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Abstract
As the evidence of predictive processes playing a role in a wide variety of cognitive domains increases, the brain
as a predictive machine becomes a central idea in neuroscience. In auditory processing, a considerable amount
of progress has been made using variations of the Oddball design, but most of the existing work seems restricted
to predictions based on physical features or conditional rules linking successive stimuli. To characterize the
predictive capacity of the brain to abstract rules, we present here two experiments that use speech-like stimuli
to overcome limitations and avoid common confounds. Pseudowords were presented in isolation, intermixed with
infrequent deviants that contained unexpected phoneme sequences. As hypothesized, the occurrence of
unexpected sequences of phonemes reliably elicited an early prediction error signal. These prediction error
signals do not seemed to be modulated by attentional manipulations due to different task instructions, suggesting
that the predictions are deployed even when the task at hand does not volitionally involve error detection. In
contrast, the amount of syllables congruent with a standard pseudoword presented before the point of deviance
exerted a strong modulation. Prediction error’s amplitude doubled when two congruent syllables were presented
instead of one, despite keeping local transitional probabilities constant. This suggests that auditory predictions
can be built integrating information beyond the immediate past. In sum, the results presented here further
contribute to the understanding of the predictive capabilities of the human auditory system when facing complex
stimuli and abstract rules.
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Significance Statement

The generation of predictions seem to be a prevalent brain computation. In the case of auditory processing
this information is intrinsically temporal. The study of auditory predictions has been largely circumscribed
to unexpected physical stimuli features or rules connecting consecutive stimuli. In contrast, our everyday
experience suggest that the human auditory system is capable of more sophisticated predictions. This
becomes evident in the case of speech processing, where abstract rules with long range dependencies are
universal. In this article, we present two EEG experiments that use speech-like stimuli to explore the
predictive capabilities of the human auditory system. The results presented here increase the understanding
of the ability of our auditory system to implement predictions using information beyond the immediate past.
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Introduction
In recent years, the study of predictive processes has

drawn increasing attention in neuroscience. In this con-
text, Predictive Coding has emerged as a popular theory,
which states that the brain constructs a hierarchy of
predictions of incoming stimuli at multiple levels of pro-
cessing (Friston, 2005, 2009, 2010; Bubic et al., 2010;
Hobson and Friston, 2012). This proposal has received
mounting empirical evidence (Wacongne et al., 2011; Den
Ouden et al., 2012; Phillips et al., 2015, 2016).

A wealth of experiments in the study of predictive cod-
ing are variations of the Oddball design (Squires et al.,
1975; Heilbron and Chait, 2018), where frequent acoustic
stimuli establish predictable sequences, which are at
times violated. Besides designs using tones, the use of
speech-like stimuli offers a number of advantages. Within
speech, abstract rules are ubiquitous, allowing to test
abstract predictions that go beyond physical stimuli fea-
tures and local transitional probabilities. These properties
make speech processing an excellent testbed for the
study of the brain’s signals to abstract rules establishment
and its violations.

Speech perception requires the fast extraction of
meaning from a complex auditory signal (Boudewyn et al.,
2015; Kleinschmidt and Jaeger, 2015) and the generation
of predictions might be an efficient solution to achieve fast
and accurate comprehension (Kleinschmidt and Jaeger,
2015; Hauk, 2016). Although the proposal that predictive
processes play a role in speech processing has been
criticized (Norris et al., 2000; Van Petten and Luka, 2012;
Huettig and Mani, 2016), evidence suggests that predic-
tions are deployed at several speech processing levels
(Lewis and Bastiaansen, 2015). At the syntactic level,
listeners’ knowledge influence sentence parsing (Farmer
et al., 2006; Wilson and Garnsey, 2009; Traxler, 2014;
Baart and Samuel, 2015). Lexico-semantic processing
can be facilitated by contextual predictability (Van Petten
et al., 1999; Schuster et al., 2016).

EEG studies have identified an ERP known as N400,
whose amplitude is inversely correlated with the semantic
predictability of words in context (Kutas and Hillyard,
1980; Van Petten et al., 1999; Kutas and Federmeier,
2000, 2011; Brink et al., 2001; DeLong et al., 2005; Freun-
berger and Roehm, 2016). EEG evidence has also shown
that forthcoming phonemes can be predicted using syn-
tactic (DeLong et al., 2005), semantic (Kashino, 2006;
Groppe et al., 2010; Bendixen et al., 2014), phonological
(Cornell et al., 2011; Hestvik and Durvasula, 2016; Schar-
inger et al., 2016; Schluter et al., 2016), and phonotactic

information (Dehaene-Lambertz et al., 2000; Sun et al.,
2015; Ylinen et al., 2016).

As the generation of predictions seem to be a prevalent
brain computation (Friston, 2010, 2009), we propose that
phonological predictions are generated during speech
perception in the absence of semantic and syntactic in-
formation. To test this hypothesis, we performed two EEG
experiments with an Oddball design. The use of speech
stimuli allowed us to test for predictions based on an
abstract rule that go beyond local transitional probabili-
ties.

Pseudowords were presented in a context that did not
contain syntactic or semantic information. We expected
that the presentation of deviants, constructed using the
same phonemes as standard pseudowords but in an
unexpected sequence, would elicit an early prediction
error signal like the mismatch negativity (MMN; Friston,
2005; Näätänen et al., 2007; Garrido et al., 2009; Wacon-
gne et al., 2011; Chennu et al., 2013; Winkler and
Schröger, 2015). The presence of this prediction error
signal would imply that listeners’ brains generate predic-
tions about incoming phonemes within pseudoword.

We propose that abstract predictions are deployed
regardless of the task at hand. To test this, experiments 1
and 2 differed with respect to the instructions given to the
participants. While in experiment 1 participants were in-
structed to count the occurrence of deviants, in experi-
ment 2, they were required to learn all pseudowords. We
expected that an early prediction error signal would be
present in both experiments, implying that predictions are
deployed even if the task at hand does not require error
detection and independent of the strategy of rule-
learning.

Finally, to test whether these predictions are con-
structed using information beyond local transitional prob-
abilities, we tested whether the amplitude of prediction
error would be modulated by the amount of phonemes
presented before the point of deviance. We expected to
find higher prediction error (higher amplitudes) when lon-
ger sequences of phonemes that are congruent with a
standard pseudoword are presented. This modulation
would not occur if predictions were made based solely on
local transitional probabilities between phonemes.

