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ABSTRACT Diarrhea is a major cause of both morbidity and mortality worldwide,
especially among young children. Cryptosporidiosis is a leading cause of diarrhea in
children, particularly in South Asia and sub-Saharan Africa, where it is responsible for
over 200,000 deaths per year. Beyond the initial clinical presentation of diarrhea, it is
associated with long-term sequelae such as malnutrition and neurocognitive devel-
opmental deficits. Risk factors include poverty and overcrowding, and yet not all
children with these risk factors and exposure are infected, nor do all infected children
develop symptomatic disease. One potential risk factor to explain these differences is
their human genome. To identify genetic variants associated with symptomatic crypto-
sporidiosis, we conducted a genome-wide association study (GWAS) examining 6.5 mil-
lion single nucleotide polymorphisms (SNPs) in 873 children from three independent co-
horts in Dhaka, Bangladesh, namely, the Dhaka Birth Cohort (DBC), the Performance of
Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study, and the
Cryptosporidiosis Birth Cohort (CBC). Associations were estimated separately for
each cohort under an additive model, adjusting for length-for-age Z-score at
12 months of age, the first two principal components to account for population
substructure, and genotyping batch. The strongest meta-analytic association was
with rs58296998 (P � 3.73 � 10�8), an intronic SNP and expression quantitative trait
locus (eQTL) of protein kinase C alpha (PRKCA). Each additional risk allele conferred
2.4 times the odds of Cryptosporidium-associated diarrhea in the first year of life.
This genetic association suggests a role for protein kinase C alpha in pediatric cryp-
tosporidiosis and warrants further investigation.

IMPORTANCE Globally, diarrhea remains one of the major causes of pediatric mor-
bidity and mortality. The initial symptoms of diarrhea can often lead to long-term
consequences for the health of young children, such as malnutrition and neuro-
cognitive developmental deficits. Despite many children having similar exposures
to infectious causes of diarrhea, not all develop symptomatic disease, indicating
a possible role for human genetic variation. Here, we conducted a genetic study
of susceptibility to symptomatic disease associated with Cryptosporidium infection (a
leading cause of diarrhea) in three independent cohorts of infants from Dhaka, Ban-
gladesh. We identified a genetic variant within protein kinase C alpha (PRKCA) asso-
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ciated with higher risk of cryptosporidiosis in the first year of life. These results indi-
cate a role for human genetics in susceptibility to cryptosporidiosis and warrant
further research to elucidate the mechanism.

KEYWORDS Cryptosporidium, genetics, genome analysis

Cryptosporidiosis is a leading cause of diarrhea and is estimated to be responsible
for greater than 200,000 deaths in young children in South Asia and sub-Saharan

Africa each year (1). Beyond the immediate infection, cryptosporidiosis is also associ-
ated with long-term sequelae, including malnutrition and neurocognitive developmen-
tal deficits (2–5). The majority of human infections are caused by the Cryptosporidium
hominis, C. meleagridis, and C. parvum species (4, 6, 7). As cryptosporidiosis is trans-
mitted fecal-orally, contact with any reservoir with possible fecal contamination could
serve as a point of transmission. In the developed world, cryptosporidia represent an
important cause of diarrhea in individuals living with HIV and are the most common
pathogens causing waterborne outbreaks (7).

In regions of endemicity, cryptosporidiosis mostly impacts young children, and risk
factors for infection include poverty and overcrowding (4, 8–10). Livestock serve as an
environmental reservoir for C. parvum, and transmission after contact with infected
animals or with drinking water contaminated by human or animal waste has been
reported previously (11). In regions where Cryptosporidium infection is endemic, there
is heterogeneity in clinical courses and outcomes. In an eight-site multicenter interna-
tional study of enteric infection and malnutrition (MAL-ED), the rate of Cryptosporidium
infection, age of onset, number of repeat infections, and clinical manifestation differed
significantly by site (9). In a recent study in Dhaka, Bangladesh, we found that
two-thirds of children living in an urban slum were infected with Cryptosporidium by 2
years of age and that one-fourth had had more than one episode of cryptosporidiosis.
Fully three-fourths of the infections were subclinical, but, regardless of the symptoms,
children with cryptosporidiosis were more likely to become malnourished by 2 years of
age (4). Potential explanations for the Cryptosporidium infection heterogeneity include
differences in the pathogenicity of various Cryptosporidium species or genotypes (12)
and in host genetic susceptibility.

