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Abstract

Sudden oak death has devastated tree populations across California. However, management might

still slowdisease spreadat local scales. Wedemonstrate how tounambiguously characterise effective,

local management strategies using a detailed, spatially-explicit simulation model of spread in a

single forest stand. This pre-existing, parameterised simulation is approximated here by a carefully-

calibrated, non-spatial model, explicitly constructed to be sufficiently simple to allow optimal

control theory to be applied. By lifting management strategies from the approximate model to the

detailed simulation, effective time-dependent controls can be identified. These protect tanoak—a

culturally and ecologically important species—whilst conserving forest biodiversity within a

limited budget. We also consider model predictive control, in which both the approximating model

and optimal control are repeatedly updated as the epidemic progresses. This allows management

which is robust to both parameter uncertainty and systematic differences between simulation

and approximate models. Including the costs of disease surveillance then introduces an optimal

intensity of surveillance. Our study demonstrates that successful control of sudden oak death is

likely to rely on adaptive strategies updated via ongoing surveillance. More broadly, it illustrates

how optimal control theory can inform effective real-world management, even when underpinning

disease spread models are highly complex.
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1 Introduction 1

Sudden oak death (SOD), caused by the oomycete Phytophthora ramorum, affects a broad range of 2

hosts including oaks, tanoak and bay laurel. The disease was first detected in California in 1995, 3

has significantly impacted the nursery trade, and has devastated populations of coast live oak and 4

tanoak in California. SOD is currently found in areas covering over 2000 km2 in California [1], 5

with an estimated $135M loss in property values attributed to the disease [2]. Landscape scale 6

mathematical models have shown that widespread eradication would require an infeasibly large 7

removal of trees [3]. However, control has been shown to be effective at smaller scales. Management 8

of the isolated outbreak in Oregon has been effective at slowing the spread, containing the disease 9

within Curry county [4]. In some locations in Curry county, control has shown that whilst more 10

difficult than slowing the spread, local eradication is possible [5]. Mathematical models however, 11

have not been applied to address how this local control should be optimised. 12

Time-varying controls can be optimised using a branch of applied mathematics called optimal 13

control theory (OCT) [6]. Early work using OCT on epidemiological models optimised levels 14

of vaccination and treatment in simple compartmental models [7]. As the field developed, the 15

underlying models increased in complexity and included more complex forms of control, such 16

as vaccination, quarantine and screening, and health-promotion campaigns [8]. More recently, 17

OCT has been used to optimise vaccination rates against Clostridium difficile in a hospital setting 18

[9]. In the field of plant disease, OCT has been used to show how control strategies for vector 19

transmitted diseases can balance multiple economic costs [10], including control costs, yield loss 20

and long-term costs from insecticide use. Control of SOD has also been optimised, balancing 21

detection and eradication controls [11]. 22

Application of OCT is often limited to relatively simple models of disease spread for which 23

the underpinning analysis remains tractable [12]. Previous work has shown a proof of concept 24

application of OCT to a more complex model using an approximate model for optimisation [13]. 25

OCT can be applied to the approximate model, and the resulting optimal control applied to the 26

simulation model using one of two frameworks: open-loop or model predictive control (MPC) [14]. 27

Whereas the open-loop framework applies the optimal control to the simulation model for the 28

entire duration of the simulated model dynamics, MPC allows for feedback from the simulation 29

through ongoing surveillance and re-optimisation of the control at regular update times. MPC is a 30

specific form of closed-loop controller with an underlying predictive model for optimisation. Both 31

frameworks allow optimisation of a complex system, and show how mathematical models can 32

be used to optimise practical disease management: methods that could in principle be applied to 33

optimise local control of SOD (or any other disease). 34

One host particularly impacted by SOD is tanoak, Notholithocarpus densiflorus, a medium sized 35

Californian tree related to the American chestnut. Tanoak trees are highly valued by Native 36

American tribes in Northern California for their acorns, which were used historically for trade 37

and are still used for traditional cooking [15]. Tanoak is also believed to be highly important to 38

coast redwood forest ecosystems [16, 17]. The spread of P. ramorum is a significant threat to tanoak. 39

