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Abstract

Blood cells are crucial to human physiology, with functions in oxygen transport, infection

control, and wound healing. Molecular mechanisms endogenous to blood cells have

been implicated in the aetiologies of cancer, infection and inflammatory and immune

disorders. The genetic determinants of blood cell function have not been comprehensively

characterised, because it is too difficult to perform direct assays of cell function in large

population samples. High-throughput flow cytometry can be used to measure functionally

relevant phenotypes such as cell granulation, nucleic acid content, and cell size. Many

of these phenotypes are important for the diagnosis of diseases such as sepsis, Szary

disease, toxic granulation, and myelodysplastic syndromes, or correlate with assessments

of cell morphology from blood smear images. Here, I report the results of my genome-

wide association study of 63 previously genetically unstudied blood cell flow cytometry

phenotypes. I have identified associated variants in loci containing genes coding for

established drug targets with known roles in white cell function and immunity. I have

colocalised the association signals with blood cell transcriptomic, blood proteomic, and

disease risk, identifying possible causal roles for molecular mechanisms endogenous to white

cells in the aetiology of a range of immune disorders, including atopic dermatitis, multiple

sclerosis and celiac disease. My results have utility in drug design and therapeutic target

selection, demonstrated by examples including the replication of the mechanism of action

of Daclizumab, a treatment for multiple sclerosis, and evidence for the role of IL-18R1 in

aetiology of celiac disease. Furthermore, mendelian randomisation analyses suggest a causal

role for blood cell flow cytometry phenotypes in the aetiology of coronary artery disease,

lung cancer, and asthma. In addition to my work on flow cytometry traits, I report a major

contribution to the largest ever GWAS meta-analysis of routine clinical haematological

phenotypes, including 563,085 individuals. I performed primary and conditional analyses,

identifying parsimonious sets of independently associated variants. This is the largest

genome-wide association study study of clinical haematological phenotypes to date and

identifies 7,122 association signals.
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Chapter 1

Introduction

Cells are a primary unit of biology and cell behaviour such as cell count, protein production

and exocytosis, mitosis, and signalling are important biological functions. Underpinning

these cell phenotypes are proteins which are encoded by translation from the genome.

Changes in cellular behaviour, protein structure, or expression of proteins can lead to

downstream and knock-on effects throughout the organism. The motivation for my thesis

is to understand the association between variation in the genome and variation in blood

cell phenotypes. This analysis can implicate potential genes, transcripts, or proteins in

blood cell behaviour and inform further biological experimentation and drug development.

In this chapter I will give an introduction to blood cell types, blood cell function, and

the fundamentals of a genome wide association study (GWAS) which can identify genetic

variations that influence phenotypes of interest. Following this, I will discuss automated

haematology analysers and explain how flow cytometry and electrical impedance may be

used to derive blood cell phenotypes from whole blood samples. Finally, I will review

previous work in the study of haematological genetics and present my contribution to the

field, the first ever GWAS of functionally relevant haematological phenotypes, and the

largest ever GWAS of previously studied haematological measurements.

1.1 Haematology and the study of blood cells

Blood cells permeate most tissues and organs in the human body and are implicated in the

aetiology of many rare and common diseases. All blood cells originate from haematopoietic

stem cells (HSCs), differentiation of HSCs resulting in the generation of new blood cells

is termed haematopoiesis. Haematopoiesis occurs in the medullary cavity of the bone

which contains bone marrow. Bone marrow is semi-solid tissue composed of non-cellular

connective tissue and cells such as adipose tissue and haematopoietic cells. HSCs are

multipotent meaning they are able to differentiate into multiple specialised cell types and

self-renew. Haematopoiesis begins with generation of myeloid or lymphoid progenitor
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Figure 1.1: Haematological cell lineage and differentiation into cell types.
Pluripotent stem cells in the bone marrow produce haematopoietic cells which differentiate into
progenitors to create increasingly specialised cells. Immature erythrocytes develop into red cells,
thrombocytes or platelets are generated from megakaryocytes. White cells include basophils,

neutrophils, eosinophils, monocytes, and lymphocytes which includes natural killer cells and T
or B lymphocytes (Figure source: [140]).

cells from the division of HSCs. Progenitor cells differentiate into specialised blood cells:

platelets, reticulocytes, and white cells which are released into circulation (Fig. 1.1). Cells

can develop further following release from the medullary cavity, for example, circulating

reticulocytes mature in circulation to become red blood cells.

Blood cells are broadly categorised into platelets, red blood cells, and white blood

cells. These categories are based on structural differences observable with microscopy.

Unsurprisingly, categorisation based on structure also delineates functional differences

between these cell categories:

• Platelets also known as thrombocytes are cytoplasmic fragments of megakaryocyte

cells. Being up to 2 - 3 µm in diameter, platelets are smaller in comparison to other

blood cells [135]. Platelets are responsible for coagulation preventing blood loss from

damaged vessels.

• Red blood cells are the most common blood cell, responsible for oxygen transport
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through the circulatory system to tissues. Red blood cells do not contain a nucleus,

and their cytoplasm is rich in haemoglobin, an oxygen binding molecule. Observed

with microscopy these cells appear as discoid shaped distinguishing them from other

cell types.

• White blood cells are also known as leukocytes and include neutrophils, monocytes,

eosinophils, basophils, and lymphocyte cell types. These cells are distinguished from

red blood cells and platelets by the presence of a nucleus. This category includes a

broad range of immune cells responsible for clearing infectious agents and pathogens.

Staining and microscopy of white blood cell nuclei and granules results in further

sub-categorisation (Section 1.1.3).

The phenotypes studied in my analysis are often blood cell type specific, platelets, red

blood cells, and each of the five white blood cell types discussed above. These blood cell

types were historically delineated with staining and microscopy, in particular, differences in

nuclear structure (polynuclear or mononucleuar cells) and presence of granules (granulocyte

or agranulocyte cells) (Section 1.1.3). I utilise these categories because high throughput

blood cell assay technology based on flow cytometry or electrical impedance can differentiate

between the aforementioned categories. However, within this categorisation more specific

cell types have been identified, such as T or B lymphocytes. T lymphocytes perform cell-

mediated immunity activating phagocytes and releasing cytokines. B lymphocytes perform

humoural immunity generating macromolecules such as antibodies. Such sub-categories

are not currently easily identified by available high throughput blood cell assay technology.

This is a major drawback of high-throughput assay technology for the study of blood cells.

1.1.1 Platelets

Platelets (also known as thrombocytes) are blood cells produced in the bone marrow from

cytomplasmic fragments of megakaryocytes. Platelet formation begins with cytoplasmic

extensions on megakaryocytes which fragment to form platelet cells, each megakaryocyte

can generate 1000 - 5000 platelets [81, p. 316]. Platelets have no nucleus but contain

subcellular components such as mitochondria and granules which contribute to the primary

function of platelets: to generate a haemostatic plug or thrombus to prevent loss of blood

through a perforation in the vessel wall (Fig. 1.2). Dormant platelets circulate in the blood

and show a dramatic response when activated following vessel injury. Platelet response

to vessel injury begins with adhesion to the site of perforation, followed by activation

and aggregation of platelet cells. Finally aggregated platelet cells are bound by a fibrin

mesh, this body of aggregated platelets is termed a thrombus (Fig. 1.2). The fibrin

mesh is created by catalytic conversion of fibrinogen to fibrin by the enzyme thrombin.

Thrombin is activated by the blood coagulation cascade, which is initiated by release of
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tissue factor or exposure of collagen (described below) and amplified by a positive feedback

loop involving the sequential activation of a number of protease enzymes resulting in

cleavage of prothombin to thrombin.

Internally, blood vessels are lined by endothelial cells attached to subendothelial collagen

which under normal circumstances is not exposed to blood. Attachment of endothelial cells

to collagen is maintained by von Willebrand factor (VWF). VWF is a glycoprotein which

plays a number of roles in hemostasis, VWF is also found in the granules of platelets and

endothelial cells being released during thrombus formation. Normally, endothelial cells

provide a non-adhesive surface to platelets. However, if the endothelial layer is damaged

or the blood vessel is perforated, collagen fibrils and VWF are exposed to platelets.

Platelet cell membranes contain a number of receptors such as GPIb (Glycoprotein Ib) and

GPIIb/IIIa which bind to VWF and GPIa which binds to collagen. Numerous platelets

bind to long chains of VWF and collagen, localising platelets to the site of rupture, this

initial adhesion is the first step of thrombus formation [81, p. 318].

Adhesion also initiates platelet activation, firstly, platelets will undergo a dramatic

shape change from smooth discoid cells to spheres with extending filopodia [122, p. 446].

Adhered platelets will also release contents of their α and dense granules [122, p. 443].

Both granule types contain a number of important molecules which promotes thrombus

formation. α-granules contain VWF and fibrinogen, VWF promotes platelet adhesion as

previously described [122, p. 443]. Similarly, fibrinogen localises pairs of activated platelets

by binding to the GPIIb/IIIa receptor on the platelet cell membrane. In addition fibrinogen

can be converted to fibrin, a key component for thrombus formation which is described

later [122, p. 448]. Dense granules contain molecules such as ADP and serotonin which

promote further platelet activation [122, p. 443]. This creates a feedback loop recruiting

further platelets which adhere to the growing thrombus and are activated. A crucial step

in the positive feedback loop of platelet activation is the generation of thromboxane A2

by activated platelets [122, p. 448]. Thromboxane A2 binds to the thromboxane receptor

on nearby platelets promoting activation and further thromboxane A2 production [122,

p. 448].

Thrombin is a key component in thrombus formation, thrombin catalyses the conversion

of fibrinogen to fibrin. Fibrin molecules crosslink creating a binding mesh which holds

aggregated platelets together creating a thrombus. Thrombin is produced by cleavage

of prothrombin, this is the last step in the coagulation cascade which is initiated by

the intrinsic and extrinsic pathways [122, p. 448]. The intrinsic pathway begins with

formation of an activating complex initiated by collagen, the extrinsic pathway is activated

by tissue factor, a protein present on subendothelial tissue [130]. In addition to thrombus

formation vasoconstriction reduces blood flow through the injured vessel [122, p. 443].

Vasoconstriction is promoted by thromboxane A2 produced catalytically by activated
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platelets and serotonin which is released from platelet dense granules.

1.1.2 Red Blood Cells

Red blood cells (also known as erythrocytes) form up to 45% of blood volume [81, p. 25]

being the most frequently observed cells and appear red under microscopy following

application of Wright’s stain (Fig 1.3). Red blood cells are described as having a dougnut

shape and have structural flexibility allowing them to pass through narrow capillaries

which permeate tissues. Up to 1012 red blood cells are generated each day through a

process called erythropoiesis [81, p. 16]. Differentiation begins with HSC, as with the

generation of all blood cells (Fig. 1.1). Red blood cells differentiate in two stages, firstly

in the bone marrow leading to generation of reticulocytes which are released and undergo

final maturation in circulation. Reticulocytes originate from erythroid precursor cells,

which differentiate into pronormoblasts which generate early normoblasts leading to late

normoblasts which differentiate into reticulocytes that exit the bone marrow (Fig. 1.4).

Given the large numbers of red blood cells which need to be produced, a substantial degree

of amplification occurs from the differentiation of a HSC to the generation of a red blood

cell. Mitosis of intermediate and late normoblasts increases the number of unipotent stem

cells reducing the requirement for division of multipotent HSCs (Fig. 1.4). Unipotent stem

cells are those which can differentiate into only one lineage, in contrast to multipotent

stem cells which can differentiate into many.

Once reticulocytes are released from bone marrow they will gradually mature into red

blood cells. The absence of a nucleus allows extra space in the cytoplasm for additional

haemoglobin molecules which enables the primary function of red blood cells which

is transport oxygen throughout the organism. Haemoglobin consists of four globular

proteins each with a haem iron metalloprotein complex, which can bind oxygen molecules.

Oxyhaemoglobin is formed by binding of oxygen to haemoglobin molecules which occurs

in pulmonary capillaries of the lungs. When red blood cells flow to the periphery of

the organism, a lower oxygen concentration encourages a dissociation of oxygen from

haemoglobin and diffusion of oxygen into tissues where oxygen molecules contribute to

metabolism. Thus, oxyhaemoglobin is converted to deoxyhaemoglobin. Red blood cells

containing deoxyhaemoglobin then circulate back through to the pulmonary capillaries of

the lungs where they are once again oxygenated.

1.1.3 White Blood Cells

The primary function of white blood cells (also known as leukocytes) is to clear infection

by pathogens. White cells can be categorised based on the presence or absence of granules

(granulocytes or agranulocytes), by lineage (myeloid or lymphoid) (Fig. 1.1), and by nuclear
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Figure 1.2: Platelet generation of haemostatic plug (thrombus) following ves-
sel injury.
Multiple factors contribute to the generation of a stable haemostatic plug (thrombus). Firstly, a
primary haemostatic plug is generated by aggregated platelets. Collagen and VWF exposure

promotes platelet adhesion to the site of injury and subsequent activation. Activated platelets
release thromboxane A2 recruiting further platelets to the site of injury forming a primary

haemostatic plug. The primary haemostatic plug is bound by a fibrin mesh to create a stable
haemostatic plug. Fibrin is generated by thrombin produced by the blood coagulation cascade.
The blood coagulation cascade is initiated by tissue factor release following vessel injury and

platelet phospholipid release. Finally, activated platelets release serotonin resulting in
vasoconstriction reducing blood flow through the injured vessel (Figure source [81, p. 315]).

6



Figure 1.3: Stained red blood cell observed by microscopy.
Red blood cells are visibly distinct from other blood cells by their smaller size and doughnut
shape, they form the largest proportion of blood by volume and are the most numerous when

observed with Wright-Gimesa stain and microscopy. (Figure source [122, p. 26]).

structure (polynuclear or mononuclear). Blood cells were initially studied by extraction of

blood samples and microscopy following application of Wright-Giemsa stain, a mixture of

red and methylene blue dyes [57]. This leads to the delineation of five white blood cell type

categories, listed in order of abundance: neutrophils, lymphocytes, monocytes, eosinophils,

and basophils (Table 1.1). These categories are based on differences easily observable

with microscopy which also correspond to functional differences. However, this method of

classification is limiting. Firstly, the staining of white cells to observe granules results in

a agranulocyte classification for monocytes. This is incorrect, as monocytes do contain

granules at lower quantities not easily observable under microscopy. Furthermore, as the

study of haematology has progressed, it is now clear that functionally important subtypes

exist within the previously defined categories. This is especially true for lymphocyte cells

which contain a number of functionally heterogeneous subclasses which are discussed later.

Neutrophils

Neutrophils are short lived cells with a lifespan of only 6 - 10 hours in circulation and are

part of the innate immune system which is the first to react in response to pathogenic

assault [81, p. 110]. Neutrophils are highly abundant forming up to half the population of

white blood cells (Table 1.1) being distinguished by their multilobed nucleus and granulated

cytoplasm (Fig. 1.5). Neutrophils flowing through the circulatory system are recruited to

a site of infection by endothelial cells. This allows neutrophils to leave the blood vessel and
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Figure 1.4: Erythropoiesis of red blood cells from pronormoblasts.
Red blood cells originate from the common myeloid progenitor which differentiates into

pronormoblast cells, then early, intermediate, and late normoblasts (precursor cells of red blood
cells) finally becoming reticulocytes which mature into red blood cells. Unipotent early and

intermediate normoblasts can undergo mitosis resulting in a greater number of red cells
produced from a single pronormoblast (Figure source [81, p. 17]).

Category
Abundance

(Cells/Litre blood)
Progenitor Nuclear Structure Granulation

Neutrophils 4.00 - 11.00 x 109 Myeloid Multilobed Granulocyte
Lymphocytes 1.5 - 3.5 x 109 Lymphoid Mononuclear (round) Agranulocyte

Monocytes 0.2 - 0.8 x 109 Myeloid Unilobed Agranulocyte*
Eosinophils 0.04 - 0.4 x 109 Myeloid Bilobed Granulocyte
Basophils 0.01 - 0.1 x 109 Myeloid Bilobed Granulocyte

Table 1.1: White blood cell categories, their abundance in circulation and
features of categorisation.
Neutrophils are by far the most abundant white cell type in circulation with basophils rarely found
in circulation (see table). Cell types are categorised based on progenitor, or structural differences
in nuclear structure, and granulation. Myeloid cells differentiate from myeloid progenitors, and
lymphoid cells from lymphoid progenitor cells. * Monocyte cells contain granules, however these
granules are fine and not easily observable by staining and microscopy - thus leading to the
agranulocyte classification. Abundance statistics from [81, p. 109].
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Figure 1.5: Neutrophil cell observed by microscopy following staining.
Neutrophils are differentiated by their multilobed nucleus, in this case containing roughly 4 lobes
and the presence of granules (pink stain) in the cytoplasm. The cell is surrounded by discoid

shaped red blood cells which are highly abundant in blood plasma (Figure source [81, p. 109]).

Figure 1.6: Neutrophil cell recruitment to the site of infection
Steps in neutrophil recruitment begin with circulating neutrophils adhering to endothelial cells

presenting the selectin receptor which binds to the selectin ligand on the neutrophil cell
membrane. Following recruitment, neutrophils roll towards the source of chemoattractant

molecules, rolling is arrested by binding of integrins leading to eventual extraversion through the
endothelial wall (Figure source [40]).

begin migrating to the site of infection. Recruitment begins by interaction of P-selectin

ligand on neutrophil cells with P or E-selectin receptors presented by endothelial cells

(Fig. 1.6) [99]. Following recruitment, neutrophils will begin to migrate towards the source

of chemokines produced at the site of infection. This migration along the concentration

gradient of attractant molecules is termed chemotaxis and is performed by rolling along

the endothelial wall. Eventually, rolling is arrested by binding of the integrin ligand on

neutrophil cells to integrin receptor on endothelial cells. Leading to passing of neutrophils

through the endothelial wall towards the site of infection in the surrounding tissue (Fig.

1.6) [185].

Once circulating neutrophils are recruited, adhere, and move to the site of infection

they engage and destroy pathogens. This can occur by degranulation, phagocytosis,

and generation of neutrophil extracellular traps (NETs). Key to all these responses are

neutrophil granules which contain cytotoxic compounds such as defensin peptides and
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bactericidal permeability increasing protein (BPI). Straightforward degranulation results

in the release of granule contents onto pathogenic cells in order to induce cell death.

This may occur, for example, by release of defensin peptides which permeabalise the

pathogen membrane. Phagocytosis engulfs and digests pathogen cells which have been

bound by antibodies. During phagocytosis neutrophils generate cytotoxic reactive oxygen

species by a process termed respiratory burst, and granules enable digestion by releasing

their contents as the pathogenic cell is engulfed. Finally, generation of NETs entangles

pathogens with a fibre of chromatin from neutrophil DNA and serine proteases such as

neutrophil elastase and cathepsin G which are released from granules.

Neutrophil granules consist of primary granules, more common secondary granules,

and a smaller number of gelatinase granules. The contents of these granules has been

studied extensively by separation on a density gradient and proteome profiling with mass

spectrometry [144]:

• Primary (azurophilic) granules contain antibacterial compounds such as defensin

peptides and serine proteases. Primary granules are distinguished by the presence of

myeloperoxidase (MPO) protein.

• Secondary (specific) granules are most numerous and contain further cytotoxic

compounds such as lysozyme and lactoferrin.

• Gelatinase granules contain matrix metalloproteinase proteins allowing neutrophils

to pass the endothelial wall [123].

In addition to cytotoxic action, neutrophil signalling following pathogen detection

can further activate the immune system. Presentation of antigens by neutrophils to

lymphocytes informs the adaptive immune system, and release of cytokines activates

nearby macrophages which assist in phagocytosis [178].

Eosinophils

Similar to neutrophils, eosinophils are derived from myeloid progenitor cells and contain

a granulated cytoplasm when observed with staining and microscopy. Unlike neutrophil

cells, eosinophils are far less abundant in circulation (Table. 1.1), have a maximum of

two nuclear lobes, and display orange-red granules following application of Wright-Giemsa

stain [122, p. 239]. Wright-Giemsa stain consists of a mixture of red and methylene blue

dyes. The red dyes, also known as eosin compounds preferentially bind to eosinophils

due to the high amount of basic arginine rich proteins in their granules [122, p. 239].

Arginine is an amino acid which is negatively charged and described as ‘basic’ in contrast

to positively charged ‘acidic’ amino acids. The purpose of the arginine rich proteins

packaged in eosinophil granules is to destroy pathogenic cells, particularly parasite cells.
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Figure 1.7: Eosinophil cell observed by microscopy following staining.
Eosinophils are differentiated by their bilobed nucleus and the presence of granules (pink stain)

in the cytoplasm. The cell is surrounded by discoid shaped red blood cells which are highly
abundant in blood plasma (Figure source [81, p. 109]).

Examples include the negatively charged major basic protein (MBP) which permeabilises

cell membranes of parasites and other targets, and eosinophil cationic protein (ECP) a

cytotoxic protein with ribonuclease activity which also signals to nearby immune cells

[122, p. 239]. Eosinophils are notable for their role in the destruction of parasites which

are differentiated from other pathogens by being multicellular pathogenic organisms [93].

Furthermore, eosinophil function has been implicated in patients with allergic disease

and related immune disorders such as asthma [15] [93]. Mild eosinophilia (an abundance

of eosinophils) is observed in patients with allergic diseases such as asthma and allergic

rhinitis [93].

Basophils

Basophils are the least common of all leukocyte cell categories, identified by their bilobed

nucleus and a cytoplasm rich in granules which are stained dark purple by Wright-Gimesa

dye and can often conceal the nucleus itself [122, p. 241]. Functionally, basophil cells are

known for their high affinity for immunoglobulin E (IGE), a class of antibody primarily

targeted to antigens present on parasite cells [161]. The binding of basophils to IGE

is facilitated by the high affinity IGE receptor FcεRI, where expression of this receptor

correlates with circulating IGE concentration [161]. IGE binding results in phosphorylation

of tyrosine kinase Syk, leading to intracellular calcium release (Syk mediated signalling

cascade), resulting in exocytosis of granules and their contents [108]. Basophils known for

their highly granular cytoplasm will degranulate secreting large amounts of cytokines (IL-4,

IL-13) and histamine [161]. Release of chemokines by basophils leads to characteristic

allergic responses such as increased blood flow, itching of the skin (puritis), and sneezing

(if in the respiratory tract) [161]. These are immune responses which aim to expel the

parasite which cannot be easily destroyed by other immune functions such as phagocytosis

or release cytotoxic proteins. Basophil activation contributes to allergic responses to

allergens such as pollen when antibodies are binding these antigens [161].
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Figure 1.8: Basophil cell observed by microscopy following staining
Basophils are differentiated by their bilobed nucleus and the abundance of granules stained dark

purple in the cytoplasm. The cell is surrounded by discoid shaped red blood cells which are
highly abundant in blood plasma (Figure source [81, p. 109]).

Monocytes

Monocytes are short lived cells with a lifespan of 2 - 3 days in blood [122, p. 242] and

are distinguished by their c-shaped nucleus and fine vacuoles in the cytoplasm which

often stain blue [81, p. 111] (Fig. 1.9). Granules are present at a lower abundance

than that of neutrophils, eosinophils, or basophils [122, p. 242]. In particular monocytes

harbour primary (azurophil) granules [122, p. 242]. Most circulating monocytes are known

to be classical monocytes which are differentiated by high expression of the CD14 cell

surface receptor, a smaller number of monocytes are termed non-classical monocytes with

higher CD16 and lower expression of CD14 receptor [187]. It is difficult to determine a

specific boundary between the classical and non-classical population because non-classical

monocytes develop from classical monocytes which change their expression of cell surface

receptors [187]. Furthermore, an intermediate monocyte subpopulation has also been

proposed with high CD14 and low CD16 expression [187]. Classical monocytes are the

abundant subpopulation and modulate inflammatory responses at the site of infection.

Non-classical monocytes are less characterised and thought to interact with endothelial

cells in the vascular lumen [90]. The intermediate monocyte population is known to expand

during infection, however their function is not well characterised [187].

Neutrophils are usually the first cells responding to infection followed by monocytes

which support neutrophil cells in removal of pathogens [122, p. 242]. Furthermore, once

monocytes enter the tissue they also convert into tissue resident macrophages which

undergo a limited number of cell divisions resulting in mature macrophages. Macrophages

can respond to pathogenic attack by phagocytosis of pathogens and release of signalling

proteins. Macrophages also help return the tissue to homoeostasis following resolution

of infection by clearance of cellular debris and contribution to wound closure [53]. Most

macrophages in the human organism originate from a pool of self-renewing tissue resident

macrophages. However, monocytes enable further production of macrophage cells at sites

of infection [138].
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Figure 1.9: Monocyte cell observed by microscopy following staining.
Monocytes appear larger than other blood leukocytes with a large oval or indented nucleus, the

cytoplasm contains many small vacuoles and is stained blue by Wright-Gimesa stain with a
‘ground-glass’ appearance (Figure source [81, p. 109]).

Figure 1.10: Lymphocyte cell observed by microscopy following staining.
Lymphocytes are distinguished by their large rounded nucleus surrounded by a thin cytoplasm.

Some lymphocyte subtypes (not pictured above) may also be granular (Figure source [81,
p. 109]).

Lymphocytes

Lymphocyte cells are the second most abundant white cell after neutrophils, they are

distinguished by a round nucleus and can be variable in size (Fig. 1.10) [81, p. 127] .

Lymphocytes are the most heterogeneous of white cell categories and include, listed by

order of abundance: T cells, B cells, and large granular lymphocytes (LGLs) (which includes

natural killer (NK) cells). Roughly 75% of lymphocytes are T cells with the remaining

25% consisting of a roughly equal proportion of B cells and LGLs [122, p. 244]. Within the

lymphocyte subtypes further heterogenity emerges during lymphocyte maturation which

begins in the primary lymphoid organs: the medulla of the bone marrow and the thymus

[81, p. 127].

Fundamental to lymphocyte maturation is the major histocompatibility complex (MHC)

cell surface protein encoded in the human leukocyte antigen (HLA) locus. MHC presents

antigens on the cell surface. These can be self antigens which are peptide fragments

encoded in the genome, or foreign antigens, peptide fragments from pathogenic cells or

viruses. There are two classes of MHC, class I presents antigens existing inside the cell,

class II presents antigens collected from pathogens by antigen presenting cells (APCs)
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which include neutrophils and macrophages. Healthy cells expressing MHC class I will

present self-antigens, however MHC class I on virus infected cells may present viral antigens

- thus signalling that cell for destruction. During maturation lymphocyte cells are guided

to ensure that they interact with the MHC molecule generally, but crucially that they do

not react in situations where MHC is presenting self-antigens.

T cells mature in the thymus from precursor cells which originate from the bone marrow

[81, p. 129]. A crucial part of maturation is development of the T cell receptor (TCR)

which is expressed on the cell surface of T cells and should have a high affinity for MHC,

but low affinity if MHC is presenting self antigens [81, p. 129]. The TCR gene contains a

hypervariability region, in this region point mutations occur often leading to heterogeneous

TCR proteins even between T cells in the same individual [122, p. 246]. Maturation occurs

in the thymus by positive and negative selection. Positive selection promotes expansion of

T cell populations with TCR which have affinity for MHC, this is important to enable T

cells to bind to MHC in order to carry out their immune function. Subsequently negative

selection removes T cells which bind to native antigens presented by MHC [163] (Fig. 1.11).

Negative selection is achieved by presentation of self-antigens to maturing T cells, ensuring

that T cells which react to these antigens are not permitted to survive [122, p. 249]. T

cells which develop with affinity to MHC class I become cytotoxic T cells and those with

affinity to MHC class II become T helper cells [163]. Cytotoxic T cells are responsible for

lysis of virus infected cells which are presenting foreign antigens by MHC class I. T helper

cells are responsible for detection of foreign antigens when presented by APCs by MHC

class II [122, p. 249]. If a helper or cytotoxic T cell is activated by a foreign peptide it will

proliferate and signal for further immune responses. Cytotoxic T cells contain granules

which release perforin peptides and serine proteases upon contact with a virus infected

cell [122, p. 249].

Unlike T cells expressing TCR with general specificity to recognise foreign antigens

presented by MHC, B cells produce antibodies which recognise a specific antigen directly

[79]. B cell maturation begins in the bone marrow where cells initiate expression of B cell

receptor (BCR), a dimer of immunoglobulin molecules. Immunoglobulins are membrane

bound surface molecules with constant Fc regions and variable antigen binding Fab regions

[81, p. 131]. In the bone marrow, B cells undergo positive and negative selection for BCR

molecules that bind to MHC, but not self-antigens [122, p. 246]. Following selection, naive

B cells leave the bone marrow and move to the secondary lymphoid organs, the spleen or

lymph nodes where pathogenic antigens are collected by immune cells such as T cells or

by the passive flow of lymphatic fluid [79]. In the secondary lymphoid organs antigens are

stored and concentrated by follicular dendritic cells (FDCs) located in germinal centres

[79]. Naive B cells move into the germinal centre and proliferate undergoing somatic

mutations of the BCR encoding genes (Fig. 1.12). B cells compete for binding with an
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Figure 1.11: Positive and negative selection during T lymphocyte maturation.
This figure shows maturation of T lymphocytes which are selected such that their TCR receptor

binds HLA and secondly such that they do not bind to HLA presenting self-antigens, this is
termed positive and negative selection respectively (Figure source [74]).
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Figure 1.12: B cell maturation in the germinal centre
B cell maturation occurs in the germinal centres within secondary lymphoid organs. B cells
move into the germinal centre and proliferate with somatic hypermutation which results in

heterogeneous BCR. B cells which bind to dendritic cells presenting antigens are promoted to
proliferate, this results in generation of BCR which binds to antigens. (Figure source [81,

p. 137]).

antigen presented by the FDC, those that outcompete are encouraged to proliferate [81,

p. 137]. This leads to production of B cells which can generate antibodies with specificity

for an antigen. Surviving B cells differentiate into plasma cells responsible for high volume

antibody secretion, or memory B cells which have a long lifespan and when activated by

presentation of their antigen will rapidly proliferate and instantiate an immune response

[113]. Plasma cells produce and secrete soluble antibodies based on their BCR generated

by the previously described positive and negative selection.

LGL cells consist of two major classes, the previously described cytotoxic T cells and

NK cells which are known for their response to virus infected and tumour cells. NK cells

recognise their targets both by binding to the constant Fc region of antibodies or by

detecting a lack of MHC class I expression, common in virus infected or malignant cells

[81, p. 130]. Similar to cytotoxic T cells NK cells initiate destruction of their target by

exocytosis of granule contents which includes proteases and other cytotoxic compounds

[122, p. 249].
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1.2 Haematological analysers

GWAS studies require collection of phenotype and genotype data in a cohort of individuals

large enough to power identification of associations with statistical confidence (Section

1.5). This requires high-throughput measurement of phenotypes with limited measurement

error. Automated haematological analysers are designed to rapidly count cell types and

measure other cell properties from a blood sample. The measurements routinely obtained

by haematological analysers can be condensed as follows: cell counts for the seven primary

blood cell types (platelets, red cells, neutrophils, eosinophils, basophils, monocytes, and

lymphocytes), red cell and platelet volumes, and red cell haemoglobin measurements. I

will introduce the two major techniques for automated haematological analysis: impedance

electrometry and flow cytometry and show that additional blood cell properties can be

derived by flow cytometry.

1.2.1 Impedance flow cytometry (Coulter principle)

The origin of automated haematology analysers began in October 1953 with a patent for

automated cell counting by flow cytometry and impedance electrometry also known as the

Coulter principle, filed by Wallace H. Coulter and his brother Joseph R. Coulter, Jr [72]

[50]. Historically, erythrocyte counting was routinely performed with manual microscopy,

a process taking a haematologist up to 30 minutes per sample [72]. There was a pressing

need for the development of an automated solution. A publication in 1934 by Canadian

Andrew Moldavan proposed automated counting of ‘microscopical cells’ in solution using a

capillary tube [120]. Here, cells in solution are forced to process through a capillary tube

observed by a microscope and photoelectric apparatus which registers the passing of cells.

Intriguingly this concept seems to have originally been proposed in a French publication by

Marcandier, Bideau, and Dubreuil in 1928 [111]. Regardless, the publication by Andrew

Moldavan is noted as being the inspiration for the development of the first flow cytometry

and electrical impedance based automated cell counter by Wallace H. Coulter and his

brother Joseph R. Coulter, Jr [72], their work being published in the aforementioned

patent and referred to as the ‘Coulter principle’. The Coulter based counter obtains an

electrical contrast between cells and surrounding solution which is ten times higher than

those identified by the photoelectric method proposed by Andrew Moldavan [72].