Candidate gene studies identified an increased risk of Cryptosporidium infection
associated with specific alleles in HLA class I and II genes and with single nucleotide
polymorphisms (SNPs) in the mannose binding lectin (MBL) gene (13–15). Bangladeshi
preschool children with multiple Cryptosporidium infections (�2 infections) were more
likely to carry the -221 MBL2 promoter variant (rs7906206; odds ratio [OR] � 4.02,
P � 0.025) and to have the YO/XA haplotype (OR � 4.91), as well as to be deficient in
their MBL serum levels (OR � 10.45) (14). Since the findings with respect to the MBL and
HLA alleles explained Cryptosporidium susceptibility only partially, we conducted a
genome-wide association study (GWAS) of cryptosporidiosis occurring in the first year
of life using three existing birth cohorts of children in Dhaka, Bangladesh: the Perfor-
mance of Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study,
the Dhaka Birth Cohort (DBC), and the Cryptosporidiosis Birth Cohort (CBC).

(This article was submitted to an online preprint archive [16].)

RESULTS

Across these three cohorts, there were a total of 183 children with at least one
symptomatic (diarrheal) sample that tested positive for Cryptosporidium within the first
year of life (“cases”) (Table 1). A total of 873 children did not test positive for
Cryptosporidium in either symptomatic (diarrheal) or surveillance samples within the
first year of life (“controls”). There were no significant differences in length-for-age
Z-score (LAZ) at birth (LAZbirth), the number of days exclusively breastfed, or sex
between cases and controls (P � 0.05). To control for a possible role of malnutrition
affecting susceptibility to infection, we compared the LAZ at 12 months of age (LAZ12)
between cases and controls. We observed increased levels of stunting in cases (lower
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LAZ12) versus controls within PROVIDE (P � 0.007) and CBC (P � 0.02), while no differ-
ences were observed in stunting between cases and controls in DBC (P � 0.97).
Additionally, there was no statistically significant evidence of heterogeneity in LAZ12,
number of days exclusively breastfed, or sex between the three studies (heterogeneity
P [Phet], �0.05).

GWAS of cryptosporidiosis within the first year of life. We tested the association
between 6.5 million SNPs across the human genome and symptomatic Cryptosporidium
infection in the first year of life. Effects were estimated separately for the three birth
cohorts and subsequently combined using a fixed-effects meta-analysis, filtered for
heterogeneity (Phet), minor allele frequency (MAF) (�5%), and imputation quality
(INFO; score, �0.6) (Fig. 1; see also Fig. S1 in the supplemental material). A total of 6
SNPs in an intron of PRKCA (protein kinase c, alpha) were significantly associated with
Cryptosporidium infection (P � 5 � 10�8) (Fig. 2A). For the SNP most highly associated
with Cryptosporidium infection (rs58296998), each copy of the risk allele (T) conferred
2.4 times the odds of cryptosporidiosis within the first year of life (P � 3.73 � 10�8). The
effect size and risk allele were consistent across all three studies (Phet value of 0.11)
(Fig. 2B). After conditioning performed on the basis of rs58296998 (by including this
SNP in the logistic regression model as a covariate), the evidence for association with
the remaining SNPs in the region was no longer statistically significant, suggesting that
the observed association in PRKCA is explained by a single SNP (rs58296998) or by one

TABLE 1 Demographics of study populations

Parameter

Value for:

Dhaka Birth Cohort (DBC) PROVIDE Cryptosporidiosis Birth Cohort (CBC)

Mean for
controls
(n � 267)

Mean for
cases
(n � 46) P

Mean for
controls
(n � 354)

Mean for
cases
(n � 60) P

Mean for
controls
(n � 252)

Mean for
cases
(n � 77) P Phet

LAZ at 12 mos �1.75 �1.74 0.97 �1.40 �1.79 7.28 � 10�3 �1.34 �1.63 0.02 0.12
Exclusive breast feeding

(no. of days)
130.2 114.6 0.16 127.2 112.1 0.06 110.9 103.7 0.42 0.74

Sex (% female subjects) 46.3 34.8 0.15 45.9 46.7 0.91 52.8 57.7 0.45 0.28

FIG 1 Manhattan plot for cryptosporidiosis within the first year of life. Each dot indicates the association of a single SNP with
cryptosporidiosis in the first year of life. SNPs are sorted by chromosome (each color) and position along the x axis. The y axis is the -log10
P value for the SNP association in the meta-analysis of study-specific logistic regressions adjusting for length-for-age Z-score at 12 months,
the first two study-specific principal components, and the genotyping batch for the Dhaka Birth Cohort (DBC). Genome-wide significance
(5 � 10�8) is denoted by the dashed line. This plot is limited to associations with a P value below 0.01.