If tanoak decline continues, a significant number of important populations may be threatened 40
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by extinction [18]. Tanoak trees of all ages are highly susceptible to SOD and have a very high 41

mortality from the disease [19, 20], with larger trees that produce more acorns disproportionately 42

affected [21]. Because of the importance of retaining tanoak, management strategies should be 43

designed to protect this vital species. 44

The presence of California bay laurel (Umbellularia californica) is a key factor in the decline of 45

tanoak due to SOD. P. ramorum can sporulate prolifically on bay laurel, but the trees are not killed 46

by the disease [22]. Field studies have shown that removal of bay laurel and thinning of susceptible 47

trees to reduce host density can control disease spread [23]. Environmental niche models have 48

been developed to classify SOD invasion risk [24, 25] and dynamic mathematical models have been 49

used to predict SOD spread at large scales [26, 27]. Only one model captures dynamics at a small 50

enough scale to show the decline of overstorey tanoak at the forest stand level (~20 ha) [21]. Studies 51

have used this model to demonstrate the effectiveness of one-off interventions [23, 28], but have 52

not assessed time-dependent controls, and strategies have not been optimised in order to protect 53

tanoak. 54

Whilst a clear objective for control is to protect tanoak, tanoak protection must be balanced 55

against potential costs to tree species diversity. Trees in forests are important for wildlife habitats 56

and food sources, recreational uses and carbon fixation [29], and maintaining diversity ensures 57

that these and other important ecosystem services are provided [30, 31]. Beyond this, diverse 58

forests are more resilient to other disease threats [32]; there is little point to a control strategy that 59

protects tanoak from SOD but makes the forest vulnerable to attack from another pathogen. The 60

management goal must therefore capture a balance between protection of tanoak and continued 61

host diversity for provision of ecosystem services. The balance between these two objectives 62

however, will depend on the overall local management goals for the forest stand in question and 63

economic valuation of the ecosystem services [33]. 64

In this paper we will optimise SOD control strategies to protect tanoak within individual 20 ha 65

mixed species forest stands, whilst also conserving biodiversity. We will show how time-dependent 66

control strategies can be found using OCT on an approximate non-spatial model of disease 67

dynamics, and applied to a complex spatial simulation model. By comparing the open-loop and 68

MPC frameworks, we demonstrate the importance of ongoing disease surveillance for effective 69

control, and the importance of re-optimising and adapting the management strategy. Furthermore, 70

we will look at the effects of parameter and observational uncertainty on control efficacy, testing 71

under what conditions and to what extent ongoing surveillance is necessary. 72

We seek to answer the following key questions: 73

1. How can the open-loop and MPC frameworks be used to allow the insights from OCT to be 74

applied to a detailed spatially-explicit simulation model of SOD? 75

2. How should time-dependent controls be deployed under resource constraints to best preserve 76

the valuable tanoak population and maintain species diversity in coastal redwood forests, 77

and how do these strategies compare with current recommended practice? 78

3. How robust and reliable are these control results? In particular, how important is the ongoing 79

surveillance of disease progression and re-optimisation of control when there is parameter 80

3



uncertainty and imperfect sampling? 81

2 Results 82

We use a spatially-explicit simulation model of SOD spread and tanoak population decline, adapted 83

from a model by Cobb et al. [21] to include more realistic inoculum dispersal (S1 Text). The 84

model tracks the stem density and disease progression in 400 cells across a 20 ha forest stand 85

(Fig 1D–1E) of redwood, which is epidemiologically inactive, bay laurel, which is highly infectious 86

but does not die from the disease, and tanoak. Tanoak is tracked in four age classes, allowing 87

analysis of overstorey tanoak decline (Fig 1A). Optimisation of time-varying control using the full 88

spatial simulation is currently computationally infeasible. A non-spatial approximate model of the 89

dynamics is therefore used and the optimal control strategy applied to the simulation using the 90

open-loop and MPC frameworks. The approximate model was fitted to the simulation model and 91

closely matches the progression of disease (Fig 1B–1C). 92
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Fig 1. Stand level simulation and approximate models. A: The possible host states and transitions in
both the simulation and approximate models. Only bay and tanoak are epidemiologically active, with the
tanoak age classes grouped into small (tanoak 1 and 2) and large (tanoak 3 and 4) categories. We here focus
on protection of large (overstorey) tanoak. B: The overall stem density for each species class under no control,
with the dashed lines showing the approximate model. The dynamics of the fitted approximate model closely
match the spatial simulation dynamics, showing significant decline of overstorey tanoak. C: The disease
progress curves track the infected stem density. The approximate model is fitted by matching the disease
progress curves between the two models. As the host demography is the same in the simulation and
approximate models, this leads to the overall host dynamics closely matching, as shown in B. D: Following
introduction at t � 0 to the centre cell, the distance from the source to the epidemic wavefront, here defined as
the furthest cell with an infected stem density above 0.05. After a short transient (~5 years to 10 years), the
epidemic wave travels at a constant speed. E: The spatial distribution of infected hosts in the simulation
model, 15 years after introduction.
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2.1 Surveillance and MPC improve disease management 93

Time-dependent roguing (i.e. removal of infected hosts), thinning (i.e. removal of hosts of all 94

infection statuses) and protectant application (which reduces tanoak susceptibility by 25 %) controls 95

are optimised using the approximate model. Controls are deployed in stages, with controls kept 96

constant over each 5 year stage. The controls are optimised with an objective to maximise retention 97

of healthy large tanoak after 100 years, whilst also conserving biodiversity over that time. The 98

optimal strategy in the approximate model thins bay laurel early in the epidemic, then switches to 99

thinning redwood before using the protectant methods once sufficient thinning has been completed. 100

