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ABSTRACT: Lead halide perovskite solar cells are notoriously
moisture-sensitive, but recent encapsulation strategies have demon-
strated their potential application as photoelectrodes in aqueous
solution. However, perovskite photoelectrodes rely on precious
metal co-catalysts, and their combination with biological materials
remains elusive in integrated devices. Here, we interface [NiFeSe]
hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly
active enzyme for H2 generation, with a triple cation mixed halide
perovskite. The perovskite−hydrogenase photoelectrode produces a
photocurrent of −5 mA cm−2 at 0 V vs RHE during AM1.5G
irradiation, is stable for 12 h and the hydrogenase exhibits a turnover
number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE
allows its combination with a BiVO4 water oxidation photoanode to
give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen
efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to
produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial
photosynthesis.

As a globally abundant and economical energy source,
solar energy is the fastest growing renewable
alternative to fossil fuels.1,2 Artificial photosynthesis

uses sunlight for the production of renewable chemical fuels,
so-called solar fuels, thus addressing the intermittency
limitations of photovoltaic (PV) technologies.3,4 Solar fuel
synthesis can be achieved by direct coupling of an efficient
light absorber to a fuel-producing catalyst.5,6 Organic−
inorganic lead halide perovskites have received much attention
due to their low production costs and promising PV cell
efficiencies, currently reaching up to 25.2%.2,7−10 However,
moisture, air, and temperature instability has challenged the
use of perovskites in photoelectrochemical (PEC) devices.11,12

Encapsulation layers such as eutectic metal alloys, metal foils,
and epoxy resin have improved the operation lifetime of
solution-immersed perovskite-based photoelectrodes from
seconds to hours.11,13−17 However, all H2-evolving PEC
perovskite photocathodes have so far employed high-cost,
low-abundance Pt nanoparticles as the co-catalyst.
Semiartificial photosynthesis combines the evolutionarily

optimized activity of biological catalysts, such as isolated
enzymes, with synthetic photoabsorbers.18−21 Hydrogenases
(H2ases) are reversible and highly efficient H2 production

enzymes with a per-active-site activity matching that of Pt.22−24

The integration of H2ase with Si and Cu2O photocathodes has
previously been achieved,25−29 but the combination with an
immersed lead halide perovskite has remained inaccessible due
to the moisture sensitivity of this photoabsorber and difficulty
of achieving a productive enzyme−photoabsorber interface.
Here, a perovskite−H2ase photocathode is presented,

realized by an encapsulation system that protects the
photoabsorber and provides a biocompatible, bespoke porous
TiO2 scaffold for the enzyme. This semiartificial photocathode
enabled combination with a BiVO4 water oxidation photo-
anode for bias-free, tandem PEC water splitting into H2 and O2

(Figure 1).
Optimized cesium formamidinium methylammonium

(CsFAMA) triple cation mixed halide perovskite devices
with a Field’s metal (FM) protection layer were assembled and
characterized as previously reported (Figure 1; see SI
Experimental Procedures and Figure S1 for details).15 Enzymes
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have been integrated with high loading into hierarchically
structured, macro- and mesoporous, inverse opal (IO) metal
oxide scaffolds.25,30,31 TiO2 was selected in this study for its
stability and conductivity under reducing conditions as well as
its ability to form a biocompatible interface with en-
zymes.25,32,33 The high-temperature (>100 °C) sensitivity of
the perovskite prevented in situ annealing of the IO-TiO2
directly on the FM surface. Therefore, anatase TiO2 nano-
particles (∼21 nm Ø) were first co-assembled with polystyrene
beads (750 nm Ø) on Ti foil and annealed at 500 °C to give
Ti|IO-TiO2 (Figure S2). The geometrical surface area of the
IO-TiO2 scaffold was 0.28 cm2 with an IO-TiO2 film thickness
of 15 μm. The Ti|IO-TiO2 was then joined to the protected
perovskite by briefly melting the FM sheet with a Peltier
thermoelectric element (at ∼70 °C), and an epoxy resin was
used to seal the edges to give the encapsulated PV-integrated
photocathode: PVK|IO-TiO2 [FTO-glass|NiOx|perovskite|
PCBM|PEIE|Ag|FM|Ti|IO-TiO2] (Figure 1).
A [NiFeSe] H2ase from Desulfovibrio vulgaris Hildenborough

