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Abstract

Viscoplastic fluids are a class of non-Newtonian liquids characterised by their yield stress.
Unless an external stress is applied which is larger than this threshold value, the fluid
does not flow, but exhibits rigid body behaviour. Above the yield stress, applied forces
cause viscous deformation. Such fluids play important roles in a range of fields, notably
in wellbore drilling, which is the application that motivated this project. One aspect of
this operation requires displacement of drilling fluid by cement in the annulus between
casing and geological surroundings, and both of these fluids are viscoplastics. Ensuring
that this is done properly is of utmost importance to the overall safety of the drilling
operation. Often, numerical simulations are the only viable way of experimenting with
the effect of drilling parameters and fluid properties on the flow configuration and
resulting behaviour. Unfortunately, the presence of a yield stress leads to a singularity
in the apparent viscosity at zero strain. This causes substantial computational expense
for the algorithms used to simulate fluid flow numerically, even when regularisation
techniques are employed to alleviate the problem. Consequently, most published results
in the literature on computational viscoplasticity has been restricted to two-dimensional
and steady-state flows. In an attempt to address this, we have applied state-of-the-art
techniques from high-performance computational fluid dynamics to the viscoplastic
flow problem. Specifically, we utilise spatio-temporal adaptive mesh refinement on
structured meshes in this context for the first time. This is achieved through the
software framework AMReX, which includes state-of-the-art numerical tools for solving
partial differential equations with optimal parallel scaling. The ability to rapidly
simulate unsteady viscoplastic flow problems in three dimensions is demonstrated by
novel numerical experiments in a lid-driven cavity. In order to investigate flows in more
interesting domain geometries and around objects, an embedded boundary algorithm
has been developed which works alongside the viscoplastic flow solver. We show how
this methodology can be utilised to simulate flow inside non-rectangular objects, and
investigate fully three-dimensional viscoplastic flow past several shapes of bodies for
the first time.
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Chapter 1

Introduction

This dissertation constitutes a summary of the work undertaken as part of my
Ph.D. project throughout the last three years. As such, it is a relatively multifaceted
piece of work, which is to be expected when a single document is required to capture
the final state of what has been a continuous evolution. We will therefore start by
taking a look at the original motivation for the project, so that the work presented in
subsequent chapters fits in with an underlying narrative. Additionally, this will explain
how our work towards a versatile software tool could be broken down into manageable
pieces with clear milestones along the way. We will then go on to explain the novelties
in our work, and list the peer-reviewed publications these findings have led to. Finally,
we will give a brief overview of the contents in the remainder of the dissertation.

1.1 Motivation: cement displacement in wellbores

This Ph.D. project has been a collaboration with BP-ICAM, and its purpose was to
make significant progress towards the development of a Computational Fluid Dynamics
(CFD) tool to accurately simulate a range of fluid displacements for a cement job in
real wellbore conditions. Cementing is an essential operation when drilling a well,
and as such it is vital that our understanding of the underlying physical processes is
strong. The resulting CFD tool should take into account rheology, flow rates, detailed
wellbore and casing geometries, pipe movement, pressure and temperature. In addition
to presenting a literature review which describes the problem from an engineering
point of view, this section focuses on how much has already been achieved in published
literature, and identifying which improvements can be made on existing endeavours.
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This research originates in the importance of cementing operations when drilling
production and injector wells. Failure to complete these jobs properly can potentially
result in safety being compromised. Two of the processes which must be conducted in
an optimal manner during cementing are mud conditioning, which requires treatment
of the drilling fluid while it is being circulated in the system; and cement displacement,
where the drilling fluid in the annular gap is replaced by cement. In order for on-site
personnel responsible for these operations to make informed decisions, simulations can
be performed in order to gain insight into the physical processes taking place and the
resulting flow patterns downhole.

An engineering perspective

Wells in the oil and gas industry play the vital role of a safe pathway along which
hydrocarbons can be extracted from the porous rock reservoir to the surface. In the
construction of such wells, cementing is of paramount importance. The overall goal
of the cementing operation is zonal isolation, i.e. separating distinguished permeable
zones [1–3]. At the beginning of the cementing process, a drill bit has removed rock from
a cylindrical hole in the Earth’s crust. In order to avoid that the well collapses while
this process is taking place, drilling mud is simultaneously pumped into the wellbore
through the drill bit. Subsequently, the drill bit is removed and a casing is run. While
the casing is being placed, the mud has time to gel, i.e. stop flowing. As a consequence
of this, the mud must be circulated, analysed and altered until it achieves a set of
stable, desirable properties. Mud fills up the interior of the casing, but also the annular
gap between the casing and the borehole wall. The borehole wall separates the mud
and the surrounding geological formation. At this point, the well is ready for cement to
be pumped into the casing. Cement is injected from ground level, and travels downhole
until it reaches the casing shoe. The cement then makes its way back upwards in the
outer annulus. It is crucial that while doing so, all the mud initially in the annulus is
displaced. In an unsuccessful displacement job, the cement can channel up the annulus
while leaving gaps of mud still present. Additional benefits of using cement in these
operations are protection from casing corrosion and sealing of loss zones.

A number of factors affect the success of the cementing operation. In order to
achieve an optimal scenario, it is first of all desirable that the casing in the borehole is as
centred as possible. In the ideal case it is concentric, but in practice this is unachievable,
and the eccentricity varies with depth. In engineering papers, the eccentricity is defined
by the percentage standoff χ, defined as [1;3;4]
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χ = d

rh − rp
· 100%. (1.1)

Here, d is the width of the smallest gap between borehole and pipe casing, while rh and
rp are the radii of the hole and pipe, respectively (see Figure 1.1). Casing centralizers
are used to keep the pipe as centred as possible [2;3]. Note that in reality, the borehole
cross-section is not generally circular.

L

(a) Variable eccentricity

rp

rh

d

(b) Cross-section

Figure 1.1: Geometry of the borehole in a cementing problem with variable eccentricity.
If the standoff is less than unity, the flow regime quickly becomes lopsided, leading to
an uneven distribution of cement. In the cross-sectional view, the standoff is 50% and
rp = 0.7rh.

It is essential that the cement slurry is kept separated from the mud at all times,
to avoid undesirable interactions between the two. To this end, plugs are sent ahead of
and after the cement when travelling through the casing [2;4]. To avoid mixing in the
annulus, a layer of so-called spacer fluids and flushes separates the cement and mud [1;2].
Spacers also enhance the removal of solidified mud. Since drilling fluids belong to a
class of non-Newtonian fluids with yield stress, leaving them in a static state causes
the material to lapse into a gelled structure. In order for flow to become possible again,
a yield criterion must be overcome [2;4].

Gelled mud can be further minimised by rotation and reciprocation of the casing,
although this is not always possible. The movement is beneficial because it prevents the
drilling fluid to settle, and the azimuthal flow due to casing rotation also helps avoid



4 Introduction

channelling in the annulus. Cement displacement normally takes place in the laminar
flow regime for both mud and cement, in order to ensure a flat interface between the
displaced and out of reach regions [1;4]. The flushes, however, are most often aqueous
Newtonian fluids in the turbulent region, since this yields most efficient hole cleaning.
Illustrations of the important considerations for wellbore drilling are shown in Figure
1.2.

Figure 1.2: Left: Casing eccentricity leads to incomplete cementing jobs, so zonal
isolation is not achieved. Middle: Spacers and flushes treat the drilling fluid and keep
it separated from the incoming cement. Right: Movement of the casing distributes
fluids evenly and helps overcome the yield criterion of the mud. Image courtesy of
Crook, Benge, Faul and Jones [2].
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Fluid properties and flow regime

There are primarily four important fluids involved in the mud displacement process: the
drilling mud (or drilling fluid), which is a conditioned mixture of mud, water, oil, and
cutting bits; the spacer, which separates the cement and mud and avoids undesirable
interactions; the lead cement, which is pumped downhole first; and the tail cement,
which completes the cementing operation, and which has a slightly higher density.
Typical fluid properties used in industry are shown in Figure 1.3. Fluid rheology will
be discussed at some depth in section 2.2, but we will point out a couple of noteworthy
properties straight away. A corresponding rheological curve for a Newtonian fluid would
be linear and intercept the origin. The cementing fluids deviate from this behaviour
in two manners. Firstly, the curves intercept the secondary axis at a positive stress.
The existence of such a yield stress is characteristic of viscoplastics, also known as
yield-stress fluids. We shall be discussing these at some length, but also refer to a
recent article which gives an excellent overview of their importance in the oil and gas
industry [5]. Secondly, the relationship between stress and strain rate is highly nonlinear
for stresses higher than the yield stress, hinting at so-called shear-thinning behaviour.
Both of these properties are important to capture in our fluid models.

In addition to the rheology and characteristic fluid properties, it is important
to have an idea about which flow regime the problem occurs in. As such, we seek
approximate values of the Mach number (ratio of flow velocity to speed of sound),
Reynolds number (ratio of inertial to viscous forces) and Bingham number (ratio of
yield stress to viscous stress). The problem parameters used by important contributors
to the literature are given in Table 1.1. Since we want to approximate the above
dimensionless numbers using a single set of fluid properties, we take the average of
displaced and displacing fluids for the dynamic viscosity, density and yield stress. The
cross-sectional area of the annulus between the borehole and casing equals π times
the difference between radii squared, so that with the given pump rate the average
velocity through the pipe would be approximately 0.446 m/s and 0.159 m/s for the
case of Savery et al. [6] and Enayatpour et al. [7], respectively. With the speeds of sound
assumed to be at least hundreds of meters per second in these materials, it is safe to
assume a flow with Mach number near zero (low-speed flow). Taking the difference
between borehole and casing radii as the characteristic length, the Reynold’s numbers
for the two cases are approximately 593 and 18, respectively. These numbers are both
well within the laminar flow regime, although the difference is quite large. According
to the paper by Taghavi et al., relevant Reynold’s numbers range between 200 and
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Figure 1.3: Relationship between stress and rate-of-strain for fluids present during
cementing operations. The fluids depicted are drilling mud (top left), spacer (top
right), lead cement (bottom left), and tail cement (bottom right).

1400 [8]. We can compute approximate values of the Bingham number by noticing that
the yield stress for the fluids in figure 1.3 is around 5-10 Pa. With the other parameters
as discussed, this gives Bingham numbers of the order 10.

Current state of the art

Due to the importance of this system in drilling operations, a lot of effort has already
been put forward to understand it. Theoretical advancements and experimental results
have provided much insight, and in the last couple of decades computational approaches
have received an increasing amount of attention. Early displacement models were
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Table 1.1: Parameters used in previous articles on cement displacement simulators.

Variable Savery et al. [6] Enayatpour et al. [7]
Borehole diameter (m) 0.165 0.419
Casing diameter (m) 0.114 0.346
Pump rate (m3/s) 0.005 0.007
Dynamic viscosity displaced fluid (Pa s) 0.02 0.60
Dynamic viscosity displacing fluid (Pa s) 0.03 0.55
Density displaced fluid (kg/m3) 1198 1850
Density displacing fluid (kg/m3) 1402 1800
Yield stress displaced fluid (Pa) – 1.2
Yield stress displacing fluid (Pa) – 1.4

all rule-based engineering approaches or based on reduced fluid models such as the
Hele-Shaw cell [9–12].

The first comprehensive simulation of non-Newtonian flow through eccentric annuli
was performed by Escudier, Oliveira and Pinho in 2002 [13]. In this study, the incom-
pressible Cauchy momentum equations were solved for a single fluid in cylindrical
coordinates. The computational domain consisted of a two-dimensional collocated grid
which represented a cross-section of the eccentric annulus, and no-slip boundary condi-
tions were imposed. The inner wall (casing) was allowed to rotate. By considering the
steady-state case, the authors were able to solve the equations by the SIMPLEC algo-
rithm [14]. Several rheological equations for apparent viscosity were tested to model the
non-Newtonian flow, among them those of power-law and regularised Herschel-Bulkley
fluids [4].

Another milestone for mud displacement simulations in eccentric annuli was achieved
when Savery, Darbe and Chin presented their methods for interface modelling in mud
displacement simulations [6]. Unlike Escudier et al., they solved the governing equations
equations in three dimensions, and allowed for both reciprocation and rotation of
the casing wall. More important, however, was the inclusion of displacement of one
fluid by another in the flow. By including a concentration function which described
the relative amount of each of the two fluids, the apparent viscosity was included
as an experimentally determined function of the fluid composition. Simplifications
made in order to solve the system of equations include ignoring the radial momentum
conservation and deeming the azimuthal pressure gradient negligible when compared
to the drag force from casing rotation. The applicability of that code to prediction of
residual cement was demonstrated in 2013 by Edwards et al. [15].
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Very recent developments have also been made in the field of cement displacement
simulators, most notably the works by Enayatpour and Oort [7] and Tardy et al. [16]. The
former constitutes the most advanced simulator to date in terms of CFD capabilities.
It solves the full incompressible Cauchy momentum equations in 3D for Herschel-
Bulkley fluids. By tracking the interfaces between cementing fluids, a multiphase flow
which models mud, spacer and cement is demonstrated. Tardy et al., on the other
hand, demonstrate a solver with highly realistic wellbore geometries in deviated and
horizontal wells. The simulation workflow consists of several distinct steps which are
coupled to each other. First, a hydraulics simulation coupled with temperature is run.
Subsequently, the centralisation of the string to be cemented is determined, before
finally the results of these are fed as input into two displacement simulators (one for the
interior of the casing; one for the annular gap on the exterior). The CFD solvers used
in the last step are simplified by considering only 2D azimuthal axial formulations of
the Navier-Stokes equations, and the mean values of velocity components are computed.
According to the authors, this leads to only small inaccuracies, while reducing the
computational runtime.

Oil and gas companies are becoming increasingly aware of the importance of
computing accurate flow fields downhole during cement operations, but there is a
gap between the needs of the industry and the current state of the art of cement
displacement simulators. A need exists to develop new tools in order to reflect the
complexity increase of the wells being drilled, and the intricate hardware deployed.
Often the only option available is to use oversimplified models which are not accurate
or precise enough to be applied in challenging well conditions, such as high pressure,
high temperature, extended reach wells and wells with tight casing tolerances. More
detailed simulations can be performed by commercial software, but, as a rule, they
offer a generic platform for all kinds of flow which is not sufficiently tailored to the
operational requirements of cementing and the timescales to perform usable simulations
are far too long to meet operational time constraints.

In summary, current approaches to modelling primary cementing processes are
rule-based systems, reduced models and CFD software. Every approach has its own
advantages and limitations, and taking these into account, each has its own useful
place in design and operations. For example, rule-based approaches aid the engineering
design process, but given that they are phenomenological and usually rely on hydraulic
analogy systems, they cannot provide a complete quantitative description of the process.
The Hele-Shaw displacement model approach goes a long way to rectify such issues, but
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it is valid only when the fine-scale features of the displacement (close to the interface
between the fluids) do not affect the bulk flow [10]. CFD software (given an appropriate
underlying mathematical formulation) can provide more complete physical description
of the problem, but it is not currently feasible to capture in detail the flow along
the entire length of a borehole. Even for more limited studies, to run such models
requires long computational time which is detrimental to applications on a regular
basis. However, the considerable potential within this approach due to the continuing
advancement of high-performance numerics and supercomputer architectures led us
to base the project on pursuing it further. By working towards contributions which
facilitate the simulation of yield stress fluids using contemporary high-performance
computing, our efforts can aid the transition towards the next generation of cement
simulations.

1.2 Novelty

Based on the aforementioned shortcomings, our goal has been to develop a software
package which can capture rich fluid dynamics through efficient and massively scalable
simulations of viscoplastic fluids. We wanted the ability to evolve time-dependent
systems in three spatial dimensions, with the use of spatio-temporal adaptive mesh
refinement in order to deal with the disparate length and time scales associated with the
problem. Furthermore, we should be able to capture immiscible fluid-fluid displacement,
in addition to flow in domains and around objects with non-trivial geometric features.
Additional desirable features included variable-density flows, temperature dependency,
and moving boundaries. In order to break down the goal into manageable chunks
of work, we set ourselves intermediate goals which would be significant enough to
warrant peer-reviewed publication, and try to achieve one of these at a time. This also
meant that we automatically ensured that our work contributed to ongoing research in
the academic field of computational fluid dynamics. We will presently list our novel
contributions to the literature, but all the following will naturally be elaborated on
throughout the remainder of the dissertation.

Apart from obtaining an overview of the current state of the art in the field through
reviewing the available literature, the first and most comprehensive piece of work
was the augmentation of a code called Incompressible Adaptive Mesh Refinement
(IAMR) so that it could simulate non-Newtonian fluids rather than just Newtonian
ones. IAMR employs a second-order accurate algorithm for solving the incompressible
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variable-density Navier-Stokes equations, and is based on the highly parallelisable code
framework Adaptive Mesh Refinement for the eXa-scale (AMReX) [17], which has built-
in support for structured adaptive mesh refinement, linear systems, and much more.
By enhancing the code so that it can simulate the flow of any generalised Newtonian
fluid, we have facilitated the first simulations of yield stress fluids within such a high-
performance framework. A wide range of numerical experiments were conducted in
the context of the lid-driven cavity. In doing so, we extended the available benchmark
results for various fluid models. This included wider ranges of parameters for power-law
and Bingham fluids, in addition to entirely new references for Herschel-Bulkley fluids.
Additionally, reference results were provided for the first time for Bingham fluids in
the three-dimensional case. The ability to simulate fully three-dimensional Bingham
flow efficiently also allowed us to visualise the yield surface, both through temporal
evolution and through steady-state results for various combinations of Reynolds and
Bingham numbers. Finally, we demonstrated how structured AMR can be used to
adaptively track the time-dependent yield surface [18].

The next piece of work was a relatively minor enhancement in comparison to the
first, but important nevertheless. We implemented the volume-of-fluid method for the
simultaneous simulation of two fluids, by tracking an advective scalar and allowing
them to displace each other. In addition to validating our results in a well-documented
Rayleigh-Taylor instability problem, we demonstrated that our code could handle
channel displacement with a combination of Newtonian and viscoplastic fluids [19].

Finally, we published the first numerical methodology for simulating flow of gener-
alised Newtonian fluids in complex domain geometries through the use of embedded
boundary techniques. Much of the work was done while visiting the Center for Com-
putational Sciences and Engineering at the Lawrence Berkeley National Laboratory. A
lot of care was taken to ensure accurate computations of strain rate magnitude and
apparent viscosity near the cut cells which represent solid boundaries, and we validated
their implementation thoroughly. The new methodology enabled us to simulate a much
wider range of interesting flow scenarios. In particular, we computed the first highly
resolved 3D solutions of creeping flow around various objects translating at constant
speed through a Bingham medium. In the case of flow around a sphere, we clarified
some inconsistencies in the previously published literature [20].
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Publications

Parts of this dissertation have been published in the following:

• K. Sverdrup, N. Nikiforakis and A. Almgren: “Highly parallelisable simulations of
time-dependent viscoplastic fluid flow with structured adaptive mesh refinement.”
Physics of Fluids 30 (9) (2018) 093102. [18] (Named Editor’s pick)

• K. Sverdrup, N. Nikiforakis and A. Almgren: “Numerical simulations of immis-
cible generalised Newtonian fluids” Proceedings of ECCM VI and ECFD VII
11–15 June 2018, Glasgow, UK (2019) 2969–2980. [19]

• K. Sverdrup, A. Almgren and N. Nikiforakis: “An embedded boundary approach
for efficient simulations of viscoplastic fluids in three dimensions.” Physics of
Fluids 31 (9) (2019) 093102. [20] (Featured article, chosen for the cover of the
monthly issue)

For all of the aforementioned articles, I have been the principal author. I carried
out the numerical simulations, generated results and figures, and wrote the entire first
drafts. My co-authors helped guide me with invaluable advice, and offered feedback and
alterations for the manuscript. Additionally, Dr. Almgren was an expert troubleshooter
and bugseeker during development.

1.3 Overview of the dissertation

In the following chapters, we will take a detailed look at the problems which we
have solved, including their underlying formulation, the numerical tools employed and
the physical insight obtained through numerical simulations. Chapter 2 provides a
derivation and overview of the system of governing partial differential equations (PDEs)
which describe the fluid dynamics, in addition to the rheological models which allow us
to model non-Newtonian fluids through apparent viscosity functions. Chapter 3 reviews
the most important numerical schemes utilised in our fluids solver, including temporal
advancement, hyperbolic flux treatment, projection methods and regularisation of
apparent viscosity functions containing singularities. In chapter 4, we introduce the
AMReX framework in general and the IAMR code in particular, and explain how
they stand out among high-performance software suites. We start to discuss our novel
contributions in chapter 5, which gives the details of our paper on high-performance
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simulations of yield stress fluids in a three-dimensional cavity [18]. The extension to two-
fluid displacement flows is given in chapter 6 [19], while chapter 7 explains the addition of
embedded boundaries in order to simulate flow in and around non-rectangular domain
geometries [20]. Finally, chapter 8 offers some overall discussions and possibilities for
further development, before the dissertation is concluded.



Chapter 2

Mathematical formulation

In order to properly explain the mathematical formulations used to describe the
fluid mechanics, it is essential that we first introduce the mathematical notation and
physical variables encountered. Our domain Ω ⊂ Rd m is either in two or three domains,
i.e. d ∈ {2, 3}, and has a boundary denoted by ∂Ω. For vectors and rank-2 tensors, we
prescribe the Euclidean scalar product and Frobenius inner product, respectively:

a · b = a>b =
∑

aibi ∀(a, b) ∈ Rd, (2.1)
A : B = tr(AB>) =

∑
AijBij ∀(A,B) ∈ Rd×d. (2.2)

The induced norm of vectors is as usual |a| =
√
a · a, but we prescribe the scaled

Frobenius norm

‖A‖ =
√

1
2tr(AA>) (2.3)

for rank-2 tensors, as is customary for convenience in viscoplastic fluid mechanics.
On the other hand, the outer product of two vectors is written a ⊗ b = ab>, while
component-wise multiplication (the Hadamard product) uses the notation a� b. We
take the gradient of a vector u as the tensor with components

(∇a)ij = ∂aj
∂xi

, (2.4)

while the divergence of a tensor field is defined such that

(∇ ·A)j =
d∑
i=1

∂Aij
∂xi

. (2.5)
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We also employ the notation
D

Dt
= ∂

∂t
+ u · ∇ (2.6)

for material derivatives.
The physical variables which we encounter are all given in SI units. When dimension-

less variables are introduced, a hat (e.g. x̂) will appear above them. The unit vector in
the Cartesian x-direction is abbreviated êx, with similar notation for other coordinates
(Cartesian or otherwise). Variables are functions of position x ∈ Ω and time t ∈ R s ≥ 0.
We denote by ρ ∈ R kg m−3 the material density. The velocity field is introduced as
u(x, t) ∈ Rd m/s, with Cartesian components u, v and w. The Cauchy stress tensor
σ(x, t) is defined as the sum of isotropic and deviatoric parts, σ = −pI + τ ∈ Rd×d Pa.
Here, the pressure p(x, t) ∈ RPa is multiplied by the identity tensor, while the de-
viatoric part of the stress tensor is denoted τ (x, t) ∈ Rd×d

sym Pa. Finally, we introduce
(twice) the symmetric part of the velocity gradient as the rate-of-strain tensor

γ̇(x, t) = ∇u+∇u> ∈ Rd×d
sym s−1. (2.7)

2.1 Continuum fluid mechanics

Matter is made of atoms and molecules, which are discrete particles separated by
space and interacting with each other in a manner depending on which of the four
fundamental states (solid, liquid, gas or plasma) they are in. The physical theory best
suited to describe the predominant physical behaviour of the matter depends on the
length-scales at which it is observed. At inter-atomic distances, for example, quantum
effects are highly relevant, but they are negligible for much larger length scales. At such
large scales, it is reasonable to assume that the matter fills all space and is distributed
continuously. The resulting theory is continuum mechanics, and has its origins in the
pioneering works of Cauchy [21]. We shall be focusing on the case of fluids, i.e. gases
and liquids, and particularly the latter.

Throughout this dissertation, the PDEs which we discuss are always variations
of equations which describe conservation of mass and momentum. Starting from a
general viewpoint, conservation of a physical variable φ in a fluid control volume Ω is
governed by a continuity equation

d
dt

∫
Ω
φ dV = −

∫
∂Ω
φu · n dS +

∫
Ω
s dV, (2.8)
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where u is the flow velocity, n is the unit normal vector pointing out of the control
volume, and s denotes sources and sinks in Ω. It simply states that the temporal rate
of change in the given quantity is the difference in the amounts flowing into and out of
the domain, plus whatever is generated or lost due to the presence of source and sink
terms. Utilising the divergence theorem and the Reynolds transport theorem [22] allows
us to rewrite (2.8) as

∫
Ω

∂φ

∂t
dV = −

∫
Ω
∇ · (φu) dV +

∫
Ω
s dV. (2.9)

Note that this also holds for vector quantities, but that the product with u is then
a dyadic outer product resulting in a rank-2 tensor. The equation can only hold for
arbitrary control volumes if the integrand is zero, i.e.

∂φ

∂t
+∇ · (φu) = s. (2.10)

Equation (2.10) serves as a very useful differential form of the general continuity
equation. Mass conservation is straightforward to write down by taking φ = ρ and
s = 0, since there are no sources or sinks for mass:

∂ρ

∂t
+∇ · (ρu) = 0. (2.11)

All non-relativistic momentum balance equations in the field of continuum mechanics
can be derived as special cases of the general Cauchy momentum equation. The
conserved quantity is the momentum density ρu, while the vector source term is
decomposed as ∇ ·σ+ f , where we have introduced f to describe external body forces
such as gravity acting on the fluid. Recalling that σ is a sum of isotropic and deviatoric
parts, we thus write down Cauchy’s momentum balance in conservation form as

∂(ρu)
∂t

+∇ · (ρu⊗ u) = −∇p+∇ · τ + f . (2.12)

By specifying how the pressure p and deviatoric stress tensor τ depend on other flow
variables, specific applications ranging from solid mechanics to inviscid gas dynamics
can be derived. For example, if we consider the case without any deviatoric stresses
(τ = 0), (2.12) reduces to the Euler momentum equation [23], which governs adiabatic
and inviscid fluid flow. It is part of the hyperbolic first-order system of PDEs known as
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the Euler equations, which are extensively utilised in simulations of ideal fluids when
viscous effects are negligible [24–31].

Convective differential form

For numerical treatment, it can be useful to write the temporal derivative in (2.12) as
a derivative of the velocity alone. This is possible by applying the chain rule to the
first term and using (2.11) to remove the explicit dependency on the rate of change in
density:

∂(ρu)
∂t

= ρ
∂u

∂t
+ u∂ρ

∂t
= ρ

∂u

∂t
− u∇ · (ρu) (2.13)

Similarly, application of the chain rule to the second term in (2.12) gives

∇ · (ρu⊗ u) = ρu · ∇u+ u∇ · (ρu). (2.14)

Adding these two equations together results in the convective differential form of the
Cauchy momentum equation:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + f . (2.15)

Recalling the definition of the material derivative in (2.6), this form also makes it clear
that the Cauchy momentum balance is merely an application of Newton’s second law of
motion. The left hand side is mass multiplied by material acceleration due to temporal
change and convection, while the right hand side accounts for applied forces made up
of hydrostatic effects, deviatoric stress divergence and external body forces.

Navier-Stokes equations

In fluid mechanics, few equations are as well known as Navier-Stokes. They govern the
motion of simple viscous fluids, and have applications in aerodynamics [32–34], medicinal
research [35;36] and petroleum engineering [37–40], to name a few. Named after Claude
Navier and George Stokes for their major contributions [41;42] to their formulation in
the first half of the nineteenth century, the equations have constituted a major field of
research in their own right since their formulation, and continue to do so today. In
fact, (dis-)proving the existence and uniqueness of their solutions is one of the seven
Millennium prize problems [43].
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The Navier-Stokes equations are an extension of (2.11) and (2.12) derived under a
certain set of assumptions. Firstly, the Cauchy stress tensor must be Galilean invariant,
which means that it can not depend directly on the velocity field, only on its gradient
∇u. Secondly, this dependency on the velocity gradient must be linear. Finally, the
fluid must be isotropic. This means that the stress tensor is symmetric, so that it can
be expressed as

τ = λ(∇ · u)I + µ
(
∇u+∇u>

)
, (2.16)

where we have introduced the dynamic viscosity coefficient µ and the so-called second
viscosity coefficient λ. These coefficients are fluid parameters, which generally depend
on the state of the fluid. As will become clear shortly, the second viscosity coefficient
only matters for compressible flows, and even then it is common to assume that Stokes’
hypothesis, λ = −2

3 µ, holds
[44]. Taking the divergence of (2.16) and inserting it into

(2.15) gives the compressible Navier-Stokes momentum equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ λ∇(∇ · u) + µ∇2u+ f . (2.17)

Although the Navier-Stokes equations describe very generally the motion of many
viscous fluids, the assumption of linearity in ∇u and constant viscosity coefficients are
too restrictive to model the non-Newtonian fluids typically encountered in wellbore
cementing jobs. We can, however, safely assume incompressibility, since the flows are
characterised by very low Mach numbers.