The Coulter principle relies on the changes in conductivity when cells pass through

an aperture and displace surrounding solution. A container filled with fluid holds an

electrode, inside this container a smaller tube is placed inside which an electrode of opposite

charge is placed (Fig. 1.13). A microscopic aperture is made in the smaller tube allowing

electrical current to flow from one electrode to the next. When fluid is drawn through the

aperture, the observed current will not change as the conductance through the aperture is
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Figure 1.13: Schematic of the Coulter principle of electrical impedance.
Schematic showing the Coulter principle for counting cells in solution. A conductive solution

flows through an aperture with an electrical current also passing through the aperture. As a cell
passes through the aperture the electrical current is disrupted because the conductive solution is
displaced by a cell. The magnitude of the disruption of electrical current will depend on the size

of the cell. Analysis of the disruptions in electrical current allow blood cells to be identified
(Figure source [125]).

not changing. However, if a cell is drawn through the aperture the current is disrupted,

because the conductance of a cell is different to that of fluid [72]. By studying the waveform

of current flowing through the aperture the concentration and size distribution of cells can

be measured. The Coulter principle is utilised in many modern automated haematological

analysers, such analysers have also been utilised to phenotype large population cohorts

empowering a number of GWAS studies of blood cell count [15] [162] [66].

1.2.2 Fluorescence flow cytometry

Fluorescence flow cytometry began with a patent filed by Göhde and Dittrich in 1968

[177]. The use of light for cell counting is based on work by George Oliver in 1896 who

proposed counting blood cells by measuring the loss of light passing through a test tube

caused by scattering and absorption by suspended cells [128]. This loss of light will be

correlated not just to cell count, but also with cell size and haemoglobin content. To make

this method of fluorescence flow cytometry a reality, it was required to separate individual

cells. In 1965 Mark Fulwyler published an article in Science utilising the Coulter principle

to separate cells by volume which proved to be the enabling factor which paved the way

to fluorescence flow cytometry [63] [73]. Göhde and Dittrich utilised this technique with a

laser beam to create the first fluorescence cytometer [177].

Flow cytometry relies on the scatter of laser light incident upon cells which flow
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Figure 1.14: Schematic of fluorescence flow cytometry.
Cells flow single file through the Sysmex flow cytometry channel and are hit by a laser beam,

light is scattered or fluoresced by dyes in the cell and this is recorded resulting in three readings
(SSC, SFL, and FSC) per cell. * SFL is an index of nucleic acid content also influenced by

membrane composition of cells which affects the rate of absorption of nucleic acid staining dye
into the cell (Figure source [4]).

through the cytometer in single file and the fluorescence of dyes which stain the cell (Fig.

1.14). In most modern flow cytometers fluorescent nucleic acid stains are applied to cells

based on nucleic acid binding dyes such as acridine orange and membrane perforating

agents, although the exact formulation of stains usually remains proprietary [73]. Three

parameters are derived from cells flowing through a standard flow cytometer: side scatter

(SSC), forward scatter (FSC), side fluorescence (SFL) (Table 1.2). These parameters

represent cellular properties, cell structure or granularity, cell size, and cell nucleic acid

content respectively. Plotting these parameters results in a scattergram with clusters of

cells corresponding to different cell types (Fig. 1.15). Not only can individual cell types be

identified from the scattergram, position of cells within a certain cell type in the three axes

(SSC, FSC, SFL) represents important properties about the state of the haematological

system which varies between individuals. Further discussion of flow cytometry parameters,

their derivation from scattergram information, and clinical relevance is made in Section

3.2.2.
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Property Abbreviation Description
Side Scatter SSC Cell internal structure and granularity

Forward Scatter FSC Cell size

Side Fluorescence SFL
Fluorescence of stain, usually nucleic acid stain.

Measurement also influenced by membrane composition
which influences progression of stain into cell.

Table 1.2: Properties measured by standard cell flow cytometery.
A standard flow cytometer measures: SSC, FSC, and SFL. These measurements are representative
of important cell properties such as cell size, cell structure or granularity, and cell nucleic acid
content.

Figure 1.15: White blood cell differential channel scattergram.
This plot represents results obtained from the white blood cell differential channel (WDF) from
analysis of a blood sample. Each data point represents a blood cell for which SSC, SFL, and
FSC values are derived - only SSC and SFL axes are drawn. Cell types are identified using
bounds set across the axes, for each cluster of cells representing a cell type cells are counted.

Furthermore, phenotypes are derived from the median position of each cell type in the axes. The
example drawn represents the SSC and SFL values for eosinophil cells and distribution width
values are also calculated from the width of the cluster. Cell types observed from the WDF
scattergram are highlighted. LY: lymphocytes, RE-LYMP: reactive lymphocytes, AS-LYMP:
antibody synthesising lymphocytes, MONO: monocytes, IG: immature granulocytes, NEUT:

neutrophils, BASO: basophils, EO: eosinophils.
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1.3 Variation in the human genome

The human genome consists of 23 pairs of chromosomes located in the nucleus where

each chromosome is a DNA molecule containing genetic information of the organism.

DNA is formed of base pairs of ‘nucleotides’ of which there are four types: adenine (A),

cytosine (C), guanine (G), and thymine (T). Across all 23 chromosomes, DNA consists

of 6 billion base pairs of nucleotides. Genetic variations are changes in DNA sequence

which exist between individuals. Fundamentally, it is genetic variation which underpins

almost all the heritable differences in phenotypes between individuals. The total number of

observable variations in the human genome has not been determined and depends greatly

on the reference sequence used and population being studied. Genetic variants include

single nucleotide polymorphisms (SNPs), the substitution of a single nucleotide in the

genome, or inversions, copy number variations, insertions, and deletions. Copy number

variations are regions larger than 1000 base-pairs which appear a variable number of times

within the genome [141]. Copy number variations are a type of structural variation which

includes other alterations such as inversion or translocation of segments of DNA larger than

1000 base-pairs [62]. Variants can be genotyped directly using microarray or sequencing

technology, or imputed using a scaffold of nearby genotyped variations. Imputation relies

on linkage disequilibrium (LD) calculations from a reference population to infer genetic

variations which have not been genotyped and exist near to genotyped variations in the

genome (Section 3.1.3). Genotyping arrays are designed to detect genetic variations target

smaller variations such as SNPs, or small insertions and deletions and cannot identify

larger structural variants such as copy number variations.

The inheritance of genetic variation was first determined by Mendel who described

the ‘law of segregation’ and ‘independent assortment’ in inheritance of a phenotype from

parent to offspring [176]. Mendel observed segregation of alleles on different chromosomes

from parent to offspring, and independent assortment of those chromosomes. The laws of

inheritance as described by Mendel cannot easily describe the inheritance of polygenic (or

complex) traits which depend on multiple genetic loci across the genome [143]. Therefore,

to characterise the genetics of a complex trait we must systematically test genetic variants

across the genome for association with the phenotype. This type of analysis, a systematic

search for genetic associations across the genome is termed a genome wide association

study (GWAS), and requires a large population sample on which genetic and phenotypic

data has been recorded.
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Figure 1.16: Recombination exchanges of information between chromosomes.
Exchange of information between chromosomes during homologous recombination. This effect
results in chromosomes inherited by offspring being different from those parental chromosomes.
Recombination means that variants located physically close on chromosomes are more likely to

be inherited together (Figure source: [127]).

1.4 Genetic recombination and linkage disequilibrium

Genetic inheritance relies on chromosomes, which are continuous coiled segments of DNA

that are passed from parent to offspring. Every human individual normally inherits 23

chromosomes from each parent, resulting in a genome of 46 chromosomes. However,

chromosomes are not an indivisible unit of genetic information. Recombination can

occur during formation of gametes which pass genetic information to offspring, thus

allowing exchange of DNA segments between each chromosome in the pair, this is termed

homologous recombination (Fig. 1.16).

The result of genetic recombination is that alleles which are physically located close

together on a chromosome are more likely to be inherited together. Therefore, in the

population sample, the correlation between two alleles on the same chromosome reduces

as the physical distance between their variants in the genome increases (Fig. 1.17). This

also creates challenges in the context of GWAS as it is difficult to distinguish whether a

variant is associated with a phenotype due to a true mechanistic effect, or because the

variant is located close to, and is therefore often inherited with a variant which is the

true mechanistic variant. In Figure 1.18 a single association signal with the blood cell
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Figure 1.17: Linkage to a point in the genome across a chromosome.
Alleles of genes which are physically closer to gene three are more likely to be inherited with

gene three, this is defined as a greater degree of linkage. Similarly, proximal alleles are also more
likely to be inherited together (Figure source: [127]).

phenotype H-IPF a measure of immature platelets (a platelet parameter described further

Section 3.2.2) is identified on chromosome 8, and there are multiple highly correlated

variants with low P-values for association with the phenotype. It is not immediately clear

which (if any) of these highly correlated and associated variants is the causal variant for

the observed signal. Therefore, GWAS analyses are often followed by methods to identify

the number of independent association signals identified accounting for correlation or

LD between alleles. Methods to address this are discussed including multiple stepwise

conditional analysis (Section 2.2.8.1) and LD based clumping methods (Section 2.2.9).

1.5 Genome wide association study

A GWAS analysis can identify genetic variants which are associated with changes in a

phenotype, for example: transcript level, protein concentration, or some other biological

property. The phenotype is measured in a sample of individuals which are also genotyped

to determine genetic variations. A GWAS analysis estimates the magnitude of the effects

variants have on the phenotype and the standard error of this estimation. This analysis

highlights regions of the genome which influence the phenotype being studied. GWAS

analyses are subject to confounding factors such as population stratification which are

discussed in more detail in Section 2.2.6.

GWAS analyses are categorised into those studying case-control outcomes such as

diagnosis of disease, or quantitative outcome such as height, weight, or the value of a

haematological measurement. If the outcome in question is binary (case-control) a logistic

model will most often be used to generate test statistics, alternatively a linear regression

is used to model quantitative outcomes. Each SNP is tested individually with adjustment
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for covariates which can include participant factors such as age, weight or height which

could also effect the phenotype. A quantitative phenotype is studied as follows, where y is

a vector of phenotype values, xc represents a matrix of covariate values across individuals,

x represents the genotype of the individual coded as 0, 1, or 2 for homozygous reference

allele, heterozygous, or homozygous alternate allele respectively, and α, β, βc represent the

intercept and effect sizes of the genotype and covariates to be estimated:

E[y] = α + xcβc + xβ (1.1)

y ∼ N (µ, σ2) (1.2)

Alternatively, working with a case-control GWAS where phenotype values are binary

outcomes y ∈ {0, 1}, Equation 2.1 is modified as follows using a sigmoid function to fit a

logisitc regression:

E[y] =
1

1 + e−(α + xcβc + xβ + ε)
(1.3)

y ∼ B(p) (1.4)

Population stratification and relatedness are effects which may lead to false positive

results and are discussed in more detail in Section 2.2.6. Briefly, covariates are included

in the model such as population principal componentss (PCs) or an additional genetic

relationship matrix (GRM) term which accounts for relatedness amongst the sample

population to help account for population stratification. A GRM requires modelling of

random effects, in which case the linear model above is modified to a linear mixed model

(LMM) (Section 2.2.7). At its basis, a GWAS study utilises a linear model or a LMM.

Therefore, the primary assumptions of linear regression still apply which are discussed

with more detail in Section 2.2.4.

1.5.1 The history of GWAS analysis

The history of GWAS necessarily begins with that of the human genome project which

formally began in October 1990. The goal of the human genome project was to determine

the sequence of nucleotide base pairs in DNA and map all the genes within the human

genome. The first genome to be sequenced was that of bacterial virus φX174 with 5400

nucleotides by Fred Sanger in 1977 [147]. For many years the prospect of sequencing

the human genome was met with incredulity and disbelief [158]. In May 1985 Robert

Sinsheimer organised a workshop to propose sequencing the human genome and wrote

the following about the response of his audience: “The sources of hesitation ranged from
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concerns over the introduction of Big Science into biology to arguments that most of the

human DNA is junk” [158]. In response to arguments about “junk DNA” Sinsheimer would

retort that “one man’s garbage is another’s treasure” and used the example of large projects

in physics and astronomy such as the Hubble space telescope to argue for the benefits of

“Big science” [158]. Unfortunately, Sinsheimers proposal to sequence the human genome

was not pursued at that time. However, subsequent workshops proposing sequencing of the

human genome by Charles DeLisi [54], James Watson [75], and a publication in Science by

Renato Dulbecco [56] began to turn the tide. Of particular importance was New Mexico

US Senator Peter Domenici, a friend of DeLisi who offered political support to proposals

to dedicate money from various government organisations to fund the prospective genome

project. Efforts culminated with approval for funding from the Senate Committee on

Energy and Natural Resources chaired by Senator Domenici and an act of Congress in

January 1987, both of which committed money for the purpose of sequencing the human

genome. The act was a budget submission signed by US President Ronald Reagan himself,

and thus began the era of ‘Big Science’ proposed by Sinsheimer which continues to this

day. The remaining history of the human genome project is well documented in a number

of sources [1] [54]. Laboratories in the United States, United Kingdom, Germany, Japan,

and China would eventually contribute to the project in addition to (and often competing

with) private organisations in particular Celera Genomics finally leading to publication of

the draft human genome sequence in 2001.

Publication of the human genome sequence enabled creation of the Japanese single-

nucleotide polymorphisms (JSNP) database of 190,652 variants in the Japanese population.

It is from this database that the first GWAS for myocardial infarction in Japanese

participants was performed [86]. From JSNP, 92,788 variants were selected which the

authors assumed would account for each of the 100,000 genes expected in the genome. Of

course, we now know that the estimation of 100,000 genes in the genome is incorrect and

the number is closer to 30,000. The chosen variants were genotyped in 1,133 individuals

affected by myocardial infarction and 1,006 controls [129]. This analysis, which is now

known to be the first ever GWAS identified only a single association locus composed of 5

SNPs on chromosome six [129] [86]. Although, it could be argued that 92,788 variants

studied in this analysis hardly cover the entire genome. In the same regard even modern

GWAS studies do not cover the entire genome often missing regions which are difficult

to genotype or impute such as the MHC locus. Regardless, since the first study in 2002

[129], GWAS Catalog, a repository for results of GWAS analyses has collected over 3,000

GWAS results [34]. Almost all major common diseases have been subject to GWAS, often

in sample sizes of hundreds of thousands of individuals.
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Figure 1.18: GWAS identifies a large number of significant variants but only
one signal at this locus.
This plot represents an association signal on chromosome eight with haematological trait H-IPF,
a measure of immature platelets (Section 2.1.3). Each data point represents a genetic variant

with the position of the data point on the x axis corresponding to the physical location of that
variant on chromosome eight. The position of each variant in the y axis is the -log10(P ) for

association with H-IPF. Variants are coloured based on their LD to the conditionally significant
variant (rs6558405) which is identified with multiple stepwise conditional analysis to be the best
statistical candidate for this association signal, although this does not imply that rs6558405 is
the causal variant for this association signal. Variants in high LD to the conditionally significant

variant show significant association with the phenotype H-IPF, however conditional analysis
shows only one independent signal at this locus, suggesting only one variant is mechanistically

associated with changes in the phenotype.
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1.5.2 Genotyping of genetic variants

Genotyping is a biological assay which allows the determination of alleles in DNA. The two

primary classes of genotyping technology utilised in GWAS analysis are DNA microarrays

and whole genome sequencing. In my analysis I utilise DNA microarray based technology

which at the time of study recruitment and genotyping (2012 - 2015) was affordable enough

to enable genetic analysis of a large cohort of individuals as required for GWAS.

The most common DNA microarray technique for GWAS genotyping is one-channel

detection utilised by the Affymetrix Gene Chip and Illumina Bead Chip systems. This

system allows determination of hundreds of thousands of genetic variants in a single sample.

Here, a DNA microarray contains a number of probes, each of which can assay for the

presence of an allele in a sample. A probe is a fragment of single stranded DNA encoded

to hybridise to a piece of DNA which contains the variant in question. The probe is fixated

to the silicon wafer by a covalent bond which forms the body of the microarray. Probes

can be designed as required, selection of probes is discussed in more detail in Section 2.2.1.

A sample of DNA is fragmented and washed over the silicon wafer containing the probes.

If fragments contain the genetic variant of interest it will form a strong hybridisation with

the corresponding probe. The silicon wafer is washed to remove DNA fragments which

are not hybridised with an appropriate probe. The DNA microarray is designed such

that specific coordinates on the array are dedicated to detecting a particular variant. A

fluorescent dye is added which binds to double stranded DNA and a laser is used to query

coordinates along the DNA microarray to identify probes which have hybridised. Thus it

is possible to deduce which alleles exist in the DNA sample by identifying which probes

are fluorescent. However, only a limited number of variants can be genotyped. In the

case of my analysis a Affymetrix Axiom array including 820,967 probes was utilised. It

is known that variants across the genome are correlated depending on physical distance

between them (Section 1.4). Utilising this linkage (correlation) structure which can be

determined by whole genome sequencing of a reference population, it is possible to further

impute the existence of millions more genetic variants.

Imputation of genetic variants

Imputation allows prediction of genotypes which were not directly measured. Imputation is

performed using the correlation structure (LD) between variants in the genome estimated

from a reference population. To ensure similar LD structure, the reference population

must have similar ancestry as the genotyped individuals. All imputation methods begin

by phasing genotyped variants to estimate ‘haplotype blocks’ along the genome (Fig.

1.19). Haplotype blocks are contiguous regions of DNA which show little evidence of

recombination in the reference population thus the genetic variants in a haplotype block are

very likely to be inherited together. Once haplotypes have been estimated, haplotypes from
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the reference population are used to impute missing variants in the sample population (Fig.

1.19). Imputed alleles are estimated with a degree of uncertainty, this is often represented

with the information (INFO) score metric which is between 0 and 1. The INFO score for

an imputed variant multiplied by the total sample size represents the equivalent effective

sample size for the power of an association test, a perfectly imputed variant will have

an INFO score of 1 [25]. Given this uncertainty, if genotyped variants are encoded as

follows: 0 for homozygote reference, 1 for heterozygote, and 2 homozygote alternate alleles,

imputed variants will have values closer to 0 if the likelihood of homozygote reference

alleles is high and closer to 2 in the reverse scenario. Examples of reference populations

include the European ancestry populations from the UK10K [46] and haplotype reference

consortium (HRC) which combines data from multiple cohorts including UK10K and the

1000 Genomes project [167]. These data were utilised by the UK Biobank consortium to

impute nearly 96 million variants in their cohort of 500,000 British volunteers [38].
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Figure 1.19: Schematic of steps for imputation of genotype data to estimate
missing variants
a) Genotype data from the sample population with missing genotypes represented by question
marks. b) Testing for an association signal using genotype data alone results in no association

peak. c) Using a set of reference haplotypes from d) genotype data is phased to determine
haplotypes present at each position along the genome. Three phased individuals are represented
in the figure, each genome is a mosaic of haplotypes from the reference population. d) Reference
haplotypes are defined from whole genome sequencing of a population with similar ancestry to
the sample population. e) Missing variants in the genotyped sample population are estimated

using the imputation procedure, with imputed variants highlighted in orange. f) In this
example, testing for association of genotyped and imputed SNPs results in an association signal

which was not identified before (Figure source [112]).
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1.6 Interpretation of GWAS results

Since the first GWAS of myocardial infarction in 2002 which found an association locus

on chromosome six [129], the number of identified associations has been increasing rapidly

[173]. As more associations are identified, there is a greater need for interpretation of

these results to generate relevant scientific insights. Large amounts of public money from

government agencies such as the National Institute of Health and charities such as the

Wellcome Trust have been and continue to be committed to GWAS studies on the promise

of great advances in our understanding of biology and disease. As we approach two decades

since the first GWAS study, questions still remain about how to use the results of GWAS

analysis to inform biological experimentation and clinical development. I will attempt to

address these questions by discussing the tools and techniques which have been developed

to query GWAS summary statistics and how these techniques aim to answer fundamental

biological questions. Some of the primary challenges regarding inference from GWAS

results can be categorised as follows:

• Confident identification of the genes mediating each genetic association, a starting

point for further inference.

• Understanding the mechanisms of biology which lead to emergence of a genetic

association and the tissue specificity of those mechanisms.

• Inferring a causal relationship between two measurements, for example a risk factor

and disease risk, and the implications of this for the consideration of the risk factor

as a target for therapeutic modulation.

Fundamentally, all these questions are proposed in context of the same overarching

goal: “how can we interpret the results of GWAS analysis to infer causal underlying

biological mechanisms”. However, inferring causal mechanisms is difficult, analysis such

as annotation of associations to genes can get closer to this goal. In an attempt to

make biological and aetiological inferences from GWAS analysis I utilise many tools and

techniques. Here I will provide an overview of these techniques within the context of

broader biological questions, with more detailed methodological reviews in the relevant

chapters.

1.6.1 From genetic associations to genes

GWAS can provide insight into the genes which contribute to the studied phenotype.

However, inferring a mediating gene from an associated variant is not trivial. In some

cases, the associated variant may be near or overlapping several genes, in other cases

the associated variant is located megabases away from the nearest gene. This problem is
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encapsulated in the wider challenge of identifying a causal biological mechanism which

is leading to associations identified by a GWAS study. For many associated variants it

is not even clear which tissues the mechanism of action occurs in and how this leads

to changes in the phenotype which is detected by GWAS. Understanding the biological

mechanism causal for the genetic associations must necessarily include the gene which is

being modulated. Broadly, two solutions exist to annotate genetic variants to probable

mediating genes:

• Physical overlap or physical distance of the variant with genes, this is implemented

by software packages such as variant effect predictor (VEP).

• By integrating (colocalising) loci of associations from GWAS with gene or protein

expression data.

Studying which genes and genetic elements the variant in question is overlapping can

be misleading, a variant may overlap with multiple genes some of which may not even

be expressed in the relevant tissue. Colocalisation of genetic associations with gene or

protein expression GWAS results is a more reliable method for annotation, discussed in

detail below (Section 1.6.2).

1.6.2 Understanding genetic associations with colocalisation anal-

ysis

Genetic colocalisation analysis can determine if different phenotypes with a genetic

association in the same locus are being mediated by the same underlying causal variant.

The context of my work is to better understand genetic associations with haematological

phenotypes derived from a haematological analyser. I utilise colocalisation to explore the

following questions about genetic associations with haematological measurements:

• Which blood cell transcripts are modulated by the genetic association? This will

suggest genes which may be participating in the biological mechanism leading to

changes in the haematological measurement.

• The concentration of which blood plasma proteins are modulated by the genetic

association? This analysis could identify which haematological cells are producing

particular blood plasma proteins, or which haematological cells are modulated by

particular blood plasma proteins.

• Does this genetic association, which is modulating a haematological phenotype, also

influence disease risk? This is a starting point for more detailed analysis to study

the effect of haematological cells on disease aetiology.
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It is crucial to emphasise, colocalisation analysis cannot determine causal relationships

between the phenotypes being studied, and neither can it determine the direction of

causality between the two phenotypes. In the case were two phenotypes both have an

association signal in a locus, colocalisation analysis determines if those signals are caused

by a common variant. The interpretation of colocalisation analysis depends on the specific

nature of the phenotypes being colocalised. Haematological phenotypes studied in my

analysis are discussed in Section 2.1.3 and 3.2.2, colocalising expression quantitative trait

loci (eQTL), protein quantitative trait loci (pQTL), and disease risk phenotypes are

described further in Chapter 5.

1.6.3 Causal inference with mendelian randomisation

Mendelian randomisation (MR) allows determination of a causal relationship between an

exposure and outcome using genetic variants across the population sample. A population

level causal association is a relationship where if across the entire population the exposure

is modulated, this will cause a concomitant change in the outcome. An example of this

is low density lipoprotein and heart disease, low density lipoprotein is known to cause

heart disease and is modulated in the population by statin medication to reduce the risk

of heart disease. It is known that there is a causal association between this risk factor

and outcome. In this context, genetic associations are instrumental variables (IVs) used

to assess the influence of the exposure on the outcome. This helps avoid the pervasive

problem of confounding in epidemiological studies. Confounding factors influence both

the exposure and outcome and can therefore induce a correlation between them. Often,

confounding factors are unlikely to be measured or even known, therefore epidemiologists

may never know if identified correlations are driven by confounding factors or result from

a true causative mechanism. In MR studies the confounding effect is greatly ameliorated

as it is not likely for confounding factors to affect genetic variants which are randomised

at birth. Therefore, we are able to assess causality without the risk of our inferences being

unduly influenced by confounding factors.

MR studies are often termed ‘naturally randomised trials’, as properly chosen exposures

can be used as proxies for clinically relevant biomarkers or modifiable exposures. Genetic

evidence for efficacy of drug targets can be tested using MR (Fig. 1.20). For example,

instrumental variables in LDLR have demonstrated LDL-c is a risk factor for coronary

heart disease (CHD) (Fig. 1.21). However, MR relies on a large number of assumptions

which must be met for the analysis to be reliable. These assumptions and suggestions for

sensitivity analysis are described in Section 5.2.2.
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Figure 1.20: Mendelian Randomisation and a ‘naturally randomised control
trial’.

MR analysis as an analogy of a conventional randomised control trial, in this case the
relationship between LDL-C and cardiovascular (CV) events is studied by genetic instrumental

variables associated with a reduction in LDL-C. Assuming the genetic instruments meet
assumptions of validity (Section 5.2.2), MR can be used to assess the causal relationship

between LDL-C and cardiovascular events and thus predict whether LDL-C is a causal factor in
modulation of cardiovascular risk. This is relevant to clinical trials of LDL-C lowering therapies

such as statins (Figure source: [22]).
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Figure 1.21: Mendelian Randomisation to test causal association between
LDL-c and chronic heart disease.

A diagram representing the framework of a MR analysis, instrumental variables are selected
from genetic variants located in the LDL Receptor (LDLR) gene which raises LDL-C levels.

Instrumental variables are used to assess for causal association between LDLR (exposure) and
CHD (outcome), allowing estimation of a causal effect between LDL-C and CHD without

influence of confounding factors (Figure adapted from: [119]).

1.6.4 Intermediate traits for the study of disease aetiology

GWAS of disease outcomes identifies many associated variants, however a primary challenge

is understanding which genes, proteins, and cellular behaviours are influenced by disease

associations. An example of this is identifying which genes are modulated by an association,

a problem which is described in detail above (Section 1.6.1). Measurements of gene

expression, protein concentration, and cellular properties are often termed intermediate

traits. GWAS of intermediate traits identifies associations which influence those phenotypes.

Colocalisation analysis can identify cases where an intermediate trait association and

a disease association is driven by the same underlying causal variant. Furthermore, a

causal relationship between the intermediate trait and disease risk can be identified with

MR. Individuals with asthma often have increased eosinophil count, does asthma cause

increases in eosinophil count or are individuals with higher eosinophil count at greater risk

of asthma? A MR study using GWAS of eosinophil count and GWAS of asthma suggests

the causal relationship is driven by higher eosinophil count which in turn increases the risk

of asthma [15]. In this way my GWAS of haematological phenotypes including functionally

relevant phenotypes can help increase understanding of disease aetiology.

1.6.5 Genetic analysis to inform drug development

In recent decades there has been rapid progress in scientific advances including sequencing

of the human genome, emergence of new therapeutic modalities such as antibodies and
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RNAi, and advances in combinatorial chemistry allowing synthesis of thousands of small

molecule compounds. Given these developments it could be expected that the rate of

approval of new drugs to be higher relative to historical averages. However, approval of

new drugs is not only taking longer and getting more expensive, candidates are also now

more likely to fail at late stage clinical trials than in the past [159] [91]. In response to

this unfavourable outlook AstraZeneca undertook a “major revision of its R&D strategy”

in 2011. Part of this revision was the publication of a systematic longitudinal analysis of

its drug development portfolio for all projects between 2005 - 2010 [47]. Notably, their

analysis identified that that failure at late stages of clinical trails (Phase II and III) were

more likely to be due to drug efficacy than any other factor, reaching up to 88% in Phase

IIb trials (Fig. 1.22), where smaller Phase IIa trials (<200 patients) are distinguished

from larger Phase IIb trials (<400 patients). In 40% of cases, the reason for failure due to

efficacy was cited to be “target linkage to disease not established or no validated models

available”, this is in contrast to other reasons such as the dose of drug being limited by

compound characteristics (Fig. 1.23).

These results show that many drug compounds pass all the early milestones of drug

discovery only to fail at the latest stages of clinical development due to no efficacious effect

in man (Fig. 1.22). A study of the costs of drug development shows that from a cost

per new launch of $1.78 billion, roughly $1 billion of costs are incurred prior to Phase II

clinical trials, the first real opportunity to assess clinical efficacy in man (Fig. 1.25) [134].

These analyses demonstrate a need to assess drug efficacy as early as possible, and that

experiments with tissue and mouse models are not providing accurate enough insights

into human biology. However, testing compounds in a clinical trial prior to passing all the

early development milestones which contribute to the aforementioned $1 billion of cost

would be deemed highly unethical.

Role of genetics in drug development

It has been shown that genes which are drug targets in a database of drug approvals in

the United States and European Union are significantly enriched with genetic variants

associated with human traits compared to other genes [124], and candidates with genetic

linkage evidence are 30% more likely to succeed (Fig. 1.24). Here, associated genetic

variants were assigned to genes using physical proximity and evidence that the genetic

association influences gene expression, for more details see Nelson et al [124]. A promise of

modern genetics is to use observational data collected from cohort level analysis to make

inferences about the aetiology of disease. In this context, the benefits of genetic analysis

are clear. GWAS of disease outcomes can identify associated variants which may implicate

a gene in disease aetiology and therefore indicate a potential drug target (Section 1.5).

Furthermore, using intermediate phenotypes (Section 1.6.4) one can generate a multiomic
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Figure 1.22: Primary reasons for project closure in AstraZeneca pipeline 2005
- 2010.
Project closures were classified into the following categories: safety (toxicology or clinical safety),
efficacy (failure to achieve sufficient efficacy), pharmacokinetics/pharmacodynamics (PK/PD) or

closure due to oranisation strategic reasons. The percentage of projects failing due to each
category for each phase of development is indicated in the plot with the total number of projects

shown in brackets below the bars (Figure source: [47]).

picture of the consequences of variations using colocalisation analysis between multiple

phenotypes such as transcript levels, biomarker levels, and multiple disease outcomes

(Section 1.6.2). Finally, MR analysis can test purported causal relationships between risk

factors and disease outcomes (Section 1.6.3). However, such analyses must be performed

with awareness about the limitations of the ability of genetics and the challenges of

drug discovery as a whole. As previously described, the first GWAS study of myocardial

infarction was performed in 2002, since that time many complex common diseases have

been subject to GWAS. This has not lead to a substantial increase in the number of

therapeutic compounds being developed or approved. Indeed, very few genes implicated

by GWAS analysis as being associated with disease risk are also subject to therapeutic

intervention.

Limitations of genetics in drug development

In addition to examining reasons why drugs fail in clinical trials (see above), it may also be

helpful to ask how the pool of candidate drug targets is initially selected. Based on current

technology it is estimated that roughly 10% of proteins in the human organism can be

targeted by small molecule drugs, an additional 10% can be targeted with biologics such as

antibodies [171]. This estimation of the total pool of ‘druggable’ proteins shows that the
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Figure 1.23: Reasons for lack of efficacy in clinical trials in AstraZeneca
pipeline 2005 - 2011.
Project teams were surveyed to identify reasons for project failure due to lack of clinical efficacy
and answers were classified into one of four categories shown. Teams could report more than one
reason for lack of clinical efficacy. Percentages are shown in the bars with the total number of

projects failing due to the listed reason in brackets (Figure source: [47]).

Figure 1.24: Success rate of projects in Phase IIa stratified as those with or
without human genetic linkage evidence linking the target to disease.
Phase IIa is classified as Phase II projects with fewer than 200 patients. Projects in Phase IIa
were classified as those with or without human genetic linkage of the target to disease. Projects
were also classified as those still active or successful or closed. A higher closure rate is observed
for projects without human genetic evidence for linkage to disease. Percentages are shown in the

bars and total number of projects in the brackets below (Figure source: [47]).
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Figure 1.25: Flow chart of drug development showing costs at each stage of
development.
The size of the trapezium at each stage indicates the higher number of projects required to be
initiated for one successful project to reach launch with cost listed in US dollars. The phases of

drug discovery are defined as follows: ‘target-to-hit’: an initial screen to identify compounds
which perturb the target, ‘hit-to-lead’: high throughput process by which lead compounds which
bind the target are generated, ‘lead optimisation’: leads compounds are optimised for favourable
pharmacokinetic properties, ‘preclinical’: study to further understand pharmacokinetics of leads,

potential side effects of the lead, and determination of dose in man. Phases I - III: standard
phases for drugs in clinical trial (Figure source: [134]).

vast majority of proteins are not druggable with current technology. Many proteins which

are known to play critical roles in disease aetiology and are expected to be efficacious drug

targets are not pursued due to the technical difficulty perturbing those targets. Examples

include c-Myc, K-Ras and BCL-2 [171], where perturbation is limited by druggability or

fear of side effects, although efforts in this respect are ongoing [17] [104] [68].