Genetic Susceptibility to Cryptosporidiosis ®

January/February 2020 Volume 11 Issue 1 e03343-19 mbio.asm.org 3

https://mbio.asm.org


highly correlated with this SNP (Fig. S2A). Among the 26 children homozygous for the
risk allele (TT) at rs58296998, 46% developed symptomatic cryptosporidiosis during the
first year of life. This proportion decreased to 24% for children heterozygous (CT) for
this risk allele (n � 272), compared to 13% of children homozygous (CC) for the risk
allele (n � 745).

The rs58296998 T allele frequencies (15.0% to 16.7%) for all three cohorts in this
region are consistent with the Bangladeshi reference population (1000 Genomes phase
3) frequency of 18% and the overall South Asian frequency of 15% (17). Globally, the
highest frequencies of rs58296998 T allele are found in East Asian populations, with
the highest T allele frequency of 34% of the Chinese Dai in Xishuangbanna, China. The
rs58296998 T allele is at lower frequencies within Africa, at 9% within the Luhya in
Kenya, and is even less frequent in West Africa (3.5% to 5.5%) (Fig. 3).

Cases had their first diarrheal episode positive for Cryptosporidia at a mean of
242 days of age. We confirmed the GWAS results with respect to the dosage of
rs58296998 risk alleles significantly associated with time to first diarrheal sample
positive for Cryptosporidia among cases versus right-censored controls (up to the child’s
first birthday) (P � 6.37 � 10�8). All children homozygous for the risk allele (TT) had
their first episode in the first year of life (Fig. 2C). Among cases, however, there was no
statistically significant association between rs58296998 genotype and time to infection
(P � 0.095) (Fig. S2B). In PROVIDE, the rs58296998 genotype was associated with
severity of diarrhea as determined by the Ruuska score (P � 0.028) (Fig. S2C).

Suggestive SNP associations with Cryptosporidium (P � 10�6) were also identified on
chromosome 11 (chr11) and chr16. The strongest association on chromosome 11
(rs4758351) was found within an intergenic region of a cluster of olfactory receptor
genes. Each copy of the rs4758351 A allele (MAF of 14%) conferred 2.39 times the odds
of Cryptosporidium within the first year of life (P � 3.78 � 10�7) (Fig. S3A). Multiple SNPs
in this region of chr11 (position 6015194 to position 6024551) had similar magnitudes
and strengths of association with Cryptosporidium (OR, 2.13 to 2.39). The strongest
association on chromosome 16 was with the rs9937140 SNP, located upstream of
apolipoprotein O pseudogene 5 (APOOP5). Each copy of the rs9937140 G allele (MAF,
23%) conferred 1.99 times the odds of cryptosporidiosis (P � 7.75 � 10�7) (Fig. S3B).

FIG 2 Association between variants in PRKCA and cryptosporidiosis. (A) Regional association on chromosome 17 between variants in PRKCA and cryptospo-
ridiosis. Fill denotes linkage disequilibrium (r2) between the top SNP (rs58296998) and surrounding SNPs. cM/Mb, centimorgan/megabase. (B) Forest plot of
odds ratios and 95% confidence intervals for top signal rs58296998 by individual cohort and meta-analysis. Crypto Birth Cohort, Cryptosporidiosis Birth Cohort.
(C) Survival analysis of first episode of cryptosporidium-associated diarrhea among all participants by rs58296998 genotype within the first year of life.
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Expression and PrediXcan. We used a publicly available resource, the Genotype-
Tissue Expression (GTEx) Project, to estimate the influence of human genetic variation
on human gene expression in multiple tissues (18, 19). The associated rs58296998 SNP,
located in the PRKCA gene, is also associated with PRKCA expression. This expression
quantitative trait locus (eQTL), or a genetic variant previously shown to influence the
expression of a gene, showed decreasing expression of PRKCA with each T allele in the
esophageal muscularis (P � 3.12 � 10�5), the sigmoid colon (P � 4.61 � 10�4), and
the esophageal mucosa (P � 7.50 � 10�4) (19). These expression data, coupled with the
GWAS result, suggested that decreased expression of PRKCA is correlated with in-
creased risk of symptomatic Cryptosporidium infection within the first year of life.