Incompressible flow

When the material density is constant within a control volume of the fluid, which
moves with the fluid velocity, we call the flow incompressible. A common misconception
is that incompressibility of flow implicates a constant density distribution. On the
contrary many fluids exhibit a spatially varying density although it is constant within
a fluid parcel. A vast amount of cases in continuum mechanics relate to incompressible
flow, and several simplifications arise in the description of the fluid. By the definition
of incompressibility, the material derivative of the density vanishes, i.e.

Dρ

Dt
= ∂ρ

∂t
+ u · ∇ρ = 0, (2.18)
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so that (2.11) is equivalent to the incompressibility constraint

∇ · u = 0. (2.19)

Utilising this constraint in the momentum balance equation will lead to a simplified
PDE, which is nonetheless accurate in lots of flow scenarios. For example, inserting it
into (2.17) causes the term involving bulk viscosity to disappear, so that we are left
with the incompressible Navier-Stokes momentum equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ f . (2.20)

In addition to simplifying the mass and momentum balance equations, the assump-
tion of incompressibility closes the system of equations since (2.19) actually corresponds
to a very simple energy conservation equation, namely constant specific internal energy
along streamlines of the flow. This can be traced to the fact that the pressure only has a
thermodynamic meaning for compressible flows. Consequently, a separate conservation
equation for energy is necessary in order to describe such flows.

2.2 Rheology

An applied shear strain acting on a fluid will cause flow through viscous deformation,
and the field of rheology seeks to quantify the relationships between the applied strain
(and its rate) and the induced shear stress resulting from it. Several mathematical
models exist which describe the rheology of materials [45], but the most common method
by far is to use rheological equations. These constitutive equations give the relationship
between the stress and strain tensors and their temporal derivatives, in addition to
physical variables such as temperature, pressure and species concentration. In their
most general form they can contain quite complex dependencies. The rheological
equation is a constitutive equation of fundamental importance for two reasons. Firstly,
it allows us to treat the materials in question from a continuum point of view. It is
thus the connection between the physics taking place on a microscopic scale and the
continuum mechanics which we apply macroscopically. Secondly, it provides the missing
equation to close the governing system of PDEs used to describe fluid flow. Without it,
the system cannot be mathematically determined. Although there are exotic rheological
phenomena such as thixotropy and rheopecty [46;47], we shall in the following restrict
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ourselves to relatively simple equations of state on the form τ = τ (‖γ̇‖). In other
words, the stress response is solely dependent on the magnitude of the rate-of-strain
tensor.

Newtonian and non-Newtonian flow

Despite the fact that very few fluids are actually so-called Newtonian, most modelling
of fluid mechanics is based on precisely that assumption. This is due to the major
simplifications which occur for such a fluid, and the fact that some of the fluids which
are most frequently modelled (notably water and air) are approximated well by the
Newtonian constitutive equation. As a consequence, the term non-Newtonian is used
to describe any type of flow which deviates from this simplest of examples.

Newtonian flow is characterised by a dynamic coefficient of viscosity µ > 0 which
is independent of the shear, yielding a linear relationship between rate-of-strain and
stress in the rheological equation:

τ = µγ̇. (2.21)

For fluids where the dependency of the stress on the rate-of-strain tensor is nonlinear,
the apparent viscosity is a useful concept when considering rheological responses to
shear. It is a generalisation of the constant viscosity for Newtonian flow, where we allow
the viscosity to be a function of the magnitude of the rate-of-strain tensor. Denoting
the apparent viscosity by η, we thus have

τ = η (‖γ̇‖) γ̇. (2.22)

Many fluids are accurately modelled by a non-Newtonian behaviour that captures
shear-dependency through a smooth increase or decrease in apparent viscosity. Such
fluids include pseudoplastics (shear-thinning, ∂η/∂ ‖γ̇‖ < 0) and dilatants (shear-
thickening, ∂η/∂ ‖γ̇‖ > 0). A model which captures this behaviour is the power-law
fluid, with rheological equation

τ = κ ‖γ̇‖n−1 γ̇, (2.23)

and apparent viscosity

η = κ ‖γ̇‖n−1 . (2.24)
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A specific power-law fluid is characterised by its dimensionless flow behaviour index
n > 0 and consistency κ, which has units Pa sn). From (2.23) it is immediately clear
that the Newtonian case with n = 1 separates pseudoplastics (n < 1) from dilatants
(n > 1).

Viscoplasticity

Power-law fluids capture a range of important nonlinear features, but fluids occurring
in cementing applications exhibit another rheological phenomenon which cannot be
captured by the power-law model. This phenomenon is called viscoplasticity.

Viscoplastic fluids are non-Newtonian fluids which are characterised by a minimum
induced stress necessary for flow to occur. For this reason they are also commonly
referred to as yield-stress fluids. When the imposed stress does not exceed the threshold
value, the material is modelled as a rigid solid. In regions where the yield stress is
exceeded, however, the material flows like a fluid. The ability of the material to support
a stress under certain circumstances gives rise to phenomena such as non-flat surfaces
at rest under gravity and the coexistence of yielded (flowing) and unyielded (rigid)
regions within the fluid. The former can be demonstrated by distorting the surface of
mayonnaise in a jar: gravity alone is not strong enough to surpass the yield stress, and
the surface remains in its distorted state. Coexistence of yielded and unyielded fluid
regions can be exemplified by toothpaste being squeezed out of a tube: there is a finite
shear layer near the tube wall, whereas the majority of the fluid flows as an unyielded
plug with constant velocity. In addition to being fundamentally interesting from the
perspectives of rheology, fluid mechanics and mathematical modelling, yield stress fluids
occur naturally and are paramount to the success of animals such as mudskippers [48]

and snails [49]. Their importance in industries ranging from medicine [50–53] to oil and
gas exploration [4;5;8] has led to extensive research contributions in the field.

On a sub-continuum scale, the properties of yield stress fluids can be attributed to
the fact that they are colloids, which are fluids with microscopical particles dispersed
throughout them without mixing. These particles can either be solid particles, in
which case the colloid is called a suspension, or another fluid. In the latter case, the
colloid is known as an emulsion. We previously mentioned mayonnaise, which is an
stable emulsion widely encountered in modern kitchens. Note that while colloids can
be viscoplastic fluids, they need not be – vinaigrette is another commonly encountered
kitchen emulsion which can be accurately modelled as a Newtonian.
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Although the first mathematical model for plasticity in fluid mechanics was due to
Schwedoff (1900) [54], most consider Eugene Bingham the father of yield-stress fluids
due to his famous rheological equation [55] for simple shear flow, first published in 1916.
James Oldroyd’s extension to three-dimensional flows from 1947 [56] is now referred to
as the Bingham model, and constitutes the simplest possible viscoplastic fluid model.
It captures the characteristic yield stress, but behaves as a Newtonian fluid with
constant viscosity in the yielded region. Although this simplicity means it is a crude
approximation for many viscoplastic fluids, it is also responsible for the widespread
popularity of the model. A more comprehensive model, which allows smooth, nonlinear
dependencies of the stress on the strain rate in the yielded region, was introduced by
Winslow Herschel and Ronald Bulkley in 1926 [57]. The viscosity in the yielded region
is equivalent to that of a power-law fluid, allowing shear-thinning (pseudoplastic) and
shear-thickening (dilatant) behaviour. Although more complex fluid behaviour can be
captured by considering e.g. viscoelasticity [58] or thixotropy [47], the relative simplicity
of the Herschel-Bulkley model compared to its wide applicability to relevant generalised
Newtonian fluids has led it to become very popular. Other relevant fluid models which
are designed to capture the same fluid behaviour include those of Casson [59] and, more
recently, de Souza Mendes and Dutra [60]. In addition to the development of this range
of mathematical models, recent research has focused on providing experimental links
between the controllable fluid properties of colloids and the parameters which appear
in the models [61]. For further reading on developments in viscoplastic fluids, we refer
the reader to the review papers by Barnes [62] and Balmforth et al. [63].

Viscoplastic fluids have a stress threshold τ0 > 0 (the yield stress), below which they
do not flow. We note that it is possible to describe elastic deformation for materials
which do not flow, but we shall be considering constitutive equations which assume a
rigid body approximation, i.e. zero strain rate below the yield stress. Regions where
the stress satisfies ‖τ‖ < τ0 are known as unyielded regions, and they are of interest,
for several reasons. Firstly, their existence contradicts the statement that “everything
flows”, given a large enough time scale. Yield-stress fluids thus possess the unique
quality of finite cessation times in the absence of sufficiently strong driving forces [64].
This has been widely debated within rheology: is strict viscoplasticity a physically
realistic attribute, or merely a mathematically convenient model? [65] The question is
important to keep in mind when working on mathematical and computational models
for yield stress fluids, but we can say with certainty that genuinely viscoplastic models
provide useful descriptions of many materials. Unyielded regions are also referred to as
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plug regions, and in the cementing community one talks of a transition to gelled mud.
When the fluid ceases to flow. The interface which separates yielded and unyielded
regions is called the yield surface. Since the yield surface separates two fundamentally
states of matter (viscous fluid flow and rigid solid behaviour), locating it precisely is a
valuable metric used to validate computed flow distributions in a domain of interest.
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Figure 2.1: Classification of some generalised Newtonian fluids based on apparent
viscosity.

As mentioned, the simplest type of viscoplastic fluid is the Bingham fluid [55;56],
characterised by zero strain rate below the yield stress. In the yielded region, however,
the stress depends linearly on the rate-of-strain magnitude, just like a Newtonian fluid.
The stress-strain curve thus intercepts the ‖τ‖-axis at the point (0, τ0). As such, the
Bingham fluid is a generalised Newtonian, with rheological equation

‖τ‖ ≤ τ0 , if ‖γ̇‖ = 0

τ =
(
µ+ τ0

‖γ̇‖

)
γ̇ , if ‖γ̇‖ > 0

(2.25)

and apparent viscosity

η = µ+ τ0

‖γ̇‖
. (2.26)
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For Bingham plastics, we refer to µ as the plastic viscosity, and note that η has a
singularity for γ̇ = 0, as expected. Figure 2.1 illustrates how yield stress fluids are
shifted on the stress-axis compared to power-law fluids.

Although the Bingham model captures the yield stress, which is the most charac-
teristic property of the fluids we are trying to model, the Herschel-Bulkley fluid [57;66]

facilitates an even better description of cement slurry and drilling fluids. It is a yield
stress fluid with a nonlinear stress-strain dependency in the yielded region, and as such
can be thought of as a hybrid between Bingham plastics and power-law fluids. The
constitutive equation is

‖τ‖ ≤ τ0 , if ‖γ̇‖ = 0

τ =
(
κ ‖γ̇‖n−1 + τ0

‖γ̇‖

)
γ̇ if ‖γ̇‖ > 0

, (2.27)

while the apparent viscosity is

η = κ ‖γ̇‖n−1 + τ0

‖γ̇‖
. (2.28)

Bingham plastics are a special case of Herschel-Bulkley fluids in exactly the same
manner as Newtonian fluids follow a specific power-law constitutive equation. Plots of
the rheological curves for Herschel-Bulkley fluids are shown in figure 2.2, for various
values of n. Note that the Bingham fluid is recovered for n = 1.
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Figure 2.2: Rheological properties of Herschel-Bulkley fluids: stress magnitude (left)
and apparent viscosity (right) as functions of the magnitude of the rate-of-strain tensor.
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2.3 Governing equations

Our problem is thus, given a suitable domain, fluid parameters and initial conditions,
to find ρ(x, t), u(x, t) and p(x, t) satisfying the following system of governing equations
for x ∈ Ω:

∂ρ

∂t
+ u · ∇ρ = 0, (2.29a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + f , (2.29b)

τ = η (‖γ̇‖) γ̇, (2.29c)
γ̇ = ∇u+∇u>, (2.29d)

∇ · u = 0, (2.29e)

which must be completed by a generalised Newtonian apparent viscosity relation η (‖γ̇‖)
as described in section 2.2. Note that in cases when the density is constant, (2.29a) is
obsolete. In addition to the above, we must have specified boundary values ρBC and
uBC on ∂Ω so that

ρ = ρBC , u = uBC ,
∂p

∂n
= 0 (2.29f)

there. The perfect no-slip boundary condition which we employ is the simplest and
most common way to deal with wall effects for viscous flow, although many cases
require more advanced treatments of the solid-fluid interactions, such as the stick-slip
condition for Bingham fluids [67;68].

Equations (2.29) constitute a set of coupled nonlinear partial differential equations
which are first order in time and second order in space, and which have both hyperbolic
and parabolic terms.

Steady-state solutions

A special case of flow which is extensively used in mathematical and computational
modelling of fluids is the steady state. It is characterised by a particle flow velocity
which is constant in time, meaning that the material derivative is zero and the temporal
and convective terms in (2.29b) disappear. Consequently, the flow is governed by the
steady-state incompressible momentum equation

∇p−∇ · τ = f . (2.30)
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Within numerical simulations of fluid motion, there are some algorithms for which the
solution of the steady-state system as described by (2.30) is the most important step,
even for transient solvers. This is possible because the steady-state system can be
utilised to find the solution at a specific time, after which a temporal discretisation
scheme can be coupled in to evolve the physical variables.

Nondimensionalisation

When considering specific problems or test cases, it is useful to use characteristic
parameters of the problem to convert the physical variables and governing equations to
dimensionless form. This minimises the amount of free variables necessary to describe
the problem, and elucidates the dimensionless groups which govern the flow. If the
problem has characteristic length L and speed U , we typically take L/U as the time
scale and its reciprocal, U/L as the characteristic strain-rate. Based on the apparent
viscosity function, we also choose a characteristic viscosity E , allowing us to scale stress
and pressure by its product with the characteristic strain-rate, EU/L. Appropriate
conversions to dimensionless variables are then

x̂ = 1
L
x, û = 1

U
u, t̂ = U

L
t, ˆ̇γ = L

U
γ̇, η̂ = 1

E
η, p̂ = L

EU
p, τ̂ = L

EU
τ .

(2.31)

Combination of the governing equations as given by (2.29) and the conversion relations
yields the dimensionless governing equations

∂ρ̂

∂t̂
+ û · ∇̂ρ̂ = 0, (2.32a)

Re
(
∂û

∂t̂
+ û · ∇̂û

)
= −∇̂p̂+ ∇̂ · τ̂ + Ga f

|f |
, (2.32b)

τ̂ = η̂
(∥∥∥ ˆ̇γ

∥∥∥) ˆ̇γ, (2.32c)
ˆ̇γ = ∇̂û+ ∇̂û>, (2.32d)

∇̂ · û = 0. (2.32e)

Here, we have introduced the famous Reynolds number [22;69]

Re = ρUL
E

, (2.33)
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which quantifies the relative effect of inertial forces to viscous ones, and the Galilei
number

Ga = |f |L
2

EU
, (2.34)

which is so named since the external body force more often than not represents gravity,
f = ρg.

Additional dimensionless groups can arise from the scaling of the apparent viscosity
function. For Newtonian fluids, we take E = µ as the characteristic viscosity, so that
the apparent viscosity function in dimensionless form is just

η̂(ˆ̇γ) = 1. (2.35)

Similarly, we let E = κ(U/L)n−1 for power-law fluids, resulting in the apparent viscosity
function

η̂(ˆ̇γ) = ˆ̇γn−1. (2.36)

For Bingham plastic fluids, we use the same characteristic viscosity as for Newtonian
fluids, which results in a dimensionless apparent viscosity given by

η̂(ˆ̇γ) = 1 + Bi
ˆ̇γ
, (2.37)

where the Bingham number is given by

Bi = τ0L
µU

. (2.38)

The Bingham number quantifies the relative size of the yield stress to other viscous
stresses. Finally, the generalisation to Herschel-Bulkley fluids is achieved by using
E = κ(U/L)n−1 again. This gives

η̂(ˆ̇γ) = ˆ̇γn−1 + HB
ˆ̇γ

(2.39)

for Herschel-Bulkley fluids, where we have introduced the Herschel-Bulkley number

HB = τ0Ln

κUn
. (2.40)
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An illustrative example

So far, we have described mathematically which equations govern the flow of a gener-
alised viscoplastic fluid acted on by unprescribed forces in an arbitrary domain. In
order to obtain a more intuitive understanding of viscoplastic behaviour, we turn to
the specific example of Poiseuille flow for an incompressible Bingham fluid, for which
an analytical solution exists at steady-state. The governing equations are (2.30) with
f = 0, completed by the Bingham constitutive law given in (2.25). The analytical
solution was presented by Frigaard, Howison and Sobey in 1991 [70], but their paper
only gave the outline for the solution procedure and focused on stability analysis. We
therefore include the full derivation here.

Consider a rectangular domain in two dimensions, which stretches infinitely in the
x-direction and has width 2W in the y-direction, with y = 0 symmetrically dividing
the domain in half. The domain is filled with a Bingham fluid characterised by its
plastic viscosity µ and yield stress τ0. A constant pressure gradient P/W is applied
throughout the domain, which results in a steady flow with maximum velocity U , to
be determined. We take W and U as characteristic length and speed, respectively, and
scale the apparent viscosity by µ. In dimensionless form, the governing equations are
then the steady-state Cauchy momentum equation and the incompressibility condition,

∇̂ · (−p̂I + τ̂ ) = 0, (2.41a)
∇̂ · û = 0, (2.41b)

completed by the Bingham constitutive law given by


ˆ̇γ = 0 if ‖τ̂‖ ≤ Bi,

τ̂ =
(

1 + Bi
‖ˆ̇γ‖

)
ˆ̇γ if ‖τ̂‖ > Bi.

(2.42)

The pressure is given by p̂ = −Po x̂, where the Poiseuille number

Po = PW
µU

(2.43)

quantifies the relative strength of the pressure gradient. The flow is unidirectional, so
the solution is given solely by û(ŷ). Furthermore, since the only non-zero components
of the rate-of-strain tensor are ˆ̇γ12 = ˆ̇γ21 = ∂û

∂ŷ
, we know from (2.42) that τ̂ also has
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diagonal elements equal to zero. In order to find the dependency of τ̂12 on ŷ, we
integrate (2.30) over a rectangle with lower left corner at (−a,−b) and upper right
corner at (a, b). First of all, we employ the divergence theorem:

∫
Ω
∇̂ · (−p̂I + τ̂ ) dV =

∮
∂Ω

(−p̂I + τ̂ ) · ndS, (2.44)

where n is the outward-pointing normal vector on the domain boundary. We shall
compute both of these integrals and equate them to zero. Starting with the right-hand
side, we write out all the terms of the (counter-clockwise) line integral in full, and
obtain

∮
∂Ω

(−p̂I + τ̂ ) · ndS =
∮
∂Ω

−
 p̂ 0

0 p̂

+
 0 τ̂12

τ̂12 0

 · ndS

=
∫ a

−a

 Po x̂ τ̂12(−b)
τ̂12(−b) Po x̂

 ·
 0
−1

 dx̂+
∫ b

−b

 Po a τ̂12(ŷ)
τ̂12(ŷ) Po a

 ·
 1

0

 dŷ

+
∫ −a
a

 Po x̂ τ̂12(b)
τ̂12(b) Po x̂

 ·
 0

1

 dx̂+
∫ −b
b

−Po a τ̂12(ŷ)
τ̂12(ŷ) −Po a

 ·
−1

0

 dŷ

=
−2a(τ̂12(−b) + τ̂12(b))

2
∫ b
−b τ̂12(ŷ)dŷ

 = 0, (2.45)

where we have taken advantage of the fact that τ has no x-dependency. The important
result from this is that τ12 is anti-symmetrical, so τ12(−y) = −τ12(y). We will presently
compute the integral again, but without employing the divergence theorem first. Taking
the divergence of the stress tensor, we have

∇̂ · τ̂ =
 ∂τ̂11

∂x̂
+ ∂τ̂12

∂ŷ
∂τ̂12
∂x̂

+ ∂τ̂22
∂ŷ

 =
∂τ̂12

∂ŷ

0

 . (2.46)

Since the second component of (2.41a) is identically zero, we consider the first compo-
nent only. The left-hand side integral in (2.44) is thus

∫
Ω

(
−∇̂p̂+ ∇̂ · τ̂

)
dV =

∫
Ω

(
Po + ∂τ̂12

∂ŷ

)
dV = 4abPo +

∫ a

−a

∫ b

−b

∂τ̂12

∂ŷ
dŷdx̂

= 4abPo + 2a (τ̂12(b)− τ̂12(−b)) = 4a (bPo + τ̂12(b)) = 0, (2.47)
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where we have used the anti-symmetrical nature of τ12. Since b is an arbitrary distance
from the centre of the channel, the off-diagonal components of the stress tensor are

τ̂12(ŷ) = −Po ŷ. (2.48)

At the walls, the dimensionless stress magnitude equals Po, and if this value exceeds Bi,
then flow will occur in the channel. Yielded and unyielded regions are thus separated by
the characteristic position y0 = Bi/Po = τ0/P . In the yielded region where y0 < ŷ ≤ 1,
the constitutive equation can be written

τ̂12 = ˆ̇γ12 + Bi
ˆ̇γ12∥∥∥ ˆ̇γ
∥∥∥ = ∂û

∂ŷ
+ Bi sgn

(
∂û

∂ŷ

)
. (2.49)

Using (2.48) and differentiating, the first component of velocity satisfies

∂2û

∂ŷ2 = −Po, (2.50a)

û|ŷ=1 = 0, (2.50b)
∂û

∂ŷ

∣∣∣∣∣
ŷ=y0

= 0. (2.50c)

By integrating (2.50) twice with respect to y, and using the boundary conditions to
get rid of the constants of integration, we arrive at a velocity profile given by

û(ŷ) = 1
2(1− y0)2Po

1−
(
ŷ − y0

1− y0

)2
 , (2.51)

where 1
2(1 − y0)2Po is the dimensionless velocity of the fluid in the limit ŷ → y0.

Consequently, we can deduce that U must be chosen such that this limiting value
equals unity, i.e.

U = (1− y0)2

2y0

τ0W
µ

. (2.52)

The Bingham and Poiseuille numbers then reduce to

Bi = 2y0

(1− y0)2 (2.53)

Po = 2
(1− y0)2 , (2.54)



30 Mathematical formulation

and it is clear that the only free variable of the dimensionless system is y0, the ratio of
viscoplastic forces to those induced by the pressure gradient.

When we perform the same steps for the other yielded region (−1 ≤ ŷ < −y0), the
only difference in the result is that ŷ → −ŷ. Finally, we must consider the unyielded
region in the middle of the domain (|ŷ| ≤ y0). According to (2.25), the velocity is
constant. Since the velocity field must be continuous, this constant value is easily
found by using the result for the unyielded region at the limit ŷ = y0. The velocity
profile which describes Poiseuille flow for a Bingham fluid is therefore

û(ŷ) =

1 |ŷ| ≤ y0,

1−
(
|ŷ|−y0
1−y0

)2
, y0 < |ŷ| ≤ 1,

(2.55)

Figure 2.3 shows the velocity profile for various values of y0. Finally, an important
characteristic is the average velocity, given by

ū =
∫ y0

0
dŷ +

∫ 1

y0

1−
(
|ŷ| − y0

1− y0

)2
 dŷ = 1−

∫ 1

y0

(
ŷ − y0

1− y0

)2

dŷ =
(2 + y0

3

)
. (2.56)

−1 0 1

ŷ
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1

û

y0 =0

y0 =1/4

y0 =1/2

y0 =3/4

Figure 2.3: Velocity profile for a Bingham fluid flowing in a rectangular duct due to a
constant pressure gradient. The value of the flow parameter y0 is given in the legend.
Note that for τ0 = 0 we recover the parabola which characterises Newtonian flow.



Chapter 3

Numerical methodology

Due to the applicability of the partial differential equations which govern fluid mechanics
to a vast amount of scenarios, methods for computing their solution is one of the most
studied problems in numerical analysis. Due to the generality of their most basic
formulation, the numerical toolbox required to handle different challenges is large. As
such, many different algorithmic approaches have been published in the literature,
which deal with various aspects of the problem. In this chapter, we review some of the
most important numerical tools utilised throughout our work, starting with the general
approach to time-marching schemes and hyperbolic flux computation, and moving
through to the more specific problems of enforcing incompressibility and dealing with
singularities in the apparent viscosity functions for viscoplastics.

3.1 Temporal discretisation

For any physical system with flow which varies in time, it is natural to take a known
starting point and consider the evolution of the system as a timer starts running.
Similarly, when solving PDEs which are first order in time numerically, we seek algo-
rithms which allow us to gradually march forward in time from an initial configuration,
accurately predicting the evolution of the system as we go. Such algorithms are called
time-marching schemes, and are generally facilitated by the Method Of Lines (MOL).

Consider a PDE for an unknown φ(x, t) which is first order in time, and which
otherwise can depend on position and time, in addition to φ itself and its spatial
derivatives up to some order, which we take as two. Then it can be rewritten in the
form

∂φ

∂t
= R(φ,x, t,∇φ,∇2φ), (3.1)
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and our task is to design an algorithm which predicts φ(x, t > 0). The idea behind the
method of lines is to reduce the problem complexity by first converting the PDE to
an ordinary differential equation (ODE) through computing discrete approximations
to the spatial derivatives in all cells of the domain. This is typically done using finite
difference, finite element or finite volume methods. We denote by a subscript index
vector i = (i, j, k) the cell averages in the corresponding grid cell. Consequently, we
can introduce the short hand notation

Ri(t) = R
(
φi(t), xi, t, (∇φ)i(t), (∇2φ)i(t)

)
(3.2)

for the cell-averaged value in the right hand side of (3.1) as a function of time alone.
This leaves an ODE to be solved numerically:

∂φi
∂t

= Ri(t). (3.3)

Note that although (3.3) appears to have decoupled the inter-cell dependency, this is
not true since the cell-averaged spatial discretisation generally depend on values in
neighbouring cells. Even so, we don’t need to consider estimates of these quantities in
neighbours when doing the temporal update, and consequently can drop the subscript
i for the remainder of this section.

Algorithms for initial value problems for ODEs

Having simplified the problem at hand, we now discretise time, so that our problem
is to find the solution to (3.3) at time tm+1, taking the system at time tm as initial
conditions. We denote the time step ∆t = tm+1 − tm and use superscripts to identify
the computed values at the corresponding times, i.e. φm = φ(tm). Integrating over the
time step and evaluating spatial averages at the discrete points in time then leads to
the update formula

φm+1 − φm =
∫ tm+1

tm
R(t) dt = ∆t

(
ϑRm+1 + (1− ϑ)Rm

)
, (3.4)

where ϑ is a parameter which determines the weighting of the old and new R-values in
the integration. It is sometimes referred to as the implicitness parameter, because its
value determines that important characteristic of the scheme. A scheme is explicit if
ϑ = 0, so that the update formula only depends on the computed values at the old
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time. If ϑ > 0 so that there is any dependence on the new time values, the scheme
is implicit. We call it fully implicit if ϑ = 1. These two extreme cases are known
respectively as the Forward and Backward Euler methods, and are both first-order
accurate in time. The trapezoidal rule can be utilised in order to obtain the popular
second-order accurate semi-implicit scheme known as the Crank-Nicholson method.
Explicit methods are much simpler to use than implicit ones, but implicit methods
have much better stability properties, meaning that larger time steps can be taken
safely. Note however, that stability of a time-marching scheme does not guarantee high
accuracy without taking the time step size into consideration.