Criticism of clinical pipelines that include drug targets for which genetic evidence does

not exist is possibly beyond the point in many cases. Standout targets which are known

to be involved in disease aetiology and for which genetic evidence exists are likely either

already subject to therapeutic intervention, or undruggable with current technology. It

could be argued that searching for genetic evidence linking genes to disease aetiology will

chiefly lead to targets for which therapeutic agents have already been developed or targets

for which therapeutic agents have not been developed due to the difficulty in perturbing

them in a safe way.

Therefore, perhaps simply increasing the sample size of GWAS studies and performing

more MR to find ever more ‘causal’ associations between risk factors and outcomes, or

utilising whole genome sequencing techniques to replace microarray based technology will

not yield to downstream advances in drug discovery and patient outcomes. As explained by

Cook et al who performed the aforementioned review of the drug pipeline at AstraZeneca

“industrialization of R&D” has lead to poor outcomes by encouraging “quantity-based

metrics to drive productivity” [47]. Simply increasing the number of drug candidates in

clinical development did not increase the number of successful outcomes. Optimising on

quantity based metrics suppresses the ability of scientific investigators to perform research
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which answers real questions about biology and disease aetiology.

1.7 Previous GWAS of haematological phenotypes

The first GWAS of a haematological phenotype published in 2007 and 2008 explained

nearly half the variation in fetal haemoglobin, identifying three major associated loci

[116] [169] [149]. This phenotype was considered important due to the ability of increased

fetal haemoglobin to ameliorate symptoms of sickle cell disease and β-thalassemia [148].

Since this time, GWAS of a number of other haematological phenotypes have been

performed, including the count of the major types of blood cells (platelets, red blood cells,

neutrophils, eosinophils, basophils, monocytes, and lymphocytes), and other measurements

such as mean corpuscular volume (MCV), hematocrit (percentage of blood volume made of

erythrocytes), red cell distribution width (RDW), and mean sphered cell volume (MSCV)

[15, 66, 162, 42, 23, 61, 71]. These studies with progressively increasing sample sizes

have identified more rare variants with higher effect sizes, and an increasing number of

common variants. Furthermore, there has been a growing complement of research into the

genetics of haematology in non-European ancestry individuals, including African American,

Hispanic, and east Asian individuals [170]. All such analyses have identified yet greater

numbers of genetic associations with haematological phenotypes. In tandem, there have

been genetic studies of other phenotypes such as disease risk [34], blood plasma proteins

[164], and blood or blood cell transcript levels [183]. Further analysis should not only

search additional genetic space: rare variants, or common variants with weaker effect sizes

to find new associations with haematological phenotypes, but also integrate information

from GWAS of other phenotypes to offer a more complete picture of the influence of

genetic variants. I aimed to address these challenges with my work, performing GWAS of

previously unstudied blood cell phenotypes, and contributing to a large meta-analysis of

full blood count (FBC) phenotypes in a meta-analysis of 563,085 individuals. Furthermore,

I performed broad integration of my association results by colocalisation with disease risk,

blood plasma proteome, and blood cell transcript GWAS results.

1.8 Aims and structure of thesis

Haematological cells are known to be important in the aetiology of disease including

cardiovascular and immune disorders. The aim of this thesis is use statistical genetic

analysis to derive biological insight into haematology and the role of blood cells in aetiology

of disease. Using a GWAS analysis I identify genetic determinants which influence blood

cell properties including cell count, volume, size, and other flow cytometric properties.

I use these results in a hypothesis generating approach to identify genes and proteins
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which contribute to haematological cell function and evidence for linkage with disease risk.

Finally, I perform MR analyses to identify causal relationships between haematological

cell properties and disease. The analysis outlined in this thesis contributes to the following

scientific outcomes:

1. Chapter 2: contribute to the largest ever GWAS of FBC haematological properties.

The summary statistics generated by this analysis will be shared with the scientific

community to enable further work.

2. Chapter 3: obtain and extract functionally relevant blood phenotypes (termed

Sysmex parameters) from Sysmex XN-1000 analysers used to study participants in

the INTERVAL cohort.

3. Chapter 3: adjust Sysmex parameters for environmental and technical variation thus

increasing power to detect association signals.

4. Chapter 4: Identify novel genetic determinants of haematological function using

Sysmex parameters which index functionally relevant haematological properties.

5. Chapter 5: better understand the biological implications of associations with haema-

tological properties on gene expression and blood plasma protein concentration.

6. Chapter 5: identify which associations with haematological properties also influence

disease risk. From these results generate biological hypotheses about the role of

haematological cells in aetiology of disease.

7. Chapter 5: study the direction of causality between haematological properties and

disease aetiology.
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Chapter 2

Discovery of genetic associations

with FBC haematological

phenotypes

2.1 Introduction

In this chapter I discuss my analysis of haematological phenotypes to identify new asso-

ciations with FBC haematological parameters. I perform conditional analysis on results

of a GWAS of 28 FBC haematological parameters from the UK Biobank cohort and

a meta-analysis of FBC phenotypes including 563,085 individuals. This is the largest

GWAS of haematological phenotypes compared to the previous largest including 173,480

individuals by Astle et al., [15]. The increased sample size enables identification of variants

with lower effect sizes than previous possible and rare variants with lower minor allele

frequency (MAF), the minimum MAF studied by Astle et al., was 0.01% compared to

0.005% in this analysis.

In this chapter I will firstly expand on my introduction to GWAS (Section 1.5) and

discuss challenges regarding multiple testing, population stratification and relatedness,

genotype and phenotype quality control (QC). Secondly, I discuss a protocol for conditional

analysis in meta-analysis and single cohort frameworks, in particular, my software enables

the largest ever exact conditional analysis of GWAS results with 500,000 individuals which

is a significant computational challenge. Finally, I present my results from the combined

meta-analysis of the UK Biobank cohort and 26 haematological GWAS studies collected

by Blood Cell Genetics Consortium (BCX). This meta-analysis allows a further increase

in sample size to 563,085 individuals.
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2.1.1 UK Biobank cohort

UK Biobank is a cohort of 500,000 individuals living in the United Kingdom recruited aged

between 40 and 69 at the time of recruitment. A large number of phenotypic outcomes have

been recorded including haematological measurements, lifestyle factors, biomarkers in urine,

and magnetic resonance imaging (MRI) imaging in a subset of individuals. Participants

have also been genotyped followed by phasing and imputation resulting in a total of 96

million variants [39]. The first release of genotype data from UK Biobank occurred in

May 2015 including 150,000 individuals [15], this was followed in 2018 by a full release of

500,000 individuals of which 403,112 were utilised in my genetic analysis. Haematological

phenotyping was performed with a Coulter full blood count analyser (Chapter 1.2) [39]

generating 28 blood cell phenotypes derived from red blood cells (RBC), platelets, and

white cells (Table 2.1.3). One primary advantage of the large UK Biobank cohort is the

ability to model associations of rare genetic variants reliably. Following the precedent set

by Astle et al., 2016, I excluded variants which did not have atleast 40 minor heterozygote

alleles in the dataset [15], this results in a MAF threshold of 0.005% in comparison to

0.04% in the smaller INTERVAL study.

2.1.2 Blood Cell Genetics consortium

The BCX is an international collaboration of geneticists, haematologists, and statisticians

with the goal of utilising genetic analyses to study and blood cell genetics. This large scale

collaborative effort has allowed sharing of data from 26 blood cell GWAS studies allowing

a meta-analysis of 14 blood cell phenotypes in 563,085 European ancestry individuals,

work which I contributed to and results which I present in this chapter.

2.1.3 Full blood count haematological phenotypes

FBC reports are used routinely in a clinical setting being one of the most common laboratory

tests [37]. The derivation of FBC parameters are described in detail in Section 1.2.1 and

1.2.2 from Coulter based impedance or fluorescence based measurements respectively.

In Table 2.1 I provide a description of the haematological FBC parameters which were

studied in analysis of phenotypes from the UK Biobank cohort or associated meta-analysis.

Phenotypes are determined in four ways: measurement from gating and counting of cells

following flow cytometry, impedance, light absorbance, or calculation from a combination

of the aforementioned directly measured phenotypes.
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2.2 Methods

2.2.1 Genotyping and quality control

Collection and QC of genotype data for the UK Biobank cohort which is utilised in my

analysis was collected by Bycroft et al., [38], this includes genotyping, imputation, and QC

on the UK Biobank cohort. Genotyping was performed on a total of 488,377 participants,

a subset of 49,950 individuals were genotyped with a UK BiLEVE Axiom array containing

807,411 probes, and the remaining 438,427 participants were genotyped using a custom

UK Biobank Axiom array with 825,927 probes [38]. The UK Biobank Axiom array was

designed with additional markers to assay more variants, in particular insertion deletion

variations, the two arrays share 95% of their probes. Probes were specifically selected to

assay for both common and low frequency variants and also variants previously suggested to

be important in other phenotypes such as autoimmune disease, cancer or blood phenotypes

[38]. Blood samples were collected from participants visiting a UK Biobank assessment

centre and samples shipped to Affymetrix for genotyping, sample retrieval and DNA

extraction which are described in Welsh et a., 2017 [175]. Of genotyped individuals 94%

reported their ancestry as ‘White’ with the remaining 6% as Asian, Black, Chinese, mixed

or unknown ancestry. Given the heterogeneous ancestry of the cohort many standard QC

tools will not be effective for this dataset. For example, deviations from Hardy-Weinberg

equilibrium (HWE), which in a cohort of homogeneous ancestry normally occurs due to

poor genotyping will be expected in a cohort of mixed ancestry [38]. QC was divided into

marker or probe based and sample based, I will discuss these separately.

Probe based quality control

In order to avoid the complications of heterogeneous ancestry, Bycroft et al performed

probe based QC only on participants with European ancestry [38]. European ancestry

individuals were identified by projecting samples on the two major PCs from the 1000

Genomes cohort [3] and selecting samples which fall in the European cluster (CEU)

identified by sequencing of European ancestry individuals by the 1000 Genomes project.

This analysis resulted in identification of 463,844 European ancestry individuals. The

following tests were performed to identify and exclude poorly genotyped variants:

• Test for batch and plate effects to check if the allele frequency of genotyped variants

significantly differs between genotype batch or sample plate.

• Test for departure from HWE on somatic chromosomes only to identify markers

which have been genotyped poorly.

• Test to see if variants on chromosome X have a consistently different allele frequency
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between males and females. This shows technical bias for that variant caused by the

use of different calling algorithms on autosomal chromosomes between males and

females.

• Test for array effects to exclude variants which show systematic differences depending

on if they were genotyped by the UK Biobank or UK BiLEVE Axiom array.

• Two wells on each plate were dedicated to two control samples which were loaded

on all plates. A discordance metric was designed [38] to exclude markers which are

significantly discordant between controls across different wells.

Sample based quality control

Poor quality samples were excluded using a set of 605,876 high quality autosomal markers

which were genotyped on both UK Biobank and UKBiLEVE arrays. High quality markers

were defined such that they meet the following criteria:

• Marker is a SNP and not an insertion / deletion variant.

• Marker passed QC in all genotyped batches.

• Marker has a MAF across all samples higher than 0.01%.

• Not in the list of SNPs listed by Affymetrix to be affected by an artefact in a small

subset of 300 individuals.

Tests to identify poor quality samples were performed using only the aforementioned

high quality markers. Heterozygosity was calculated as the ratio of heterozygous genotypes

divided by the total number of non-missing genotypes. Heterozygosity was then adjusted

for population ancestry effects by regressing out the first six PCs calculated from the

genotype data. Following this, individuals with with outlying heterozygosity or higher

than 5% missing genotype data were excluded [38]. Heterozygosity outliers were identified

using the R package abberant and a lambda value of 120, where lambda represents ratio of

the standard deviations of outlying and normal individuals [20]. Furthermore, samples

with mismatch between self reported and genotypic sex or with potential aneuploidy in

sex chromosomes were flagged, these individuals are excluded from my analysis.

2.2.2 Phasing and imputation of variants

As previously described, imputation utilises LD structure from a reference population to

enable identification of variants which have not been genotyped (Section 1.5.2). To ensure

reliable imputation across all samples Bycroft et al., phased a subset of genotyped variants,
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chosen to ensure a high proportion are good quality in all individuals (for a description

of phasing and imputation see Section 1.5.2). Variants were excluded if they were not

genotyped in both arrays, failed QC in more than one batch, had a MAF of smaller than

0.01% across samples, or had a missingness of greater than 5%. Phasing was performed

using the SHAPEIT3 software [126].

The accuracy of imputation is also influenced by the reference panel, accuracy is higher

if the reference panel contains a higher number of haplotypes and is a close match to the

ancestry of the sample population [38]. Bycroft et al., used a combination of HRC [167]

and UK10K [46] reference panels, selected as they contain a high percentage of European

ancestry individuals and a small subset of individuals with diverse ancestry, thus having

a similar ancestry distribution to the UK Biobank cohort [38]. To perform imputation

Bycroft et al., modified the IMPUTE2 package [84] to perform only haploid imputation on

the pre-phased samples, their new software was termed IMPUTE4 and executes the same

hidden markov model (HMM) as IMPUTE2 and obtains identical results to IMPUTE2 [38].

Imputation estimated 92,693,895 variants in 487,442 individuals [38], it is this genotype

dataset which forms the basis of further analysis in this chapter.

2.2.3 Adjustment of phenotype values for influencing covariates

The outcome of a GWAS study is highly dependent on the quality of both phenotype and

genotype data used in the analysis. Technical and environmental factors which influence

phenotype values increase variation in phenotype values and decrease power to detect

associations. Therefore, phenotypes values are adjusted to account for the influence

of environmental and technical factors. Technical variables include: seasonal effects,

time dependent drift of equipment, sample decay, centre of sample collection, systematic

differences in equipment, and systematic changes resulting from calibration of equipment.

Adjustment is also made for participant environmental variables such as participant sex,

menopause status, age, height, weight, and lifestyle factors including smoking, alcohol

consumption, and diet. For more details regarding the adjustment of haematological

phenotypes for technical and environmental covariates refer to Section 3.2.7 and 3.2.8.

Adjustment for participant phenotypes such as weight and menopause status will

prevent detection genetic determinants which influence haematological traits mechanisti-

cally through these participant phenotypes. On the other hand, adjusting for participant

phenotypes such as weight and menopause status which cause a large degree in variation of

haematological trait values allows greater power to detect other genetic association signals.

In the case of participant phenotypes such as sex or menopause status, adjustment is

further required to ensure a similar distribution of phenotype values across all participants,

an assumption required for the linear modelling of GWAS (Section 2.2.4).
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2.2.4 Genome wide association study

As introduced in Section 1.5, a GWAS identifies genetic variants associated with changes

in a phenotype. In the context of this study GWAS analysis was utilised to test for

association of genetic variants in the UK Biobank cohort with recorded haematological

measurements. The analysis for N individuals was modelled as follows:

E[y] = α + xpcβpc + xβ + g (2.1)

Where xpc is a (N × 10) matrix including the top ten PCs, x is a (N × 1) genotype

matrix coded as described in Section 1.5, and g models genetic effects which contribute to

population stratification (Section 2.2.6) with a GRM matrix which is described in more

detail in Section 2.2.7. At its basis, a GWAS study utilises a linear model or a LMM.

Therefore, the primary assumptions of linear regression still apply. I will discuss these

individually and explain how these assumptions could be broken in the context of a GWAS

study.

Limited multicolinearity

I assume there is not a high correlation between the independent variables in the model, if

this is the case it will lead to poor estimates for the effect size of the correlated independent

variables. Therefore covariates should be selected to ensure they are not strongly correlated

with genetic variants which are being tested. Furthermore, multicolinearity can also occur

when identifying independent variants by multivariable analysis where multiple variants

are put in the same linear model, this is discussed in more detail in Chapter 2.2.8.

Samples drawn from an independent distribution

A core assumption of a linear regression is that under the null hypothesis samples are

independent and identically distributed given the covariates and the model. This assump-

tion is broken if there are related individuals within the sample population (relatedness).

Relatedness between can be estimated with the identity by descent (IBD) parameter and

related samples filtered out. In addition, a GRM can be used as a random effect covariate

to help account for relatedness and reduce the influence of this effect on the estimated

variant effect sizes. This is discussed in more detail in Chapter 2.2.6.

Homoscedasticity

The homoscedasticity assumption states that the variance of the outcome variable is

constant across the range of values for the independent variables (genotype and covariates).

Given the relatively low proportion of variance in the outcome explained by any single
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variant or covariate being modelled, GWAS is not likely to break the homoscedasticity

assumption.

Normal distribution of residuals

The residuals of the model are assumed to be normally distributed, in the context of my

analysis the dependent variable (phenotype to be tested) is transformed to be normally

distributed by an inverse-normal quantile transformation. This helps ensure normal

distribution of residuals assuming there is not a serious deviation from the homoscedasticity

assumption, which as previously explained is unlikely to be the case due to the low variance

explained by any one variant being tested.

2.2.5 Multiple testing

In a frequentist paradigm, statistical tests of a null hypothesis are considered to be

significant if the P-value of association falls below a threshold usually set to 5%. If the

assumptions of the statistical model are correct this procedure will incorrectly reject the

null hypothesis (false positive result) in 5% of cases. In a GWAS analysis each SNP is

tested separately for association. Therefore I perform a very large number of parallel tests

thus increasing the total number of false positives if I maintain the 5% P-value threshold.

To reduce the number of false positive results, I adjusted the 5% P-value threshold by

dividing the threshold by the number of effective independent tests, this is also known as

a bonferroni correction. A GWAS analysis testing a large number of imputed variants will

contain many variants which are highly correlated (Section 1.4). Therefore, the number of

effective independent tests is less than the total number of variants tested for association.

The number of effective independent tests has been found to vary greatly depending on the

MAF threshold. Studies which include many rare variants will perform more independent

tests as rare variants are less likely to be in LD with nearby variants (Table 2.2) [180]. My

analysis utilised a MAF threshold of 0.005%, thus according to the simulations performed

by Xu et al., it is appropriate to use the same P-value threshold of 8.31× 10−9 as that

utilised by Astle et al., 2016. This MAF threshold was set to ensure at least 40 minor

alleles per variant in the sample population, this is inline the threshold set by other studies

[15].

Alternatively it is possible to limit false positive findings using permutation to obtain

an empirical null distribution. With this approach the phenotype is permuted to ensure

that there is no true association between genotype and phenotype. All variants are tested

with the permuted data and the smallest P-value is recorded. This shuffling and testing

procedure is repeated to obtain an empirical null distribution of the smallest P-values

calculated by chance [155]. P-values calculated from analysis of the un-shuffled dataset are
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MAF Threshold
Range of Predicted
Independent Tests

Range of Appropriate
GWAS thresholds

0.05% 2, 746, 888− 4, 306, 272 1.16× 10−8 − 1.82× 10−8

0.01% 4, 412, 096− 6, 019, 458 1.13× 10−8 − 8.31× 10−9

0.005% 5, 933, 687− 8, 547, 380 5.85× 10−9 − 8.43× 10−9

Table 2.2: Range of appropriate GWAS thresholds.
Range of predicted GWAS thresholds depend on the MAF filter applied to the variants being

studied, calculated by Xu et al., 2014 who assume participants of European ancestry [180].

then compared to this empirical null distribution. This method relies on the assumption

that samples within the population are independent, this assumption can be broken by

relatedness in the population [105]. The influence of relatedness can be reduced by filtering

related individuals (Section 2.2.4), or using a permutation procedure which accounts for

relatedness in the sample population [105]. I did not employ the permutation procedure

due to the computational burden of calculating the null distribution.

2.2.6 Population stratification and relatedness

As described above, application of an appropriate P-value threshold will help limit false

positive results from GWAS studies. Confounding factors may also lead to inflated false

positive or false negative results. An example is population stratification, the presence of

correlated ancestry within a stratum of the population. This is problematic as a stratum

of the population may also have common environmental or genetic exposures. Population

stratification makes it difficult to distinguish between a variant is associated with an

outcome because of a genetically mediated mechanism, or because an allele of that variant

happens to be common in a stratum of the population where the presence of the measured

phenotypic outcome is common by chance. In addition to population stratification, closely

related individuals in the sample population (cryptic relatedness) can lead to similar

inflation in false positive or negative results. Linear models assume phenotype values are

independent given association with the test variant, relatedness in the population cohort

breaks this assumption (Section 1.5). There are multiple ways to account for population

stratification and relatedness which are used in combination as no single method can

sufficiently account for these confounding factors:

• Bycroft et al, filtered all samples to ensure to only include those of British ancestry

[38]. This was performed using self reported ancestry of individuals and PCs

generated from genotype data.

• Bycroft et al, removed all samples with a high degree of relatedness, as determined

by IBD analysis [38].
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• Regress the effect of clinic, a variable recording the location of blood donation against

the phenotype values and use the residuals for GWAS analysis.

• Include PCs as covariates in the GWAS model.

• Use a LMM model which allows including a GRM random-effect covariate in the

GWAS model (Section 2.2.7).

• Filter tested variants by MAF>0.005%.

Generation of PCs from genotype data provides information about participant ancestry

and is used in calculation of relatedness, heterozygosity and other sample quality metrics.

However, PCs should ideally be calculated from high-quality unrelated samples. To address

this problem Bycroft et al performed two rounds of principal component analysis (PCA),

firstly to identify unrelated high-quality samples, and secondly to compute PC adjusted

heterozygosity and measures of relatedness [38].

First calculation of principal components

Firstly, Bycroft et al estimated kinship coefficients up to third degree of relation between

all samples using the software package KING [109]. The kinship coefficient is calculated

pairwise between samples and is the probability that two randomly sampled alleles are

identical due to shared descent between the samples. A parent-offspring pair is expected to

have a kinship coefficient of 0.5, decreasing by a multiple of 0.5 for every additional degree

of relatedness, grandparent-grandchild pairs have a kinship coefficient of 1/8 [38]. From

the set of kinship coefficients calculated across the samples a maximal set of unrelated

individuals is calculated by pruning the relatedness graph of individuals using the i-graph

(v1.0.1) package [10] in R. Samples were then excluded based on the following properties:

• Missing rate of autosomes > 0.02.

• Mismatch between inferred and self-reported sex.

• Not in the set of unrelated individuals.

SNPs were also excluded based on the following properties before being pruned into a

set of independent markers by pairwise r2 > 0.1:

• Missing rate > 0.015.

• MAF > 0.01%.

• In regions of long-range LD such as regions of inversion, these are defined in Bycroft

et al [38].
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Application of filters to the genotype data resulted in a set of 147,551 SNPs and 406,257

samples which were used to compute PCs which are then utilised to generated adjusted

QC metrics as described below. Generation of PCs was performed with fastPCA [65] and

the top 8 components were extracted.

PC adjusted QC metrics

Heterozygosity and kinship metrics are sensitive to participant ancestry effects. For

example recent admixture can lead to inflation of kinship and heterozygosity estimates.

Therefore, kinship metrics are recalculated and heterozygosity using the first set of PCs.

Exclusion of samples was recalculated from the adjusted kinship and heterozygosity metrics

and a second round of PCs was calculated resulting in 40 components.

Kinship was recalculated as described but with a subset of SNPs which contribute

loads less than 0.0003 in the first three PCs. Bycroft et al chose this threshold to meet

the trade-off where inclusion of SNPs with high loads of contribution to the PCs will

inflate the kinship matrix due to recent admixture, but a stringent threshold would lead

to exclusion of too few SNPs would result in kinship estimates with high variance. In

total 93,511 SNPs were used for final kinship inference and from the kinship estimates

unrelated individuals identified as described above.

Heterozygosity is a ratio of genotypes which are not homogeneous in the population:

h =
Nnm −Nhom

Nnm

(2.2)

Where Nnm is the number of non-missing genotypes and Nhom is the number of homozygous

genotypes. However, heterozygosity is influenced by ancestry effects, therefore heterozy-

gosity was adjusted for the top 6 PCs x = (x1, x2, x3, x4, x5, x6), features which correlate

with ancestry:

h(x) = h0 + β(x) (2.3)

Where h(x) is the raw heterozygosity, β(x) is a function of the bias due to population

structure, and h0 which is the ancestry adjusted heterozygosity. β(x) has a quadratic form

and includes all linear and quadratic terms xi and x2i and cross terms xixj where i and j

index over the six features in x [38]. The fitted value for ancestry adjusted heterozygosity

ĥ0 identified with ordinary least squares is utilised in sample QC to exclude samples with

outlying heterozygosity. Samples with outlying heterozygosity are identified and excluded

with the aberrant R package [21] from the logit transformed missing rate and ancestry

adjusted heterozygosity ĥ0 and a λ value of 120. Aberrant is a clustering algorithm which

uses a mixture model to identify outlying data point where outliers are defined as those

which have standard deviation (SD) λ times higher than that of the sample distribution

which is inferred from the data by the aberrant package.
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With the QC metrics adjusted for ancestry effects with PCs as described above,

exclusion of samples were performed with the following criteria:

• Missing rate on autosomes > 0.02.

• Not in a set of unrelated individuals as identified by kinship estimates.

• In the list of outliers based on heterozygosity and missing rates.

• Mismatch between inferred and self-reported sex.

This exclusion resulted in a set of 147,606 SNPs and 407,599 samples which were used

to compute a second round of PCs. The top 40 PCs were computed with fastPCA [65], the

top 10 PCs were included in the LMM model to account for population ancestry effects

(Section 2.2.7).

2.2.7 Linear mixed model GWAS

GWAS analyses are traditionally modelled using linear regression with a set of fixed

effect independent variables such as PCs and the genotype of the variant (Section 1.5).

Relatedness in the sample population can be represented with a GRM and included as

a covariate (Section 2.2.6). The GRM covariate is necessarily a random effect as it will

not have a consistent effect size across all individuals in the sample population, some

individuals may have more relatedness to model than others [106]. Therefore, a fixed

effects linear model will not suffice, inclusion of a GRM requires construction of a LMM.

Using the BOLT-LMM application by Loh et al., I constructed a LMM with GRM and

the top ten PCs as covariates [106]:

y = xPCsβPCs + xβ + u+ e (2.4)

Where y is a vector of phenotype values across all individuals N , xPCs is a matrix

where columns are one of ten PCs calculated from the genotype data (N × 10), and x is a

genotype vector for the variant being modelled as a fixed effect with coefficient βtest. The

effect of relatedness is included in the model with the u term and environmental effects

with e ∼ N (0, σ2
eI). The effect of relatedness is modelled with a GRM matrix containing

a subset of MGRM SNPs across all N individuals: XGRM (N ×MGRM):

u = XGRMβGRM (2.5)

Here βGRM is a vector (length MGRM ) of random effect sizes drawn a normal distribution

thus resulting in the requirement for a LMM to estimate these effects.

u ∼ N (0, σ2
gXGRMX

′
GRM/MGRM) (2.6)
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It is evident that the SNP being tested and its proxies in the genotype vector x defined

above should not be included in u, as this would lead to deflation of the test statistic

for that SNP. This is effect is also known as ‘proximal contamination’ and is avoided in

the BOLT-LMM implementation by removing all SNPs on the same chromosome as that

being tested, this defines the ‘MGRM subset of SNPs’ mentioned above.

A LMM analysis is computationally expensive to fit with time complexity O(MN2)

or O(M2N), where N is the number of samples and M the number of tests [182]. The

BOLT-LMM algorithm uses a series of approximations to achieve a O(MN1.5) time

complexity [182]. BOLT-LMM achieves this by estimating variance parameters using a

stochastic approximation algorithm which avoids ‘spectral decomposition’, a time expensive

operation where the matrix of genotype values is represented in terms of its eigenvalues

and eigenvectors.

BOLT-LMM also allows modelling of associations with a non-infinitesimal prior on

the SNP effect size coefficient β, which is in contrast to the infinitesimal prior used in

standard LMM. The infinitesimal model assumes that all variants have effect sizes drawn

from a Gaussian (or normal) distribution. In reality traits usually have a few associated

variants with large effect sizes compared to many associations with smaller effect sizes.

Therefore empirically, effect sizes are not Gaussian distributed. To enable reductions

in computational time complexity BOLT-LMM uses a ‘spike-and-slab’ mixture of two

Gaussian distributions. One to model the few causally associated variants with large effect

sizes, and a second Gaussian distribution to model the higher number of more weakly

associated variant [106].

2.2.8 Conditional analysis to identify independent associations

Due to LD between variants it is not clear from a GWAS analysis alone how many

independent association signals are present in a locus. Conditional analysis determines how

many association signals are present in a locus and which variants are the good statistical

representatives for those signals. However, conditional analysis cannot determine which

variants are casual for the association signal. Causality only be truly determined with a

downstream follow up experiment, although statistical methods such as FINEMAP can

build a credible set of variants which are likely to contain the causal variant.

Methods for conditional analysis are split between those which utilise summary statistics

to perform analysis such as genome-wide complex trait analysis (GCTA) [181], and those

which rely on availability of participant level genotype and phenotype data. Summary

statistics based methods rely on LD calculated from a reference population resulting in

less accurate results. Therefore, I utilise the multiple step-wise conditional analysis using

phenotype and genotype data from the study population (Section 2.2.8.1).
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2.2.8.1 Multiple stepwise conditional analysis algorithm

Stepwise multiple regression is an algorithm which identifies a parsimonious set of condi-

tionally independent genetic variants, which represent the underlying association signals for

each phenotype. Principally, a series of joint models are utilised to test for independence

of genetic variants in association to the phenotype, constructed as follows:

y = xPCsβ + xVAR1βVAR1 + xVAR2βVAR2 + ...xVARnβVARn (2.7)

Where y is the phenotype value across individuals, xVARi is a vector of genotypes for

the ith variant being tested across individuals, and βVARi represents the effect size for that

variant. If the estimated effect size for a particular variant has a P-value below that of

genome-wide significance, that variant is considered to be independently significant from

the other variants in the model. To avoid collinearity between predictors a variant is never

put in the model if it has a squared correlation higher than 0.9 with any other variant in

the model. In these cases it is assumed that the entering variant would not be independent

from its correlated variant.

In order to find a parsimonious set of independent variants from all the genome-

wide significant variants, a multiple-stepwise regression algorithm is run which tests many

combinations of variants in a joint model. This is Efroymsons stepwise regression algorithm

which has been shown to be convergent in most cases to a global minimum across the

search space of variant combinations which would best explain the association signal [117].

To limit the search space and make the algorithm computationally tractable the genome

is initially subsetted into blocks. Variants within those blocks are tested separately using

the multiple-stepwise regression algorithm and independently associated variants are put

forward into a larger chromosome wide pool on which a second multiple-stepwise regression

algorithm is executed.

For each phenotype, I split the genome into blocks of variants associated at genome-

wide significance threshold with the phenotype so that each block is not larger than

2,500 variants, and there are no genome-wide significant variants 5 Mb on either side of

each block. I then performed the multiple stepwise conditional analysis procedure on

genome-wide significant variants within each block (Fig. 2.1):
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Figure 2.1: Flowchart of multiple-stepwise conditional analysis algorithm.
Protocol for the conditional analysis algorithm where P is the joint P-value of the variant and
PThreshold is the genome-wide significance threshold. The multiple-stepwise conditional analysis

algorithm creates multiple joint models including different subsets of variants to identify a
parsimonious set of independently associated variants. The algorithm begins by addition of

variant with the smallest P-value and proceeds to test all other variants sequentially in a joint
model. Here the algorithm alternates between ‘adding’ and ‘dropping’. Adding: sequentially test

all remaining variants in the joint model, then add the variant with lowest joint P-value.
Dropping: run the joint model with all currently included variants and drop the variant with the
lowest joint P-value if it is below the threshold. The algorithm will terminate if it cannot add or
drop any variants to the model. * Uncorrelated variants are defined as those not in LD r2 > 0.9

with any variants already in the joint model.

1. START: The variant with the lowest univariate P-value in the block is put in the

linear model.

2. All other variants in the block are sequentially tested in the model if they are not

r2 > 0.9 with any other variant in the model.

3. Of the variants tested in Step 2, the variant with the lowest conditional P-value is

put in the linear model.

4. The joint model is fitted again, and variants in the model with conditional P-value

above the genome-wide association threshold are dropped. Dropped variants continue

to be tested in Step 2 and could re-enter the model.

5. Repeat Step 4 until no more variants can be dropped from the model.

6. Iterate through Steps 2 - 4 until there are no other variants which can be added or

dropped from the model.

Given the computational challenges of executing a multiple-stepwise regression algo-
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rithm on a dataset of up to 403,112 individuals an additional filter was utilised to reduce

the number of iterations. If a variant reaches -log10(P ) < 2 for association in the addition

phase, this variant is excluded from all further analysis. Once a parsimonious set of

conditionally significant variants is identified for each block, those variants are brought

forward into a chromosome-wide multiple-stepwise conditional analysis procedure including

all blocks. The resultant set of variants are labelled as ‘conditionally significant’ and

are identified independently for each phenotype. Practical implementation of the block

level and chromosome-wide conditional analysis procedure is explained further in Section

2.2.8.2.