Roguing of both tanoak and bay is carried out to varying extents throughout the epidemic (Fig 2A). 101

Using the open-loop framework, the optimal strategy is lifted to the simulation and applied to 102

the spatial model for the entire time. In the simulation model the open-loop strategy slows the 103

decline of tanoak, thereby ensuring that tanoak is retained in the forest stand after 100 years 104

(Fig 2B). However, the non-spatial approximation cannot match the simulation model over the 105

entire epidemic and there is significant tanoak decline towards the end of the time period caused 106

by a late re-emergence of disease. 107

An alternative strategy is to use the MPC framework, in which the approximate and simulation 108

models are run concurrently. At regular update times the approximate model is reset to match the 109

current state of the simulationmodel, and the control is re-optimised. This ensures the approximate 110

model closely matches the simulation, allowing for more informed optimal control strategies. 111

These updated controls are then lifted to the simulation model going forward until the next update 112

time. We show here results with update times every 20 years, but in S3 Text alternative update 113

frequencies are analysed. Applying this strategy results in additional thinning of bay after each 114

update time (Fig 2C). This is to stem increased infection in bay, unanticipated in the approximate 115

model because of overoptimistic assessment of the control performance. The MPC strategy keeps 116

the late disease re-emergence under control. Through the continued surveillance of the simulation, 117

the approximate model is kept more closely aligned with the simulation model. This makes the 118

control more effective at slowing tanoak decline (Fig 2D). 119

The MPC strategy retains more tanoak than the open-loop strategy, primarily due to increased 120

thinning of bay laurel. This additional thinning results in lower biodiversity conservation than 121

the open-loop framework (Fig 3A), but this is balanced by significantly more healthy large tanoak 122

after 100 years (Fig 3B). When compared with the situation under no control interventions, both 123

strategies are highly effective at delaying tanoak decline. The overall objective is a combination of 124

tanoak retention and biodiversity conservation, and whilst both methods outperform no control, 125

the continued surveillance in the MPC framework gives the most effective disease management. 126

The benefit of slowing tanoak decline is not captured fully by the objective function but open-loop 127

is still successful at delaying impacts on tanoak. 128
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Fig 2. MPC improves protection of tanoak over the open-loop framework. The optimised control
strategy in the spatial simulation model is found using optimal control theory on the simpler, non-spatial
approximate model. This strategy is then applied directly to the spatial simulation model. A and B show
open-loop control, C and D show MPC where the approximate model is reset and re-optimised at regular
update times. Tanoak age classes 1 and 2 are grouped as small, and 3 and 4 as large tanoak. A: The resources
allocated to each control method over time using the open-loop framework. Control proportions ( fi in S1
Text) are fixed over 5 year intervals, but as the number of hosts changes during each interval, this leads to
variable expenditure over the 5 years. Greyed out control methods in the legend are not used in either
strategy, as OCT identifies them as ineffective. Heavy thinning of bay is carried out early in the epidemic
followed by thinning of redwood. Resources are allocated to roguing throughout, but protectant controls are
only used once resource intensive thinning has been completed. B: The host dynamics corresponding to the
open loop control in A, for both the approximate and simulation models. The approximation degrades
towards the end of the epidemic, leading to unanticipated tanoak decline in the simulation. The blue bar
highlights the difference between the approximate and simulation models in the density of large tanoak. C:
The MPC resource allocation, updated every 20 years, shows a similar pattern to the open-loop strategy.
However, additional thinning is carried out after each update later in the epidemic to manage the bay
population, within which infection has increased more than anticipated by the approximate model. D: The
corresponding host dynamics show that MPC repeatedly resets the approximate model trajectory, allowing
more informed control decisions. This minimises the tanoak decline seen using open-loop, and gives a much
lower error in the estimate of large tanoak stem density (blue bar).
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Fig 3. Comparing the open-loop and MPC frameworks. A: The effect of control on the diversity in
the forest stand, shown as the effective number of equally-common species. Any control — be it optimised via
open-loop or MPC— is damaging to diversity, but MPC in fact has a slightly larger impact. For MPC the
simulation and approximate model dynamics are shown, with the approximate model resetting every 20
years. B: The stem density of healthy large tanoak over time, showing significant decline under no control.
The open-loop strategy slows tanoak decline, but MPC is more effective. C: The overall performance of the
strategies as measured by the objective function. MPC is slightly more damaging to diversity than open-loop,
but this is balanced by retaining significantly more healthy tanoak.