Additional genome-wide expression and gene set analyses. In the absence of
direct gene expression measurement, we relied on previously estimated tissue-specific
associations between genome-wide SNPs and gene expression, which quantify the
genetic component of gene expression. We estimated predicted patterns of genome-
wide differential gene expression between cases and controls by weighting the sum-
mary statistics from our GWAS of cryptosporidiosis in the first year of life by the use of
tissue-specific PredictDB weights. These SNP-level estimates were then combined for
each gene to infer association between imputed gene expression and cryptosporidiosis
(20, 21). No association of predicted gene expression with cryptosporidiosis reached
statistical significance. A total of 13 genes showed a nominally significant (P � 0.001)
association in more than one tissue-specific model (see Table S1 in the supplemental
material; see also Fig. S4). Variants in the gene OTUD3 (OTU deubiquitinase 3) (chr1;
position 20208356 to position 20239438) were associated with cryptosporidiosis in 18
different tissue-specific models (P � 0.001). In all tissue-specific models, individuals with
predicted increased expression of OTUD3 had an increased risk of cryptosporidiosis
within the first year of life (OR, 1.68 to 6.63; P � 8.46 � 10�5 to 8.97 � 10�4) (Fig. 4).

We also performed gene set enrichment analysis using MSigDB hallmark gene sets
(n � 50), KEGG (n � 186) and BioCarta (n � 217) by combining gene-level summary
statistics to examine aggregate signals within biological pathways. No pathways
reached statistical significance after adjusting for multiple comparisons; however, data
from several gene sets were suggestive (Table S2). The two top-ranked gene sets are
among the hedgehog signaling pathways, namely, the hallmark hedgehog signaling
pathway (empirical P value [Pemp] � 5.04 � 104) (Bayes factor [BF] � 515.65) and KEGG
hedgehog signaling pathway (Pemp � 1.47 � 10�3) (BF � 235.59).

FIG 3 Allele frequencies for allele T at top signal rs58296998 as determined by analysis of 1000 Genomes phase 3 data, as well as by analysis of case/control
status in the three cohorts combined. Each pie chart on the map shows the frequency of the T allele with the black wedge. The remainder of each pie chart
is colored in accordance with that T allele frequency. The inset provides the T allele frequency for children without any symptomatic cryptosporidiosis in the
first year of life (controls; MAF � 13.6%) and for those with at least one diarrheal episode (cases; MAF � 25.0%).
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DISCUSSION

Here, we present the results of the first genome-wide association study of symp-
tomatic Cryptosporidium infection. Specifically, we tested the role of host genetics in
susceptibility to Cryptosporidium infection associated with diarrhea within the first year
of life. A region on chromosome 17 was identified, with each additional T allele of
rs58296998, an intronic SNP in PRKCA, conferring 2.4 times the odds of cryptosporidi-
osis within the first year of life. Additionally, this SNP was previously identified as an
eQTL of PRKCA, with decreased expression of PRKCA associated with the T allele. This
suggests that this SNP may influence Cryptosporidium infection through decreased
expression of PRKCA.

The protein kinase C alpha gene (PRKCA) is an isotype of the protein kinase C (PKC)
family, whose members are serine and threonine specific and are known to be involved
in diverse cellular signaling pathways. Specifically, PKCs have numerous roles in the
development and function of the gastrointestinal tract (22) and in the immune re-
sponse (23). This relationship was confirmed with knockout experiments, where PKC�

