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Statistical Methods to Improve Efficiency in
Composite Endpoint Analysis

Martina McMenamin

Composite endpoints combine a number of outcomes to assess the efficacy of a treatment.
They are used in situations where it is difficult to identify a single relevant endpoint,
such as in complex multisystem diseases. Our focus in this thesis is on composite
responder endpoints, which allocate patients as either ‘responders’ or ‘non-responders’
based on whether they cross predefined thresholds in the individual outcomes. These
composites are often combinations of continuous and discrete measures and are typically
collapsed into a single binary endpoint and analysed using logistic regression. However,
this is at the expense of losing information on how close each patient was to the respon-
der threshold. As well as being inefficient the analysis is sensitive to misclassification
due to measurement error. The augmented binary method was introduced to improve
the analysis of composite responder endpoints comprised of a single continuous and
binary endpoint, by making use of the continuous information.

In this thesis we build on this work to address some of the existing limitations. We
implement small sample corrections for the standard binary and augmented binary
methods and assess the performance for application in rare disease trials, where the
gains are most needed. We find that employing the small sample corrected augmented
binary method results in a reduction of required sample size of 32%. Motivated by
systemic lupus erythematosus (SLE), we consider the case where the composite has
multiple continuous, ordinal and binary components. We adapt latent variable models
for application to these endpoints and assess the performance in simulated data and
phase IIb trial data in SLE. Our findings show reductions in required sample size of at
least 60%, however the magnitude of the gains depends on which components drive
response. Finally, we develop a method for sample size estimation so that the model
may be used as a primary analysis method in clinical trials. We assess the impact of
correlation structure and drivers of response on the sample size required.
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Chapter 1

Introduction

Clinical trials are studies which assess the impact of an intervention on the general
health of a population of interest. Often this intervention is in the form of a drug
treatment and is assessed by assigning eligible patients to receive either the experimental
treatment or a control treatment, which may be a placebo or the current standard of care.
The objective of a trial may be to assess the effectiveness of the proposed treatment,
which tests that it provides benefit overall. Alternatively, it may be concerned with the
efficacy which identifies the benefits in some identifiable subpopulation, such as those
who adhere to the treatment protocol. Interventions tested in clinical trials proceed
through four phases of testing. Phase I is concerned with collecting safety data by
administering the treatment in a small number of volunteers to support further testing.
The treatment is administered in a larger sample of patients in phase II, at a dose
that was judged to be safe in phase I. The aim of the phase II study is to seek safety
data and preliminary evidence of efficacy [1]. Phase III trials are large confirmatory
studies which assess the effectiveness of the treatment in order to gain regulatory
approval. The sample size chosen in the phase III study will be based on controlling
the probability with which a real effect can be identified as statistically significant and
estimating the treatment effect with high statistical precision [2]. Phase IV trials take
place after marketing to collect data on rare but serious effects of the treatment that
may not have been discovered in phase I-III.
A growing concern raised by the various stakeholders in trials is the duration and
expense of the clinical trial process [3–5]. Studies requiring many patients to detect a
given treatment effect have higher costs and take longer to get effective treatments
to market than those requiring fewer patients. These additional costs accrued at the
development stage result in higher drug prices meaning that society bears the burden
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[6]. It is therefore the responsibility of researchers working on all aspects of clinical
trials to improve efficiency wherever possible [7].

1.1 Composite Endpoints

Composite endpoints combine a number of individual outcomes in order to assess the
effectiveness or efficacy of a treatment. They are typically used in situations where it
is difficult to identify a single relevant endpoint to sufficiently capture the change in
disease status incited by the treatment, however they may be employed for multiple
purposes [8–11].
The construction of the composite endpoint differs depending on the disease. For
instance, it is common in randomised trials of cardiovascular conditions to combine a
number of binary outcomes such as death, myocardial infarction, stroke or ischemia-
driven target vessel revascularization, as in [12]. These composite endpoints are typically
analysed using time-to-event methods. Composite endpoints in other diseases combine
outcomes on different scales, such as continuous and discrete measures. Our focus in
this thesis is on a subset of these outcomes known as composite responder endpoints.
These endpoints allocate patients as either ‘responders’ or ‘non-responders’ based on
whether they cross predefined thresholds in the individual outcomes and are typically
treated as a single binary endpoint. It is both theoretically and pragmatically important
to make the distinction between composites that require patients to experience an
event in all components and those which require patients to have an event in at least
one of the components. We introduce the general characteristics of both below.