2.2 How does conserving biodiversity affect tanoak retention? 129

The objective we have used to optimise control incorporates both tanoak retention and biodiversity 130

conservation. How does including biodiversity in the management goal affect the optimal control 131

strategy and the resulting disease management? When biodiversity is not included in the objective, 132

the optimal strategies under both the open-loop and MPC frameworks result in complete removal 133

of the bay and redwood populations (Fig 4A and S1 Figure). For many forest managers and 134

conservationists this would be an unacceptable cost to slow decline of a single important species 135

[16]. Including the many benefits of a diverse forest stand in the objective function ensures that 136

control retains all species but does result in less effective retention of tanoak, at least when using the 137

open-loop framework (Fig 4B). Whilst including biodiversity in the open-loop framework results in 138

the functional extinction of tanoak (i.e. no ecosystem services are provided), the MPC framework 139

can still retain healthy overstorey tanoak. The continued surveillance and re-optimisation allows 140

the control to manage the disease whilst also conserving biodiversity, even for stronger weightings 141

of biodiversity benefits than are used by default (Fig 4C–4D). The general form of control is the 142

same as the relative weight of biodiversity is varied, with thinning still carried out early in the 143

epidemic. 144
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Fig 4. Impact of the diversity objective on the optimal control strategy. Including a diversity
metric in the objective function is necessary to ensure protection of tanoak is not carried out to the complete
detriment of the rest of the forest. A: With no benefit to diversity the optimal control (using the open-loop
framework) removes all bay and redwood hosts. A similar strategy is seen using MPC (S1 Figure). B: High
values of the diversity benefit lead to control that does not stop tanoak decline, at least in the open-loop case.
C: The healthy tanoak retained in the forest decreases as diversity becomes more important in the open-loop
case. Note that the y axis here is healthy large tanoak, so does not show the same stem density as in A and B
where infected hosts are also counted. For the MPC framework however, the control can conserve biodiversity
whilst also protecting tanoak. The precise performance depends on the fit of the approximate model under
each control strategy, leading to above or below expected performance for some values of the biodiversity
benefit. For reference, the baseline value of the diversity benefit used throughout the paper is 0.25. D: The
host density with high diversity benefit under MPC shows that bay and redwood can be retained whilst also
limiting tanoak decline.

2.3 MPC is robust under uncertainty 145

Uncertainty in infection rate parameters 146

In reality, precise values of infection rates are never known. These parameters are often fitted to 147

limited data with Bayesian techniques, giving a probability distribution of values [e.g. 34–37]. We 148

tested how the open-loop and MPC frameworks handle this type of uncertainty in the system 149

dynamics. Uncertainty is introduced by sampling values from a distribution of infection rates for 150

each species in the simulation model. The approximate model is re-fitted to this ensemble of 200 151

simulation runs (Fig 5A–5B). To test control on these parameter distributions, for a single draw of 152
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infection rates from the distribution, the fitted approximate model is used to run the open-loop 153

and MPC frameworks. This is repeated for 200 draws from each distribution. 154

The distribution of the resulting objective values under the open-loop and MPC frameworks 155

shows that MPC improves the worst-case scenarios, i.e. the MPC updates are most beneficial 156

when the disease is hardest to manage (Fig 5C). The open-loop framework gives a distribution of 157

objectives with a worse minimum value than MPC. The continued surveillance of MPC generally 158

improves control, but the greatest improvements are seen when the epidemic is difficult to control, 159

making the open-loop framework ineffective (Fig 5D). When objective values are high, and so the 160

epidemic is easy to control, there is little difference between open-loop and MPC. 161
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Fig 5. Effect of parameter uncertainty on control performance. The approximate model is fitted to
an ensemble of simulation runs without control, with infection rate parameters drawn from a truncated
normal distribution. A: The ensemble and fitted tanoak dynamics. B: The ensemble and fitted bay dynamics.
C: The distribution of objective values using open-loop and MPC across 200 draws of simulation parameters.
D: The absolute improvement of the MPC strategy over open-loop, as a function of the open-loop objective.
The MPC framework performs well in the worst-case scenarios, improving control to the largest extent when
open-loop performs badly. Four individual cases have been highlighted in panels C and D. Further details for
each of these, highlighting what drives the differences in performance, are shown in S4 Text.

Imperfect sampling 162

The re-optimisation of control in the MPC framework requires accurate information about the 163

current state of the forest at each update step, i.e. every 20 years by default. However, full forest 164

stand surveys are expensive. We tested whether the intensity of these update surveys can be 165

reducedwhilst maintaining effective control, andwhether open-loop strategies can ever outperform 166

MPC with low quality surveillance. Imperfect sampling is introduced at each MPC update step, 167
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by sampling only a proportion of the forest stand giving imperfect observation of the state of the 168

epidemic. This imperfect observation is then fed back into the approximate model, with control 169

re-optimised in MPC based on this imperfect knowledge. 170

As the proportion of area sampled decreases, the uncertainty in the outcome of MPC increases 171

