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Abstract: Growth models in the tradition of Solow and Romer are framed in terms of 
production functions. Consequently, they are equally subject to a criticism developed by, 
among others, Phelps Brown (1957), Simon (1979a), and Samuelson (1979). These authors 
argued that production function estimations are flawed exercises because output, labor and 
capital stock, are definitionally related through an accounting identity. The identity argument 
helps demystify two illusions in the literature: (i) finding the Holy Grail: total factor productivity 
is, by construction, a weighted average of dollars per worker and a pure number (the rate of 
profit or the rental rate of capital); and (ii) the possibility of testing: if estimated properly, 
production function regressions will yield: (a) a very high fit, potentially an R2 of unity; and (b) 
estimated factor elasticities equal to the factor shares, hence they must always add up to 1. We 
illustrate these points through a series of well-known growth accounting exercises and models 
directly derived from production functions. They are futile exercises. We conclude that we 
know substantially less than we think about growth and that many of the discussions in the 
neoclassical growth literature are Kuhnian puzzles that only make sense within this paradigm. 
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“It [the neoclassical production function] must 
have needed an even tougher hide to survive 
Phelps Brown’s article on “The meaning of the 
Fitted Cobb-Douglas Function” than to ward off 
Cambridge Criticism of the marginal productivity 
theory of distribution.” Joan Robinson (1970, 
p.317) 

 

1. INTRODUCTION 

It is surprising how only a few scholars have questioned the remarkable explanatory power of 

extremely simple growth models. These models relate a country’s GDP growth (or in per 

capita terms) to only a few variables, namely capital and labor growth, or savings rate and 

population growth (and at times human capital or a few additional controls).1 Common to 

these models is that they are derived from production functions with neoclassical properties. 

How is it possible that such simple models account for a significant share of the variation in 

growth rates across countries? Mankiw (1997, p.104), for example, expressed the view that: “I 

have always found the high 2R  reassuring when I teach the Solow growth model. Surely, a low 

2R  in this regression would have shaken my faith that this model has much to teach us about 

international differences in income.” The reason for the faith in these models probably lies in 

the fact that researchers believe, since Cobb and Douglas (1928), that such models reflect the 

“laws of production”, and that they can be tested. We are not persuaded by this justification.2 

This paper surveys the literature that questions the uncritical acceptance of the 

relevance of production functions. 3 It extends an argument put forward initially by Phelps 

Brown (1957) in a paper in the Quarterly Journal of Economics on the work of Cobb and Douglas. 

Phelps Brown showed that cross-sectional estimates of production functions are 

predetermined (hence the results are known ex ante) by an accounting identity that relates 

output, employment and capital stock. Production functions and this identity are “different 

sides of the same penny” as Phelps Brown put it. No wonder the good results, with the 

 
1  We acknowledge the large empirical literature of growth regressions that claim that the number of 

robust regressors “related” to growth is significant (Sala-i-Martin 1997). 
2  Much less in the light of the damaging conclusions of the Cambridge Capital Controversies and 

the aggregation problem. On these, see Felipe and Fisher (2003). 
3  Some of the points we make in this paper draw on Felipe and McCombie (2013).  
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consequence is that the estimation of production functions is a pointless exercise.4 Ironically, 

this paper appeared the same year Solow (1957) published his seminal growth accounting 

exercise, which also entailed the estimation of several production functions.5 Phelps Brown 

paper, however, was ignored.  

A few years later, Simon and Levy (1963) and Shaikh (1974) also rehearsed essentially 

the same argument, the former in the context of cross-sectional data and the latter in the 

context of time series. Both papers passed unnoticed.6 Simon (1979a) came back to it and 

thought that it was sufficiently important so as to mention it in his Nobel Prize lecture (Simon 

1979b, p.497). Perhaps even more ironical is the fact that Samuelson (1979) used it to question 

Cobb and Douglas’s (1928) work.7 After going over the algebra of the argument, he 

commented: “I hope that someone skilled in econometrics and labor will audit and evaluate 

my critical findings” (Samuelson 1979, p.934). The message fell again on deaf ears, and still 

today, four decades later, most economists are unaware of it. 

The logic of the argument is very simple. Let’s start with the accounting identity 

t t t t tY w L r K +  , where Y  is constant-price , or real, value added (measured in dollars of a base 

year prices), w  is the real wage rate (dollars per worker), L  is employment (number of 

workers), r  is the profit rate (a pure number), and K  is the real value of the stock of capital 

(dollars of a base year). We show that this identity can be rewritten as particular forms 

(depending on the path of the data) of ( , )t t t tY A F L K  (e.g., Cobb-Douglas, CES, or translog), 

where A  is a variable that picks up movements in w  and r . As a consequence, regressions 

of output on capital, employment, and a trend or another variable (e.g., human capital), are 

 
4  Reder (1943), Bronfenbrenner (1944), and Marschak and Andrews (1944) had already made 

references to the problem in discussions of Cobb and Douglas’ (1928) results, although not in the 
clearest way. 

5  Solow’s (1957, p.312) warning that “it takes something more than the usual willing suspension of 
disbelief to talk seriously about aggregate production function” did not have any impact on the 
profession. Solow himself did not follow it. 

6   Actually, Shaikh’s (1974) paper was criticized by Solow (1974). It is important to read Shaikh’s 
(1980) rebuttal. 

7  Phelps Brown, Simon, and Samuelson, expressed the problem in slightly different ways. However, 
once the issue at hand is understood, it is clear that their expositions amount to the same. 
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problematical exercises because they cannot be refuted empirically. They will yield a very high 

fit and factor elasticities equal to the respective factor prices. 

With his two path-breaking papers in the 1950s, Solow (1956, 1957) provided the basis 

for the neoclassical theory of growth and the empirical work on the sources of growth (i.e., 

growth accounting and the calculations of total factor productivity growth). His method to 

estimate total factor productivity (TFP) growth is still seen as iconic, and the idea that growth 

is about factor accumulation plus “something else,” loosely designated as technical progress, 

or the “Solow” residual, still dominates the profession’s thinking. 

Romer (1986) opened the way for economists to deal with increasing returns to scale 

and imperfect competition. It led to a second wave of empirical work on growth (e.g., the 

determinants of growth and total factor productivity by positing an R&D production function, 

and the convergence literature). Both Solovian and endogenous growth models have in 

common that they model growth using a production function. While the growth debates of 

the 1990s have vanished (either because the profession thought they were settled and/or 

because researchers moved on), growth is still conceptualized in many quarters in terms of 

production functions. As we shall see, this is extremely problematic for empirical analyses.  

In this paper, we elaborate upon the original Phelps Brown-Simon-Samuelson 

argument and show that it applies to all types of production functions, not just the Cobb-

Douglas. In this sense, we accept Samuelson’s (1979) invitation to assess his claims 

(arguments), which have generally been ignored in the literature, despite their severe 

consequences for much of standard growth analyses. We show that the arguments also apply 

to the production functions hypothesized by the endogenous growth literature pioneered by 

Romer (1987), and to the growth literature that estimates equations derived from production 

functions. The same equations can be derived from the identity, which questions their 

interpretation as refutable models. Finally, the argument also helps question the interpretation 

of total factor productivity in growth accounting exercises as a measure of technical change. 

Our paper is not the first one to question both the concept of TFP and the methods 

used to calculate it. Solow (1957) himself, and after him authors such as Griliches (1987, 1994, 

1995) or Nelson (1973, 1981), noted that the concept of TFP was problematic and that its 
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calculation was not problem-free. Today, there seems to be a general agreement that there is 

something problematic about the concept and measurement of TFP. Yet, it is still widely used 

in growth theory, sometimes with some modifications. This is even when authors provide 

definitions of TFP that are mutually incompatible, as Carlaw and Lipsey (2003, pp. 458-460) 

note. However, the arguments concerning the TFP problems are very different from ours. 

We contend that the problems with the (production-function based) growth literature 

are much deeper than the measurement of capital (however important), the values of the factor 

shares used in growth accounting, or the endogeneity of the regressors. 8 The problems we 

discuss are insoluble. Hence, we do not think that offering a minor reinterpretation of what 

TFP putatively measures, or a methodological variant to calculate it, will advance our 

knowledge. The general view, however, is that the growth models we discuss (production-

function based) are meaningful constructions. This is because they supposedly have a sound 

theoretical basis; and are useful because their assumptions and predictions can be tested with 

actual data. This procedure is what gives them a scientific basis (Friedman 1953), irrespective 

of the implausibility or otherwise of their assumptions. Moreover, many economists believe 

that the models are useful because empirical tests show that they indeed explain well the reality, 

i.e., the factors that determine the growth of nations. We dispute this position. 

The rest of the paper is structured as follows. Section 2 states the logic of the problem 

that we discuss, namely why the accounting identity that underlies all empirical production 

function exercises undermines the interpretation of this approach. Sections 3, 4, 5, and 6, use 

a series of well-known papers as examples to develop the implications of the accounting 

identity argument. We develop the argument in two related ways. The first one involves the 

calculation and interpretation of standard estimates of TFP. TFP, in levels or growth rates, is 

central to many theoretical and applied growth models. Empirical calculations of TFP may be 

 
8  Growth accounting exercises are pervasive in the growth literature despite that most authors who 

undertake them are somewhat skeptical about what they do. This is partly the result of the problems 
measuring properly capital (Pritchett 2000). Moreover, it is generally accepted that the exercises do 
not prove causality (Aghion and Howitt 2007). Nevertheless, most growth theorists consider that 
performing a growth accounting exercise is a useful first step in looking at the data. Our view is 
that the concerns about TFP expressed by many authors are, at best, second order issues. 
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likened as the quest for the Holy Grail. The second argument concerns the possibility, or 

otherwise, of testing models, i.e., of statistically refuting a null hypothesis. We show that 

production function regressions can never be refuted statistically. This is simply because they 

are approximations (although potentially exact) to the accounting identity – there is no error 

term.  

Section 3 revisits Cobb and Douglas’s (1928) estimation and Solow’s (1957) growth 

accounting exercise, from the point of view of the identity. Sections 4, 5, and 6, discuss a series 

of well-known papers as additional examples from the growth and macroeconomics literature 

to further develop implications of the accounting identity argument. Out of necessity we had 

to be selective in the choice of examples. All of them are well-known papers that have shaped 

the profession’s knowledge and are still cited. We are aware that there are other papers and 

hope readers can discover the relationship with the accounting identity. In a way, one can liken 

this to the children’s game of “where’s Waldo?” The papers we discuss are: Young (1992, 

1995), Hsieh (1999, 2002), Young (1994), Romer (1987), Mankiw et al. (1992), Jones (1997), 

Hall (1988, 1990), and Shapiro (1987). Section 7 offers some concluding remarks. 

 
2. STATEMENT OF THE PROBLEM 
 
This section starts by providing the general version of the Phelps Brown-Simon-Samuelson 

critique. Second, it provides a brief on the calculation of TFP as done in the literature. Third, 

it discusses the implications of the critique for the interpretation of the standard calculations 

of TFP as a measure of technical progress and model testing. 

 

2.1 The argument 

Let’s start by writing how the data appear in the National Income and Product Accounts 

(NIPA) identity: 

 t t tY W S +   (1a) 

where Y is real (i.e., deflated) GDP, or value added (e.g., dollars of a base year), W is the real 

total wage bill (dollars of a base year) and S  is the operating surplus (dollars of a base year). 

It is very important to stress that identity (1a) (note the symbol ≡) is true at any level of 
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aggregation, including, at the firm level. NIPA statisticians construct the identity by arithmetic 

summation (aggregation) from individual firm-level data and government institutional data.9 

This aggregation is logically consistent, and unrelated to the problem of aggregating 

production functions (Felipe and Fisher 2003). Equation (1a) is theory-free (e.g., it does not 

depend on the zero profits assumption) and it is not related to or derived from 

production/cost theory. 