Predictor-corrector schemes were developed in order to combine the simplicity
of explicit schemes with the stability and robustness associated with implicit ones.
An intermediate value φ̃m+1 is predicted using the forward Euler scheme, before
this intermediate value is used to correct the approximation with a Crank-Nicholson
update [71]:

φ̃m+1 = φm + ∆tRm, (3.5a)

φm+1 = φm + 1
2∆t(Rm + R̃m+1). (3.5b)

Here, we use the notation R̃m+1 to describe an evaluation of R using φ̃m+1. Note
that such a predictor-corrector scheme is very similar to the simplest Runge-Kutta
type algorithm [72;73], which uses the forward Euler scheme to predict values at the
intermediate time tm+1/2 and subsequently applies the midpoint rule:

φ
m+1/2 = φm + 1

2∆tRm, (3.6a)

φm+1 = φm + ∆tRm+1/2

. (3.6b)

The possibilities of utilising implicit, semi-implicit or predictor-corrector methods
depends on the nature of each term in the PDE, and especially on its linearity
and spatial differential order. For many complex systems, some combination of the
aforementioned temporal discretisation schemes will be necessary in order to find a
second-order accurate solution which can handle all terms. Furthermore, care must be
taken to limit the size of the time step so that the algorithm remains stable and the
results accurate. This will be discussed in more detail in sections 4.3 and 5.1.
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3.2 Hyperbolic fluxes

The only other terms in hyperbolic PDEs, besides the temporal derivative, can be
written either as the divergence of some flux F , or as source terms without temporal
or spatial derivatives in them. Although we are dealing with PDEs which are not
hyperbolic, there are terms in the governing equations which are characteristic of
such fluxes. We therefore briefly explain how to deal with these terms. A thorough
deliberation on the topic is given in the book by Toro [74].

A source-free hyperbolic system of PDEs for the vector of unknowns q is governed
by

∂q

∂t
+∇ · F (q) = 0. (3.7)

Conservative update formulas for (3.7) are derived by integrating over a control volume
Ωi and time interval [tm, tm+1], and applying the divergence theorem to the flux term.
Denoting cell-averaged values by qi(t) = 1

Vi

∫
Ωi
q(x, t) dV , this leads to

qm+1
i = qmi −

∆t
Vi

∫
∂Ωi

F̄ · n dS. (3.8)

Here, we have introduced the cell volume Vi in addition to the time-averaged flux over
the time step,

F̄ (x) = 1
∆t

∫ tm+1

tm
F (x, t) dt. (3.9)

Up to this point, no approximations have been introduced in the scheme; (3.8) is
exact. However, this is only true when viewing qi as cell-averaged values; in fact, the
evaluation at cell centres is a second-order accurate midpoint integration scheme. The
numerical approximations due to discretisation in time and space are all bundled in the
evaluation of (3.9). For a discrete number of Ni piecewise linear cell faces enclosing
the cell, evaluating the flux at the face centres corresponds to second-order midpoint
quadratures. Rewriting the spatial integral as a sum over faces, we thus have

qm+1
i = qmi −

∆t
Vi

∑
f

Af F̄f · nf , (3.10)

and the only remaining challenge is in the evaluation of the time-averaged face-centred
fluxes F̄f .

In order to obtain accurate approximations of the different physical variables at cell
faces, when their representation in the data is cell-centred, is typically done through
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the use of slope-based extrapolation and upwinding. This is particularly important
in hyperbolic systems, which are characterised by the fact that discontinuities are
conserved – this property must be captured in neighbouring cells by the numerical
scheme. Here, the term upwinding is used to describe an algorithm which takes the
velocity field into consideration when picking data from neighbouring cells. This ensures
that the flow of information follows the fluid motion.

Recall that the input data at time tm are cell averages, i.e. constant within each cell.
For each variable q ∈ q, we start by computing the slopes qi(x), which are cell-wise
linear profiles, although higher order polynomials can also be used, such as in the
piecewise parabolic method [75]. Denoting by xi = (xi, yi, zi) the coordinate of the
centre of cell i, the profile is given by

qi(x) = qmi + δqi �
x− xi

∆x , (3.11)

where ∆x is the distance between adjacent cell centres. An example of a second-order
monotonicity-preserving scheme results from defining the difference approximations

δLqi = qmi+1,j,k − qmi,j,k, δCqi = 1
2(qmi+1,j,k − qmi−1,j,k), δRqi = qmi,j,k − qmi−1,j,k, (3.12)

and limiting the differences by setting

δxqi = sgn (δCqi)×

min (|δLqi|, |δCqi|, |δRqi|) , if δLqiδRqi > 0,

0, otherwise.
(3.13)

Similar difference approximations must naturally be computed in the other directions
too. We then have an overall distribution which is globally piecewise linear, as
exemplified in a single dimension in figure 3.1.

Since we have the slopes qi within each cell, we can extrapolate q to each cell face
from both of its neighbouring cells. Note that on a normal cell face, two of the three
centroid coordinates are equal to that of its neighbouring cell centres. For example,
consider the interface between cells (i, j, k) and (i+ 1, j, k). The face centroid is located
at (xi + 1

2∆x, yj, zk), so we refer to it by i+ 1
2 . Two extrapolated approximations of q

at the face, based on the cells to its left and right, are

qi+ 1
2 ,L

= qmi,j,k + 1
2δxqi,j,k and qi+ 1

2 ,R
= qmi+1,j,k −

1
2δxqi+1,j,k, (3.14)
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◦

Figure 3.1: Illustration of piecewise linear slopes, reconstructed from spatial averages
within each computational cell. For clarity, this figure shows the simplified case of a
single spatial dimension.

respectively. In order to choose which of these approximations is best, a simple
upwinding algorithm like that shown in algorithm 3.1 is used. Given extrapolated
values from the two different sides of the interface, and an advection velocity uadv

in the direction normal to the interface, an appropriate choice can be made. If the
advection velocity is positive, the left state is chosen, while the right state is chosen
if the opposite is true. In the event that |uadv| = 0 (i.e. smaller than some numerical
tolerance), the average of the two states is taken.

Algorithm 3.1 Simple upwinding
1: function Upwind(qL, qR, uadv)
2: if uadv = 0 then
3: return 1

2(qL + qR)
4: else if uadv > 0
5: return qR
6: else
7: return qL
8: end
9: end function

There is one missing ingredient preventing us from applying the upwinding scheme
to find face-based values for all variables, namely the spatially staggered advection
velocity uadv. By spatially staggered, we mean that each of its components is stored on
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the face with normal vector parallel to it. We obtain this field from the extrapolated
normal components of the velocity field at each face, using algorithm 3.1 with the
advection velocity taken as the average of the left and right states:

uadv,i+ 1
2

= Upwind
(
ui+ 1

2 ,L
, ui+ 1

2 ,R
,
1
2
(
ui+ 1

2 ,L
+ ui+ 1

2 ,R

))
. (3.15)

With the advection velocity available, all other extrapolated variables can be upwinded
at the cell faces, and hyperbolic fluxes can be evaluated with high precision while
preserving monotonicity. As mentioned in the beginning of this section, there is a large
amount of literature describing how this simplest of algorithms can be expanded upon,
which has been studied so extensively due to the importance in purely hyperbolic
systems of PDEs.

3.3 Projection methods for incompressible flow

A major difficulty in numerical solutions of incompressible flow problems it the fact that
the pressure and velocity fields are coupled to each other through the incompressibility
constraint ∇ · u = 0, rather than through a classical energy conservation equation.
This coupling makes it impossible to solve the equations directly, even numerically. A
common way to solve the transient equations is to use projection methods. Projection
methods decouple the interdependencies of pressure and velocity to a sequence of
elliptic problems within each time step. Consequently, the algorithms can yield efficient
simulations for large systems [76].

The original projection method for the incompressible Navier-Stokes equations was
developed by Chorin in 1968 [77], and the essence is still the same in most modern
variants. Chorin’s projection method is an operator splitting approach, in which, for
each time step, one first performs an intermediate time step for the velocity field while
ignoring the pressure forces, and then enforces incompressibility in order to update the
pressure. Finally, the velocity can be updated. Because of the intermediate step in the
algorithm, it is commonly referred to as a fractional step method. However, it does not
fit into the original class of methods called fractional step or splitting schemes [78]. This
is due to the fact that, unlike in compressible systems, the pressure is not a dynamic
variable, but takes the role of a Lagrange multiplier. The resulting PDE is therefore
not of Cauchy-Kowalevski type, and corresponding algorithms are not generalisable
to higher orders of accuracy [79]. This is one of the main reasons why there has been
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such a large focus on the development and analysis of accurate, efficient and scalable
projection methods in the last fifty years.

The family of numerical algorithms known as projection methods can generally
be divided into three groups. In the first group, exemplified by the pioneering work
of Chorin, the pressure gradient is ignored in the first step of the algorithm, and
subsequently corrected for afterwards. They are therefore called pressure-correction
methods. Velocity-correction methods, on the other hand, start by ignoring the
viscous term, and instead correct for this afterwards. More recently, so-called Gauge
methods [80;81], and more generally consistent splitting methods [82] have been introduced,
which are free of the splitting errors associated with the former two.

The Helmholtz decomposition [83] allows us to write any vector field as a sum of
solenoidal and irrotational parts, i.e.

ũ = u−∇Φ, (3.16)

where u has zero divergence and ∇Φ, being a scalar gradient, is irrotational. This is
the building block of projection methods, where the goal is to find the divergence-free
velocity field u associated with a generic approximation ũ, which has an irrotational
part. Taking the divergence of (3.16), leads to a Poisson equation for Φ,

∇2Φ = −∇ · ũ. (3.17)

which is straightforward to solve since the right-hand side is known. In turn, the solution
allows us to compute the divergence-free velocity field u, according to (3.16). This
simple example shows how we can project any solution onto the space of divergence-free
vector fields.

Although the above illustrates the basic tricks utilised in projection methods, it
doesn’t explicitly show how the velocity and pressure fields in Cauchy’s momentum
balance are decoupled from each other. This is the operator splitting part of the
algorithm, and it means that we can update the pressure at the same time as the
velocity. As an example, consider the MOL discretised version of (2.29b):

unew − uold

∆t = −u · ∇u+ 1
ρ

(−∇p+∇ · τ + f) , (3.18)
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Following Chorin’s original approach, we can introduce an intermediate velocity field
ũ. Then the two equations

ũ− uold

∆t = −u · ∇u+ 1
ρ

(∇ · τ + f) (3.19a)

unew − ũ
∆t = −1

ρ
∇p (3.19b)

sum to (3.18). The former can be solved for ũ without worrying about the coupling to
pressure, and the latter is of the form of a Helmholtz decomposition, just like (3.16).
Taking its divergence, we can therefore solve the Poisson equation

∇ ·
(

∆t
ρ
∇pnew

)
= ∇ · ũ, (3.20)

for pnew, and obtain the new, divergence-free velocity field

unew = ũ− ∆t
ρ
∇pnew. (3.21)

As we will show, some higher-order schemes require a projection to be applied at
an intermediate time step in order to ensure a divergence-free partially evolved velocity
field. This is in addition to the projection for the final velocity. Projection methods
constitute a rich field of research, and there are many subtleties connected to their
implementations and convergence and stability analysis. For an excellent overview, we
recommend the review paper by Guermond et al. [76]

Projection methods for steady-state flows

A popular family of algorithms for solving nonlinear systems of the form that arises
from our spatial discretisation of (2.30) at steady-state, is the Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE) [84]. Rather than split each time step into
two decoupled equations, the basic idea in these methods is to construct a number of
linear systems to be solved iteratively until convergence is achieved [85]. Linearization
of the discretised sets of equations is done by computing some of the terms with
values from previous iterations. For a full explanation of the method, we recommend
Zikanov’s book [86], which also covers extensions of the method such as SIMPLER [87]

and SIMPLEC [88].
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3.4 Non-Newtonian fluids

Just as for Newtonian fluids, the pursuit of knowledge about viscoplastic fluids has
relied heavily on computational methods in the last fifty years. Compared to the
Newtonian case, however, the numerical simulations are much more demanding in
terms of processing time. This is largely due to the existence of a yield stress, since
this results in a singularity at zero strain rate for the apparent viscosity of the fluid.
Traditional methods for computing the solution are rendered useless for this case,
since infinite viscosities cannot be represented in the unyielded regions. There are
now two main branches of algorithms designed to deal with this problem. The first
utilises mathematical regularisation to approximate the viscosity function in the low-
strain limit. In doing so, the rigid body approximation is effectively replaced by a
fluid with very high viscosity in the unyielded regions. A regularisation parameter
controls how close this approximation is to the idealised viscoplastic case. On the other
hand, the problem can be reformulated in the framework of non-smooth optimisation
theory, and solved using augmented Lagrangian methods. Such methods can solve the
unregularised problem without introducing approximations, but require significantly
more computational resources to find the solution [89].

The regularisation approach was first explored by Bercovier and Engelman in
1980 [90], who utilised a simple yet efficient work-around by adding a small constant
to the computed strain rate, so that even in the zero-strain limit the viscosity would
remain finite. An alternative method proposed by Tanner and Milthorpe a few years
later was the bi-viscosity model [91], in which the viscoplastic fluid is characterised by a
separate, large viscosity when the strain rate is below a given threshold. An exponential
regularisation factor was then introduced by Papanastasiou in 1987 [92], and this method
of regularisation is still widely used in modern codes which deal with viscoplasticity
through regularisation. Important investigations based on Papanastasiou regularisation
include those of Mitsoulis et al. [93–96] and Syrakos et al. [64;97;98]

Augmented Lagrangian methods were first applied to the viscoplastic flow problem
in 1983 by Fortin and Glowinski [99], but the variational formulation on which it relies
was derived by Duvaut and Lions in 1976, who studied existence, uniqueness and
regularity of solutions to the problem [100]. The augmented Lagrangian algorithm itself
is due to Hestenes (1969) [101]. Although the simulation of viscoplastic flow using
this optimisation technique constitutes an important milestone in the history of its
numerical treatments, the regularisation approach was much more popular due to
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the large discrepancy in computational resource requirements. Advances in convex
optimisation over the next few decades led to the work of Saramito and Roquet [102],
where significant improvements were achieved in terms of convergence rates, and hence,
computational efficiency. Other contributions [103] further confirmed the potential, and
in recent years state-of-the-art algorithms are actively being developed, notably by
Treskatis et al. [104], Saramito [105], Bleyer [106] and Dimakopoulos et al. [107] Due to the
ability to solve the unregularised viscoplasticity problem, these methods have become
increasingly popular since algorithmic advances have led to significant speed-up of their
runtime. It is important to note, however, that these methods are still much more
costly than regularisation approaches, so although they allow computation of exact
locations of yield surfaces, they are unnecessarily expensive when this is less important,
and a general understanding of the flow field is desirable. An example is within cement
displacement complexities for engineering purposes [7], where the desirable insight is
pressure distributions and the cement displacement efficiency [16].

Two excellent review papers on advances in numerical simulations of these fluids
appeared in a recent special edition of Rheologica Acta [89;96].

Regularisation of apparent viscosity

Equation (2.27) does not present any problems for unyielded regions (‖γ̇‖ > 0), but
the apparent viscosity has a singularity when the strain rate approaches zero (and
‖τ‖ → τ0). Computational schemes such as those implemented in IAMR cannot be
used in the presence of such singularities. Regularisation deals with the problem by
replacing the ill-behaved apparent viscosity with a function that approximates the
rheological behaviour, but which stays bounded for arbitrarily small ‖γ̇‖. This is done
by introducing an additional parameter ε to the apparent viscosity, which describes
how big the effect of the regularisation is. A large value of ε allows for inexpensive
computations even near unyielded flow, while the limit ε→ 0 recovers the unregularised
description. Note that one must be careful to choose a small enough value for ε, in
addition to fine enough mesh resolutions and convergence criterion. Otherwise, the
mathematical approximation will not hold.

Consider the Bingham model as given in (2.25). The simplest regularisation possible
would be to just let ‖γ̇‖ → ‖γ̇‖+ ε, leading to an apparent viscosity function

η = µ+ τ0

‖γ̇‖+ ε
. (3.22)
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This regularised apparent viscosity clearly removes the singularity in the manner
outlined above, and recovers the Bingham model in the limit ε → 0. An improved
regularisation was proposed by Bercovier and Engelman [90], in which one instead lets
‖γ̇‖ →

√
‖γ̇‖2 + ε2. With this regularisation, the apparent viscosity becomes

η = µ+ τ0√
‖γ̇‖2 + ε2

. (3.23)

Finally, a very popular regularisation was introduced by Papanastasiou [92] in 1987.
This method, which we will be utilising, introduces an exponential relaxation according
to

η = µ+ τ0

‖γ̇‖
(
1− e−‖γ̇‖/ε

)
. (3.24)

This is a good approximation for ‖γ̇‖ /ε� 1, while in the small strain limit we have

lim
‖γ̇‖→0

1− e−‖γ̇‖/ε
‖γ̇‖

= lim
‖γ̇‖→0

1
‖γ̇‖

(
1−

∞∑
k=0

(−‖γ̇‖ /ε)k
k!

)
= 1
ε
, (3.25)

so that it always remains bounded, and recovers the unregularised model in the limit
ε→ 0. The effect of varying the regularisation parameter ε is shown in Figure 3.2. In
the Papanastasiou-regularised Bingham model, the singularity in apparent viscosity is
replaced by the limiting value

lim
‖γ̇‖→0

η = µ+ τ0

ε
. (3.26)

Since the regularisation parameter has units s−1 like the strain rate, we introduce
the dimensionless Papanastasiou number

Pa = U
εL
, (3.27)

which measures the degree of regularisation employed in the apparent viscosity, with
higher Pa being a more accurate description of unregularised viscoplasticity. In
dimensionless form, (3.24) is then

η̂ = 1 + Bi∥∥∥ ˆ̇γ
∥∥∥
(

1− e−Pa‖γ̇‖
)
, (3.28)



3.4 Non-Newtonian fluids 43

||γ̇|| (s−1)
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Figure 3.2: Papanastasiou regularisation: stress magnitude (left) and apparent viscosity
(right) as functions of the magnitude of the rate-of-strain tensor γ̇. Note that both
plots utilised logarithmic axes. For decreasing ε, we recover a closer approximation to
the actual Bingham model.

while the low-strain limiting value is

lim
‖ˆ̇γ‖→0

η̂ = 1 + Bi Pa. (3.29)

Combination of Papanastasiou regularisation with the Herschel-Bulkley model as
given in (2.27), gives the regularised apparent viscosity as

η =
(
κ ‖γ̇‖n−1 + τ0

‖γ̇‖

)(
1− e−‖γ̇‖/ε

)
. (3.30)

In dimensionless form, (3.30) becomes

η̂ =
(∥∥∥ ˆ̇γ

∥∥∥n + HB
) 1− e−Pa‖ˆ̇γ‖∥∥∥ ˆ̇γ

∥∥∥ . (3.31)

A note on regularisation methods

With regularisation in place, it is straightforward to compute numerical solutions to
(2.29) in conjunction with the viscoplastic constitutive equation (3.30) by directly
discretising the equations in space and time before utilising standard methods from
a toolbox for PDEs. It is important to note, however, that we are actually solving
a slightly different problem as long as ε > 0. The last couple of decades has seen
a wide discussion on the benefits and pitfalls of approximating the single-parameter
Bingham model through regularisation. On the one hand, there is a fundamental
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question of παντα ρει – whether “everything flows”. In their provocative paper from
1985 [62;108–110], Barnes and Walters claimed that yield stress fluids did not actually
have a non-zero yield stress, but that this was an extrapolated value due to the very
rapid increase in viscosity at small strain rates for such fluids. In this context, modern
models such as that by de Souza Mendes and Dutra [60] actually strive to capture the
rapid rate of change through an exponential just like the Papanastasiou regularisation.
Advocates of the pure Bingham model are of the opinion that a single-parameter
model is more elegant and better suited mathematically to capture the essence of yield
stress influence on fluid behaviour. With this in mind, there is a second question of
which numerical techniques are appropriate to utilise in order to obtain an accurate
understanding of the fluids in question. Papanastasiou regularisation was not intended
to capture small-strain effects of yield stress fluids better than the Bingham model,
but rather intended to circumvent a numerical challenge [111]. Although it does this
well, contemporary algorithms from the field of non-convex optimisation are able to
solve the pure Bingham problem, albeit at a high computational expense. In spite of
the complexity and runtime costs of such algorithms, there has been a steadily growing
group of academics who support this as the best way forward for simulating viscoplastic
fluid flow. We will presently give a brief introduction to the relevant mathematical
formulation and algorithms, but in any case, Papanastasiou regularisation is extensively
used in state of the art fluid mechanics codes and contemporary research, and the only
viable option for our purposes.

Variational formulation and convex optimisation

For the unregularised problem, the relevant algorithms are instead based on optimisation
methodology. This is due to the realisation that there is a strong resemblance between
the viscoplastic flow problem and convex optimisation as utilised in image analysis.
Consequently, several connections between these two fields have been made, leading to
sophisticated algorithms with impressive results. In order to see why such methods can
be applied to the problem at hand, we briefly explain the derivation of a variational
form, and which optimisation problem characterises its solution.

Consider the strong form of the problem at hand: Find (u, p) subject to (2.29b),
(2.29e) and (2.27) in Ω and u = uBC on ∂Ω. Additionally, the problem is defined by a
suitable initial condition. We wish to find a weak form of the problem by majorising
the virtual viscous power dissipated in the domain. Introducing a test function v in
an appropriate function space and integrating over Ω, we then obtain the variational
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inequality [100]

ρ
∫

Ω

(
∂u

∂t
+ u · ∇u

)
· (v − u) dV + κ

∫
Ω
‖Du‖n−1Du : (Dv −Du) dV

+ τ0

∫
Ω

(‖Dv‖ − ‖Du‖) dV ≥
∫

Ω
f · (v − u) dV, (3.32)

where we are using the notation Dv =
(
∇+∇>

)
v, so that γ̇ = Du. We refer to

u(x, t) as a weak solution of the unsteady viscoplastic flow problem if it satisfies (3.32).
The most prominent algorithms in the literature divide the problem into a stationary
problem and a temporal marching scheme. At steady-state, the momentum balance is
given by (2.30), so that the variational inequality reduces to

κ
∫

Ω
‖Du‖n−1Du : (Dv −Du) dV + τ0

∫
Ω

(‖Dv‖ − ‖Du‖) dV ≥
∫

Ω
f · (v − u) dV.

(3.33)
Timm Treskatis gives an excellent introduction to the connection between convex

optimisation and viscoplastic flow in his Ph.D. thesis [112]. In it, he introduces a common
problem in the field of image analysis, namely deblurring of imperfect images. Denoting
the undisturbed image by x, the optimisation approach seeks to minimise the sum of
a convex functional F and a regularisation term R weighted by a factor α:

x = arg min (F (x) + αR(x)) . (3.34)

This regularisation term will often be a function of the magnitude of the gradient of x, in
order to penalise noise and blur in images while allowing large areas of constant colour.
Now the steady-state variational inequality as given in (3.33) has the characteristic
property that a velocity field ū is a weak solution to it if

ū = arg min
(
κ
∫

Ω
‖Du‖n+1 dV −

∫
Ω
f · u dV + τ0

∫
Ω
‖Du‖ dV

)
. (3.35)

Such a solution exists and is unique. One can immediately see the connection between
(3.35) and the example problem from convex optimisation. The yield stress τ0 thus
serves as a weighting factor for the regularisation term in the minimisation algorithm.
Due to this insight, many advanced algorithms from convex optimisation are made
available for the solution of the viscoplastic flow problem.





Chapter 4

High-performance computing

In essence, CFD is the science of calculating quantitative predictions of physical systems
involving fluid flow, by using modern computers [113]. CFD software generally falls
into one of three main categories. The first of these is generic commercial software,
which has versatile coverage for the most common flows of interest, and often also
for other continuum problems. However, these code often focus on Computer Aided
Design (CAD) and simple Graphical User Interfaces (GUIs), and hide the numerical
schemes and algorithmic detail under the hood. Examples include the ANSYS suite [114],
COMSOL Multiphysics [115] and Siemens Star-CCM+. The second class of CFD codes
is commercial service-provider software, which has been tailor-made for a specific
problem, and which is inflexible in terms of modification and augmentation. Finally,
we have open-source and academic software, which is generally state-of-the-art in a few
specific metrics, but otherwise demanding to use for commercial operation purposes
due to the focus on mathematical robustness and continuous implementation of the
latest published technology, with less regard to ease of use for non-experts. Examples
of these include OpenFOAM [116], FEniCS [117;118] and the suite of codes based on the
AMReX framework [17].

It would not be wise to put all of the above in the same class and make generic
statements about their validity, because it all depends on what systems of equations
they are solving, the numerical methods and techniques they are employing and their
effectiveness of using current computational hardware architectures. For the type of
development necessary in this project, it is only the latter class of CFD codes which
is really relevant. For example, we require the flexibility of open-source software, so
that we can access and alter any submodule in the code, in addition to writing our
own modules. At the same time, we are in a much better position to discuss the
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problems in the wider scientific community when opting for this kind of tool. Most
importantly, however, we need to ensure that the software suite which we choose to
base our development upon is compatible with the latest algorithmic and hardware
developments in high performance computing, since scalability is of the utmost essence
for the project.

4.1 Parallel processing and scalability

Among the most important attributes of High Performance Computing (HPC) codes,
is their intrinsic scalability on state-of-the-art computer architectures. Due to major
advances within parallel computing in the last few decades, it has been important
to discuss which methods of evaluating their capabilities provide the best insight.
Moreland and Oldfield provide an excellent overview of contemporary formal metrics
for such measurements [119].

Suppose we are trying to solve a computational problem of size N . Let T ∗(N)
denote the execution time of the best serial algorithm, while T (N,P ) is the time used
by a parallel algorithm deployed on P processor cores. Then the speed-up of the
parallel algorithm is given by

S(N,P ) = T ∗(N)
T (N,P ) . (4.1)

Note that in practice, it is common to use T ∗(N) = T (N, 1), although this is not
entirely appropriate if there exists faster serial algorithms. The theoretically best
possible speed-up occurs if the entire task can be divided into as many chunks of equal
work as there are cores being used, so that it is distributed among the available cores
without any overhead. In this utopian case, we have speed-up equal to the processor
core count, S(N,P ) = P . As a measure of the efficiency E(N,P ) of the parallel
algorithm, we can therefore take the ratio of the observed speed-up to the ideal, i.e.

E(N,P ) = S(N,P )
P

= T ∗(N)
PT (N,P ) . (4.2)

Although both speed-up and efficiency are useful metrics for analysing the parallel
performance of an algorithm, they have one caveat. Since the serial runtime is necessary
in order to compute them, it quickly becomes impractical for analysis of large-scale
applications. Computing the serial runtime for very large N takes far too long. For the
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metrics presented thus far, the problem size is kept fixed, and the amount of allocated
resources increased. Such scaling is known as strong scaling.

On the other hand, the problem size can be scaled so that it is proportional to the
core amount P . If one core is used to solve the problem with size N∗, one would then
ideally hope that the parallel runtime with P processors for solving a problem P times
as large, T (PN∗, P ) remains constant for increasing P . This type of analysis is called
weak scaling. Figure 4.1 illustrates the optimal runtime for the two cases, in addition
to what typical scaling results look like.

P

T

Optimal

Actual

(a) Strong scaling, N constant

P

T

Optimal

Actual

(b) Weak scaling, N ∝ P

Figure 4.1: Optimal and typical runtime results of parallel algorithms measured through
strong (left) and weak (right) scaling analysis.

Finally, it may in some case be difficult to keep the problem size proportional to
the job size, so that weak scaling analysis becomes difficult to obtain. However, one
can measure the amount of work done per time unit, referred to as the rate:

R(N,P ) = N

T (N,P ) . (4.3)

The rate removes the weak scaling dependency between problem size and core amount.
Sampling the rate across a selection of problem sizes and core amounts can thus help
the user pick runtime parameters which yield high computational efficiency.

4.2 The AMReX framework

Based on our requirements for structured AMR, parallelisable linear solvers and scala-
bility, the most complete, advanced and efficient software framework is AMReX [17],
which is an open-source project funded by the United States Department of Energy
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(DOE) through the Exascale Computing Project. Exascale computing refers to super-
computing capabilities exceeding 1018 floating point operations per second (exaFLOPS),
and it is the current limit of modern supercomputers [120]. The fact that AMReX is
the DOE’s back-end framework of choice for solving multiphysics PDEs on emerging
architectures, combined with its extensive list of tools and features, made it an easy
choice for our starting point.

AMReX is a mature software framework for building massively parallel block-
structured AMR applications for the numerical solutions of PDEs [17]. It is developed at
the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley
National Laboratories (LBNL), and is written in hybridised C++ and Fortran 90.
AMReX facilitates a variety of approaches to parallelisation, including straightforward
utilisation of e.g. MPI, OpenMP and, increasingly, the use of GPUs through the CUDA
language. More generally, AMReX facilitates a hybrid parallelisation model, where
individual grids are distributed to MPI ranks, and a secondary tool (MPI / OpenMP /
CUDA etc.) is used to thread over logical tiles within the grids. This allows users a lot
of flexibility to tailor the parallelisation approach to their specific use case. Importantly,
all functionality is written such that the software can be deployed on machines ranging
from old laptops to emerging supercomputing clusters. Applications based on AMReX
have demonstrated excellent strong and weak scaling up to hundreds of thousands of
cores [121–124].