(Fig 6A). The median performance of MPC also decreases. This is because as less of the forest is 172

sampled, there is a higher chance that infected hosts will be missed during surveillance, and so 173

the rate of disease spread will be underestimated. As the proportion of the stand that is surveyed 174

increases, so too do the surveillance costs (Fig 6B). The disease costs however, reduce with more 175

tanoak retained as a result of more informed and effective control strategies. Balancing these two 176

costs results in an optimal level of surveillance effort (Fig 6C). The precise location of this optimum 177

depends on the balance between tanoak retention, biodiversity conservation, and surveillance 178

costs: a decision that must be made in the context of local forest management goals. It is clear 179

though, that some level of continued surveillance and re-optimisation through the MPC framework 180

is necessary for effective control. 181
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3 Discussion 182

Despite the empirical effectiveness of local SODmanagement strategies [5], mathematical modelling 183

studies have not been used to assess how local control should be optimised. Poorly designed disease 184

management strategies can lead to expensive failures of control, as was the case for control of Dutch 185

elm disease in the UK [38] and citrus canker in Florida [39]. Although detailed simulation models 186

have been used to optimise management strategies for a number of plant pathogens [3, 37, 40–46], 187

computational constraints mean that the control strategies tested are typically restricted to one 188

from a small set of possibilities in which the amount of control remains constant over time. Here 189

we have shown how frameworks for using optimal control theory [14] can be applied to realistic 190

simulation models to understand a practical disease management question, and identify effective 191

management strategies. By comparing the open-loop and MPC frameworks, we demonstrated that 192

continued surveillance and re-optimisation of the strategy improves management and leads to 193

control that is robust to parameter uncertainty and imperfect sampling. 194

3.1 Management advice 195

Current advice for management of SOD centres around removal of the spreader species, bay 196

laurel, as well as infected tanoak and bay, and susceptible tanoak close to known infections [47]. 197

Application of protective chemical treatments is also recommended for high value trees that are 198

close to infections and known not to be currently infected [48]. The strategies found here using OCT 199

are broadly similar in nature to these recommendations but include significant time dependence, 200

i.e. dependence on the state of the local epidemic. We have found that thinning of bay laurel is very 201

important to the success of disease management, echoing results of previous modelling studies 202

[23, 49]. Management advice from the US Forest Service [29] also suggests removal of bay trees, 203

and even complete area-wide removal of bay in some cases. We found that roguing of tanoak 204

is more important than roguing of infected bay, as thinning would reduce the bay population 205

density sufficiently for disease control. Our results show that with continued surveillance and 206

careful optimisation of controls, disease can be successfully managed. MPC implements adaptive 207

management of the bay laurel population, ensuring disease control is as close to optimal as possible. 208

This can be done whilst maintaining a bay laurel population that may be ecologically important, 209

providing food and cover for wildlife [50]. However, when biodiversity benefits are less important, 210

control is always easier and more effective with additional removal of bay laurel. 211

The strategies found here include thinning of redwood, carried out to create space in the forest 212

and thereby encourage growth of tanoak. However, redwood trees are also valuable and there is 213

likely to be significant opposition to their removal [16]. Clearly this will depend on the specific 214

management goals of an individual forest, but the control suggested here could be implemented 215

without redwood removal through a model change, for example by modelling undergrowth 216

removal or thinning of branches to increase light and space and promote tanoak growth. Other 217

extensions to the model could also improve the detail in the optimal control strategies. For example, 218

including size classes for bay laurel and redwood as well as for tanoak. Also, additional spatial 219

detail in the model would allow testing and optimisation of buffer strategies, where susceptible 220
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hosts near to infected hosts are also removed [3, 29]. These spatial strategies could improve disease 221

management, as well as allow detailed strategies that can handle and exploit spatial heterogeneity 222

in host structure and thus biodiversity. Data availability currently limits the extent to which 223

these extensions can be included in the model. However, the current parameterisation does offer 224

a plausible baseline for which the potential impact of OCT can be assessed, in time perhaps 225

motivating the data collection necessary for further model parameterisation. 226

Application of chemical protectants is only recommended in practice for individual high value 227

trees close to known infections [47]. The strategies we have found deploy significant protection 228

resources though. In fact, the protectant application only has a veryminor effect on the performance 229

of the strategies (S3 Text), and is unlikely to be cost-effective. Our formulation of the budget 230

constraint implements a maximum expenditure where a fixed amount of money is put aside 231

for SOD control, rather than minimising total costs. Whilst this is a simplified formulation, it 232

captures governmental allocation of money for SOD control. In our model, when the optimal 233

levels of roguing and thinning do not use the entire budget, the surplus can be allocated to 234

protectant application. In practice though, control methods will also be individually assessed for 235

cost-effectiveness, and given the limited effect of the protectant strategies, it seems unlikely that 236

they would be used. Extensions to the model could allow for more complex budget schemes, for 237

example varying year-by-year [3] or including discounting of future costs [51]. 238