 We now dichotomize both the wage bill and operating surplus into the products of a 

price times a quantity as: 

     t t t t tY w L r K +        (1b) 

or in per worker terms: 

t t t ty w r k +       (1c) 

where w  is the average real wage rate (dollars of a base year per worker), L is total 

employment  (number of workers), r is the ex post average profit rate  (dollars of operating 

surplus per dollar of capital stock, a pure number), K is the stock of capital (dollars of a base 

year). Furthermore, ( / )t t ty Y L=  and ( / )t t tk K L= . Note that by construction t t tW w L=  is the 

wage bill and t t tS r K=  is total profits (operating surplus).10 We discuss below an alternative 

way of writing equation (1b), splitting the surplus into the cost of capital and monopolistic 

profits. 

One can simply now express the accounting identity (1b) in growth rates as  

ˆ ˆ ˆˆ ˆ(1 ) (1 )t t t t t t t t tY a w a r a L a K + − + + −     (2a) 

or, 

 
9 The specifics of how national account statisticians construct equation (1a) in practice are not 

important for us. 
10  We just note that while it is self-evident that the wage bill ( tW ) is split into the product of a price  

( tw  is measured in $/worker) times a quantity ( tL is measured in no. workers), it is much less 

obvious that this is also the case of the operating surplus ( tS ). This is because the units of tr  and 

tK  are a percentage and dollars of a base year, respectively. This does not mean that writing 

t t tS r K=  is incorrect as the product still yields dollars. Also, it should be obvious that tw   and tr  

may or may not be the marginal products of labor and capital, respectively, in the sense of being 
derived from a production function, even though this is what equation (1b) will always indicate, 

i.e., ( / )Y L w    and ( / )Y K r   . 
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ˆ ˆ ˆ(1 )t t t t t tY a L a K + + −      (2b) 

where ta  and ( )1 ta−   are the labor and capital shares in GDP. Rearranging terms yields: 

1 1
ˆ ˆ ˆ ˆ ˆ(1 ) (1 )

D

t tt t t t t t t t tTFP Y a L a K a w a r TFP − − −  + −     (2c) 

where the numbers on the superscripts over TFP refer to the sequence that we will follow in 

the paper (i.e., 1, 2, 3, etc.) to distinguish the several and slightly different measures of TFP  

that we will derive. The superscript D  is used to refer to the right-hand side of the identity 

(i.e., the weighted average of the growth rate of the wage and profit rates). We refer to the left 

and right-hand sides of equation (2c) as TFP  and 
D

TFP , respectively, for reasons that will 

become clear in the discussion below. 

 If factor shares happen to be constant, then identity (2a) becomes: 

*ˆ ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 )t t t t t t t tY aw a r aL a K aL a K + − + + −  + + −     (2d) 

which in levels is: 

1 1

0

a a a a

t t t t tY A w r L K− −       (2e) 

with (1 )

0 ( ) (1 )a aA a a− − − − .  

Further, if the data show that ˆ ˆ(1 )t t t t ta w a r  + −  , i.e., t  happens to grow at a 

constant rate, then identity (2a) becomes: 

ˆ ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 )t t t t tY aw a r aL a K aL a K + − + + −  + + −     (2f) 

which in levels is: 

( ) 1

0 exp a a

t t tY A t L K −        (2g) 

Recall that equations from (1a) to (2c) are identities; and consequently so are equations 

(2d)-(2e) (provided factor shares are constant) and (2f)-(2g) (provided factor shares and t  are 

constant). No assumption from production theory is needed to write them. 

Before we discuss the implications of identities (1a) to (2g) in section 2.3, we summarize 

the essentials of the calculation of TFP growth in section 2.2. 

 

2.2 A Brief on the Estimation of Total factor Productivity Growth 
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The essentials of production function estimation and TFP calculation are so well known and 

accepted in the literature that it may seem redundant to review them. However, since the 

theme of this article is the inadequacy of the framework, it is best to summarize it here.11 

Since Solow (1957), the neoclassical approach starts with the assumption that there is 

a well-behaved aggregate production function ( ),t t t tY A F L K= . By totally differentiating it with 

respect to time, the growth rate of output is: 

ˆ ˆ ˆ
tt t t t tY TFP L K = + +       (3a) 

where a circumflex hat over the variables denotes a growth rate; t  and t  denote the 

elasticities of output with respect to labor and capital, respectively; and 
tTFP  denotes what is 

often interpreted as the rate of technological progress (i.e., the growth rate of tA ). This is referred 

to as total factor productivity growth, or the residual, a variable that supposedly captures all output 

growth not due to increases in factor inputs. Growth accounting calculates tTFP  residually as 

ˆˆ ˆ
t t t t t tKTFP Y L = − − , given values for the right-hand side variables.  

The problem, however, is that there are very few reliable estimates of the output 

elasticities from econometric estimations because of the econometric issues that plague the 

estimation of production functions. To solve this problem, growth accounting exercises 

assume that: (i) production is subject to constant returns to scale, (ii) the objective function of 

the firms in the economy is to maximize profits, and (iii) labor and capital markets are perfectly 

competitive (wage and profit rates are given by the first-order optimizing conditions). Under 

these circumstances, the factor elasticities equal the shares of labor and capital in total output, 

i.e., t ta =  and ( )1t ta = − , where ta  and (1 )ta−  denote the labor and capital shares in output, 

respectively. Then output growth can be written as: 

( )ˆ ˆ ˆ1tt t t t tY TFP a L a K= + + −      (3b) 

and consequently, the growth rate of TFP is calculated as: 

 
11  Van Beveren (2012) provides an up-to-date survey of the methods to estimate TFP, especially of 

those that take account of the endogeneity problem that results from the fact that productivity and 
input choices are likely to be correlated; and of the selection bias that emerges if no allowance is 
made for entry and exit. There is another class of methods based on index number theory that we 
do not discuss. 
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    ( )ˆ ˆ ˆ1t t t t t tTFP Y a L a K= − − −       (3c) 

given that data for all the right-hand side variables are now readily available (the shares of labor 

and capital in total output can be obtained from the national accounts). The residually 

measured TFP growth in equation (3c) is referred to as the primal measure of TFP growth. 

This is probably the most widely used method to calculate the growth rate of TFP. Since the 

calculation involves subtractions, it gives the impression that the resulting figure is sort of a 

mystery, a residual or measure of our ignorance, which is often how TFP growth is referred 

to. 12 

Solow (1957) is the seminal work on growth accounting, a paper still today widely cited, 

and which opened up a whole field of research and created the framework for thinking about 

economic growth that is now standard among economists. Although growth accounting 

predates Solow’s work, this paper provided the theoretical foundation that growth accounting 

needed, explicitly deriving the concept from a production function. Using equation (3c), Solow 

concluded that TFP growth accounted for almost 90% of the overall non-farm sector growth 

of the United States during 1909-1949, while the remaining 10% was the result of factor 

accumulation. This result seemed “startling” to Solow. 

Note that equation (3c) is a truism. In other words, the estimate of TFP growth is 

definitionally true and the equation is used to apportion the sources of growth. However, and 

this is crucial, it is based on an underlying theoretical model in that the output elasticities are 

assumed to be equal to the relevant factor shares. There is nothing in neoclassical production 

function theory that says that this has to be the case, hence it could be argued that one could 

potentially refute this assumption empirically (though erroneously as we shall see below). The 

fact that most authors today do not test this assumption prior to undertaking a growth 

accounting exercise does not mean that the point is not important.  

 
12  There is an important point to be made, which refers to the factor shares used in equation (3c). 

The derivation in the text assumes that technical progress is Hicks-neutral. In this case, technical 
progress does not affect the factor shares. If technical progress were biased, one should not use the 
observed factor shares in the National Accounts, to the extent that these incorporate the effect of 
technical progress. See Ferguson (1968). 
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The econometric estimation of the production function is a second method to obtain 

an estimate of the rate of TFP. This requires the specification of a particular functional form. 

The simplest case consists in estimating the Cobb–Douglas form 

0 exp( ) exp( )t t t tY A t L K u =      (4a) 

or in growth rates as  

ˆ ˆ ˆ
t t t tY L K u  = + + +       (4b) 

where   is the (constant) rate of TFP growth, although nothing in neoclassical production 

theory says that it needs to be a constant. This is simply done for convenience. Likewise, other 

functional forms can be estimated (e.g., translog). This method does not impose the 

assumption of perfectly competitive markets, i.e., the coefficients (factor elasticities) are 

estimated unrestricted. Barro (1999) claimed that the estimation of the production function is 

problematic as a method to calculate the rate of technical progress. He listed the following 

three problems: (i) the growth rates of capital and labor are not exogenous variables with 

respect to the growth of output; (ii) the growth of capital is usually measured with errors, 

which often leads to low estimates of the contribution of capital accumulation; and (iii) the 

regression framework must be extended to allow for variations in factor shares and the TFP 

growth rate. This is the rationale for the profession’s general preference for the growth 

accounting procedure. We shall see below that Barro’s concerns are misplaced. 

The growth rate of TFP can also be calculated using the cost function ( ), ,t t tC Y t=  , 

where   denotes the vector of factor prices, that is, the wage rate ( w ) and the rental rate of  

capital  (  ). Technical progress here is equated with the rate of cost diminution, or the idea 

that technical progress lowers the cost of producing a given output. It is referred to as the dual 

measure of TFP growth. The cost function can also be used in a growth accounting exercise, 

or can be estimated econometrically. The dual is simply calculated by equating the rate of 

change in product prices with the rate of change in unit costs, and equals (denoted by the 

superscript D): 

 ˆˆ
D

t Lt t Kt tTFP w  = +   (5) 
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that is, a weighted average of the growth rates of the wage rate and of the rental rate of capital, 

where the weights it  are the respective cost shares (in general, different from the output 

shares. We discuss this below). The superscript D  stands for dual. 

 
2.3. What are the implications of the identity argument for empirical work? 

We now discuss what the results in section 2.2 mean in the light of the derivation in section 

2.2. Given the severe misinterpretations of the argument, we will examine it thoroughly.  

There is an obvious point resulting from the above discussions. This is that the two 

sides of identity (2c) resemble equations (3c) and (5), derived from the production and cost 

functions, respectively.13 From this, one is tempted to conclude that identity (2c) shows that 

primal and dual TFP growth rates can be derived from the accounting identity (Barro 1999; 

Hsieh 1999, 2002). This is incorrect, and the implications that this has for the interpretation 

of growth accounting exercises and for production function estimations are very serious. As 

they have been ignored or misunderstood, we elaborate upon them below: 

 

Misinterpretations 

(i)  Researchers think of output Y  as generated by the production function ( , )F K L . This 

is the essence of the problem, namely the belief that output and inputs used in most actual 

production function estimations are observed independently of the factor prices ( w and r ), i.e., as if 

they were physical quantities, where inputs are transformed into an output through the 

function ( )F . The reality, however, is that the output measure used (Y ) is a monetary value 

(as is K ), not a physical quantity, generated by the statisticians (and firm-level accountants) 

through the identity equation (1a), then written as equation (1b) (hence through the factor 

prices).14 The series Y , L  and K are the same in the identity and in the production function. 

(ii) The neoclassical tradition acknowledges identity (1b) but argues that the production 

function, together with the usual neoclassical assumptions and Euler’s theorem, provides a 

 
13  Note that while the left-hand side of equation (2c) is identical to (3c), the right-hand side of equation 

(2c) is not identical to equation (5). This difference will be discussed in section 4. 
14  GDP in most countries is generated through the demand side of the NIPA. This does not invalidate 

the claim that output Y comes from an identity, not from ( , , )Y F K L t= . 



 

13 

 

theory of the income side of the NIPA. We consider that this line of reasoning is incorrect. 15 

Identity (1b) holds by itself and is not dependent upon any conditions from production theory.  

(iii)  While the weights of the growth rates (the factor shares) in equations (3c) and (5) are 

theoretically derived by imposing the first-order conditions, the shares in the identity are 

simply the result of taking the derivative with respect to time. This means that they are the 

true weights whether factor markets are perfectly competitive or not. Identity (2c) is not a 

model. 