2.2.8.2 Software pipeline for large-scale individual level conditional analysis

The storage and manipulation of genetic data, including up to 90 million variants in 403,112

individuals is a significant computational challenge. Therefore, I developed a software

pipeline which subsets BGEN files and converts them into smaller and more easily readable

HD5 format (Fig. 2.2) [8]. Genetic data for the UK Biobank cohort is stored in compressed

BGEN format, reading this dataset into memory in order to perform computation is not

feasible due to their large size. Therefore, I subsetted BGEN files into less compressed

and more accessible file formats. Firstly, a GEN file for each block containing the dosage

genotype data for all variants within that block, this was generated by subsetting the

BGEN files using QCTOOL [16], following this the GEN files are converted to HD5 format

[14]. GEN format is a less compressed alternative to BGEN which can be more easily read

by software. HD5 is a common file format for which packages and libraries exist in R for

the manipulation of this data. HD5 files were subsequently read by an R script using the

rhdf5 package. The R script fit linear regression models using the fastLm package iterating

through the steps previously described (Section 2.2.8.1) and identified a parsimonious set

of conditionally significant variants for each block. Once all blocks were analysed using

the conditional analysis procedure, conditionally significant variants identified from blocks

were combined to perform a genome-wide level conditional analysis. These variants were

again extracted from the BGEN files into a separate GEN file (one for each chromosome)

which was then converted to HD5 file and analysed by an R script which performed a final

round of conditional analysis.
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Figure 2.2: Flowchart of software pipeline for conditional analysis algorithm.
Initially univariate summary statistics for variants in each block were extracted, and the
genotype data for these variants were extracted from the BGEN file into a GEN file and

converted to HD5 format. The HD5 files were read by the multiple-stepwise conditional analysis
script which generated a list of independent variants for each block. The independent variants
for each block were collated chromosome wide and these variants were extracted again from the

BGEN file into a GEN file and converted to HD5 format. A chromosome wide conditional
analysis was executed generating a final list of conditionally significant variants.
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2.2.9 Linkage disequilibrium grouping to identify total number

of signals

Conditional analysis identifies the number of independently associated variants for each

phenotype. LD grouping can identify the number of independent signals identified across

multiple phenotypes. In order to assess the number of independent association signals

across the 28 phenotypes studied in the analysis, I used a LD clumping procedure with

a threshold of r2 > 0.8 to assign conditionally significant variants to independent sets.

Where the correlation between variants in the same set is high, but variants between sets

have a correlation or LD lower than the r2 > 0.8 threshold. The LD clumping protocol

begins with generation of a correlation matrix between all conditionally significant variants

using PLINK and execution of the following steps:

1. Iterate over conditionally significant variants in order of chromosome and position,

terminate once iterated over all conditionally significant variants.

2. Populate set F with the conditionally significant variant chosen in Step 1) and all

conditionally significant variants that are in LD r2 0.8 or higher with this variant.

3. If none of the variants in set F are in a pre-existing LD set then create a new LD

set with these variants, return to step 1).

4. If variants in set F exist in a single LD set which already exists, then assign all

variants in set F to that LD set, return to step 1).

5. If variants in set F exist in more than one pre-existing LD sets, then merge all

variants in those LD sets, and variants in set F , into a new larger LD set, return to

step 1).

6. Terminate once the algorithm has sequentially iterated over all conditionally signifi-

cant variants.

The result of this algorithm is assignment of all conditionally significant variants to LD

sets based on a threshold of r2 > 0.8 pairwise LD. It is important to distinguish between

LD sets as a measure of distinct genetic association signals and determination of genetic

signals based on locus or physical distance. Genetic loci are defined based on genomic

location, however LD sets are defined based on variant LD. This means that two LD sets

could be physically overlapping but distinct signals if the conditionally significant variants

which constitute the LD sets are in low LD. This is often the case with rare variants which

may be allocated to distinct LD set amongst a preexisting association signal of common

variants in a locus.
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Meta-analysis UK Biobank Only
BASO#, EO#, HCT, HGB,

LYMPH#, MCHC, MCH, MCV,
MONO#, MPV, NEUT#, PLT#,

RBC#, RDW

MRV, PDW, LYMPH%, RET#
EO%, PCT, HLSR#, HLSR%,
IRF, MSCV, NEUT%, RET%

MONO%, BASO%

Table 2.3: Traits studied in the meta-analysis (including UK Biobank) and
traits studied in UK Biobank only.
The meta-analysis (including the UK Biobank study) was restricted to fewer blood cell traits
compared to the UK Biobank study. Of 28 traits studied in UK Biobank, 14 were analysed in

the meta-analysis, this is due to the absence of traits within many studies consisting of the
meta-analysis. A description of traits is presented in Table 2.1.3.

2.2.10 Meta-analysis conditional analysis

Initial analysis was performed on 28 blood cell phenotypes from the UK Biobank cohort,

this was followed by a meta-analysis of 14 blood cell traits (Table 2.3) adding an additional

159,973 participants of European ancestry from 25 studies (Table 2.4). The purpose of

the meta-analysis was to achieve a large sample size to discover additional association

signals. Conditional analysis of the meta-analysis summary statistics data was performed

using the GCTA-COJO algorithm which approximates a variance-covariance matrix for

the genotype values due to the lack of individual level participant data in a meta-analysis

setting (Section 2.2.11.2). Furthermore, GCTA-COJO uses a protocol alternative to the

conditional analysis defined above (Section 2.3.1) which calculates joint models with subsets

of all variants in the dataset not just the genome-wide significant subset as utilised in the

multiple stepwise conditional analysis protocol. I hypothesised that many sub-threshold

variants which are not genome-wide significant may be conditionally significant when

placed in a joint model. To study this I performed analysis to test if variants identified

by GCTA-COJO were jointly significant when accounting for conditionally significant

variants already identified by conditional analysis of UK Biobank (Section 2.3.2). However,

the GCTA-COJO algorithm relies on a reference sample approximation in the absence

of exact genotype and phenotype data. If the approximation for the variance-covariance

matrix of the genotype values made by GCTA is not accurate, this analysis may lead to

false positive results (Section 2.2.11.1). Therefore, I tested the conditionally significant

variants from the meta-analysis identified by application of GCTA-COJO, in the UK

Biobank population using a joint model utilising individual level genotype and phenotype

data. Firstly, I calculated the LD between conditionally independent associations as

identified by GCTA-COJO to identify highly correlated variants which are proposed as

independent by GCTA-COJO. Secondly, I performed statistical tests to identify which

variants obtained from GCTA-COJO conditional analysis of the meta-analysis summary

statistics are independent from conditionally significant variants identified from the UK

Biobank cohort alone.
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Study Name Samples in analysis References (PMID)
Airwave 13,113 25194498
BioME 802 21573225

CaPS 1181
1999035
21043637
11395343

CHD 3249 1669507
Estonia (Chip) 22417 28031487
Estonia (WGS) 2242 28031487

Framingham Heart
Study

6451 14025561

FINCAVAS 924 16515696
GERA EA Chip 53822 26092716

GERA AFR Chip 1363 26092716
GERA LAT Chip 1504 26092716

Health2006 3177 23615486
Health2008 752 22587629
Health2010 1474 25113139
INTERVAL 39260 28941948
MESA (EA) 1172 12397006
MHIphase1 1991 24777453
MHIphase2 3436 24777453

RS-I 1455 29064009
RS-II 1269 29064009
RS-III 2378 29064009
SHIP 3159 20167617

SHIP-TREND 940 20167617
UKBB EA 456785 30305743
WHI (EA) 17682 24777453

YFS 1889 -

Table 2.4: Studies which contribute their summary statistics to the meta-
analysis of FBC haematological phenotypes
In total 26 studies contributed to the meta-analysis of haematological traits, the largest study
was UK Biobank which contributed 456,786 individuals with the smallest being BioME with 802
individuals. The primary prublication for the ‘YFS’ has not yet been published and a reference

is not present in the table.
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2.2.11 GCTA conditional and joint association

The GCTA-COJO package allows the construction of useful joint models using GWAS

summary data. This method is effective in meta-analyses where individual level genotype

and phenotype data cannot collated due to data sharing restrictions. Conditional and joint

analysis using summary-level statistics are estimated using LD from a reference sample

which is similar to the population cohort. The method for estimation of joint effects of

multiple SNPs using GWAS summary statistics and a reference population is described

by Yang et al [181], who then extend their derivation to perform step-wise conditional

analysis. Their methodology is implemented in the GCTA-COJO software package. There

are limitations associated with the GCTA-COJO approach due to the assumption that

allele frequencies and LD between variants in the reference sample population are the

same as the study sample population. Due to the much larger population size of our

meta-analysis compared to any available reference population we are able to model the

association of very rare variants which are not likely to be well represented in the reference

population. Therefore, a reference LD set using 100,000 individuals from the UK Biobank

dataset was generated.

In the next section, I explain the implications of meta-analysis in providing additional

insight beyond the GWAS of the UK Biobank cohort alone (Section 2.2.11.1). Following

this, I work through the approximation underlying the GCTA-COJO package (Section

2.2.11.2) and finally, describe the GCTA-COJO conditional analysis protocol (Section

2.2.11.3).

2.2.11.1 Implications for the meta-analysis of blood cell traits

The GCTA-COJO algorithm is very similar to the forward and backward stepwise regression

as defined previously in my analysis of Sysmex parameters (Section 2.2.8.1). The primary

difference being the ability to test all SNPs across the genome due to an approximation

which avoids direct use of the genotype and phenotype data (Eqn. 2.18). This is compared

to the previously described multiple-stepwise regression conditional analysis algorithm

which only tests genome-wide significant variants for conditional significance (Section

2.2.8.1). It can be hypothesised that the benefit of testing all variants, rather than

just the genome-wide significant subset of variants is that many sub-threshold signals

could reach conditional significance when analysed in a joint model. This is because, as

independent variants are added to the model, a greater proportion of variance in the

phenotype is explained, thus increasing the calculated statistical significance of variants in

the model. I attempt to identify such variants and present the results below in Section

2.3.2. Furthermore, GCTA-COJO allows conditional analysis on the meta-analysis results

providing an extra 159,973 samples to the conditional analysis which were not accessible

in the UK Biobank conditional analysis alone. However, the GCTA-COJO approximation
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(Eqn. 2.18) relies on the reference population providing a good estimate of LD between

variants in the sample population. The reference population must be large enough to

reliably calculate LD of tested rare variants and must also have close ancestry to the

sample population.

2.2.11.2 Estimation of joint effects by Yang et al., 2012

Yang et al, begin by considering a multi-SNP model as follows:

y = Xb+ e (2.8)

Where y = {yi}, a n × 1 vector of phenotype values. X = {xij}, a n × N genotype

matrix where each element of X is a function of the allele count of SNP or variant j in

individual i. The number of individuals and number of SNPs is n and N respectively,

e = {ej}, a N × 1 vector of residuals, and finally b = {bj}, a N × 1 vector of SNP effects.

Yang et al also centre phenotype values (y) to removing the requirement for an intercept

term. Given (Eqn. 2.8) joint effects can be estimated using the least-squared approach as

follows:

b̂ = (XTX)−1XTy, var(b̂) = σ2
J(XTX)−1 (2.9)

Where σ2
J represents the residual variance of the joint model (the capital J subscript

represents the joint model). However, in many cases individual level phenotype or genotype

data is not accessible, therefore the data y and X are unavailable. GCTA approximates b̂

and var(b̂) with a reference population and a set of univariate summary statistics defined

as follows where each variant (indexed by j) is tested for association with the phenotype:

y = xjβj + ej (2.10)

Where xj is the column j in X and βj is the effect of variant j on the phenotype, this

is the marginal effect of SNP or variant j on the phenotype, as before ej is the remaining

residual. As we are not taking into account covariances between the variants (because

Equation 2.10 is not a joint model), the diagonal of X ′X is represented by diagonal matrix

D, where Dj =
∑n

i x
2
ij, such that the marginal effects for multiple variants is represented

as follows:

β̂ = D−1XTy, var(β̂) = σ2
MD

−1 (2.11)

Here σ2
M is the residual variance in the univariate model (Eqn. 2.10). Of course,

obtaining Dj requires individual level genotype data, which is unavailable in this context,

an approximation to obtain Dj is described later (Eqn 2.17). I have previously discussed
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the drawbacks of single-SNP or univariate analysis at length, namely LD between variants

resulting in proxies of a variant causally associated with a change in phenotype also

appearing significantly associated (Section 1.4), thus making it difficult to determine the

true number of associated signals in a locus. Joint models of SNPs can identify the total

number of independent signals in a locus. It is such joint models which are approximated

by GCTA-COJO.

It was previously shown by Yang et al., that XTy = Dβ̂ (Eqn. 2.11). Therefore Yang

et al re-wrote the joint model (Eqn. 2.9) in terms of Dβ̂ which includes β̂ obtainable in

the summary data shared from univariate GWAS analysis (Eqn. 2.11). An approximation

for D, the diagonal matrix of XTX using a reference population is described later (Eqn.

2.17).

b̂ = (XTX)−1Dβ̂, var(b̂) = σ2
J(XTX)−1 (2.12)

The coefficient of determination of a multiple or joint regression model (represented by

subscript J) is a calculation of the total phenotypic variance explained by the covariates

(in this case the SNPs) is as follows:

R2
J =

b̂TXTy

yTy
=
b̂TDβ̂

yTy
(2.13)

Which can be used to calculate residual variance of the joint model σ̂2
J and residual

variance of the single-SNP analysis σ̂2
M(j) as follows:

σ̂2
J =

(1−R2
J)yTy

n−N
=
yTy − b̂TDβ̂
n−N

(2.14)

σ̂2
M(j) =

yTy −Djβ̂
2
j

n− 1
(2.15)

Where N is the number of variants and n the number of samples. Given the squared

standard error of the estimate of the effect size for each variant (indexed by j) is S2
j =

σ̂2
M(j)/Dj we deduce that: y′y = DjS

2
j (n− 1) +Djβ̂

2
j , and this can be calculated for each

SNP from data readily available in GWAS summary data.

In order to perform the calculations listed above in the absence of individual level data,

the matrix D must be approximated. D is a diagonal matrix of the variance-covariance

matrix of variant genotypes X ′X. As shown by Yang et al., 2012 variances can be calculated

from allele frequencies and covariances from LD in a suitable reference population. The

genotype matrix of the reference sample is defined as W = {wij} where j is an index over

the SNPs in the reference sample of size m. Furthermore, Dw is the diagonal matrix of

W ′W with DW (j) =
∑m

i w
2
ij defined using the allele frequencies available from GWAS

summary data. Assuming the reference sample is drawn from the same population as
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the meta-analysis cohort, LD correlations between variants will be approximately similar.

This approximation is defined as follows, with the LD between two variants i and j in the

genotype matrix X defined on the left hand side:∑n
j xijxik√∑n
i x

2
ij

∑n
i x

2
ik

≈
∑n

j wijwik√∑n
i w

2
ij

∑n
i w

2
ik

(2.16)

Following, we can denote the variance-covariance matrix X ′X to be approximately

equal to B defined as such:

Bjk ≈

√
DjDk

DW (j)DW (k)

m∑
i

wijwik (2.17)

It was defined above that Dj =
∑n

i x
2
ij, as xij is not available allele frequencies

from the summary statistics are used: Dj ≈ 2pj(1 − pj)n. Therefore, Yang et al., 2012

can approximate the joint analysis of multiple SNPs as follows, with b̃ represents the

approximated joint effect sizes of SNPs in the model:

b̃ = B−1Dβ̂, var(b̃) = σ2
JB
−1 (2.18)

Yang et al., make further adjustments to their estimates of the variance-covariance

matrix to account for changes in sample size between different SNPs within the meta-

analysis. Conditional analysis is performed as an extension of the joint model defined

above, using the same approximation to allow estimation in the absence of individual level

genotype and phenotype data, for more details see [181].

2.2.11.3 GCTA-COJO conditional analysis

Yang et al., apply the step-wise conditional analysis algorithm across the entire genome

using their approximate joint regression models as follows:

1. Begin the model including the most significant SNP across the entire genome.

2. Calculate the P-values of all remaining SNPs conditional on SNPs already in the

model. Do not test SNPs which are highly correlated with SNPs already in the

model. Highly correlated SNPs are defined as those with an r2 threshold usually set

to 0.9.

3. Select the SNP from Step 2 with the lowest conditional P-value, assuming this is

below the set significance threshold.

4. Fit all SNPs in the model in a single joint model to test for significance dropping

variants which are below the significance threshold.
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5. Repeat Steps 2, 3, and 4 until no SNPs are added or removed from the model.

6. Perform a final joint model test to ensure all are conditionally significantly associated

with the phenotype.

This algorithm results in sequential testing of all variants in the joint model. Similar

to the multiple stepwise regression procedure, this type of conditional analysis can only

identify sentinel or representative variants and cannot necessarily identify the variant

mechanistically causal for the signals of interest. However, determination of the number

of independent association signals in a locus could inform setting of priors in a fine-

mapping procedure which can determine credible sets of variants likely to be causal for

the association signal.

2.3 Results

2.3.1 Conditional analysis of UK Biobank identifies novel sig-

nals

A primary motivation for my work was to identify new genetic associations with full blood

count haematological measurements. Multiple-stepwise conditional analysis identified

16,900 associations across 7,122 LD sets representing independent association signals in 23

chromosomes (Section 2.2.9). This is almost three-fold greater than the 6,736 associations

across 2,706 LD sets identified in the previous largest GWAS of the same phenotypes in

173,480 individuals performed by Astle et al., 2016 [15]. I identified 7,122 novel sets, defined

as those which do not contain any variants which are in LD r2 > 0.8 with any variants

identified by Astle et al (Fig. 2.3). A full list of conditionally significant associations and

their comparison with Astle et al., can be found in Section A.2.

2.3.2 Distinct associations identified by GCTA-COJO

The meta-analysis includes 23 studies (including UK Biobank) with a total sample size of

563,085 individuals, versus 403,112 individuals in UK Biobank alone. The higher power

afforded by the meta-analysis allows discovery of additional association signals. Because a

large proportion of samples in the meta-analysis are from the UK Biobank cohort, I sought

to determine which of the association signals identified by the meta-analysis are distinct to

those already identified by analysis of the UK Biobank cohort alone (Section 2.3.1). To test

this I used genotype and phenotype data from the UK Biobank cohort to create exact joint

models instead of relying on conditional analysis that was performed on the meta-analysis

summary statistics using the GCTA-COJO module. From the phenotypes, I regressed

out the effect of all conditionally independent variants identified from analysis of the UK
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Figure 2.3: Bar plot showing number of novel signals identified per trait.
A plot of conditionally independent associations across the 28 studied haematological traits
assigned as ‘not-novel’ if they exist in an LD clump which contains conditionally significant

variants with higher than r2 > 0.8 pairwise LD with any trait identified by Astle et al., 2016 [15]
or assigned as ‘novel’ otherwise. Of all associations 52.0% as designated as novel compared to

Astle et al., 2016 [15]. This result shows that my conditional analysis of up to 403,112
individuals in UK Biobank makes new findings compared to the previous largest study of the

same haematological phenotypes [15].
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Figure 2.4: Flowchart showing meta-analysis conditional analysis pipeline.
Variants identified by GCTA-COJO following meta-analysis are put in a joint model to test if

they are significantly associated given residuals calculated by regressing out conditionally
significant variants identified by conditional analysis of the UK Biobank dataset. The threshold
of significance was made less stringent account for the smaller sample size in the UK Biobank

dataset compared to the meta-analysis.

Biobank cohort alone. Then, I created a joint model of conditionally independent variants

identified from the GCTA-COJO analysis to test for their significance of association beyond

what was already discovered from the UK Biobank cohort alone (Fig. 2.4).

This analysis identified 626 associations which are significantly associated with their

respective phenotypes distinct to the conditionally significant variants identified from

analysis of UK Biobank. Notably, most of these associations are near to previously defined

UK Biobank conditionally significant variants. Only 193 variants exist more than 1MB

from a UK Biobank conditionally significant variant (Fig. 2.5). Labelling each of the 626

distinct meta-analysis associations with its best LD proxy from the UK Biobank variants

shows that most are in very low LD with previously discovered UK Biobank variants.

From the total of 626 distinct meta-analysis associations, all but one association is in LD

r2 > 0.8 and 454 associations in LD r2 < 0.02 with the set of UK Biobank conditionally

independent associations for their respective traits (Fig. 2.6).
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Figure 2.5: Histogram showing the absolute distance of distinct meta-analysis
variants to the nearest UK Biobank association.
The 629 new associations identified by meta-analysis of 23 studies by GCTA-COJO are plotted
in a histogram (y axis log scaled) depending on their distance to the nearest variant associated
with the same trait identified by conditional analysis of up to 403,112 individuals in UK Biobank.
Only 13 identified significant associations exist more than 10MB (range x axis) and only 193 less
than 1 MB from the nearest UK Biobank conditionally significant variant. This plot shows that

discovery of new association signals is more likely to be near to already discovered signals.
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Figure 2.6: Histogram showing the highest pairwise LD meta-analysis variants
to UK Biobank associations.
The 629 new associations identified by meta-analysis of 23 studies by GCTA-COJO are plotted
in a histogram (y axis log scaled) depending on their highest LD to any variant associated with

the same trait identified by conditional analysis of up to 403,112 individuals in UK Biobank.
Only 1 identified significant association has an LD r2 > 0.8 (range X axis) and 454 have

r2 < 0.02. This result shows that almost all of the 629 new associations are in very low LD with
previously discovered signals.
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As previously explained the phenotype is adjusted by regressing out the effect of

conditionally significant variants identified by UK Biobank. Following this I classified

associations identified by GCTA-COJO of meta-analysis results into four categories:

• Not significant (9,834): The P-value for the test of genetic association with the

adjusted phenotype is not significant given a P-value threshold of -log10(P ) > 6.

• Threshold (507): This variant is below the UK Biobank significance threshold

-log10(P ) > 8.08, but above the meta-analysis threshold -log10(P ) > 8.30, and

loosened conditional meta-analysis significance threshold -log10(P ) > 6.

• Jumper (68): The tested variant is not associated at genome-wide significant threshold

in the meta-analysis summary statistics, but becomes significant in the joint model.

• Faller (47): This variant is associated with a lower effect size in the joint model than

it is in the univariate meta-analysis summary statistics.

• Other (7): Does not fit into any of the previous categories, these variants exist within

the loosened conditional meta-analysis significance threshold.

These results show that most distinct associations identified by the meta-analysis are

identified due to the larger sample size afforded in the meta-analysis GWAS. Intriguingly,

I identified a set of 1,227 associations identified by GCTA-COJO which are in LD r2 > 0.9

with associations with the same trait. Given the high LD between these associations it

is unlikely that they are truly distinct signals and could represent false positive signals

caused by the reference sample approximation used by GCTA-COJO.

2.4 Summary

In this chapter I discuss my contribution to the largest GWAS of complete blood count

(CBC) haematological phenotypes including 14 phenotypes in a meta-analysis of 563,085

individuals across 23 studies, and a single cohort analysis of 28 phenotypes in 403,112

individuals. My subsequent exact conditional analysis using a stepwise regression protocol

of the UK Biobank cohort identified 16,900 associations across 7,112 LD sets of which 5,106

are novel signals compared to the previously largest GWAS of haematological phenotypes

performed by Astle et al., [15]. I also present an additional set of 629 associations

identified from the meta-analysis study determined to be independent from signals in the

aforementioned 7,112 LD sets by exact meta-analysis conditional analysis.
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Chapter 3

Data collection and quality control

of cytometry parameters

3.1 Introduction

I previously discussed the ability of flow cytometry based methods to make measurements

from blood cells including SSC, SFL, and FSC (Section 1.2.2). In this chapter I show that

these additional parameters of blood cells can be clinically and functionally informative

and identify association signals distinct to the results of FBC GWAS which largely measure

blood count and volume phenotypes (Section 2.1.3). I show that GWAS of these novel

and functionally relevant phenotypes is able to identify distinct associations compared to

the largest previous GWAS of FBC phenotypes by Astle et al., with a roughly 3.8 times

larger sample size [15]. The results generated in this chapter will inform further work in

Chapter 4, to better understand the genetic architecture of the functional properties of

blood cells by performing the first ever GWAS and downstream analysis of SSC, SFL, and

FSC blood cell parameters.

I begin by discussing the INTERVAL study and the extraction of blood phenotypes

from the Sysmex XN-1000 analyser, following this I discuss genotyping of participants,

including quality control and variant imputation. Then I provide a review of the literature

regarding the clinical and functional relevance of Sysmex parameters. Finally, I describe

phenotype and genotype QC of data which is prepared for the GWAS and downstream

analyses in described Chapter 4.

3.1.1 INTERVAL study

INTERVAL is a randomised clinical trial of 45,263 healthy blood donors who have been

assigned to blood donation schedules of 8, 10, or 12-weeks for male participants and 12, 14,

or 16-weeks for female participants [11]. Donors were recruited from 25 National Health
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Service Blood and Transplant (NHSBT) static donor centres across England [121].

The purpose of the trial was to identify factors which influence the safe interval for blood

donation. In order to assess donor health, and identify factors which may predict the safe

optimum interval for blood donation a range of haematological and genetic measurements

have been performed. Participants also answer an extensive questionnaire to assess their

mental and physical health, lifestyle, and diet, prior to beginning the trial and finally

upon completion after two years of participation. Informed consent was obtained from all

participants, and the INTERVAL study was approved by Cambridge East Research Ethics

Committee. Participants who have subsequently withdrawn from the study were removed

at the time of analysis. I studied phenotype data collected at baseline of the trial from

participants prior to being randomised to a blood donation schedule. However in the case

of missing measurement data from the second time point measured upon completion of

the trial was used (Section 3.1.2).

3.1.2 Extraction of extended Sysmex cytometry traits

The INTERVAL study used two Sysmex XN-1000 haematological analysers, the hardware

and software for the analysers were provided by the company Sysmex. Following flow

cytometry of a sample, the Sysmex analyser internally computes thousands of variables

which are used to produce a haematological report. In my study, I was not only interested

in studying parameters which are output in the standard Sysmex haematological report,

but also accessing variables which the software calculates that are not directly accessible

to the user. In many cases these hidden variables have become accessible in later versions

of the Sysmex software, examples include RE-LYMP and AS-LYMP measures of the

reactive and antibody synthesising sub-population of lymphocytes respectively. For each

analysis performed, the Sysmex analyser also saves an encrypted binary file containing

data calculated internally by the software which contains the aforementioned hidden

variables and is used to produce the haematological report accessible to the user. Following

negotiation with Sysmex we were given a decryption key to access this encrypted binary

file, and I searched through the thousands of variables to identify relevant markers of

haematological function. I communicated directly with representatives of Sysmex (J.

Saker) to confirm the variables I had identified represented the parameters which I was

intending to analyse. Parameters which were extracted in this way include reactive

lymphocytes (RE-LYMP), and all SSC, SFL, FSC, and distribution width parameters

associated with eosinophil, basophil, red blood, or platelet cells. Unfortunately, for these

extracted parameters, the first 20% of binary files were overwritten during the course of

the original study, this meant that baseline time point measurements for some Sysmex

parameters were missing. In order to address this I replaced this measurements with final

time point measurement at two years whenever possible. This is reflected by the I(i)
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variable when adjusting for environmental factors (Section 3.2.8). A full description of all

the Sysmex parameters extracted and analysed in my study is available at Chapter 3.2.2.

3.1.3 Genotyping and quality control

Genotyping of participants and subsequent imputation and QC was performed in a previous

study [15]. I will give an overview of sample collection, genotyping, imputation, and QC

steps, for more detail please refer to Astle et al., 2016 [15].

3.1.3.1 Sample collection and genotyping

Blood samples were shipped in buffy coat aliquots to LGC Genomics (UK) where DNA was

extracted using a Kleargene method. Subsequently samples were shipped to Affymetrix

(Santa Clara, California, USA) in 96-well barcoded wells including two empty wells for

Affymetrix control samples. Genotyping was performed with an Affymetrix GeneTitan

Multi-Channel Instrument implementing the Affymetrix Axiom 2.0 Assay Automated

Workflow. A customised UK BIOBANK Affymetrix Axiom array with 820,967 probes

was employed to assay SNPs and short insertion deletion variations (Section 3.1.3.2).

Genotypes were called using Affymetrix Power Tools software which implements the

Axiom GT1 algorithm [15]. For more details please refer to the paper by Astle et al.,

2016 who performed and described this work in their study of the genetics of standard

haematological measurements.

3.1.3.2 Genotyping array

Genotyping for this study utilised a customised UK Biobank Affymetrix Axiom array

with 845,485 probesets assaying 820,967 single nucleotide variants (SNVs) and short

insertion/deletions. More probes exist than number of genotyped SNVs, this is because

some SNV exist in regions with high sequence homology making these variants difficult to

genotype. In such cases multiple probes are sometimes designed to target these variations.

Probesets were selected to target variants which meet the following criteria:

• A genome wide scaffold which provides good coverage of common (MAF<5%) or

low frequency variation (1%<MAF<5%) in the European population. This is the

basis of later imputation (Section 3.1.3.3).

• Rare variants which exist in exomic regions and are likely to have transcriptional

consequences (non-synonymous, splice altering, truncating).

• Rare variations known to increase the risk of cardiac disease, cancer, or listed on the

human gene mutation database (HGMD) database.
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The genome wide scaffold was designed using a custom algorithm based on the 1000

Genomes CEU population, European 1000 Genomes population, and a further tranche of

variants selected to boost imputation of low frequency variants [15].

3.1.3.3 Quality control and variant imputation

Imputation allows variants which have not been directly genotyped to be inferred from

genotyped variants. Imputation is fundamentally based on the principle of LD between

regions of the genotype (Section 1.4). To enable reliable imputation, it is important to

establish an initial set of high quality genotyped variants which serve as a scaffold. To

ensure this is the case genotyped variants were filtered based on the following criteria:

• HWE filter of P-value < 5× 10−6.

• Call rate filter of 99% in batches where the variant did not fail.

• Variant must have passed in atleast eight of the ten batches where it was genotyped.

• All monomorphic, non-autosomal, and multi-allelic variants were removed.

• Variants must have a MAF>0.04%.

Based on the following criteria QC was also performed on samples, excluding those

which met any one of the following criteria:

• Samples with more than 10% sample contamination [89].

• Samples with 3 - 10% sample contamination and ten or more first or second-degree

relatives in the study.

• Duplicate samples.

• Samples with heterozygosity three standard deviations from the mean.

• Samples who were missing or had mismatch sex information.

• Samples who are not of European ancestry.

• Samples with poor genotype signal intensity (<82%) and low call rate (<97%) based

on roughly 20,000 probes to be known of high quality.

Following genotype and sample based QC, genotyped data was phased using SHAPEIT3

with chunks of 5,000 variants and an overlap of 250 variants per chunk [126]. The genotype

data was used for imputation using IMPUTE3 [85] in chunks of 2mb with a 250kb buffer

region. A combined 1000 Genomes Phase 3-UK10K panel was used for both phasing and
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imputation. Imputation was implemented using the positional Burrows-Wheeler transform

(PBWT) imputation algorithm [58] on the Sanger imputation server. No imputation

quality or variant frequency filters were applied at this stage, in total 87,696,910 variants

were imputed or genotyped [15]. Following imputation of the INTERVAL genotype data,

Astle et al., 2016 used whole-exome sequencing (WES) data for 3,976 INTERVAL study

participants who were also included in the imputation dataset to confirm a very high

concordance between sequencing and genome imputation. Concordance ranged with a

median precision from 99.5% for common variants (MAF>5%) to 98.5% for rare variants

(MAF<1%). In addition IMPUTE3 will also calculate an info score representing the

certainty in the value of imputed variant. INFO score ranges from 0 to 1 representing

poorly to well imputed variants respectively. The INFO score metric represents a ratio

for calculation of effective sample size, at total sample size N , an imputed SNP will have

effective sample size dependent on it’s INFO score: INFO ∗N . GWAS studies tend to

use an INFO score filter of around 0.3 or 0.4 [38] [186] [15], with an INFO score of greater

than 0.4 being defined as well-imputed [118]. I utilised an INFO score filter of 0.4 leaving

26.8 million variants to be tested in my GWAS.