Taken together, these experiments allowed us to study
the predictive capabilities of the brain networks underly-
ing the extraction of abstract rules.

Materials and Methods
Stimuli set, unprocessed data and processing scripts

can be found at https://osf.io/tuvy6/.

Participants
Participants were self-reported right handed, Italian na-

tive speakers recruited from the city of Trieste with no
auditory or language-related problems. Participants
signed informed consent and received a monetary com-
pensation of 15€. Thirty participants (10 male, 20 female,
mean aged 22.86 � 3.42 years) took part in experiment 1,
and 29 participants (9 male and 20 female, mean aged
23.24 � 3.52 years) took part in experiment 2. After data
preprocessing, participants contributing with �30 clean
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EEG trials per condition were excluded from analysis (one
participant excluded from each experiment). The remain-
ing participants had sufficient trials to be included in a
single subject statistical analysis and all contribute simi-
larly to the group variance. Additionally, one participant
was excluded from experiment 1 due to poor behavioral
performance. Therefore, 28 participants (10 male, 18 fe-
male, mean age 23.25 � 3.23 years) from experiment 1
and 28 participants (8 male and 20 female, mean age
23.10 � 3.51 years) from experiment 2 were included in
the final analyses.

Stimuli
Six pseudowords divided in three sets of two pseudo-

words each were used as stimuli. We applied a series of
constrains in the construction of our stimuli to ensure that
the resulting pseudowords would resemble real Italian
words. First we consulted the phonItalia lexical database
(Goslin et al., 2014) to identify syllable candidates com-
posed by 1 consonant followed by 1 vowel (i.e., two
phonemes each). To exclude monosyllabic words and
onomatopoeias, we removed syllables with a token fre-
quency above the 70th percentile. Next, to keep syllables
that could take any position within a word, we removed
syllables with initial, middle or final position token fre-
quencies either bellow the 20th percentile or above the
90th percentile. This selection procedure allowed us to
identify 24 syllable candidates that are not monosyllabic
words (in Italian) and have an even frequency distribution
across positions within a word.

Using these syllable candidates, we constructed two
trisyllabic pseudowords that contained no vowel or con-
sonant repetitions. Additionally, no syllables were re-
peated between these two pseudowords. Hereafter,
these pseudowords will be referred to as STD (i.e., stan-
dard) pseudowords. Taking these STD pseudowords as a
base, we constructed two different types of deviant pseu-
dowords. The first deviant type, to which we will refer as
XYY, consisted of the 1st syllable of a STD pseudoword
and the 2nd and 3rd of the other STD pseudoword. The
second type of deviant, to which we will refer as XXY,
consisted of the 1st and 2nd syllable of a STD pseudo-
word, and the 3rd of the other STD pseudoword. Finally,
two additional pseudowords with a XYX structure were
constructed, only to be used as NEW pseudowords in a
forced choice test at the end of experiment 2. None of
these deviant pseudowords contained either consonant
or vowel repetitions.

Audio file of these two STD pseudowords were gen-
erated using the MBROLA speech synthesizer (Dutoit
et al., 1996) and the Italian female diphone database it4.
Consonant and vowel durations were set to 150 and
175 ms, respectively, hence, pseudowords duration
was 975 ms. Once the two STD pseudowords were
produced, deviants were constructed by cross-splicing
(i.e., cutting and replacing sound segments) the audio
of the STD.

In natural speech, phonemes are co-articulated (i.e., the
sound of each phoneme is influenced by the preceding
and the forthcoming phoneme). Hence, using cross-

splicing to generate the deviant pseudowords could result
in sharp transitions that would sound unnatural. Because
of this, we took measures to obtain a natural render for
our stimuli (Steinberg et al., 2012). For the first and last
syllable position, the vowels of both STD pseudowords
had similar first and second formants. As one STD pseu-
doword had the vowel “o” in the first syllable, the other
STD pseudoword had the vowel “u” at the same position.
In the case of the third syllable, while one STD pseudo-
word used the vowel “i,” the other one used the vowel “e.”
In the case of the second syllable, both STD pseudowords
had “a” as the vowel (Fig. 1A). For each syllable position,
the consonants of both STD pseudowords had the same
mode of articulation. Finally, the point of cutting was set
close to zero amplitude. These measures had the effect of
reducing the difference between both STD pseudowords
at the points of syllable transitions so that when cross-
spliced to construct the deviant pseudowords, these
would not contain sharp transitions.

The final set consisted of two STD, two XYY deviants,
two XXY deviants, and two NEW pseudowords (Fig. 1B).
All pseudowords were checked by a native Italian speaker
linguist to ensure that they sounded as plausible but not
real Italian words.

While previous work in the literature has shown that the
generation of predictions can serve word processing,
phonemes in these experiments were either omitted (Ben-
dixen et al., 2014), or replaced either by other phonemes
(Cornell et al., 2013; Politzer-Ahles et al., 2016; Schluter
et al., 2017) or by a non-linguistic sound (Kashino, 2006;
Groppe et al., 2010). Because of this, changes in low level
auditory features might have contributed to the recorded
signals. In the case of our stimuli set, any difference in the
EEG recording found between the STD condition and the
deviant conditions could not be attributed to differences
in instantaneous low-level features. Instead, they could in
principle only be attributed to the violation of the abstract
rule learnt during the experiment (Paavilainen, 2013), ac-
cording to which given a syllable Xn, the next syllable of
the word should be Xn � 1.

Note that in the case of the stimuli used here, the only
feature that defined a pseudoword as deviant was that
following the syllable Xn, instead of the usual syllable Xn
� 1, the syllable Yn � 1 (which belongs to a different STD
pseudoword) was presented. Additionally, as the overall
frequency of presentation of all syllables used to con-
struct the stimuli was the same, this design avoids a
common confound between expectation and frequency of
presentation (Heilbron and Chait, 2018).

Experimental design
Participants were requested to minimize movement

throughout the experiment, except during breaks be-
tween blocks. No particular instructions were given with
respect to when to blink, as eye blink artefacts can be
removed using independent component analysis (ICA;
Delorme and Makeig, 2004; Chaumon et al., 2015).