The framework contains extensive software support and tools for implementing
algorithms which solve PDEs with complex boundary conditions, all built to work
with a range of discretisation methodologies for block-structured AMR, both in space
and for temporal evolution. It is possible to design customised approaches for each
refinement level, or to utilise the automatic subcycling and multi-level synchronisation
which can be directly applied to the full hierarchy of grids. All user-defined code
can be written in either C++ or Fortran (or a combination thereof), and can utilise
built-in iterators and data types to obtain information about, and operate on, specific
patches of the discretised domain. These data types and iterators are specifically built
to act as a solid foundation for the AMR and parallelisation approaches. Variables
stored in the structured grid can be defined at a range of different locations within the
cells, depending on the dimensionality of the problem. For fully 3D applications, the
choices are at cell centres, cell faces, cell edges or cell corners (nodes). Additionally, it
is possible to utilise one-dimensional spherical coordinates or two-dimensional polar
coordinates in addition to standard Cartesian ones.
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Among the more advanced features which are of utmost importance for PDE solvers
with elliptic or parabolic subproblems, are the linear solvers included in AMReX. A
range of different preconditioners and iterative solution methods are implemented,
including multilevel geometric multigrid solvers [125;126] with the biconjugate gradient
stabilised method [127] or other Krylov solvers available for use at the coarsest multigrid
level. There are also built-in tools which allow the representation of complex boundaries
through embedded boundaries and cut cells. Although the user is required to write
specific submodules for how to treat cut cells, all necessary data is readily available
through the data structure interfaces, and many complex operations, such as linear
solvers, have separate implementations which automatically take care of the necessary
changes.

From a practical point of view, the code includes native input and output routines,
both for writing results to file and for checkpoint/restart capabilities, allowing simula-
tions to be paused and re-started at the convenience of the user. AMReX’ native output
format is supported by well-known visualisation software such as Paraview [128], yt [129]

and VisIt [130], and can also be converted to HDF5. There is also a custom performance
profiling tool specialised for AMReX applications, which takes into account the data
types and iterators used for block-structured AMR data.

In addition to the above, there are several features of AMReX which we will
not be taking advantage of in our work. This includes separate data structures for
particles, which can be used for particle-in-cell methods, as Lagrangian tracer particles
etc. The code features interoperability with other software for scientific computing
such as PETSc [131] and hypre [132], which is another reason for its popularity. Among
open-source codes which are based on AMReX, there are examples from the fields
of accelerator modeling (WarpX) [133], compressible astrophysics (CASTRO) [121], low-
Mach-number astrophysics (MAESTRO) [134], cosmology (Nyx) [122] compressible and
low-Mach-number combustion (the Pele suite) [135;136], and multiphase flow (MFIX-
Exa) [137].

Structured adaptive mesh refinement

For a vast range of flow problems, large computational domains are required even though
we are only interested in small areas of the domain such as boundaries, interfaces or
areas where variables exhibit complex dynamic behaviour. Refining the computational
mesh in these regions is a well-known technique in order to save memory and processing
power, and it can be applied with various degrees of sophistication. Within the AMReX
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framework, hierarchical block-structured AMR is employed, which allows for efficient
local refinement by symmetrically splitting each cell into 2d smaller ones, where d is the
dimensionality of the problem. Furthermore, the dynamic refinement is spatio-temporal,
meaning that we employ subcycling in the discrete time steps to avoid setting global
time step restrictions based on the smallest cells. This is crucial for dynamic AMR
to be used efficiently. Tagging criteria are utilised in order for the code to determine
which cells should be split or merged at a given refinement step, and these can depend
on the values of any directly simulated or derived variables, in addition to spatial
position and time. We will presently go through the fundamentals of the AMR and
subcycling routine, and refer to the original paper by Almgren et al. [138] for further
detail.

Figure 4.2: Multiple refinement levels, with finer patches utilising coarse level data at
boundaries. Image courtesy of Andrew Myers, AMReX developer.

In hierarchical block-structured AMR, the different refinement levels make up a
nested grid of rectangular patches. Each level is made up of the union of patches with
the corresponding refinement, which do not need to be directly connected to each other.
We refer to the levels by their identifier `, and set ` = 0 for the coarsest grid, which must
cover the entire domain. There are `max levels in total, so that 0 ≤ ` < `max, but we
note that `max can change dynamically during the simulation, although restricted by a
user-specified allowable maximum. As described earlier, refinement is obtained through
even partition of the relevant cells, i.e. ∆x`+1 = 1

r
∆x`, where r is the refinement ratio.

Every few steps (the regridding frequency is tunable), the solution is analysed in order
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to see if the grids need to be updated. Refinement is based on some user-specified
criterion, which can be anything from a threshold value on a variable (primary or
derived), to tolerance on an error estimate or even a simple geometrical condition. If a
cell on level `max is tagged for refinement, then a new refinement level is created, as long
as the maximum depth hasn’t been reached. Tagged cells at each level of refinement are
clustered into rectangular patches which satisfy criteria relating to max size, blocking
factor and grid efficiency. Here, the max size is the largest amount of cells along each
side of the rectangle, and that length must be divisible by the blocking factor. The
grid efficiency describes the percentage of cells within a patch which have been tagged
according to the refinement criterion, and is typically expected to exceed 70%. This
is done using the Berger-Rigoutsis algorithm [139], which finds non-overlapping sets
including all tagged cells which satisfy the above criteria, and chooses the one which
minimises the number of new grids that must be created, since the computational
overhead between refinement levels increases with the latter. One result of this patch
clustering algorithm with relaxed grid efficiency is that a single refinement criterion
can be used across levels, while still causing a smaller and smaller part of the domain
to be refined for each level. The levels are properly nested, meaning that all grids on
level ` + 1 are contained in level ` grids. Additionally, there is at least one layer of
coarse level cells surrounding the finer patch, so that the coarse level data can be used
as Dirichlet boundary conditions for the fine level patches. Figure 4.2 illustrates the
refinement hierarchy.

Since the size of the spatial cells directly affects the largest allowable stable time
step, the spatial refinement necessitates time step reduction as well. In order to
avoid reducing the time step on all levels to that of the finest grid, we employ a
subcycling algorithm which ensures that the time step is small enough at each level,
while simultaneously keeping the data synchronised within each level. At level ` = 0,
the system is incremented by ∆t as computed by a CFL-type condition. For ` > 0, it is
necessary to take 2` time steps, and synchronisation must be performed with level `+ 1
every single step and with level `− 1 every two steps. By synchronisation, we mean
extrapolation from coarse-cell data to fine-cell boundaries, and averaging of underlying
fine-cell data to coarser cells. The recursive subcycling algorithm is exemplified in
figure 4.3.
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Figure 4.3: Illustration of the temporal subcycling procedure. 1: a full time step ∆t is
taken on the coarsest grid (` = 0). 2: a half time step is taken on level ` = 1 and 3-4:
two quarter time steps on level ` = 2, before 5: levels 1 and 2 are synchronised. 6-9:
Steps 2-5 are repeated to reach the final time on ` = 1 and ` = 2. 10: the coarsest level
(` = 0) is synchronised with the results on the finer grids. Image courtesy of Andrew
Myers, AMReX developer.
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4.3 IAMR

An approximate projection method for solving the variable-density incompressible
Navier-Stokes equations on an adaptive mesh hierarchy has been implemented in
the IAMR (Incompressible Adaptive Mesh Refinement) code. The algorithm was
described for the constant viscosity case by Almgren et al. [138], with extensions to
low-Mach-number reacting flows with temperature-dependent viscosity provided by
Pember et al. [140] and Day and Bell [141], among others. It is based on the underlying
AMReX structure, and is also freely available online. Due to the many capabilities
which aligned with our needs, and the great benefit of basing our work on existing
software, IAMR was chosen as the foundation for our work. As such, we here present
the original algorithm as it was used prior to our alterations.

In IAMR, an advection-diffusion step is used to advance the velocity in time; the
solution is then (approximately) projected onto the space of divergence-free fields. The
motivation for an approximate rather than exact projection is covered in detail in the
literature [142–144]. In addition to solving the Navier-Stokes equations for velocity and
pressure, the IAMR code allows for the (conservative or passive) advection of any
number of scalar quantities.

The governing equations are given by the variable-density incompressible Navier-
Stokes equations, i.e. (2.29) with constant η = µ, in addition to an advection equation
for each additional scalar. With a single scalar quantity λ, the set of PDEs is

∂ρ

∂t
+ u · ∇ρ = 0, (4.4a)

∂u

∂t
+ u · ∇u = 1

ρ

(
−∇p+ µ∇2u+ f

)
, (4.4b)

∂λ

∂t
+ u · ∇λ = cλ∇2λ+ fλ, (4.4c)

∇ · u = 0. (4.4d)

Here, cλ and fλ are, respectively, the diffusivity coefficient and active sources for λ.

Algorithm

Presently, we will go through the IAMR algorithm step by step. Note that we will be
focusing on the case of a single uniform grid, following closely the deliberation given in
the original paper on the algorithm [138]. Velocity, density and scalar concentration are
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defined at cell centres at integer time steps, and are denoted by umi,j,k, ρmi,j,k and λmi,j,k,
respectively. The pressure, on the other hand, is specified at cell corners and is staggered
in time, so that it is denoted pm+1/2

i+1/2,j+1/2,k+1/2. When no subscript is given (e.g. ρm), we
address the array containing values of ρ in all cells at time tm. Considerations like
initialisation and boundary treatments are ignored at present. Instead, we focus on
the steps required in order to evolve the solution a single time step. As a reference,
the overall workflow within each time step is given in Algorithm 4.1.

Algorithm 4.1: Advance one time step using IAMR code.
input :um, ρm, λm, pm−1/2

output :um+1, ρm+1, λm+1, pm+1/2

1 Compute time step size ∆t;
2 begin Advection-diffusion step
3 begin Predictor step for normal velocity components
4 Compute normal velocity derivatives using slope limiter;
5 Evaluate approximations of ∇pm−1/2 and ∇2um;
6 Extrapolate and upwind transverse derivative terms;
7 Extrapolate normal velocity components to cell faces at tm+1/2 using

Taylor expansion;
8 end
9 Perform similar predictor step for tangential velocity components, ρ and λ;

10 Upwind extrapolated normal velocities;
11 Apply projection to enforce incompressibility of upwinded velocities;
12 Define advection velocities uadv at faces by subtracting projection gradient;
13 Upwind (using uadv) for final time-centred values ũm+1/2, ρ̃m+1/2, λ̃m+1/2;
14 Calculate conservative update terms using uadv and ũm+1/2, ρ̃m+1/2, λ̃m+1/2;
15 Advance density to ρm+1 using conservative update formula;
16 Compute viscous and diffusive fluxes according to spatial discretisation;
17 Solve parabolic equation for intermediate velocity u∗;
18 Solve parabolic equation for concentration λm+1;
19 end
20 begin Pressure correction step
21 Enforce divergence-free velocity field um+1 by projecting u∗;
22 Advance pressure to pm+1/2;
23 end

The first part of the advection-diffusion step is to extrapolate normal velocity
components to each cell face at time tm+1/2. This is done through a second-order Taylor
series expansion. Consider the cell centre (i, j, k), and suppose we want to extrapolate
the first velocity component u to the face (i + 1/2, j, k). Then the truncated Taylor
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series is
u
m+1/2

i+ 1
2 ,j,k
≈ umi,j,k + ∆x

2

(
∂u

∂x

)m
i,j,k

+ ∆t
2

(
∂u

∂t

)m
i,j,k

. (4.5)

Taking the first component of (4.4b), we have

(
∂u

∂t

)m
i,j,k

= −
(
u
∂u

∂x

)m
i,j,k

−
(
v
∂u

∂y

)m
i,j,k

−
(
w
∂u

∂z

)m
i,j,k

− 1
ρmi,j,k

(
∂p

∂x

)m−1/2

i,j,k

+ µ

ρmi,j,k

(
∇2u

)m
i,j,k

+ fu
ρmi,j,k

, (4.6)

which can be substituted into the last term of the Taylor expansion to avoid any depen-
dence on temporal derivatives. In order to compute these extrapolated values, however,
it is necessary to calculate discrete approximations of the spatial derivatives. This is
done separately for each part. The first derivative of normal velocity is evaluated using
a monotonicity-limited fourth-order slope approximation S as introduced by Colella in
1985 [145]. Since the pressure field is defined at grid nodes, cell-centred approximations of
the pressure gradient G are computed by finite differences. The Laplacian is estimated
by a second-order finite difference operator L. Finally, transverse derivative terms
such as v∂u/∂y are evaluated by a separate extrapolation and subsequent upwinding
procedure, (

v
∂u

∂y

)m
i,j,k

≈
(
v̂
∂u

∂y

)m
i,j,k

. (4.7)

With these discrete representations in place, the intermediate normal velocity at face
i+ 1/2 can be approximated based on the cell to its left (i, j, k) as

u
m+1/2,L
i+1/2,j,k = umi,j,k +

(
∆x
2 − u

m
i,j,k

∆t
2

)
(Su)mi,j,k −

∆t
2

(
v̂
∂u

∂y

)m
i,j,k

− ∆t
2

(
ŵ
∂u

∂z

)m
i,j,k

− ∆t
2ρmi,j,k

(Gxp)m−
1/2

i,j,k + µ∆t
2ρmi,j,k

(Lu)mi,j,k + ∆tfu
2ρmi,j,k

. (4.8a)

Similarly, an approximation based on the state to its right (i+ 1, j, k) is

u
m+1/2,R
i+1/2,j,k = umi+1,j,k−

(
∆x
2 + umi+1,j,k

∆t
2

)
(Su)mi+1,j,k−

∆t
2

(
v̂
∂u

∂y

)m
i+1,j,k

−∆t
2

(
ŵ
∂u

∂z

)m
i+1,j,k

− ∆t
2ρmi,j,k

(Gxp)m−
1/2

i+1,j,k + µ∆t
2ρmi,j,k

(Lu)mi+1,j,k + ∆tfu
2ρmi,j,k

. (4.8b)
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Similar extrapolation procedures must be performed for tangential velocities, density
and concentration, except that the latter two require the use of (4.4a) and (4.4c),
respectively, instead of (4.4b).

At each face we now have two extrapolated approximations for ρm+1/2, λm+1/2 and
um+1/2, one from each cell adjoining at the face. In order to pick the most accurate
of these, we construct a face-based advection velocity uadv for upwinding. The final,
upwinded, extrapolated approximations at each face are denoted ρ̃m+1/2, λ̃m+1/2 and
ũm+1/2. For example, the density at face (i+ 1/2, j, k), which is located between left (L)
and right (R) states, is upwinded according to

ρ̃
m+1/2
i+1/2,j,k =


ρ̃Li+1/2,j,k if (uadv)i+1/2,j,k > 0,
1
2

(
ρ̃Li+1/2,j,k + ρ̃Ri+1/2,j,k

)
if (uadv)i+1/2,j,k = 0,

ρ̃Ri+1/2,j,k if (uadv)i+1/2,j,k < 0.

(4.9)

At this point, it is convenient to explain the temporal discretisation employed for
the solution of our governing PDEs. In the IAMR code, (4.4a)-(4.4c) are discretised as

ρm+1 − ρm

∆t = −[∇ · (ρu)]m+1/2, (4.10a)
u∗ − um

∆t = −[∇ · (u⊗ u)]m+1/2 + 1
ρm+1/2

(
−∇pm−1/2 + µ

2
(
∇2um +∇2u∗

)
+ f

)
,

(4.10b)
λm+1 − λm

∆t = −[∇ · (λu)]m+1/2 + cλ
2
(
∇2λm +∇2λm+1

)
+ fλ. (4.10c)

Here, u∗ is a provisional new-time velocity field, which does not in general satisfy
(4.4d), and which will therefore be updated in the final projection step. The density is
centred in time by averaging values at times tm and tm+1. The first term on the right
hand side of each equation is a conservative update term, which has been rewritten in
a manner which allows us to view it as an advective flux. In the computation of these
terms, we utilise the advection velocities and extrapolated approximations as defined
above and exemplified by (4.9). The three advective fluxes are Fm+1/2

ρ = ρ̃m+1/2uadv,
Fm+1/2
u = ũm+1/2 ⊗ uadv and Fm+1/2

λ = λ̃m+1/2uadv, and the conservative update terms
are thus approximated according to

[∇ · F ]m+1/2
i,j,k ≈ D

(
Fm+1/2

)
, (4.11)
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where D is a discrete divergence operator. We can then advance the density in time by
rearranging (4.10a) to read

ρm+1 = ρm −∆tD
(
Fm+1/2
ρ

)
. (4.12)

For the viscous and diffuse terms in (4.10b) and (4.10c), the same numerical operator
for the Laplacian as defined previously, L, is used. Recalling also the gradient operator
G, the parabolic equations to be solved numerically for momentum and scalar at the
next time step are

u∗ − µ∆t
2ρm+1/2

L(u∗) = um −∆tD
(
Fm+1/2
u

)
+ ∆t
ρm+1/2

(
−G

(
pm−

1/2
)

+ µ

2L(um) + f
)
,

(4.13a)

λm+1 − cλ∆t
2 L(λm+1) = λm −∆tD

(
Fm+1/2
ρ

)
+ cλ∆t

2 L(λm) + ∆tfλ. (4.13b)

Note that all velocity components are solved for simultaneously.
The final part of the algorithm is the projection step and subsequent pressure

update. The intermediate velocity field u∗ does not in general satisfy the divergence
constraint as given by (4.4d), and it is this which we now seek to rectify. We solve

Lρφ = D

(
1

∆tu
∗ + 1

ρm+1Gp
m−1/2

)
, (4.14)

where Lρ is a second-order accurate approximation to ∇· 1
ρm+1∇. The new-time velocity

is then defined by
um+1 = u∗ −∆t 1

ρm+1Gφ (4.15)

and the updated pressure by
p

m+1/2 = φ. (4.16)

The resulting approximate projection satisfies the divergence constraint to second-order
accuracy and ensures stability for the algorithm. Given suitable initial and boundary
conditions, this algorithm can be used to evolve the system in time.

Time step size

As mentioned in chapter 3, it is essential to use a time step size which provides numerical
stability and accurate results for the temporal advancement scheme. Essentially, we
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wish to find the largest permissible ∆t. The investigation of this question by Courant,
Friedrichs and Lewy in 1928 for the advection equation [146] is one of the foundations
on which the field of numerical solutions for PDEs was built. Consequently, time step
restrictions of this type are referred to as CFL conditions. Since IAMR facilitates
viscous flow and external body forces in addition to advection, terms relating to these
phenomena must also be taken into consideration [147;148]. In IAMR, the thorough
derivation by Kang et al. [149] is utilised, which arrives at a time step given by

∆t = CCFL
1
2

(
CC + CV +

√
(CC + CV )2 + 4C2

F

) . (4.17)

Here, CCFL ≤ 1 is a parameter called the CFL coefficient. It is set to 0.9 by default, but
can be reduced to smaller values for challenging flow problems. The other coefficients,
CC , CV and CF , are constraint coefficients due to convective, viscous and forcing terms,
respectively. The convective coefficient is given by

CC = max
Ω

(
|u|
∆x + |v|∆y + |w|∆z

)
, (4.18)

the viscous coefficient is

CV = 2 max
Ω

(
µ

ρ

(
1

∆x2 + 1
∆y2 + 1

∆z2

))
, (4.19)

and the coefficient due to external forcing is

CF =
√
|fu|
∆x + |fv|∆y + |fw|∆z . (4.20)

4.4 Verification and validation

Although IAMR is a fully functional incompressible flow solver implemented by a
range of developers over the years, it was vital for us to design and simulate a range of
test cases for verification and validation purposes. In addition to becoming properly
convinced that the code solves (4.4) with the desired order of accuracy, the exercise
allowed us to become acquainted with usage and development of the software, which
was of vital importance for the remainder of the project.
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Spatio-temporal convergence study: Taylor-Green vortices

In order to demonstrate second order spatio-temporal convergence of the presented
algorithm, we consider the two-dimensional unsteady Taylor-Green vortices, for which
an analytical solution exists. This problem is a well-known test case in computational
fluid mechanics, and consists of exponentially decaying vortices due to viscous dis-
sipation. The computational domain is Ω = [0,L]2 × [0,W], where W is the width
to which we extend the test case in the out-of-plane dimension. Periodic boundary
conditions are applied on all domain boundaries, and we take U as the maximum of the
initial velocity distribution. We obtain dimensionless variables by scaling lengths by L,
velocity components by U , time by L/U and pressure by the kinetic energy density
ρU2. The Taylor-Green solution is then

û = sin (2πx̂) cos (2πŷ) e−8π2 t̂/Re, (4.21a)

v̂ = − cos (2πx̂) sin (2πŷ) e−8π2 t̂/Re, (4.21b)

p̂ = 1
4 (cos (4πx̂) + cos (4πŷ)) e−16π2 t̂/Re, (4.21c)

where we have introduced the Reynolds number

Re = ρUL
µ

. (4.22)

For a series of spatial resolutions, characterised by the amount of cells N in the x-
and y-directions, our system is initialised to the distribution given by inserting t̂ = 0
into (4.21) with Re = 100, and advanced to the time t̂ = 1. The resulting velocity field
is subtracted from the analytical solution in each cell, and we denote this residual εN (x).
For two meshes with resolution N and 2N , the convergence rate of our numerical
method can be computed as

r∗ = log2

∥∥∥∥ εNε2N

∥∥∥∥
∗

(4.23)

where ‖·‖∗ is an appropriate function norm, typically one of

‖ε‖1 =
∫

Ω
|ε(x)| dV, (4.24a)

‖ε‖2 =
(∫

Ω
|ε(x)|2 dV

) 1
2
, (4.24b)

‖ε‖∞ = max
Ω
|ε(x)|. (4.24c)
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Table 4.1 shows how the convergence rate for our solver approaches two in the
discrete versions of all these norms as N grows, as expected.

N ‖ε‖1 r1 ‖ε‖2 r2 ‖ε‖∞ r∞
32 4.46×10−4 − 5.68×10−4 − 1.28×10−3 −
64 1.84×10−4 1.28 2.30×10−4 1.31 4.73×10−4 1.44
128 5.22×10−5 1.82 6.48×10−5 1.83 1.31×10−4 1.86
256 1.36×10−5 1.94 1.68×10−5 1.95 3.37×10−5 1.95
512 3.45×10−6 1.98 4.26×10−6 1.98 8.55×10−6 1.98

Table 4.1: Error norms and convergence rates for viscous incompressible flow in the
Taylor-Green vortex.

Rayleigh problem

The Rayleigh problem [150], also known as Stokes’ first problem, is one of the simplest
applications of the Navier-Stokes equations which has an exact analytical solution for
the unsteady case. It consists of the temporal evolution of an infinite incompressible
shear layer, initiated by the instantaneous start-up movement of a plate. We use a
finite computational domain equal to Ω = [0,L]2, and simulate opposing plates, taking
the initial velocity profile as

v(x, 0) =

−U , x < 0.5L

U , x ≥ 0.5L
. (4.25)

At the left and right edges, the initial conditions are imposed, while we employ periodic
boundary conditions in the y-direction. The characteristic speed is of course U , and
we scale lengths by L, although the problem doesn’t have an inherent characteristic
length scale. Times are made dimensionless through division by ρL2/(4µ), yielding an
analytical solution given by

v̂(x̂, t̂) = erf
(
x̂√
t̂

)
, (4.26)

where erf(x) is the Gauss error function. Results are shown in Figure 4.4 for N = 32
cells at three different times. They overlap nicely with the analytical solution as time
goes by.



4.4 Verification and validation 63

0.0 0.2 0.4 0.6 0.8 1.0

x̂

−1.0

−0.5

0.0

0.5

1.0

v̂
t̂ = 4× 10−2

t̂ = 4× 10−3

t̂ = 4× 10−4

Figure 4.4: Numerical and analytical (solid lines) velocity profiles for increasing time
in the Rayleigh problem.

Double shear layer

Bell, Colella and Glaz introduced a test case for the unsteady, incompressible Navier-
Stokes equations in 1989 [151], which contains a double shear layer with a large initial
velocity gradient. Periodic boundary conditions are enforced in both directions of the
domain Ω = [0,L]2, and the velocity field is initially given by a horizontal shear layer
which is perturbed by a small-amplitude vertical velocity, according to

u(x, y, 0) = U ×

tanh(30(y − L/4)), y ≤ L/2

tanh(30(3L/4− y)), y > L/2
,

v(x, y, 0) = 0.05U sin(2πx/L).

The characteristic length and speed scales are L and U , respectively.
Results which depict the vorticity field, for the case with Re = 5000, are shown

in figure 4.5. The results clearly show the evolution of the initial shear layers to a
periodically recurring pattern of large eddies, exactly as expected. When comparing
the color plots in figure 4.5 with the original contour plots produced by Bell, Colella
and Glaz [151], or with solutions computed with modern techniques as done by Dumbser
et al. [152], it is clear that our solver captures the same physics with high accuracy.
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(a) t̂ = 0.4 (b) t̂ = 0.8

(c) t̂ = 1.2 (d) t̂ = 1.6

Figure 4.5: Temporal evolution of the double shear layer with N = 256. The color plot
depicts the vorticity scaled by the characteristic strain rate U/L after (a) 0.4, (b) 0.8,
(c) 1.2 and (d) 1.6 dimensionless time units.
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Couette-Poiseuille flow

So far, all the validation test cases have utilised periodic boundary conditions. In
order to ensure that the code can handle no-slip wall conditions, we consider the two
simplest flow problems involving them. Planar Couette flow is characterised by a
channel where the top and bottom walls have prescribed constant velocity values in
the transverse direction, which induces viscous shearing in the region between them. If
these are the only forces driving the motion, the resulting velocity field is merely a
linear function between the wall values. Poiseuille flow, on the other hand, is driven by
a constant applied pressure gradient aligned with the channel, and is therefore also
simply referred to as pressure-driven flow. Its analytical solution is a parabolic profile
over the channel width. For Newtonian fluids, there is a general analytical solution for
combined Couette-Poiseuille flow, i.e. problems with a combination of viscous shear
layers due to moving walls and an applied pressure gradient.

The channel is bounded by walls at y = 0 and y =W , and is infinite in the other
spatial directions. On these walls, we prescribe the speeds U0 and UW , respectively. In
the direction of flow, we apply the constant pressure gradient P/W. Scaling lengths
by W and velocities by UW > 0, the analytical solution is given by

û(ŷ) = U0

UW
+
(

1 + Po − U0

UW

)
ŷ − Po ŷ2, (4.27)

where the Poiseuille number
Po = PW

2µUW
(4.28)

is a dimensionless group quantifying the ratio of pressure gradient to viscous forces.
By moving the problem to the frame of reference moving with the lower wall, we can
set U0 = 0, ending up with the Poiseuille number as our only free variable:

û(ŷ) = (1 + Po) ŷ − Po ŷ2. (4.29)

In figure 4.6, we show that our computed results with Po = 4 overlap nicely with
the analytical solution given by (4.29) without having to use a high spatial resolution
at all. The numerical implementation of the no-slip boundary condition with prescribed
wall speed is therefore valid.



66 High-performance computing

0.00 0.25 0.50 0.75 1.00

ŷ
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Figure 4.6: Comparison of our numerical results with the analytical velocity profile for
Couette-Poiseuille flow. Here, N denotes the number of computational cells across the
gap width W .

Parallel performance

In order to demonstrate how well the parallel processing works in IAMR, we performed
a weak scaling study on the supercomputer Cori1. This was set up as a replication
problem, where a base test is reproduced with higher and higher core counts. In the
base test, a three-dimensional unit cube with periodic boundary conditions is initialised
with constant density and viscosity, and unidirectional velocity field. Within this
system, a passive scalar is advected, and the computational runtime per simulation
time step is taken as the base reference. We then double the domain length (and
number of cells) in each direction, leading to eight unit cubes, within each of which
the same problem is set up. This ensures that the same spatial discretisation and time
step size is used although the problem is much larger. Eight times as many cores are
used to solve the problem. As seen from the results in figure 4.7, we achieve excellent
performance, with only a slight increase in runtime per time step when moving from a
couple of million cells to over a billion.

1https://www.nersc.gov/users/computational-systems/cori/

https://www.nersc.gov/users/computational-systems/cori/
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Figure 4.7: Results from replication study for weak scaling in the IAMR code. Note
that the primary axis utilises logarithmic scaling. Ideal parallelisation would result in
a straight horizontal line. It is evident that massive parallelisation on clusters such as
Cori can be utilised to simulate large problems in IAMR.