(iv) Identity (2c) makes it clear that the residually calculated TFP growth 

1
ˆ ˆ ˆ(1 )t t t t t tTFP Y a L a K − − −  is numerically equivalent to 

1

ˆ ˆ(1 )
D

t t t t tTFP a w a r + − , clearly not a 

“measure of our ignorance.” This is the result of how identity (1a) was split into identity (1b), 

i.e., t t tW w L=  and t t tS r K=  (which is unrelated to a production function). This self-evident, yet 

important, point seems to have been missed by those who think of 
1

tTFP  as derived from a 

production function because they do not see the immediate link with 
1D

tTFP . They then seem 

to be surprised when it accounts for a high (or low) share of ˆ
tY . As the examples in the 

following sections will show, it is straightforward to rationalize why 
1

tTFP  (or equivalently 

1D

tTFP ) takes a given value and then interpret it. 

(v) Without loss of generality, suppose that the data for the economy in question show 

that factor shares are constant, i.e., /t t ta W Y a =  and (1 ) / (1 )t t ta S Y a−  = − . Equation (3a) 

becomes identity (2d), which in levels is (2e). This last expression shows that calculations of 

 
15  This seems to be the view of, for example, Jorgenson and Griliches (1967, pp. 252-253) or Prescott 

(1998, p. 532). From ( , , )Y F K L t=  one can write 
K LY F K F L= + (Euler’s theorem), and from the 

first-order conditions, 
KF r=  and 

LF w= . Hence Y wL rK= + , taken to be identity (1b). That is, 

the neoclassical framework considers that the production function through Euler’s theorem implies 

the identity. While this derivation is mathematically correct, it does not mean that the production 

function provides a theory of the accounting identity. See also Hulten (2009), who traces the history 

of growth accounting during the 1930s-1950s, with the identity as starting point. This formulation 

was “atheoretical” (Hulten 2009, p.4). Solow’s (1957) contribution was to provide the economic 

structure that the approach lacked. 
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the level of TFP as ( 1/ a aY L K − ) (e.g., Jones 1997, Hall and Jones 1999) amount to estimating (

1a aw r − ), and whichever way it is calculated, its units is ($/worker) (as the profit rate is a 

percent). Consequently, 
1

tTFP  (
1D

tTFP ) is a growth rate of dollars per worker. This also means 

that calculations of relative TFP levels of two countries will be the ratio of two figures 

measured in ($/worker); and given that 1 ar −  may not differ significantly between the two units 

compared, the overall ratio will mostly reflect the ratio of the two wage rates. This is all those 

who argue that in order to explain the observed large income differences across countries we 

need a theory of TFP, have discovered (e.g., Prescott 1998, Hall and Jones 1999). 16 It is a 

circular argument. 

(vi)  Identity (2a) can certainly be used to apportion growth in an accounting sense into the 

various components of the identity (the same way it is often done with the identity from the 

demand side. However, interpreting 
1

tTFP  (
1D

tTFP ) as a measure of the growth in efficiency or 

of the rate of technical progress (or rate of cost reduction) is problematic. Nothing in the 

identity identifies 
1

ˆ ˆ(1 )
D

t t t t tTFP a w a r + −  with the rate of technical progress. After all, identity 

(2a) is just ˆˆ ˆ ˆ ˆˆ ˆ(1 ) ( ) (1 )( )t t t t t t t t t t tY aW a S a w L a r K + −  + + − + , at best a measure of distributional 

changes. It could be argued that the growth rate of the wage rate is the consequence of 

productivity growth, where both variables are related through the first-order condition (

/w Y L=   ), hence the link with the production function (and similarly the profit rate and 

capital productivity); and this is what 
1D

tTFP captures. The problem with this argument is that 

the relationship between the growth rate of the wage rate and labor productivity growth is 

definitional, and hence cannot be tested. Indeed, as the labor share is ( ) /t t t ta w L Y , in growth 

rates: ˆ ˆ ˆ
t t tw a y +  (where /y Y L ), and ˆ ˆ

t tw y  for short periods of time, as factor shares 

vary little and slowly. This relationship will always be true. 

 
16  See Lucas (1990) and Romer (1994), who argued that, under conventional assumptions about the 

extent of diminishing returns, the observed differences of over 30 times in labor productivity across 
countries cannot be explained by differences in capital intensity. Using the identity, it is 
straightforward to show that what accounts for most of the ratio of labor productivities between 
two countries is the ratio of wage rates, an insight resulting from circular reasoning that does not 
require a production function. 
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Econometric estimation 

(vii) There is no statistical identification problem between the accounting identity and the 

production function. We have shown that they are just different ways of writing the same 

thing, the identity. Adding variables to the production function certainly does not identify it. 

(viii) Identity (2b) is ˆ ˆ ˆ(1 )t t t t t tY a L a K + + − , where ˆ ˆ(1 )t t t t ta w a r  + − . Now recall the 

production function in growth rate form is ˆ ˆ ˆ
tt t t t tY TFP L K = + +  (equation [3a]). The latter is 

supposed to be a model that could be estimated unrestricted as ˆ ˆ ˆ
t t t t t t tY L K u  = + + + , where tu  

is the error term, and with time-varying coefficients (to be estimated). By comparing this 

regression with equation (2b), it should be self-evident that the only possible result is t ta  , 

(1 )t ta  − , and ˆ ˆ(1 )t t t t t ta w a r   + − , with a perfect statistical fit (equation (2b) is an identity). 

Finding that t ta   and ( )1t ta  −  would seem to erroneously imply constant returns to scale 

and that factor markets are perfectly competitive. This interpretation is incorrect. It is simply 

the result of the accounting identity, which prevents any other statistical outcome. 

(ix)  These obvious results would not appear, however, if one assumed, for example, that 

t , t , and t  are constant (then estimate equation [4b]) when, in fact, they display variability. 

Under these circumstances, the fact that the statistical fit may not be perfect might lead to the 

misapprehension that a model (with a stochastic error term) is being estimated. This simply 

misunderstands the underlying logic. Any statistical estimation method that correctly picks up 

the variation in the factor shares and in t  (e.g., a time-varying-parameter estimation 

methodology), would show that what is being estimated is simply the identity.  

(x)  It will be appreciated that equation (2g) is simply the original accounting identity given 

by equations (1a) or (1b), rewritten in a different but equivalent form, which could be 

misinterpreted as a Cobb–Douglas production function.17 What does the derivation of the 

identity in “Cobb–Douglas form” imply? Suppose someone estimates econometrically 

0 exp( ) exp( )t t t tY A t L K u =  and the actual data show that factor shares are sufficiently constant 

(i.e., ta a=  and consequently ( ) ( )1 1ta a− = − ), and also that t = . It should be clear that the 

 
17  Some readers may think that the assumption that factor shares are constant implies a Cobb-Douglas 

production function. This is incorrect. See Fisher (1971). 
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expression estimated is the identity: as there is no error term, the fit will be perfect ( 2 1R = ), 

and the estimated elasticities will equal the  factor  shares, i.e., a =  and ( )1 a = − , i.e., 

1 + = .18 This result does not mean that the underlying identity will “bias” the estimates 

toward constant returns to scale.  Rather, it means that the identity completely undermines the 

justification for the estimation in the first place. 

(xi)  Naturally, if the data do not follow the paths above, i.e., if ta a  [and consequently

( ) ( )1 1ta a−  − ] and t   (this was Barro’s 1999 third concern mentioned above), then 

0 exp( ) exp( )t t t tY A t L K u =  need not be a good approximation to the identity. Under these 

circumstances, results may show, for example, that 1 +  . This, however, is simply the result 

of an incorrect approximation to the identity. All that is needed is to find the correct paths for 

the factor shares ta  and ( )1 ta−  and for ˆ ˆ(1 )t t t t ta w a r  + −  and substitute them back into the 

general form (2b). If the issue at hand is that factor shares vary, we will need a functional form 

that better approximates their path, e.g., CES (Felipe and McCombie 2001), translog (Felipe 

and McCombie 2003). If, on the other hand, the issue is that ˆ
t  varies, we will also need a 

better approximation. Note, for example, that ˆ
t  is a growth rate that varies cyclically and 

hence a constant term (  ) will not be, in general, a good proxy. Nothing in neoclassical 

production theory says that technical progress has to grow at a constant rate plus a random 

fluctuation. This is discussed below. 

(xii)  There are no estimation problems as discussed in the literature, e.g., regressors’ 

endogeneity that call for instrumental variable, non-linear least squares, or GMM estimation 

(e.g., Olley and Pakes 1996, Blundell and Bond 2000, Levinsohn and Petrin 2003). Take, for 

example, regression (4b) and compare it with identity (2d). The likely deviation of the 

elasticities   and   from the factor shares in the regression will be the result of incorrectly 

approximating * ˆ ˆ(1 )t t taw a r  + −  with a constant term (  ) (see identity [2d]). This is akin to 

omitted-variable bias. In this case, however, we know that what has been omitted is *

t  and 

that the true “model” is the accounting identity (2d) (which contains no error term). Hence, 

 
18  Strictly speaking, perfect multicollinearity will mean that the coefficients cannot be estimated. 
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the expected values of   and   will be the labor and capital shares a  and (1 )a− , respectively, 

plus a term (the “bias”) that will capture the covariation between *

t and ˆ
tL  and between *

t

and ˆ
tK , respectively.19 To correct this problem all one needs is to better approximate *

t  

through a variable highly correlated with it. This could be one of the variables one typically 

sees in growth regressions, e.g., human capital (it works at times). A second option is to 

construct a trigonometric function, or a high-order polynomial of a variable (or combination 

of variables), that accurately tracks t . Finally, a third option would be to correct the capital 

stock for changes in capacity utilization (Lucas 1970). This will increase this variable’s cyclical 

fluctuation and reduce that of tr  and hence of  t̂r  ( t  tends to be procyclical, mainly caused 

by fluctuations in t̂r ). The goodness of fit will increase, and coefficients will approximate the 

elasticities. Barro’s (1999) concerns about the estimation of production functions do not pose 

any econometric problem, although for reasons unrelated to his arguments. 

 
3. THE COBB-DOUGLAS PRODUCTION FUNCTION AND SOLOW’S 
INGENIOUS ESTIMATION PROCEDURE 

 
To understand the damaging implications of the accounting identity argument for the notion 

of TFP, we start by reviewing two seminal papers, Cobb and Douglas’s (1928) and Solow’s 

(1957). The purpose is to show that they seemed to be unaware of the fact that the series of 

output, labor, capital, and TFP were related through the identity. This led them to believe that 

their findings reflected the conditions of production theory. 

 

Example 1: Cobb and Douglas’s (1928) “A Theory of Production”: Samuelson 

was right. Cobb and Douglas estimation exercise was received with great hostility (e.g., 

 
19  Expected value of the elasticity of capital:  

* *

2

ˆ ˆ ˆ ˆ ˆ( , ) ( ) - ( , ) ( , )ˆ( ) (1 ) [ ]
ˆ ˆ ˆ ˆ( ) ( ) -[ ( , )]

t t t t t t t
OLS

t t t t

Cov K Var L Cov L Cov L K
E a E

Var L Var K Cov L K

 
 = − + . The second part of this 

expression will be zero if: (i) *

t  is a constant, then * *ˆ ˆ( , ) ( , ) 0t t t tCov K Cov L = =  ; or if (ii) by 

coincidence the whole expression in the numerator is zero, then 
* *ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , )t t t t t t tCov K Var L Cov L Cov L K = . 
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Menderhausen 1938). It received attacks from both the conceptual and econometric points of 

view. At the time, many economists criticized any statistical work as futile because, it was 

argued, the neoclassical theory was not quantifiable. Others launched an econometric critique 

against this work, noticing problems of multicollinearity, the presence of outliers, the absence 

of technical progress, and the aggregation of physical capital (Samuelson 1979).  

As is well known, Cobb and Douglas estimated the relationship between output and 

inputs (labor and capital) using data in index form for the US for 1899-1922. They estimated 

the famous functional form in per worker terms as ln( / ) ( 1)ln ln( / )Y L c L K L  = + + − + . 

When we reran their model, the coefficient of labor turned out to be zero (implying constant 

returns to scale), and the elasticity of capital (  ) was 0.233 (statistically significant). 