Experiments followed an Oddball design, divided in 13
blocks with an average duration of 3.3 min each. During
each block, a total of 98 pseudowords were presented,
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with an inter stimulus interval that varied between 900 and
1300 ms. During the first of such blocks, only STD pseu-
dowords were presented. Subsequently, participants
completed 12 blocks composed of 84% Standard pseu-
dowords 8% XYY deviant pseudowords and 8% XXY
deviant pseudowords. Within each block, pseudoword
order was pseudo-random. A minimum of two and a
maximum of four STD pseudowords were presented be-
tween deviants and no deviants were presented more
than two times consecutively (Fig. 1C).

In experiment 1, participants were instructed to learn all
made up “words” (i.e., pseudowords) in block one, and
from block 2 onwards count the occurrence of “mistaken
words” (i.e., deviant pseudowords) and write down the
number of mistaken words during the pauses between
blocks.

In experiment 2, participants were not informed about
the presence of deviants and were simply instructed to
learn all made up words (i.e., pseudowords). To ensure
that the participant would pay attention during the exper-
iment, they were informed that they would be subject to a
test after the word learning task. After listening to the
blocks of pseudowords, behavioral performance was as-
sessed, by means of a forced choice test. On each trial,
participants heard two pseudowords in sequence and
were requested to choose the one that most likely was
presented during the experiment. Participants completed
four trials for each of six contrasts between conditions, for
a total of 24 trials, presented in pseudorandom order (only
1 repetition of contrast type was allowed). The contrasts
between conditions were “STD versus XYY,” “STD versus
XXY,” “XYY versus XXY,” “STD versus NEW,” “XYY ver-

Figure 1. A, Scatter plot of 1st and 2nd formant of each vowel. B, Stimulus set in IPA notation. Deviant pseudowords were produced
by cross-splicing the two STD pseudowords either at the end of the first syllable (XYY) or at the end of the second syllable (XXY). Two
additional NEW pseudowords with a XYX structure were used only in a forced choice test at the end of experiment 2. C, In both
experiments, stimuli were presented in 13 blocks separated by 20 s. Within each block, pseudowords were presented with an inter
stimulus interval between 900 and 1300 ms. The first blocks consisted solely of STD pseudowords. Subsequent blocks were
composed of 84% STD pseudowords 8% XYY deviant pseudowords and 8% XXY deviant pseudowords. Pseudoword order was
pseudo-random. A minimum of two and a maximum of four STD pseudowords were presented between deviants and no deviants
were presented more than two times consecutively.
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sus NEW,” and “XXY versus NEW.” Participants reported
their answers verbally and the experimenter entered them
through keyboard. Order of presentation of pseudowords
within trial was counterbalanced.

Data acquisition setup
EEG data were collected using a 128 passive electrode

system (Geodesic EEG System 300, Electrical Geodesics,
Inc.) referenced to the vertex. EEG signal was bandpass
filtered by hardware between 0.1 and 100 Hz, and digi-
talized at 250 Hz. Electrode impedance was kept below
100 k� (equivalent to 10-k� standard amplifiers; Johnson
et al., 2001). Participants were tested in a soundproof
faraday cage while sitting on a chair in front of a LCD
19-inch monitor. Sound was delivered via a loudspeaker
located behind the monitor, at a comfortable sound inten-
sity of �60 dB. Experiments were programmed in MAT-
LAB (MathWorks, Inc., RRID: SCR_001622) using the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997; RRID: SCR_002881). Pseudoword onset was
marked on the EEG data by sending both a digital input
signal (DIN) and a TCP/IP mark.

EEG data preprocessing
EEG data preprocessing was performed in MATLAB

using custom code and the EEGLAB toolbox (Delorme
and Makeig, 2004; RRID: SCR_007292). After being im-
ported to EEGLAB, the data of each subject was band-
pass filtered (0.1–30 Hz). As the anti-aliasing filter of the
EGI 300 Amp introduces a delay of 36 ms, latencies of all
events were corrected. The entire learning block, and the
first six trials of each block, where excluded from analysis.
Data were segmented into 1848-ms-long epochs starting
300 ms before pseudoword onset. Bad channels were
rejected using the 3 available methods of EEGLAB’s
pop_rejchan function. Kurtosis threshold was set to 4�,
Joint probability threshold was set to 4�, and Abnormal
spectra was checked between 1 and 30 Hz, with a thresh-
old of 3� (Delorme and Makeig, 2004). Following this
automatic cleaning, additional channels were rejected by
visual inspection of continuous data and spectra. ICA was
use to remove eye blinks (Delorme and Makeig, 2004;
Chaumon et al., 2015). Following, data were re-referenced
to the average of all electrodes and baseline corrected
using the 300 ms before pseudoword onset. Next, we
performed trial rejection by eliminating trials containing
extreme values (�200 mV) and improbable trials (EEGLAB
pop_jointprob 4� for both Single Channel and All Chan-
nels). Finally, missing channels were interpolated (EE-
GLAB pop_interp, “spherical”).

Only after this cleaning procedure the data were divided
into conditions. Given that STD pseudowords were pre-
sented far more frequently than deviant pseudowords, the
datasets of each condition were pruned by randomly
discarding trials to obtain exactly the same number of
trials per condition. For example, if after trial rejection a
participant had 763 STD trials, 76 XYY trials, and 68 XXY
trials, then 68 randomly picked trials per condition were
kept and the rest were discarded. Participants contribut-
ing with �30 clean EEG trials per condition were excluded
from analysis (one participant was excluded from each

experiment applying this criterion). After this, the mean
amount of trials per participant and condition were 70.18
� 16.57 (minimum � 35) for experiment 1 and 82.50 �
13.76 (minimum � 41) for experiment 2. For each condi-
tion, the mean of all trials of each subject was calculated
and saved into a final dataset. The result of preprocessing
was 1 dataset per condition, containing the mean of each
subject.

Deviant conditions differed between each other with
respect to the amount of syllables presented before the
point of deviance. to render possible the comparison of
the deviant conditions, we re-segmented the trials of both
deviant conditions so that the points of deviance would be
aligned. The resulting epochs had a length of 1224 ms,
starting 325 ms before the point of deviance. Additionally,
as the processing of a pseudoword has an intrinsic tem-
poral dynamic, we eliminated these confounding factors
by subtracting the activation elicited by the STD condition
from each deviant condition.