(DvH) was selected for its considerable H2 evolution activity
compared to that of DvH [NiFe] H2ase, and was purified and
characterized as previously reported.23,33−37 The selenocys-
teine residue (Sec489) in the active site (Figure S3) causes
improved O2 tolerance,35,37−40 which is beneficial for its
application in overall water splitting. The [NiFeSe] H2ase (5
μL, 50 pmol) was drop-cast onto Ti|IO-TiO2 and left to
saturate the film for 30 min in a N2 atmosphere. Protein film
voltammetry of the Ti|IO-TiO2|H2ase electrode in a three-
electrode configuration demonstrated that proton reduction
occurred with minimal overpotential, indicative of efficient
charge transfer at the TiO2−H2ase interface (Figure S4). The
quality of the interface can be attributed to the well-known
strength of protein binding to TiO2, an effect that may be
further accentuated by polarization of the TiO2 surface.

25,33,41

The Ti|IO-TiO2|H2ase electrode displayed current densities of
−2.5 mA cm−2 with high stability for several hours at an
applied potential (Eapp) of −0.5 V vs RHE under N2, including
some robustness in the presence of O2. A Faradaic efficiency
for H2, FEH2

, of 78% after 24 h was determined by gas
chromatography. The Eapp of −0.5 V vs RHE was applied to
reflect the estimated perovskite photovoltage of 0.9 V in the

PEC experiments, where +0.4 V vs RHE has been applied (see
below).
Protein−film photoelectrochemistry of the PVK|IO-TiO2|

H2ase photocathode (three-electrode configuration, H2ase

Figure 1. Schematic representation of the tandem PEC cell
consisting of a FM-encapsulated perovskite photocathode with
H2ase integrated into an IO-TiO2 layer and a BiVO4 photoanode.
TiCo refers to the water oxidation layer precursor: [Ti4O-
(OEt)15(CoCl)]. PCBM: [6,6]-phenyl-C61-butyric acid methyl
ester. PEIE: polyethylenimine.

Figure 2. Photoelectrochemistry of a biohybrid photocathode. (a)
Representative LSV of PVK|IO-TiO2|H2ase (blue), PVK|IO-TiO2
(green), and PVK (light blue) electrodes with chopped
illumination at a scan rate of 10 mV s−1. Arrow indicates start of
scan. (b) Representative CPPE at Eapp = +0.4 V vs RHE, with a
dark period lasting 5 min following every 10 min of light exposure.
(c) Mean (N = 3) H2 evolution from CPPE quantified by gas
chromatography. Conditions: MES (50 mM, pH 6.0), KCl (50
mM), DvH [NiFeSe] H2ase (50 pmol), simulated solar light back-
irradiation (AM1.5G, 100 mW cm−2), N2 atmosphere, 25 °C.
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integrated as above) was conducted at 25 °C under chopped
simulated solar light irradiation (100 mW cm−2, AM1.5G).
The photocathode was irradiated from the back, which
prevented photoexcitation of TiO2. Linear sweep voltammetry
(LSV) of the assembled PVK|IO-TiO2|H2ase electrode showed
a cathodic onset potential at +0.8 V vs RHE and a
photocurrent density of approximately −5 mA cm−2 at 0 V
vs RHE (Figure 2a).
Controlled potential photoelectrolysis (CPPE) was con-

ducted at +0.4 V vs RHE, and gas chromatography was used to
quantify H2 evolution yields. CPPE demonstrated the stability
of the photocathode, which consistently achieved 12 h of
catalysis (Figure 2b). Failure of the enzyme−photocathode
after 12 h was likely due to water influx into the encapsulated
perovskite, consistent with previous reports (Figure S5).13,15

