →

H2(BDi�∂(W
10
д,1)) is an isomorphism since MSO→ HZ is 4-connected, together with the

exactness of the �rst row of (2), because H2(BSpq2д(Z)) contains a class of signature 8 and
the map BDi�∂(W

10
д,1) → BΓ5

д,1 is surjective on second homology as it is 2-connected.
Having shown that π2MTString(10) → π12MString is surjective, the sequences (7) and

(4) result in isomorphisms of the form

H1(BDi�∂(W
10
д,1)) � π1MTString(10) � Z/4 and

H2(BDi�∂(W
10
д,1)) � π2MTString(10) � Z,

where the last isomorphism is given by the signature divided by 8|bP12 |. By the discussion
at the end of Section 2.3, this is su�cient to conclude the theorem.

Remark.
(i) We remark that our calculation does not rely on the previously known computation

of H1(BSpq∞(Z)), even though some arguments in [GRW16] and [Kra19] do.
(ii) For n even, the image of the morphism Di�∂(W

2n
д,1) → GL2д(Z) given by acting on

the middle homology agrees with the subgroup Oд,д(Z) ⊂ GL2д(Z) corresponding
to the form parameter (ϵ,Λ) = (1, 0). Its stable homology in low degrees can be
extracted for instance from [GHS09, Beh75, HO89] to be

H1(BO∞,∞(Z)) � Z/22 and H2(BO∞,∞(Z)) � Z/23,

but one might also try to compute these groups via an approach similar to the
calculation for Spq∞(Z) above. The most promising choice of n in this case is n = 6,
since Kreck’s description of Γnд,1 can be used to establish an isomorphism

Γnд,1 � Oд,д(Z) × π13MString

for n = 6 [GRW16, Thm 7.2]. Given that π13MString � Z/3 by [Gia71], it therefore
su�ces to compute the homology of BΓ6

д,1 in low degrees. Using a similar strategy
as in the case n = 5, one can calculate for large д that

H1(BDi�∂(W
12
д,1) � Z/22 ⊕ Z/3 and H2(BDi�∂(W

12
д,1) � Z/24,
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from which one deduces H1(BOд,д(Z)) � Z/22 and that H2(BΓ6
д,1) � H2(BOд,д(Z))

is a quotient of Z/24. However, narrowing down the isomorphism type of this
second homology group further becomes increasingly more di�cult than for
Spq∞(Z) and requires new ideas and inputs, which exceed the scope of this note.
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