Chapter 5

Large-scale simulations of yield
stress fluids

Numerical treatment of viscoplastic flow problems has significantly improved over the
last decades. Researchers interested in analysing such flows are, however, still limited
by the computational cost associated with their solution. Notably, most research
published in the field considers only two spatial dimensions and only steady-state
solutions. Although open-source libraries such as FEniCS [118] and OpenFOAM [116] can
be used to simulate regularised viscoplastic fluids in three dimensions, our contribu-
tion aims to provide a massively parallelisable tool for contemporary supercomputer
architectures, with capabilities for structured AMR. In order to achieve this, we begin
with the IAMR [138] code, that uses a second-order accurate, approximate projection
method to solve the incompressible Navier-Stokes equations. We have implemented the
Papanastasiou regularised Herschel-Bulkley model for the apparent viscosity function
in IAMR so that it can be used to simulate generalised Newtonian fluids. As such, we
are able to take advantage of modern supercomputer architectures in our simulation
of viscoplastic fluids. For the first time, results are presented for the transient, three-
dimensional lid-driven cavity problem for viscoplastic fluids. Notably, the evolution of
the three-dimensional yield surface from rest to steady-state is tracked, before the lid
velocity is set to zero, allowing cessation of the viscoplastic fluid.

Our motivation for this approach was the potential to greatly increase the speed of
viscoplastic flow simulations, using methods which have never been tried previously.
According to lecture notes given by Anthony Wachs on computational methods for
viscoplastic fluid flows [153], “structured adaptive mesh refinement has never been tried
for viscoplastic flows, although it should perform quite nicely. [. . . ] there has been
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no report so far in the literature on the use of AMR (regardless of unstructured or
structured) for the solution of time-dependent viscoplastic flows.” Since the methods
we are interested in developing employ structured AMR for unsteady flow, there was a
great opportunity for making an impact in the field of computational viscoplasticity.

5.1 Extending IAMR to generalised Newtonians

In the following, we will show how a code which solves (4.4) must be altered when the
fluid is a generalised non-Newtonian. The question is then whether the IAMR code can
be augmented to allow simulation of these types of fluids while at the same time keeping
a high-order convergence rate and retaining the benefits of massive parallelisation.
Additionally, we want to make sure that any further time step constraints remain
acceptable. Since we want to solve the more general (2.29), we need to make the
viscosity dependent on the strain rate. We replace the viscous term in (4.4b), so that

µ∇2u→ ∇ · (ηγ̇) = η (∇ · γ̇) + (∇η) · γ̇ = η∇2u+ (∇η) · γ̇

The momentum balance equation thus becomes

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ η∇2u+ (∇η) · γ̇ + f , (5.1)

(5.2)

Comparing the above equation with (4.4b), the only differences are the replacement of
µ by η in the Laplacian term and the addition of a term which takes into consideration
the gradient of the viscosity.

Algorithm

We will presently revisit algorithm 4.1, while focusing on the steps where alterations
need to be made for nonlinear rheological equations. To start with, we consider the
predictor step for normal velocity components, i.e. code lines 2-7 in the algorithm.
Since the only difference between the two momentum equations is the replacement of
µ by the apparent viscosity function η, there are two main alterations that need to be
made. For the cell (i, j, k) and face (i+ 1

2 , j, k), we must first compute the apparent
viscosity ηmi,j,k using (3.24) and suitable approximations of the velocity gradient ∇u.
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Subsequently, we need to alter the extrapolation defined in (4.8) to also consider the
velocity gradient terms.

The reasoning why we need to compute approximations of the components of ∇u
is as follows. From (3.24), we know that the apparent viscosity function depends on
the rate-of-strain magnitude alone, i.e. η = η(‖γ̇‖). The tensor can be written out in
full as

γ̇ = ∇u+∇u> =


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z

∂w
∂y

+ ∂v
∂z

2∂2
∂z

 , (5.3)

By using the definition of the tensor norm as given in (2.3), an explicit formula for
the magnitude of the rate-of-strain tensor, which depends only on components of the
velocity gradient, is given by

‖γ̇‖ =

√√√√2
(
∂u

∂x

)2

+ 2
(
∂v

∂y

)2

+ 2
(
∂w

∂z

)2

+
(
∂u

∂y
+ ∂v

∂x

)2

+
(
∂v

∂z
+ ∂w

∂y

)2

+
(
∂w

∂x
+ ∂u

∂z

)2

.

(5.4)

We therefore require cell-centred spatial derivatives of all velocity components in each
direction, allowing us to compute γ̇mi,j,k, and, consequently, ηmi,j,k. The spatial derivatives
are straight-forward to calculate using finite differences based on the available computed
velocity values.

Once the viscosity distribution has been computed, we then need to approximate
the gradient of this field again by finite differences, before finally altering (4.8). The
gradient of the apparent viscosity field is necessary in order to evaluate the term

∇η · γ̇ =


2∂η
∂x

∂u
∂x

+ ∂η
∂y

(
∂u
∂y

+ ∂v
∂x

)
+ ∂η

∂z

(
∂u
∂z

+ ∂w
∂x

)
∂η
∂x

(
∂u
∂y

+ ∂v
∂x

)
+ 2∂η

∂y
∂v
∂y

+ ∂η
∂z

(
∂v
∂z

+ ∂w
∂y

)
∂η
∂x

(
∂u
∂z

+ ∂w
∂x

)
+ ∂η

∂y

(
∂v
∂z

+ ∂w
∂y

)
+ 2∂η

∂z
∂w
∂z

 . (5.5)

With these explicit formulas for computing the stress divergence

∇ · τ = η ∇2u+∇η · γ̇, (5.6)



72 Large-scale simulations of yield stress fluids

we denote by ∂x the finite difference approximation of its x-component, i.e. the
numerical estimate of

(∇ · τ ) · êx = η∇2u+ 2∂η
∂x

∂u

∂x
+ ∂η

∂y

(
∂u

∂y
+ ∂v

∂x

)
+ ∂η

∂z

(
∂u

∂z
+ ∂w

∂x

)
. (5.7)

Note that with the exception of the Laplacian term, in which µ has been replaced by
ηm, all new additions to the extrapolation formulas contain components of the viscosity
gradient. The modified versions of (4.8) are then given by

u
m+1/2,L
i+1/2,j,k = umi,j,k +

(
∆x
2 − u

m
i,j,k

∆t
2

)
(Su)mi,j,k −

∆t
2

(
v̂
∂u

∂y

)m
i,j,k

− ∆t
2

(
ŵ
∂u

∂z

)m
i,j,k

+ ∆t
2ρmi,j,k

(
− (Gxp)m−

1/2
i,j,k + (∂xτ )mi,j,k + fu

)
. (5.8a)

and

u
m+1/2,R
i+1/2,j,k = umi+1,j,k−

(
∆x
2 + umi+1,j,k

∆t
2

)
(Su)mi+1,j,k−

∆t
2

(
v̂
∂u

∂y

)m
i+1,j,k

−∆t
2

(
ŵ
∂u

∂z

)m
i+1,j,k

+ ∆t
2ρmi+1,j,k

(
−(Gxp)m−

1/2
i+1,j,k + (∂xτ )mi+1,j,k + fu

)
. (5.8b)

Similar modifications are necessary for the other velocity components. With a plan for
discretisation and extrapolation in place, lines 1-8 in algorithm 4.1 can be augmented.
Although we are only considering the first component of the momentum balance
equation, and only describing the extrapolation of a single velocity component to one
face, further generalisations follow naturally. In summary, our modified algorithm
should, at each cell centre (i, j, k):

1. Approximate the velocity gradients using finite differences.

2. Compute the magnitude of the rate-of-strain tensor according to (5.4).

3. Evaluate the viscosity as a function of the strain rate magnitude, ηmi,j,k =
η
(
‖γ̇‖mi,j,k

)
, using one of the rheological equations in section 2.2.

4. Approximate the viscosity gradient using finite differences.

5. Extrapolate variables according to (5.8).
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The steps on lines 9-14 do not require any changes for viscoplastic flow, so we
continue to the computation of viscous fluxes, discretisation in time and parabolic
solves. When replacing (4.4b) by (2.29b), the temporal discretisation must be expanded
to include the additional terms arising from viscosity gradients. We replace (4.10b)
and (4.13a) by

u∗ − um

∆t = −[∇·(u⊗u)]m+1/2+ 1
ρm+1/2

(
−∇pm−1/2 + 1

2 (∇ · τ (um) +∇ · τ (u∗)) + f
)

(5.9)
and

u∗− ∆t
2ρm+1/2

∂τ (u∗) = um−∆tD
(
Fm+1/2
u

)
+ ∆t
ρm+1/2

(
−G

(
pm−

1/2
)

+ 1
2∂τ (um) + f

)
.

(5.10)
It is therefore necessary to build a right hand side for the parabolic solve which depends
on the viscosity field. In addition to this, all the viscosity gradient terms as given in
(5.5) must be included. Conceptually, these steps do not encompass many changes,
but there are many small computational considerations involved in expanding the
momentum update equations. Note that the numerical approximation of the stress
tensor utilises ηm regardless of the input velocity, due to the nonlinear dependency an
implicit viscosity would introduce in the parabolic solver. Consequently, the numerical
integration in time is not guaranteed to be of second order. As seen later in this chapter,
however, our results match the time-stepping results from literature accurately. This
drawback is alleviated in the reworked algorithm presented in chapter 7, where the
conservative form of the stress divergence is treated using a second-order Runge-Kutta
scheme.

Handling interfaces between refinement levels

We need to ensure that the dynamic meshing capabilities also work with variable
viscosity. The subcyling procedure with synchronization, as described in section 4.2,
and illustrated in figure 4.3, is performed for the primary variables. Since this includes
the velocity field, whose gradient the apparent viscosity depends on, the latter is also
in sync as long as the finer grids have filled boundary cells so that finite differences
can be computed. But this is guaranteed by the fact that the coarse grid patches
always contain one layer of cells which surround the finer, properly nested patches
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of cells. When a new refinement patch is created, the underlying coarse grid data is
interpolated in order to initialise data at the finer level.

Computation of time step size

Although the original IAMR code utilises a CFL criterion when computing the time
step, it doesn’t allow variable viscosity, so µ must be replaced by the apparent viscosity,
η in (4.19). However, direct substitution results in a computed ∆t which is overly
restrictive for viscoplastic flows where the Bingham number is large. Since such flows
account for many of the scenarios we are interested in being able to handle, we make
an effort to find an alternative viscous CFL coefficient. The problem with direct
maximisation of η is that for viscoplastic flows, the apparent viscosity has a singularity
in unyielded regions. Even for regularised models, very large viscous terms appear
in parts of our domain. On the other hand, Syrakos et al. [64] demonstrated that the
time step size for such flows is actually dependent on the ratio of the Reynolds to
Bingham numbers. In their article, they simulated cessation of Bingham fluids in the
two-dimensional lid-driven cavity, and found that it was sufficient to utilise a time step

∆tSyrakos ∝
Re

Bi + 1∆x2, (5.11)

where the proportionality factor is O(1). Notably, (5.11) does not need to take the level
of regularisation into account (they used Pa = 400). In fact, inserting the numbers
from their study into (4.19) gives the ratio between the two as

Bi + 1
BiPa + 1 ≈

1
Pa , (5.12)

where the approximation holds for large Bi,Pa >> 1. Consequently, the time step is
much smaller than it needs to be, by a factor inversely proportional to the Papanastasiou
number. We therefore remove the dependency of (4.19) on the regularisation parameter,
and instead replace it by

CV = 2µ(1 + Bi)
ρ

max
Ω

(
1

∆x2 + 1
∆y2 + 1

∆z2

)
. (5.13)

for viscoplastic flows.
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Test for convergence to steady-state

Many of the test cases employed for testing viscoplastic fluid codes in the literature
have steady-state solutions, so it is convenient if we can advance our system in time
until such a state is reached. IAMR allows the user to set a stop time and a maximum
number of time steps to advance, and will cancel when either of these is reached.
Additionally, we have added functionality tests for convergence to steady-state if the
user supplies a negative stop time (e.g. tend = −1). We compute the magnitude of the
stress tensor at every time step according to

‖τ‖m = ηm ‖γ̇‖m . (5.14)

Steady-state is signalled as achieved when the largest changes in this magnitude from
one iteration to the next becomes smaller than some user-prescribed tolerance, by
default set to 10−4 following Muravleva and Olshanskii [154].

5.2 Verification: Bingham plastic convergence study

In order to evaluate the convergence of our code for viscoplastic fluids, we consider
plane Poiseuille flow between parallel plates, as discussed in section 2.3. Although
(2.55) gives us the analytical solution for a Bingham fluid, it would not be correct
to use for convergence analysis, since the Papanastasiou regularisation which we are
employing is not an equivalent formulation. We have therefore derived the analytical
solution for a Papanastasiou regularised Bingham fluid, which has never been done
previously.

Recall that plane Poiseuille flow in a channel of width 2W in the y-direction is
driven by a constant applied pressure gradient P/W in the x-direction, resulting in a
steady-state solution with non-zero x-velocity aligned with the channel plates. The
velocity profile is only a function of y, and takes its maximum value at the centre
of the channel, y = 0. The plane y = 0 is a symmetry plane for the solution, so
we solve for y ≥ 0. We take W as the characteristic length, while the characteristic
speed U is the maximum of the unregularised analytical solution. Scaling by these, in
addition to strain rate U/W and stress µU/W, the steady-state governing equations
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in dimensionless form are

∇̂p̂ = ∇̂ · τ̂ , (5.15a)
p̂ = −Po x̂ , (5.15b)

τ̂ =
1 + Bi

1− exp
(
−Pa

∥∥∥ ˆ̇γ
∥∥∥)∥∥∥ ˆ̇γ

∥∥∥
 ˆ̇γ. (5.15c)

Since the only non-zero velocity component is u = u(y), the magnitude of the rate-of-
strain tensor is ‖γ̇‖ = |∂u/∂y|. Furthermore, since u is monotonically decreasing for
y > 0, we have |∂u/∂y| = −∂u/∂y. With this information in place, the first component
of (5.15a) is

− Bi
y0

= ∂

∂ŷ

∂û
∂ŷ

1− Bi
1− exp

(
Pa ∂û

∂ŷ

)
∂û/∂ŷ

 , (5.16)

where y0 = Bi/Po is the location of the yield surface, and the only free parameter in
the unregularised Bingham Poiseuille problem. Equation (5.16) is a separable ordinary
differential equation for ∂û/∂ŷ:

− 2
(1− y0)2 =

(
1 + 2y0Pa

(1− y0)2 exp
(
Pa

∂û

∂ŷ

))
∂

∂ŷ

(
∂û

∂ŷ

)
, (5.17)

For ease of writing, we introduce ξ = 2y0Pa/(1− y0)2. Integrating (5.17) then leads to
an implicit solution for ∂û/∂ŷ, given by

∂û

∂ŷ
+ ξ

Pa exp
(
Pa ∂û

∂ŷ

)
= −2 ŷ − y0

(1− y0)2 , (5.18)

where we have used the fact that ∂u/∂y = 0 at y = 0. In order to obtain an explicit
solution, we rewrite (5.18) in the form

ξePa
∂û
∂ŷ exp

(
ξePa

∂û
∂ŷ

)
= ξe−ξ(ŷ−y0)/y0 . (5.19)

Equation (5.19) is on a form which facilitates the use of the Lambert W function,
defined as the solution to x = W (xex), and consequently also referred to as the product
logarithm. Using the definition of W (x), we get

ξePa
∂û
∂ŷ = W

(
ξe−ξ(ŷ−y0)/y0

)
, (5.20)
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which can be inserted into (5.18) in order to find the explicit solution,

∂û

∂ŷ
= −2 ŷ − y0

(1− y0)2 −
1
PaW

(
ξe−ξ(ŷ−y0)/y0

)
. (5.21)

Using the no-slip boundary condition û(1) = 0, and the identity
∫
W
(
AeBx

)
dx = 1

2B
(
1 +W

(
AeBx

))2
+ C, (5.22)

direct integration and some manipulation then gives the analytical expression for the
velocity profile as

û(ŷ) = 1−
(
ŷ − y0

1− y0

)2

+ y0

2ξPa

((
1 +W

(
ξe−ξ(ŷ−y0)/y0

))2
−
(
1 +W

(
ξe−ξ(1−y0)/y0

))2
)
.

(5.23)
This analytical solution is what we expect our numerical results to converge to, when
taking into account the effect of regularisation.

We emphasise that the newly derived analytical solution given by (5.23) takes into
account the effect of the regularisation parameter on the analytical solution, so that
its influence is removed from the numerical algorithm in our convergence study. We
therefore use a moderate Pa = 100, which in any case is small enough to capture
the yield stress effects on this simple problem, and vary the amounts of grid points
N = 2W/∆x over the channel width. The experiment is repeated for several values
of y0, since we expect the condition number of the numerical problem to increase
with the Bingham number. As seen in table 5.1, the numerical solution converges to
(5.23) with increasing spatial accuracy for all values of y0. Since the analytical solution
is parabolic for the Newtonian case, we achieve a perfect second order convergence
rate, but is drops to slightly lower than two as the yield stress increases. This is as
expected, and the solution in the unyielded region (which is undefined for Bingham
fluids) converges slowest. Following the convergence analysis of Olshanskii [155], table
5.2 shows the corresponding convergence rates when we only consider the yielded region
(ŷ > y0), which are much better even for y0 = 0.5. The ∞-norm is the same, since it
measures the maximum error throughout the domain, which is immediately outside
the yield surface in all cases. Although the strongly non-linear viscosity function
poses a significant numerical challenge, our algorithm performs well. Even more rapid
convergence could possibly be achieved through the use of convergence acceleration
methods such as those discussed by Housiadas [156].
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y0 N ‖ε‖1 r1 ‖ε‖2 r2 ‖ε‖∞ r∞

0 16 3.91×10−3 − 3.91×10−3 − 3.91×10−3 −
32 9.77×10−4 2.00 9.77×10−4 2.00 9.77×10−4 2.00
64 2.44×10−4 2.00 2.44×10−4 2.00 2.44×10−4 2.00
128 6.10×10−5 2.00 6.10×10−5 2.00 6.10×10−5 2.00

0.1 16 4.05×10−3 − 4.99×10−3 − 1.05×10−2 −
32 1.23×10−3 1.71 1.69×10−3 1.57 3.85×10−3 1.45
64 3.51×10−4 1.81 5.26×10−4 1.68 1.31×10−3 1.55
128 9.56×10−5 1.87 1.52×10−4 1.79 4.13×10−4 1.67
256 2.51×10−5 1.93 4.14×10−5 1.88 1.18×10−4 1.81

0.2 16 1.02×10−2 − 1.42×10−2 − 2.49×10−2 −
32 3.33×10−3 1.61 5.01×10−3 1.50 9.45×10−3 1.40
64 1.01×10−3 1.72 1.61×10−3 1.64 3.18×10−3 1.57
128 2.92×10−4 1.79 4.81×10−4 1.74 1.03×10−3 1.63
256 8.06×10−5 1.86 1.36×10−4 1.83 3.12×10−4 1.72

0.5 16 1.22×10−1 − 1.34×10−1 − 1.63×10−1 −
32 4.20×10−2 1.54 4.80×10−2 1.48 6.17×10−2 1.40
64 1.38×10−2 1.61 1.63×10−2 1.56 2.24×10−2 1.46
128 4.38×10−3 1.66 5.34×10−3 1.61 7.64×10−3 1.55
256 1.34×10−3 1.70 1.67×10−3 1.67 2.55×10−3 1.58

Table 5.1: Error norms and convergence rates for plane Poiseuille flow of a Papanastasiou
regularised Bingham fluid with Pa = 100.



5.3 Lid-driven cavity 79

y0 N ‖ε‖1 r1 ‖ε‖2 r2 ‖ε‖∞ r∞

0.1 16 3.12×10−3 − 3.57×10−3 − 6.50×10−3 −
32 8.65×10−4 1.85 1.08×10−3 1.72 3.02×10−3 1.11
64 2.59×10−4 1.74 3.85×10−4 1.50 1.31×10−3 1.20
128 6.75×10−5 1.94 1.08×10−4 1.83 4.13×10−4 1.67
256 1.65×10−5 2.03 2.73×10−5 1.99 1.18×10−4 1.81

0.2 16 5.33×10−3 − 8.01×10−3 − 2.49×10−2 −
32 2.02×10−3 1.40 3.48×10−3 1.20 9.45×10−3 1.40
64 5.57×10−4 1.86 1.06×10−3 1.72 3.18×10−3 1.57
128 1.33×10−4 2.06 2.76×10−4 1.94 1.03×10−3 1.63
256 3.44×10−5 1.95 7.51×10−5 1.88 3.12×10−4 1.72

0.5 16 8.19×10−2 − 9.80×10−2 − 1.58×10−1 −
32 2.37×10−2 1.79 3.12×10−2 1.65 6.17×10−2 1.36
64 6.45×10−3 1.88 9.38×10−3 1.73 2.24×10−2 1.46
128 1.72×10−3 1.91 2.73×10−3 1.78 7.64×10−3 1.55
256 4.52×10−4 1.93 7.76×10−4 1.81 2.55×10−3 1.58

Table 5.2: Error norms and convergence rates for plane Poiseuille flow of a Papanastasiou
regularised Bingham fluid with Pa = 100, using only the solution in the yielded region.

5.3 Lid-driven cavity

In order to validate our code, we consider the two-dimensional lid driven cavity test
case. It is a historically significant and widely used benchmark problem for viscous flow
simulations, and consequently a large amount of reference results exist in the literature.
Our domain is a square of side length L, i.e. Ω = [0,L]2, and is filled with a fluid of
constant density. Initially, the system is at rest. All walls except the top (the “lid”) are
held fixed, so that the boundary conditions on these walls are u = (0, 0). At time t = 0,
the lid is instantaneously prescribed the tangential velocity U , so that the relevant
boundary condition for t > 0 is u = (U , 0). Without any other external forces (f = 0),
this drives a recirculating flow in the cavity, which reaches a steady-state solution for
non-turbulent flow regimes. See figure 5.1 for an illustration of the experimental setup.

We consider the governing equations in dimensionless form by taking L and U as
characteristic length and speed scales, and κ(U/L)n−1 as the characteristic viscosity.
Since Newtonians, power law fluids and Bingham plastics are all special cases of
the Herschel-Bulkley model, we use (2.32b), with the dimensionless Herschel-Bulkley
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Figure 5.1: Schematic illustration of the lid-driven cavity test case.

apparent viscosity as given by (3.31). The relevant dimensionless groups are then

Re = ρU2

κ
(
U
L

)n , HB = τ0

κ
(
U
L

)n , Pa = U
εL
. (5.24)

Recall that the Reynolds number Re is the ratio of inertial forces to viscous ones, while
the Herschel-Bulkley number HB quantifies the effect of yield stress versus power-law
viscosity. It is worth noting that the Reynolds number for Newtonian flow (n = 1) is
ReN = ρUL/µ, since κ = µ in this case.

When we have information about the dimensionless apparent viscosity η̂ throughout
our domain at a given time, we can compute the local Reynolds number field ReL =
Re/η̂. This value, which is proportional to the inverse of the apparent viscosity, provides
insight about which regions of the domain are dominated by the effects of viscoplasticity,
and which ones have near-Newtonian behaviour. Finally, for the special case n = 1,
the Herschel-Bulkley number is replaced by the Bingham number Bi = τ0L/µU , which
allows comparisons with articles written on simulation of Bingham fluids.

In the remainder of this section, we use Pa = 400. It is important to choose a high
enough value of Pa when using regularised schemes, and our choice is based on the
arguments by Syrakos et al. [97], who show that this value results in highly accurate
simulations for the lid-driven cavity problem. The cavity is discretised spatially with
256 cells in each dimension. The lid-driven cavity flow is then uniquely defined by the
choices of Re, n and HB (or Bi, when n = 1).
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Prior to our article [18], reference results for Herschel-Bulkley fluids had not been
presented in the literature. There were, however, plenty of results for power-law
fluids and Bingham plastics. Since these two characterise separate components of the
Herschel-Bulkley model, we tested our code by validating each of them individually.
Evaluation of the full Herschel-Bulkley model and presentation of our novel benchmark
results are given in section 5.4.

Power-law fluids have zero yield stress, and are different from the Newtonian case
when the flow behaviour index is different from unity. They were studied using a
least-squares finite element formulation by Bell and Surana in 1994 [157], who presented
results with n = 1/2 and n = 3/2. A third-order finite volume method with upwinding
was then used to study the same problem by Neofytou in 2005 [158]. The classical way
to compare results from the lid-driven cavity test case is to drive the system to steady
state, and then look at the velocity profiles in each direction at slices perpendicular
to the flow. This ensures that we can compare with results from codes that can only
calculate steady-state solutions.

Figure 5.2 shows our results for power-law fluid velocity profiles, and includes refer-
ence results from the aforementioned papers. Additionally, we include the Newtonian
case with comparisons from the classical paper by Ghia et al. [159]. It is evident that
decreasing n results in less lid-induced kinetic energy propagating further down in the
domain, whereas increasing it has the opposite effect. Our results align very well with
those found in the literature, especially those due to Neofytou, which have the highest
accuracy. We have also included the velocity profile for n = 0.1, in order to illustrate
the significant viscous resistance in the limit n→ 0.

Due to the importance of accurately capturing viscoplastic behaviour, we have
performed extra validation tests for the Bingham model. Figure 5.3 depicts velocity
profiles at Re = 100 and various Bingham numbers, with comparison to the works of
Neofytou [158] and Chai et al. [160]. In the latter reference, a multiple-relaxation-time
lattice Boltzmann model was employed to simulate non-Newtonian fluids. We see
that increasing the yield-stress has an effect on the velocity profiles similar to that
of lowering n for the power-law fluids, although the Bingham fluids have sharper
transitions in the profile (especially noteworthy in the x-velocity). Our results are
in excellent agreement with the relevant references, and we have also extended the
range of Bingham numbers beyond those for which velocity profiles are available in the
literature.
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Figure 5.2: Steady-state velocity profiles for power-law fluids in the 2D lid-driven
cavity, with κ = 10 Pa sn. Left: First component of velocity through the vertical slice
x̂ = 0.5. Right: Second component of velocity through the horizontal slice ŷ = 0.5.

0.0 0.5 1.0

û
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Figure 5.3: Steady-state velocity profiles for Bingham fluids in the 2D lid-driven cavity,
with Re = 100. Left: First component of velocity through the vertical slice x̂ = 0.5.
Right: Second component of velocity through the horizontal slice ŷ = 0.5.
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The second method we use for validation is locating the position of the main
vortex centre within the cavity, at steady-state. A comprehensive study exploring
this dependency was performed in 2014 by Syrakos et al. [98]. We have performed
simulations to steady-state for a large number of configurations of Re and Bi, and the
resulting vortex locations are depicted in figure 5.4, alongside the results of Syrakos et
al. We reiterate what they found in their paper: increasing the Bingham number moves
the vortex upwards and to the right, while increasing the Reynolds number moves the
vortex first towards the right, and then downwards and left to the centre. Our results
agree very well with the reference results for the range of (Re, Bi) pairs covered in that
study. Additionally, we have covered many more large Bingham numbers, obtaining
results which follow the patterns to be expected. This illustrates the capability of our
code to simulate fluids with very large yield stress. Please note that the number next
to each point in the figure is the modified Reynolds number

Re∗ = Re
(Bi + 1) . (5.25)

This is because, following Syrakos et al. [64], it provides a more natural measure of the
transition to turbulence in the high-Bi region. For further discussions on choice of
dimensionless parameters in viscoplastic fluid mechanics, we refer the reader to articles
by de Souza Mendes [161] and Thompson and Soares [162].

The most important validation for viscoplastic fluids, is the accurate determination
of yield surfaces. Finally, we would like to ensure that our time-marching scheme
accurately captures the fluid movement. In order to validate both of these two
attributes, we run a simulation starting from rest and evolving to the steady-state for
the lid-driven cavity. Note that the criteria for the system having reached steady-state
is that the maximum relative change in the stress field from one iteration to the next
is less than some tolerance (in our case 10−5). At this point, we set the lid velocity to
zero, and let the system come to rest again through cessation. When the entire domain
is an unyielded region, we stop the simulation. Although some authors have used
time-stepping schemes to advance the system to steady-state [163;164], we are not aware
of any results illustrating the yield surface development for instantaneous start from
rest. On the other hand, the latter half of this numerical experiment, i.e. cessation of
Bingham fluids from the lid-driven steady-state, was studied numerically by Syrakos et
al. in 2016 [64]. Comparisons with their yield surfaces and time measurements therefore
serve as validation for our code.
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Figure 5.4: Steady-state vortex centre locations for Bingham fluids in the 2D lid-driven
cavity. Empty circles are results from Syrakos et al. [98], while the remaining symbols
are results from the present study. The number next to each point is the corresponding
modified Reynolds number Re∗.
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Results with Re = 1 and Bi = 10 are depicted in figure 5.5. The yield surface is
illustrated as the single black contour line ‖τ‖ = τ0,1 while the heat map shows the
local Reynolds number ReL. Note that the scaling of the color bar is logarithmic (see
top of figure 5.5).