EEG regions of interest (ROIs)
Statistical analysis of EEG data were restricted to two

predefined spatiotemporal ROIs. The first one consisted
on a fronto-central ROI comprised of 13 electrodes and
spanned over a 325-ms time window starting at the point
of deviance of each deviant condition. With respect to
word onset, this window spanned from 325 to 650 ms for
the XYY condition, and from 650 to 975 ms for the XXY
condition. This ROI coincided with the region were an
early prediction error response like the MMN could be
expected (Duncan et al., 2009; Bendixen et al., 2012;
Wacongne et al., 2012; Lecaignard et al., 2015). The
second ROI consisted on a Parietal ROI composed of 21
electrodes and temporally extended from 200 ms after the
point of deviance of each deviant condition, to the end of
the epoch. With respect to word onset, this window
started at 525 ms for the XYY condition, and at 850 ms for
the XXY condition. This ROI corresponded to the region
were a P3b response would be expected (Comerchero
and Polich, 1999; Polich, 2007; Duncan et al., 2009). As
this component is strongly modulated by top-down atten-
tion (Sergent et al., 2005; Bekinschtein et al., 2009;
Pegado et al., 2010; Dehaene and Changeux, 2011), it
was used to test whether the attentional manipulation
between experiments 1 and 2 was successful.

Statistical analysis
EEG group level contrast between conditions was per-

formed using a nonparametric clustering methods, intro-
duced first by Bullmore et al. (1999) and implemented in
the FieldTrip toolbox for EEG/MEG analysis (Oostenveld
et al., 2011; RRID: SCR_004849). This method offers a
straightforward and intuitive solution to the Multiple Com-
parisons problem. It relies on the fact that EEG data has a
spatiotemporal structure. A true effect should not be iso-
lated but should instead spread over different electrodes
and over time. Instead of assessing for differences be-
tween conditions in a point by point fashion, which would
lead to a very big number of comparisons, this method
groups together adjacent spatiotemporal points.
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The procedure is as follows. For every point in time and
space, the EEG signal of two conditions is statistically
compared. In our case, we used a nonparametric permu-
tation t test for this step. The t values of adjacent spatio-
temporal points with ps � 0.05 are clustered together and
a cluster-level statistic is calculated by summing the t
values within a cluster. Once these candidate clusters
have been defined, their probability of occurrence under
the null hypothesis of no difference between conditions is
assessed using a nonparametric permutation test. In this
test, conditions are shuffled and cluster-level t values are
calculated as before. This step is repeated 5000 times,
and on each iteration, the most extreme cluster-level t
value is retained. This allows to construct a histogram of
expected cluster-level t values under the null hypothesis
of no difference between the conditions. Cluster level p
values are calculated as the proportion of expected t
values under the null hypothesis that are more extreme
than the observed t value. For further details, see Maris
and Oostenveld (2007).

Additionally, to corroborate results found at the group
level were robust and not driven by outliers, we performed
a test at the participant level. For each individual partici-
pant, the mean amplitude over the time of the detected
group level cluster was calculated, and the conditions of
interest were submitted to a paired t test to obtain a t
value. Next, the t values from all participants were con-
verted to 1 if they show a difference between conditions in
the same direction as the group lever cluster or 0 if
otherwise. A one-tailed binomial test was performed on
these transformed t values, with equal or lower likelihood
as null hypothesis. The logic of this analysis is that if an
effect is true at the group level, then the majority of
participants should show a difference between conditions
in the same direction. Note that the test used is one-tailed
because the hypothesis to test is directional.

All effect sizes reported are Hedges’ g (Hedges, 1981;
Lakens, 2013), which is less biased than Cohen’s d, as it
applies a correction for small sample sizes. Effect sizes
were calculated using the measures of effect size toolbox
(Hentschke and Stüttgen, 2011). Additional statistical
analysis were performed using JASP version 0.8.6
(Bayesian analyses; JASPteam, 2017) and RStudio ver-
sion 1.1.456 (linear mixed effects models; RStudioTeam,
2016; RRID: SCR_000432).

Results
Given that deviant conditions differed in the time point

at which a pseudoword could be identified as a deviant
(325 and 650 ms from pseudoword onset for XYY and
XXY conditions, respectively), instead of defining time 0
as onset of stimulus presentation, we will use the time
point of deviance of each condition as such. In other
words, all times reported are with respect to the point of
deviance. Furthermore, comparisons across deviants and
experiment were performed on the difference wave be-
tween STD and deviant, and with all trials re-segmented
to align the point of deviance, as described in Materials
and Methods.

Behavioral results
In experiment 1, participants were requested to count

the occurrence of mistaken words (i.e., deviant pseudo-
words) on each block. On average, participants reported
15.22 (out of 16 presented) deviant pseudowords per
block (� � 2.56). For each participant, we checked the
number of blocks with a deviant count further than 2 s
from the mean. While most of the participants reported a
deviant count within these limits for all the blocks, three
participants had one block with a lower count, and one
participant had all 12 blocks outside this limit. This par-
ticipant reported a mean of only 3.58 deviants per block,
therefore, was excluded from the analysis. After excluding
this participant and 1 other participant that contributed
with �30 clean EEG trials per condition, the mean number
of deviants reported per block increases to 15.62 (� �
1.41). This performance is close to ceiling (16).

Note that the method of asking participants to mentally
count the occurrence of deviants does not allow us to
determine with certainty neither the occurrence of false
alarms, nor the detection rate for each deviant condition.
Despite this, given that the mean count of deviant was
close to the actual number of deviants presented, we can
conclude that in experiment 1, participants were able to
perform the task with high accuracy for both deviant
conditions.

Contrary to experiment 1, during experiment 2, partic-
ipants were not aware of the presence of deviant pseu-
dowords. Despite this, at the end of the experiment, they
were requested to perform a forced choice test in which
each stimuli condition was contrasted against the others
and against new pseudowords not presented during the
blocks. The mean preference in each contrast was calcu-
lated for each participant and a one sample t test was
performed at the group level to test against the null hy-
pothesis of no difference from chance (i.e., 50%). Results
were corrected for multiple comparisons using the Bon-
ferroni–Holm method.