3.2 Methods

3.2.1 Blood sample collection

Participants in the INTERVAL study were assessed for a range of health and lifestyle factors

which included a questionnaire and a full blood haematological analysis at recruitment

and upon completion of the trial, this data is the subject of my analysis. Samples for

haematological analysis were collected from a pouch attached to the standard blood

collection unit during blood donation. Blood samples were collected in, 3 ml or 6 ml

ethylenediaminetetraacetic acid (EDTA), and 6 ml serum tubes. After collection the

tubes were inverted three times and transported at ambient temperature to NHSBT

sample holding sites at Manchester, Colindale (London), and Bristol. EDTA is not noted

to cause a difference in the mean of activation effects of white cells, although some

differences in cytokine production have been observed [103]. Following collection, samples

were transported to the UK Biocentre facility in Stockport, UK for analysis. Almost all

samples (98%) were processed within 48 hours of venipuncture, and 72% within 24 hours

[15]. Analysis of samples was performed with a Sysmex XN-1000 analyser from which

haematological indices utilised in my analysis were derived.
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3.2.2 Sysmex flow cytometry channels

The Sysmex XN blood cell analyser is a modular system for analysing blood samples

containing 4 flow cytometry, one electrical impedance channel, and a photometric channel

for haemoglobin measurements. Each sample is aliquoted into six channels responsible

for measuring different haematological cell types and properties. Reactants particular to

each channel lyse and stain aliquots to target cell types and to allow polymethine and

oxazine dyes to bind to nucleic acids in organelles and the nucleus. The composition of

the reagents is kept commercially confidential by Sysmex. The Sysmex haematological

analyser contains the following channels of measurement:

• The WNR (white count and nucleated red blood cells) channel detects nucleated red

blood cells (NRBC) and provide an accurate count of basophil cells.

• The WDF (white cell differential channel by fluorescence) channel is responsible

for analysis of white blood cells including counting lymphocytes, neutrophils, and

monocyte cells.

• The PLT-F channel performs platelet measurements, including counting mature and

immature platelets.

• The RET (reticulocyte) channel provides measures of erythropoiesis including retic-

ulocyte count and reticulocyte maturity.

• The Photometric channel analyses haemoglobin content in red blood cells using

sodium lauryl sulphate staining agent.

• The Impedance channel measures passing of blood cells through an aperture between

electrodes allows measurement of red cell phenotypes such as cell volume, cell count,

haematocrit, and platelet count.

Within each channel light from a stable red diode laser is incident on cells passing in

single file through the flow cytometer. This results in three bands of light being recorded

from each cell. Two light sources of different wavelength are separated by a dichroic

mirror to obtain SSC and SFL light intensity measurements. Light passing through

cells is recorded in a separate third direction FSC (Fig. 3.1). Sysmex parameters are

recorded from these three sources of light. I also assess distribution width of each of the

measurements (SSC, SFL, FSC) for each cell type in the sample. Distribution width is

determined as the width of each peak of light at 20% of the peak height. Each cell is

plotted on a three dimensional ‘scattergram’ based on its SSC, SFL, FSC values (Fig.

3.4). Cells are classified into cell types using thresholds based on the position of cells

on the three dimensional scattergram. The Sysmex parameters studied in my analysis
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Figure 3.1: Flow cytometry of haematological cells.
Cells flow single file through the Sysmex flow cytometry channel and are hit by a laser beam,

light is scattered or fluoresced by dyes in the cell and this is recorded resulting in three readings
(SSC, SFL, and FSC) per cell. * SFL is an index of nucleic acid content also influenced by

membrane composition of cells which affects the rate of absorption of nucleic acid staining dye
into the cell (Figure adapted from [45]).

involve the median position and distribution width of each cell type in the SSC, SFL, FSC

axis, and also counts of cells which are outliers from the primary clusters of cells in their

respective scattergram, examples of which are given below. These cellular properties have

been shown to be relevant for diagnosis of disease and to measure important physiological

properties (Section 3.2.3).

3.2.2.1 PLT-F Channel Parameters

The PLT-F channel provides a count of mature and immature platelets (Table 3.1). Cells

are lysed and stained using a fluorescent nucleic acid marker which also helps remove

interfering particles such as RBC fragments [165] (Fig. 3.2).

3.2.2.2 RET Channel Parameters

The RET channel is responsible for measuring circulating red blood cell maturity and

measures of reticulocyte and red blood cell haemoglobin content (Table 3.2). As retic-

ulocytes mature they lose their nucleus and their cellular nucleic acid content drops.

The SFL measurement is used to classify reticulocytes as high fluorescence reticulocytes
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Figure 3.2: PLT-F channel scattergram.
The PLT-F channel with SFL and FSC measurements plotted, the channel allows good

separation within the platelet population allowing identification of the immature platelet
fraction (IPF) and highly fluorescent immature platelet fraction (H-IPF) fraction. Furthermore,
the PLT-F channel provides good separation between platelet, white blood cell, and red blood

cell types.

(HFR), medium fluorescence reticulocytes (MFR) to low fluorescence reticulocytes (LFR),

representing increasing stages of maturity, eventually cells join the red blood cell (RBC)

population (Fig 3.3). Cells are perforated by a lysis reagent which allows a fluorescent

marker to pass into the cell staining nucleic acids [165].

3.2.2.3 WDF Channel Parameters

The WDF channel is responsible for counting of lymphocyte, neutrophil, and monocyte

cells. This channel also measures counts of cells which are outlying from their primary

cluster of cells, such as immature granulocytes (IG), RE-LYMP, and antibody synthesising

lymphocytes (AS-LYMP) (Table 3.3). In total 29 of the 63 Sysmex parameters studied in

my analysis originate from the WDF channel. Lysis reagents perforate the cell membrane

allowing a fluorescent dye to stain nucleic acids. Reagents are designed to keep the cells

largely intact and to ensure that the rate of fluorescent dye uptake is proportional to

nucleic acid content which is recorded by the SFL measurement [165]. Immature cells such
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Sysmex Parameter Description

H-IPF
Highly Fluorescent Immature Platelet Fraction:

A measure of highly immature platelets

IPF & IPF#
Immature Platelet Fraction

Immature Platelet count

P-LCR
Platelet Large Cell

Ratio
PLT-F-SSC, SFL, FSC, -DW Platelet Scatter and distribution width

Table 3.1: PLT-F channel parameters.
Table of the 10 parameters studied from the PLT-F channel, DW represents the intra-individual

distribution width for each of the SSC, SFL, and FSC measurements.

Sysmex Parameter Description

IRF
Immature reticulocyte

fraction
Hyper-He Hyper haemoglobinised red cells
RBC-He Red blood cell haemoglobin

RET-SFL, FSC Reticulocyte scatter parameters
RET-He Reticulocyte haemoglobin

LFR, MFR, HFR Low, Medium, High fluorescent reticulocytes

IRF-FSC
Immature reticulocyte

fraction forward scatter

RET-RBC SSC, SFL and -DW
Red blood cell
RET scatter

Delta-He
Difference between RBC

and Reticulocyte haemoglobin

Table 3.2: RET channel parameters.
I analysed 14 parameters from the RET channel, where ‘-DW’ represents distribution width for
each of the SSC and SFL measurements. The measurements are derived from the red blood cell

and reticulocyte cell types.
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Figure 3.3: RET channel scattergram.
The RET scattergram, each cell is plotted with SFL and FSC on the x and y axes respectively,

the z axis (SSC) is hidden. Measurements are assigned per cell-type based on the median
position of the cell cloud in each axis of the scattergram. Cell types are highlighted in the three

axes, RBC: red blood cells, PLT-O: optical observation of platelet count (compared to
impedance), LFR: low fluorescence reticulocytes, MFR: medium fluorescence reticulocytes, HFR:
high fluorescence reticulocytes, RBC Fragments: fragments of red blood cells this cluster is not

analysed.
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Sysmex Parameter Description
NE-SSC, SFL, FSC, and -DW Neutrophil scatter parameters
EO-SSC, SFL, FSC, and -DW Eosinophil scatter parameters
MO-SSC, SFL, FSC, and -DW Monocyte scatter parameters
LY-SSC, SFL, FSC, and -DW Lymphocyte scatter parameters

RE-LYMP# (count)
RE-LYMP% (of white blood cells)
RE-LYMP(L)% (of lymphocytes)

Reactive
lymphocytes

IG# (count)
IG% (of granulocytes)

Immature Granulocytes

Table 3.3: WDF channel parameters
I analysed 29 parameters from the WDF scattergram, ‘-DW’ represent the intra-individual

distribution width for each of the SSC, SFL, and FSC measurements. Parameters are stratified
across the five primary white blood cell types and also immature granulocytes which largely

consist of immature neutrophils. Parameters are split across neutrophil, eosinophil, monocyte,
lymphocyte, and immature granulocyte (mostly consisting of immature neutrophils) cell types.

Sysmex Parameter Description
BASO-SFL, FSC, and -DW Basophil Scatter

Table 3.4: WNR channel parameters.
Four Basophil phenotypes were studied from the WNR channel, DW represents distribution

width parameters for SFL and FSC.

as immature granulocyte count (IG#) or highly activated cells such as (RE-LYMP or AS-

LYMP) tend to contain higher levels of nucleic acids and have higher SFL measurements

(Fig. 3.4). Cells are also separated according to their SSC and FSC measurements,

which are measures of cell structure which are indicative of cell granularity and cell size

respectively (Fig. 3.4).

3.2.2.4 WNR Channel Parameters

The WNR channel only measures SFL and FSC, and is responsible for counting nucleated

red blood cells, total white blood cell count, and basophil count (Table 3.4). The ‘ghost’

proportion of the scattergram is occupied by contaminants such as air bubbles and lipids.

Similar to the WDF channel, cells are processed in a two stage reaction, starting with

perforation of the white cell membranes keeping the cells largely intact, following this,

nucleic acids in the cells are stained with a fluorescent dye to allow detection by the

flow cytometer (Fig. 3.5) [165]. The cell membrane of NRBC is lysed and the nuclei are

stained [165]. NRBCs exist in circulation of newborn infants and can be diagnostic of

myelodysplastic syndromes when observed in adults [153], given that participants in the

INTERVAL study are healthy adults (18 years of age or older) these cells are not observed

in the scattergram (Fig. 3.5).
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Figure 3.4: WDF channel scattergram
A plot of the WDF scattergram from an individual in the INTERVAL study, each cell is plotted
with SSC and SFL on the x and y axis respectively, and the z axis (FSC) hidden. Measurements

are assigned per cell-type based on the median position of the cell cloud in each axis of the
scattergram. Cell types are highlighted in the three axes, LY: lymphocytes, RE-LYMP: reactive
lymphocytes, AS-LYMP: antibody synthesising lymphocytes, MONO: monocytes, IG: immature

granulocytes, NEUT: neutrophils, BASO: basophils, EO: eosinophils.
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Figure 3.5: WNR channel scattergram.
A plot of the WNR scattergram from an individual in the INTERVAL study, each cell is plotted
with SSC and SFL on the x and y axis respectively. Measurements are assigned per cell-type

based on the median position of the cell cloud in each axis of the scattergram. WNR separates
basophil cells from the white blood cell population. NRBC are not observed as this cell

population does not occur in healthy adults. Approximate cell types are highlighted based on
thresholds set in the two axes.
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Sysmex Parameter Description

MicroR / MacroR
Microcytic and Macrocytic

RBCs (as percentage of all RBCs)
RDW-SD Red cell size distribution width

Delta-HGB Cell free haemoglobin

RPI
Reticulocyte Production Index

Calculated: RET% ∗HCT/(2 ∗ 0.45)

Table 3.5: Other parameters.
I studied six parameters which were derived from electrical impedance, photometric analysis, or

calculated from flow cytometry measurements, or calculated from a combination of flow
cytometry and impedance measurements.

3.2.2.5 Other Parameters

In addition to flow cytometry the Sysmex analyser employs an electrical impedance

channel (Section 1.2) to measure RBC and platelet parameters, such as mean cell volume

in the blood or median size of individual blood cells, and a photometric channel which

measures red blood cell haemoglobin content. I utilised six of these parameters in my

analysis, including parameters which are derived from a combination of impedance and

flow cytometry (RPI) and parameters which are calculated from a combination of flow

cytometry measurements (Table 3.5).

3.2.3 Flow cytometry, immune cell function, and disease

I sought to understand the clinical and functional relevance of Sysmex measurements

of blood cells, SSC, SFL, and FSC (Section 3.2.2). Previous studies show that Sysmex

parameters of white cells correlate with changes in cell function, activation, morphology,

and disease status including: myelodysplastic syndromes, toxic granulation, sepsis, septic

shock, and Szary disease [13, 64, 188, 103, 131, 145]. The functional and clinical relevance of

Sysmex parameters makes these phenotypes important intermediate traits, the significance

of intermediate traits is discussed in Section 1.6.4. The ability to make automated high-

throughput measurements using Sysmex enables GWAS study of such phenotypes, where

the interpretation of GWAS results could provide important insights into human biology a

detailed in Section 1.6.

Comparison to manual assessment of blood smear images shows that Sysmex parameters

capture clinically important changes in white cell morphology [188]. Blood smear samples

from 158 patients were scored by neutrophil granularity on a scale of 1 to 4 by trained

haematological medical technicians [188]. The Sysmex parameter NE-SSC correlated

with manual measurements of granularity performed by smear test (Spearman’s rank

correlation coefficient: rs=0.839, P-value<1× 10−4) [188] (Fig. 3.6). Automated Sysmex

measurements provide an advantage as manual measurements of granularity are slower to
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Figure 3.6: Comparison of granularity assessed by manual microscopy and
Sysmex flow cytometer.
Assessments of toxic granulation neutrophils (TGN) granularity by GI-Index, a measure of SSC

performed by Sysmex and by manual microscopy. The granularity index assessed by flow
cytometry correlates with manual assessments of granularity (rs = 0.839, p <1× 10−4) (Figure

reproduced from [188]).

perform and depend on interpretation of the individual haematologist.

Automated Sysmex measurements can also assess monocyte, neutrophil, and leukocyte

activation following in vitro stimulation by activating compounds formyl-methionyl-leucyl-

phenylalanin (fMLP) and lipopolysaccharides (LPS) [103]. Sysmex parameters have been

compared to an automated image analysis pipeline of blood smear images to classify

neutrophils, monocytes, and the combined leukocyte population into hypo or hyper-

granulated categories [103]. In response to activation, neutrophils showed an initial hypo-

granularity reaction and long term hyper-granularity which persists until approximately

three hours after incubation with activating compounds. A statistically significant (P<1×
10−4) correlation was seen between all neutrophil Sysmex measurements (NE-SSC, NE-SFL,

NE-FSC) and automated measurements of neutrophil activation derived from microscope

image analysis, including when cells were activated with LPS (P-value<1 × 10−4, rs =

0.693) and fMLP (P-value<1× 10−4, rs: 0.641) [103].

An additional study to determine the utility of lymphocyte, monocyte, and neutrophil

Sysmex parameters to diagnose sepsis found clinically significant correlation between these

indices (except for NE-FSC, and LY-FSC) and occurrence of sepsis. MO-SSC and NE-SFL

had the best diagnostic performance (AUC 0.75, and 0.72 respectively) [35]. Statistically

significant relationships between Sysmex measurements (in particular neutrophil indices)

and sepsis have been reported by a number of other authors [131] [13], and also other

diseases including toxic granulation [188], and myelodysplastic syndromes [145] [64].

Sézary disease is a form of cutaneous T-cell lymphoma. Malignant lymphocytes cause
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inflamed, itchy, lesions on the skin of patients which develop into tumours. Sézary cells

are characterised with irregular nuclei and condensed chromatin versus smaller cells with

regular nuclei and clumped chromatin in chronic lymphocytic leukemia patients [31].

Automated analysis by Sysmex has been used to identify abnormal T cells typical of Sézary

disease. LY-SSC was associated with the count of Sézary cells (classification threshold

LY-SSC above 85, sensitivity 100%, specificity 94%) and LY-FSC (classification threshold

LY-FSC above 67, sensitivity 89%, specificity 94%) to the presence of larger cells, both of

which are diagnostic factors of Sézary disease [31]. This is consistent with the definition

of these parameters and the known difference in morphology of neoplastic cells. Thus

these Sysmex haematological measurements are consistent with expected differences in

cell size, morphology, and nuclear structure. Brisou et al, suggested that these differences

as identified by Sysmex parameters could be used to diagnose Sézary disease in a clinical

setting [31].

However, there are limitations to the interpretability of these parameters. For example

side-fluorescent light (SFL), a measure of DNA/RNA content cannot be used purely as a

surrogate for the quantity of nucleic acids in the cell, because the dye does not saturate the

cell due to short reaction time. SFL intensity depends on cell membrane composition and

also nucleic acid content. Sysmex reports monocyte measurements as having higher average

SFL values than lymphocytes, but a resting monocyte does not have a higher nucleic

acid content than a resting lymphocyte (personal communication J. Saker, Sysmex) [151].

However, within a single cell type, Sysmex parameters are consistent with physiological

changes within that cell type. It is this variation between individuals in the INTERVAL

study which I utilise to perform a GWAS analysis.

3.2.4 Adjusting variables for scale

Sysmex parameters occur in varied scales of measurement, including percentages, ratios,

and positively supported data for example cell counts which never hold negative values. In

order to adjust for technical (Section 3.2.7) and environmental (Section 3.2.8) covariates, the

parameters were transformed depending on their scale of measurement prior to adjustment.

The transformations were performed as follows, where x is a vector of phenotype values.

• Percentages 0 < x < 100, division by 100 and logit transformation: a(x) = logit( x
100

).

• Ratios 0 < x < 1, logit transformation: a(x) = logit(x).

• Positively supported x > 0, log transformation: a(x) = log(x).

The logit transformation logit(x) = log x
1−x maps probability values from [0, 1] to (−,+).

Logit transformed data with infinite bounds makes the distribution of the dependent
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variable more like a normal distribution thus enabling better specified linear regression

(Section 1.5) [92]. As described previously in Section 2.2.4 linear regression is the statistical

test utilised by GWAS to identify genetic associations.

3.2.5 Additive models and splines

Additive models (AMs) include both parametric and non-parametric predictors [76]. Non-

parametric predictors allow additional flexibility as they do not require a specific function

to be predefined. AMs can be used to model predictor variables which are cyclical (such

as seasonal effects) or have otherwise non-linear effects on the dependent variable. AMs

extend linear models where the linear elements
∑
βjXj are replaced by a sum of smoothing

functions
∑
βjmj(Xj). Where mj() is a unspecified function not required to be defined

by the user, thus the non-parametric form of AMs [76]. This is an extension of linear

regression, instead of optimising the fit of a linear line to a set of data points we optimise

the fit of an arbitrary function mj(Xj). However, in most cases it is prudent not just to

optimise the fit of a curve to data points, but also ensure ‘smoothness’ or simplicity of that

curve. This is called ‘smoothing’ and is discussed in more detail below. I utilise smoothing

splines in my analysis. I will begin with a brief description of smoothing followed by

splines including B-splines, P-splines, cyclic splines, and thin-plate splines.

Smoothing

As previously described AMs models optimise a curve to fit a set of data points (Section

3.2.5), however in a non-linear setting curve complexity can increase such that the resultant

model is not representative of the true relationship between dependent and independent

variables. This is called over-fitting and has been described by a number of authors [78]

[77, p. 398]. Therefore, smoothing is utilised to reduce model complexity avoiding highly

curved functions which contort to fit to every data point. Mathematically, curvature or

smoothness at any point can be defined as the second derivative of the function m(x)

represented by m′′(x). Smoothness of m(x) across its entire domain is defined by the

following integral
∫

(m′′(x))2dx, the squared operation is applied to avoid distinction

between negative or positive curvature. In order to generate a regression, an objective

function is created which states that a) we want a function m(x) which fits as closely as

possible to the data points and b) we want this function to be smooth [154, p. 177]:

L(m,λ) ≡ 1

n

n∑
i=1

(yi −m(xi))
2 + λ

∫
(m′′(x))2dx (3.1)

Where x and y are the independent and dependent variables respectively, and λ is a

hyper parameter which modulates the smoothness, a higher λ will prioritise smoothness
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over the fit of curve. The first term simply models the fit of the curve to the real values

and the second term quantifies smoothness of the curve. A solution to this objective

function will generate a function with a trade-off between maximising fit to the data while

also maximising smoothness of the curve. The precise value of λ is set by cross validation

over the dataset, for more details see [154, p. 179].

Piece-wise polynomials and splines

In the previous section I left ambiguity regarding the definition of m(x) (Eqn. 3.1) which

depends on the context of implementation. One such implementation is that of smoothing

splines, this is where spline functions are used to define m(x). To begin I will describe

piecewise polynomial functions and extend that definition to that of splines. Piecewise

polynomial functions are best described visually (Fig. 3.7), in essence they split the domain

of the input variable at into pieces, in each piece a function with differing constants is

defined (Fig. 3.7) [77]. The points at which distinct pieces are bounded is termed ‘knot

points’. Please note the distinction between smoothness of each function within each piece

and between pieces. Each piece in the displayed figure is maximally smooth (as they are

linear or straight lines), however there is discontinuity between pieces. Discontinuity and

smoothness at the knots points cannot be addressed by smoothing which is only applied

to functions between knot points (Eqn. 3.1) and is instead addressed by enforcing that

functions which meet at a knot point have equivalent values and also equivalent first and

second order (or more) derivatives depending on the order of the piecewise functions (Fig.

3.8). Application of piecewise polynomials is limited due to the mathematical properties

of the piecewise curve, an adaptation of this method is B-splines (basis splines), here

a series of polynomials spanning the feature space is fit to the data (Fig. 3.9). This is

explained further in the Appendix of Hastie and Tibshirani [77, p. 186]. P-splines are the

application of smoothing to the fitting of B-splines to ensure that the spline is smooth as

well as continuous (Section 3.2.5). An additional constraint would be to ensure that the

spline takes the same value at the lower and upper limit of the domain, this is termed a

cyclic spline and is effective in modelling cyclic data predictor variables such as day of

year or day of the week. In contrast to B-splines which are generated on a single variable,

thin plate splines allow fitting of splines to multiple dimensions of data. This involves

multidimensional generalisation of the B-splines described above, for more detail see [77,

p. 162].

3.2.6 Exclusion of outliers and erroneous measurements

Each Sysmex measurement is associated with an interpretive program (IP) message

labelling the measurement as potentially ‘abnormal’, this could occur in participants with
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Figure 3.7: Examples of piecewise constant linear functions.
A plot of data points for which the piecewise functions have been fitted with independent and
dependent variables on the x and y axes respectively. Three pieces are defined based on two

knots indicated by ξ1 and ξ2, within each piece a different function is defined to best fit the data
in that piece. Piece-wise functions are not enforced to meet at the knot points hence the

discontinuity at knot points (Figure source [77]).

unusually low or high counts of cells, such as lymphopenia or lymphocytosis or containing

unusual blood cell morphology, for example the presence of nucleated red blood cells or

immature granulocytes. IP messages are generated by the haematological analyser and are

classed into three categories, abnormal, suspect, or negative. I excluded all measurements

associated with an abnormal or suspect IP flag. Following exclusion of measurements

based on IP flags, I performed technical (Section 3.2.7) and environmental (Section 3.2.8)

adjustment and utilised a PCA to identify outlying measurements which I removed from

further analysis. Phenotypes were categorised into seven non-mutually exclusive classes,

those related to platelets, red cells, reticulocytes, white cells, granulocytes, myeloid cells,

and all phenotypes. For each of these categories the PCs were calculated and scaled

by variance explained, squared, and summed to calculate the total deviation of each

measurement from the population centre. An equal number of PCs were selected to the

number of directly measured phenotypes in each class. Measurements which sufficiently

deviated from the population centre were excluded, this was assessed with a χ2 distribution

(P-value< 1× 10−7) (Fig. 3.10). If a measurement was an outlier within one category, the

data for that sample was excluded across all phenotypes in further analyses.

3.2.7 Technical variation of Sysmex parameters

Technical factors which influence Sysmex parameters add noise to measurements which

increases false negative findings in GWAS analyses and also reduces power to identify
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Figure 3.8: Examples of cubic polynomial piecewise functions.
A plot of data points for which cubic piecewise functions have been fitted with independent and

dependent variables on the x and y axes respectively. Three pieces are defined based on two
knots indicated by ξ1 and ξ2, A discontinuous function can be made continuous and smooth at
the knot points by enforcing equal values for the function and first or second derivatives of the

function at the knots (Figure source [77]).
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Figure 3.9: Fitting of cubic B-splines.
Data points are plotted with independent and dependent variables on the x and y axes

respectively. a) A series of B-spline basis functions of third polynomial degree. b) Weighting of
B-splines to enable the summation of B-splines to generate a function f(x) to fit a dataset

(Figure source [55]).

91



Figure 3.10: First two principal components of measurements in the platelet
category.
Each data point represents an individual for which platelet measurements were recorded and the

first two PCs for measurements in the platelet category are plotted, subsequent principal
components are not visualised although they do contribute to the detection of outliers. Outlying
data points are highlighted in red and defined by those in the upper tail of a null χ2 distribution

with P-value< 1× 10−7. Platelet measurements for outlying individuals are excluded from
further analysis.
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influential genetic associations. Technical variation is not likely to increase false positive

rates because there is no correlation between the technical variables and the genotype of

the study participants. I modelled the effect of technical covariates on each blood trait

using a AM and adjusted haematological indices to remove the effect of technical factors.

Measured traits were technically adjusted independently, the technical correction

procedure began by excluding measurements from outlying days, defined as those with a

Z score more than 8 from the daily mean. Following this, a generalised additive model

(GAM) model was used to adjust measured indices for technical and seasonal variation,

finally derived parameters were re-calculated accordingly from the measured parameters

(Supp Table A.7). Defined parameters are blood traits which are calculated from ratios,

percentages or other combinations of directly measured traits were re-calculated following

technical adjustment of the measured traits. I corrected for a range of factors including

time passed from start of the study, day of the year (ordinal from 1 to 365), time between

venipuncture and sample analysis, day of the week, and instrument id. The adjustment

was made across all measurements indexed by i using a GAM (R package mgcv) and
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smoothing terms with P-spline, cycling smoothing or thin plate splines:

E(a(yi)) = s[t(i)⊗m(i)] + c[tyear(i)] + tp[(tday(i), tven(i)⊗ (m(i), I(i))]+∑
D∈{mon .. sun}

1D(i)=D +
∑
m

1m(i)=m
(3.2)

In equation 3.2:

• a(xi) represents the trait values xi transformed as described in Section 3.2.4.

• t(i) denotes the number of seconds between the first day of the study and measurement

i.

• m(i) is a categorical variable with two levels for each of the two machines used to

record measurements.

• D(i) is a categorical variable with 7 levels representing the day of the week on which

the measurement was made.

• tyear(i) is the number of seconds between January 1st and the time at which the

observation was made.

• tday(i) is the number of seconds between measurement of observation i and midnight

(am) on the day of observation.

• tven(i) represents the number of seconds between midnight (am) on the day of

observation and venipuncture.

• I(i) is a binary variable which indicates whether the delay between measurement and

observation was imputed tven(i). Imputation was performed by a median calculation

of real values for the tvenn(i) variable.

• s[] a P-spline smoothing term for univariate terms.

• c[] cyclic smoothing term for seasonal data such as time of year, tyear(i).

• tp[] a thin plate spline smoothing term for bivariate data.

• ⊗ represents an interaction between variables.

The first term s[t(i) ⊗m(i)] in the equation (Eqn. 3.2) models long term drift and

calibration of the Sysmex analysers using a smooth P-spline with 50 knots. Drift is defined

as systematic changes in recordings of the Sysmex analyser over the three year time period

of analysis (Fig. 3.11). In contrast, calibration effects result in immediate and large change
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in the mean recordings of the Sysmex analyser as a result of periodic calibration of the

analyser (Fig. 3.11). These effects are modelled independently by haematological analyser

represented with categorical variable m(i). The second term c[] models seasonal effects

using a cyclic smoothing term with 30 knots. To avoid an increasingly complex model,

the second term assumes that the Sysmex instruments are influenced in the same way by

seasonality effects. Thus seasonality is not modelled independently between the analysers.

The third term jointly effectively models the effect of time delay between venepuncture

and analysis, this effect is allowed to vary depending on the analyser and whether the

tvenn(i) variable was recorded or impute from the median of measured values (Section

3.1.2). The third term is modelled with a thin plate spline with 30 knots. Finally, I include

dummy variables to model day of the week and the effect of instrument on the parameter

measurements. Knots were chosen to be consistent with the similar data correction

procedure performed by Astle et al [15]. The adjustment described was implemented in R

code and is available on github [7].

Following application of the adjustment procedure on all 63 parameters I performed

a manual inspection to assess the performance of the adjustment of all covariates. Each

parameter was plotted against each covariate separately before and after correction (an

example is Figure 3.11). It will be expected that these results will show less variation in

the parameter values along the covariate x axis following correction compared to prior to

correction. Inspecting all aforementioned plots indeed showed that this is the case and

adds confidence to correction procedure which relies on the generation of splines.

3.2.8 Environmental variation of Sysmex Parameters

Following technical adjustment, Sysmex parameters were also adjusted for environmental

covariates which are known to influence the values of blood measurements:

E(env(yi)) = s[age(i)⊗meno(i)] + tp[(log(weight(i)), log(height(i))⊗meno(i)]+∑
drink(i)

1drink(i)=drink +
∑
alc(i)

1alc(i)=alc+

s[pack yrs(i)] +
∑

smokes

1smokes(i)=smokes +
∑

smokea

1smokea(i)=smokea+

∑
int

1int(i)=int +
∑

weight na

1weight na(i)=weight na +
∑

height na

1height na(i)=height na+

∑
pack yrs na

1pack yrs na(i)=pack yrs na

(3.3)
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Figure 3.11: Variation in recorded mean daily value of the NE-SSC parameter
over time before and after adjustment.
Each data point is the mean daily recorded value for the NE-SSC parameter over time course of
the study, adjustment is performed by fitting the model described in Equation 3.2 and plotting
the residuals. a) Raw mean daily recorded values from analyser for parameter NE-SSC shows
considerable systematic drift and changes due to calibration effects. b) Mean daily recorded

values post adjustment of data for technical covariates. This plot shows significant systematic
drift of NE-SSC values and correction of a large proportion of this drift following adjustment.
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In equation 3.3:

• ei are the residuals for measurement i obtained from the technical adjustment model

described in Equation 3.2.

• s[] a P-spline smoothing term for univariate terms.

• c[] cyclic smoothing term for seasonal data used here, time of year (tyear(i)).

• tp[] a thin plate spline smoothing term for bivariate data.

• age(i) is the age of the participant.

• meno(i) is the menopausal status of the participant:

meno(i) ∈ {post, pre, hyst, male, NA}.

• weight(i) is the weight of the participant.

• height(i) is the height of the participant.

• drink(i) is the drinking status of the participant:

drink(i) ∈ {never, previous, current, NA}.

• alc(i) is the alcohol consumption of the participant:

alc(i) ∈ {rarely, 1 to 3 month, 1 to 2 weeks, 3 to 5 weeks, most days, never}

• pack yrs(i) a calculation of the pack years a participant has smoked.

• smokes(i) is the smoking status of the participant: smokes(i) ∈ {never, previous, current, NA}

• smokea(i) is the participants frequency of smoking:

smokea(i) ∈ {special occasions, rarely, occasional, most days, every day, never}

• int(i) sex and assigned donation arm of the participant where the measurement was

taken upon completion of the study:

int(i) ∈ {baseline, M8, M10, M12, F12, F14, F16}

• weight na(i), height na(i), pack yrs na(i) binary variables set to true if the partici-

pant has missing values for weight, height, or pack years smoked variables.

The first term in Equation 3.3 models the effect of age and menopause status on

Sysmex parameters using a P-spline with 30 knots. The effect of log transformed height

and weight and interaction with menopause status is modelled with a thin plate spline

with 30 knots. Menopause status has been shown to influence blood cell measurements

including red blood cell and platelet count [115, 41]. Dummy variables are used to model,

drinking status, drinking frequency, smoking status, and smoking frequency and a P-spline
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(19 knots) is used to model the effect of pack years smoked per participant on the Sysmex

parameter. Pack years smoked is calculated based on participant responses to the health

questionnaire at baseline of the study. Both smoking and drinking have been shown to

influence blood cell measurements [160, 132]. Dummy variables are also used to model

missing values for height, weight, and pack years smoked. The described adjustment was

implemented in R code and is available on github [7]. Following adjustment for technical

and environmental factors, PCs were constructed to identify and exclude outlying Sysmex

parameter measurements as described in Section 3.2.6.

3.3 Summary

In this chapter I describe blood sample collection and genotyping in the INTERVAL study

and provide a detailed description of steps for collection and QC of the Sysmex parameters

and genotype data. I adjusted Sysmex parameters to remove technical and environmental

factors which add variation to the phenotypes studied in my analysis. Removing such

influencing factors reduces variability in the phenotypes and increases power to detect

association signals. Following extraction and QC of SSC, SFL, FSC from Sysmex analysers

in the INTERVAL study I performed the first ever GWAS analysis of these parameters

which is discussed in Chapter 4.

98



Chapter 4

The genetic architecture of

cytometry parameters

4.1 Introduction

GWAS of blood cell traits measured by automated FBC such as cell counts and cell

volumes are a powerful approach to link disease-associated risk variants to the distinct

types of blood cells and their molecular pathways [15]. However, these traits mostly

provide information about genes and pathways regulating processes such as stem cell

lineage-fating choices and blood cell survival. In particular for white blood cells, analytical

methods to infer which variants identified by GWAS of CBC parameters influence cell

function do not exist. To uncover this class of variants requires measurement of white cell

function in thousands of individuals. This is not feasible because functional assays are

laborious, often have poor reproducibility, and cannot be parallelised [110].