3.2 Strategy complexity 239

A possible limitation of the strategies we have found is their complexity. Control inputs were held 240

constant over 5 year stages so that resources do not have to be continually moved, but the strategies 241

are nevertheless still complex in their time dependence and relative allocations to multiple control 242

methods. However, the findings of our results could still be useful. Building up an intuition 243

about what drives the optimal strategy could lead to more practical advice. For example, in the 244

open-loop and MPC strategies, thinning of bay is carried out early before switching to thinning of 245

redwood. These species are reduced to a threshold density that OCT has identified as sufficiently 246

low to suppress pathogen spread and promote tanoak restoration. This type of insight about 247

optimal densities of different species in mixed stands over the course of an epidemic could provide 248

actionable advice for foresters. 249

The complexity of the optimal strategies found comes in part from balancing multiple costs 250

and benefits: tanoak retention, biodiversity conservation, control expenditure and surveillance 251

costs. The valuation of the cultural and ecological benefits against more direct economic costs is 252

a difficult decision that must be made by forest managers. These decisions must be made in the 253

context of the local area, as well as other forest management goals such as fire reduction and timber 254

production [23]. Decisions about management goals however, either locally or through larger scale 255

regulation, can lead to conflicts that may impact the effectiveness of control [52]. The value of 256

tanoak retention must be balanced with the wider impacts of the control on the forest. 257
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3.3 Optimal control framework 258

As well as valuation, the formulation of the different cost functions is important. Here, we used a 259

metric for biodiversity conservation which was integrated over time and so ensures biodiversity is 260

conserved at all times. This captures the importance of continued biodiversity for wildlife habitats, 261

but also avoids introducing edge effects, for example thinning very late in the epidemic to meet a 262

biodiversity target. Both the biodiversity and tanoak objectives introduce a dependence on the 263

chosen time horizon of 100 years, but the tanoak objective only depends on the amount of tanoak 264

at the final time. This final time dependence is appropriate for a restoration type management 265

goal, such as ensuring a resource is available in the future. There is still however, a flexibility in 266

the form of the objective function chosen, and the precise choice of objective does impact disease 267

control [53]. Extending the final time beyond disease eradication to 200 years shows that MPC 268

retains a population of overstorey tanoak twice as large as under the open-loop framework (S3 Text). 269

Additionally, using an alternative integrated metric for tanoak retention does not significantly affect 270

the structure of the optimal control strategy, although a smaller population of healthy overstorey 271

tanoak is retained in the system (S3 Text). Other forms of objective may be more appropriate for 272

specific management goals, but these sensitivity analyses indicate our results are likely to be robust 273

to changes in the weights, timescales and formulation of the objective function. 274

We have shown that by repeated surveillance and re-optimisation of control, the damaging 275

effects of the worst-case scenarios of pathogen spread can be limited. As found by Cobb et 276

al. [23], disease control is only effective when there is long-term commitment to management 277

projects. Effort put into this long-term surveillance has to be cost-effective though. With imperfect 278

surveillance introducing observational uncertainty, an optimal balance between survey costs and 279

epidemic control was found. We have found an optimal balance for one specific sampling scheme, 280

but further testing of alternative schemes is needed. Other modelling studies of SOD have also 281

found that resource constraints lead to a trade off between detection and control [3, 11]. However, 282

our deterministic model does not incorporate the risk of stochastic disease re-emergence. Under 283

parameter uncertainty, rather than an ensemble of models we use a single fitted approximate model 284

which could limit handling of uncertainty. Furthermore, the state of the epidemic in the wider 285

region will impact the risk of re-emergence through potentially increasing inoculum pressure, for 286

example from the advancing wavefront of other epidemics in the local vicinity. Forest managers 287

must take into account these other factors in determining optimal levels of surveillance as well 288

as in designing controls, but regardless we have shown that vigilance to disease progression is 289

important. We have demonstrated that MPC gives effective control with updates every 20 years 290

but that more frequent updates improve control. Other forest factors, risk of re-emergence, climatic 291

conditions (in particular temperature and rainfall), and heavy rainfall leading to increased spread 292

(so-called ‘wave years’) will affect how frequently control should be re-optimised. However, it is 293

clear that continued surveillance and re-optimisation does improve control. Alongside vigilance to 294

disease progression must be a willingness to adapt control measures, re-optimising control to suit 295

the current state of the epidemic and changing local management goals. 296

In testing robustness we showed that the MPC framework is able to mitigate the effects of 297
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the most damaging epidemics, improving management performance in the worst-case scenarios. 298