was shown to be a positive regulator of Th17 cell effector functions. PKC�-deficient
[Prkca(�/�)] cells failed to produce the appropriate levels of interleukin-17A (IL-17A) in
vitro (23). An analysis of Cryptosporidium parvum-infected mice demonstrated the
importance of the Th17 response to infection, showing increased levels of IL-17 mRNA
and Th17 cell-related cytokines in gut tissue after infection (24). Additionally, both
pharmacological inhibition and genetic PKC� inhibition have been shown to prevent
NHE3 internalization, Na� malabsorption, and tumor necrosis factor (TNF)-mediated
diarrhea, despite continued barrier dysfunction (25), supporting the idea of a role for
PRKCA in symptomatic cryptosporidiosis. This link between PRKCA and Th17 may be
critical to gut infections and, specifically, to infection of Cryptosporidium in the devel-
oping infant gut. We identified a SNP that was associated with decreased expression of
PRKCA and thus was less able to mediate the IL-17 immune response during Crypto-
sporidium infection. PRKCA has also been shown to be associated with numerous other
infections, including infections by Staphylococcus aureus (26); with progression of sepsis
(27) and toxoplasmosis (28); with Burkholderia cenocepacia infections in cystic fibrosis
patients (29); and with hepatitis E virus replication (30).

As an obligate intracellular parasite, Cryptosporidium relies on host cells to complete
its life cycle in the human host; thus, it is also plausible that PRKCA directly mediates
susceptibility via impacts on parasite invasion. Sporozoites invade brush border intes-
tinal epithelial cells by inducing volume increases (31) and cytoskeletal remodeling at

FIG 4 OTUD3 region showing association with cryptosporidiosis in the first year of life. (A) Association of SNPs on chromosome 1 region, colored by linkage
disequilibrium (r2) with index SNP (black diamond). (B) Association of case status with imputed gene expression in all tissues with P value of �0.001 and
predicted expression performance of r2 � �0.1.
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the site of host cell attachment (32), leading to engulfment via host membrane
protrusions. Studies have shown that inhibition of host factors, including actin remod-
eling proteins and PKC enzymes, is sufficient to inhibit sporozoite invasion in vitro (32).
Interestingly, PKC� has been shown to play an important role in Escherichia coli
pathogenesis (33). Like Cryptosporidium, E. coli induces host actin condensation at the
site of host cell invasion, and immunocytochemical studies indicate that activated PKC�

colocalized with actin condensation at the bacterial entry site (34).
While our top SNP within PRKCA has previously been shown to influence the

expression of PRKCA in GTEx, our imputed gene expression analysis using PrediXcan did
not reveal a significant difference in predicted levels of PRKCA expression between
cases and controls. This was likely due to the difference between a single SNP being
examined in GTEx and the combined effects of multiple eQTLs estimated from a
European descent reference population in PrediXcan. A major limitation of predicted
gene expression analyses is the lack of population specificity for non-European groups
(35). The PrediXcan models were derived from individuals of European descent, as were
the covariance structures used to infer correlations between eQTLs. We saw a direct
relationship between population differences in allele frequencies for the weighted SNPs
and impaired performance. Specifically, we observed the lowest predictive perfor-
mance in tissues for which the informative SNPs had large differences in allele frequen-
cies between European and South Asian populations in the 1000 Genomes Project
phase 3 data (17) (see Fig. S5 in the supplemental material). These included two tissues,
namely, esophageal mucosa and the colon sigmoid tissue, in which rs58296998 was
identified as an eQTL for PRKCA. These trends highlight the importance of reference
populations representative of global populations to ensure that tools are useful in
non-European populations, such as ours. We also identified an association of increased
expression of OTUD3 with increased odds of cryptosporidiosis within the first year of
life. This gene is associated with ulcerative colitis (36–42) and inflammatory bowel
disease (43, 44). This finding is consistent with the hypothesis of a pathway shared
between enteric infection and autoimmune intestinal disease, as indicated in a previous
genetic analysis of Entamoeba histolytica infection in the same study population (45).

Collapsing the predicted patterns of differentially expressed genes into gene sets,
we found enrichment in the hedgehog signaling pathway. A previous study examined
the gene expression profiles of long noncoding RNA (lncRNA) and mRNA in HCT-8 cells
infected with C. parvum subtype IId (46). Of note, PRKCA was the most significantly
differentially expressed gene in infected HCT8 cells 24 h postinfection (2.24-fold de-
creased expression in infected cells; P � 3.82 � 10�5). Pathway analysis of the differ-
entially expressed mRNAs found that genes in the hedgehog signaling pathway were
significantly enriched during Cryptosporidium infection. This finding, in combination
with our identification of hedgehog signaling in imputed gene expression profiles, is
suggestive of a potential link between decreased PRKCA expression and hedgehog
signaling; however, further research to confirm these findings and to elucidate the role
of PRKCA genetic variation in gene expression and hedgehog pathway perturbation is
needed.