I report an alternative approach to obtain, in a large number of individuals, parameters

which are proxies for immune cell function, particularly of granulocytes (neutrophils,

eosinophils and basophils) and monocytes. As previously explained in Chapter 3, these

parameters are obtained by exploiting flow cytometry measurements underlying the routine

FBC by the Sysmex instrument. In this chapter, I present the first ever GWAS of SSC,

SFL, FSC blood cell phenotypes where I identified novel association signals compared to

the previous largest GWAS of haematological phenotypes performed by Astle et al. [15].

The comparison was performed with Astle et al., 2016 as this was the largest published

GWAS of blood cells available at the time of this analysis. My analysis identified 2,172

genetic associations annotated to genes by VEP known to be relevant in chemotaxis,

adhesion, activation, degranulation and many types of immune responses. The results of

this analysis was the basis of downstream analysis to further understanding of haematology

and disease biology presented in Chapter 5.
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4.2 Methods

4.2.1 Population stratification and relatedness

As previously described (Section 2.2.6), population stratification and relatedness within the

population of a GWAS study can lead to inflation in false positive or negative associations.

Multiple methods were utilised to account for broad population stratification within the

population cohort and relatedness between individuals in the cohort:

• Filter all samples to only include those of European ancestry (Section 3.1.3.3).

• Remove samples with a high degree of relatedness, as determined by IBD analysis.

• Include PCs and clinic, a variable recording the location of blood donation as

covariates in the GWAS model.

• Use a LMM model which allows potentially confounding polygenic effects to be

modelled by a random effect in the GWAS regression (Section 2.2.7).

• Filter tested variants by MAF>0.04%.

PCs were generated from approximately 100,000 high quality variants which were

selected by a number of factors including: the variant must be genotyped, MAF ≥ 2.5%,

missingness ≤ 1.5%, variants which aren’t insertions or deletions, and pruned to ensure low

LD [15]. PCs were used to remove individuals who are outlying from the general population

and therefore not likely to be of European ancestry. The purpose of excluding individuals

with non-European ancestry is to create a more homogeneous sampling population and

reduce the risk of false positive or false negative associations due to confounding population

structure. Following this, PCs were calculated from the European ancestry genotype data

and included as a covariate in the LMM enabling the model to account for population

stratification effects. In this model the top 10 PCs were used consistent with other

published GWAS studies of the INTERVAL dataset [15]. IBD analysis determines common

stretches of nucleotide sequence between two individuals which indicate they share a

common ancestor. If a large proportion of alleles between two individuals are identical by

descent, this suggests those individuals are closely related. Of each pair of individuals who

has higher than 98% of alleles IBD, one individual was removed from the study. Groups

of individuals who were related (IBD>20%) were iteratively trimmed by removing the

individual with the highest number of pairwise relationships and then the lowest call rate.

This analysis was performed on the INTERVAL dataset by Astle et al., [15].
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4.2.2 GWAS of haematological phenotypes

GWAS was performed on phenotype values which were adjusted for technical and environ-

mental factors, outlying measurements excluded, and residuals inverse quantile normalised

(Section 3.2). Following QC, genotype data was imputed from a genome-wide scaffold of

variants assayed by direct genotyping. Firstly the dataset was phased using SHAPEIT3

and then imputed using a combined 1000 Genomes and UK10K panel [15]. I filtered

imputed variants by INFO score 0.4 and MAF>0.04% (Section 2.2.5). A LMM was used

to test each imputed variant independently for marginal association with the phenotype.

The following covariates were included in the LMM: the first ten principal components

representing population structure, and the categorical ‘clinic’ variable which represents the

centre at which the participant donated their blood sample (Section 4.2.1). The LMM was

implemented using BOLT-LMM [106] which allows for computationally tractable LMM

GWAS analyses of large datasets (Section 2.2.7). The analysis was performed on the

Sanger high performance compute (HPC) cluster.

4.2.3 Comparison with GWAS of FBC phenotypes by Astle

2016

I compared the results of my GWAS and conditional analysis with the results obtained

Astle et al., in their GWAS of standard haematological traits [15]. The traits studied by

Astle et al., are measured in the same cell types from which the Sysmex parameters in my

study are derived. In order to assess whether findings made by my analysis identifies signals

unreported by Astle et al., I extended the previously described LD clumping procedure

(Section 2.2.9). Firstly, I performed LD clumping as previously described in Section 2.2.9.

The LD clumping procedure assigns conditionally significant variants to sets of variants

which exist in LD r2 > 0.8 with each other. Following this, I generated a LD matrix

between all the conditionally significant variants identified by my study or by Astle et al.

I then used this matrix to sequentially label LD sets as already ‘not novel’ if that LD set

contains any variants which are in LD r2 > 0.8 with any conditionally significant variants

identified by Astle et al.. Thus I annotated conditionally significant variants identified by

my analysis as novel or not-novel in comparison to association signals identified by GWAS

of FBC haematological phenotypes by Astle et al. [15]. This annotation was implemented

in R code and is available in a github repository [6].
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4.2.4 Genetic correlation between inherited components of vari-

ance by Bulik Sullivan et al., 2015

The genetic correlation is the correlation in inherited components of variance between

two phenotypes. I estimated genetic correlation using the summary statistics generated

from a GWAS study [33]. LD score regression uses a pre-defined subset of common SNPs

and assumes a polygenic model of association. The polygenic model assumes the genetic

component of variation of a quantitative trait is determined by a set of genetic variants

that have independent additive effects. For SNP j the expected value of the product z

score of association with both traits is determined as follows [33]:

E[z1jz2j] =

√
N1N2ρg
M

`j +
ρNs√
N1N2

(4.1)

Where ρ is the phenotypic correlation amongst the Ns overlapping samples, the purpose

of this term is to adjust for correlation induced by a common sample population and

avoid biasing the calculated genetic correlation. ρg is the genetic correlation, N1N2 is the

product of the number of samples in each study, M is the number of variants used in the

estimation, and ` is the ‘LD Score’, a measure of the amount of genetic variation linked to

SNP j, calculated where k is an index over all other variants [33]:

`j =
∑
k

r2jk (4.2)

To calculate the genetic correlation defined by %g, we perform a regression of E[z1jz2j]

against `j for each SNP. The slope of this regression line will be
√
N1N2%g
M

from which the

genetic correlation %g is calculated. My implementation of LD score regression is available

in the following github repository [6]

Variant effect predictor

VEP is a software package which annotates genomic variants in coding and non-coding

regions to genes by searching for variants which overlap or are close to (threshold of 5000

base pairs) known transcripts and regulatory regions [114]. The impact of a variant is

classified into one of 48 sequence ontology (SO) terms which are then assigned into ‘HIGH’,

‘MODERATE’, ‘LOW’, or ‘MODIFIER’ terms in order of decreasing severity on the gene.

For example, ‘stop lost’ variants are classified as a HIGH impact modification due to the

disruption of a stop site, but ‘synonymous’ variants are classified as LOW impact as they

do not lead to change in amino-acid structure of the protein [114]. MODIFIER terms are

those where variants effect non-coding regions such as intergenic or intronic regions [114].
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4.3 Results

4.3.1 Genetic architecture of Sysmex parameters

GWAS and conditional analyses of 63 Sysmex parameters identified 2,172 conditionally

independent associations which clustered into 849 LD sets (Section 2.2.9). LD sets are

assigned to cell types depending on which phenotypes the conditionally significant variants

constituting the LD set are associated with.

Although associations with red blood cell or platelet phenotypes form a larger proportion

of the total findings, associations with these cell types are less likely to be distinct in

comparison to previous haematological GWAS results. I performed a comparison between

my study of Sysmex parameters and the study of FBC parameters by Astle et al. (Section

4.2.3) [15]. The study by Astle et al. is the largest GWAS of FBC traits and benefits

from a roughly four fold larger sample size (173,480 versus 39,656 individuals). Despite

this, of the 849 high LD (r2 > 0.8) sets identified by my study of Sysmex parameters,

423 are novel in comparison to Astle et al. [15]. I find a far greater degree of overlap

with LD sets containing variants associated with platelet and red cell traits than LD

sets assigned to white cells (Fig. 4.1, 4.2). A total of 375 LD sets were associated solely

with white cell Sysmex parameters of which 73.3% (275 sets) are not reported by Astle

et al.. This is compared to a total of 410 LD sets assigned solely to platelet or red cell

Sysmex parameters of which 30.5% are not reported by Astle et al. (Fig. 4.1, 4.2). This

finding is consistent with low genetic correlation observed between white cell Sysmex

parameters and traits studied by Astle et al. (Fig. 4.5) [15]. The striking difference

in novel associations comparing white cell and red cell or platelet phenotypes can be

explained by the intra-cellular complexity and heterogenity of white cells. Neutrophils,

eosinophils, basophils can be highly granulated cells and associations with side scatter of

these cells are often located in known granule genes. A full list of conditionally significant

associations, their comparison with Astle et al.,, colocalisation with eQTL, pQTL, and

disease GWAS can be found in Table A.1. Furthermore, white cells exhibit greater cellular

heterogenity, especially the lymphocyte cell population which is an amalgamation of many

lymphocyte sub-types, in particular reactive and antibody synthesising lymphocytes are

known to vary in SFL, and FSC measurements (Section 3.2.2.3).
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Figure 4.1: Assignment of LD sets to cell types and examples of sets labelled
as ‘not reported’ by Astle et al., 2016.
a) Conditionally significant variants were clustered into 849 high linkage disequilibrium sets

which are in linkage disequilibrium r2 > 0.8 representing distinct association signals. Sets were
assigned to cell types depending on their association with Sysmex parameters. Sets were labelled
as not reported if none of their constituent conditionally significant variants are in LD r2 > 0.8

with any variants identified by Astle et al., 2016 [15]. Most sets are specific to individual
haematological cell types (not-pleiotropic), this demonstrates the specificity of Sysmex

parameters. LD sets of white cell associations are more likely to be distinct in comparison to
Astle et al.. b) Association plots showing the P-value (-log1 0(P )) for association of each genetic

variant along the genome (x axis) with the phenotype (y axis). This plot shows statistically
significant associations at genes with known roles contributing to white cell function: DEFA1B,
HYAL3, RNASE6 and EXT1 with neutrophil, eosinophil, monocyte, and basophil cell type
Sysmex parameters, and lack of genome wide significant association with respective count

parameters as studied by Astle et al.., 2016.
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An informal literature review finds association signals identified by my analysis of

Sysmex parameters, but not from GWAS of FBC by Astle et al, are often annotated to

genes by VEP which play fundamental roles in immune cell function. GWAS of white

blood cell Sysmex parameters identified 767 associations mapped to 270 genes by VEP, of

these genes, 185 were not identified by GWAS of FBC blood phenotypes by Astle et al

[15]. Of these 185 newly identified genes 72 seem to have a plausible role in the immune

system, as shown in Figure 4.7. An example includes the DEFA locus encoding α-defensin

genes associated with NE-SSC. α-defensin genes at this locus have an established role

in neutrophil immune function accumulating in the granules of neutrophil cells [60]. In

response to pathogenic cells, the cysteine-rich cationic α-defensin peptides are released

from granules of neutrophil cells and create perforations in the pathogen cell membrane

[60]. Despite the established role of DEFA proteins in neutrophil function and physiology

this locus has not been identified by GWAS of traditional neutrophil parameters. Other

examples of new association signals compared to the findings of Astle et al., identified by

my analysis include:

• The PRG2 gene encoding the MBP protein is a major component of eosinophil

granules [136]. Similar to the α-defensin peptides discussed above, MBP is also

a cationic protein which once released from eosinophil granules carries out anti-

pathogenic function by perforating the cell membranes of pathogen cells [98].

• RNASE6, a known component of monocyte granules and a cationic ribonuclease

antimicrobial protein contributing to urinary tract sterility [18].

• EXT1, encodes a glycosyltransferase protein contributing in heparin biosynthesis

[102], heparin is known to be packaged in basophil granules [166] and has been

proposed as an anticoagulant increasing blood flow to infected tissues [27].

• HYAL3 encoding Hyaluronidase 3, a protease which degrades hyaluronan a major

component of the extracellular matrix. The role of HYAL3 in eosinophil function

has not been fully elucidated. However hyaluronidases have been implicated in

remodelling of the extracellular matrix and hyaluronan deposition has been shown

to correlate with eosinophil infiltration of tissues [44].

As previously mentioned, assignment of LD sets to cell types shows there is little

overlap between association signals across cell types (Fig. 4.1). This result indicates that

the genetic determinants of Sysmex parameters are largely cell type specific. Furthermore,

limited overlap is observed between Sysmex parameters of the same cell type - thus

suggesting that Sysmex parameters assay genetically distinct phenomena within a given

cell type (Fig. 4.2). This finding is supported by low phenotype and genetic correlation
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Figure 4.2: Overlap of LD sets of Sysmex parameters by cell type.
a-e) LD sets associated with Sysmex parameters and those assigned to count traits studied by
Astle et al., ‘DW’ represents the three distribution width parameters, in the case of NE-DW:
NE-SSC-DW, NE-SFL-DW, and NE-FSC-DW. Results show limited overlap between Sysmex

parameters, in particular for neutrophil and lymphocyte cell types.

between Sysmex parameters across cell types and to a lesser extent within a cell type (Fig.

4.3 and 4.4).

4.3.1.1 Allelic spectra

Plotting conditionally significant variants in an allelic spectra with effect size on the y axis

and MAF on the x axis shows general concordance with the expected trend: variants with

high effect size having lower MAF, and variants with low effect size having higher MAF

(Fig. 4.6). This trend is driven by natural selection, which eliminates variants with large

effect sizes, as such the effect alleles of genetic variants with large effect sizes are generally

deleterious to fitness [157]. In rare cases where arising genetic variation improves organism

fitness, the mutant allele is driven to become more common in the population and is

thus no longer the ‘minor’ allele the frequency of which is plotted in an allelic spectrum.

However, there are notable exceptions to this trend in the data - these are variants which

have a higher than expected effect size compared to their MAF. This phenomenon could

arise due to balancing selection [157], for example, this could occur of a genetic variant

is deleterious to fitness in some circumstances, but enhances the fitness of the organism

in other circumstances. As an example, conditionally significant variants located in the

α-defensin locus (chromosome 8, 6.78MB - 6.95MB) appear shifted from the expected
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Figure 4.3: Pearson Correlation r2 between Sysmex Parameter Phenotype
Values
Pearson correlation r2 between Sysmex parameters where the colour of each box indicates the

magnitude of the correlation with red indicating positive, and blue negative correlation.
Phenotypes are grouped by cell type, basophils, eosinophils, lymphocytes, monocytes,

neutrophils, platelets, and red blood cells. High correlation is observed between red cell and
platelet Sysmex parameters, limited correlation observed between Sysmex parameters of other
cell types and very little correlation across Sysmex parameters of different cell types. Phenotype

abbreviations are discussed in more detail in Chapter 3.2.2.
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Figure 4.4: Pearson Correlation r2 between Sysmex Parameter Phenotype
Values
Genetic correlation between Sysmex parameters calculated by LD score regression where the

colour of each box indicates the magnitude of the correlation with red indicating positive, and
blue negative correlation. Phenotypes are grouped by cell type, basophils, eosinophils,

lymphocytes, monocytes, neutrophils, platelets, and red blood cells. High correlation is observed
between red cell and platelet Sysmex parameters, limited correlation observed between Sysmex
parameters of other cell types and very little correlation across Sysmex parameters of different

cell types. Phenotype abbreviations are discussed in more detail in Chapter 3.2.2.
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Figure 4.5: Overview of novel signals identified across Sysmex parameters and
their correlation with traditional phenotypes.
The phenotypic and genetic correlation between each Sysmex parameter and a corresponding

FBC measurement is represented in a heatmap and labelled by P and G respectively. For each
phenotype a corresponding FBC measurement was selected for which there is the highest median
correlation across all Sysmex parameters for that cell type. In addition, the number of clumps
identified per parameter stratified by those novel, or not novel in comparison to Astle et al. are
displayed. Sysmex parameters of white cells have lower correlation with related FBC blood cell

measurements, red cell and platelet parameters have a higher correlation. This difference is
reflected in the number of novel independent signals identified for each trait. Reticulocyte count

(RET#), Mean cell haemoglobin (MCH), and Mean platelet volume (MPV). ‘Cell count’
represents the corresponding FBC cell count for that cell type. Phenotype abbreviations are

discussed in more detail in Section 3.2.2.
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relationship between effect size and MAF in an allelic spectrum (Fig. 4.6). α-defensin

proteins are a component of the innate immune system encoding antimicrobial peptides

released from granules to destroy pathogenic cells. Balancing selection to maintain a

heterogeneous population of proteins has been long hypothesised [82, 52]. Phylogenic

analysis of the α-defensin locus by comparison between primates (human, chimpanzee,

orangutan, macaque, marmoset) shows divergence in the encoding of α-defensin genes, but

also conservation of certain amino acid residues [52]. Evolution of the α-defensin locus

seems to be influenced firstly by a need to conserve functionally important properties, but

also the evolutionary advantage associated with encoding a diverse functionally diverse

range of antimicrobial peptides [52]. The functional diversity of antimicrobial peptides is

important as this allows activity against a range of pathogens and reduces the ability of

pathogenic strains to overcome immune action [52]

My work adds further evidence to the hypothesis of balancing selection of α-defensin

proteins. However, it must be noted that the α-defensin locus contains a high number

of repeated genetic elements, repeated genetic elements can make the assignment of a

genotyped variant to a location in the genome unreliable. This may be better addressed by

genome sequencing of this locus, which may help to identify repeated elements by genome

sequencing could also be an important genetic factor which modulates changes in neutrophil

granularity and the NE-SSC parameter. However, in many scenarios classical genome

sequencing technology can struggle to resolve regions where repeated elements constitute

longer stretches of DNA [139]. In the future, next generation sequencing technology such

as that provided by Oxford Nanopore may be provide a solution to better resolve repeat

regions [87].

4.3.1.2 Identification of functionally relevant genes

GWAS analysis of Sysmex parameters identifies genetic signals which are annotated by

VEP to be located in genes relevant to white cell function. I performed a literature review

of genes identified by VEP annotation of conditionally significant variants associated with

Sysmex parameters. My literature review found functional relevance of these genes in

a number of blood cell functions such as haematopoiesis, cell adhesion and chemotaxis,

cell activation, and others. The results of my literature review across the seven primary

blood cell types (platelets, red blood cells, neutrophils, eosinophils, basophils, monocytes,

and lymphocytes) are summarised in Figure 4.7 and corresponding references can be

seen in Table A.1. These results show that conditionally significant variants often appear

annotated to genes which perform known and functionally important roles in blood cells

4.7. Genes are further annotated by their colocalisation with eQTL, pQTL, or disease

GWAS association signals which is labelled in Figure 4.7 and discussed further in Chapter

5.
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Figure 4.6: Allelic spectra of conditionally significant variants.
Each conditionally significant association plotted with MAF on the x axis and effect size on the
y axis. Since a conditionally significant variant may appear associated with multiple Sysmex

parameters the same variant may appear more than once on the plot. Associations are coloured
by their VEP annotation to CDK6, α-defensin, HYAL3, or NLRP12 genes.
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4.4 Summary

GWAS analyses can identify variants which are significantly associated with a phenotype

of interest, however due to LD between variants in the genome the number of true genetic

signals is not apparent from this analysis alone. I performed a conditional analysis to

identify a parsimonious set of variants which represent the underlying genetic association

signals. I show that the genetic determinants of Sysmex parameters are largely cell type

specific, furthermore there is limited overlap between parameters for the same cell type.

Finally using an LD clumping approach, I compared the total number of signals identified

across all 63 Sysmex parameters in my study, with the genetic signals identified by Astle

et al. [15]. VEP annotation of my conditionally significant variants to nearby genes

and subsequent literature review shows identification of genes contributing to blood cell

function including cell chemotaxis and adhesion, cell activation and immune response, and

cell survival. The results of this work inform further downstream analysis to annotate

genetic signals using corollary datasets from eQTL, pQTL, and disease risk GWAS studies

(Section 5).
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Chapter 5

Downstream analysis and biological

inference

5.1 Introduction

In previous chapters I presented my GWAS analysis which has identified genetic variants

associated with changes in blood cell phenotypes. However, I began this thesis by outlining

my aims not only to identify new genetic associations with haematological phenotypes,

but also the interpretation of GWAS results and the potential for this interpretation to

inform biological and clinical experimentation. As previously explained in Section 1.6, the

primary challenges in interpretation of GWAS are as follows:

• Confident identification of the genes mediating each genetic association, a starting

point for further inference.

• Understanding the mechanisms of biology which lead to the emergence of a genetic

association and understanding the tissue specificity of those mechanisms.

• Inferring a causal relationship between two measurements, for example a risk factor

and disease risk, and the implications of this for the consideration of the risk factor

as a target for therapeutic modulation.

I explored these questions by performing a number of analyses detailed in this chapter,

including colocalisation and MR. In Section 1.6.2 I introduced genetic colocalisation

analysis, a tool for interpretation of GWAS results which can determine the same variant

is the common cause of associations with multiple phenotypes. With colocalisation I

have identified genetic determinants of blood cell phenotypes which have concomitant

effects on blood cell transcripts (Section 5.1.2), blood plasma proteins (Section 5.1.3), and

disease risk (Section 5.1.4). I focused my analysis on cardiovascular and immune related

disease outcomes due to the known role of blood cells in mediating these disease types
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[83, 15, 97, 49, 150]. A broad discussion of the implications of colocalisation analysis in

interpretation of GWAS results is given in Section 1.6.2.

However, colocalisation analysis is limited because it can only show that a genetic

association is simultaneously influencing a set of phenotypes. Colocalisation cannot

prove causal relationships between the associated phenotypes. MR can determine causal

relationships between two phenotypes, often termed ‘exposure’ and ‘outcome’ (Section

1.6.3). I utilise MR to explore potential causal relationships between blood cell phenotypes

and cardiovascular and immune disorders (Section 5.3.4).

I performed colocalisation between genetic associations from GWAS of 63 Sysmex

parameters and GWAS of 5,995 blood cell type specific transcripts, 1,478 blood plasma

proteins, and risk of 22 cardiovascular and autoimmune disorders. Blood cell type

specific transcripts where chosen in order to assess the influence of associations not only

on haematological parameters but expression of genes in the relevant blood cell-types.

The dataset of 1,478 blood plasma proteins was chosen to study the influence of Sysmex

parameters on the composition of the plasma proteome, because many clinically therapeutic

drugs or candidate drugs target proteins in the plasma. We hypothesised that associations

with blood cell properties (particularly granulation) as measured by Sysmex parameters

would also influence composition of the blood plasma proteome. Furthermore, selection

of the blood plasma proteome dataset was practically convenient due to the size of this

dataset in terms of the number of proteins assayed and the sample size, furthermore this

data was readily available to me as the results were generated by colleagues analysing

samples from participants in the INTERVAL study. Finally, I performed colocalisation

with risk of cardiovascular and autoimmune disorders as these disease outcomes are those

which are known to be influenced by blood cell function.

My analysis has annotated genetic determinants of Sysmex parameters to a range of

autoimmune disorders such as atopic dermatitis, multiple sclerosis, and celiac disease.

My results are informative for drug design and target selection, demonstrated by two

examples: replicating the known mechanism of action of Daclizumab by it’s influence of

lymphocyte cell properties via IL2RA (Section 5.3.2.1) a treatment for Multiple Sclerosis

(MS), and evidence for a common genetic determinant influencing IL-18R1 plasma protein

concentration, NE-FSC, and risk for celiac disease (Section 5.3.2.4). I have identified many

common genetic determinants between white cell granulation as measured by Sysmex

parameters and the blood plasma proteome (Section 5.3.3). Furthermore, I perform MR

analysis to assess causal association between white cell parameters and disease, and identify

causal relationships between NE-SSC and coronary artery disease (CAD) or lung cancer

and EO-FSC and asthma (Section 5.3.4).
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Cell Type CD Marker Cardiogenics CEDAR WTCHG BP Total
Monocyte CD14 758 300 432 1,490

Granulocyte
Neutrophil

CD15 300 300

T-Lymphocyte CD4 300 300
T-Lymphocyte CD8 300 300
B-lymphocyte CD19 300 300

Platelet PLA 268 156 424

Table 5.1: Contribution of studies to the eQTL analysis of blood cell types.
Number of individuals for which genotype and expression data was available is presented, all

individuals are healthy participants except for 363 individuals in the Cardiogenics dataset whom
have a previous history of coronary artery disease, BLUEPRINT (BP).

5.1.1 Quantitative trait loci

Quantitative trait loci (QTL) are genetic loci associated with variation in a quantitative

trait. Examples include eQTL or pQTL, representing transcript abundance (expression)

and protein concentration respectively. However, we must always enquire about the specific

nature of these phenotypes, for example, eQTL analysis can use blood cell type specific

RNA or RNA extracted from whole blood. The eQTL and pQTL results utilised in my

work are quantitative GWAS studies of transcripts expressed by specific blood cell types

and proteins in the blood plasma respectively.

5.1.2 Expression quantitative trait loci

I used eQTL data generated from a number of specific blood cell types separated using

immunophenotyping cluster of differentiation (CD) markers [94]. The CD method utilises

markers such as cell surface carbohydrates or proteins which can be signalling molecules or

cell adhesion proteins to identify cell types [59]. In total, I obtained eQTL data for platelets,

monocytes, lymphocytes, and neutrophils [94]. This eQTL analysis was performed by

Kreuzhuber et al., who combined individual level genotype and phenotype data collected

from a number of studies: Cardiogenics, CEDAR, Wellcome Trust Centre for Human

Genetics (WTCHG), and BLUEPRINT [94]. Sample sizes for each cell type ranged from

between 300 to 1,490 individuals (Table 5.1). Individuals participating in the Cardiogenics,

WTCHG and BLUEPRINT studies were healthy, in CEDAR of 758 participants, 395 were

healthy individuals and 363 had a history of coronary artery disease [94].

5.1.3 Protein Quantitative Trait Loci (pQTL)

Sun et al., performed an aptamer based assay (SOMAscan) which allowed the quantification

of 3,622 plasma proteins in 3,301 participants from the INTERVAL study, of which 2,994
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were studied in a GWAS of 10.4 million imputed variants. This analysis identified 1,927

significant associations (P < 1.5× 1011) with 1,478 plasma proteins [164]. Protein levels

were quantified with binding of aptamers to circulating proteins, in some cases it is possible

that associations could result from genetic variations which influence the affinity of aptamer

binding rather than changes in protein levels [164]. Sun et al. addressed this by comparing

the GWAS results for a subset of the proteins studied by SOMAscan with a complementary

antibody based Olink assay and found strong concordance between the predicted effect

size of associations (r = 0.83) [164].

5.1.4 Disease risk GWAS

Many case-control based GWAS of disease outcomes have been performed and many

associations with disease risk have been identified. However, a GWAS study in isolation does

not provide a full picture on which cell types, cell functions, proteins, and transcripts are

causally mediating a particular association. I have colocalised associations of haematological

phenotypes with associations with disease risk and identified genetic associations with

biological mechanisms involving both blood cell biology and disease aetiology. My dataset

of GWAS summary statistics for 28 disease outcomes is largely focused on cardiovascular

and immune disorders (Appendix 5.4), due to the known role of blood cells in mediating

such disorders [83, 15, 97, 49, 150].

5.2 Methods

5.2.1 Colocalisation

Methods for colocalisation analysis (Section 1.6.2) have been implemented in software

packages by a number of authors. In my analysis I utilise two implementations: coloc by

Giambartolomei et al. [70] and gwas-pw by Pickrell et al. [137].

coloc uses a user-set prior for the chance of association between a SNP and the

phenotype and the variance for this effect size. gwas-pw estimates prior parameters for

association of SNPs to the phenotype using a genome-wide optimisation procedure, and

averages over a set of priors for the variance of SNP effect sizes. The gwas-pw approach is

more computationally burdensome and also requires full genome-wide association summary

statistics. This is not available in the case of eQTL colocalisation as variants only 1 MB

on either side of each gene were tested for association. The genome-wide approach for

estimating priors is also inappropriate for pQTL colocalisation due to the very small

number of signals identified genome-wide per protein (1,927 associations for 1,478 proteins

tested).

In contrast, the coloc approach uses predefined priors, this is my preferred approach
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eQTL Celltype Sysmex Parameter

PLA
H-IPF, P-LCR, PLT-FSC,

PLT-FSC-DW, PLT-SFL, PLT-SFL-DW,
PLT-SSC, PLT-SSC-DW

CD19

LY-FSC, LY-FSC-DW, LY-SFL,
LY-SFL-DW, LY-SSC, LY-SSC-DW,

RE-LYMP(L)%, RE-LYMP#,
RE-LYMP%

CD15
NE-FSC, NE-FSC-DW, NE-SFL,

NE-SFL-DW, NE-SSC, NE-SSC-DW

CD14
MO-FSC, MO-FSC-DW, MO-SFL,

MO-SFL-DW, MO-SSC, MO-SSC-DW

CD8

LY-FSC, LY-FSC-DW, LY-SFL,
LY-SFL-DW, LY-SSC, LY-SSC-DW,

RE-LYMP(L)%, RE-LYMP#,
RE-LYMP%

CD4

LY-FSC, LY-FSC-DW, LY-SFL,
LY-SFL-DW, LY-SSC, LY-SSC-DW,

RE-LYMP(L)%, RE-LYMP#,
RE-LYMP%

Table 5.2: Colocalisation between haematological parameters and cell type
matched between eQTL.
A table of cell types for which eQTL data was collected by Kreuzhuber [94] and the cell type

matched Sysmex parameters for which colocalisation was performed. In total colocalisation was
performed for 47 eQTL and Sysmex parameter pairs.

for colocalisation with eQTL and pQTL data. Furthermore, the coloc was used by the

authors of the blood plasma proteome pQTL study to colocalise their results with a series

of eQTL and disease datasets [164]. Alternatively, for disease risk colocalisation I utilise

the gwas-pw method. Here there are a larger number of signals across the genome, but

fewer sets of GWAS summary statistics to be colocalised making the gwas-pw method

computationally tractable. I further discuss my reasoning for implementation of two

colocalisation methods in Section 5.3.1.
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Figure 5.1: Schematic of the models considered by gwas-pw.
Posterior probabilities are calculated for each of the described models. The first and second
model defines a single causal variant with phenotypes 1 and 2 respectively, the third model

describes a single causal variant with both phenotypes, and model 4 shows two distinct causal
variants for phenotypes 1 and 2. The null model with no association in either phenotype is not

shown (Figure source: [137]).

5.2.1.1 Colocalisation with gwas-pw by Pickrell et al., 2016

Using a Bayesian approach, posterior probabilities are computed for following models

which represent the underlying genetic architecture assuming at most one causal signal

for each phenotype in the locus. The total posterior probability will sum to 100%, thus

Pickrell et al. assume that all possible outcomes are captured in the following scenarios

(Fig. 5.1):

• Null Hypothesis: No associated genetic variants with either trait.

• Model 1: The locus contains one genetic variant which influences the first phenotype.

• Model 2: The locus contains one genetic variant which influences the second pheno-

type.

• Model 3: The locus contains one genetic variant which influences both phenotypes.

• Model 4: The locus contains two separate genetic variants which influence the first

and second phenotype respectively.

Calculation of posterior probabilities for the models (Fig. 5.1) begins with calculation

of Bayes factors which represent the evidence for a variant being associated with the first
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or second phenotype: BF (p), where p ∈ {1, 2} is an index over the two phenotypes. Bayes

factors are the ratio between the likelihood ratio of a null (the variant is not associated)

and alternate hypotheses (the variant is associated). Bayes factors for SNPs in a chosen

locus are summed to calculate Regional Bayes Factors, RBFp for each model in the locus,

and RBF s are then used to calculate the posterior probability for each of the four models

in the locus.

Bayes factors are calculated using the Wakefield approximation, the Wakefield approxi-

mation allows computation of Bayes factors from frequentist p-values [174]. A Bayes factor

is calculated for the association of each SNP with phenotype 1 or 2 indexed by p ∈ {1, 2}:

WABFp =
√

1− rpexp[
Z2
p

2
rp] (5.1)

Where Zp = β̂p√
Vp

and rp = Wp

Vp+Wp
, β̂p is the estimated effect size for association of

the SNP with phenotype p, and
√
Vp is the standard error of the effect size estimate.

rp is a shrinkage factor computing the ratio between variance of the prior W and total

variance. Thus, effect sizes are distributed as follows βp ∼ N (0,Wp) with Wp set to 0.01,

0.1, or 0.5 and the Bayes factors are averaged over those values. Not much reasoning is

given by Pickrell et al., to justify this choice for their prior on the variance of the effect

size. However, it could be argued that the degree of justification for the assignment of a

prior should be proportional to the degree of influence that prior will have on the final

estimated outcome. Most priors are assigned on the mean of an estimate (such as in

the coloc method), here Pickrell et al., assign a very broad set of priors on the variance.