Maccleery [54] states that a major barrier to US Forest Service management is the opposition to 299

adaptive management, in which ongoing monitoring is used to update management advice. This 300

is seen as too ‘experimental’ and increases short-term risk, but imposing fixed interventions means 301

strategies cannot be adapted based on what is seen ‘on the ground’. Here we have shown a clear 302

benefit to the ongoing surveillance and re-optimisation of control, with MPC as a possible formal 303

framework for adapting strategies. The open-loop framework however, still significantly slowed 304

tanoak decline, and slowing pathogen spread is still a useful goal allowing time to prepare for 305

ecosystem impacts [55]. 306

3.4 Future prospects 307

In this paper we have optimised strategies for slowing, or even halting, pathogen-induced decline of 308

tanoak in mixed species forest stands. OCT was used to find optimal time-dependent deployment 309

of thinning, roguing, and protectant control resources. The strategies found are broadly consistent 310

with current expert advice: focussing on thinning of bay laurel and roguing of infected trees. 311

However, the strategies we found show significant time dependence. Continued surveillance and 312

re-optimisation of the control strategy by using the MPC framework improves control performance. 313

MPC leads to robust strategies that can effectively respond to unanticipated disease dynamics and 314

system uncertainties, and so manage SOD to protect valuable tanoak trees whilst also conserving 315

biodiversity. Our future work will extend these frameworks to more complex spatial strategies, 316

also designed to protect valuable forest resources. 317

We have demonstrated how the optimisation capabilities of OCT can be exploited to design 318

effective, practical control strategies for complex systems, using SOD as a case study. There are 319

many opportunities for developing the application of OCT to complex systems, particularly in the 320

field of disease management where models are becoming increasingly complex [56]. One difficulty 321

in the approach we have used is systematically choosing an approximate model for optimisation. 322

The approximate model must be sufficiently complex to give realistic and practical control advice 323

whilst also ensuring optimisation remains feasible. There is also scope to apply detailed spatial 324

optimisations to complex systems, for example making use of partial differential equation models 325

as have been used in the OCT literature for optimising spatial disease control [57, 58]. Finally, 326

more focus should be given to handling of uncertainty and parameter inference when applying 327

OCT to complex systems. The MPC framework we have used could potentially take into account 328

more precise parameter estimates as the epidemic progresses [36], or Robust MPC could be used to 329

explicitly account for uncertainties [59]. 330

4 Methods 331

4.1 Simulation model 332

The spatial simulation model used is an implementation of the model described by Cobb et al. [21]. 333

A system of ordinary differential equations track the stem density (i.e. the number of tree stems per 334
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unit area) of redwood, susceptible and infected bay laurel, and susceptible and infected tanoak in 335

four age classes. The model is spatial with hosts positioned on a 20 by 20 grid of square cells, each 336

of area 500 m2. Recruitment and age transitions occur within a single cell, with density-dependence 337

in the recruitment rates based on the available space in the cell. Infection dynamics are the only 338

interaction between cells. In the original model [21], infected cells exerted an infectious pressure on 339

susceptible hosts within the same cell and in the 4 adjacent cells. Infectious spores are distributed 340

such that 50 % land within the same cell, and the other 50 % are distributed across the adjacent 341

cells. In our model we use a more realistic dispersal kernel, with 50 % of spores landing within the 342

same cell, and the other 50 % distributed according to an exponential kernel with a scale parameter 343

of 10 m. The dispersal scale is chosen to be representative of the distance of local splash dispersal 344

[60], and leads to dynamics with invasion rates consistent with field studies [18]. The kernel is 345

normalised so that total spore deposition across all cells is 100 %. With this new spore deposition 346

kernel, the infection rates are rescaled to match the time scales of invasion found by Cobb et al [21] 347

(S1 Text). 348

The simulation model uses infection rates that are an average over many years. We additionally 349

test in S3 Text how variable infection rates affect our results. This implements a simple model of 350

wave years, where heavy rainfall increases disease spread in some years. 351

Epidemics are seeded in the centre of a 20 by 20 grid (any one of the four central cells). Infection 352

starts in the bay population and the smallest tanoak age class, with 50 % of these hosts starting 353

infected. The forest host composition is taken from that used by Cobb et al. [21] for mixed species 354

forest stands. This corresponds to 40 % tanoak, 16 % bay, and 44 % redwood. The initial amount of 355

empty space is found by initialising the model in dynamic equilibrium (S1 Text). The state variables 356

track stem density in arbitrary units. The model is parameterised from the study plots in Cobb et al. 357

[21], which have an average tanoak density of 561 ha−1. The stem densities from the model can 358

therefore be scaled such that the initial stem density is 1400 ha−1, since tanoak makes up 40 % of 359

the forest composition. 360

4.2 Approximate model and fitting 361

To allow optimisation of a time-dependent control strategy, the simulation model is approximated 362

by a simpler, non-spatial model. To ensure that we can lift demographic parameters directly 363

from the simulation model however, we only change the spatial structure of the model (S2 Text). 364