For viscoplastic fluids, unyielded regions occur in two distinct manners. Firstly,
there are so-called stagnant zones, which are connected to no-slip walls and in which
the fluid has zero velocity. On the other hand, unyielded zones with non-zero velocity
are referred to as plug zones. These are not in contact with the walls, and rotate in
the interior of the cavity. In fact, these two types of unyielded zones can never be
in contact with each other, but must be separated by a layer of yielded fluid. This
is because a plug zone connected to a stagnant zone would by association itself be
stagnant, and thus could not move.

The first five plots (a)-(e) show the transition from rest to steady-state. It is clear
that the fluid yields immediately at a very thin layer near the lid, since a large strain is
applied here at t̂ = 0. Additionally, there are yielded regions which quickly propagate
from the top corners and in towards the middle, eventually combining together and
leaving an unyielded plug in the upper middle part of the cavity (a)-(c). This process
occurs very quickly, in less than one percent of the time needed to reach steady-state,
but should in fact happen instantaneously, following the discussion above. The initial
connection between the stagnant zone at the bottom and the rotating plug is a spurious
artefact due to the regularisation approach. Since we regularise the apparent viscosity,
small but non-zero velocities are permissible in unyielded regions.

The steady-state shape of the resulting plug, and the unyielded region at the bottom
of the cavity (e), is characteristic for the chosen pair of Reynolds and Bingham numbers.
Comparisons to results by Syrakos et al. show that the steady-state yield surfaces are
indistinguishable. At this point (t̂ = 0.020552), the lid is abruptly halted and held still.
This removes the driving force for the flow from the system, and leads to cessation of
the flow. Since cessation occurs in finite time for viscoplastic fluids, the cessation time
tc, defined as the time until the entire cavity is in the unyielded state, is an important
characteristic. In order to measure t̂c, we introduce a new time t̃ = t̂ − 0.0205552.
We have chosen four times during flow cessation to compare with Syrakos et al. [64]

and the flow patterns are very similar to their published results. Additionally, our
simulations yield t̂c = 1.2844× 10−3, which is a relative difference of less than 0.9%

1This simple method for determining the yield surface can be improved upon for regularised
constitutive equations, as we discuss and illustrate in chapter 7.



86 Large-scale simulations of yield stress fluids

(a) t̂ = 3.5× 10−6 (b) t̂ = 1.05× 10−5 (c) t̂ = 9.33× 10−5

(d) t̂ = 9.540× 10−4 (e) t̂ = 0.020555, t̃ = 0 (f) t̃ = 3.89× 10−5

(g) t̃ = 6.480× 10−4 (h) t̃ = 1.1664× 10−3 (i) t̃ = 1.2729× 10−3

Figure 5.5: Yield surface and local Reynolds number for time-dependent flow of
Bingham fluids in the 2D lid-driven cavity. The fluid is initially at rest, and gradually
transitions to a steady state (a)-(e). At this point, the lid is stopped, allowing cessation
in finite time (e)-(i).
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compared to the previously published results. Note also the unphysical connection
between stagnant and plug zones in (i), which is in agreement with the results and
discussions of Syrakos et al. [64]. In order to rectify these spurious artefacts, one would
need a very high Papanastasiou number or use an unregularised approach. [165].

5.4 Herschel-Bulkley fluids

The results in section 5.3 validate our code for fluids obeying power-law and Bingham
rheologies, but there are no available comparisons in the literature for Herschel-Bulkley
fluids, which exhibit power-law dependencies in addition to a non-zero yield stress.
Consequently, simulations were performed for viscoplastic fluids with the flow index n
equal to 0.5 and 2.0. In order to cover a wide range of flow behaviours, we also chose
to vary the Herschel-Bulkley number HB and the modified Reynolds number Re∗, as
given by (5.25). For each combination of n, HB and Re∗, the system was advanced
to steady-state, in order to obtain velocity profiles through the centre of the domain
and the final location of the main vortex. These results can be used as benchmark
references for codes simulating Herschel-Bulkley fluids.

Figure 5.6 shows the steady-state velocity profiles for each different parameter
combination. As expected, a small flow index enhances the effect of the yield stress,
resulting in weak velocity variations. This leads to the largely overlapping x-velocity
profiles in the upper left plot, so that the y-velocity profiles in the upper right one
are more useful comparisons. In the lower plots, however, where the fluid acts as a
dilatant above the yield criterion, there is a trade-off between the effects of flow index
and yield stress, so that we obtain large velocity variations throughout the middle of
the domain in both directions.

In figure 5.7, we show the steady-state locations of the main vortex centres for
each Herschel-Bulkley simulation. Comparing the results with figure 5.4, we see the
same effects of increasing HB as for Bi, i.e. vortex moving upwards and to the right.
Similarly, increasing Re∗ results in the vortex moving first right and then down toward
the cavity centre. Both of these observations are as expected, since the dimensionless
groups capture similar aspects of the flow. Additionally, we note that decreasing the
flow index n has a similar effect as increasing the yield stress, moving the vortex centre
upwards and to the right. These additional data points serve as further benchmarking
results for Herschel-Bulkley fluids.
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Figure 5.6: Steady-state velocity profiles for Herschel-Bulkley fluids with n = 0.5 (top)
and n = 2.0 (bottom) in the 2D lid-driven cavity. The legend in the top left plot gives
the combinations of HB and Re∗. Note that for the dilatants with HB = 100, several
lines almost overlap.
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Figure 5.7: Steady-state vortex centre locations for Herschel-Bulkley fluids in the
2D lid-driven cavity with different combinations of flow index n, Herschel Bulkley
number HB and modified Reynolds number Re∗. The number next to each point is
the corresponding Re∗.
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5.5 Applicability of adaptive mesh refinement

The use of AMR improves the efficiency of our algorithm in two different ways,
depending on whether we are interested in steady-state results or transient behaviour.
In the former case, we do not care about intermediate results, and would ideally employ
a large time step. Unfortunately, due to the semi-implicit viscous solves employed in
IAMR, we are unable to reach steady-state for highly resolved simulations by iterating
with large time steps. The large system requires longer run times per time step, and
the time step decreases proportionally with the grid size. On the other hand, we
can rapidly advance a low-resolution simulation to steady-state, and then restart the
simulation with one refinement level enabled throughout the entire domain. Due to
the initial conditions, the finer resolution will converge after a much smaller amount of
iterations. Subsequently, the simulation can be restarted again with a further level
of refinement, and so on. In this manner, the computational expense associated with
time-dependent simulation to a highly resolved steady-state is greatly reduced. As an
example, advancing the 2D case with Re = 1, Bi = 10 to steady-state on a 16-core
desktop computer took 83 minutes and 13 seconds when using a resolution of 2562. By
first advancing a low-resolution system with 642 cells to steady-state (33 seconds), and
then refining the entire domain with two levels, the runtime for obtaining the same
steady-state result is reduced to just under 15 minutes. Due to the built-in checkpoint
functionality in AMReX, restarting simulations with different runtime options in this
manner is straightforward.

In order to illustrate the usefulness of AMR in unsteady simulations, we refer
to figure 5.8, which shows a snapshot during the evolution of a Bingham fluid with
Re = 1000 and Bi = 1 from rest to steady-state with AMR enabled. The base grid
consists of 64 cells in each direction, and two levels of refinement are used to achieve
high resolution near the yield surface. This is done by tagging cells where ‖τ‖ ≤ 1.05τ0

for refinement. Note that due to the patch clustering algorithm described in section
4.2, the area covered by refined grids reduce quite a lot from the first to the second
level, even though the same refinement criterion is used for cell tagging. Consequently,
we only need to use large amounts of computational resources in some regions. Due
to the block-structured AMR implementation, the grid distribution is highly parallel.
Additionally, the temporal subcycling in time ensures that we only need to decrease the
step size in refined cells – not globally. It is important to remember that the potential
gains of using AMR are highly dependent on disparate length scales - the technique
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is ideal for cases where the necessary domain size is much larger than the extent of
features which need to be accurately resolved. Its efficacy is evident in the case shown
in figure 5.8, since the yielded region is a small part of the domain.

5.6 Moving to three dimensions

Since the augmented IAMR code is efficient and parallelises well, it is possible to run
unsteady simulations of fully three-dimensional viscoplastic flows. As an extension of
the lid-driven cavity for Bingham fluids in 2D, we consider a unit cube with stationary
no-slip conditions on the floor and all four walls, while the lid (at ẑ = 1) drives the
flow. The spatial domain is discretised using 256 cells in each directions, i.e. 16,777,216
cells in total. The three-dimensional simulations were run prior to our enabling of
adaptive mesh refinement for viscoplastic flows, and consequently static grids were
employed. As before, the system is initially at rest. When steady-state is reached, we
stop the motion of the lid and allow cessation to take place. Figure 5.9 illustrates how
the yield surface evolves through time. Note that it is still computed as the contour
‖τ‖ = τ0, but in 3D we can actually visualise it as a surface. The snapshot times
in figure 5.9 are similar to those used in figure 5.5, but vary by small factors. Note
also here the presence of numerical artefacts due to regularisation, demonstrated by
connected stagnant and plug zones. Qualitatively, the resemblance with the 2D case
is striking, as the flow clearly goes through the same steps to reach steady-state and
cessation. Having said that, the third dimension allows a richer picture of the shape of
the yield surface. Especially fascinating is the importance of the four vertical edges,
which play a similar role as the 2D corners, and lead to the yield surface stretching
out in four directions from the centre. We emphasise that this is the first time fully
three-dimensional yield surfaces have been presented for the lid-driven cavity case.
Previously, the only 3D results are slices of rigid zones presented by Olshanskii [155]

(finite differences, 262,144 cells), and the color plot slices presented in the bi-viscosity
simulations performed by Elias et al. [166], (819,468 elements).

In figure 5.10, steady-state yield surfaces are shown for various combinations of Re
and Bi. Readers who are familiar with the two-dimensional test case (see e.g. Syrakos
et al. [98]) will recognise the similarity between those results and slices through these
three-dimensional regions. Note that the slices are taken at a slight angle in the
xy-plane. These simulations illustrate the code’s ability to solve the governing PDEs
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Figure 5.8: Illustration of spatio-temporal adaptive mesh refinement for tracking the
development of the yield surface of a Bingham fluid with Re = 1000 and Bi = 1 in the
2D lid-driven cavity. The heatmap shows the magnitude of the stress tensor, which is
what the grid refinement criterion is based on. The coarsest grid has cell spacing 1/64,
but the two refinement layers ensure that the effective resolution near the yield surface
is 1/256.
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(a) t̂ = 1.0× 10−6 (b) t̂ = 1.00× 10−5 (c) t̂ = 6.82× 10−5

(d) t̂ = 8.438× 10−4 (e) t̂ = 1.4913× 10−2, t̃ = 0 (f) t̃ = 3.97× 10−5

(g) t̃ = 4.847× 10−4 (h) t̃ = 7.706× 10−4 (i) t̃ = 1.0564× 10−3

Figure 5.9: Three-dimensional time-evolution of a Bingham fluid in the lid-driven
cavity, with Re = 1 and Bi = 10. The system advances from an instantaneous start
from rest to steady-state, before the lid motion ceases and the fluid stops. The lid
moves in positive x-direction. The shapes of three-dimensional plug regions of this sort
have never been identified for the lid-driven cavity before.
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for time-dependent three-dimensional flows of non-Newtonian fluids following the
Herschel-Bulkley model.

(a) Re = 1,Bi = 1 (b) Re = 1,Bi = 10 (c) Re = 1,Bi = 100

(d) Re = 1000,Bi = 1 (e) Re = 1000,Bi = 10 (f) Re = 1000,Bi = 100

Figure 5.10: Steady-state yield surface for Bingham fluids with various Reynolds and
Bingham numbers in the 3D lid-driven cavity. The lid moves in positive x-direction.

While the shapes of the three-dimensional yield surfaces shown in figures 5.9 and
5.10 provide interesting insight about the three-dimensional effects, they do not provide
quantitative comparisons for other codes for three-dimensional viscoplastic fluid flows.
Consequently, we show the corresponding steady-state velocity profiles in figure 5.11.
The first velocity component is considered on the line x̂ = 0.5, ŷ = 0.5, while the x-
and z-directions are swapped for the third component. As is evident, there are notable
similarities between the two-dimensional simulations, as expected. These profiles can
act as benchmark results for future 3D yield stress simulation codes.
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Figure 5.11: Steady-state velocity profiles for Bingham fluids in the 3D lid-driven cavity,
provided as reference solutions for 3D viscoplastic solvers. The effect of Reynolds and
Bingham numbers is clear. Note that the two cases with Bi = 100 are indistinguishable.

5.7 Parallel performance

We want to ensure that the excellent inherent scalability of IAMR is unaffected by the
extension to generalised Newtonian fluids. As such, we run a test-suite with varying
problem sizes and processor cores for the 3D lid-driven cavity test when the domain is
filled by a Bingham fluid with Re = 1 and Bi = 10. In order to avoid the problems
associated with strong and weak scaling, we vary the number of cores and problem
resolution, but only use few cores for smaller problems and many cores for larger ones.
Subsequently, we compute the rate for the cell updates, which gives proper insight into
the resulting computational efficiency. In order to evaluate the parallel performance
rather than the effect of system state, we use a constant time step, advect the system
by 100 time steps, and measure the average runtime per time step for the next ten.

Figure 5.12 illustrates the results of average run times and rate for the scaling test.
For a given problem size, the reduction in runtime (and increase in rate) is basically
optimal until a core limit is reached. At this point, the MPI communication overhead
becomes too large for further parallelisation, since the grid has already been broken
down too far. However, as the problem gets bigger this core limit naturally increases,
so that the computational rate can continue increasing as long as larger problems are
solved. When simulating at a given problem resolution, it is therefore best to choose
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the lowest amount of cores which maximise the rate. Note that these tests do not
utilise OpenMP tiling and have not been optimised in terms of runtime parameters for
parallelisation (such as maximum size for subgrids), and still the scalability is excellent.
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Figure 5.12: Strong scaling results for simulation of Bingham flow in the 3D lid-driven
cavity. The left plot shows the reduction in runtime per time step as the amount of
processor cores is increased, for various problem sizes. The right plot shows how the
corresponding computation rate grows. Note that both axes are logarithmic in the left
plot, while only the primary axis employs logarithmic scaling in the right one.



Chapter 6

Immiscible displacement flow

Fluid dynamics systems involving more than one fluid are countless, and many are so
heavily characterised by the interactions that their inclusion in the system description
is essential in order to understand it. For this reason, mathematical modeling and
numerical simulation of several fluids has been actively researched for the last half
century. There are numerous mathematical descriptions which capture multi-material
flow, and for each of these a range of algorithms to solve the governing equations.

From a continuum fluid mechanics point of view, multi-material interactions are
used to describe problems where there is a relatively sharp interface between two
materials. Examples of such cases are water/oil separation (liquid-liquid interaction),
penguins swimming through water (solid-liquid interaction) and water splashing into
the air as a result of a surface disruption (liquid-gas interaction). In reality, all these
interfaces are continuous from one material to the other. Moreover, because the length
scale of the interface is far smaller than even the discrete control volumes used for
simulation, it is a good approximation to treat the interfaces as relatively sharp.

The location of the boundary must be tracked as time evolves. The most common
ways of doing this is by the use of advected indicators in the fluid, or using level set
methods, as proposed by Osher and Sethian [167]. The level set function for a region is
initiated such that it is negative inside the region, positive outside it and zero on the
boundary. By taking into consideration the convection of the fluids under consideration,
the level set function is then evolved so that its zeros move with the domain boundary.
Osher and Fedkiw [168] provide an excellent overview of level set methods and their
applications. We will not be delving further into the use such methods now, but will
return to them when treating solid boundaries through the use of cut cells in chapter 7.
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Secondly, any interaction between different fluids across the material interfaces, and
chemical reactions occurring due to these interactions, must be modelled accurately.
In order to do capture thermodynamically consistency in interactions, Fedkiw et
al. developed the ghost fluid method [169]. In ghost fluid methods, each material
has ghost cells on the side of the boundary where the other material exists. The
method has since matured considerably [170–172]. Reactive flows are of special concern
in scenarios of high temperature and pressure, since it can lead to phenomena such as
combustion [173;174]. In our work, we are interested in non-reactive, highly immiscible
interactions between fluids with different densities and rheological parameters. As such,
we can limit ourselves to relatively simple methods in which a passive indicator carries
the information about which fluid is present at each point in space and time.

Noh and Woodward [175] first introduced the advection of a scalar function used to
indicate the volume fraction of each fluid in a cell, a method which was named the
Volume Of Fluid (VOF) method by Hirt and Nichols [176] in 1981. Further development
of the method by Sussman et al. allowed coupling to level-set methods [147], adaptive
mesh hierarchies [177] and three-dimensional flow [178]. Ménard, Tanguy and Berlemont
combined VOF with the ghost fluid method for gas interactions [179]. As such, the
methodology is mature, versatile and well-documented, and is implemented in major
commercial software suites for CFD. Since the interplay between displacing and
displaced fluids is of the utmost importance in cement displacement simulations, we
therefore needed to implement the methodology in our code.

6.1 Variable density: Rayleigh-Taylor instability

Before endeavouring to simulate displacement of a fluid with certain rheological prop-
erties by another one with different ones, it is worth pointing out that the projection
method as implemented in IAMR allows variable density flow. In practice, this means
that we can prescribe a density jump over a sharp interface in our domain, and
thus simulate the effects of body forces acting on fluids with different densities. The
Rayleigh-Taylor instability is a famous class of interface problems in which fingering
occurs between two liquids of different density [180]. In its most simple form, it can
consist of a heavy fluid located above a lighter one, with gravity acting on them both.
Any slight perturbation in the interface between the fluids will lead to local pressure
variations, which quickly develop into columns of displaced fluids.
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In order to investigate this effect within the existing capabilities of IAMR, we
simulate a test problem initially proposed by Tryggvason [181]. A two-dimensional
domain Ω = [0,L]× [0,H] is filled with a heavy fluid of density ρH on top of a lighter
one of density ρL, with a small initial perturbation in the interface separating them.
The initial perturbation of the interface is given by

yp(x) = H2 + L10 cos
(2πx
L

)
. (6.1)

With the gravitational acceleration g as the driving force, a characteristic velocity is
U =

√
gL. Aside from the aspect ration H/L, there are two dimensionless groups

of interest. Firstly, taking ρL as the characteristic density, the Reynolds and Galilei
numbers reduce to the same quantity, since

Re = ρLUL
µ

= ρLg
1/2L3/2

µ
= ρLgL2

µ
√
gL

= |f |L
2

µU
= Ga. (6.2)

Additionally, the difference in densities is quantified through the Atwood number

A = ρH − ρL
ρH + ρL

. (6.3)

Following Tryggvason [181] and later numerical studies by Guermond and Quartapelle [182]

and Hosseini et al. [183], we take H = 4L and A = 1/2. Tryggvason considered the
inviscid case, but since we have capabilities for solving viscous flows, we copy the latter
two references and let Re = 3000. For temporal comparisons, we scale by Tryggvason’s
characteristic time length

√
gA/L, which is independent of viscosity. To avoid a sharp

discontinuity in the initial conditions, the density at time zero is slightly smoothed out
according to

ρ(x) = ρL + 1
2 (ρH − ρL)

(
1 + tanh

(
y − yp(x)
L/100

))
. (6.4)

Figure 6.1 shows how the initial perturbation evolves into a turbulent Rayleigh-
Taylor instability. Comparisons of our results with those of Hosseini et al. [183], which
are the most recent and accurate of the numerical studies in the literature, clearly show
the same behaviour. However, our code has been run with a base grid of 128 cells in
addition to two levels of adaptive mesh refinement on the interface, leading to a very
high local refinement (∆x = D/512). This allows us to capture much more detail in
the regions which display turbulence.
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(a) t̂ = 0 (b) t̂ = 1.1156 (c) t̂ = 1.6641 (d) t̂ = 2.2151 (e) t̂ = 2.7686 (f) t̂ = 3.3215

Figure 6.1: Temporal evolution of the density field in the Rayleigh-Taylor problem.
The small initial perturbation develops into complex fingering structures displaying
turbulent mixing of the heavy and light fluids.

In order to validate the results quantitatively, we have traced the topmost position
of the light fluid and the bottom of the heavier one, as time evolves. Figure 6.2 displays
our results alongside those of the other authors [181–183]. We match the results by
Hosseini et al. perfectly. As described in their paper, the inviscid study by Tryggvason
gave a slightly slower penetration of the heavier fluid downwards, while Guermond and
Quartapelle saw a somewhat slower rise in the lighter fluid. We take the fact that our
results match those produced in Hosseini et al., who utilised a refined algorithm for
the Navier-Stokes-Cahn-Hilliard equations, as a strong validation for IAMR.

6.2 Volume of fluid method in IAMR

Presently, we further extend the capabilities of the IAMR code, to systems containing
multiple generalised Newtonian fluids. This necessitates the use of a passively advected
scalar to indicate the locations of each fluid as the system evolves in time. To ensure
that the two-fluid extension works as expected, we validate our code against the two-
dimensional displacement flow of a Bingham fluid by a Newtonian fluid along a plane
channel. When the yield stress of the Bingham fluid is high enough, this generates
static wall layers, as illustrated by Wielage-Burchard and Frigaard [184].
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Figure 6.2: Comparisons of our results with those in the literature for front tracking
of each of the two fluids. Tryggvason utilised Lagrangian-Eulerian vortex methods
for inviscid flow in 1988 [181]. Guermond and Quartapelle then implemented a second-
order finite element projection algorithm in 2000 [182], while Hosseini et al. applied
Galerkin-based isogeometric analysis to the Navier-Stokes-Cahn-Hilliard equations in
2017.
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In order to describe immiscible two-fluid flow, we introduce a passive scalar λ(x, t) ∈
[0, 1] which plays the role of an indicator, and let the simulated fluid properties be a
function of this indicator. In addition to extending (2.29) by an advection equation for
λ, the apparent viscosity must now depend on this scalar. For this system, the fluid
motion is therefore governed by

∂ρ

∂t
+ u · ∇ρ = 0, (6.5a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + f , (6.5b)

∂λ

∂t
+ u · ∇λ = 0, (6.5c)

τ = η (‖γ̇‖ , λ) γ̇, (6.5d)
∇ · u = 0, (6.5e)

completed by a suitable constitutive equation as introduced in section 2.2. In general,
(6.5c) includes a diffusive term proportional to ∇2λ on the right hand side, in addition
to a forcing term, but for the case of immiscible and non-reactive flow which we are
studying, they are both zero.

Finally, we need to ensure that the model encapsulates the dependency of the
apparent viscosity on which fluid is present at a given point. The extension of
viscoplastic flow in the IAMR framework to incorporate several fluids is the main
motivation for the present work. For Newtonian fluids, whose viscosity is given by a
constant dynamic coefficient µi in the fluid i, this is done by linear interpolation based
on λ. For a system of two fluids, i ∈ {1, 2}, we therefore take

µ(λ) = λµ1 + (1− λ)µ2, (6.6a)

so that µ = µ1 when λ = 1 and µ = µ2 when λ = 0. For Herschel-Bulkley fluids,
which use two additional parameters to describe the apparent viscosity, we simply take
similar averages to obtain the apparent flow index and yield stress:

n(λ) = λn1 + (1− λ)n2, (6.6b)
τ0(λ) = λτ0,1 + (1− λ)τ0,2. (6.6c)
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6.3 Plane channel displacement flow

As a validation problem, we consider the displacement of a Bingham fluid by a
Newtonian in a plane channel, as described by Wielage-Burchard and Frigaard [184].
Our domain is a two-dimensional duct of width 2W and length L. Through the duct,
there is a flow with mean x-velocity U across its width. In the absence of external
forces, this corresponds to a plane Poiseuille flow, for which analytical solutions exist
both for Newtonian and Bingham fluids. Initially, the domain is filled with a Bingham
fluid, indicated by λ = 1. The properties of this fluid are µ1 = 1 Pa s and τ0,1 = 100 Pa.
We initialise the velocity profile as the steady-state analytical solution for Bingham
fluids, given by

u(ŷ) = umax,1 ·

1, |ŷ| ≤ y0,

1−
(
|ŷ|−y0
1−y0

)2
, y0 < |ŷ| ≤ 1,

(6.7)

where
umax,1 = (1− y0)2

2y0
· τ0,1W

µ1
(6.8)

is the maximum velocity of the fluid, occurring in the plug region |ŷ| < y0. Note that
we have scaled lengths by the channel half-width W . The characteristic dimensionless
distance y0 is found by demanding

∫ 1
0 u(ŷ)dŷ = U , resulting in the cubic equation

y3
0 − 3

(
1 + 2µ1U

τ0,1W

)
y0 + 2 = 0, (6.9)

which can be solved numerically for y0.
At time t = 0, we inject a Newtonian fluid with dynamic viscosity µ2 = 10 Pa s at

the left-hand side of the duct. This is achieved through an inflow boundary condition
where λ = 0 and the velocity profile is

u(ŷ) = 3
2 U(1− ŷ)2). (6.10)

We set W = 1 m, L = 10 m, U = 1 m/s, Pa = 200 and use 128 cells across the
channel width to obtain high-resolution color plots. Figure 6.3 shows the resulting
distributions of the indicator λ, x-velocity magnitude u and strain rate magnitude
‖γ̇‖ after 3.4 s. Note that due to the high Bingham number (Bi = 100), residual wall
layers of fluid 2 remain along the top and bottom walls. The velocity profile follows
the Bingham profile downstream of the displacement front (for this case, we have
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y0 ≈ 0.86), while a quadratic profile develops between the stationary residual wall
layers upstream of the front.

Figure 6.3: Snapshots of the plane channel displacement flow at t = 3.40 s, depicting
the indicator (top, dimensionless), x-velocity (middle, m/s) and strain-rate magnitude
(bottom, s−1). In each case, the distribution in the full duct [0,L]× [−W ,W ] is shown.

In order to obtain a quantitative comparison with the results of Wielage-Burchard
and Frigaard [184], we run the simulation until steady-state with 32 cells across the
channel width. Slices through the centre of the domain are shown in figure 6.4, with
the reference results superimposed. As is evident, there is excellent agreement between
our model and the reference. The residual wall layer is clearly captured, inside of which
the parabolic profile shows the coexistence of Newtonian and Bingham fluids in the
channel.



6.3 Plane channel displacement flow 105

0 1

y (m)

0

1

c
(–

)

0 1

y (m)

0

1

2

u
(m

/s
)

Reference

This study

0 1

y (m)

0

2

4

||γ̇
||

(s
−

1
)

Figure 6.4: Comparisons of plane channel displacement results with Wielage-Burchard
and Frigaard [184] for validation of the volume of fluid implementation in our our code.
We look at the variation at x = 5 m. Our indicator function is sharper than the
reference, but we obtain the same static layer width, as is evident from the profiles of
x-velocity and strain-rate magnitude.





Chapter 7

Embedded boundaries for complex
domain geometries

Perhaps the most important feature apart from the ability so solve the governing equa-
tions, is the ability to do so in and around geometrically interesting shapes. Although
the work in previous chapters demonstrated how state-of-the-art computational tech-
niques facilitate simulations which were previously considered too expensive, the code
did not have any way of dealing with non-trivial domain geometries, and consequently
could only be used to simulate flow in simple domains (rectangles in two dimensions
and right rectangular prisms in three). We therefore extend the software package to
non-trivial geometries through the use of embedded boundaries (EBs). This was a
natural extension of our work, and the embedded boundary approach was particularly
well-suited to the structured mesh discretisation. Additionally, the AMR capabilities
of the underlying software suite, AMReX, go hand in hand with embedded boundaries,
allowing viscous boundary layers to be fully resolved through localised mesh refinement.

The need for new and improved numerical tools for simulating viscoplastic flow
phenomena is especially clear for problems with geometrical structures playing an
important role, such as the recent work by Koblitz et al. [185], which would not be
practically possible within current software packages without considering the 2D steady-
state problem. Having said that, there are notable advances being made, such as a
study on the transition to turbulence of viscoplastic fluids past a cylinder in 3D, which
was simulated using Papanastasiou regularisation for small Bingham numbers [186].
A recent example of unsteady flow with fluid particle interactions is the study of
time-dependent hydrodynamic interaction of 2D particles by Chaparian et al. [187]
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Numerical simulations in the presence of complex boundaries can broadly be
sorted by whether they use structured or unstructured grids. Both types of grids
are widely utilised, and an overview of the usage of each in published simulations of
yield stress fluids is provided in the review by Saramito and Wachs [89]. By definition,
the difference between structured and unstructured grids is that the former requires
regular connectivity of cells, while the latter does not. Consequently, the two types of
grids have different advantages. Unstructured meshes have the advantage of greater
geometric generality, while structured grids, which can incorporate geometric complexity
with an embedded boundary approach, require storage of less geometric information.
Algorithms on structured meshes can therefore exploit the excellent data storage for
higher computational efficiency.