The stability of the equivalent PVK-Pt device was found to be
comparable, supporting failure of the perovskite as the limit to
longevity (Figure S6). The H2ase electrode generated 258 ±
55 μmolH2

cm−2 of H2, whereas the enzyme-free electrode

produced <1 μmolH2
cm−2 (Figure 2c). The FEH2

of PVK|IO-
TiO2|H2ase after 14 h was (91 ± 1.5)% with a H2ase-based

turnover number (TONH2
) of 1.9 × 106 and turnover

frequency (TOFH2
) of 95 s−1.

Bias-free tandem water splitting has long been a desirable
goal for PEC cells.25,31,42,43 Here a BiVO4-based water
oxidation photoanode was prepared by electrodeposition of
BiOI, then drop-casting and annealing a vanadium precursor,
and finally spin-coating a layer of a cobalt-containing co-
catalyst, as previously reported.15,44 PEC analysis of the
photoanode (three-electrode setup; Figure S7) gave an onset
potential of +0.1 V vs RHE and a current density of 2.4 mA
cm−2 at +1.23 V vs RHE.
The positive onset potential of the PVK|IO-TiO2|H2ase

photocathode is essential for combination with the BiVO4
photoanode to assemble a tandem water splitting PEC device.
The BiVO4 photoanode has been shown to absorb wavelengths
below 500 nm and therefore limits the perovskite to absorption
at 500−800 nm.15 Nevertheless, the BiVO4 photoanode
remains the current-limiting absorber (Figure 3a). The
robustness of the [NiFeSe] H2ase towards O2 (Figure S4)
provided the possibility to assemble a “semiartificial leaf”,
where the photoelectrodes were not separated into two
compartments by a membrane. The BiVO4||PVK|TiO2|H2ase

Figure 3. Photoelectrochemistry of the tandem device. (a) Representative LSV of PVK|TiO2|H2ase (blue) and BiVO4 (green) electrodes with
chopped illumination, forward scan, 10 mV s−1 scan rate, showing the absolute current densities. (b) Representative stepped potential
chronoamperometry of BiVO4||PVK|TiO2|H2ase (blue) and H2ase-free BiVO4||PVK|TiO2 (green) tandem cells from Uapp = −0.6 to +0.3 V.
The current density at Uapp = 0.0 V has been highlighted. (c) Representative CPPE of BiVO4||PVK|TiO2|H2ase (blue) and H2ase-free BiVO4||
PVK|TiO2 (green) tandem cells at Uapp = 0.0 V, with a dark period lasting 5 min following every 10 min of light exposure. (d) Mean (N = 3)
H2 (dotted line with measurement points) and O2 (solid line) evolution from CPPE repeats. Conditions: MES (50 mM, pH 6.0), KCl (50
mM), DvH [NiFeSe] H2ase (50 pmol), simulated solar light irradiation (AM1.5G, 100 mW cm−2), N2 atmosphere, 25 °C.
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tandem cell (Figure 1) was prepared and PEC analysis
undertaken in a single-compartment with illumination through
the front of the BiVO4 photoanode.
The two-electrode device achieved a current density of 1.1

mA cm−2 under bias-free conditions (Uapp = 0.0 V), and
stepped potential chronoamperometry revealed an onset
potential of −0.6 V (Figure 3b). Bias-free CPPE showed a
gradual decrease in photocurrent over 8 h, which was
attributed to slowly progressing film loss due to enzyme
inactivation, reorientation, or desorption (Figure 3c). In
agreement, the current density returned to almost the initial
value when a sacrificial electron acceptor (methyl viologen)
was added to the tandem PEC cell after prolonged irradiation
(Figure S8). The peak FE of the device was (82 ± 3)% for H2
and (50 ± 8)% for O2 (Figure 3d, FE over time; Figure S9).
The lower FE for O2 can be attributed to some O2 reduction at
the photocathode leading to lower amounts of O2 detected.
The solar-to-hydrogen efficiency (STH) was 1.1% (eq S1).
The BiVO4||PVK|TiO2|H2ase cell produced 21.2 ± 3.2