Participants preferred STD pseudowords over both de-
viant pseudoword types. They choose STD pseudowords
over XYY deviants on 67.24% of the trials (t(28) � 3.57, p
� 0.0051, g � 0.66 [0.25, 1.06]) and over XXY deviants on
69.82% of the trials (t(28) � 4.07, p � 0.0017, g � 0.75
[0.33, 1.16]). When both deviant types were contrasted,
participants preferred XYY over XXY deviants on 62.06%
of the trials, but this preference was not reliable (t(28) �
–2.31, p � 0.056, g � 0.43 [0.04, 0.80]).

Next, we contrasted the pseudowords used in the
experiment against NEW pseudowords that were not pre-
viously presented. Participants preferred STD pseudo-
words over NEW pseudowords on 85.34% of the trials
(t(28) � 10.39, p � 2.461e-10, g � 1.92 [1.30, 2.54]) and
XXY deviants over new pseudowords on 64.65% of the
trials (t(28) � 2.99, p � 0.0169, g � 0.55 [0.16, 0.94]). XYY
deviants on the contrary, could not be distinguished from
NEW pseudowords as they were preferred on only
55.17% of the trials (t(28) � 1.03, p � 0.3117, g � 0.19
[–0.17, 0.55]).

These behavioral results allowed us to corroborate that
participants paid attention during the blocks of pseudo-
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words. They also indicate that in experiment 2, despite the
fact that the instructions provided did not explicitly dis-
tinguish between standard and deviant pseudowords,
participants displayed a preference for STD pseudowords
over both deviant pseudoword types. Although both de-
viant types had the same probability of occurrence, while
XXY deviants could be distinguished from NEW pseudo-
words, XYY could not. Taken together, these behavioral
results suggest that participants were sensitive to the
frequency of occurrence of the different pseudowords.

EEG evidence of abstract rule extraction via
phonological predictions

To test whether phonological predictions are deployed
during speech perception in the absence of semantic and
syntactic information, we used clustering (see Materials
and Methods) to compared each deviant condition
against the STD condition, focusing the analysis on the
fronto-central ROI, where the presentation of a deviant
pseudoword was expected to elicit an early prediction
error signal.

In experiment 1, XYY deviants elicited such response,
peaking in amplitude at 155 ms (t(27) � –89.77, p �
0.0004, g � –0.90 [–1.35, –0.44]), followed by a positive

deflection with peak amplitude at 227 ms (t(27) � 36.81, p
� 0.0208, g � 0.57 [0.09, 1.05]; Fig. 2A). XXY deviant also
elicited a prediction error response with peak amplitude at
170 ms (t(27) � –125.20, p � 0.0002, g � –0.91 [–1.35,
–0.47]), followed by a positive deflection with peak am-
plitude at 246 ms (t(27) � 57.88, p � 0.0126, g � 0.60
[0.21, 1.00]; Fig. 2B).

The results of experiment 1 show that the presentation
of a deviants pseudoword, composed by an unexpected
sequence of syllables, elicited prediction error signals.
Since in experiment 1 participants were instructed to
count mistaken (i.e., deviant) pseudowords, we sought to
replicate these results under conditions more akin to nat-
ural speech perception. Experiment 2, while using the
same stimuli and Oddball design of experiment 1, differed
with respect to the instructions given to the participants.
In experiment 2, participants were asked to learn all pseu-
dowords, without informing them of the presence of de-
viants.

Once more our analysis of the fronto-central ROI re-
vealed that both deviant types evoked a prediction error
signal. XYY deviants elicited a response peaking in am-
plitude at 151 ms (t(27) � –100.79, p � 0.0004, g � –0.54
[–0.85, –0.23]; Fig. 2C). In the case of XXY deviants, peak

Figure 2. Early prediction error elicited by both deviant types in experiments 1 (A, B) and 2 (C, D). On each panel: right, grand average
over fronto-central ROI. Vertical dashed lines indicate syllable boundaries. Time 0 indicates the point at which deviance occur.
Shaded areas denote 95% CI. Horizontal light gray line delimits time window of analysis. Middle gray horizontal line indicates p � 0.05
(cluster corrected). Black horizontal line indicates p � 0.01 (cluster corrected). Left top, Topography of the difference wave, mean over
the time of the negative cluster. Left bottom, Individual participants’ t values calculated over mean cluster time.
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amplitude was reached at 158 ms (t(27) � –138.13, p �
0.0006, g � –0.78 [–1.14, –0.41]; Fig. 2D). Results at the
group level were corroborated by performing a test par-
ticipant by participant, as described in the Methods sec-
tion. This analysis showed that in both experiments and
for both deviant conditions, the majority of the partici-
pants displayed a difference between conditions in the
direction congruent with the tested hypothesis (experi-
ment 1: XYY deviant, 24/28 85.71% p � 9e-5; XXY devi-
ant, 26/28 92.86% p � 1.52e-6. Experiment 2: XYY
deviant, 22/28 78.57% p � 0.00186; XXY deviant, 24/28
85.71% p � 9e-5).

Taken together, the results of experiments 1 and 2
show that the presentation of deviants composed by an
unexpected sequence of syllables trigger an early predic-
tion error signal. The presence of this error signal indi-
cates that a prediction about the forthcoming syllables
had been made, even when the context did not contain
any syntactic or semantic information.

Neural signals to violations of abstract rules under
different instructions

To test whether predictions are deployed regardless of
the task at hand, experiments 1 and 2 used the same
stimuli and design, but differed in the instructions given to
the participants. While in experiment 1 participants were
requested to count the occurrence of deviants, in exper-
iment 2, they were not informed about the presence of
deviants and were instead requested to learn all pseudo-
words. Despite this difference, as we reported at the
beginning of this section, the presentation of deviant
pseudowords elicited an early prediction error signal in
both experiments.

To confirm that the change in instructions successfully
induced a different attention allocation between experi-
ments, we analyzed the signal recorded at the parietal
ROI. If the attentional manipulation was successful, the
presentation of a deviant pseudoword should elicit a P3b
response only in experiment 1, where deviant detection
was relevant for the task at hand (Bekinschtein et al.,
2009).

In experiment 1, our analysis of the parietal ROI re-
vealed that both deviant types elicited the expected P3b
response. In the case of the XYY deviant, P3b response
started at 251 ms and reached 50% of its area under the
curve at 743 ms (t(27) � 1625.05, p � 0.0002, g � 1.77
[1.03, 2.51]; Fig. 3A). In turn, the P3b response elicited by
the XXY deviant started at 262 ms and reached 50% of its
area under the curve at 578 ms (t(27) � 1149.20, p �
0.0002, g � 1.97 [1.17, 2.76]; Fig. 3B). Furthermore, the
amplitude of the P3b component was modulated by de-
viant type. XXY deviants elicited a higher amplitude P3b
response than XYY deviants (t(27) � 225.97, p � 0.0018,
g � 0.47 [0.13, 0.80]; Fig. 4C). This comparison was
performed on the difference wave between STD and each
deviant condition, with the point of deviance temporally
aligned.