Therefore, I do not find their lack of justification for their choice problematic. Since the

publication of gwas-pw in 2016 a better alternative has not been proposed (at the time of

writing). As mentioned, Bayes factors are averaged over the three prior values and are

defined as follows for the first three models:

BF (1) = WABF1 (5.2)

BF (2) = WABF2 (5.3)

BF (3) = WABF1WABF2 (5.4)

Broadly speaking, the calculation of the Bayes factors with the Wakefield approximation

relies on the asymptotic assumption that the sample size is “large” which is generally

satisfied in the context of a GWAS study. For a formal proof of Eqn. 5.1 see the Appendix

of Wakefield 2009 [174]. Regional bayes factors are defined across an entire locus to

represent the models defined above (Fig. 5.1), Regional Bayes Factors are computed as
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follows for models (m) 1, 2 and 3, where K is the total number of SNPs in the locus

indexed by i:

RBFm =
K∑
i=1

π
(m)
i BF

(m)
i (5.5)

The Regional Bayes Factor for model 4 is defined as follows:

RBF 4 =
K∑
i=1

K∑
j=1

π
(1)
i BF

(1)
i π

(2)
j BF

(2)
j I[i 6= j] (5.6)

The purpose of the I[i 6= j] term is to restrict the sum to pairs of Bayes factors for which

the corresponding causal variants are distinct for the two phenotypes. π
(m)
i represents

the prior probability of association of SNP i with the phenotype. The SNP priors for all

models (m) are set as follows: π
(m)
i = 1

K
, where K is the total number of SNPs in the

locus.

Finally, using the regional Bayes factors, the following likelihood function is constructed

indexing over all loci in the genome by I. Prior probabilities for each of the four models

are identified by optimisation of the following likelihood function:

l(θ|D) =
I∑

k=1

log(Π0 +
4∑

m=1

ΠmRBF
(m)
k ) (5.7)

Where Π0 is the prior probability that a region has no associated genetic variants, and

Π(m) is the prior probability of each of the four models (m) described above. RBF
(m)
i

is the Regional Bayes Factor of each of the four models indexed by m. The summation

indexed by m is over each of the four models or hypotheses. l(θ|D) is the definition of

posterior probability for all four models where θ represents parameters for all four models

and null hypothesis. We identify the prior probabilities (Π) by maximising the likelihood

function l(θ|D), thus identifying the prior probabilities for each model from the data

itself. From here, posterior probabilities (PP) for each locus can be constructed using the

Regional Bayes Factors RBFm
i and prior probabilities Πm, where m is an index over all

possible models:

PP
(m)
i =

RBF
(m)
i Π(m)∑4

m=0RBF
(m)
i Π(m)

(5.8)

The method assumes at most one causal signal per phenotype in the locus of interest.

Furthermore, it is not possible to differentiate between models 3 and 4 if the causal variants

for each of the traits are in high LD. Note that calculation of the prior for model three

(Π3) is defined as the prior for the proportion of genomic regions containing a common

variant that detectably influences both phenotypes. If there is indeed a common causal
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variant which effects both phenotypes but this association signal is very weak, this locus

will not have a high posterior probability (PP) for colocalisation [137].

5.2.1.2 Colocalisation with coloc by Giambartolomei et al., 2014

Giambartolomei et al. begin by defining a null hypothesis and four alternative hypotheses

as described above, however the definitions of models 3 and 4 are switched when compared

to the colocalisation implementation by Pickrell et al. The posterior probability for each

of the four hypotheses h is defined as follows:

P (Hh|D) ∝
∑
S∈Sh

P (D|S)P (S) (5.9)

Where h is one of four hypotheses, and Sh represents a complete set of all possible

SNP ‘configurations’ which are true under each hypothesis. A configuration is a pair of

lists, where each list contains a binary element for each variant in the locus (Fig. 5.2).

Every configuration has two lists and each list has up to one binary element set to true

to represent the variant which is the causal mediator of the association signal. Each

hypothesis, for example, the hypothesis for a colocalisation occurring, has multiple possible

configurations. This is because it could be any one (or none) of all the variants in the

locus (represented by elements in the list) which could be associated with the phenotype.

The hypothesis for a colocalisation occurring, has n total possible configurations, where n

is the number of variants in the locus. An example of three configurations is presented in

Figure 5.2.

coloc makes the assumption that the prior for association is consistent across SNPs

and therefore we can simplify to the following:

P (Hh|D) ∝
∑
S∈Sh

P (D|S)P (S) = P (S|S ∈ Sh)×
∑
S∈Sh

P (D|S) (5.10)

Where the summation is summing over every SNP in the configuration set for that

model represented by Sh. To avoid calculating the proportionality constant which is

the Bayesian normalising constant (Eqn 5.9), Giambartolomei et al. divide by P (H0|D)

changing the calculation of posterior probability to that of posterior odds:

P (Hh|D)

P (H0|D)
=

∑
S∈Sh

P (D|S)

P (D|S0)
× P (S)

P (S0)
(5.11)

The first term in the equation
∑

S∈Sh

P (D|S)
P (D|S0)

is summation of Bayes factors for SNPs

in each configuration within each hypotheses (indexed by S). This is the definition of

Regional Bayes Factors made above (Eqn. 5.5). The calculation of such is performed in

the same way from summary statistics using the Wakefield approximation (Eqn. 5.1). The
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Figure 5.2: Example of one configuration for each of the four hypotheses.
Configurations are represented by binary vectors, where each element in the vector is a SNP. A
value of 1 indicates the SNP is causally associated with the phenotype, and 0 indicates that the

SNP is not associated with the phenotype. One configuration per hypothesis (model) is
displayed, each model will have a large number of configurations and only one of which is shown
in the figure. The first plot shows the a single causal variant associated with the first or second

phenotype, the second plot shows two causal variants associated with phenotypes 1 and 2
respectively, and the final plot shows a single causal variant associated with both phenotypes

(Figure source: [70]).

126



second term P (S)
P (S0

) represents the prior odds of the model under consideration and the

null hypothesis. Prior probabilities are defined by Giambartolomei as the following, p1, p2

representing the prior for association of a SNP with the first or second trait respectively,

and p12 representing the prior for association of the SNP with both the first and second

trait. Given that a SNP must exist in one of the four models defined above (Fig. 5.2),

p0 + p1 + p2 + p12 = 1 where p0 is the prior for association with no trait.

In my analysis to perform colocalisation between association signals with the Sys-

mex parameter traits and pQTL or eQTL association signals I used the following prior

probabilities:

• The prior for association of the SNP with trait 1 or 2: p1 = p2 = 1× 10−4.

• The prior for the SNP being associated with both traits p12 = 1× 10−6.

• The prior for the SNP being associated with neither trait: p0 = 0.999799.

The choice of priors represents an assumption of my approach, my confidence in this

assumption is based on the following factors:

• The successful implementation of coloc with the same prior probabilities by peer

reviewed publications which colocalise association signals with eQTL [70] and pQTL

[164] data, and sensitivity analysis performed by Giambartolomei et al. [70].

• The set priors are conservative given the design of my colocalisation experiment.

I only ever perform colocalisation in a locus if the following two conditions are

met: 1) There is a significant association in that region with both phenotypes. 2)

The conditionally significant variant associated with the Sysmex parameter has

a significantly associated proxy of LD r2 > 0.8 in the partner phenotype. The

significance threshold in the partner phenotype is defined separately based on that

specific GWAS study.

• A thorough and manual search through all the purported colocalising loci generated

from this prior inspecting colocalising loci and the LD structure within those loci to

check the purported colocalisations.

Finally, it must be stressed that no statistical procedure can prove an outcome with

full certainty. In the colocalisation approach a posterior probability for each of the four

aforementioned models including that of a colocalising loci is generated. When discussing

results I always resolve to communicate to the reader the posterior probability for the

discussed colocalisation being ‘true’ rather than presenting a binary true / false outcome

which simplifies the inherent uncertainty in the statistical procedure.
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5.2.2 Mendelian randomisation

A MR analysis uses genetic variants as instrumental variables to assess a causal relationship

between an exposure and outcome (Fig. 1.21). MR assesses causality utilising ‘instrumental

variables’ derived from the results of a GWAS study (Section 1.6.3). Instrumental variables

are independent genetic variants associated with the exposure of interest. A causal

association between the exposure and outcome of interest can be tested using the inverse

variance weighted (IVW) MR model. The following three assumptions must hold for a

genetic variant to be a valid instrumental variable [30]:

1. The variant must be predictive of the exposure, thus have a significant association

with the exposure.

2. The variant must be independent of any measured or unmeasured confounding

factors which influence both the exposure and outcome.

3. The variant must not influence the outcome through any pathway other than the

chosen exposure, often termed the ‘exclusion restriction criterion’.

Assumption 1) can be tested with a standard GWAS analysis which determines

significance of association between a genetic variant and phenotype. However, assumptions

2) and 3) are more difficult to test as they depend on factors which may not be measured.

For example, if a genetic variant influences an alternative unknown factor which also effects

the outcome, assumption 2) will be broken. Similarly, if the genetic variant is associated

with changes in an unmeasured confounding factor which influences both the outcome

and exposure, this could induce a seemingly causal relationship between the exposure

and outcome. As we are modelling complex biological systems, assumption 3) is rarely

ever true, variants are generally pleiotropic, meaning they influence multiple traits and

phenotypes. In the context of IVW analysis assumption 3) is relaxed to assume ‘balanced

pleiotropy’ between all instrumental variables. Balanced pleiotropy suggests that the

overall sum of pleiotropy across all instrumental variables should sum to zero. This can be

tested qualitatively with a funnel plot, or quantitatively using MR-Egger an extension of

the IVW model which allows the intercept of the regression line to vary. The assumptions

for valid instrumental variables rarely holds true for complex phenotypes such as the

Sysmex parameters studied in my analysis. Therefore, I utilise a number of alternative MR

models which relax the assumptions listed above and applied these methods as sensitivity

analyses to determine if estimated causal effects are consistent across the multiple MR

models with differing assumptions, this is discussed further in Section 5.2.2.2.
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5.2.2.1 Mendelian Randomisation Software Analysis Protocol

My MR analysis began with a set of conditionally independent variants which are associated

with the exposure and were intended to be instrumental variables for this exposure of

interest. Following this, my mendelian randomisation protocol proceeded with the following

steps which were implemented in a custom R pipeline utilising the TwoSampleMR package

by Hemani et al [80]:

1. The instrumental variables must be independent with each other, not only being

conditionally independent but also filtered to ensure none are pairwise LD higher

than 0.6 r2.

2. I collected the univariate summary statistics (estimated effect size and standard error

of this estimate) for association of the instrumental variables with the exposure.

3. I collected the univariate summary statistics for association of each instrumental

variable with the outcome.

4. In the case where the instrumental variable in question does not exist in the GWAS

of the outcome, a close proxy with LD greater than 0.8 r2 is used instead.

5. The effect size directionality between the exposure and outcome are ‘harmonised’,

as in many cases the definition of reference and alternative allele for a variant differs

between GWAS studies. At this stage, insertion or deletion variants are removed

due to potential inconsistencies in the way the alleles of such variants can be coded

and assigned to a specific base-pair in the genome.

6. I performed, not only the standard IVW and egger MR analysis, but also nine other

MR tests to test for robustness of a purported causal association. These sensitivity

tests are in Table 5.2.2.2 and discussed further in Section 5.2.2.2.

My usage of an LD threshold of 0.8 r2 is based on similar analysis by other authors

[80] [15], a correlation of 0.8 r2 (given a maximum possible r2 of 1.0) between two variants

is strong evidence that those variants are largely tagging the same underlying genetic

changes in most individuals. In step 4) of my protocol I removed insertion or deletion

variants simplifying the analysis, but also removing potentially informative instrumental

variables. This simplifying step also allowed me to utilise the TwoSampleMR R package

and MRBase platform by Hemani et al., to collect and harmonise instrumental variables

[80].
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5.2.2.2 Mendelian randomisation models

In total my MR analysis utilised 12 MR models, each of which varies slightly in the

estimation of causal effect between exposure and outcome. The 12 methods can be

assigned to the following categories: IVW, median based, and MR egger regression. MR

methods may be further modified by: weighting, penalisation, robust regression, and both

penalisation and robust regression together (Table 5.2.2.2).

Inverse variance weighted

IVW MR begins by calculating a ratio of association estimates between exposure and

outcome for each instrumental variable:

θ̂j =
β̂Y j

β̂Xj
(5.12)

Where j is an index over all instrumental variables, β̂Y j is the estimated effect size

of variant j on the outcome, and β̂Xj is the estimated effect size of that variant on the

exposure. The estimation of variant effect sizes on a phenotype (exposure or outcome) is

performed as part of a GWAS analysis and this was presented in Section 1.5. These ratio

of association estimates are combined [36] to estimate the causal association (θ̂IV W ) as

follows:

θ̂IV W =

∑
j β̂

2
Xjse(β̂Y j)

−2θ̂j∑
j β̂

2
Xjse(β̂Y j)

−2
(5.13)

The IVW estimator has the effect of weighting each instrumental variable by β̂2
Xjse(β̂Y j)

−2,

or conceptually the ratio between the influence of the instrumental variable on the ex-

posure and uncertainty in the estimated effect of the variant on the outcome. A variant

with a small effect on the exposure and highly uncertain influence on the outcome has a

down-weighted influence on the final causal estimate θ̂IV W .

Median based

The IVW method for estimating the causal effect becomes biased if even a single instru-

mental variable breaks the aforementioned assumptions (Section 5.2.2). This was described

by Bowden et al., as the IVW method having a 0% ‘breakdown level’ [30]. Bowden et al.,

proposed the median based MR approach where the causal estimate is simply calculated as

the median of all the calculated ratios between estimated effect on outcome and exposure

(Eqn. 5.12) [30]. This median based method has a 50% ‘breakdown level’, meaning that

up to 50% of the instrumental variables can be invalid without resulting in a biased causal

estimate [30].
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However, this median based approach is inefficient, particularly when the estimate

of effect sizes of the instrumental variables is uncertain. Furthermore, the certainty of

the causal estimate will not improve with an increasing number of instrumental variables.

Therefore, Bowden et al., also proposed the weighted median estimator. Here each

instrumental variable j is given a weight wj where weights are computed similar to the

IVW approach above: β̂2
Xjse(β̂Y j)

−2. Weights are then standardised in order to sum to 1

the weighting of each variant then informs identification of the ‘median’ point. Given an

ordered list of effect size ratios θ̂j, a cumulative weight sj =
∑j

k=1wk is computed and a

distribution is created which has an estimate θ̂j at it’s pj = 100(sj − wj

2
) percentile [30].

We can see from this equation that the median (50% percentile) point will be shifted to

be ‘earlier’ compared to the classical paradigm if the instrumental variants with lower

estimated ratios are up-weighted, and the opposite in the converse scenario [30].

MR Egger regression

The IVW approach assumes that instrumental variants with no effect on the exposure

also have no effect on the outcome. This assumption mandates that the instrumental

variable should not effect the outcome except through the exposure of interest. However,

this assumption is often broken due to the pleiotropic nature of genetic variants which

often effect multiple phenotypes. The MR egger approach replaces the aforementioned

assumption with a weaker assumption which states that pleiotropic effects of the variants

on the outcome may exist, but must be independent and should not correlate with the

magnitude of association with the outcome [29].

MR egger introduces an intercept term which represents the overall pleiotropic effect

of the instrumental variables on the outcome [29]. As before, β̂Xj is the estimated effect

on the exposure, and β̂Y j estimated effect on the outcome:

β̂Y j = γ0 + γEβ̂Xj (5.14)

Here γE is be computed as the estimated causal effect of the exposure on the outcome

and offers a more flexible approach compared to the IVW method. However the additional

degree of freedom introduced by estimating the intercept parameter γ0 will decrease power

to detect causal relationships compared to the IVW approach [29].

It should be noted that before an MR egger analysis, instrumental variables must be

re-orientated so that all genetic variants are in the ‘positive’ quadrant [29]. This means

that for all variants where β̂Xj < 0, both estimated effect sizes on the exposure and

outcome are multiplied by -1 to ensure that estimated effect size on the exposure is not

less than zero. Orientation of genetic variants is arbitrary and depends on which allele is

considered to be the ‘effect’ allele. Consistent orientation of instrumental variables allows

proper estimation of the intercept term (Eqn. 5.14).

131



Penalised regression

One implicit assumption made by the IVW approach is that the influence of the exposure

on the outcome is consistent regardless of the ‘pathway’ by which the exposure is influenced.

More specifically, sub-sets of genetic variants may influence the exposure by differing

biological pathways that then have a causal effect on the outcome of a different magnitude.

This assumption is unlikely to be true in practice especially when working with complex

intermediate traits such as the Sysmex parameters in question. Both ‘penalised’ or

‘robust’ regression techniques address this heterogenity by reducing the impact of outlying

instrumental variables (or variants) on the causal estimate.

Penalised regression will down-weight instrumental variables with a heterogeneous

(outlying) θ̂j ratio (Eqn. 5.12) [30], where heterogenity calculated by the Cochrans Q

statistic [30]. The Q statistic is calculated as follows:

Qj = β̂2
Xjse(β̂Y j)

−2(β̂j − θ̂) (5.15)

Here θ̂ is the causal estimate of the IVW or egger regression, depending on which

method the penalised modifier is applied to. Following this, the weights of the variants

are calculated as follows:

w∗j = β̂2
Xjse(β̂Y j)

−2min(1, 20qj) (5.16)

Where qj is the one sided upper P-value of Q statistic Qj on a chi-squared distribution

of degree freedom 1 [30]. The effect of this approach is that most variants are not influenced

by the penalisation, but the influence of outlying variants on the final causal estimate will

be severely down-weighted.

Robust regression

Robust regression is designed to allow greater tolerance to outlying instrumental variables

by down-weighting the influence of these data-points on the final estimate [142]. In this

example the MM-regression procedure is used [9]. In essence, Tukey’s bisquare objective

function is used to down-weight outlying instrumental variables in the estimation procedure:

w(rj) =

{
[1− rj

c

2
]2 |rj| < c

0 |rj| ≥ c
(5.17)

Where rj is the residual of data-point or instrumental variable j, w(rj) is the calculated

weight, and c is a tuning parameter. In the MM-estimation robust regression protocol the

tuning parameter c is initially set to 1.548 then 4.685 in a two step procedure [9] [142].
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5.3 Results

In this section, I present my results of colocalisation and MR analysis of the genetic

determinants of Sysmex parameters identified in Chapter 4. The purpose of MR is to

identify a causal association between tested Sysmex parameters (purported risk factors)

and disease outcomes (Section 1.6.3). Colocalisation can determine if two phenotypes

share a common genetic determinant in a locus of association. I discussed my motivations

for colocalisation regarding biological and aetiological inference in Section 1.6.2.

5.3.1 Colocalisation of genetic determinants of Sysmex parame-

ters with disease risk

The total set of GWAS summary statistics utilised for disease colocalisation is listed in

Tables 5.4, 5.5, and 5.6, and summary statistics utilised for eQTL colocalisation are listed in

Table 5.1. Furthermore, Sun et al., performed GWAS analysis for 1,478 plasma proteins as

measured by SOMAscan (Section 5.1.3) which I also studied in my colocalisation analysis,

a full list of plasma proteins can be seen in the relevant publication [164]. As previously

discussed in Section 5.2.1, the gwas-pw procedure utilised for disease colocalisation assigns

prior probabilities based on a genome-wide optimisation procedure. This genome-wide

calculation is not possible in the case of eQTL colocalisation as the association study

was limited to a 1 MB range around each gene, and inappropriate in the case of pQTL

colocalisation due to the small number of signals identified per protein phenotype (1,927

associations identified across 1,478 proteins tested). Therefore, for eQTL and pQTL

colocalisation I utilised the coloc approach (Section 5.2.1.2).

My colocalisation analysis identified 134, 164, and 74 variant-trait associations which

colocalise with atleast one eQTL, pQTL, and disease risk GWAS respectively. Furthermore,

there are 6, 15, and 5 variant-trait associations colocalising with atleast one eQTL and

pQTL, pQTL and disease risk, and eQTL and disease risk association signal. There are no

variant-trait associations with colocalise with a eQTL, pQTL, and disease risk association

signal (Fig. 5.4).
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Figure 5.3: Overview of LD sets which colocalise with loci from different
GWAS analyses.
Heatmap showing colocalisations between LD sets associated with all Sysmex parameters and
pQTL, eQTL, and disease GWAS datasets. Irritable Bowel Disease (IBD), Ulcerative Cholitis

(UC), Multiple Sclerosis (MS), Celiac Disease (Celiac), Systemic Lupus Erythematosus (Lupus),
Atopic Dermatitis (AD), Coronary Artery Disease (CAD), Primary Sclerosing Cholangitis

(PSC), Primary Biliary Cirrhosis (PBC). trans pQTL are associations with the plasma
concentration of a protein encoded by a gene which is further than 1 MB from the association

signal and cis pQTL are associations located within 1 MB of the appropriate gene.
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Figure 5.4: Flow chart showing systematic reduction of candidate genes from
initial association signals through colocalisation.
Colocalisation allows systematic reduction of association signals (or candidate genes) to
smaller sets for which there is evidence for the association signal causally modulating

biological factors (eQTL, pQTL, disease risk).
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5.3.2 Disease aetiology and drug target validation

I have identified 73 associations with Sysmex parameters which colocalise with GWAS

risk for cardiovascular inflammation or immune related disease (PP > 80%) (Table A.1)

(Fig. 5.3). My analysis annotates signals associated with risk for disease and functionally

informative blood cell properties as measured by Sysmex which are discussed below. In

Section 1.6.5 I discussed the challenges of drug development, in particular:

• In the clinical pipeline of AstraZeneca between 2005 - 2010, 88% of drugs failing

at Phase IIb did so due to lack of efficacy. In 40% of these cases the reason for

failure due to efficacy was cited to be target linkage to disease not established or no

validated models available.

• Usually, $1 billion dollars of development costs are incurred prior to Phase II, the

first real chance to test efficacy of a drug compound in man.

During drug development a billion dollars and many years of research may go by before

the first chance to test a purported efficacious drug target in humans. Furthermore, after

a huge commitment of time and resources many candidates are failing because they simply

are not efficacious! It is this context which motivates my thesis and the work of other

statistical geneticists. I do not aim to definitively prove a biological mechanism or provide

overwhelming evidence for a new drug candidate. Instead, my work shows it is possible

to find evidence for a purported efficacious drug target from genetic data derived from a

human cohort living in ‘wild-type’ conditions. This analysis can occur early in the drug

development pipeline, before resources are committed to a candidate pathway or molecule

and can prioritise candidates.
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5.3.2.1 Lymphocyte traits and multiple sclerosis

Five signals associated with lymphocyte parameters colocalised with genetic risk of multiple

sclerosis (MS) (Fig. 5.3). The colocalising associations were located in the transcription

factor encoding gene BACH2, and in the genes encoding receptors for Interleukin(IL)-2

(IL2RA) and IL-7 (IL7R) and in IL-7 itself. The conditionally independent variants

representing these associations are: rs142376788 located in the 5’ untranslated region

(UTR) of IL7R, rs11567705 located in an intron of IL7R, rs72928038 located in an intron

of BACH2, rs10957897 located in an intron of IL7R, and rs3118471 located in an intron of

IL2RA.

5.3.2.2 Interleukin 2 receptor alpha

IL-2RA is a transmembrane protein present on nearly all activated T cells, but not on

resting T cells [172]. IL-2RA is the subject of therapeutic antibody Daclizumab found

effective for treatment of MS by blocking T-lymphocyte IL-2RA receptors. This results

in significant expansion of natural killer (NK) cell population and gradual reduction in

numbers of activated T-lymphocyte cells [24].

It could be expected that a lymphocyte pool with higher numbers of activated cells or

NK cells which are granular will have a higher LY-SSC measurement [32]. Therefore, we

could hypothesise that Daclizumab would raise LY-SSC measurement in patients due to

it’s effect on increasing NK population.

A variant in IL2RA (rs3118471, -Log10P: 8.60, MAF: 29.9%, VEP: intronic IL2RA)

is associated with a reduction in LY-SSC, an increase in LYMPH# and colocalises with

increased risk of MS (PP: 99.9%, Fig. 5.5) [152]. Supporting my aforementioned hypothesis:

at this locus an association annotated to the mechanistic target for Daclizumab is increasing

the risk of MS and decreasing LY-SSC. It is interesting that the variant annotated to

IL2-RA is associated with an increased risk of MS and decreased LY-SSC, because the

variant is acting consistently in the opposite direction to Daclizumab. Daclizumab acts

‘against’ MS aetiology, and increases NK population, a granular subset of lymphocytes

[32] - thus the opposite of this genetic association. This result shows that colocalisation of

Sysmex parameters with disease risk GWAS can identify association signals annotated to

genes which are already validated therapeutic drug targets.

Furthermore, from these results, perhaps it could also be argued that MS patients

with lower LY-SSC are those most likely to benefit from Daclizumab? This would be

supported by the genetic evidence, an association increasing the risk of MS decreases

LY-SSC. However, there doesn’t seem to be a convincing causal relationship between

genome-wide instrumental variables for LY-SSC and MS as assessed by MR (MR-Egger,

P-value: 0.37, causal estimate: 1.60), a full set of MR results are available in Supplementary

file A.3. Separately, a counter-argument could be made that the increase in LY-SSC is
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purely as a function of the increase in lymphocyte count. This is somewhat unlikely

due to the anti-correlation between LY-SSC and LYMPH#, with a Pearson correlation

between phenotypes of -0.183 and a genetic correlation of -0.248 (P-value: 5.13x10−5).

Furthermore, Shirley et al., reported that the clinical effect of Daclizumab is not thought

to result from ‘broad immunodepletion’ of overall lymphocyte cell counts, but instead

through immunomodulation of lymphocyte cell subtypes [156].

However, an interpretation of the LY-SSC parameter, or any lymphocyte scatter

parameter is difficult to make compared to other white cell Sysmex parameters, because of

the heterogeneous nature of the lymphocyte population (Section 6.1.1). It is possible that

a comparison of SSC as an index of granulation between NK cells and other lymphocytes

is confounded by other structural differences between lymphocyte cell types (Section

1.1.3). Therefore, confident interpretations of lymphocyte parameters will require better

understanding of the cytometry properties of different lymphocyte subtypes in isolation.

For example, a SSC comparison between purified NK, T, and B lymphocyte populations.

5.3.2.3 Interleukin 7 receptor

I identified four conditionally significant variants annotated to IL7R, assigned to two

statistically distinct signals (Signal ID: 236 and 237 in Table A.1), which are associated

with seven lymphocyte traits including LYMPH#, LY-SFL, LY-SSC, RE-LYMP%, and

RE-LYMP# (Table A.1). LY-SFL and LY-SSC indicate lymphocyte populations with

higher nucleic acid content and cell granulation respectively. RE-LYMP# is the count of

lymphocyte cells with high SFL values, a reactive and activated lymphocyte sub-population

(Section 3.2.2). The locus of association at IL7R decreased the value of the aforementioned

lymphocyte parameters which include proxies for properties related to cell activation. This

association also reduces the genetic risk for hay fever and rhinitis (PP: 99.1%). This result

between IL7R and hayfever or rhinitis is consistent with a clinical study showing the

expression of IL7R increasing 14% following allergen immunotherapy, and also a decrease

expression following ragweed season, a time of year with high allergen concentrations [19].

Variants in IL7R also colocalised with a range of immune disorders including MS (Fig. 5.6)

[152], and primary biliary cirrhosis (PP: 95.7% and 85.6%) [48]. The targeting of IL-7R

using antibodies in preclinical mouse models of MS shows dramatic therapeutic effects [96].

Our association and colocalisation adds statistical genetic evidence from human cohorts

for the therapeutic effect of this drug target. My finding adds proof of efficacy for this

drug target by leveraging genetic studies of lymphocyte parameters, and risk of multiple

immune disorders (hayfever and rhinitis, MS and primary biliary cirrhosis.
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Figure 5.5: Plot showing colocalisation between disease risk for multiple scle-
rosis and lymphocyte side scatter.
Each data point represents a genetic variant and the position of that data point in the y is the
-Log10P for association with the phenotype. Variants are coloured according to their LD with
the conditionally significant variant in this locus. Colocalisation between the two association
signals occurs with posterior probability of 99.9%, LD between the conditionally significant

variant (rs3118471) and sentinel (rs3118470) in disease risk GWAS is 0.96 r2. The GWAS of MS
is performed by Sawcer et al., 2011 [152].
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Figure 5.6: Plot showing colocalisation between disease risk for multiple scle-
rosis and reactive lymphocyte count.
Each data point represents a genetic variant and the position of that data point in the y axis is
the -Log10P for association with the phenotype. Variants are coloured according to their LD

with the conditionally significant variant in this locus. Colocalisation between the two
association signals occurs with posterior probability of 95.7%. LD between the conditionally

significant variant (rs11567705) and sentinel (rs6881706) in disease risk GWAS is 1.00 r2. The
GWAS of MS was performed by Beecham et al., 2013 [2]. The sparsity in genetic variants in the
disease GWAS figure (bottom) is caused by the difference in genotyping panel between the two

studies.
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5.3.2.4 NE-FSC, IL-18R1 and atopic dermatitis

My GWAS analysis of NE-FSC identifies 70 independent conditionally significant variants,

including an association annotated to the IL-18R1 gene (rs1035127, MAF: 22.3%, -Log10P:

10.9, VEP: downstream IL18-R1 ). The ligand of IL-18R1, IL-18, is a neutrophil activator

and blood samples with higher levels of interleukins such as IL-18 contain neutrophil

populations with higher NE-FSC values [88]. IL-18 expression has been shown to contribute

to aetiology of celiac disease [100], atopic dermatitis [95], and psoriasis [67].

rs1035127 annotated to IL-18R1 associated with a decrease in NE-FSC, which also

colocalises with a pQTL signal for decrease in plasma IL-18R1 (PP: 98.0%), and increased

risk of celiac disease (PP: 93.4%), but decreased risk of eczema and IBD (PP: 93.0%

and 84.1% respectively). This is a confusing result, as celiac disease is considered to

be a differential diagnosis of IBD and shares much of the same disease aetiology [133].

Therefore, this locus is already raising interesting questions about the potential differential

role of IL-18R1 regarding celiac disease and IBD. I found explaining this result difficult, I

hope that by publication of this thesis I may attract colleagues to address this finding.

I previously noted that rs1035127 is associated with a decrease in NE-FSC and increase

in plasma IL-18R1, furthermore, IL-18R1 is expressed with Log2(FPKM) 4.6 in neutrophil

cells [43]. This shows a common genetic determinant between NE-FSC, IL-18R1 expression

in the blood plasma, and the aetiology of immune disorders. From these results it might be

tempting to suggest that that neutrophil cells with lower FSC result in decreased IL-18R1

in blood plasma and changes in risk of immune disorders. This is one possible explanation

which would explain the observed results. However, colocalisation analysis cannot not

show a causal relationship between these factors, only the high probability of a common

genetic determinant, and even this must be interpreted with an understanding of the

limitations of colocalisation (Section 6.1.3).

Mendelian randomisation analysis of NE-FSC as an exposure did not show a significant

causal relationship between NE-FSC and autoimmune disorders: celiac disease (P-value:

0.88) and eczema (P-value: 0.58). This MR included instrumental variables from across

the genome, not just IL-18R1. However, a MR of IL-18R1 blood plasma concentration by

Sun et al. suggested that IL-18R1 may have a causal relationship with atopic dermatitis

(P-value: 1.5× 10−28) [164]. Atopic dermatitis is a diagnosis under the umbrella of eczema

which includes dermatitis syndromes generally [179]. It is unfortunate my colocalisation

analysis was performed with GWAS results of eczema and the MR by Sun et al., was

performed using GWAS results of atopic dermatitis. Further work to explore this signal

of association could begin with repeating the analysis with summary statistics from the

respective outcome.
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5.3.3 Genetic characterisation of white cell granulation

Degranulation of white cells has long been established as an important mechanism of

immune response. My analysis identifies associations annotated to granule proteins by

VEP such as DEF, CTSH, CTSC, ELANE, ARSB, LYZ, RNASE2, RNASE3, and RNASE6

(Appendix A.1). In particular, my analysis is the first GWAS of blood phenotypes to

annotate associations to DEF, CTSH, CTSC, ELANE. This is despite extensive study

showing the importance of such granule proteins in white cell immune function [28].

Many proteins known to be present in granules of white cells have also been identified

as circulating blood plasma proteins [164]. My analysis shows there is often a common

genetic architecture underlying blood plasma protein concentrations and blood cell Sysmex

parameters, in particular SSC an index of cell granulation.