A potential limitation of our study was that, due to the use of sensitive molecular
diagnostics, multiple enteropathogens were frequently detected in each diarrheal
sample. However, we did not detect the same genetic signatures as that seen in our
previous study of Entamoeba histolytica in this same study population for Cryptospo-
ridium (45). Further, coinfection with multiple pathogens would dilute the statistical
signal for any one pathogen, and yet we found a statistically significant result for
Cryptosporidium. Therefore, we are confident that our results are specific to cryptospo-
ridiosis, despite cooccurrence with other enteric pathogens.

Through a GWAS meta-analysis of three separate birth cohorts, we identified a
region in PRKCA on chromosome 17 as being associated with increased risk of symp-
tomatic cryptosporidiosis in the first year of life among Bangladeshi infants. This gene
has previously been implicated in other infectious outcomes, indicating pleiotropy with
the immune system’s reaction to numerous pathogens. Publicly available data support
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a link between our top SNP and expression of PRKCA, suggesting a mechanism
operating via Th17 inflammatory control. Clinical trials are currently proposed for PKC
isotypes, including PKC-alpha, for treatment of autoimmune disease (47). These treat-
ments may also be important for cryptosporidiosis, which lacks treatment for young
children, due to an underlying shared pathway identified in this study. Identifying host
genetic variations associated with cryptosporidiosis, such as those in PRKCA, can help
us identify viable drug targets to improve treatment and prevention of this major cause
of morbidity and mortality. Further research is needed to elucidate the mechanism
underlying this relationship and to better understand the complex interplay of genetic
susceptibility and environmental influences in the development of intestinal disease.

MATERIALS AND METHODS
Study protocol. The study protocol was approved by the Research and Ethical Review Committee

of the International Center for Diarrheal Disease Research, Bangladesh, and by the Institutional Review
Board of the University of Virginia and the Institutional Review Board of the Johns Hopkins Bloomberg
School of Public Health. The parents or guardians of all individuals provided informed consent.

Dhaka Birth Cohort study design. Designed to study the influence of malnutrition in child
development, the Dhaka Birth Cohort (DBC) is a subset of a larger birth cohort recruited from the urban
slum in the Mirpur Thana in Dhaka, Bangladesh. Children were enrolled within the first week after birth
and followed up biweekly with household visits by trained field research assistants (FRAs) for the first
year of life. Anthropometric measurements were collected at the time of enrollment and every 3 months
thereafter. Length-for-age adjusted Z-scores (LAZ) were calculated by comparing the lengths and
weights of study subjects with those of the World Health Organization (WHO) reference population,
adjusting for age and sex, using WHO Anthro software, version 3.0.1. Field research assistants (FRAs)
collected diarrheal stool samples from the home or study field clinic every time that the mother of the
child reported diarrhea. To maintain a cold chain, the samples were transported to the Centre for
Diarrheal Disease Research, Bangladesh (ICDDR,B) parasitology laboratory. The presence of Cryptospo-
ridium was determined using enzyme-linked immunosorbent assay (ELISA). More details can be found in
previously published reports by Steiner et al. (4) and Korpe et al. (9). We used a nested case-control
design, where children with at least one diarrheal sample positive for Cryptosporidium within the first year
were defined as “cases.” Children with diarrheal samples that were not positive for Cryptosporidium were
defined as “controls.”