While in experiment 1 both deviant conditions elicited a
clear P3b response, in experiment 2, only positivities of
lower amplitude were detected. For the XYY deviant,

clustering analysis detected a series of 3 consecutive
positive clusters, the first of which started at 543 ms (t(27)
� 99.39, p � 0.0092, g � 0.70 [0.15, 1.26]; t(27) � 94.46,
p � 0.0098, g � 0.60 [0.11, 1.09]; t(27) � 44.64, p �
0.0362, g � 0.65 [0.11, 1.20]). In the case of the XXY
deviant condition, a single positive cluster was found,
starting at 402 ms and reaching 50% of its area under the
curve at 394 ms (t(27) � 385.57, p � 0.0014, g � 0.82
[0.21, 1.43]).

Next, to further confirm that the attentional manipula-
tion between experiments was successful, we contrasted
the recorded signals across experiments using clustering
analysis. We expected to find higher amplitudes in exper-
iment 1, due to the presence of the P3b elicited by the
deviants. We were able to confirm this for both deviants
(XYY: t(54) � 875.00, p � 0.0002, g � 1.41 [0.80, 1.99];
XXY: t(54) � 734.07, p � 0.0002, g � 1.26 [0.66, 1.82]).
Analyses were performed on the difference between STD
and deviant conditions. These results confirm that the
top-down attention paid to deviants was indeed different
between experiments.

Having confirmed that the attentional manipulation be-
tween experiments was successful, and considering that
regardless of this, an early prediction error signal was
registered in both experiments, we decided to test
whether the prediction error signals recorded across ex-
periments where indeed equivalent. As our hypothesis
stated that there would be no difference in prediction error
amplitude across experiments (i.e., a null hypothesis), a
Bayesian independent samples t test (Bayes factor;
Rouder et al., 2009) was used for these comparisons. This
test measures the relative evidence between the null and
alternative hypothesis, allowing to assess evidence in
favor of the null (Leppink et al., 2017). Tests were per-
formed using a Cauchy prior with scale value of r � 1.

We compared the amplitude of the early prediction
error signals registered over the fronto-central ROI, elic-
ited by each deviant condition across experiments, by
taking the mean amplitude in a 44-ms time window (equal
to the duration of the shortest cluster) centered at the
peak of the detected negativity. For both deviant types,
Bayes factor showed only anecdotal evidence in favor of
no difference between experiments (XYY deviants: BF01
� 2.48, g � 0.32 [–0.20, 0.85]; XXY deviants: BF01 �
1.14, g � 0.48 [–0.06, 1.01]). Analyses were performed on
the difference between STD and deviant conditions.

Taken together, these results suggest that even if the
task at hand does not explicitly imply deviance detection,
phonological predictions are proactively deployed. How-
ever, it should be noted that the results with respect to the
modulation of early prediction error by top down attention
are inconclusive.

Predictions beyond local transitional probabilities
The prediction error signals described above could re-

flect violations of predictions based on local transitional
probabilities, or alternatively these predictions could be
constructed by considering information in a longer cog-
nitive time window. To shed light on this issue, we con-
trasted conditions where deviance occurred at different
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time points within a pseudoword. The logic behind this
comparison is that if predictions are built not solely on the
basis of local transitional probabilities, an increase in the
number of syllables presented before the point of devi-
ance would elicit higher amplitude prediction error sig-
nals. In XXY, the second syllable lends further evidence
that the pseudoword is about to be completed, but then
this prediction is violated in the last syllable, while in XYY,
the prediction is broken earlier.

In both experiments, the early prediction error signal elic-
ited by XXY deviants had a bigger amplitude than the signal
elicited by XYY deviants (experiment 1: t(27) � –53.95, p �
0.0094, g � –0.64 [–1.06, - 0.23]. Experiment 2: t(27) �
–38.02, p � 0.0204, g � –0.62 [–1.12, –0.12]; Fig. 4A,B).
This suggests that prediction strength can be modulated by
the amount of preceding syllables that are congruent with a
STD pseudoword. Once more, we corroborated these re-
sults by performing a test participant by participant, as
described in the Methods section. This analysis showed that
in both experiments, the majority of the participants dis-
played higher amplitude prediction error signals for the XXY
deviant (experiment 1: 24/28 85.71% p � 9e-5; experiment
2: 21/28 75.00% p � 0.00627).

It remained possible that small discrepancies in the
number of STD trials presented before the deviants of
each condition might be in part driving these effects. To
rule out this possible confound, we fitted linear mixed
effects models (using the lme4 package in RStudio,
Bates et al., 2015; RStudioTeam, 2016) to predict single
trial prediction error amplitude using deviant type and
amount of preceding STD trials (STD count) as fixed
factors, and including participant as random factor [PE
� Dev � STD_count � (1 � Dev | participant); R2
experiment 1 � 0.0124, R2 experiment 2 � 0.0116]. An
effect of deviant type was found in both experiments
(experiment 1: B � – 0.94, t(3929) � –3.705, p �
0.00021; experiment 2: B � – 0.67, t(4619) � –3.530, p
� 0.00042). In contrast, no effects of STD count were
found (experiment 1: B � – 0.007, t(3929) � – 0.092, p �
0.92; experiment 2: B � 0.059, t(4619) � 1.172, p �
0.24). These results rule out the possibility that a
substantial part of the difference in prediction error
amplitude between deviant conditions would be driven
by a difference in mean STD count preceding the
deviants.