As Samuelson (1979, p.924) documents, Schumpeter was shocked to see that the Cobb-

Douglas form did not allow for technical progress. The solution proposed was to add a time 

trend to proxy for it, that is: 
0 exp( )t t tY A t L K = . The problem is that when we ran this 

regression using the original data set, the coefficient of the index of capital turned out negative 

(-0.526) and statistically insignificant. Moreover, when we tested for the stability of the 

coefficients, we found that if the regression without the time trend is estimated for 1899-1920, 

results are poor: the elasticity of labor turns out to be 1.21 and that of capital 0.08 (statistically 

insignificant). The recursive and rolling regression confirm this fragility. Only the regression 

with the complete period does yield sensible results.  

What does the accounting identity tell us about this exercise? The intuition is that the 

functional forms discussed above are not good approximations to the identity. We know from 

the discussion in section (2) that 1 1

0

a a a a

t t t t tY A w r L K− − (equation [2e]) when factor shares are 

constant. We do not have the wage and profit rates corresponding to the original data set but 

we can approximate 1a a

t tw r −  as 0.75 0.25( ) /t t tA t Y L K= . When ( )A t  is plotted, we can see that it 

fluctuates without trend (which explains the poor results found with the time trend). The 

identity tells us (section 2) that all we need to do is to find a variable that is correlated with 

( )A t . Through trial and error, we constructed 5 4 2 2( ) sin( ) cos( ) cos( ) sin( )A t t t t t= + − − . Recall that 

neoclassical economics does not say that “technological progress” has to be proxied through 

an exponential time trend. When we now estimate 0ln ( ) ln lnt t tY A A t L K  = + + + , results are 
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“perfect”: the elasticity of labor is 0.726 and that of capital 0.274 (both statistically significant); 

and these values remain when the regression is estimated for 1899-1920, and in the recursive 

regressions (with the fit close to unity). We conclude that Samuelson (1979) was correct: all 

Cobb and Douglas (1928) did was to reproduce the income accounting identity that distributes 

output between wages and profits. Moreover, our analysis reveals that Cobb-Douglas’s original 

results would have probably not passed today’s econometric standards. 

 

Example 2: Solow’s (1957) “Technical Change and the Aggregate Production 

Function” and the estimation of TFP. Solow’s (1957) main contribution was to derive the 

concept of total factor productivity from a production function, ( ),t t t tY A F L K= . Although 

TFP had been calculated before, this was the first time it had been explicitly linked to 

production theory. Solow derived the growth accounting equation from the aggregate 

production function and devised a method to calculate the contribution of total factor 

productivity growth to output growth. Equation (3c) above is known today as the primal 

measure of TFP growth. 

Solow’s approach consisted in estimating the production function in intensive form, 

i.e., as ( )( / ) /t t t t tY L A F K L= . In order to estimate this function, Solow argued that he needed to 

“deflate” the function in order to correct for its upward shift over time, supposedly due to the 

rate of technical progress. In other words, the general form of the function to be estimated 

was ( )( / ) / /t t t t tY L A F K L= .  

Consequently, Solow first needed to construct an index of tA . The fact that Solow 

(1957) was not aware that all he was doing was manipulating the accounting identity may be 

inferred from the fact that he estimated five separate regressions of this general functional 

form. This was a point made initially by Hogan (1958) and then by Shaikh (1974). 20 The latter 

is an extension of the Phelps Brown (1957) and Simon and Levy (1963) criticisms to time-

series data (as the derivation in this paper). The five regressions Solow estimated were all 

variants of the specification q c bk= + , where ( / )q y A=  , ( / )y Y L=  and ( / )k K L= . In all cases, 

 
20  See also Shaikh (1987, 2005). 
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the correlation coefficient was 0.99 (not surprising as we show below). Solow, however, was 

surprised about the goodness of fit. As can be seen, Solow used A  to ‘deflate’ the left-hand 

side of his regressions, the level of TFP, constructed as an index of / ( , )A Y F K L= . In effect, 

he first calculated the annual growth of TFP as ˆˆ ˆ
t t t tA y a k= − .21  He assigned a value of 1 to A  

in the first year and constructed the rest of the annual series of the index by using the 

subsequent growth rates of A . 

To further understand Solow’s procedure, recall that definitionally (equation [2e]) 

1( / ) aY L y Ak −   where 1

0

a aA A w r − . This implies 1( / ) aq y A k −  . Therefore, using the 

constructed index for A  and then regressing ln q  on ln k  must yield a near perfect fit as the 

relationship is merely estimating a reformulation of the accounting identity. The procedure is 

self-evidently tautological.  

Shaikh (1974) demonstrated this point by constructing a hypothetical data set with the 

property that a plot of output per worker against the capital-labor ratio would produce the 

word HUMBUG in the scatterplot. Since the factor shares were those used by Solow (roughly 

constant), the deflation procedure ( / )y A  produced, not surprisingly, a regression of  ( / )q y A=

on ( / )k K L=  (with the HUMBUG data) with a correlation coefficient of 0.9964, and an 

estimate of the capital share of 0.34. Solow (1974) then used Shaikh’s HUMBUG data set to 

estimate the implicit production function. He estimated a Cobb-Douglas form with a linear 

time trend. Results were very poor and Solow appeared to be vindicated. It is very interesting, 

however, that Solow (1974) did not estimate the production function using Solow’s (1957) 

data set. When this is done, the results are so poor (coefficients that differ significantly from 

the factor shares) that one can hardly believe that what is being estimating a behavioral 

relationship. Finally, Shaikh (1980) explained clearly what happened to Solow (1974) when he 

fitted the Cobb-Douglas to the HUMBUG data set: the linear time trend was a very poor 

 
21  Solow actually used a slightly different approach for calculating growth rates, but it makes no 

significant difference to the argument.  
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proxy for the weighted average of the wage and profit rates. Shaikh instead added a 

trigonometric function that captured the weighted average. Back to the identity. 22  

We, consequently, find it remarkable that Solow’s growth accounting method and the 

construction of TFP series as / ( , )A Y F K L=  have uncritically survived the test of time.23 

Surprisingly, Solow (1958) did admit that his method was based on a tautology, but referred 

to it as a “good” tautology.24 As we shall see later, the same method to obtain a series for A  

was used four decades later by Jones (1997) and Hall and Jones (1999), with the same 

problematical consequences. 

Solow’s other key result was that the residual measure of TFP growth through the 

primal equation (3c) accounted for almost 90% of the growth of the United States during the 

first half of the twentieth century, while the remaining 10% was the result of factor 

accumulation. Solow (1988) still labeled this result as “startling”. However, in the light of the 

accounting identity and the “dual” 
1

ˆ ˆ(1 )
D

t t t t tTFP a w a r + − ,  Solow’s result becomes self-evident. 

Given the stylized fact that the rate of return is roughly constant (as it was in the US during 

the period under consideration), then 
1

ˆ
D

t t tTFP a w . As factor shares were roughly constant, 

this result implies that ˆ ˆˆ
t t tw Y L−  (i.e., approximately). It follows that 

1
ˆ ˆ( )

D

t t t tTFP TFP a Y L −

. Consequently, as a  takes a value of about 0.70 to 0.75 in the national accounts, it follows 

that TFP growth must account for about three quarters of the growth of output per worker. 

This is merely due to the algebra of the accounting identity. Moreover, given that employment 

 
22   Hogan’s (1958) comment on Solow (1957), the exchange between Shaikh (1974) and Solow (1974), 

as well as Shaikh’s (1980) reply, are summarized and discussed in Felipe and McCombie (2013, 
pp.167-176). 

23  Solow (1957) was followed by a series of papers that tried to investigate what was behind such large 
residual, e.g., Denison (1962, 1967), Jorgenson and Griliches (1967). These set the pace for the TFP 
growth research program that has lasted until today. 

24  Solow (1958) is a reply to Hogan (1958), who pointed out the nature of Solow’s tautological 

procedure. Hogan noted that it is obvious that the coefficient b  in the regression ln lnq c b k= +  

will be the capital share. Solow claimed that if the capital share had been exactly constant, then 
indeed the procedure would have been a bad tautology. However, insofar as the capital share 
showed some variation, he argued that it was a good tautology. We think this was not a particularly 
convincing argument. 
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growth is small compared with output growth, TFP growth will also explain a similar 

proportion of output growth. In light of this, it may be questioned whether this result is 

particularly surprising. In fact, it is surprising that anyone should find it startling. 

The estimation of TFP growth following Solow’s method, with some technical 

“improvements,” has survived to this day. For example, Fernald (2015), using also the primal, 

discussed the decline in TFP growth in the US after the Global Financial Crisis by appealing 

to reasons such as the waning of the effects of information and general-purpose technologies. 

Our interpretation of the observed decline in TFP growth is different. Once again,

1

ˆ ˆ(1 )
D

t t t t tTFP a w a r= + − . TFP growth has been low recently as a result of: (i) the fact that wage 

growth has been very low because a great deal of employment has been generated by non-

tradable services, activities that pay relatively low wage rates and which experience low wage 

increases; and (ii) the well-documented decline in the US labor share (Dao et al. 2017, 

Stockhammer 2017).25 Once again, this result follows directly from the accounting identity, 

and at best, it only says something about distributional changes. 

 

4. RECENT GROWTH ACCOUNTING CONTROVERSIES: THE ILLUSION 

OF CALCULATING TOTAL FACTOR PRODUCTIVITY 

Young’s (1992, 1995) growth accounting (primal) exercises for Hong Kong, Korea, Singapore, 

and Taiwan, were among the most debated in the 1990s and 2000s. His finding that TFP 

growth accounted for very little of the phenomenal growth of these economies during 1965-

1990 was very controversial. Young’s estimates indicated that most of the growth of GDP of 

these fast-growing economies between 1965 and 1990 was accounted for by the growth of 

 
25  Fernald’s analysis covered until 2011. Real wage growth in the US declined from an annual average 

of 1.5% during 2000-2002, to 0.2% during 2008-2009, and then slightly recovered to 0.4% during 

2010-2011, and to 0.6% during 2010-2017. The labor share declined by 3 percentage points 

between 2000 and 2017. This implies that ˆ
t ta w  declined significantly between 2000-2007 (0.82%) 

and 2008-2009 (0.13%), and then increased in 2010-2011 (0.23%) and during 2010-2017 (0.33%). 
Data for the profit rate indicate that it actually increased after the financial crisis. This, together 

with the increase in the share of capital, implies that ˆ(1 )t ta r−  increased and compensated the 

decline in ˆ
t ta w , though the sum is still lower than during 2000-2007. 
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capital. Particularly interesting was the case of Singapore: Young concluded that the 

contribution of TFP growth to GDP growth was zero and argued that this was the result of 

Singapore’s industrial and targeting policies. This is followed by the analysis of Young (1994), 

where instead he used regression analysis. Finally, we discuss Hsieh’s (1999, 2002) use of the 

dual growth accounting to prove Young wrong. We stress the point we made in section 2, 

namely that the critique is not that the growth accounting exercises are incorrect. Rather, the 

argument questions their interpretation as if they had been derived from a production or cost 

function and the first-order conditions. 

 

Example 3: Young’s (1992, 1995) growth accounting of East Asian miracle 

economies. Young’s (1992, 1995) primal estimates of TFP growth using (3c) can be recast in 

terms of the accounting identity (2c). 26 We have argued that the series in equations (2c) and 

(3c), are the same. As a consequence, it is impossible to interpret estimates of the primal 

1
ˆ ˆ ˆ(1 )t t t t t tTFP Y a L a K − − −  as unequivocally implying anything about the rate of technical progress. 