1.1.1 Events in at Least One Component

To be classed as a responder in some diseases, patients may have to meet one of
multiple criteria, which may be defined on different scales. Alternatively, patients
may have to respond in a subset of the components in order to be responders overall,
such as in rheumatoid arthritis where response in five of seven components equates
to response overall. Properties related to composite endpoints requiring events in at
least one component have been discussed at length in the literature, e.g. [11]. The
considerations in the construction of composite endpoints are summarised as follows.
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1. Coherence
Coherence in this context means that components should measure the same
underlying pathophysiologic process, as well as the same disease process.

2. Coincidence
Although composite endpoints should be coherent, coincidence ensures that
components are not so closely related that patients experience all of them. In
this case it is considered that the composite endpoint has become redundant and
the effects of treatment can be captured in a single component.

3. Therapy homogeneity
From an investigator’s perspective it is important that the composite endpoint is
sensitive to the treatment being evaluated and it is desirable that effect sizes are
similar on each component.

A desirable aspect of these endpoints is that their application in trials may result
in an increase in power, provided everything else remains constant. This is due to
an increase in the number of events, where events are defined as any occurrence of
response. Moyé [11] frames the possible power gains in terms of probability by assuming
a two-dimensional composite endpoint with outcomes A and B, as shown in (1.1).

P (A ∪B) =P (A) + P (B) − P (A ∩B) (1.1)

=P (A) + P (B) − P (A|B)P (B)

=P (A) + P (B)(1 − P (A|B))

From this we can see that the event rate P (A∪B) is at its maximum when P (A|B) = 0,
implying that mutual exclusivity of events in the composite is desirable. However, for
two components to be mutually exclusive in practice often requires linking together
events that physicians are unaccustomed to combining, leaving the interpretation of
the endpoint challenging [9, 10]. Furthermore, this is simplistic as the magnitude of
power gains may also depend on the treatment effect in each component as well as
the occurrence of events, where therapy homogeneity across components is considered
optimal in terms of power [11, 13].
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1.1.2 Events in All Components

Patient response may otherwise be obtained through meeting specific criteria in all
components of the outcome. As before, these endpoints must be both coherent
and homogeneous in response to therapy. However, they are not designed to avoid
coincidence. Examples of these endpoints arise in solid tumour cancers, where a patient
is only classed as a responder if they have experienced a predefined reduction in tumour
size and have not developed new lesions [14].
Generally these endpoints do not have the advantage of increasing power in a given
study, as an increased number of events are required. Instead, they are useful in
multisystem diseases which require interventions to treat a range of symptoms in order
for the treatment to be considered truly effective. Considering the probability of the
events in the composite occurring, we are now concerned with P (A ∩ B) which will
be largest when P (A ∪ B) is minimised as shown in (1.2). However, as before other
considerations such as treatment effect homogeneity are also relevant.

P (A ∩B) = P (A) + P (B) − P (A ∪B) (1.2)

The methods in this thesis will be developed for composite responder endpoints in
general, which may be applied where events are required in all components or in at
least one component.

1.1.3 Opportunities and Limitations

There are many potential benefits to conducting a clinical trial using composite
endpoints. As discussed, in the case of requiring response in at least one component,
composite endpoints have the advantage that they increase the number of events in
the trial [8, 15, 16]. In the likely case that this leads to a reduction in sample size,
trials may be shorter and less expensive resulting in effective drugs being brought to
market earlier [17–20]. Composite endpoints are particularly useful when a number of
outcomes are equally relevant. In particular, in the case of diseases with large variation
in symptoms, employing a composite endpoint will avoid an arbitrary choice of a
single outcome [9, 15, 21, 22]. Furthermore, combining equally relevant outcomes and
analysing as a composite endpoint negates the requirement for a multiple comparison
adjustment [22–25]. In addition, proponents of composite endpoints believe that they
are appropriate as they estimate the net clinical benefit of intervention by accounting
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for the multiple factors of interest in a given disease [26–29].
However, there are limitations in the application of composite endpoints. In practice,
composites may be inconsistently defined and provide opportunities for post-hoc changes
[30]. Composite endpoints may be driven by less important or subjective components,
meaning that a promising treatment effect may not translate to the expected benefit for
patients [9, 22, 31]. If ‘quantitative heterogeneity’ occurs and treatment effects observed
on the components are in different directions, this will make interpreting the overall
effect challenging [10, 11, 15]. Furthermore, treatment effects on the overall composite
may be diminished or harmful effects may be masked if unresponsive components
are included [8, 10, 24]. Although composite endpoints have the capacity to capture
multiple aspects of a disease, ‘qualitative heterogeneity’ means that not all patients
will attach similar importance to each component [10, 18, 27–29]. Finally, it may
not always be possible to avoid multiple testing corrections as many applications of
composite endpoints require that the treatment effects on each individual component
should also be reported [11, 15].