Figure 3. A P3b response was elicited by both deviant types in experiments 1 (A, B), but not detected in experiment 2 (C, D). On each
panel: right, grand average over parietal ROI. Vertical dashed lines indicate syllable boundaries. Time 0 indicates the point at which
deviance occur. Shaded areas denote 95% CI. Horizontal light gray line delimits time window of analysis. Middle gray horizontal line
indicates p � 0.05 (cluster corrected). Black horizontal line indicates p � 0.01 (cluster corrected). Left top, Topography of the
difference wave, mean over the time of the positive cluster. Left bottom, Individual participants’ t values calculated over mean cluster
time.
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Discussion
As we argued in the Introduction, the experimental

designs typically used to study prediction in auditory
processing share a number of limitations. The majority of
the experimental designs used are variations of the Odd-
ball paradigm (Heilbron and Chait, 2018). In most of these
experimental designs, what defines a particular stimulus
as deviant is the disruption of an established physical
feature such as pitch, duration, intensity, side of stimula-
tion or the presence of a gap (Näätänen et al., 2007). This
limitation applies to the classical Oddball paradigm,
optimum-1 (Näätänen et al., 2004), omission (Yabe et al.,
1997), and roving-standard (Garrido et al., 2008) designs.

While these designs define standard and deviant stimuli
on the basis of their physical features, other designs
explore the sensitivity of the predictive system to higher
order regularities or abstract rules that define the relation-
ship between successive stimuli. For example, Paavilainen
et al. (2007) presented to their participants sequences of
sinusoidal tone pips for which the duration varied ran-
domly between short (50 ms) and long (150 ms). Impor-
tantly, the duration of each tone predicted the pitch of the
next one, which could be either low (1000 Hz) or high
(1500 Hz). The authors found that the violation of this
arbitrary abstract rule, linking duration of a tone with pitch
of the next, elicited an early error signal (MMN response).
Other examples of paradigms that test for prediction of
higher order regularities are the unexpected repetition
(Wacongne et al., 2012) and repetition versus expectation
(Todorovic and de Lange, 2012) designs (for review of
abstract rule designs, see Paavilainen, 2013).

Abstract rule designs have given support to predictive
coding by showing that putative early prediction error
signals, like the MMN response, cannot be fully explained
by simple adaptation to standard stimuli (and lack of
adaptation to deviant stimuli). But in all the designs men-
tioned above, the rules used established relationships
only between consecutive stimuli. Therefore, these exper-
imental designs only allow to study the sensitivity of the
predictive system to local transitional probabilities.

To the best of our knowledge, there are only two par-
adigms that allow to test violations of an abstract rule
beyond local transitional probabilities. In the local/global
paradigm (Bekinschtein et al., 2009), tones are presented
in groups of five. This allows to establish regularities both
locally (transitional probabilities between tones within
groups) and globally (between groups change, only trac-
table over a time range of seconds). In the RAND-REG
designs (Barascud et al., 2016), tones are presented in
succession at multiple possible pitches, switching be-
tween randomness and regular patterns. In these exper-
iments, the detection of a regular pattern requires to
consider several consecutive tones (one full cycle plus

Figure 4. Comparison of signals elicited by each deviant type
(difference waves, deviant minus STD). On each panel: right,
grand average over fronto-central ROI (A, B) or parietal ROI (C).
Trials were re-segmented and locked to the point of deviance,
indicated by time 0. Shaded areas denote 95% CI. Horizontal
light gray line delimits time window of interest. Middle gray

Figure 4. continued
horizontal line indicates p � 0.05 (cluster corrected). Black hor-
izontal line demarks p � 0.01. Early prediction error signals
detected in experiments 1 (A) and 2 (B). P3b detected in exper-
iment 1 (C). Left, Individual participants’ t values calculated over
mean cluster time.
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four tones according to an ideal observer model). While
the local/global and RAND-REG designs allow to study
predictions that integrate information beyond adjacent
stimuli, these designs use tone stimuli that are far less
complex than naturally occurring sounds.

As evidence suggests that the generation of predictions
might be one of the strategies that the speech processing
system uses to parse the speech signal (Hickok, 2012;
Boudewyn et al., 2015; Kleinschmidt and Jaeger, 2015;
Norris et al., 2015; Hauk, 2016), and given that abstract
rules and long range dependencies are ubiquitous in lan-
guage, one way to overcome the limitations of the exper-
imental designs described above is to use speech-like
stimuli.

In the context of speech processing, it has been shown
that listeners tend to hallucinate the presence of pho-
nemes replaced by tones. The strength of this illusion
depend on how much the preceding context is informa-
tive about the missing phoneme (Kashino, 2006; Groppe
et al., 2010). Similarly, when a phoneme is omitted from a
word (Bendixen et al., 2014), this can elicit a MMN
(Näätänen et al., 2007), which is a marker of violation of
expectations (Friston, 2005; Winkler and Schröger, 2015),
but only if the context in which the phoneme omission
occurs contains semantic information that makes the
omitted phoneme predictable. Phoneme replacements
can also elicit a MMN response when the replacement
violates a phonotactic rule of the language of the listener
(Dehaene-Lambertz et al., 2000; Sun et al., 2015; Ylinen
et al., 2016). Furthermore, and particularly framed in the
context of predictive coding, it has been shown that the
amplitude of the MMN response elicited by phoneme
replacement is modulated by the availability of phonolog-
ical evidence (i.e., degree of feature specification) of the
preceding standard words before the presentation of a
deviant (Scharinger et al., 2012a,b, 2016).

The studies described in the previous paragraph have
provided compelling evidence of the role that predictions
play in speech processing, but besides using speech as
complex auditory stimuli, they incorporate in their designs
other linguistic factors such as syntax, semantic informa-
tion, and phonotactics. We proposed that phonological
prediction might be generated within words, even in the
absence of these additional sources of information. To
test this, we performed two EEG Oddball experiments in
which only phonological information was available to gen-
erate phonological predictions. Importantly, the deviant
pseudowords used in these experiments were con-
structed by cross-splicing standard pseudowords. There-
fore, each phoneme in a deviant pseudoword was
acoustically identical to a phoneme in a standard pseu-
doword. The only feature that defined a pseudoword as
deviant, was that following the syllable Xn, instead of the
usual syllable Xn � 1, the syllable Yn � 1, which belongs
to a different pseudoword, was presented. In this way, the
ERP responses registered in these experiments could not
be elicited by low frequency of occurrence of a given
sound, or a change in instantaneous low level auditory
features, but by the violation of an abstract rule
(Paavilainen, 2013). As the stimuli did not contain consec-

utive phoneme repetitions, the registered responses can-
not be explained by stimulus specific adaptation.
Additionally, this stimuli design avoids a common con-
found between repetition and expectation (Todorovic and
de Lange, 2012; Heilbron and Chait, 2018).