Non-Cartesian geometries are cut out of the underlying grid by storing local data
representing the interface within each cell which contains part of the geometry. The
methodology has several attractive qualities: rapid mesh generation regardless of
complex geometries [188]; avoidance of locally skewed grids; inherent compatibility with
quad- and octree adaptive mesh refinement (AMR); and retainment of the efficient and
user-friendly data storage associated with structured grids. Special consideration must
be taken to augment computational stencils and other algorithmic tools for and near
the cut cells, but the technique nevertheless offers a rapid and relatively simple way of
incorporating non-rectangular geometries without sacrificing the efficiency associated
with structured grids.

Over the last decades, the embedded boundary method has matured and become
a robust tool. The idea was first used by Purvis and Burkhalter in 1979 [189], and
subsequently, Wedan and South [190] to solve potential flow problems. Throughout the
1980s, the method was extended to solve the compressible Euler equations [24;191;192],
which forms the basis for the general hyperbolic treatment of Colella et al. which we
follow [193]. Since we are studying an incompressible system, we also require the solution
of Poisson equations, which was published by Johansen and Colella in 1998 [194]; a feat
which they and McCorquodale naturally extended to solutions of the heat equation a
few years later [195]. Developing novel and improved schemes for embedded boundaries
is still an active area of research [196–198].

Designed for computational speed and robustness, the AMReX framework facilitates
efficient usage of Cartesian structured grids, and has extensive built-in support for
EBs. We thus saw an opportunity to implement the first viscoplastic flow solver within
such a framework, which one would expect to perform very well [153].
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7.1 Revisiting the incompressible flow solver

When studying the background literature for embedded boundaries, it quickly became
evident that although cell-wise operations only require alteration in cut cells and
their neighbours, the required alterations within these cells grow rapidly with the
complexity of the computations in regular cells. Specifically, algorithmic steps like
the Godunov-type extrapolation and upwinding, which in any event are designed
for convection-dominated flows, are unnecessarily complicated to implement for the
problems which we are interested in. Additionally, the development of EB tools
for AMReX in general were in its early stages when we started working on this, so
incorporating all the functionality directly into a code as large and complex as IAMR
was not a logical first step. For these reasons, we started the EB work in a new
code called incflo, which, although similar to IAMR in its fundamental algorithm,
has simpler procedures for convective terms and predictor/corrector updates, and did
not have to inherit such a large amount of legacy code. A simple analysis of the
relevant repositories gives a case in point: incflo consists of approximately 10,000 lines
of code, whereas IAMR has 66,000. Moreover, we used all the previous verification and
validation tests for IAMR during development of incflo, and found no loss of accuracy.

For the sake of clarity, we omit communication across refinement levels in the
following description of the incompressible flow solver. Although the functionality
required for multiple adaptive refinement levels is contained in the code we developed,
the focus of our research was to enable viscoplastic flow simulation with an embedded
boundary approach. This was ambitious enough without mixing in AMR usage, which
would entail an extra level of debugging complexity and require additional validation.
Consequently, we prioritised single-level simulations in the algorithmic development,
and although we performed some simulations with refinement based on volume fraction,
it was only for Newtonian flows and not extensive enough to include in our results.
Instead, we focus on the steps required to move the system forward one time step on a
single refinement level. Although the software is general enough to handle variable-
density incompressible flows through a conservative advection of ρ, we only consider
cases where it is constant, and consequently do not discuss conservative density updates,
which in any event are trivial compared to the velocity terms.

We follow a MOL approach as discussed in section 3.1, in which the momentum
equation as given by (2.29b) is only discretised in time, so that Runge-Kutta type
schemes for ordinary differential equations (ODEs) can be utilised for the temporal
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advancement. We affix a superscript to the simulated variables at the m-th time
step, so that the time itself is tm and the velocity profile um. Algorithm 7.1 gives the
pseudocode to advance the simulation from time step m to m+ 1, as a reference for
our upcoming discussion.

Algorithm 7.1 Advance simulation one time step
1: function Advance(tm,um, pm)
2: ApplyBoundaryConditions(∂Ω)
3: ∆t := TimeStepSize(tm,um, pm)
4: procedure Predictor
5: Cm, ηm,V m := DerivedQuantities(um)
6: C ← Cm

7: η ← ηm

8: V ← V m

9: ψ ← ρum + ∆t (ρC + V −∇pm + f)
10: ũ∗ := UpdateVelocity(∆t, η,ψ)
11: u∗, p∗ := NodalProjection(∆t, ũ∗)
12: end procedure
13: procedure Corrector
14: C∗, η∗,V ∗ := DerivedQuantities(u∗)
15: C ← 1

2 (Cm +C∗)
16: η ← 1

2 (ηm + η∗)
17: V ← 1

2 (V m + V ∗)
18: ψ ← ρum + ∆t (ρC + V −∇p∗ + f)
19: ũm+1 := UpdateVelocity(∆t, η,ψ)
20: um+1, pm+1 := NodalProjection(∆t, ũm+1)
21: end procedure
22: tm+1 := tm + ∆t
23: m← m+ 1
24: end function

After applying boundary conditions and computing the time step size according
to (4.17), with the viscous Courant number replaced by (5.13), as derived in chapter
5, we perform a two-step Runge-Kutta scheme with a predictor and a corrector step.
The pseudocode in each of the procedures Predictor and Corrector has been
written so as to highlight the similarities between them. Although we are dealing with
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a multi-step algorithm including projections within each procedure, this elucidates the
classic Runge-Kutta scheme underlying the temporal integration.

The first step within each of the procedures is to compute the quantities which
are directly derived from the velocity field and its gradients. The relevant pseudocode
is given in algorithm 7.2. In order to capture convection within the fluid, a slope-
based upwinding procedure is utilised. However, in contrast to the Taylor expansion
procedure utilised to extrapolate variables to cell faces at tm+1/2 in IAMR, we linearly
interpolate the slopes directly, which is much easier to implement and computationally
less intensive. Velocity slopes are computed within each cell by comparing values in
neighbouring cells, according to the procedure outlined in 3.2. With one extrapolated
value from each of the two cell adjacent to the face, a simple upwinding algorithm is
utilised. The normal velocity components are treated first, and subsequently used as
the background field when upwinding the transverse components.

These upwinded, extrapolated values at faces allow us to compute the convective
term C = −u · ∇uF as a flux term, since, by the chain rule, we have .

∇ ·
(
u⊗ uF

)
= u · ∇uF + (∇ · u)uF = u · ∇uF , (7.1)

where the last equality holds due to the incompressibility constraint in (2.19). Before
doing this, however, we must enforce that constraint by projecting the face-based
extrapolated velocity ũF onto the space of solenoidal vector fields. This is necessary
since the values extrapolated by upwinding the slopes are not necessarily divergence-
free. Recalling section 3.3, the Helmholtz decomposition allows us to write any vector
field as a sum of solenoidal and irrotational parts, so we define

ũF = uF +∇φ, (7.2)

where uF has zero divergence and ∇φ, being a scalar gradient, is irrotational. Taking
the divergence of (7.2) leads to a Poisson equation for φ,

∇2φ = ∇ · ũF , (7.3)

which is straightforward to solve and which allows us to compute the divergence-free
velocity field uF . Since the three components of u are extrapolated to separate faces,
the unknown scalar φ must be cell-centred in order for its gradients to end up on the
corresponding faces. For this reason, this projection is referred to as a cell-centred
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projection, although it has previously been referred to as the MAC projection due to its
historical links to the spatial discretisation in the original marker and cell method [199].

Algorithm 7.2 Compute derived quantities: convective term, apparent viscosity and
explicit viscous term

1: function DerivedQuantities(u)
2: s =ComputeSlopes(u)
3: ũF = ExtrapolateToFaces(u, s)
4: uF = CellCentredProjection(ũF )
5: C = −u · ∇uF . Convective term
6: ‖γ̇‖ =

∥∥∥∥∇uF +
(
∇uF

)>∥∥∥∥ . Strain rate magnitude
7: η = η(‖γ̇‖) . Apparent viscosity
8: V = 1

ρ
∇ ·

(
η (∇u)>

)
. Non-linear stress divergence

9: return C, η,V
10: end function

With the convective terms in place, the next step is to compute the viscous terms.
Since viscous terms dominate in many of the problems we are interested in, and since
they can lead to overly restrictive time step criteria when treated explicitly, we opt for
a semi-implicit temporal discretisation. Rather than sticking to the method employed
in IAMR, however, we take advantage of the conservative form of the viscous stress
tensor as pointed out by Balakrishnan et al. [200]. Noting that the stress divergence is

∇ · τ = ∇ · (ηγ̇) = ∇ · (η∇u) +∇ ·
(
η (∇u)>

)
, (7.4)

and thus contains one term with purely unmixed derivatives in u, and one with mixed
and transverse derivatives, we treat the former implicitly and the latter explicitly. This
is due to the fact that the unmixed term is of a compatible layout with the temporal
derivative of u, and can readily be set up for a linear solve. The explicit viscous term,
derived from the input velocity is therefore

V = 1
ρ
∇ ·

(
η (∇u)>

)
, (7.5)

where η (via ‖γ̇‖) is calculated from the face-centred extrapolated velocity components
uF , as shown on lines 6-8 in algorithm 7.2. Note that one of the rheological constitutive
equations in chapter 2.2 must be specified for the simulation.

In the predictor, the derived quantities from the input velocity um are used directly
in the velocity update. In the corrector, on the other hand, the derived quantities are
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first computed from the predictor’s output velocity u∗, before the average is calculated
and utilised in the update. See lines 6-8 and 15-17 in algorithm 7.1. The semi-implicit
velocity update consists of solving the system

(ρ−∆t∇ · (η∇)) ũ = ρu+ ∆t (ρC + V −∇p+ f) (7.6)

with respect to ũ, the new-time velocity.
It is necessary to apply another projection in order to enforce the incompressibility

constraint for the new velocity. Conveniently, we can update the pressure at the same
time. The two equations

ũ− uold

∆t = −u · ∇u+ 1
ρ

(∇ · τ + f) (7.7a)

unew − ũ
∆t = −1

ρ
∇p (7.7b)

sum to a MOL discretised version of (2.29b), and the latter is of the form of a Helmholtz
decomposition, just like (7.2). We therefore add the pressure gradient term back to
the new-time velocity,

ũ← ũ+ ∆t
ρ
∇p (7.8)

before solving the Poisson equation

∇ ·
(

∆t
ρ
∇pnew

)
= ∇ · ũ, (7.9)

for pnew, and obtain the new, divergence-free velocity field

unew = ũ− ∆t
ρ
∇pnew. (7.10)

Note that in this projection, all velocity components are stored on cell centres, and the
pressure is thus nodal. Consequently, we refer to it as the nodal projection. It is in
fact a second-order accurate approximate projection method, the likes of which have
been thoroughly analysed by Almgren et al. [201]. The predictor outputs the velocity
field u∗ and pressure p∗, while for the corrector the corresponding variables are um+1

and pm+1. After the corrector, ∆t is added to the current time, and m is incremented,
before continuing on to the next time step.
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7.2 Embedded boundary treatment

The EB approach allows us to retain the block-structured adaptive mesh which AMReX
is built for, while simulating flow in non-rectangular domain boundaries. An arbitrary
implicit signed distance function, commonly referred to as the level-set function, is
used to describe the geometry. It is discretised as planar intersections with each cell.
The intersections are continuous at cell faces, which means that they are piecewise
linear everywhere. Figure 7.1 illustrates the level-set function and embedded boundary
representation for a simple circle in a 8× 8 2D grid. Cells are identified by their index
vector i = (i, j, k).

Fluid
λ < 0

Solid
λ > 0

λ = 0

(a) Level set function λ(x) (b) Discretised grid with cut cells

Figure 7.1: Two-dimensional embedded boundary representation of a circular solid
region. The example shows how a solid boundary can be represented by a spatially
varying level-set function, and how this can be discretised in order to obtain a numerical
mesh with planar intersections within each cut cell.

We store a flag in each cell marking it as either uncovered (normal), covered
(ignored), or cut. In the latter case, additional data is stored within the cell, so that
we can take geometrical information into account for computations in that cell. Since
we only consider single-valued cut cells, only four numbers are necessary to uniquely
define the cut cell, namely the three components of the boundary surface unit normal
nEB plus the volume fraction α ∈ (0, 1) of fluid within the cell. We orient nEB so that
it points into the fluid domain, and let α = 0 for covered cells and α = 1 for uncovered
ones. Although these quantities describe the cut cell, several helpful additions are
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available in the EB framework provided by AMReX, such as the uncovered area
fractions on each face, the volume centroid of the fluid, and the area and centroid of
the embedded boundary. Figure 7.2 illustrates the cut cell and the relevant quantities
for our computations. For details on the EB implementation, we refer to the AMReX
documentation, and for an explanation of how EB data is computed from a signed
distance function, the reader is referred to the paper by Gokhale et al. [198]

n̂

(a) 3D view

n̂

α

1− α

Ax,−

Ay,+

Ax,+

Ay,−AEB

(b) 2D view of xy-plane

Figure 7.2: Schematic illustration of the Cartesian cut cell viewed in 3D (left) and
through a slice with constant z (right). The plane representing the embedded boundary
is marked in red, and its surface normal vector n points from the covered solid region
to the uncovered fluid domain with volume fraction α. The right plot also shows the
relevant surface areas.

All variables in our simulations are stored at the same cell positions, regardless of the
cell type. This has the strong advantage of allowing us to avoid altering computational
stencils for calculating extrapolated values on faces or approximating gradients based on
neighbouring cells which are cut. We only need to worry about the cut cells themselves,
which can have covered (and thus undefined) neighbours.

The functionality provided by the AMReX framework facilitates simple solutions
to many of the complex subproblems we encounter. For example, all linear systems
solved in our software utilises AMReX’ built-in solvers for EB systems. The EB tools
built in to the linear solvers for systems of linear equations (solutions to the Poisson
equations) are based on the work of Johansen and Colella [194].
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Flux computations

Our main challenge algorithmically is to successfully compute the derived quantities
within each cut cell, i.e. the convective term C, the rate-of-strain tensor magnitude
‖γ̇‖, the apparent viscosity η and the viscous term V . It is crucial that this is done in
a manner which avoids time step constraints resulting from small cut cell volumes.

Let us first consider terms which can be written as the divergence of a flux F , i.e.

D = ∇ · F . (7.11)

For these, we utilise the flux redistribution technique for embedded boundaries as
developed by Colella et al. [193;202]. Applying the divergence theorem to a cut cell control
volume, we find that

DC
i = 1

Vi

∫
Ωi

∇ · F dV = 1
Vi

∫
∂Ωi

F · dA = 1
Vi

Ni∑
f=1

AfF · nf (7.12)

is a conservative estimate of D. Here, Vi = αi∆x∆y∆z is the cell volume, Ni is the
number of faces (EB or otherwise) enclosing the cell, and Af is the uncovered surface
area of the face f , while nf is its normal vector. For all non-EB faces, we can evaluate
the flux tensor F just as for uncovered cells, since physical variables are stored at cell
centres. Consequently, the slope computation and upwinding procedures do not need
to be altered for EB cells except that one-sided upwinding is applied in the case of
covered neighbouring cells. In other words, we just need to use the EB information
to extrapolate F to the uncovered face centroid and multiply it by the corresponding
face area. Subscripting fluxes and area fractions in direction d by + at one end and −
at the other, (7.12) can be written

DC
i = 1

Vi

∑
d∈{x,y,z}

(Fd,+Ad,+ − Fd,−Ad,−) · êd + 1
Vi
FEBAEB · nEB, (7.13)

and the only special consideration required is the evaluation of the flux tensor at the
EB centroid, FEB. Figure 7.3 displays these fluxes in a 2D slice of the cut cell.

The downside of the conservative flux as computed in (7.13) is that the so-called
small cell problem arises in the explicit temporal discretisation [203;204]. The time step
size is restricted since it is proportional to α, which can be arbitrary small in cut
cells. In order to circumvent this, we define a non-conservative approximation to the
divergence as an average of the conservative approximations in the neighbourhood of
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Fx,−

Fx,+

Fy,−

Fy,+

FEB

Figure 7.3: Decomposition of fluxes employed in the cell-averaged evaluation of diver-
gence. Summation of these fluxes multiplied by cell surface areas leads to a conservative
estimate of the divergence of the flux field.

the cell,

DNC
i =

∑
i′∈N (i)

αi′D
C
i′∑

i′∈N (i)
αi′

. (7.14)

We define the neighbourhood as the set

N (i) =
{
i′ ∈ Z3 : min|i− i′| = max|i− i′| = 1, αi′ > 0

}
, (7.15)

i.e. all uncovered or cut cells whose index vector components differ by at most one from
i, except cell i itself. A linear hybridisation of the conservative and non-conservative
flux approximations is then given by

DH
i = αiD

C
i + (1− αi)DNC

i . (7.16)

Note that this hybrid flux approximation has the desired behaviour in the limits of
αi ∈ [0, 1], and removes the effect of the local volume fraction on the time step size.

Although the hybrid flux stabilises the CFL restriction, it does not strictly enforce
conservation. The excess material lost or gained due to the usage of (7.16) rather than
(7.13) is

δDi = αi
(
DC
i −DH

i

)
= αi(1− αi)

(
DC
i −DNC

i

)
, (7.17)
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and this excess must be redistributed back to the cell neighbours. This is done with
the use of weights wi,i′ ≥ 0 which quantify the fraction of δDi redistributed to cell i′,
and which must satisfy ∑i′∈N (i) wi,i′αi′ = 1 for strict conversation. We use the simple
weights

wi,i′ = 1∑
i′∈N (i)

αi′
, (7.18)

which are actually independent of i′. The final, discrete approximation to the divergence
operator is thus

Di = DH
i +

∑
i′∈N (i)

wi′,iδDi′ . (7.19)

Convective term

Seeing the convective term as the divergence of a tensor flux, C = ∇·FC , we can apply
the procedure outlined above in order to compute the convective term in EB cells. Note
that we enforce an inhomogeneous Dirichlet condition on u at all EB walls, so that
the components of the convective flux tensor are all zero there: FC

EB = u⊗ uEB = 0.
As such, we do not need to make any special considerations for the convective fluxes at
embedded boundaries. This is in contrast to the viscous wall fluxes, which we will deal
with next.

Viscous term

The flux tensor arising from the viscous term is F V = η (∇u)>, which can be non-zero
on the EB surfaces. We therefore need a procedure to compute the viscous wall flux at
the EB surface centroid b, which is given relative to local cut cell coordinates, where
the cell centre is the origin. To this end, we compute the gradient of each velocity
component along the EB surface normal vector nEB. In order to achieve this, we utilise
AMReX’ built-in biquadratic interpolation routine to find the value of u at two points
located at distances d1 and d2 from the EB surface centroid b. Figure 7.4 illustrates
the interpolation points for an example cut cell.

We start by finding which is the largest component of the surface normal vector.
The biquadratic interpolation will be done in planes where the corresponding coordinate
is held fixed. Consider the case when max(nx, ny, nz) = nx, as in figure 7.4. In order
to make sure that we are moving away from the EB, we let s = sign(nx) and define
the interpolation points as those where the line b+ dn intersect the planes x = s and
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i i+ 1 i+ 2

j − 1

j

◦

◦

◦

◦

◦

◦b n̂
×

× b+ dn̂

Plane 1 Plane 2

Figure 7.4: Computation of viscous wall fluxes at the EB centroid of cell i, j, k. The
red line represents the embedded boundary, which cuts the cell such that its surface
centroid and normal are b and n, respectively. In this example, the largest component
of the surface normal is in the x-direction, so we interpolate to the points marked with
crosses in the yz-planes corresponding to i+ 1 and i+ 2.

x = 2s. The corresponding distances from b are

d1 = s− bx
nx

, d2 = 2s− bx
nx

. (7.20)

We can thus find the y and z coordinates, and utilise biquadratic interpolation to
obtain velocity values based on the 9 nearest points in the plane.

Given a set of n+ 1 real values yi at data points xi for i ∈ {0, . . . , n}, polynomial
interpolation seeks to find a polynomial curve whose curve passes through each of
them. The Lagrange form of the interpolant is given by

f(x) =
n∑
i=0

yi
∏
j 6=i

x− xj
xi − xj

, (7.21)

so that it’s derivative is

∂f

∂x
=

n∑
i=0

yi

∑
j 6=i(x− xj)∏
j 6=i(xi − xj)

=
n∑
i=0

yi
nx−∑j 6=i xj∏
j 6=i(xi − xj)

. (7.22)

The polynomial interpolant is unique and accurate to order n.
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Denoting the interpolated velocities by u1 and u2, and allowing a prescribed velocity
uEB on the boundary, (7.22) gives the normal derivative as

∂u

∂n

∣∣∣∣∣
EB

= d2
2(u1 − uEB)− d2

1(u2 − uEB)
d1d2(d2 − d1) . (7.23)

All components of the velocity gradient are now available by taking the projections
of ∂u/∂n in the relevant Cartesian direction, i.e. multiplying by the corresponding
component of n. We can thus compute γ̇, η and finally F V = η (∇u)> in the cut cell.

Strain-rate tensor and apparent viscosity

Since our aim is to accurately capture the flow patterns of fluids with apparent viscosity
functions which depend strongly on the magnitude of the rate-of-strain tensor, it
is essential that we can compute the components of the velocity gradient tensor to
second-order accuracy. The procedure outlined for the viscous wall fluxes above is
tailored for computing the values on EB walls, but in the present case we require them
at cell centres. In order to circumvent the problem of covered neighbour cells, we adjust
the stencil used for difference estimation. Similarly to in the previous subsection, we
consider a function y(x) whose values we know at three points xi, i ∈ {0, 1, 2}, with
the alteration that x0 6= 0 but the points have equal spacing ∆x. According to (7.22),
the gradient of a quadratic polynomial fit to these points is given by

∂f

∂x
= 1

∆x2

(1
2(x− x1 + x− x2)y0 − (x− x2 + x− x0)y1 + 1

2(x− x0 + x− x1)y2

)
.

(7.24)
We can thus evaluate the gradient of the function at the given points to second order
accuracy with simple coefficients, since

∂f

∂x

∣∣∣∣∣
x0

= 1
∆x

(
−3

2y0 + 2y1 −
1
2y2

)
(7.25a)

∂f

∂x

∣∣∣∣∣
x1

= 1
2∆x (y2 − y0) , (7.25b)

∂f

∂x

∣∣∣∣∣
x2

= 1
∆x

(1
2y0 − 2y1 + 3

2y2

)
. (7.25c)

In order to evaluate the velocity gradient tensor in cut cells, we simply check
whether the neighbouring cells in each direction are covered, and if so, utilise a one-
sided quadratic difference estimator rather than the central one. Consequently, we are
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only fishing for values in well-defined cells. With the estimates for velocity gradient
components in place, we can evaluate the cell-centred rate-of-strain magnitude and
apparent viscosity directly.

7.3 Validation studies

Before evaluating the methodology for genuinely three-dimensional viscoplastic flows,
we need to ensure that the underlying incompressible flow solver works for a problem
with non-trivial domain and known solution. Furthermore, we verify that viscoplastic
effects are captured by computing the solution to a problem which has an analytical
solution for the Bingham model.

Newtonian Taylor-Couette flow

To start off with, we consider the case of Taylor-Couette flow between two concentric
cylinders. The setup is extensively used in rheometry, since it is straightforward to
set up experimentally and gives consistent measurements of viscous drag as a function
of applied strain-rate. The two cylinders can be rotating in the same or opposing
directions at given speeds, and since we can derive an analytical solution for the
Newtonian case, it is an ideal case for validation of prescribed tangential velocities on
the no-slip boundaries. In figure 7.5, we illustrate the problem conceptually.

The inner and outer cylinders are denoted by 1 and 2, respectively. We thus take R1

as the radius of the inner cylinder, while Ω2 is the angular velocity of the outer one, etc.
Note that the sign of the angular velocity is positive if the rotation is counter-clockwise
as viewed from above. The fluid motion is driven entirely by the rotating cylinders, so
the pressure gradient is zero and the flow is purely rotational. In cylindrical coordinates,
the flow field is therefore

u = urêr + uθêθ + uzêz = ωrêθ. (7.26)

The steady-state solution is governed by

∇2uθ = 0, (7.27)
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R1

R2

Ω1

Ω2

Figure 7.5: Schematic illustration of the Taylor-Couette cell, with rotational flow
induced by prescribed inner and outer wall speeds.

which in terms of the angular velocity can be written

r
∂2ω

∂r2 + 3∂ω
∂r

= 0. (7.28)

The solution to (7.28) which satisfies the boundary conditions ωi(Ri) = Ωi is

ω(r) = Ω1

1− ξ2

(
(1− χ)R

2
1

r2 + χ− ξ2
)
, (7.29)

where we have introduced the dimensionless quantities ξ = R1/R2 and χ = Ω2/Ω1.
Taking the radius and speed of the inner cylinder as characteristic values for length
and velocity, the analytical solution in dimensionless form is

ω̂(r̂) = 1
1− ξ2

(1− χ
r̂2 + χ− ξ2

)
. (7.30)

We take ξ = −χ = 1/4, which means that the outer cylinder is four times as wide
as the inner one, and that they are rotating in opposite directions with the same speed
U = −Ω1R1 = Ω2R2. Figure 7.6 shows the velocity profile for N = 200 cells per
direction. The fluid near the inner cylinder is rotating clockwise with maximum speed
U , while the outer one rotates at the same speed but counter-clockwise. Figure 7.7
shows that our numerical solution converges to the analytical one for increased mesh
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resolution. The error is greater near the inner cylinder than the outer one, which is to
be expected since there is a higher degree of curvature per cell when the cell size is
equal throughout the domain.

Figure 7.6: Velocity distribution in a x̂ŷ-slice of the Taylor-Couette flow. The colormap
corresponds to the polar velocity component ûθ(r̂).

Poiseuille flow of Bingham plastic in a cylinder

In order to verify that the embedded boundaries work with viscoplastic rheology,
we again consider Poiseuille flow of a Bingham fluid like in section 2.3, but now on
the interior of a circular cylinder with radius R, aligned along the z-axis. Since
the problem is both axisymmetric and independent of z, the variation in velocity is
a function of r =

√
(x− xc)2 + (y − yc)2 alone, where the cylinder centre axis has

coordinates (xc, yc, z). The analytical Bingham solution is then the cylindrical version
of (2.42), i.e. with z replaced by r. Our simulations were performed in a domain of size
Ω = [0, 2.5R]2 × [0,R] with the cylinder centred at x̂c = ŷc = 1.25. We set physical
parameters of the applied pressure gradient and fluid such that r0 = 1/2.
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Figure 7.7: Comparison of our numerical results with the analytical angular velocity
profile for Taylor-Couette flow.

Figure 7.8a shows the resulting velocity distribution in the xy-plane for a simulation
with N = 2R/∆x = 64 cells over the cylinder diameter, and Papanastasiou number
Pa = 100. In the middle of the cylinder, we can see the plug of unyielded fluid travelling
with constant velocity. Surrounding it, an annulus of constant shear rate leads to the
parabolic profile we expect between the wall and the yield surface. The yield surface
is characterised by the stress contour ‖τ‖ = τ0. However, as discussed previously in
the literature, there is instability near this stress value which means that a better
measure of the fully converged yield surface is the contour ‖τ‖ = (1 + δ)τ0

[155], where δ
is some small parameter of the order 10−3. This is because the solution converges much
faster in the yielded region than in the unyielded ones. On the other hand, Treskatis
argues that a better visual investigation of the yield surface is obtained by plotting the
relative deviation from the yield surface, ‖τ‖ /τ0 − 1, restricted to some small range
around zero [104]. In this manner, we avoid the introduction of systematic error through
overestimation of the unyielded regions. Note that this is done using a colormap which
changes abruptly at zero, as seen in figure 7.8b.

From figure 7.8b, we can see that there is a sharp transition from the yielded to the
unyielded regions which is in agreement with the analytical solution for the yield surface,
r̂ = r0. This validates that our model accurately captures the Bingham properties of
the fluid, and that the regularisation parameter is small enough at Pa = 100 for the
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(a) ŵ (b) ‖τ‖ /τ0 − 1

Figure 7.8: Poiseuille flow in a cylinder with r0 = 1/2: slices of the solution in the
x̂ŷ-plane. The velocity magnitude is shown in (a), while (b) depicts the relative
deviation of the stress from the yield stress threshold. In the latter plot, values outside
the colormap are mapped on to the endpoints. The dashed line is r̂ = r0.