1.1.4 Recommendations for Use

When employing composite endpoints, guidance must be followed in order to ensure
valid and meaningful implementation in clinical trials [8]. As the overall treatment effect
reported on a composite endpoint depends on the correlation between components,
the direction of treatment effect in each component and hence the patient responder
rates, it is therefore important for interpretation that effects are reported on individual
components as secondary results. In order to reduce any ambiguity in application,
many sets of guidelines have been issued, including from the European Network for
Health Technology Assessment (EUnetHTA) for application in pharmaceuticals [32].
We summarise the recommendations from the literature for construction, reporting
and interpretation of composite endpoints below [13, 30].

A. Construction

• Composite endpoints should generally not be used if a suitable single endpoint
is available, except when it can be justified to be more suitable (e.g. rare
disease/event) [32]

• Composites and components should be clearly prespecified before starting the
trial [9, 21]
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• Prior evidence should exist for each component to avoid including clinically
unimportant outcomes [19, 22]

• Including outcomes that are unlikely to experience an effect of the intervention
should be avoided [11, 27]

• A mix of objective and subjective outcomes should be avoided [13, 31, 32]

B. Reporting

• Components should be separately defined as secondary endpoints and effects
reported with the primary analysis results to determine if one component has
dominated the composite [13, 18, 25]

• Separate components can be reported according to severity level and the ‘worst’
outcome experienced should be reported according to a predefined ranking system
[25, 32]

• Report relevant combinations of the components relating to subgroups or special
patient populations at risk [24]

• The number of patients with partially missing values on some components should
be reported in detail [32]

C. Interpretation

• Treatment effects should be interpreted based on the composite endpoint (any
effect of the components should be interpreted together rather than concluding
efficacy of individual components) [9, 13]

• Clinically important components should be checked to ensure that they have not
been affected negatively by the treatment [22, 24]

• Basing the overall conclusion on a meta-analysis if comparable composite end-
points are available from several studies should be considered [32]
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1.2 Existing Methods

The work in this thesis will focus on methodology for composite responder endpoints
with components defined on a mixture of discrete and continuous scales. We introduce
the existing methods for this application below and highlight the need for further
methods development in this area.

1.2.1 Notation

Let us initially consider the case of a composite endpoint comprised of a single
continuous and single binary outcome measured at multiple time points. Suppose we
have n patients per arm and Ti ∈ {1, 2} indicates the treatment arm of patient i. Yij

denotes the continuous score at time j ∈ {1, 2} where yi0 is the baseline score and η is
the continuous responder threshold. Let Fij be an indicator variable taking a value
equal to 1 if the patient fails to respond in the binary outcome at time point j ∈ {1, 2},
where Fi2 is equal to 1 if patient i fails to respond any time between the first and
second visit. Si is a binary variable indicating whether or not patient i was a responder
overall, where Si = 1 if Yi2 ≥ η and Fi1 = Fi2 = 0.

1.2.2 Standard Binary Method

The method often employed to analyse these data in trials is a logistic regression on
the binary indicator for response, Si. We refer to this as the standard binary method,
which is shown in (1.3).

logit (P (Si = 1|Ti, yi0)) = ψF 0 + ψF 1Ti + ψF 2yi0 (1.3)

This provides maximum likelihood estimates θ̂ =
(
ψ̂F 0, ψ̂F 1, ψ̂F 2

)
and Cov(θ̂) which

can be used directly to estimate the odds ratio and its confidence interval. We can
also obtain predicted probabilities for each patient as if they were treated piT and not
treated piC . This allows us to estimate the risk difference, risk ratio and odds ratio as
shown in (1.4), (1.5) and (1.6) respectively.

