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Improved culture of non-human primate embryos reveals the establishment of the 11 

crucial framework for subsequent development of bodily tissues and the germline in 12 

fetuses, bringing us closer to comprehending the elusive development of early human 13 

embryos. 14 

 15 

Most of what we know about very early mammalian development after blastocyst implants in 16 

the womb comes from mouse studies [1]. Little is known about development in primates, and 17 

even less so for human development, because of many challenges and constraints on studies 18 

on early human embryos. Accordingly, studies on non-human primate embryos might 19 

provide information relevant to human development. Two recent studies now report on the 20 

development of cynomolgus monkey embryos for 20 days post fertilization, and their 21 

progress through gastrulation in culture [2, 3]. They compare their observations on 22 

embryonic development in culture by referring to a previous study on the developing monkey 23 

embryos in vivo [4]. 24 

 25 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/288348816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Shortly after implantation, the inner cell mass (ICM) of humans and non-human primates 26 

develop into epithelial cells, followed by the formation of a lumen, which gives rise to the 27 

amniotic cavity. The embryonic tissues themselves develop as a bilaminar disc comprising 28 

the epiblast on top of the hypoblast; the latter originates from the primitive endoderm. The 29 

epiblast and amnion epithelium encapsulate the amniotic cavity while the hypoblast 30 

endoderm and extraembryonic mesoderm encapsulate the primary yolk sac. The formation of 31 

a primitive streak along the midline of the epiblast disc marks the onset of gastrulation. 32 

Gastrulation is a pivotal event during early development when the three primary germ layers, 33 

endoderm, ectoderm, and mesoderm, appear for the first time. Primordial germ cells (PGCs), 34 

which eventually develop into sperm or eggs, also emerge around this time, either in the 35 

amnion according to some studies, epiblast or in both tissues [5-7]. The anterior and posterior 36 

ends of the embryos now become distinguishable before the germ layers undergo further 37 

differentiation towards organogenesis, in which the anterior cells,  e.g., develop into neuronal 38 

cells. 39 

 40 

In the recent studies on the cynomolgus monkey embryos, Ma et al. [2] and Niu et al. [3] 41 

adopted in vitro culture methods previously used to culture mammalian embryos. These 42 

studies reveal aspects of non-human primate embryo development after embryo implantation, 43 

through gastrulation. These independent studies showed the development of cynomolgus 44 

monkey embryos up to 20 days post fertilization (dpf). Niu et al. used the culture system 45 

described elsewhere [8]. In contrast, Ma et al. added some novel aspects to their culture 46 

conditions containing different serum concentrations, which was first optimized using mouse 47 

blastocysts [2]. 48 

 49 
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Broadly speaking, the development of the monkey embryos in both studies recapitulated key 50 

developmental events previously described for embryonic development in vivo [4, 6]. They 51 

observed the formation of the bilaminar disc structure comprising amniotic and yolk sac 52 

cavities and the establishment of an anterior-posterior axis. They also saw the emergence of 53 

the primitive streak, and the appearance of the PGC-like cells and of the structures 54 

resembling neural plate folding [2]. In the future, it will be essential to conduct a rigorous, 55 

detailed analysis of development using approaches such as lineage tracing and live imaging 56 

to establish the precise origin and destiny of diverse cell types in the embryo, at a time when 57 

the embryo undergoes extensive morphogenetic changes.     58 

 59 

For now, both studies opted to conduct single-cell transcriptome analysis in the hope to 60 

characterize the diverse cell types present in the developing embryos.  Ma et al. and Niu et al. 61 

compared different stages of embryo development, which they compared with the single-cell 62 

transcriptome analysis of cynomolgus monkey embryos in vivo described previously [4]. 63 

Although cells of the majority of embryonic and extraembryonic lineages found in vivo were 64 

detected in embryos in culture, some disparities in the clustering of cell types were apparently 65 

observed. The discrepancies might be due to the appearance of transient and intermediate cell 66 

lineages, but the presence of aberrant cells in embryos in culture cannot be excluded. 67 

Nonetheless, Ma et al. were able to annotate early (11-14 dpf) and late (16-17 dpf) 68 

gastrulating or amniotic cells, where the transcriptional profile of amniotic cells in embryos 69 

were not reported before [4]. Niu et al., on the other hand, investigated the chromatin 70 

accessibility of the post-implantation embryo at the single-cell level, which, for example, can 71 

detect enhancer elements in different cell types during development. Overall, the cell 72 

identities from these two studies overlap with those found in vivo, suggesting that embryos in 73 

culture broadly follow events observed in vivo. Note that the culture methods used in these 74 
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studies can support up to 22% of embryos to the gastrulation stage without feto-maternal 75 

interactions. Whether the efficiency of development observed reflects inherent differences in 76 

the quality of the embryos or a consequence of culture conditions is unknown. If it is the 77 

latter, further optimization of culture conditions, might result in better development at a 78 

higher efficiency. 79 

 80 

These studies have strengthened our current understanding of the early post-implantation 81 