Poiseuille problem, although a smaller value will be necessary for more demanding
cases.

7.4 Objects translating through Bingham media

In order to properly evaluate the capabilities of our code, we need to simulate test cases
which exhibit fully three-dimensional effects which are characteristic of yield stress
fluids. A widely discussed case is that of bodies moving at constant speed through
a Bingham fluid. Such bodies are fully encapsulated by a so-called yield envelope,
separating the unyielded bulk material from an interior recirculating flow. This interior
flow has a unique topology owing to the viscoplastic nature of the fluid, and has been
widely studied for two-dimensional [205–211] and axisymmetric three-dimensional [212;213]

shapes.
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Cylinder moving through Bingham fluid

Although creeping flow past a sphere in a viscoplastic fluid was investigated first [205],
the simpler case is that of an infinitely long circular cylinder. This is due to the
fact that only a thin slice in 3D is required for comparisons with two-dimensional
reference results, but also because the viscoplastic effects are more dominant due to the
extended geometry. Consequently, there is no ambiguity regarding the resulting shape
of yield surfaces. The problem was first considered by Adachi and Yoshioka [214], who
used variational principles and slip-line analyses to estimate the relevant drag effects.
Randolph and Houlsby [215] used plasticity theory to investigate the same problem in
the context of pile pressure in cohesive soil. Two excellent references which utilised
numerical simulations to explore the problem are the papers by Mitsoulis [95] and
Tokpavi et al. [209], in which the flow around a highly resolved 2D quadrant surrounding
the cylinder was simulated with Papanastasiou regularisation schemes. The former
investigated the influence of wall effects for creeping flow, while the latter extended the
parameter ranges and analysis of the problem. They showed that the occurrence of
characteristic dips in the yield envelope fore and aft of the cylinder is clearly prominent
for Bingham fluids, in addition to small unyielded caps attached to the poles of the
cylinder and rigidly rotating unyielded plugs in its equatorial plane. The same has
been demonstrated by Chaparian and Frigaard [210] by using an augmented Lagrangian
approach, which captures the yield surface without regularisation. They also show
how slip line field theory captures the yield envelope and polar caps well, but is
ill-suited for the equatorial plugs. It is also worth mentioning that there have been a
number of studies with multiple cylinders in various collinear configurations, all showing
similar large-scale features [211;212;216]. Since the problem is essentially two-dimensional
due to its planar symmetry, we expect to see the same yield surface shapes as the
aforementioned authors, even though our code is fully three-dimensional.

We thus consider an infinitely long circular cylinder, where the direction of flow
(along the unit vector êz) is perpendicular to the cylinder axis (êy). The computational
domain is Ω = [0, 4D]× [0,L]× [0, 6D], where L is the length of the computational
domain along the cylinder and D is its diameter, which we take as the characteristic
length scale. In the following simulations, we have used L = D/2 and periodic boundary
conditions in the y-direction. Rather than imposing a constant velocity on the cylinder,
we keep it fixed and instead let u = U êz everywhere initially and at the domain
boundaries as the simulation progresses. This means that the cylinder is falling with
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the same speed (U) in the reference frame where the bulk fluid is at rest. Periodic
boundary conditions are imposed in the axial direction of the cylinder.

Apart from the Papanastasiou number Pa, the flow is governed by the Reynolds
number

Re = ρUD
µ

, (7.31)

and the Bingham number
Bi = τ0D

µU
, (7.32)

We are interested in the creeping flow regime with a high degree of viscoplasticity, so
we let Re = 10−3. As numerical parameters, we let N = D/∆x = 64 and Pa = 103.
We expect these choices to be suitable for capturing the relevant flow features in this
problem, based on the work of Liu et al. [208] and our own results in the next subsection.

For flow past bodies, quantitative comparisons with results from the literature are
obtained through the computation of a drag coefficient, which is the ratio of the total
drag force FD on the body compared to a reference force. Following Tokpavi et al. [209],
we take the reference as the product of the characteristic stress and the cross-sectional
area of the cylinder LD. Denoting the boundary of the body by B, the drag force is
given by the surface integral

FD =
∫
B
êz · (τ − pI) · dS, (7.33)

while the drag coefficient is
CD = FD

µUL
. (7.34)

The integral in (7.33) is computed using numerical quadrature. Since B is the union
of embedded boundaries in the domain, the midpoint rule just requires extrapolation
of the variables to the EB centroid of each cut cell and summing the contributions, i.e.

FD ≈
∑

i:αi∈(0,1)
AEB


τxz

τyz

τzz − p


bi

· nEB, (7.35)

The most demanding terms to extrapolate are naturally the velocity gradients required
for stress components, but we have already showed how to evaluate these in (7.23).
In order to verify the drag force calculations, we initially perform a simulation with
a Newtonian fluid, resulting in a computed drag coefficient equal to 21.8128. For
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Figure 7.9: Quantitative comparison of our solution around the cylinder to that in
the published literature [95;209] through computation of the drag coefficient at various
Bingham numbers.

comparison, we utilise Faxén’s formula [217], which states that the creeping drag force
per unit length of a cylinder with diameter D moving at speed U through the centre
of a channel of width W filled with a Newtonian fluid with viscosity coefficient µ, is
given by

FD = 4πµU
ln
(
W
D

)
− 0.9157 + 1.7244

(
D
W

)2
− 1.7302

(
D
W

)4
+ 2.4056

(
D
W

)6
− 4.5913

(
D
W

)8 .

(7.36)
This semi-analytical formula for the drag coefficient yields a value of 21.9642, i.e. a
relative discrepancy of 0.69%. By driving the system to steady-state for various
Bingham numbers, we can compare our results with others which have been published
in the literature. Figure 7.9 shows how the ratio C∗D = CD/Bi gradually approaches
the asymptotic value C∗D,∞ as Bi grows large. The numerical results of Mitsoulis [95]

and Tokpavi et al. [209] are overlain our own, and the behaviour similar. Our results are
closest to the trend line by Tokpavi et al., which they fit to the function

C∗D = C∗D,∞ + λBi−ν . (7.37)



7.4 Objects translating through Bingham media 129

Our data has been fit to the same function, and we have also computed the gravity
yield number

Y = τ0
1
4πDg∆ρ (7.38)

where g is the gravitational acceleration and ∆ρ is the density difference between the
solid cylinder and surrounding fluid. This dimensionless number is the smallest ratio
of yield stress to gravitational stresses which obstructs the solid from falling through
the fluid, and for the particular configuration at hand, we have Y = 1/C∗D,∞ [95]. Table
7.1 shows our quantitative results alongside those by other authors.

Reference C∗D,∞ Y λ ν

Adachi & Yoshioka [214] 10.28 0.09728
Randolph & Houlsby [215] 11.94 0.08375
Mitsoulis [95] 11.70 0.08547
Tokpavi et al. [209] 11.98 0.08347 20.43 0.68
Present study 11.90 0.08403 26.99 0.7131

Table 7.1: Comparison of the yield number and limiting ratio of drag coefficient to
Bingham number with various reference results from the literature.

In addition to computing drag coefficients, there is a lot of insight to be gained
from visualising different metrics of the flow field. Figure 7.10 therefore illuminates
the resulting flow field through plots of several different variables, for the case with
Bi = 340.7. The Bingham number is chosen to match that in the study by Liu, Muller
and Denn [208], where it is stated that this number is large enough to diminish any
outer boundary wall effects for the given choice of domain size. The upper left plot,
(a), shows the relative speed with velocity vectors overlaid. A distinct boundary is
visible, enclosing a region of non-zero relative velocity surrounding the cylinder. This
boundary represents the yield envelope of the body. The velocity vectors indicate a
recirculating flow, sweeping material away from the front of the travelling cylinder to
the rear in a wide, circular arc. This results in slowly moving material either side of
the cylinder, in addition to material travelling at the same speed as the cylinder at the
polar caps. These observations are indicative of the expected unyielded plugs rotating
at the equator and clinging to the polar caps.

In the upper right plot, (b), the magnitude of the rate-of-strain tensor is shown
with logarithmic scaling for the colormap. This plot properly elucidates the low-strain
regions of unyielded fluid, and confirm the existence of rigidly rotating equatorial
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(a) êz − û (b) ‖γ̇‖ (s−1)

(c) ‖τ‖ /τ0 − 1 (d) Λ

Figure 7.10: Flow characteristics in the x̂ẑ-plane through the centre of the cylinder
(black) at steady-state, for Bi = 340.7. Depicted are (a) the relative velocity field and
its magnitude, (b) the rate-of-strain magnitude, (c) the yield surface stress deviation
and (d) the flow topology parameter. Note that the colormap in (b) has logarithmic
scaling, and that values outside the colormap for (c) are mapped on to the endpoints.
In (d), the yield surface computed with δ = 10−3 is also masked out in grey.
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plugs and unyielded material attached to the polar caps, as implied by the velocity
distribution. Note that although the yield surface is characterised by the contour
‖γ̇‖ = 0 for ideal Bingham plastics as given by (2.26), the regularised version (3.24)
leads to a yield surface given by

∥∥∥ ˆ̇γ
∥∥∥ = W (Bi Pa)

Pa
, (7.39)

where we recall that W (x) is the Lambert W function. With the current parameter
values, (7.39) gives a yield surface characterised by ‖γ̇‖ = 0.010397 s−1, which is why
we have used 10−2 s−1 as the lower limit of the colormap.

Figure 7.10c shows the relative stress deviation from the yield surface, just like
figure 7.8b did for the Poiseuille case. For this more demanding problem, the transition
is much less sharp, but all the expected unyielded regions (envelope, rotating plugs
and polar caps) are clearly captured where the stress deviation is negative. The actual
yield surface is located somewhere in the transition from blue to white.

Finally, in figure 7.10d we have plotted a flow topology parameter which is a
normalised invariant of the velocity gradient tensor. It indicates the relative strengths
of the strain rate and the vorticity ω = ∇× u [218;219],

Λ = ‖γ̇‖
2 − ‖ω‖2

‖γ̇‖2 + ‖ω‖2 . (7.40)

This parameter accurately describes the nature of different parts of the flow regime,
since values of Λ equal to −1, 0 and 1 correspond to pure rotation, shear and extension,
respectively. As expected, we observe pure rotation around the unyielded plugs on
the equatorial line of the cylinder. Adjacent to areas of rigid rotation, and near the
cylinder, shear flow is evident. This is also the case near the yield envelope. In fact,
these two shearing regions represent two distinct cases of viscoplastic boundary layers,
as discussed originally by Oldroyd in 1947 [220] and more recently by Balmforth in his
newly published lecture notes [221]. We also point the interested reader to discussions
surrounding viscoplastic boundary layer around particles in some of the other works
which have already been mentioned [206;209;210]. Finally, a belt of purely extensional flow
surrounds the cylinder, rotating plugs and polar caps. Note that in this plot, the yield
surfaces masked out in grey are computed with δ = 10−3. This allows us to verify that
we recover the same yield surface shapes as those computed in the references [209;210],
when using the same visualisation procedure.
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Sphere moving through Bingham fluid

Since the cylinder test case allows for direct comparisons with two-dimensional simula-
tions, it is a good test case for verifying the interplay between yield stress rheology
and the embedded boundaries. On the other hand, it does not exhibit any genuinely
three-dimensional effects, and for many real-world scenarios an infinite cylinder is not
a realistic representation of the actual bluff bodies. We therefore investigate the flow
around a sphere in the same configuration, retaining its diameter D as the characteristic
length scale, but extending the domain to [0, 4D] in the y-direction. This problem has
been analysed by several authors previously [205–208;212;213], but it still warrants further
attention due to gaps relating to important viscoplastic flow features. In particular,
claims about how specific parts of the yield surface depend on spatial resolution and
regularisation parameter are not consistent. Furthermore, few of them were based on
three-dimensional simulations, and those that were tended to be hampered by low
spatial resolution, making it difficult to draw any conclusions regarding the shape and
extent of the yield surface.

Ansley and Smith first considered the problem in 1967, and proposed a yield surface
based on slip line field theory. This included dips in the yield envelope and polar
caps [205]. Although it was a great contribution, they conceded that the qualitative shape
of the yield surface could not be supported by direct evidence. Beris et al. phrased the
problem as a free boundary problem at the yield surface, and performed 2D simulations
with a priori estimates of its location [206]. They captured the envelope dips and polar
caps, and reported an equatorial torus-shaped region with low strain-rate. Its motion
was described as close to the sum of rigid translation in the direction of flow and solid
body rotation, but they aptly noted that perfectly rigid rotation is not possible in the
configuration, except exactly in the equatorial plane. This is due to the rotated strain
field around the equator of the sphere. Liu et al. [208] computed 2D results in a quadrant
using Papanastasiou regularisation and finite elements on a body fitted mesh. They
reported the existence of both polar caps and a equatorial torus, although the latter is
unphysical according to the arguments put forth by Beris et al. They showed that the
plug regions shrank with decreasing regularisation parameter, but could not infer the
limiting behaviour. More recently, three-dimensional simulations in the framework of
lattice Boltzmann techniques have been published, utilising a dual viscosity model [212]

and Papanastasiou regularisation [213]. However, the resolution for these simulations
was low (N = 12), so it is difficult to draw accurate conclusions regarding the yield
surface shapes.
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(a) N = 16 (b) N = 32 (c) N = 64

Figure 7.11: Contour lines of the steady-state yield surface ‖τ‖ = 1.001 τ0 in the upper
right corner of the x̂ẑ-plane ŷ = 2, for a sphere translating in an infinite Bingham
medium with Bi = 340.7. The resolution of the numerical mesh employed in the
simulations increases from (a) to (c). For each resolution, the different lines correspond
to the following regularisation parameter values:

Pa = 10 Pa = 102 Pa = 103 Pa = 104

The two parameters which determine the yield surface for a given Bingham number,
are the Papanastasiou number Pa and the spatial resolution as given by N . Similarly
to what was done in the paper by Liu et al. [208], in Figure 7.11 we plot the computed
yield surfaces in the upper right corner of the plane ŷ = 2, which goes directly through
the sphere, for a range of Pa values. However, we also consider three different mesh
resolutions, in order to separate the effects of the two parameters. It is clear that
both parameters must have acceptable values in order for the solution to converge as
expected. Without a large enough Papanastasiou number (at least Pa = 103), the yield
envelope dips and low-strain equatorial plugs are not captured, whereas a low spatial
resolution results in unresolved polar caps. We note that the unphysical torus-shaped
yield surface at the equator is apparent also in our simulations, but this is due to the
utilisation of δ = 10−3 in the visualisation of the yield surface, as explained below. In
the remainder of this section, we let N = 64 and Pa = 103.

For the case of a sphere, the reference force for the computation of the drag
coefficient is the Stokes force [222] that acts on a sphere falling in an infinite Newtonian
medium. The Stokes drag coefficient is thus

CS = FD
6πµUR . (7.41)

Figure 7.12 shows our results alongside previously published data in the literature.
We have included the original computational results by Beris et al. [206] and Blackery
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and Mitsoulis [207] as dashed and dotted lines, respectively, and have also overlaid the
experimental results of Ansley and Smith [205]. As is evident, our computed values for
the Stokes drag coefficient lie within the same range as the references, and match the
results of Beris et al. most closely.

101 102 103

Bi

102

103

C
S

Beris et al.

Blackery & Mitsoulis

Ansley & Smith

Present study

Figure 7.12: Quantitative comparison of our solution around the sphere to that in
the published literature [205–207] through computation of the Stokes drag coefficient at
various Bingham numbers.

In figure 7.13, we show plots of the same variables as those in figure 7.10 for the
cylinder. There are several noteworthy points to make about the differences between
the two cases. Firstly, the overall size of the yield envelope is significantly smaller
for the sphere than the cylinder, both in the direction of flow and in the xy-plane.
Secondly, the unyielded regions within the envelope are much smaller. Both of these
observations are as expected, since the axial symmetry of the sphere causes reduced
shearing effects in the plane. Equivalently, the extended cylinder enhances shearing
in the plane, leading to the larger unyielded regions and genuine rigid body rotation.
Finally, the relative stress deviation plot (c) proves that there aren’t any regions in the
equatorial torus where the stress is actually below the yield stress threshold. Although
the stress gets extremely close to the yield threshold in these areas of low strain, there
is no evidence of a genuinely unyielded region, since the relative stress plot stays blue.
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(a) êz − û (b) ‖γ̇‖ (s−1)

(c) ‖τ‖ /τ0 − 1 (d) Λ

Figure 7.13: Steady-state flow characteristics in the plane ŷ = 2 through the centre of
the sphere in translational motion through a Bingham fluid with Bi = 340.7.
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The diffuse interfaces in this plot shed some light on why the torus-shaped plug is
present in some papers and not others: it is severely close to the threshold value
without actually reaching it, and without a sharp transition near it. Thus, the benefits
of the visualisation strategy introduced by Treskatis becomes clear: the plot in (c)
shows in details what the stress deviation looks like near the yield surface, while the
well-known masked out contour ‖τ‖ = 1.001 τ0 in (d) oversimplifies the case. This
is all in agreement with the original arguments put forth by Beris et al. [206] Figure
7.14 shows the last two plots through the slice ẑ = 2, i.e. perpendicular to the flow
direction, but still through the centre of the sphere.

(a) ‖τ‖ /τ0 − 1 (b) Λ

Figure 7.14: Steady-state flow characteristics in the plane ẑ = 2 through the centre of
the sphere in translational motion through a Bingham fluid with Bi = 340.7.

Finally, in figures 7.15 and 7.16, we visualise three-dimensional stress contours in
the vicinity of the sphere. In the former, the yield surfaces are all computed with
δ = 10−3. Since the yield envelope fully encloses the sphere and plug regions, its opacity
is reduced from subfigures (a) to (c), in order to reveal the shape of the enclosed yield
surfaces. This kind of visualisation is entirely novel to the best of our knowledge,
and gives a richer picture of the yield surface topology. Since there is no body-fitted
mesh or assumption on symmetry in the flow, this type of simulation opens a range of
possibilities for investigating flow patterns and yield surfaces in complex configurations.
The effect of reducing δ is illustrated in figure 7.16, and confirms that the toroidal yield
surface at the equator disappears in the limit δ → 0, at the cost of poorer resolution
for the yield envelope.
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(a) Opacity 100% (b) Opacity 50% (c) Opacity 0%

Figure 7.15: Yield surface represented by the contour ‖τ‖ = 1.001τ0 (light grey) around
sphere (magenta) moving at constant speed through a Bingham fluid with Bi = 340.7.
The opacity of the yield envelope is reduced from (a) 100% to (b) 50% and finally (c)
0%, in order to reveal the sphere and unyielded regions within it.

(a) δ = 10−3 (b) δ = 10−4 (c) δ = 0

Figure 7.16: Yield surface represented by the contour ‖τ‖ = (1 + δ)τ0 (light grey)
around sphere (magenta) moving at constant speed through a Bingham fluid with
Bi = 340.7. The effect of varying δ is evident, as it is reduced from (a) 10−3 to (b)
10−4 and finally (c) 0.
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Non-trivial particle shape

As a final demonstration, we replace the sphere by an object which is the union of a
sphere and cube, and orient it so that the flow field becomes asymmetrical. This means
that a three-dimensional representation is necessary to capture the fluid dynamics.
To be precise, the sphere is the same size as in the previous section, but has centre
coordinates (x̂, ŷ, ẑ) = (1.8, 1.8, 2.8), while the cube is defined by two points on opposing
sides of its main diagonal, in dimensionless units (1.85, 1.85, 2.85) and (2.5, 2.5, 3.5).
We retain the highest resolution settings used for the sphere, i.e. Ω = [0, 4D]2× [0, 6D],
∆x = D/64 and Pa = 103. The resulting 3D yield surface, computed with δ = 10−3, is
shown in figure 7.17. In contrast to figure 7.15, we reduce the opacity of all the yield
surfaces, and not just the enclosing envelope. This is due to the difficulty in separating
the locations of the yield surface types by simple rules. Although the stress contours
are now much more complex, we can still recognise the expected traits: an enclosing
yield envelope surrounding the entire body, in addition to smaller unyielded plugs
attached to it at places of low strain rate. In particular, there are caps of unyielded
material fore and aft of the object in the flow direction, as well as along the narrow
intersection of the sphere and cube. Additionally, the characteristic low-strain rotating
region around the sphere’s equator is visible, but it does not continue around the entire
object. The free cube sides, which are aligned with the flow direction, only lead to a
very narrow boundary layer separating the object from the yield envelope.
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(a) Opacity 100% (b) Opacity 50%

Figure 7.17: Yield surface computed with δ = 10−3 for the flow of a Bingham fluid
around the union of a sphere and a cube with Bi = 340.7. The opacities of the stress
contours are (a) 100% and (b) 50%, in order to show unyielded regions enclosed by the
outer yield envelope.





Chapter 8

Conclusions

Motivated by the emerging need for detailed understanding of displacement flows
during wellbore cementing, the aim of this PhD project has been to facilitate large-scale
simulations of viscoplastic fluid flows in complex domains and around non-trivial
geometries, with emphasis on high computational accuracy and rapid run times. To
this end, we have taken advantage of state-of-the-art techniques in high-performance
computing, including massive parallelisation for arbitrary computing platforms; block-
structured adaptive mesh refinement with subcycling; and efficient Krylov solvers
for linear systems. These tools have been accessed through the versatile software
framework AMReX, which is developed at the Lawrence Berkeley National Laboratory
and among the very best in class of its field. By applying the powerful numerical tools
to viscoplastic flow problems, which are burdened by severe computational challenges,
we have enabled larger and more complex simulations of such fluids than previously
published in the literature.

In particular, we demonstrated fully three-dimensional simulations, which vary in
time, for generalised Newtonian constitutive relations such as the Herschel-Bulkley
model. In order to simulate viscoplastic fluids with nonlinear stress-strain dependency
above the yield limit, we utilised Papanastasiou regularisation in our algorithm to deal
with the singularity in apparent viscosity. The resulting system of partial differential
equations was solved using second-order Godunov methodology for the advective terms,
and semi-implicit diffusion in the context of an approximate projection method for
viscous effects, all solved on a hierarchy of adaptively refined meshes. We validated
results from simulations using this new capability against previously published data
for Bingham plastics and power-law fluids in the two-dimensional lid-driven cavity.
In doing so, we expanded the range of Bingham and Reynolds numbers which have
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been considered in the benchmark tests. Moreover, extensions to time-dependent flow,
Herschel-Bulkley fluids and three spatial dimensions offered new insights into the flow
of viscoplastic fluids in this test case. Importantly, we provided missing benchmark
results for these extensions [18].

As a natural continuation of that work, we extended the software using the volume of
fluid method, so as to facilitate the simultaneous simulation of several interacting fluids.
By passively advecting a scalar indicator with the flow velocity, the presence of each
fluid throughout the domain can be ascertained, and relevant fluid properties utilised.
This capability is vital in order to deal with the displacement phenomenon which
characterises wellbore cementing. In addition to the validation of the method through
comparisons with existing simulations results for the Rayleigh-Taylor instability, we
considered the displacement of a Bingham fluid by a Newtonian, with fluid properties
relevant for realistic cement jobs [19].

During the last year of the PhD, starting with a month visiting the AMReX
developers in Berkeley, California, we focused on the implementation of cut cell
techniques for the viscoplastic flow solver. In this context, geometric features are
handled by the embedded boundary approach, which requires specialised treatment
only in cells intersecting or adjacent to the boundary. This constitutes the first
published implementation of an embedded boundary algorithm for simulating flow
of viscoplastic fluids on structured grids. We augmented the algorithm to deal with
the variable apparent viscosity of the fluids. Since the viscosity depends strongly on
the strain-rate tensor, special care was taken to approximate the components of the
velocity gradients robustly near boundary cells, both for viscous wall fluxes in cut
cells and for updates of apparent viscosity in cells adjacent to them. After performing
convergence analyses and validating the code against standard test cases, we presented
the first ever fully three-dimensional simulations of creeping flow of Bingham plastics
around translating objects. Our results revealed new insights into the relevant flow
fields [20].

By taking advantage of some of the most advanced numerical tools available,
we have demonstrated that researchers in the field of viscoplastic fluid simulations
can move towards richer and more complicated flow scenarios than have previously
been considered viable, within reasonable computing time. While implementing these
numerical schemes and using them to produce publication-worthy fluid dynamics
research, we have kept our focus on addressing the challenges met by BP while drilling
and cementing wellbores. The most important features for simulating such scenarios
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are captured by the software, such as yield stress rheology, two-fluid displacement
and complex domain geometries. We hope this software can contribute to an even
better understanding of the intricacies of such flow scenarios, to ensure safer and more
efficient engineering processes.

8.1 Proposed further work

Within any research and development project, there are always possibilities for exten-
sions and improvements, so we take this opportunity to give our recommendation for
future directions to follow.

Wellbore cementing case study

The most obvious piece of work which we would have pursued given more time, is to
apply the software to actual wellbore cementing problems such as those introduced in
chapter 1. Given the different simulation features which we have enabled through the
work undertaken in this project, it would be feasible to set up and simulate a range of
relevant test cases which have been studied by others using CFD tools. This would allow
us to compare both accuracy and simulation speed for typical problems faced by wellbore
engineers. It is not certain that our inherent scalability and use of structured meshes
would outperform CFD codes with body-fitted meshes for two straight eccentric annuli,
but the flexibility offered by our approach should become evident when considering
e.g. bent pipes and non-circular borehole geometries. Moreover, it would have been very
exciting to compare simulation results with experimental data, and start connecting
physical measurements to the numerical results.

GPU computing

Over the course of the last decade, general purpose programming for Graphical Pro-
cessing Units (GPUs) has become hugely popular. This is in part due to the inherent
parallel processing pipeline of such devices – they work in a lock-step pattern which
facilitates massive parallelisation within a single GPU card, provided the problem can
be divided into equal subproblems while properly managing memory. Additionally,
the programming effort required to do so has reduced significantly with the increased
popularity and development of major programming language interfaces such as OpenGL
and CUDA. For any computationally expensive problem, it has become natural to
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investigate whether GPUs can be utilised for increased efficiency. In fact, one of the
latest features which the AMReX developers have been working towards for the code
framework is built-in support for straightforward GPU compatibility. Taking advantage
of this, and running simulations on contemporary graphics clusters could potentially
speed up the run times significantly.

Temperature dependency

All of the work in this dissertation has assumed that the flow is isothermal. Although
the effects of temperature are smaller than e.g. viscoplasticity, this is still an overly
restrictive assumption, and one which it would be natural to dismiss when developing
the model further. In order to capture the effect of temperature and heat transfer in the
problem, it would be necessary to solve a temperature-dependent energy conservation
equation in addition to (2.29). The temperature would then be coupled non-linearly to
the remaining governing equations through temperature-dependent physical properties
such as density, dynamic viscosity coefficient and yield stress. Experimental data such
as that depicted in chapter 1 is ideal for fitting the relevant parameters.

Advanced boundary treatment

Although the embedded boundary approach facilitates simulations in domains with
non-trivial geometries, the current implementation is restricted to no-slip walls with
prescribed velocities for static boundaries. For slow, viscoplastic flows, better physical
models for wall effects, such as stick-slip conditions, have been derived. Inclusion of
such boundary conditions in the software would result in a broader coverage of flow
simulations. Furthermore, the prescribed wall velocities which have been implemented
thus far do not allow the boundary to move relative to the computational grid – this
would require something like an immersed boundary method, in which the moving
(and possibly deforming) structure affects the fluid through the addition of a local
forcing term in the momentum equation. Immersed boundary methods for interactions
between fluids and structures is a large research field in its own right, and it would be
great to have this kind of capabilities available.
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Fluid complexity

Generalised Newtonian fluid models allow us to capture a wide range of non-Newtonian
behaviour, such as shear thinning and thickening, yield stresses and even explicit
time-dependence. There are, however, many other types of non-Newtonian phenomena
which require more sophisticated mathematical descriptions. This is because the
non-Newtonian effects are not necessarily purely viscous. Generalised Newtonians have
an apparent viscosity which only depend on the magnitude of rate of strain tensor,
i.e. its second invariant, since this is the only invariant which is non-zero for shear
flows. A much wider family of non-Newtonian fluids, which can capture elastic and
plastic effects in addition to extensional effects due to normal stresses, are collectively
specified through an extra stress tensor τE, related to the deviatoric stress by

τ = τE −
1
3tr(τE)I. (8.1)

In addition to extending the code to deal with more types of fluids through such
rheological equations, it is possible to implement much more advanced interactions
across fluid interfaces, such as miscibility and chemical reactivity.
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