The most interesting case in Young’s analyses was that of Singapore, as his estimates indicated 

that the primal total factor productivity growth was approximately zero, i.e., 
1

0tTFP , during 

1965-1990. What does the identity (2c) tell us about this result? Since factor shares did not 

vary significantly, then ˆ ˆˆ
t t tw Y L−  and ˆ ˆ

t̂ t tr Y K−  (i.e., approximately), and the identity implies 

that 
1

ˆ ˆ ˆ ˆ0.5[( ) ( )] 0t t t t tTFP Y L Y K− + − , that is, TFP growth must account for about half of the sum 

of the growth rates of labor and capital productivity. This is indeed the case if one looks at the 

figures in Young (1992, Tables 5, 6, 7) for Singapore. Why was TFP growth very small, even 

slightly negative? The important aspect to note is that ˆ ˆ( ) 0t tY L−   and ˆ ˆ( ) 0t tY K−   in Young’s 

data (left-hand side columns in the three tables with the three growth rates), such that when 

added up and multiplied by 0.5, the resulting figure (TFP growth) was very small and even 

 
26  Equation (3c) is often derived by assuming a translog production function and the Tornqvist 

approximation (discrete approximation to a continuous Divisia index). This requires the use of the 

average factor shares at the start and end periods, i.e., ( )0 / 2t Ta a a= + . This is what Young (1992, 

1995) used. 
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negative given that the decline in ˆ ˆ( )t tY K−  was larger than the increase in ˆ ˆ( )t tY L− . As in Solow 

(1957), all this is simply the result of the algebra of the accounting identity. 

Likewise, given equation (2c), we can easily interpret Young’s results from the “dual’s” 

point of view. If the growth accounting primal was approximately zero in Young’s (1992, 

1995) calculations, the identity implies that the right-hand side of (2c) must be 

1

ˆ ˆ(1 ) 0
D

t t t t tTFP a w a r + − . With a capital share approximately constant and taking on a value of 

about 0.5, this expression implies that ˆ ˆ0.5( ) 0
D

t t tTFP w r+ , which implies ˆ ˆ
t tw r−  for 

Singapore. In other words, the wage rate grew during 1965-1990 at a rate that was 

approximately matched by the decline in the growth rate of the profit rate. This may be an 

interesting finding but recall that it has been derived directly from an accounting identity, and 

at best, it tells us something about distributional changes. 

 

Example 4: Young’s (1994) cross-country TFP-growth regression. We can further 

elaborate on why one does not learn anything from this literature by reviewing Young’s (1994) 

growth accounting exercise, not undertaken by using equation (3c), but instead by estimating 

a growth regression based on equation (4b). Young estimated a cross-country production 

function using data for 118 countries for 1970–1985. This was the growth accounting 

regression 
1 2

ˆ ˆ ˆ
t t t tY L K u  = + + + , or 

2
ˆ ˆ ˆ ˆ( ) ( )t t t t tY L K L u − = + − + , under the assumption that 

1 2 1 + = . As argued in section 2, this regression is erroneously considered to be a model in 

the sense that it can be tested (where the implicit null hypothesis is 0 2: 0 1H   ) and 

potentially refuted. Each country (estimated) residual *

iu  measures the growth of country i’s 

TFP less the estimate of the world average  . That is, the per-country TFP growth rate equals 

*

iu + . Young obtained the following result: 

 ˆ ˆ ˆ ˆ( ) 0.21 0.45( )i i i i iY L K L u− = − + − +  (6) 

He noted that the residuals for the East Asian economies ( *

iu + ) were very close in 

value to his much more detailed analysis using the growth accounting methodology.  
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The question is: what does this regression tell us? Accounting identity equation (2a) can be 

written as ˆ ˆ ˆ ˆˆ ˆ( ) (1 ) (1 )( )i i i i i i i i iY L a w a r a K L−  + − + − − , where the subscript i denotes the ith country. 

It will be recalled that, as argued earlier, this is not a model that the data can refute. This means 

that if one estimated econometrically equation (2a) as *

1 2
ˆ ˆ ˆ ˆ( ) ( )i i i i i iY L K L u  −  + − + , where 

ˆ ˆ(1 )i i i i ia w a r = + −  and *ˆ ˆ ˆ ˆ( ) [(1 )( )]i i i i iK L a K L− = − − , it may be seen that the result must be 

1 2
ˆ ˆ 1 = =  and 2 1R =  as there is no error term ( 0iu =  for all observations). Consequently, if one 

estimates: 

 ˆ ˆ ˆ ˆ( ) ( )i i i i iY L c K L u− = + − +  (7) 

as Young did (where i  is now assumed to be a constant), it should be apparent that the 

estimate of   will measure (approximate) the average value of the share of capital, ( )1 ia−  in 

the sample. The sum of the error (as a result of constraining both i  and ( )1 ia−  to be 

constants) plus the constant term c  will, by definition, provide an estimate of i , the weighted 

average of the growth rates of the wage and profit rates. Of course, the estimates may be 

subject to some bias if i  is not orthogonal to ˆ ˆ( )i iK L− . To stress the point, equation (18) 

contains the error term iu  because i  is proxied by the constant term c , and ( )1 ia−  by the 

coefficient   (also constant). To the extent that these two variables are not constant (as the 

identity indicates), left- and right-hand sides of equation (7) will not be identical. It should be 

clear, nevertheless, that the nature of this error term is different from that in a true econometric 

model, i.e., a random variable that results from factors not considered in the estimated 

equation. Young’s estimates of TFP growth of the East Asian economies from the regression 

exercise must be virtually identical to those from the accounting identity. The latter shows that 

it cannot be otherwise. 

 

Example 5: Hsieh’s (1999, 2002) dual growth accounting approach “without 

production function.” Hsieh (1999, 2002) disputed Young’s results. In particular, he 

disagreed with the implausibly rapid decline of Singapore’s profit rate ( r ) implicit in Young’s 

exercise (and with the overall extremely low TFP growth rate). Hsieh suggested that it was 

caused by the very high and possibly incorrect estimates of the capital stock. Hsieh argued that 
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Young’s calculations were problematic because the latter had used the primal measure of TFP 

growth, which required information about capital stocks, difficult to construct. Hsieh’s point, 

in particular for Singapore, was that with a more or less constant share of capital in GDP and 

an increasing capital–output ratio, the implied rate of return should have fallen dramatically. 

The data Young had used overstated investment and hence the estimated stock of capital (and 

its growth rate) was too high. However, different measures of the marginal product of capital 

showed no decline. Hsieh then concluded that Singapore’s national accounts overstated the 

amount of investment spending, the data used to construct the capital stock. 

To solve this problem, Hsieh proposed to calculate the dual measure of TFP growth. 

The use of factor prices required for the dual avoids the problems of the primal. Hsieh (1999, 

2002), however, did not derive the dual from the cost function. Like Barro (1999), Hsieh 

claimed that one can derive the dual by expressing the national income accounting identity, 

equation (1b), in growth rates such as equation (2c). Then, he noted that the left-hand side 

resembles the primal derived from the production function, and the right-hand side is similar 

to the dual derived from the cost function.27 

While Hsieh’s algebra is correct, we question his claim (and Barro’s) that growth 

accounting can be performed directly by using the accounting identity that relates factor 

payments to gross domestic product (GDP), without direct reference to the underlying 

production and cost theories. 28 We argued in section 2 that the identity can be decomposed 

 
27  This seems to be Harberger’s (1998) approach, who wrote the identity in growth rates but gave it 

a completely neoclassical interpretation by assuming that each factor is rewarded according to its 
marginal product. He interpreted the residual as the rate of “real cost reduction.” 

28  It is worth quoting them on this. Barro (1999, p.123) noted that: “the dual approach can be derived 

readily from the equality between output and factor income.” He continued: “it is important to 

recognize that the derivation of equation (8) [the growth accounting equation in Barro’s paper] uses 

only the condition t t t t tY w L r K + . No assumptions were made about the relations of factor prices 

to social marginal products or about the form of the production function” (Barro 1999, p.123; emphasis 

added). And: “If the condition t t t t tY w L r K +  holds, then the primal and dual estimates of TFP 

growth inevitably coincide […] If the condition t t t t tY w L r K +  holds, then the discrepancy between 

the primal and dual estimates of TFP has to reflect the use of different data in the two calculations” 

(Barro 1999, p.123–24).28 To show this, he writes the income accounting identity, differentiates it, 

and expresses it in terms of growth rates (Barro 1999, equations [7] and [8], p.123). It is noticeable 
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into w, r, L and K. Yet, the only way to interpret the decomposition as Hsieh did (e.g., that 

factor shares reflect the marginal products; and that the result provides estimates of the rate 

of technical progress) is by equating it to the derivation from the cost function with the 

corresponding neoclassical assumptions. As we discussed in section 2, all the identity can do 

is to provide a disaggregation into distributional changes. In what follows, we make three 

related points about Hsieh’s arguments. 

First, Hsieh did not calculate r̂  residually from the identity, so he did not use 
1D

TFP  

(equation [2c]). Instead, he used equation (5), which requires an estimate of the rental rate of 

capital (  ), calculated independently as  ˆ( )( / )K Ki P P P = + −  ( i  is the nominal cost of 

borrowing in the financial markets (some market rate, e.g., 5%);   is the depreciation rate (a 

pure number), ˆ
KP  is the growth rate (a pure number) of the price (a deflator) of capital (

KP ), 

and P is the GDP deflator (Hall and Jorgenson 1967).29 Essentially, Hsieh obtained a higher 

value of TFP growth with the dual (in particular for Singapore) than with the primal because 

while the wage rate increased (i.e., exhibited a positive growth rate), his estimates of the rental 

rate of capital did not show a marked decline (i.e., it was more or less constant, hence a growth 

rate of about zero). 

Second, it is important to note that the accounting identity that is consistent with Hsieh’s 

(1999, 2002) calculations is, conceptually, different from equation (1b). Given that both the 

rental rate of capital   and the constant-price value of the stock of K  are calculated 

 

from the above quotation that Barro assumed that there exists an underlying production function, 

in spite of any impression to the contrary. We think that Barro is using Euler’s theorem to connect 

the production function to the identity. We already disputed this in section 2. 

Hsieh (2002, p.505), likewise, concurred that “with only the condition that output equals factor 

incomes, we have the result that the primal and dual measures of the Solow residual are equal. No 

other assumptions are needed for this result: we do not need any assumption about the form of the 

production function, bias of technological change, or relationship between factor prices and their social 

marginal products” (emphasis added).  

29  It should be noted that in the textbook definition, “nominal”   (let us call it 
n ) is actually a price, 

whose unit is $ per unit of physical capital (e.g., “leets”). Consequently, in “real” terms       

( / )n p = , where p  is the dollar price of a unit of output (e.g., dollars per widget). It is measured 

in units of physical output (i.e., widgets) per unit of physical capital (e.g., per square meter of office, 
per computer). 
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independently, the product K  need not be equal to the operating surplus (unlike t tr K in 

equation [1b]). Therefore, it is true that, in general, t t t t tY w L K + . The presumption is that 

t t t t tY w L K + , with the difference being pure profits. What this means is that the accounting 

identity effectively used by Hsieh may not be consistent with the NIPA because there is no 

guarantee that tY  equals t t t tw L K+ . This means that under these circumstances, and to be 

consistent, Hsieh’s income accounting identity should be written as: 

 t t t t tY w L K +  (8) 

where now tY  is constructed using the four series on the right-hand side. This could be defined 

as the GDP consistent with competitive markets, given that wage rate and rental rate of capital are 

considered to be the competitively determined factor prices. It can also be referred to as the 

cost identity (Y C= ). Naturally, whether the estimate of Y  is correct or not depends on 

whether the series used to calculate it, in particular   and K , are accurate or not. This identity 

gives us the labor and capital cost shares ( )/L wL C =  and ( )/K K C = , respectively, with 

1L K + = . One could perform a growth accounting exercise and calculate TFP growth as: 

 

2 2ˆ ˆ ˆ ˆˆ
D

t tt Lt t Kt t Lt t Kt tTFP Y L K w TFP     − −  +   (9) 

Third, Hsieh (2002, p.505) made an additional point about the identity. In general, 

( )Y C=  will differ from Y  (actual GDP) as the latter appears in the NIPA. The difference is 

attributed to the existence of pure profits, although given how   and K  are calculated, it is 

virtually impossible to know whether this is indeed the case.30 Given this, the actual GDP 

identity could also be written as:  

 t t t t t t t tY C Z w L K Z +  + +  (10) 

where Z  denotes pure profits and, for consistency, t t t t t tS r K K Z  + .31 In this case, the 

GDP shares are (avoiding the subscript t  for simplicity) ( / )L a wL Y = = , ( / )K K Y =  and 

 

30  Empirically, it might well be that one finds that Y Y . 
31  Note that equation (10) may be written as: 

 
* *( )t t t t t t t t t t t t t t t t t t t t tY w L K Z w L K K w L K w L rK     + +  + +  + + = + , where 

* can be defined as 

the “monopolistic” rate of profit. 
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( / )Z Z Y = , with 1L K Z  + + = . One can also express identity (10) in growth rates to 

undertake a growth accounting exercise as:  

3 3
ˆ ˆ ˆ ˆˆˆ

D

t tt Lt t Kt t Lt t Kt t Zt tTFP Y L K w Z TFP      − −  + +    (11) 

Now the dual of TFP growth splits the contribution of the growth rate of the operating 

surplus into that of the cost of capital and that of pure profits.  