1. Risk difference

δ1 =
∑N

i=1 piT −∑N
i=1 piC

N
(1.4)
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2. Risk ratio

δ2 =
∑N

i=1 piT∑N
i=1 piC

(1.5)

3. Odds ratio

δ3 =

( ∑N
i=1 piT

N −∑N
i=1 piT

)
( ∑N

i=1 piC

N −∑N
i=1 piC

) (1.6)

Confidence intervals for these treatment effect estimates can be constructed by obtaining
standard error estimates using the delta method. This requires the covariance matrix
of the maximum likelihood estimates Cov(θ̂) and the vector of partial derivatives of δ
with respect to each of the parameter estimates, ′′δ. For example, the variance of δ1 is
obtained as shown in (1.7).

V ar(δ1) = (′′δ1)TCov(θ̂)(′′δ1) (1.7)

The advantage of the standard binary method is that the method is extremely straight-
forward and quick to implement. However, this is at the expense of losing a lot of
information detailing how close each patient was to the responder threshold. Therefore,
those who narrowly missed being classified as a responder are indistinguishable in the
analysis from those who had measurements far from the threshold. As well as being
inefficient, a problematic consequence of this is that the standard binary method is
sensitive to misclassification due to measurement error. Measurement error in this
instance means that a patient’s continuous measurements could differ on two readings,
hence patients who have measurements close to the response threshold could feasibly
be classed as a responder under one reading and a non-responder with the other
reading [33]. As the binary method does not distinguish between responders and
non-responders of different magnitudes, we may be sceptical about any conclusions
drawn if the dataset contains a large number of patients with measurements near
the dichotomisation threshold. It is possible to do a sensitivity analysis in this case
to determine whether classifying these patients differently would lead to different
conclusions.
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1.2.3 Suissa Method

It is also common in medical studies when working with a single continuous outcome
of interest Y, that the clinically relevant event is a state of disease characterised by
being above or below a given cut-off point η. An example of this is in reflux chest pain
syndrome, where the reduction in chest pain must be greater than or equal to 50%.
Often in practice, these outcomes are also considered to be binary and analysed using
standard binary methods. Suissa [34] introduced an alternative method for estimating
the risk of events defined by a sub-domain of continuous outcomes that does not require
dichotomisation of the variable. This is based on assuming a Gaussian distribution such
that Y ∼ N(µT , σ

2
T ) in the treatment group and Y ∼ N(µC , σ

2
C) in the control group.

If responders are defined as those who have Y values less than some value η then the
event of interest is defined as pT = P (Y < η|T = 1) and pC = P (Y < η|T = 0) in the
treatment and control arms respectively. The measurements of interest such as the
risk difference, risk ratio and odds ratio are defined as (1.4), (1.5) and (1.6), as before.

Figure 1.1: Graphical illustration of the Suissa method, which uses the Gaussian
distribution underpinning the dichotomy to estimate the binary responder rate, where
responders are defined as having a continuous measure less than 4.4

Figure 1.1 shows an illustration of the example used by Suissa, where Y ∼ N(4, 0.52).
The response threshold is set at η = 4.4 meaning that any patients with Y scores
greater than 4.4 are classed as non-responders, which is shown by the dichotomised
response data in the bar plot. The findings showed that analysing the dichotomised
data using the standard binary method is 33% less efficient than the method utilising
the continuous information, as determined by the reduction in confidence interval
width. Therefore, if a sample contained 100 patients, the same precision could be
obtained in 67 patients by using the Suissa method.
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1.2.4 Augmented Binary Method

The Suissa method is shown to improve efficiency and allieviate the problems with mea-
surement error when the endpoint is a dichotomised continuous component. However,
when the endpoint of interest is a combination of a continuous and binary outcome,
there is no obvious joint distribution with which we can model the components. The
augmented binary method is an extension of the Suissa method, proposed by Wason &
Seaman [35] for a composite responder endpoint comprised of a dichotomised continu-
ous component and some additional binary information. This improves efficiency by
making use of how close patients were to being responders in the continuous component.
For a fixed sample size, the method was shown to provide a substantial increase in
power over the standard binary method currently in use, whilst still making inference
on the outcome of interest to clinicians. This was illustrated in both solid tumour
cancer and rheumatoid arthritis data [35, 36].
In the case of two time points, as considered by Wason & Seaman [35], a continuous
component Y is measured at baseline and two follow up times and a binary component
F is measured at two time points. The augmented binary method models the joint
distribution of (Y1, Y2, F1, F2) by employing factorisation techniques to model each of
the components separately, as shown by the equations below.