μmolH2
cm−2 and 9.0 ± 2.7 μmolO2

cm−2 after 8 h of CPPE,
giving a H2:O2 ratio of 2.3. The PVK|IO-TiO2|H2ase
photocathode (Figure S10) and BiVO4||PVK|TiO2|H2ase
tandem device (Table 1, Figure S11) compare favorably with
state-of-the-art H2 production PEC systems employing earth-
abundant molecular catalysts (synthetic and biological) in pH-
benign aqueous solution (see Tables S1 and S2 for details).
Semiartificial H2 evolution photocathodes have been pre-
viously reported (Figure S10, color): a [NiFeSe] H2ase from
Desulfomicrobium baculatum was introduced onto a p-silicon
(p-Si) photoabsorber via an IO-TiO2 scaffold,25 whereas
[FeFe] H2ases have been combined with both p-type CuO2
and black-Si photoabsorbers.26,27 Of the systems that
employed small-molecule catalysts (Figure S10, gray scale), a
Ni Dubois-type catalyst applied to a p-Si photoabsorber and
Fe-porphyrin and polymeric Co-based catalysts combined with
a GaP photocathode provide state-of-the-art performan-
ces.28,45,46 Previously reported tandem earth-abundant molec-
ular catalyzed PEC water splitting devices have utilized dye-
sensitized p-type semiconductors with cobaloxime H2 catalysts,
resulting in STH values below 0.05% (Table 1).42 A
semiartificial tandem cell with a H2ase cathode was wired to
an organic dye−photosystem II photoanode, with a STH of
0.14% at 0.3 V applied bias.31,47 However, the only previously
reported H2ase photocathode in a tandem cell employed a p-Si
photoabsorber and achieved a STH of 0.006% for bias-free
water splitting.25 The unassisted solar-to-fuel conversion of the
BiVO4||PVK|TiO2|H2ase tandem device was also more efficient
than previous bacterial biohybrid systems.48 The PVK-H2ase
system presented here shows superior performance to

equivalent earth-abundant molecular artificial and biological
catalyst systems reported to date.
In conclusion, the combination of a biocatalyst with a

moisture-sensitive perovskite photoabsorber has been accom-
plished, and this biomaterial hybrid has subsequently been
employed in overall tandem solar water splitting. The
perovskite−H2ase photocathode was realized by (i) encapsu-
lating the perovskite using a eutectic alloy, metal foil, and
epoxy resin and (ii) integrating the enzyme into a hierarchical
IO-TiO2 scaffold. The PVK|IO-TiO2|H2ase system achieved
benchmark performance for photocathodes driven by earth-
abundant catalysts with a current density of −5 mA cm−2 at 0.0
V vs RHE, a positive onset potential of +0.8 V vs RHE, a H2

production yield of 258 ± 55 μmolH2
cm−2 and a H2ase-based

TONH2
of 1.9 × 106. A bias-free semiartificial water splitting

device was produced using the PVK|IO-TiO2|H2ase photo-
cathode and a water oxidizing BiVO4 photoanode. In a single-
compartment “leaf” configuration, the tandem PEC system was
shown to have an onset potential of −0.6 V and a solar-to-
hydrogen efficiency of 1.1% without applied bias. This work
provides a new benchmark for photocathodes and tandem
PEC devices employing earth-abundant molecular H2
production catalysts. The hybrid system demonstrates the
potential for bias-free fuel production and establishes perov-
skites as a suitable photoelectrode material for the integration
of biological catalysts.
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