PROVIDE study design. The “Performance of Rotavirus and Oral Polio Vaccines in Developing
Countries” (PROVIDE) Study consists of a randomized controlled clinical trial and birth cohort from the
same urban slum in the Mirpur Thana in Dhaka, Bangladesh, as the DBC and Cryprosporidiosis Birth
Cohort (CBC) (see below). PROVIDE was specifically designed to assess the influence of various factors on
oral vaccine efficacy among children in areas with high poverty, urban overcrowding, and poor
sanitation. The 2-by-2 factorial design looked specifically at the efficacy of the 2-dose Rotarix oral
rotavirus vaccine and oral polio vaccine (OPV) with an inactivated polio vaccine (IPV) boost over the first
2 years of life. All participants were from the Mirpur area of Dhaka, Bangladesh, with pregnant mothers
recruited from the community by female Bangladeshi FRAs. Each participant had 15 scheduled follow-up
clinic visits, as well as biweekly diarrhea surveillance through home visits by FRAs. The presence of
Cryptosporidium in diarrheal samples was determined by ELISA. Consistently with the DBC phenotype
definition, cases had at least one diarrheal sample positive for Cryptosporidium within the first year of life.
Controls had at least one diarrheal sample available for testing, but none were positive for Cryptospo-
ridium. Severity of diarrhea was determined with the Ruuska score, which assesses severity as a function
of diarrhea length, clinical symptoms, and other clinical features (48).

Cryptosporidiosis Birth Cohort study design. The Cryptosporidiosis Birth Cohort (“Cryptosporidi-
osis and Enteropathogens in Bangladesh”; ClinicalTrials.gov registration no. NCT02764918) is a prospec-
tive longitudinal birth cohort study in two sites in Bangladesh. The first site is in an urban, economically
depressed neighborhood of Mirpur, and the second is in Mirzapur, a rural subdistrict 60 km northwest of
Dhaka. The two birth cohorts were established in parallel, with the objective of understanding the
incidence of cryptosporidiosis, the acquired immune response, and host genetic susceptibility to
cryptosporidiosis in Bangladeshi children. Pregnant women were recruited and screened, and infants
were enrolled at birth. Participants were followed twice-weekly with in-home visits to monitor for child
morbidity and diarrhea for 24 months. Infant length and weight were measured every 3 months, and
weight-for-age and length-for-age adjusted Z-scores were determined using World Health Organization
Anthro software (version 3.2.2). Stool samples were collected during diarrheal illness and once per month
for surveillance. Stool was tested for Cryptosporidium by quantitative PCR (qPCR) assay modified from a
method reported previously by Liu et al. (49). A cycle threshold value of 40 was used. The pan-
Cryptosporidium primers and probes target the 18S gene in multiple species known to infect humans (4).

Genotype data. DNA for all three cohorts was extracted from blood samples collected in the first few
months of follow-up. The Dhaka Birth Cohort (DBC) and PROVIDE Study data were generated and
cleaned as described previously (45). A summary of quality control (QC) procedures is provided in Fig. S1
in the supplemental material. Briefly, a total of 396 children in the DBC were genotyped on three different
Illumina arrays. Imputation to 1000Genomes phase 3 data was performed for all individuals. After
postimputation QC, which included additional filtering for relatedness and for poorly imputed variants,
a total of 396 individuals and 10.2 million SNPs were included in the DBC data freeze. For PROVIDE, a total
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of 541 individuals were genotyped on a Multi-Ethnic Genotyping Array (MEGA) (Illumina). After standard
quality control measures (including the use of minor allele frequency values of �0.5% and missingness
values of �5%) were applied and first-degree-related individuals removed, a total of 499 individuals
remained. After imputation to 1000Genomes and subsequent postimputation QC, a total of 499
individuals and 10.8 million genetic variants remained. For CBC, a total of 630 individuals were
genotyped on a Multi-Ethnic Global Array (MEGA) (Illumina). One individual was removed for first-degree
relatedness (PI_HAT � 0.2), 31 individuals were removed as PCA outliers, and 3 individuals were removed
for heterozygosity. No individuals or SNPs were removed for missingness (�5%). Additional SNP-level
filters included the use of minor allele frequency (MAF) values of �0.5% (M � 751,869) and Hardy-
Weinberg equilibrium P values of �10�5 (M � 85). After all QC steps, CryptoCohort genotype data
included 594 individuals and 826,228 SNPs. Phasing in of SHAPEIT2 (50) was followed by imputation to
1000 Genomes phase 3 data (1000Genomes) (17) performed with IMPUTE2 (51, 52). All three studies were
separately imputed to 1000Genomes.