Yij = αF 0+αF 1TiI{j = 1} + αF 2TiI{j = 2} + αF 3yi0 + αj + εij

(εi1, εi2) ∼ N

(0, 0),
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (1.8)

logit (P (Fi1 = 1|Ti, yi0, Yi1, Yi2)) = βF 0 + βF 1Ti + βF 2yi0 (1.9)

logit (P (Fi2 = 1|Fi1 = 0, Ti, yi0, Yi1, Yi2)) = γF 0 + γF 1Ti + γF 2Yi1 (1.10)

Note that in (1.8), αF 1 and αF 2 are the treatment effects at time point one and two
respectively and (α1, α2) are the time effects. Equation (1.9) represents the proba-
bility of failure at time point 1 and (1.10) determines the probability of failure at
time point 2, given the patient did not fail at time point 1. Repeated measures
models can be fit to the continuous component using generalised least squares (GLS),
which estimates the variance-covariance matrix using restricted maximum likelihood
methods. After fitting these models and obtaining maximum likelihood estimates
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θ̂AB =
(
α̂F 0, α̂F 1, α̂F 2, α̂F 3, α̂1, α̂2, β̂F 0, β̂F 1, β̂F 2, γ̂F 0, γ̂F 1, γ̂F 2

)
, we can obtain the over-

all probability of response in each arm. The probability of response in the endpoint
which has dichotomisation threshold η1 is shown below.

P (Y2 ⩾ η1, F1 = F2 = 0|T, y0)

=
∫ ∞

−∞

∫ ∞

−∞
P (Y2 ⩾ η1, F1 = F2 = 0|T, y0, Y1 = y1, Y2 = y2)f(y1, y2; T, y0)dy

=
∫ ∞

−∞

∫ ∞

η1
P (F1 = F2 = 0|T, y0, Y1 = y1, Y2 = y2)f(y1, y2; T, y0)dy

=
∫ ∞

−∞

∫ ∞

η1
P (F2 = 0|F1 = 0, T, y0, Y1 = y1)P (F1 = 0|T, y0, Y1 = y1)f(y1, y2; T, y0)dy

We can obtain a fitted probability of response for each patient i as if they were
treated with the experimental treatment piT and the control treatment piC . Treatment
effect estimates and confidence intervals are constructed as before, where Cov(θ̂AB) is
as shown below.

Cov(θ̂AB) =


Cov(α̂F 0, α̂F 1, α̂F 2, α̂F 3, α̂1, α̂2) 0 0

0 Cov(β̂F 0, β̂F 1, β̂F 2) 0
0 0 Cov(γ̂F 0, γ̂F 1, γ̂F 2)


Figure 1.2 is a schematic showing the stages involved in applying the standard binary
and augmented binary methods. This clearly illustrates that the gains in efficiency
in the augmented binary method arise from collapsing the observed data after the
analysis, rather than before. Importantly, both models provide the same outcome of
interest.

Number of Time Points

We have discussed the application of the methods for two time points however this is
not a requirement. The augmented binary method may be easily employed to model
one time point where the method reduces to one logistic regression model and a linear
model for the continuous information. Furthermore, it may be used in situations with
more than two time points however it may become too computationally demanding for
a large number of follow-up times [37].
To make further improvements to the analysis of composite endpoints it will be
important to consider the forms of composite endpoints which are most commonly
employed in practice, which we consider in Section 1.3.
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Figure 1.2: Schematic comparing the stages involved in fitting the standard binary and
augmented binary methods for a composite endpoint with a continuous score and binary
indicator measured at two time points
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1.3 Scope for Application

1.3.1 Motivation

We have previously discussed the rationale for employing different forms of composite
endpoints and highlighted the opportunities available when they are used correctly.
Another important consideration for motivating further methods development in this
area is to understand the range of clinical areas that commonly make use of mixed
outcome composite endpoints. Previously identified clinical areas include solid tumour
oncology and rheumatoid arthritis, both of which use a composite responder endpoint
with a single dichotomised continuous component combined with additional binary
information. The augmented binary method has previously been applied to data in both
of these areas [35, 36]. Another endpoint which we have identified is in systemic lupus
erythematosus (SLE), which contains multiple continuous and ordinal components and
will be the motivation for Chapter 3. However, for the work to have the maximum
potential impact we wish to identify additional disease areas which are making use of
composite responder endpoints containing dichotomised continuous components.
By understanding the extent to which mixed outcome composites are being employed
in trials and the most common forms that exist for these endpoints, we can ensure that
the methods developed in this thesis are closely aligned with what is needed in clinical
practice.