development in primates. They will enhance the technological and conceptual advancement 82 

for translating the knowledge to stem cell research and developmental biology. Reliable and 83 

efficient culture models could be used to investigate the morphological, molecular, and 84 

physiological properties of primate embryos, which could, in principle, be used to study early 85 

human peri- to post-implantation development in vitro. There are species-specific differences 86 

between early human and non-human primate development, indicating caution when 87 

considering extrapolation to human development. The differences include the timing of 88 

implantation and amniogenesis between cynomolgous monkey and humans [9], which 89 

reflects possible variations due to species evolution [10]. The schedules of gastrulation and 90 

establishment of PGCs might also differ, although the regulatory network for PGC 91 

specification is apparently broadly conserved in mammals with bilaminar disc embryos [7, 92 

10].  Some studies, for example, suggest that PGC-like cells in monkeys can be found in the 93 

nascent amnion during the mid-second week (~11 dpf) of development [6]; further work is 94 

needed to determine whether amnion and/or epiblast could be the site for the origin of PGCs. 95 

Note that PGC specification in the porcine bilaminar disc embryos occurs in the epiblast 96 

where the gene regulatory network is more like that in human and not mouse embryos [5]. 97 

While the developmental events might be broadly similar amongst mammals, there are more 98 

significant differences in the development of the extraembryonic tissues. Combined with 99 
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possible timing differences amongst mammalian species and their extraembryonic tissues, 100 

differences in the molecular mechanism of embryonic development amongst primates cannot 101 

be excluded.   102 

 103 

The recent studies on gastrulating non-human primate embryos in culture represent a 104 

significant advance; much will, however, depend on whether the culture models can be used 105 

for more in-depth mechanistic studies. While extrapolation from these studies to early human 106 

development is possible, crucial species differences amongst primates cannot be entirely 107 

excluded. With legal restrictions on similar studies on human embryos, alternative 108 

approaches such as establishing in vitro models for early human development with 109 

embryonic stem cells, and generating embryoid-like structures is an option [11]. Increasing 110 

improvements and sophistication of the in vitro models might for now address some key 111 

questions but cannot substitute entirely for direct studies on very early human development. 112 

Such studies, if possible, are of potential value for advances in regenerative medicine and 113 

treatment of human diseases.   114 

 115 

  116 



 6

References 117 

1. ROSSANT, J. AND P.P.L. TAM. Science 360, 1075 (2018). 118 

2. MA, H. et al. Science 366, eaax7890 (2019). 119 

3. NIU, Y. et al. Science 366, eaaw5754 (2019). 120 

4. NAKAMURA, T. et al. Nature 537, 57-62 (2016). 121 

5. KOBAYASHI, T. et al. Nature 546, 416-420 (2017). 122 

6. SASAKI, K. et al. Dev Cell 39, 169-185 (2016). 123 

7. IRIE, N. et al. Cell 160, 253-268 (2015). 124 

8. DEGLINCERTI, A. et al. Nature 533, 251-254 (2016). 125 

9. LUCKETT, P. Am J Anat. 144, 149-167 (1975). 126 

10. SYBIRNA, A., F.C.K. WONG, AND M.A. SURANI. In R. LEHMANN. Curr Top Dev Biol, 127 

Academic Press. pp35-89 (2019).  128 

11. ZHENG, Y. et al. Nature 573, 421-425 (2019). 129 

12. HEUSER, C.H. AND STREETER, G.L. CARNEGIE INST. WASH. PUBL. 525 (29): 15-55 130 

(1941). 131 

13. BOROVIAK, T. AND NICHOLS, J. DEVELOPMENT. 144: 175-186 (2017). 132 

 133 

 134 

  135 



 7

Fig. 1 Schematic illustration showing that post-implantation embryo development of 136 

primates might be relevant to humans. a Implantation begins with the attachment of 137 

blastocyst to the maternal uterine endometrium, when trophoblast cells proliferate into 138 

cytotrophoblast and syncytiotrophoblast, which eventually expand and surround the embryo. 139 

b The amniotic cells develop from epiblast cells and form an amniotic cavity, whereas cells 140 

from hypoblast form yolk sac endometrium, resulting in a yolk sac cavity. The embryo 141 

develops from bilaminar disc epiblast on top of hypoblast cells. Primitive streak appears at 142 

the posterior end of embryonic disc, when epiblast starts invading towards hypoblast, thus 143 

marking the initiation of gastrulation. Proliferating epiblast cells along the streak migrate to 144 

the space between epiblast and hypoblast giving rise to mesoderm cells, thereby converting 145 

bilaminar embryonic disc into a trilaminar disc. Primordial germ cells, the precursors of male 146 

and female gametes, might originate from the amnion, the epiblast or both tissues during the 147 

pre-gastrulation period. They migrate on the wall of the yolk sac close to the allantois, and 148 

subsequently along the hindgut before and after colonizing the gonadal ridge. (Figure adapted 149 

from Heuser et al., (1941) [12] and Boroviak and Nichols (2017) [13])  150 
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