None of this alters the argument. The slight differences between identities (2c), (9), and 

(11) are obvious (different shares, a ,  , ; and in general  ˆr̂  ). It should also be self-

evident that they would yield different results; and that if one calculates the primal using one 

of them and the dual using another one, the two will be different. 

 

5. WHAT DO PRODUCTION FUNCTION REGRESSIONS TELL US? THE 

ILLUSION OF TESTING (I) 

In this section and in the next, we discuss regressions of growth models. The analysis makes 

it clear that the authors believe that their regressions are testable models (we have already 

pointed out that this was the case of Solow 1957 and Young 1994). The discussion in section 

2 made it clear that the production function approach is very problematic for the empirical 

literature on endogenous growth, increasing returns to scale, and imperfect markets. The latter 

two might exist but this method will always reject these hypotheses (once again, if the 

regression is specified correctly); and as we already pointed out, the result should not be 

interpreted as corroboration of constant returns to scale and competitive markets. It is simply 

the result of the underlying identity.  

The late 1980s and 1990s saw a resurgence of the growth literature as researchers began 

to test growth models, especially the key insights of the old Solow model against those of the 

new endogenous growth models. This was partly triggered by the availability of large data 

bases. Moreover, there was growing dissatisfaction with the predictions of Solow’s (1956) 

model. Given that countries are assumed to have access to the same technologies, the model 

predicts that the steady-state rate of growth of productivity will be equal to the common rate 

of technical progress. Any differences in growth rates can only be transitory, the results of 
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countries not being at their steady-state capital-labor ratio. The growth rate of productivity of 

those countries where their actual capital-labor ratios are below the steady-state value will 

temporarily exceed the rate of technical progress. If all countries invest the same proportion 

of their GDP, then there should be an inverse correlation between the growth of labor 

productivity and the initial level of productivity. The empirical evidence showed that this 

convergence (referred to as absolute) existed at the regional level within advanced countries 

but not at the country-level, i.e., countries were not converging.  

The literature then split into two paths. The first path was to endogenize growth by 

abandoning the assumption that the growth rate of technology (a pure exogenous public good) 

was the same across countries. One way to do this was by introducing the idea that capital is 

special in that its contribution to growth is higher than that implicit in the capital share in the 

national accounts. In other words, capital accumulation has positive externalities, and this gave 

rise to the so-called AK model (Example 6). An alternative approach was to introduce a second 

production function for “ideas” (i.e., the R&D sector) and to allow for the diffusion of ideas 

from the high to low income countries. The second path of the literature is discussed in 

Example 7.  

 

Example 6: Romer’s (1987) tests for increasing returns to scale. Romer (1987) was 

one of the first papers on endogenous growth that included empirical work. His objective was 

to drop the notion of technical change as a separate argument of the production function. 

Romer developed two models, one of which included physical capital with an output elasticity 

of unity, and with overall increasing returns to scale. In the second model, Romer assumed 

that the greater the degree of specialization the greater, ceteris paribus, the level of output. To 

capture the degree of specialization, output was specified as a function of the number of 

specialized capital inputs as well as of labor. He also assumed that there is a fixed cost in 

producing the specialized capital goods. The production function takes the form 
t t tY AL K =  

with   assumed to equal 1 (Romer’s equation [11]). Given our arguments in section 2, it 

should come as no surprise that the empirical evidence did not support a production function 

with the elasticities consistent with Romer’s model. 



 

31 

 

What empirical evidence did Romer find in support of his hypothesized production 

function? He fitted Cobb-Douglas production functions to different data sets and with slightly 

different specifications, including and excluding the constant term, as well as including and 

excluding a time trend. The results were poor, with coefficients often either statistically 

insignificant or negative. This led Romer (1987, p.186) to conclude that “it should not be 

surprising that production function regressions using annual data yield estimates that are 

ambiguous.” In a final attempt using long-run growth rates data for the G7 countries, Romer 

obtained a coefficient of 0.87 for capital (not statistically different from 1) and a statistically 

insignificant coefficient on the growth rate of hours worked. 

All in all, the empirical support for Romer’s model was pretty weak, and his 

rationalization of the results was not convincing. He argued that “the tentative conclusion that 

I draw from this exercise is that the appropriate growth accounting equation is ˆ ˆ ˆ
t t tY L K = + , 

with values of   likely to fall in the range 0.7 to 1.0 and the values of  likely to fall in the 

range 0.1 to 0.5” (Romer 1987, p.198). As   was considerably below labor’s observed share 

in national income, Romer was forced to provide an implausible ex post justification, namely, 

that there must be a significant negative externality associated with labor (Romer 1987, p.166). 

In retrospective, the evidence that the factor elasticities take upon the values hypothesized by 

the endogenous growth production functions has never been sound. Consequently, most 

empirical work today, in particular growth accounting, assumes elasticities equal to the factor 

shares and, therefore, constant returns to scale.  

The identity allows us to determine when the regression ˆ ˆ ˆ
t t t tY L K u = + +  would yield 

a capital elasticity close to unity and a low labor elasticity, i.e., 1  and 0 . If the rate of 

profit does not display secular growth (i.e., ˆ 0tr ) and factor shares are roughly constant, then 

identity (2a) can be written as ˆ ˆ ˆˆ (1 )t t t tY aw aL a K + + − . This equation becomes 

ˆ ˆ ˆ ˆ ˆ( ) (1 )t t t t tY a K L aL a K − + + − , given the relationship between the wage rate growth and labor 

productivity growth ˆ ˆˆ ( )t t tw Y L= − , and if ˆ ˆ
t tY K=  (i.e., Kaldor’s stylized fact, which Romer 

assumed). It is straightforward to see now that if the term ˆ ˆ( )t tK L−  is omitted, this expression 

is simply: 
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ˆ ˆ ˆ ˆ0 1.0t t t tY L K K +        (12) 

with the coefficients of labor and capital growth taking the orders of magnitude found by 

Romer (in his regression with long-run data), with the elasticities adding up to unity. This, 

however, merely reflects the “bias” in the estimation of the accounting identity and tells 

nothing about the contribution that capital and labor make to economic growth in a 

technological sense, that is, determined by an underlying aggregate production function. 

 
Example 7: Mankiw, Romer and Weil’s (1992) revival of the neoclassical growth 

model. The second path followed by the growth literature was to revive Solow’s (1956) model, 

on the grounds that it had been misinterpreted. Mankiw et al. (1992) (MRW hereafter) claimed 

to take Robert Solow “seriously” by properly testing his canonical model (Solow 1956); in 

particular, the assumption of constant returns to scale (with the values of the factor elasticities 

about the size of the factor shares), and the prediction of convergence.32 They argued that 

Solow’s model did not predict absolute convergence but conditional convergence, the idea 

that correcting for the fact that countries invest different proportions of their output in 

physical and human capital, then they indeed converge to their own steady states. 

Since this paper is well known, we only sketch its key aspects here. MRW started with 

a production function with constant returns to scale, namely 1( )t t t tY A L K −= . The authors 

assumed 
0

nt

tL L e= and 
0

gt

tA A e= . They derived the steady-state solution of the model, which in 

logarithmic form is  

0

1 1
ln ln ln ln( )y A gt s n g

 


 

− −
= + + − + +     (13a) 

where ( / )y Y L= , s  is the savings rate,   is the depreciation rate, n  ( ˆn L= ) is the growth rate 

of employment, and g  is the growth rate of technology. The model predicts that countries 

with greater savings and investment rates will have higher per capita income levels. These 

countries accumulate more capital per worker and, consequently, have more output per 

worker. Likewise, countries that have higher population growth rates will tend to be poorer. 

The model also predicts the magnitudes of the coefficients of these variables.  

 
32  See Solow (1994) and Romer (2001) for critiques of Mankiw et al. (1992). 
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For estimation purposes, MRW set 0.05g + =  and hypothesized that 0A  reflects not 

only the initial level of technology but also resource endowments, climate, institutions, and so 

on. As such, it may differ across countries, and it was assumed that 0 0ln A b u= + , where u  is an 

error term (this assumption is very important). They used cross-country data and fitted the 

regression  

0

1 1
ln ln ln( 0.05)y b s n u

 

 

− −
= + − + +    (13b) 

For our purposes, it is unnecessary to discuss the results save to note that these were 

mixed, in terms of both fit (very low in some of the samples) and estimated coefficients (how 

close these were to the factor shares in the national accounts). This led MRW to extend 

Solow’s model by introducing human capital. Results improved in general.33 

However, what underlies MRW’s regression is, again, the accounting identity. In what 

follows, we show how equations (13a) and (13b) can be derived from the accounting identity 

(equation [2e]) and the definition of the increase in the capital stock, that is, t t tK I K  − , 

where I  is gross investment and   is the depreciation rate, through a series of simple algebraic 

steps, and with no reference to neoclassical production theory: 

(i) The growth rate of the stock of capital can be written as: 

ˆ( / ) ( / ) ( / )t t t t t t tK K K I K sY K    −  −     (14a) 

where s  is the investment-output ratio, assumed constant.  

(ii) Assuming equal growth rates of output and capital, i.e., ˆ ˆ
t tY K=  (one of Kaldor’s 

stylized facts), the accounting identity (2d) becomes: 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 )t t t t t t t t tY K aw a r aL a K g aL a K=  + − + − −  + − −   (14b) 

with ˆ ˆ(1 )t t tg aw a r + − , which implies:  

ˆ ˆ 0t t tK L g− −        (14c) 

 
33  They concluded that the production function consistent with their results is 1/3 1/3 1/3Y AK H L= , where 

H  denotes human capital. As can be seen, the elasticity of physical capital is not different from its 
share in income and there are no externalities to the accumulation of physical capital. 
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where ( / )t tg g a= .34  

(iii) Substituting the definition of ˆ
tK  given by equation (14a) into the identity (14c) 

yields ( / ) 0t t tsY K n g− − −  , or  

t t

t

s
k y

n g

 
  

+ + 
     (14d) 

where ( / )k K L= . This definition (identity) is correct, we stress, if ˆ ˆ
t tY K= . In any case, this 

expression, given how it has been derived, is certainly not a testable ‘model’. We just note the 

resemblance between this expression and the steady-state value of the capital-labor ratio in 

Solow’s growth model. 

(iv) Recall the identity can be rewritten assuming constant factor shares equation 

(2e). Substitute the definition of k  in (14d) into the identity (2e). This yields:  

1
1

0

a
a a

a
t t t

t

s
y C w r

n g

−
−  

  
+ + 

     (14e) 

Again, note the similarity between this expression and that for the steady-state income 

per capita obtained in the standard derivation by MRW. However, expression (14e) is just the 

income accounting identity if factor shares are constant and ˆ ˆ
t tY K= , and it has been derived 

without reference to a production function.  

(v) It can be written in logarithmic form as: 

ˆ ˆ(1 )1 1 1
ln 1.0ln ln ln ln[ ]t t

t t t t

aw a ra a a
y c w r s n

a a a a


+ −− − −
 + + + − + +    (14f) 

If expression (14f) is estimated econometrically with the coefficients unrestricted, it 

will produce a high fit (provided that factor shares are relatively constant and if output and 

capital grow at similar rates), and one will be able to recover the factor shares from the 

estimated coefficients. Moreover, it will confirm that indeed countries with higher savings 

rates are richer, and that countries that have higher population growth rates are poorer. This, 

 
34  Assuming that factor shares are constant, and that output and capital grow at the same rates, and 

“imposing” them on the identity does not make the latter a model. This simply means that MRW’s 
model will work when both assumptions are approximately true in the data; and it will not work 
otherwise. 
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however, will be true simply by construction of the variables involved in the regression. No 

data set will reject these hypotheses. These regression results say nothing that is not already 

known before the regression is run. To be precise, we are not claiming that savings and 

population growth do not matter for growth. What we claim is that regression (14f) does not 

provide a test of this hypothesis. 