Azurophilic granules are present in a range of white blood cells and most prominent

in neutrophils, where they are loaded with a range of antimicrobial proteins, and play

a critical role in neutrophil immune response [144]. Neutrophil scatter measurements

SFL, SSC, and FSC have been proven to be indicative of neutrophil action and immune

response [103] [146] [188]. GWAS of neutrophil indices identified variants annotated to

MPO, PRTN3, ELANE, BPI, ARSB, CTSC, CTSH, LYZ, and RNASE2, microcidal

proteins which are also known to localise in azurophil granules. Furthermore, signals in

these genes also colocalise with pQTL signals for plasma proteomics of the same granule

proteins (Appendix A.1). An association signal located in ARSB containing conditionally

significant associations with EO-SSC, NE-SSC, NE-SFL, and NE-FSC colocalise (PP: 93%,

98%, 98%, 99%) with a pQTL signal for ARSB in the plasma proteome. Monocyte side

fluorescence is associated with four conditionally independent signals in the RNASE region

on chromosome 14. Associations include rs1045922 (-Log10P: 44.9, MAF: 23.8%, VEP:

missense) located in RNASE6, rs6571511 (-Log10P: 58.9, MAF: 7.7%, VEP: upstream)

located in the RNASE3 gene, rs151169198 (-log10P: 10.7, MAF: 0.80%, VEP: missense)

and rs2771358 (-Log10P: 152.2, MAF: 25.4%, VEP: upstream) both of which are annotated

to RNASE2 by VEP.

RNASE6 has been shown to be localised to the granules of leukocytes and granulocyte

cells. Exocytosis of granules secretes RNASE and other proteins which conduct antimicro-

bial activity [18]. Variant rs1045922 is a conditionally significant association for monocyte

side fluorescence colocalising with eQTL analysis of RNASE6 transcripts in CD14 cells

(PP: 99.4%). Variant rs1045922 also has a pairwise LD of 1.00 r2 and colocalises (PP:

98%) with rs11622942 a conditionally significant pQTL variant for the RNASE6 protein

in the plasma proteome [164].

My analysis of novel blood indices has identified granule proteins which are known to

be crucial in immune function, but remained unidentified by GWAS of traditional blood

cell indices. Furthermore, my integration of data from pQTL analysis by colocalisation
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has shown common genetic architecture modulating white cell granularity indices and

many blood plasma proteins. A likely explanation for these colocalisations is that granule

proteins in plasma are originating from granule proteins in blood cells, this hypothesis

and has been suggested by others [164, 5, 101].

5.3.3.1 ANCA-associated vasculitis

ANCA-associated vasculitis (AAV) is an autoimmune syndrome characterised by vascular

inflammation and autoantibodies against neutrophil granule proteins MPO or proteinase-3

(PR3, encoded by the PRTN3 gene) [107]. It has been shown that genetic variation

which affects PR3 abundance in circulation influences risk of vasculitis with anti-PR3

antibodies [164]. I identified a locus in the PRTN3 region associated with an increase

in neutrophil SSC, SFL, FSC (indices of granule content and of nucleic acid content,

membrane composition, and cell size respectively). This genetic signal also colocalises

with an increase for eQTL in whole blood (GTEX PP: 98.9%) and the pQTL in PR3

plasma concentration (PP: 99.7%). Together, these results suggest that genetic effects on

PRTN3 transcription are reflected in changes in neutrophil granule content and influence

abundance of PR3 in the circulation and thereby disease risk. PR3 is also expressed in

other myeloid cells including eosinophils (Supp. Table 2). Notably this same genetic

signal also colocalises with EO-SFL (a marker of nucleic acid content and membrane

composition), suggesting that the genetic effects on PR3 may also be acting through

eosinophils. Unfortunately, due to the pleiotropic nature of this genetic variant, it is not

possible to identify from these results whether the association in question is acting through

eosinophils, neutrophils, or a combination of both. Intriguingly, a subset of AAV patients

have eosinophilia, although this is more common in the context of antibodies to MPO

rather than to PR3.

5.3.4 Causal association with Mendelian randomisation

Mendelian randomisation can identify casual associations between risk factors and outcomes

of interest using genetic variants as instrumental variables. In the context of MR, Sysmex

parameters are treated as the exposure and disease risk as the outcome. This is testing for

Sysmex parameters as causal mediators of disease risk.

I selected 15 white cell Sysmex parameters to assess for causal relationships with risk

for 23 complex diseases (Table 5.7), summary statistics for disease outcomes were collected

using the MR Base package [80] (Table 5.8). The parameters selected are SSC, SFL, and

FSC measurements of white cells and RE-LYMP#. Genetic variants associated with

each phenotype are selected as ‘instrumental variables’ (IVs) which are used to determine

causality (Section 5.2.2). I began by performing a robust penalised MR-Egger regression,
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the intercept of the MR-Egger models directional pleiotropy of the IVs. If the Wald

statistic of the intercept was less than one, I interpreted the IVs as having balanced

pleiotropy, thus having satisfied the assumptions of inverse variance weighted (IVW)

regression. In such cases I assessed causality with a robust penalised IVW model which

offers greater power than the MR-Egger method [29]. P-values are Bonferroni corrected

for the 15 traits and 23 diseases which are tested for causal association. To assess the

robustness of results I tested causal association with 11 types of Mendelian randomisation

models (Table 5.2.2.2) including IVW models which assume balanced pleiotropy across the

IVs, MR-Egger models which allow for unbalanced pleiotropy across IVs, median based

methods which assume at least 50% of IVs are valid and do not suffer from pleiotropy,

multivariable models to test for association accounting for effects of the instrumental

variables on other Sysmex parameters and traditional blood cell phenotypes. Weighted,

penalised, and robust methods of linear regression were used to account for standard error

of IVs, and heterogeneity of IVs respectively. Three pairs showed statistically significant

causal associations as assessed by MR between Sysmex parameters and complex disease:

NE-SSC and the risk for lung cancer and CAD and EO-FSC and the risk of asthma.

I integrated and visualised results and integrated all MR tests in an interactive report

which includes LD between instrumental variables in the model, integration of LD set data

to annotate instrumental variables, and leave one out analysis (LOO) analysis where the

IVW estimate is recalculated with each of the instrumental variables excluded (Supp. A.3).

Reports are generated in simple hypertext markup language (HTML) format which can

be opened with any electronic device with an internet browser without the need to install

or prepare any additional software. A full set of reports is available in HTML format in

the supplementary (Supp. A.3).
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5.3.4.1 Heterogenity and pleiotropy in instrumental variables

The results indicated a high degree of heterogenity and pleiotropy in the instrumental

variables suggesting multiple pathways contributing to the exposure of interest with

differential association with the disease risk. An example is a test for causality between

NE-SSC and CAD (Fig. 5.7, 5.8). The MR test for causality with an IVW model

resulted in no significance with a P-value of 0.01, compared to a much stronger significance

with Penalised Robust IVW MR model (P-value: 7.26× 10−6). This could be caused by

heterogeneity in the data, as the Penalisation and Robust methods both reduce the influence

of outlying data points on the regression (Chapter 5.2.2). Cochran’s Q statistic suggests

heterogenity for NE-SSC and CAD (Q : 82.2, df : 53,P-value : 6.23 × 10−3) (Section

5.3.4.3), but no heterogenity for NE-SSC and lung cancer (Q : 44.4, df : 53,P-value : 0.773)

(Section 5.3.4.4), and EO-FSC with asthma (Q : 7.22, df : 10,P-value : 0.704) (Section

5.3.4.5).

5.3.4.2 Multivariable Mendelian randomisation

I performed a multivariable MR analysis in order to assess whether causal estimates are

consistent even when considering effects of instrumental variables on other Sysmex and

FBC parameters. I identified Sysmex parameters for which instrumental variables may be

acting through pleiotropy for each of the three identified associations (NE-SSC & CAD or

lung cancer, and EO-FSC with asthma). This was done using the LD clumping approach

(Chapter 2.2.9). If an instrumental variable is in the same clump as associations with other

parameters that parameter is considered to be a potential pleiotropic factor. Furthermore,

I also considered the cell type appropriate FBC count and percentage (of all white blood

cells) measurements for multivariable analysis.

My analysis suggests that NE-SSC and CAD or lung cancer causal associations are

robust for possible pleiotropy with other Sysmex parameters (Fig. 5.9, 5.10). However, in

the case of EO-FSC and asthma the multivariable MR analysis is complicated by high

correlation between the estimated effect size of the instrumental variables on EO-FSC

and other parameters studied in the multivariable analysis such as EO-SSC, EO-SSC-DW,

EO-SFL with r2 correlations of 0.88, 0.79, and 0.71 respectively (Fig. 5.11). It is generally

expected that estimates of covariate effect size in a linear model become unreliable with

collinearities of above 0.8 r2. However, causal estimates for EO-FSC with asthma are

robust to inclusion of eosinophil count and percentage FBC parameters. This suggests

that there is additional information regarding the causal role of eosinophils in asthma

beyond that already proposed by MR of eosinophil count and risk of asthma [15]. More

detailed analysis is required to assess whether EO-FSC is indeed causally mediating risk

of asthma or if there is a potential pleiotropic effect via other eosinophil parameters, or a

combination of both of these factors.
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Figure 5.7: Mendelian randomisation to test for causal association between
NE-SSC and CAD.

A diagram representing the framework of a MR analysis using conditionally independent
variants associated with NE-SSC to test for causal association between NE-SSC and CAD.

Figure 5.8: Scatterplot of instrumental variables and association with NE-SSC
and CAD.
Bars represent 95% confidence intervals for estimate of effect size of instrumental variables with
either the exposure or outcome. Results show good concordance between causal estimates of
sensitivity analyses. The Penalised Robust IVW model predicts causal association between

NE-SSC and CAD (β : 0.0355,P-value : 7.26× 10−6).
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Figure 5.9: Pairwise multivariable IVW MR models for CAD containing NE-
SSC and a covariate.
Each covariate is listed on the y axis with the Pearson correlation between the phenotype of that
covariate and NE-SSC. The x axis is the calculated change in odds ratio for disease risk given 1
SD increase in NE-SSC in a multivariable MR model containing the corresponding covariate.

This is compared to the estimates for causal association from Penalised robust IVW and
Penalised robust MR-Egger containing NE-SSC only. The Pearson correlation (r2) between

instrumental variable effect sizes for each of the covariates is in brackets.
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Figure 5.10: Pairwise multivariable IVW MR models for Lung cancer contain-
ing NE-SSC and a covariate.
Each covariate is listed on the y axis with the Pearson correlation between the phenotype of that
covariate and NE-SSC. The x axis is the calculated change in odds ratio for disease risk given 1
SD increase in NE-SSC in a multivariable MR model containing the corresponding covariate.

This is compared to the estimates for causal association from Penalised robust IVW and
Penalised robust MR-Egger containing NE-SSC only. The Pearson correlation (r2) between

instrumental variable effect sizes for each of the covariates is in brackets.
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Figure 5.11: Pairwise multivariable IVW MR models containing EO-FSC and
a covariate.
Each covariate is listed on the y axis with the Pearson correlation between the phenotype of that
covariate and EO-FSC. The x axis is the calculated change in odds ratio for disease risk given 1
SD increase in EO-FSC in a multivariable MR model containing the corresponding covariate.

This is compared to the estimates for causal association from Penalised robust IVW and
Penalised robust MR-Egger containing EO-FSC only. The Pearson correlation (r2) between

instrumental variable effect sizes for each of the covariates is in brackets.
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5.3.4.3 Neutrophil side scatter and coronary artery disease

Neutrophils play a crucial role in thrombosis and acute coronary syndromes. In a mouse

study of endothelial damage, neutrophils were shown to be the first cells at the site of dam-

age even preceding platelets [51]. In acute coronary syndromes, neutrophil degranulation

damages intact cells, the extracellular matrix,promotes further neutrophil recruitment,

and increases infarct size [69]. In particular, neutrophil recruitment of monocytes by

release of chemoattractants which includes granule proteins has been noted as a cause

for the role of neutrophils in acute coronary syndrome [69]. ARSB is a blood marker of

neutrophil activation correlates with poor prognosis of heart disease [69] [26]. It is notable

that variants in this gene are associated with NE-SSC and colocalise with pQTL of ARSB

in the blood. Two instrumental variables annotated to ARSB inform the aforementioned

MR analysis of NE-SSC and CAD. Furthermore, 11 instrumental variables annotated to

the α-DEFENSIN are present in the MR analysis. To identify if α-DEFENSIN variants

are responsible for the identified causal association I removed all variants within the range

chr8:4,000,000-7,000,000 (hg19). This removal results in no significant association between

NE-SSC and CAD, but simultaneously does now show a significant change in the causal

estimate (Table 5.9). This suggests that instrumental variables in the α-DEFENSIN locus

are consistent with the estimated causality, but do not explain the observation in entirety

5.3.4.4 Neutrophil side scatter and lung cancer

Neutrophils have been suggested to play both pro-tumorigenic and anti-tumorigenic roles

[168]. Serum α-DEFENSIN protein levels have been noted to be elevated in patients

with lung cancer and this has been suggested as a diagnostic tool for lung cancer [12].

IVs located in genes DEFA9P, DEFA3, DEFA1B, DEFA11P are located along the axis

of causality in the robust penalised IVW MR showing that these signals are along the

predicted causal axis. Removal of the 11 IVs located in the α-DEFENSIN locus results in

a loss of significance in the causal estimate between NE-SSC and Lung Cancer, but no

great change in the estimated causal effect (Table 5.9).

Risk Factor Outcome
Robust Penalised IVW

Estimate (P-value)
Removal DEF IVs
Estimate (P-value)

NE-SSC CAD 0.0346 (1.63× 10−5) 0.0273 (0.0369)
NE-SSC Lung Cancer 0.0548 (7.47× 10−5) 0.0571 (0.0109)

Table 5.9: Comparison of MR estimates following removal of α-DEFENSIN
locus instrumental variables.
Removal of instrumental variables in the α-DEFENSIN locus shows that the significant causal

association identified between NE-SSC with CAD and lung cancer is dependent on the
α-DEFENSIN locus.
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Figure 5.12: Scatterplot of instrumental variables and association with NE-
SSC and lung cancer.
Bars represent 95% confidence intervals for estimate of effect size of instrumental variables with
either the exposure or outcome. Results show good concordance between causal estimates of
sensitivity analyses. The Penalised Robust IVW model predicts causal association between

NE-SSC and lung cancer (β : 0.0561,P-value : 4.55× 10−5).
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Figure 5.13: Scatterplot of instrumental variables and association with EO-
FSC and asthma.
Bars represent 95% confidence intervals for estimate of effect size of instrumental variables with
either the exposure or outcome. Results show good concordance between causal estimates of
sensitivity analyses. The Penalised Robust IVW model predicts causal association between

EO-FSC and Asthma (β : 0.232,P-value : 3.68× 10−5).

5.3.4.5 Eosinophil forward scatter and asthma

Eosinophil forward scatter shows a positive causal association with risk of asthma according

to the univariable MR study and associated sensitivity analyses (Fig. 5.13). However,

the associated effect size of instrumental variables for EO-FSC are highly correlated with

EO-SSC (pearson r2 0.93) suggesting pleiotropy. Although, it is interesting to note that

this purported causal relationship seems to be largely independent of the known causal

association between eosinophil count and asthma [15] Fig. 5.11). This suggests two

separate eosinophil properties which causally increase the risk of asthma. More study is

required to understand the effect of these instrumental variables which may be acting

through another intermediary risk factor, but seem independent to the already shown

causal relationship between eosinophil count and asthma [15].
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5.4 Discussion

In this chapter I have detailed my downstream analysis of GWAS results to generate

hypotheses relating to the study of haematology and disease including cardiovascular

disease, immune disorders, and cancer. My colocalisation analysis annotated genetic deter-

minants associated with Sysmex parameters to signals influencing blood cell transcriptome,

blood plasma proteome, and disease risk. This analysis identified genetic determinants as

causally mediating multiple factors and thus helps with interpretation of the gene and

pathways which are mediated by the genetic determinant. My results have identified

disease colocalisations with associated signals in genes which are known drug targets such

as IL-2RA and Daclizumab and evidence for the role of IL-18R1 in aetiology of celiac

disease and IL-7R in a number of autoimmune disorders. Furthermore, I performed a MR

analysis to determine causal associations between the risk factors and disease, the risk

factors of interest being Sysmex parameters which have been shown to be relevant proxies

for cell immune function and activation. Identified associations include NE-SSC and lung

cancer or CAD, and EO-FSC and asthma. MR analysis is limited the assumptions of

MR models, which I address with a sensitivity analysis to assess robust causal estimates.

Interpretation of these results should be made within context of the limitations of genetic

studies and the phenotypes of interest which are discussed further in Chapter 6.

159



160



Chapter 6

Conclusion

I have performed the first ever GWAS of flow cytometry parameters derived from a Sysmex

analyser. Many of these parameters have been shown to be clinically and functionally

relevant readouts of the haematological system (Section 3.2.3). My analysis identified

hundreds of new genetic loci and association signals, many of which are located in genes

known to be relevant for immune cell function and activation (Section 4). Furthermore,

I contribute to the largest ever study of classical FBC haematological parameters and

identify a large number of distinct signals including those which have not previously been

associated with blood cell phenotypes.

In Chapter 2 I describe my contributions to the BCX consortium and our collective

work to perform the largest GWAS of haematological traits. This includes a conditional

analysis of the UK Biobank cohort and subsequent joint modelling to identify distinct

signals identified by a larger meta-analysis.

In Chapter 3 I discuss data collection and QC of extended Sysmex parameters and

associated genotypes. This includes correction of data for technical and environmental

factors. Technical factors included time of day, time since start of study, and time of

year. Environmental factors included, smoking history, age, sex, and weight. Adjustment

for these factors reduced variation in parameters and increased power to detect genetic

associations.

In Chapter 4 I detail my GWAS and conditional analysis of Sysmex parameters, this

includes discussion of multiple testing and population stratification in GWAS studies. I

show that my GWAS and conditional analysis of extended Sysmex parameters identifies

2,142 conditionally independent associations and 849 LD sets across 63 phenotypes.

Finally, in Chapter 5 I outline my downstream analysis of GWAS results, including

disease, eQTL, and pQTL colocalisation. This analysis identifies genetic determinants of

Sysmex parameters which also influence other biological properties including disease risk.

Examples including IL18R1 associated with NE-FSC and atopic dermatitis, and IL2RA

associated with lymphocyte parameters and MS.
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6.1 Limitations of work

6.1.1 Interpretability of Sysmex parameters

I present Sysmex parameters as ‘functionally relevant’ measurements of blood cell properties

as justified with prior literature (Section 3.2.3) and also by a literature review of genes

identified from annotation of GWAS association signals which identified genes relevant to

white cell function (Section 4.3.1.2). However, the interpretability of these phenotypes

and importantly, the possibility to intervene on these phenotypes as a clinical end point

is limited. For example, neutrophil side scatter (NE-SSC) a known index of granulation

which has been shown to correlate with incidence of disease and visual assessments of

neutrophil granularity. I show evidence from MR analysis that suggests NE-SSC may

be a causal mediator of CAD and lung cancer (Section 5.3.4). However, there is no

currently known clinical intervention that could reduce NE-SSC in patients. Alternatively,

lymphocyte side scatter (LY-SSC) is a measure of the side scatter of lymphocyte cells and

GWAS of this trait identifies a number of association signals located in genes important for

lymphocyte function, often colocalising in diseases with known lymphocyte involvement

such as MS. However, for associations which raise the LY-SSC property, it is not clear by

which lymphocyte subsets the effect is being observed. It could be the granular LGL cells

such as NK or cytotoxic T cells, or some other structural changes in other lymphocyte

subtypes.

In modern GWAS studies, single sets of phenotypes are rarely considered alone because

freely available summary statistics allows more detailed analysis including multiple sets

of phenotypes. Sysmex parameters can be used a intermediate traits and colocalised to

more interpretable outcomes such as disease risk, or eQTL and pQTL measurements. In

this way, Sysmex parameters are yet another layer of information which can be used to

annotate genetic determinants and shouldn’t be used as the sole source of information to

support a hypothesis.

6.1.2 Establishing causality

Establishing causal relationships between biological components is fundamental to our

understanding of biology. However, the hypothesis generating nature of GWAS analysis

presents challenges in proving causality. For example, the identification of an association

signal suggests many, often hundreds, of variants which could be mediating the association

signal (Section 1.4). GWAS analyses are not measuring the change in a phenotype as a

result of an genetic intervention. Therefore it is not easily possible to define which variant

is causally mediating the observed signal. It is possible that the true causal variant may

not have been genotyped or imputed. Such a scenario could be difficult or impossible to
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identify without performing an experiment where the genetic variant is induced and any

changes in phenotype observed.

Establishing causal relationships between phenotypes or traits is similarly difficult.

In many points in my thesis I describe colocalisation analysis which shows a common

genetic determinant between two phenotypes (Sections 5.3.2.1, 5.3.2.4). There are multiple

mechanisms by which a colocalisation between two traits would arise. Firstly there

could be a causal relationship between two traits where mediation of one trait results in

concomitant changes in the other, for example, low density lipoprotein (LDL) and CAD risk.

Alternatively, the genetic variant could be mediating both traits independently, through

different biological pathways. Followup MR studies can determine causality between two

traits, and this approach has been successful in the study of blood cell phenotypes before

[15]. However, MR analysis are burdened with a number of assumptions many of which

are difficult to test. For example, ensuring that instrumental variables are non-pleiotropic

and are not influencing the outcome via a different biological mechanism other than the

intended exposure (Section 5.2.2). This is difficult to prove definitively for any single

instrumental variable.

6.1.3 Limitations of colocalisation

If a locus contains association signals with two phenotypes, colocalisation analysis can

determine if the associations are being caused by the same genetic determinant. An

introduction to colocalisation analysis and an overview of the mathematical implementation

can be found in Sections 1.6.2 and 5.2.1 respectively. Here I focus my discussion on the

limitations of colocalisation which must be held in account when interpreting results

colocalisation analysis:

1. If two distinct associations are caused by a two distinct underlying variants which

are in LD 1.00 r2, colocalisation cannot distinguish between such associations.

2. Colocalisation assumes only one association signal per locus, if multiple association

signals exist they can bias results towards reporting false negatives.

3. It must be stressed that colocalisation simply identifies a common genetic determinant

in a particular locus between two phenotypes, not a causal relationship between the

phenotypes

Situations leading to point 1) cannot be tested properly with a statistical genetics

approach alone, we must always aim to validate with biological experimentation, such as

genetic modification of an animal or tissue model. However, in the case of rare variants

which are less likely to be in high LD with other variants this limitation is ameliorated by
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being less likely to occur. Furthermore, given that most genetic variants in the genome

have almost no effect on a phenotype in question, it would seem unlikely that within a

small set of variants which are in high LD two variants would have distinct effects on

separate phenotypes. Point 2) is less concerning as it can only lead to false negative

results, furthermore an associated locus is unlikely to ever contain a single phenotype

influencing variant. There likely will exist many possible associations nearby which simply

do not reach significance, nearby associations only become problematic when their relative

significance is close to the significance of the ‘main’ association we wish to colocalise. As

GWAS is performed on a greater number of phenotypes, colocalisation analysis will become

more important to allow proper characterisation of the effect of a genetic determinant.

6.1.4 Replication of results

A unique aspect of my work is being the first analysis of functionally relevant white cell

phenotypes. However it follows that my analysis is also lacking in a replication set which

would allow me to further validate my results. Confounding effects such as population

stratification or technical artefacts can lead to spurious associations, validation can help

identify these false positives. I hope my thesis will lead to more interest in Sysmex

parameters and thus spur further GWAS analyses of these phenotypes.

6.2 Recommendations for future research

6.2.1 Validation and meta-analysis with the COMPARE study

The COMPARE study has recruited a cohort of 31,000 healthy donors to compare three

methods for making haemoglobin measurements: blood extraction from the finger, measure-

ment with a spectrometer placed over the skin, Sysmex automated haematology analysis.

At the time of writing genotyping of this cohort has not concluded, in the future this data

could be utilised to validate my GWAS of Sysmex parameters in INTERVAL. Furthermore,

a meta-analysis with both the INTERVAL and COMPARE cohorts would increase the

population cohort to 66,000 individuals. Combining the technical and environmental

correction procedures between these studies would allow for a more accurate statistical

deduction on the effects of covariates on haematological parameters and make a more

effective correction procedure.
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6.2.2 Utilising the second measurement from the INTERVAL

trial

Blood donors in both the INTERVAL and COMPARE cohorts provide a second measure-

ment for haematological analysis, which in the case of INTERVAL is 2 years following

their initial donation, and in the COMPARE study following their first donation. I only

utilised the second time-point of measurement for participants in the INTERVAL trial if

data for the first time point was not available. This was the case for only a small subset of

individuals due to a data storage issue during the trial. A statistical correction procedure

which utilises both first and second measurement in all individuals where available could

significantly increase the effective power to detect genetic associations. This analysis could

be done by firstly performing technical and environmental correction on all measurements

as before, then simply calculating the mean between both time points for each individuals.

This analysis would be complicated by at least two factors:

1. Individuals in INTERVAL would be two years older in their second measurement.

In some participants this may mean they would have experienced menopause which

is known to have a large impact on haematological measurements.

2. Donors in the INTERVAL cohort would have been assigned to different donation

schedules.

These factors could be mitigated by including age and donation schedule as a factor in

the environmental adjustment, menopause status was already included in this adjustment.

Separately, comparing second and first measurement would provide a better sense of

intra-individual variability of these parameters. It is not known, for example if individuals

generally have fairly consistent eosinophil size (EO-FSC) measurements over the course

of time. These observations would be of general interest to haematologists and provide

better characterisation of these haematological properties.

6.2.3 Raw flow cytometry data and predictive models

Haematological parameters have long been used to make diagnoses and predict disease

status. However, there likely exists a greater degree of information in a Sysmex analysis

beyond what is reported as a parameter. The three dimensional position of every cell

in the scattergram is not a useful representation of information for a clinical doctor as

this data would be too difficult for a them to interpret. Instead of relying on parameters

which are inherently a simplification of the rich data available from a scattergram, we

could use modern statistical techniques to consider the entire dataset in order to make

predictions regarding disease status. Machine learning algorithms such as neural networks
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have the ability to consider a high-dimensional input of data, training this algorithm over

time would allow learning of which features in the dataset are the most important with

respect to predicting an outcome. A potential outcome would be to use the raw Sysmex

cytometry data to train a neural network to predict the age, sex, or menopause status of

a participant. This protocol could also be used to predict disease status of participants,

although this would not be possible in using INTERVAL or COMPARE datasets as the

participants are healthy blood donors. More interesting would be to combine the Sysmex

scattergram data with participant age, sex, weight, height, and other information. Neural

networks would effectively integrate these input features and learn relationships which are

useful with respect to the outcome.

6.3 Closing statement

In the introduction of my thesis I presented statistical genetics as not just as a methodology

to better understand human genetics, but also a method by which we can further our

understanding of the biology and disease aetiology. Biology exists as a complex set of

interconnected elements, connected deferentially by time, space, and biological compart-

ment. I propose that statistical geneticists of the future should not narrow their analysis

to a particular set of phenotypes or a disease outcome. Using genetic variants we can

reliably combine data from multiple studies done over time in different sets of individuals,

thus making the massive phenotypic profiling required to develop a comprehensive under-

standing of biological systems tractable. I hope that further study in this field continues

to advance towards mathematically grounded study of biological systems which allow not

only for accurate exchange of information between researchers, but also ability to make

empirical and testable predictions.
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Nicola Pirastu, Rossella Sorice, Alexander Teumer, Katrin Voss, Weihua Zhang,

Ramiro Ramirez-Solis, Joshua C. Bis, David Ellinghaus, Martin Gögele, Jouke-Jan
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and Wei-Min Chen. Robust relationship inference in genome-wide association studies.

Bioinformatics, 26(22):2867–2873, October 2010.

[110] Alice Louise Mann. Using genetic and genomic approaches to understand haematopoi-

etic cellular biology and dysregulation in disease. PhD thesis, University of Cambridge,

11 2017.

[111] Bideau L. Dubreuil Y. Marcandier, M. Applications de la photometrie a la numeration

des hemities. CR Soc Biol Paris, 99:741, August 1928.

[112] Jonathan Marchini and Bryan Howie. Genotype imputation for genome-wide associ-

ation studies. Nature Reviews Genetics, 11(7):499–511, June 2010.

[113] Michael McHeyzer-Williams, Shinji Okitsu, Nathaniel Wang, and Louise McHeyzer-

Williams. Molecular programming of b cell memory. Nature Reviews Immunology,

12(1):24–34, December 2011.

[114] William McLaren, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R. S.

Ritchie, Anja Thormann, Paul Flicek, and Fiona Cunningham. The ensembl variant

effect predictor. Genome Biology, 17(1), June 2016.

[115] T Meade. Menopausal status and haemostatic variables. The Lancet,

321(83148315):2224, Jan 1983.

[116] Stephan Menzel, Chad Garner, Ivo Gut, Fumihiko Matsuda, Masao Yamaguchi,

Simon Heath, Mario Foglio, Diana Zelenika, Anne Boland, Helen Rooks, Steve

Best, Tim D Spector, Martin Farrall, Mark Lathrop, and Swee Lay Thein. A

QTL influencing f cell production maps to a gene encoding a zinc-finger protein on

chromosome 2p15. Nature Genetics, 39(10):1197–1199, September 2007.

[117] Alan J. Miller. The convergence of efroymson’s stepwise regression algorithm. The

American Statistician, 50(2):180–181, 1996.

[118] Mario Mitt, Mart Kals, Kalle Pärn, Stacey B Gabriel, Eric S Lander, Aarno Palotie,

Samuli Ripatti, Andrew P Morris, Andres Metspalu, Tõnu Esko, Reedik Mägi, and
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Appendix A

Appendix

A.1 Table of Sysmex parameter conditionally signifi-

cant variants and eQTL, pQTL, disease colocali-

sations

https://figshare.com/s/c8775dc6d85be9b3afa4

A table of 2,172 conditionally independent variant-trait associations identified from GWAS

of the 63 cytometry parameters listed in Table S1. All coordinates are with respect to GRCh37.

Signal ID corresponds to a unique identifier for each signal of association defined by an LD

clumping procedure (r2 > 0.8). Each variant is given marginal (univariable) summary statistics

for association with the corresponding trait and summary statistics for joint association (MULTI)

in a model including all other conditionally independent variants. Fine-mapping of each locus

allows assignment of variants to credible sets indicated by the FINEMAP Credible Set ID column,

the total number of variants in each credible set are also indicated. Further columns include

posterior probabilities for colocalisation with pQTL, eQTL, and disease association signals.

A.2 Table of conditionally significant associations with

FBC phenotypes from the UK Biobank cohort

https://figshare.com/s/0fe1d830cab86dbe095d

A table containing information regarding each of the 17,042 associations ordered by chromo-

some and position (all coordinates are with respect to GRCh37). Locus ID is a unique identifier

for each locus. The column Novel vs Astle et al. 2016 indicates if the variant or any variants

in LD r2 > 0.8 was already found to be associated with the same traits in the cited previously

published meta-analysis including the first release of UK Biobank. The unique variant ID is

constructed from the chromosome, position and the reference and alternative alleles according
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to the human genome reference (build 37 coordinates). Where available, the rsID is also given.

GWAS summary statistics for univariate and multivariate (conditional) model are provided, as

well as the VEP worst consequence annotation.

A.3 Mendelian randomisation reports interactive HTML

format

https://figshare.com/s/207ae098eb2db3172676

A compressed folder containing HTML reports for the MR analyses, the reports can be accessed

by opening the link and pressing the ‘Download’ button, the file must then be decompressed

resulting in a folder titled ‘mendelian randomisation html’. The reports can then be visualised by

opening the ‘index.html’ file in the ‘mendelian randomisation html’ folder using any web-browser.

A.4 Disease Colocalisation Locuszoom Plots

https://figshare.com/s/9f3e9165300d6468db97

A series of plots showing the regions of colocalisation between Sysmex parameters and disease

outcomes. The x axis represents genomic location, the y axis negative log transformed P-value

of association, and each data-point is the significance of association.

A.5 pQTL Colocalisation Locuszoom Plots

https://figshare.com/s/ce075d0f52aff56c67a8

A series of plots showing the regions of colocalisation between Sysmex parameters and blood

plasma protein QTL. The x axis represents genomic location, the y axis negative log transformed

P-value of association, and each data-point is the significance of association.

A.6 eQTL Colocalisation Locuszoom Plots

https://figshare.com/s/103308605dee49d10a3c

A series of plots showing the regions of colocalisation between Sysmex parameters and blood

cell transcript QTL. The x axis represents genomic location, the y axis negative log transformed

P-value of association, and each data-point is the significance of association.
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A.7 Table of Sysmex parameters

https://figshare.com/s/c3ecdcfcad7a39dcba3d

Each row corresponds to one of the 63 cytometry traits studied in this analysis including columns

indicating the most correlated standard FBC hematological measurement and the number of

new loci discovered per cytometry parameter compared to GWAS of standard FBC parameters.
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