The approximate model therefore assumes that all hosts in the forest stand are well-mixed. The 365

infection rates are fitted using a least squares approach, matching the disease progress curves to 366

those from the simulation model (S2 Text). 367

4.3 Control optimisation 368

Three classes of control are optimised: roguing, thinning and protectant methods. Roguing 369

methods are based on finding and removing infected hosts, whereas thinning methods remove 370

hosts regardless of infection status. Removal of hosts, either through thinning or roguing, is the 371

only control that has been effective at the landscape scale [61]. Protectant methods apply chemicals 372
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to uninfected trees to reduce their susceptibility to the disease. For SOD the main protectants used 373

are phosphonates, that are approved for use on oak and tanoak species and slow infection for 374

up to two years [62]. Roguing controls can be applied separately to infected small tanoak, large 375

tanoak and bay laurel. The hosts are removed and do not resprout, consistent with application of 376

a herbicide to the stump as is often recommended [29]. Thinning removes hosts of all infection 377

statuses, and can be applied separately to small tanoak, large tanoak, bay and redwood. Protection 378

can only be applied to small and large tanoaks, and only to susceptible hosts. These hosts are moved 379

into a new protected class with reduced susceptibility (S1 Text). Overall this gives 9 time-dependent 380

control functions ( fi(t)). 381

The time-dependent controls are chosen tomaximise an objective incorporating tanoak retention 382

and biodiversity conservation. Since the focus of the control is to ensure overstorey tanoak is 383

retained in the forest in the future, we treat the tanoak term as a terminal objective function, 384

maximising the density of healthy overstorey tanoak after T � 100 years. The Shannon index 385

is used as a metric for biodiversity [63], integrated over time to ensure ecosystem services are 386

maintained throughout the epidemic. The total objective to be maximised is therefore given by: 387

J � γ1 (S1,3(T) + S1,4(T)) − γ2

(∫ T

t�0

∑
i

pi ln pi dt

)
(1)

where S1,3 and S1,4 are the densities of healthy tanoak in the third and fourth age classes respectively, 388

and γ1 and γ2 are the weights associated with the tanoak retention and biodiversity conservation 389

objectives respectively. By default, the weights are set such that the contribution of the tanoak 390

retention term to the overall objective function in the disease free case is equal to 1, and the 391

maximum contribution of the biodiversity term is equal to 0.25. The sensitivity of control to the 392

relative benefit of biodiversity (i.e. γ2) is tested in Fig 4C. The sum in the second term is over host 393

species, where pi is the proportion of hosts in species i. The objective is maximised by optimising 394

the time-dependent control functions using BOCOP v2.0.5 [64], subject to a budget constraint 395

limiting the expenditure on control per unit time (S1 Text). Whilst the budget is chosen arbitrarily, 396

it corresponds to approximately 3000–5500 USD spent across the 20 ha forest stand each year (S1 397

Text). 398

4.4 Lifting and control frameworks 399

Strategies optimised using the approximate model are lifted to the simulation model. The control 400

functions from the optimisation in the approximate model are applied to the simulation model, 401

although distributed evenly across the landscape to give a non-spatial control strategy. The 402

functions are applied ensuring adherence to the budget constraint (S3 Text). In the open-loop 403

framework the control strategy is lifted to the simulation model and applied for the full 100 years. 404

In the MPC framework every 20 years the approximate model is reset to match the current state of 405

the simulation model. The initial conditions in the approximate model are set to match the average 406

density of each host across the landscape in the simulation model. Control is then re-optimised 407

using the approximate model and lifted to the simulation for the next 20 years. 408
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4.5 Parameter uncertainty 409

For simplicity we assume uncertainty is only present in the infection rates. A truncated normal 410

distribution is used to perturb the infection rates and ensure they remain positive, with a standard 411

deviation of 40 % of the parameter value. An ensemble of 200 simulations is used to fit the 412

approximate model to the average behaviour across the ensemble, again using a least squares 413

approach. The open-loop andMPC frameworks are then tested using the fitted approximate model 414

and new draws from the parameter distribution for the simulation model. 415

4.6 Observational uncertainty 416

At each MPC update time a proportion of the forest stand is sampled. The measured state is then 417

used as the initial condition in the approximate model for re-optimisation of the control. For 418

the sampling, each cell in the simulation model is split into 500 1 m2 discrete units. Surveillance 419

at update times is then carried out by observing a fixed number of units in each cell across the 420

landscape, without replacement. The infection status of tanoak and bay hosts is determined 421

randomly, with probabilities matching the proportion of that host that is infected. This sampling 422

scheme is chosen for simplicity but many others are possible. In S3 Text we show that similar 423

results are found using a sampling scheme that does not sample each cell equally. This more 424

realistic scheme affects both the number of areas and the number of trees within an area that are 425

sampled . Further testing would be required for more complex sampling strategies. 426
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