(vi) Now compare (14f) to the equation estimated by MRW (13b). Equation (14f), 

an identity, encompasses (13b) and a comparison of the variables included in both equations 

sheds light as to why the latter gave relatively poor results in terms of goodness of fit (although 

savings rate and population growth had the correct signs). The reason is that MRW’s 

regression was not a good approximation to the identity. Essentially, MRW constrained 

ˆ ˆ(1 )
ln[ ]t taw a r

n
a


+ −

+ +  to be ln( 0.05)n+ , and 
1

1.0ln ln
a

w r
a

−
+  to be a constant 0b . This is akin 

to omitted-variable bias. We emphasize that the signs were correct because of the identity. The 

poor goodness of fit was partially solved through the inclusion of human capital in their 

extended model (with better results). In our view, it simply means that the extended model 

provided a better approximation to the identity to the extent that the human capital variable 

partially picked the path of (
1

1.0ln ln
a

w r
a

−
+ ). Again, we are not claiming that savings and 

population growth do not matter. What we have shown is that regression (13b) cannot be used 

to test this proposition. 

MRW also tested what they saw as the other important prediction of Solow’s model, 

namely that an economy’s per capita income converges to its own steady-state value, which 

provides an explanation for the observed differences across countries. An economy that 

begins with a stock of capital per worker below its steady-state value will experience faster 

growth in per capita output along the transition path than a country that has already reached 

its steady-state per capita output. The convergence regression is 

0 0 0(ln ln ) (1 )ln (1 ) ln (1 ) ln( 0.05) ln
1 1

T T T

t ty y gT e A e s e n y u   


 

− − −− = + − + − − − + + +
− −

 (15a) 

where   is the speed of convergence, i.e., how quickly a deviation from the steady-state growth 

rate is corrected over time (i.e., percentage of the deviation from steady state growth that is 
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eliminated each year), and T  is the length of the period under consideration. In the neoclassical 

model ( )n g  = + + ; and (1 )Te  −= − − . MRW assumed 
0(1 )lnTgT e A−+ − to be constant across 

countries. The speed of convergence was estimated at about 2% a year from (1 )Te  −= − − . 

 What do our arguments imply about the convergence regression and the speed of 

convergence? Simply subtract the logarithm of income per capita in the initial period from 

both sides of equation (14f). This yields: 

0 0

ˆ ˆ(1 )1 1 1
(ln ln ) 1.0ln ln ln ln[ ] lnt t

t

aw a ra a a
y y c w r s n y

a a a a
 

+ −− − −
−  + + + − + + +  (15b) 

Equation (15b) continues being the accounting identity (all we did was to subtract 0ln y  

from both sides of the equation). Therefore, the coefficient of 0ln y  has to be 1 = −  by 

construction. If this equation were to be interpreted as being the neoclassical growth model, 

results would imply (1 ) 1Te  −= − − = − , or  =  , a questionable result. Our argument is that, like 

the previous one, this regression tells us nothing. Why did MRW (1992, Table IV) obtain a 

much lower coefficient for   (implying a rate of convergence of about 2% a year)? For the 

same reason as before: their regression assumed constant two terms that are not. To be precise, 

we are not claiming that the idea of convergence is nonsensical. What we claim is that 

regression (15a) does not provide a test.35 

The empirical literature that succeeded MRW (Islam 1995, 1998; Knowles and Owen 

1995; Nonneman and Vanhoudt 1996; Lee et al. 1998; Maddala and Wu 2000) re-estimated 

the convergence equation (different versions) and got into a conundrum. This was that as the 

estimated regressions improved (e.g., through additional variables, or heterogeneous 

intercepts), the speed of convergence increased significantly to values that authors thought 

were implausible. It is just that they were getting closer to the identity. 

 

Example 8: Jones’s (1997) test of the neoclassical growth model. Jones (1997) 

showed to his satisfaction that the neoclassical model describes fairly well the distribution of 

per capita income across countries. He reached this conclusion by calculating the steady-state 

 
35  Surely a regression of the growth rate of GDP on initial income per capita tells us something about 

absolute convergence. This is not the MRW hypothesis and test. 
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levels of labor productivity of a sample of countries, relative to that of the US. These values 

were then compared with the actual ratios of labor productivity, relative to that of US: the 

correspondence between actual and steady-state relative productivity levels was very high, with 

a slope of about 1. Jones concluded that the Solow model is extremely successful in explaining 

the wide variation in per capita income across nations. Jones also compared TFP levels across 

countries and showed that these are higher in advanced economies. As we show below, Jones’s 

findings were the result of the fact that he had no independent measure of TFP, and the way 

he calculated it made it inevitable that relative actual and steady-state levels of productivity had 

to closely correspond. More simply, what explains this close relationship is, again, the 

accounting identity. 

Jones (1997) hypothesized the production function 1( )y Ah k −= , where y , A , h   and k  

are output per worker ( /y Y L= ), the level of technology, human capital, and capital per worker 

( /k K L= ), respectively. Jones assumed that exp[ ( )]h S t= , where S  is the time devoted to skill 

accumulation. The steady-state level of productivity for country i (assuming that output and 

capital grow at the same rates, and that the growth rate of technical progress is the same across 

countries, 0 exp( )A A gt= ) is: 

(1 )/

*

i i i

i

s
y Ah

n g

 



−

 
=  

+ + 
     (16a) 

where s  is the share of physical investment in output, ˆn L=  denotes the growth rate of 

employment, and   is the depreciation rate. Following Solow (1957), Jones defined A  as:  

(1 )/( / ) ( / )i i i i iA y k y h −=       (16b) 

Then he substituted (16b) into the equation for the ratio of the steady-state level of 

productivity with respect to that of the US ( * */i USy y ). When he compared * *ln( / )i USy y  with 

ln( / )i USy y , he found a very close relationship between the two variables, with a slope of about 

1.  

However, the closeness between the two series was simply the result of how Jones 

calculated A , using Solow’s (1957) tautological procedure (section 3).36 To see this, we can 

 
36  See also Hall and Jones (1999). 
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disregard human capital h  for expositional convenience because including it makes no 

difference to Jones’s procedure. Then through the following steps, we show the tautological 

nature of Jones’s procedure, and why, by construction, actual and steady-state levels of 

productivity have to be closely related: 

(i) Equation (16b) without human capital becomes: 

(1 )/( / )i i i iA y k y −=       (16c) 

(ii) Taking the ratio of the steady-state level of productivity (16a) with respect to 

that of the US (also excluding human capital) yields the following expression: 37 

 

(1 )/

*

(1 )/*

i

ii i

US US
US

US

s

n gy A

y As

n g

 

 





−

−

 
 

+ + 
=
 
 

+ + 

     (16d) 

(iii) Consider the expression / ( )i is n g + + . Given that ˆ ( / )s K K Y  , it follows that:  

ˆ
i i i

i i i

s Y K

n g K n g 

   
      + + + +    

     (16e) 

(iv) Substitute (16e) into (16d), together with ( / )i USA A  from (16c). We obtain: 

(1 )/

*

(1 )/*

ˆ

ˆ

i

ii i

US US
US

US

K

n gy y

y yK

n g

 

 





−

−

 
  + + 

=
 
  + + 

     (16f) 

or in logarithmic form: 

* * (1 )
ln( / ) ln 1.0ln( / )i

i US i US

US

x
y y y y

x





 −
= + 

 
   (16g) 

 
37 It is straightforward to see that the introduction of human capital makes no difference whatsoever 

because it disappears if we substitute instead (1 )/( / ) ( / )i i i i iA y k y h −=  into the ratio of steady-state 

level of productivity with respect to that of the US. We obtain equation (16d) again. 



 

39 

 

where ˆ / ( ) 1i i ix K n g = + + =  and correspondingly for USx .38 Consequently, if one were to 

regress * *ln( / )i USy y  on ln( / )i USy y , it is self-evident that the statistical fit should be very good, 

given that ln( / )i USy y  is, by definition and construction, a component of * *ln( / )i USy y , and given 

the stylized fact that the capital-output ratio does not vary greatly across countries (see Jones 

1997, Figure 5). 

Finally, we do not need to elaborate again upon what lies behind Jones’s (1997) 

procedure and results. The procedure gives not only the very high fit between steady-state and 

actual labor productivity ratios, but also the slope of 1. This is, of course, the accounting 

identity. 

 

6. THE ILLUSION OF TESTING (II) 

We complete our tour of the identity by discussing three additional examples that highlight 

the fundamental problems of the approaches used and the discussions around them. They are 

an extension of the growth and macroeconomic discussions of the late 1980s and 1990s 

derived from the endogenous growth literature. These are: Hall (1988), Hall (1990), Shapiro 

(1987), and Wong and Gan (1994). The analysis in this section will allow us to appreciate in 

detail why the suspicions of Samuelson (1979) and Simon (1979a) were well founded, and why 

Barro’s (1999) concerns (see section 2) about the regressions were erroneous. 

 

Example 9: Hall’s (1988, 1990) method to estimate the markup. Hall (1988, 1990) 

argued that the procyclicality of productivity was evidence that firms behave monopolistically 

and have excess capacity. He reasoned that, if a demand shock can lead to an increase in output 

with a small increase in input (vis-à-vis the price increase), then marginal cost must be low (i.e., 

the markup must be high). Competitive firms with the ability to increase output with little 

increase in input would cut price. Demand would increase and hence attenuate the 

procyclicality of measured productivity. Consequently, Hall interpreted the procyclicality of 

productivity as evidence that firms behave monopolistically. In Hall’s model, cyclical 

 
38  Combining identity (14d) and the definition ˆ ( / )s K K Y , it follows that ˆ ( )t tK n g + + . 
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fluctuations in productivity are the result to shocks in aggregate demand rather than shocks to 

productivity, as in the real business cycle model. 

Here we show that his well-known procedure to estimate markups (ratio of price to 

marginal cost) by comparing movements in output and inputs, is equally invalidated by the 

accounting identity. Hall showed that when the assumptions of perfect competition and 

constant returns to scale are violated, the growth rate of the primal measure of TFP growth 

does not reflect the true productivity growth. the His model led to the following regression 

equation:  

*ˆˆ ˆ( ) ( )t t t t tY K a k u −  + +     (17a) 

where ( / )p x =  is the markup (ratio of price of marginal cost),   denotes the rate of 

technological change (assumed to be constant), ta  is the labor share in total revenue, 

*ˆ ˆ ˆ
t t tk L K= − , and tu  is the disturbance term. The original Solow’s (1957) model implicitly 

assumed 1 = , the null hypothesis to test in equation (17a).39 

What is the problem with the above method? Note that the identity equation (2b) can 

be written as *ˆˆ ˆ( )t t t t tY K a k−  + , where ˆ ˆ(1 )t t t t ta w a r  + − . Clearly, if one estimates  

* *ˆˆ ˆ( ) ( )t t t t t tY K a k u − = + +      (17b) 

the result will be *ˆ ˆ 1 = =  with a perfect fit, as there is no error term (i.e., 0tu =  for every 

observation). Hall found putative large markups ( 1  ). How is this possible? 

It is obvious that if one estimates (17a), i.e., by effectively constraining t  to be a 

constant (and effectively omitting its variation in [17b]), then it is self-evident that the estimate 

of   is likely to differ from unity. The problem is akin to one of omitted-variable bias, though 

in this case, we know exactly what is being omitted, namely t . This explains why Hall found 

putative large markups. 40 

 

39   For estimation purposes, Hall ran the inverse of this regression, that is, 
*ˆ ˆ ˆ( )t t t t ta k c d Y K u= + − + , 

where now the estimate of the markup is 
ˆˆ (1/ )d = . 