In both of the experiments presented here, the occur-
rence of an unexpected sequence of phonemes, reliably
elicited an early prediction error signal, compatible with a
MMN response (Näätänen, 2000; Näätänen et al., 2007).
This ERP is a well-established prediction error signal that
can be interpreted as the result of comparing a prediction
with the actual bottom-up input (Friston, 2005; Garrido
et al., 2009; Wacongne et al., 2011; Winkler and Czigler,
2012; Chennu et al., 2013; Paavilainen, 2013). The pres-
ence of this early prediction error signal, elicited by the
presentation of an unexpected sequence of phonemes,
can be considered as evidence that a prediction about the
forthcoming phonemes had been made.

Experiments 1 and 2 differed in the instructions given to
the participants. While in experiment 1 participants were
instructed to count the occurrence of mistaken words
(i.e., deviants), in experiment 2, they were not informed
about the occurrence of deviants and were simply in-
structed to learn all the pseudowords. This aimed to
induce in experiment 2, an attentional state that resem-
bles more closely the one held during natural speech
processing.

To confirm the effects of this attentional manipulation,
we tested for the presence of a P3b component in both
experiments. While clustering analysis detected clear P3b
components in experiment 1, only smaller positivities
were detected in experiment 2. This suggest that partici-
pants noted the difference in frequency of occurrence
between STD and deviant pseudowords, even when they
were not instructed to detect deviants. In line with this, the
behavioral results from experiment 2 show that partici-
pants preferred STD pseudowords over both deviant
pseudoword types.

Despite this, when contrasting the signals recorded
between experiments, we could verify that the amplitude
in the P3b time window was roughly four times higher in
experiment 1. As the P3b component is an index of to
top-down attention (Sergent et al., 2005; Bekinschtein
et al., 2009; Dehaene and Changeux, 2011; Faugeras
et al., 2011; Chennu and Bekinschtein, 2012; Strauss
et al., 2015), this difference indicates that the degree to
which top-down attention was deployed was different
between experiments.

Despite the difference in instructions and in concomi-
tant top-down attention between experiments, unex-
pected sequence of phonemes reliably elicited an early
prediction error signal. This suggests that phonological
predictions can be deployed, even if the task at hand
does not require detecting abnormalities in the speech
stream. Given that the results of our Bayesian analysis
comparing amplitude of prediction error across experi-
ments were inconclusive, the modulatory role that top-
down attention might exert on these predictions remains
an open question. As the attention allocation held by the
participants during experiment 2 resembles closely the
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one use for natural speech processing, these results imply
that the language comprehension system proactively an-
ticipates incoming phonemes within individual words.

One way in which these phonological predictions could
be implemented is by extracting the local transitional
probabilities between adjacent syllables (Endress and
Mehler, 2009; Koelsch, 2016). Our data indicates that this
is unlikely, as we found that the amplitude of prediction
error signals was modulated by the amount of syllables
presented before the point of deviance. When two con-
gruent syllables were presented before the point of devi-
ance (XXY), the amplitudes were higher than when only
one congruent syllable was presented (XYY). As the local
transitional probabilities between X1 and X2 were the
same as between X2 and X3 (0.92), this increase in am-
plitude indicates that the information used to generate
predictions was not restricted to consecutive syllables.
Instead prediction strength was modulated by integrating
information from several past phonemes.

It has been shown that the number of phonological
features differing between standard and deviants can
modulate the amplitude of the MMN response (Cornell
et al., 2013; Scharinger et al., 2016; Schluter et al., 2017).
Taking this into account, the difference in prediction error
amplitude between deviant conditions may be captured
by this feature. Taking the position of Mioni (1993) and
Kramer (2009), who propose that in the case of Italian,
affricates do not constitute a separate class of manner of
articulation, the phonological features that change from
STD to deviant in our stimuli set are the following. Sylla-
bles in the 2nd position (XYY deviant) differ in their con-
sonant voicing, place of articulation and manner of
articulation. Syllables in the 3rd position (XXY deviant)
differ in their consonant voicing and place of articulation,
and in their vowel height (Mioni, 1993; Kramer, 2009;
Paoli, 2016). While it should be noted that whether all
these phonological features have a neural representation
is on itself an open debate (Hestvik and Durvasula, 2016;
Politzer-Ahles et al., 2016; Schluter et al., 2016, 2017), in
the case of our stimuli set, the number of phonological
features that change for each deviant condition is the
same.

Finally, when the point of deviance is reached, more
time has elapsed from pseudoword onset in the case of
XXY deviants, compared to XYY deviants. This difference
in time from pseudoword onset could contribute to the
difference in MMN amplitude, but we find this improbable.
Behavioral gating experiments (Tyler, 1984) and MEG
experiments (Brodbeck et al., 2018) have shown that
between 50 and 100 ms from word onset are enough to
generate a prediction regarding the initial phoneme of a
word. In the case of XYY deviants, the point of deviance is
reached 325 ms after pseudoword onset, which is more
than three times the suggested minimum time for predic-
tion generation. Therefore, the difference in elapsed time
before deviance between conditions is unlikely to contrib-
ute to the observed difference in prediction error ampli-
tude.

One tentative interpretation for the difference in predic-
tion error amplitude between deviant conditions is that, as

language processing is characterized by extensive com-
munication across representational levels (Davis and
Johnsrude, 2007; Kuperberg and Jaeger, 2016), a lexical
level of processing could be involved. Specifically, when a
phoneme of a word is perceived, this could be used to
pre-activate that word’s lexical representation, with con-
secutive phonemes reinforcing the prediction of congru-
ent words.

Taken together, our results suggest that even when no
higher-level linguistic information such as syntax and se-
mantics is present, the human auditory system can use
phonological information from several past phonemes to
generate predictions about forthcoming phonemes. In the
experiments presented here, participants were exposed
to new pseudowords that were learned in a period of
minutes. This implies a formidable capacity of the auditory
system to learn sequences of phonemes composing new
words and generate predictions within those words. This
capacity might play a fundamental role in the difficult task
of mapping a complex, variable and noisy signal as
speech into meaning. Moreover, the experiments pre-
sented here use stimuli and abstract rules more complex
and ecologically valid that the ones routinely used in the
study of auditory prediction, allowing to show that the
auditory system can proactively generate predictions.
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