Cross-study genetic data harmonization. After imputation, all three data sets (DBC, PROVIDE, and
CBC) were double-checked for relatedness (both within each study and between studies) to ensure
independence. One individual from each pair of related individuals was dropped in a manner consistent
with the first or second degree of relatedness (PI_HAT � 0.2). Individual outliers for heterozygosity (F �
�5 standard deviations from the mean) were also excluded from further analysis. A total of 85 individuals
were dropped from DBC, 9 from PROVIDE, and 34 from CBC. Only the top principal component from the
combined data set was found to be significantly associated with outcome (Fig. S6).

Statistical analysis. All three studies (DBC, PROVIDE, and CBC) were analyzed separately using
logistic regression with an additive model accounting for imputed genotype weights in SNPTEST (51, 53,
54). All three analyses were adjusted for length-for-age Z-score (LAZ) at 1 year of age, for sex, and for the
first two principal components. The Dhaka Birth Cohort was additionally conditioned on the genotyping
array to account for batch effects. We combined the three analyses in a fixed-effects meta-analysis within
META. Results were filtered for Phet values of �0.05, minor allele frequency (MAF) of �5%, and INFO score
of �0.6 in all three studies, resulting in 6,504,706 SNPs. The conditional analyses were run separately by
cohort for the PRKCA region, with each analysis being conditioned on rs58296998 in addition to the
original covariates with SNPTEST. Results were again filtered for heterogeneity or Phet values of �0.05,
MAF of �5%, and INFO score of �0.6 in all three studies.

Allele frequencies. The allele frequencies were derived from the 1000 Genomes Project phase 3
data, v5a (17). Individuals were stratified by their denoted population with first degree related individuals
removed.

GTEx and eQTL overlap GWAS results. Expression quantitative trait loci (eQTLs) were identified
through the use of the GTEx Portal (https://www.gtexportal.org/home/) on 6 August 2018 (19). The top
SNP was identified as an eQTL for PRKCA with P values of �0.001 for multiple tissues. PrediXcan
measured gene expression in 48 tissues and subsequently mapped genetic variation across the human
genome to tissue-specific gene expression levels. Therefore, eQTLs are identified in a tissue-specific
manner and annotated as such on the GTEx Portal.

MetaXcan imputation and association analysis. To impute gene expression and association with
outcome from our GWAS summary statistics, we applied MetaXcan (S-PrediXcan and packaged best
practices) (21). Weights were previously derived with GTEx v7 data in a population of subjects of
European descent, with accompanying European-descent linkage disequilibrium metrics for the SNP
covariance matrices (PredictDB Data Respository; http://predictdb.org/). MetaXcan was used instead of
the original PrediXcan to ensure consistency in models with our GWAS. All 48 tissues were run separately
for the meta-analysis results previously described. Following imputation and estimation of gene expres-
sion with outcome, we calculated weights for each gene-tissue pair as the ratio between the number of
SNPs used in the model and the total number that were prespecified in the model multiplied by
predicted expression performance. To determine associations across many tissues, a P value threshold of
0.001 was utilized. A strict Bonferroni correction performed for the 242,686 comparisons resulted in a P
value threshold of 0.05/242,686 � 2.06 � 10�7, according to which no comparison yielded a statistically
significant result. The relationships of allele frequencies in European and South Asian populations with
PrediXcan weights were examined to assess prediction capacity (Fig. S5 and S7).

Gene set enrichment analysis. Gene set enrichment analysis was conducted on the described
previously imputed gene expression data summary statistics from MetaXcan. For each gene, we selected
the tissue corresponding to the smallest P value. Using the program GIGSEA (Genotype Imputed Gene
Set Enrichment Analysis [55]), we tested for associations of 453 curated gene sets defined by MSigDB
hallmark gene sets (56), as well as KEGG (Kyoto Encyclopedia of Genes and Genomes; https://www.kegg
.jp) and BioCarta (57) gene sets (58). To account for redundancy with overlapping gene sets, we utilized
the weighted multiple linear regression model, using the matrix operation to increase speed, with a total
of 1,000 permutations. A false-discovery rate of 0.05 was calculated on the ranked results.

Data availability. Data are publicly available from the NIH, via dbGAP, phs001478.v1.p1 (Exploration
of the Biologic Basis for Underperformance of Oral Polio and Rotavirus Vaccines in Bangladesh), or by
request from us. All analysis programs used are detailed above, but the actual code in R for each analysis
is also available by request from us.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 2.8 MB.
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