40  The estimated   can be interpreted as a biased estimate of  * 1 =  due to the misspecification of 

t . The expected value of    will be 1 plus a term that depends on the covariance of the omitted 
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Summing up: Hall’s procedure is, in effect, a tautology and his results cannot be taken 

as evidence of large markups. If he had allowed the intercept to vary, the closeness of fit (in 

terms of the R-squared and the standard errors) would have increased, and   would have 

necessarily approached unity. 

  

Example 10: Hall’s (1990) method to estimate the degree of returns to scale. Hall 

(1990) extended Hall’s (1988) method to also test for the presence of increasing returns to 

scale. His method is different from Romer’s (1987). Hall (1988) had assumed constant returns 

to scale. The mark-up (  ) equals the ratio of price to marginal cost, i.e., ( / )p x = . It is 

straightforward to show that a  (where a  is the labor share in revenue) is the labor’s output 

elasticity ( ) when value-added data are used. It then follows that the degree of returns to 

scale (  = + ) is equal to a  = + , where   is the output elasticity of capital. Then, using 

revenue shares, Hall’s equation to estimate the degree of returns to scale becomes 

*ˆˆ ˆ ˆ( ) ( 1)t t t tY K ak K  − = + + − . Hall used cost rather than revenue shares, although he admitted 

that there was little difference between cost and revenue shares. From equation (5), the cost 

shares are given by / ( )L wL wL K = +  and / ( )K K wL K  = + , and shares, degree of returns 

to scale, and markup are related through ( ) / La  = . Hall’s estimating equation of the degree 

of returns to scale then becomes: 

ˆ ˆ ˆ[ (1 ) ]t L t L t tY L K u   = + + − +      (18) 

It should be obvious by now that regression (18) may lead to estimates of  significantly 

greater than 1, as Hall found, although this is simply the result of mis-specifying the accounting 

identity equation (2a). As indeed revenue and cost shares are very close, the identity can be 

written as ˆ ˆ ˆˆ ˆ(1 ) (1 )t Lt t Lt t Lt t Lt tY w r L K   + − + + − , or equivalently as ˆ ˆ ˆ[ (1 ) ]t t Lt t Lt tY L K   + + −

(i.e., approximately). It is straightforward to see that 1  unless t  is erroneously proxied by 

 

and included term and the variance of the latter: 
*

*

ˆ( , )
ˆ[ ] 1

ˆ( )

t t t
OLS

t t

Cov a k
E

Var a k


 = + . 1 =  if *ˆ( , ) 0t t tCov a k =

, which in the context of the identity does not imply that markets are perfectly competitive; and 

1   if *ˆ( , ) 0t t tCov a k  . 
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a constant as Hall did. Once again, this procedure is not a test of an empirical hypothesis. 

  

Example 11: Shapiro’s (1987) test of fluctuations in productivity. Shapiro (1987) 

proposed a test of whether observed fluctuations in productivity result from supply (real 

business cycle theory), or from demand (Keynesian theory). In other words, is the measured 

Solow residual a true shift in the production function, or does it have a demand component, 

as Keynesian theories suggest?  Specifically, Shapiro tested whether the observed fluctuations 

in factor prices are consistent with the hypothesis that measured productivity shocks are true 

productivity shocks. He used product and factor price data and argued that the latter “should 

provide an independent indication of the source of the productivity fluctuation” (Shapiro 

1987, p.119).  

His test consisted in regressing primal TFP growth on dual TFP growth, that is:  

D

t t tTFP c TFP u= + +        (19) 

both derived independently, from the production and cost functions, respectively, i.e., 

( )ˆ ˆ ˆ1t t t t t tTFP Y a L a K − − −  (equation [2c]) and ˆˆ
D

t Lt t Kt tTFP w  = +  (equation [5]). He tested the 

null hypothesis 
0 : 1H  = .  

In a second exercise, Shapiro (1987) considered whether departures from the predicted 

joint movement of measured productivity and factor prices are consistent with the Keynesian 

alternative that movements in measured Solow residuals are accounted for by movements in 

demand, i.e., that movements in demand drive fluctuations in TFP growth. To do so, he added 

an additional explanatory variable to the same regression: 

ˆ
D

t t t tTFP c TFP X u = + + +       (20) 

where ˆ tX  is the growth of GNP in Shapiro (1987, Table 2). The joint null hypothesis is 

0 : 1;  0H  = = . 

Wong and Gan (1994) recently used the same procedure and test with Singaporean 

data. They estimated regression (19) for 27 manufacturing industries (Wong and Gan 1994, 
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Table 5).41 To calculate the dual 
D

tTFP , they calculated and used the rental rate of capital   

(although see below).  

What did Shapiro and Wong and Gan find? We focus on the latter since the results are 

more extreme and these authors provide more statistical information than Shapiro. In their 

first set of regressions they found, except in one case, that the estimates of the coefficients    

were virtually 1 and quite tightly estimated (with t-values above 100 and up to 454), and the 

regressions had almost perfect fits ( 2R > 0.99 in most cases). The authors concluded that their 

findings suggested that “the movements in TFP growth reflect true changes in productivity.” 

In their second set, the extended regressions, their results were 1 =  and 0 =  across most 

industries. Wong and Gan interpreted the finding that 0 =  as a refutation of the 

Keynesian theory. These results are qualitatively similar to Shapiro’s (1987, Table 2).  

It is true that Shapiro (1987) (as well as Wong and Gan 1994) computed separately 

primal and dual measures of TFP growth, using production and cost functions, respectively. 

Shapiro derived the primal from a general production function (equation (2) in his paper), 

hence factor shares varied, as in equation (1b). However, he derived the dual from a Cobb-

Douglas cost function (equation (12) in his paper), hence the factor shares were constant. 

Naturally, this induces an additional reason why primal and dual measures are not identical.  

In view of our discussion, however, the results discussed above should not come as a 

surprise and are to be expected. Regressing tTFP  on 
D

tTFP is meaningless because they are 

“essentially” the same variable. Hence this method is not an empirical test of the putative 

hypothesis. Likewise, their results that 1 =  and 0 =  using the extended regression are also 

known without the need to run the regression. Note that the regressor ˆ
tX  does not add 

anything to their accounting identity regression, hence its coefficient must be zero. It is simply 

the inclusion of an irrelevant variable. 

It is worth noting that Wong and Gan (1994) estimated, systematically and across most 

of the 27 industries, slopes equal to unity in the regressions of the growth of the primal TFP 

 

41 Their calculations of tTFP  and 
D

tTFP  involve two additional terms each, corresponding to energy 
and materials, because their measure of industry output is gross output. 
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on the dual measure of TFP growth (with, as we have noted, extremely high t-values and an 

almost perfect fit). This is despite the fact that they had calculated and used the rental rate of 

capital  , theoretically different from the ex post profit rate r  (i.e.,   not derived residually 

from the identity [1b]). If  and r , and revenue and cost shares, are sufficiently different, 

then primal and dual measures will consequently differ, as Shapiro (1987) found in some 

instances. The reality, however, is that to calculate the rental rate of capital, Wong and Gan 

used the accounting identity equation (1b). Shapiro (1987) calculated properly the rental rate 

of capital (  ), so probably   and r are sufficiently different and the regression does not 

look tautological. Yet, it is obvious that the accounting identity (2c) explains the regression 

results: tTFP   will differ from 
D

tTFP  if and only if   differs from r . Given that revenue and 

cost shares do not differ greatly (i.e., La  ), regression (19) is, at best, a test of the not 

particularly informative null hypothesis  0 :H r = . 

Finally, Shapiro (1987, footnote 4), referring to the rental rate, argues as follows: “if 

this measure of profits were found in the national accounts, which of course it is not, equation 

(14) would be tautologous.” His equation (14) is the same as our equation (19). While Shapiro 

had to be aware of the underlying accounting identity to make this statement, nevertheless all 

regression (19) does is to test the equality of rental rate and profit rate, and that the identity 

(i.e., the fact that all variables involved in the analysis are related through equation [2c]) 

underlies the procedure. 

 

7. FINAL THOUGHTS: IS THIS SCIENCE? 

This is by its nature a somewhat nihilistic paper and we do not attempt to provide any 

alternative approach to orthodox growth theory. As John Locke (1998) [1689] put it “It is 

ambition enough to be employed as an under-laborer in clearing the ground a little and 

removing some of the rubbish which lies in the way to knowledge.”  

We believe the clarifications in this paper are necessary to explain the opening 

paragraph of this paper, namely, why extremely simple growth models (production-function 

based) appear to have a high explanatory power. It is simply a figment of how the variables in 
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these models are related. This argument implies that neoclassical growth theory has used for 

decades models that, if interpreted correctly, would not pass any serious scientific scrutiny. 

TFP growth calculations from growth accounting exercises as well as direct estimations of 

production functions, or equations derived from the latter, are not very informative as they 

ultimately merely reflect an underlying identity. The results of the production-function-based 

growth empirics literature that derive from Solow (1956, 1957) and continue until today with 

Romer’s (1986, 1987) endogenous growth models, are fatally compromised by the fact that all 

they are capturing is an accounting identity.  

The research programs underlying these models have created the illusion that we have 

the beginnings of a sound understanding of the growth process, because they produce results 

that appear, a priori, to be plausible. For example, estimates of the output elasticities are often 

close to the factor shares and the R2 is close to unity, reflecting production theory and the 

competitive process. In some cases, the results seem putatively to have advanced our 

knowledge, e.g., the slow rate of convergence to steady-state, the fact that firms seem to have 

market power and set prices above marginal costs, and the very low TFP growth rates in the 

East Asian high-performing economies.  

However, all these findings can be best understood by the fact that the functional forms 

used (derived from production functions) are simply transformations of an accounting 

identity, if not the accounting identity itself. In doing so, this research program has led to what 

may be seen as irrelevant discussions; puzzles that, by force, one has to answer within the 

paradigm (e.g., why has TFP growth declined?). The consequence is that much less is known 

about economic growth than many seem to think. The growth literature has to evolve and 

abandon the conceptualization of growth through a production function and through the TFP 

research program.  

 It may be argued that some of the examples cited in this paper are “old” and that the 

field has progressed since then, e.g., the more recent work of Hsieh and Klenow (2009), 

Fernald and Neiman (2011), Bollard et al. (2013), or Fernald (2015). We are not convinced by 

this argument. First, all of the papers that we have reviewed are exemplars in the standard 

growth theory literature. Second, more recent exercises are still more-or-less sophisticated 
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growth accounting exercises (i.e., there is no testing involved) whose findings can be 

interpreted in terms of the identity. 

The recent literature on growth accounting has supposedly progressed by, for example, 

using firm-level data. This does not mean that the problem is solved, as the accounting identity 

holds at any level of aggregation. Indeed, these firm-level studies use deflated sales or value 

added as a measure of output and total fixed assets for the capital stock. The accounting 

identity argument remains irrespective of whether country-level or firm-level data is used. This 

is the case, for example, of the new literature on the misallocation of resources. See, for 

example, Bollard et al. (2013) on India. Hsieh and Klenow (2009) distinguish between 

“revenue” and “quantity” TFP. It is not clear, however, that their quantity TFP corresponds 

to the true physical TFP. This is because they do not have physical quantities of output, and 

“real” output is derived indirectly. Moreover, their measure of the capital stock is not the 

number of homogeneous machines, but the book value of capital stock. Fernald and Neiman 

(2011) do acknowledge the accounting identity in their growth accounting exercise, but they 

do not appear to realize the isomorphism with the production function, which arises as a result 

of using value data. 

It is surprising that the critique of Phelps Brown (1957), Simon (1979a) and Samuelson 

(1979) has not had any serious impact on the (production-function) growth research program. 

One can speculate about the reason for this neglect, despite Simon’s (1979b) concerns. It may 

be due to the extent of the sunk intellectual capital that has occurred over the years in this 

research program; or to the fact that the criticism may be seen so trivial that it is prone to be 

misunderstood and dismissed. Perhaps it is time to take it seriously and just as Leamer (1983) 

advocated to take the con out of econometrics, we should also take the con out of growth empirics. 
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