1.3.2 Methods

To answer this question, we make use of the COMET (Core Outcome Measures in
Effectiveness Trials) database (http://www.comet-initiative.org/resources), which lists
the minimum that should be measured and reported in all clinical trials of a specific
condition. We reviewed physiological and mortality trial outcomes recorded within all
core outcome sets (COS) that were published before 2016 and identified 287 in total.
Each core outcome set paper was reviewed to determine if any responder endpoints
were recommended for reporting in all clinical trials within that condition. In some
cases, a potentially relevant endpoint was not clearly described in the core outcome
paper. In this case, we examined randomised controlled trials (RCTs) that had used
the endpoint to determine whether it was a suitable responder endpoint.
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1.3.3 Findings

Through this process we identified 45 clinical areas (additional to solid tumour oncology,
rheumatoid arthritis and SLE) where the augmented binary method could be utilised
to gain efficiency [38]. An additional 23 clinical areas had used responder endpoints
formed from a single categorised or dichotomised continuous variable, which could
improve efficiency by making use of the Suissa method. These are shown in the Tables
1.1-1.3 below and a preprint of the work is included in Appendix A. From the results,
we can see that composite responder endpoints with dichotomised continuous measures
are used across a diverse set of conditions and thus the potential impact of further
methods development is substantial. As we identified the diseases using the COMET
database, this was not a systematic review and thus it is likely that our estimate of
diseases using these endpoints is conservative.

1.4 Thesis Aims

We must note that objections to the formation and application of composite endpoints
in general do exist based on the limitations presented. However, the focus of this
thesis is on improving the analysis of existing and validated endpoints based on the
information already collected and so the general drawbacks of composite endpoints will
not be discussed further. The augmented binary method has improved the analysis of
composite responder endpoints through reducing the required sample size by at least
35% for the same power using the available observed data. However, we have identified
some limitations in the existing work that we will investigate in this thesis. We expect
that our developments will have the potential for substantial impact due to the number
and range of disease areas using these composite responder endpoints, as identified in
our review.
Given that the augmented binary method offers large efficiency gains we are interested
in the performance of the method in the rare disease trial setting, where these gains
are most needed. As the method uses more parameters, some evidence has suggested
that it may not perform as well in small samples. Chapter 2 focuses on the small
sample performance of both the standard binary and augmented binary methods and
evaluates the behaviour of the methods with small sample corrections. The aim of this
work is to modify the method so that it can be applied in rare disease trials either to
improve the precision of treatment effect estimates or to reduce the required sample
size to something more achievable in a rare disease population.



1.4 Thesis Aims 15

Table 1.1: List of diseases using composite responder endpoints with at least one
dichotomised continuous measure which can utilise the augmented binary method to
improve efficiency. * denotes a single dichotomised variable which could use the Suissa
method to improve efficiency

Disease category Condition Endpoint
Bleeding and • Haemophilia Stroke or new or enlarged
transfusion cerebral infarct

• Immune thrombocytopenic Complete response
purpura

• Transfusion 1 hour CCL<7.5*

Cancer † • Acute Myeloid Leukaemia Response, time to relapse
• Breast cancer related ≥50% reduction in excess

lymphedema arm volume*
• Dyspnea or Breathlessness Severe breathlessness

in Palliative Care (numerical rating scale ≥6)*
• Fever and neutropenia Fever*
• Hodgkin’s disease and Complete response

lymphoma
• Malignant lymphoma Progression-free survival (PFS)
• Myeloma (Newly diagnosed) PFS and Very Good Partial

Response (VGPR)
• Myeloma (Refractory) Complete response
• Myeloma (Relapsed) PFS
• Systematic light-chain Haematological response

amyloidosis

Dentistry and • Intermittent exotropia Alignment, Deterioration
vision • Edentulous Implant success

• Periodontal disease Mobility grade 1*

Gastroenterology • Hepatic encephalopathy NAS improvement of 2
without worsening of fibrosis

• Inflammatory Bowel Disease Clinical remission
• Non-alcoholic steatohepatitis Resolution of Steatohepatitis

without fibrosis
• Reflux chest pain syndrome Reduction in chest pain ≥50%*
• Reflux oesophagitis syndrome Troublesome regurgitation*

† Excluding solid tumour oncology
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Table 1.2: List of diseases using composite responder endpoints with at least one
dichotomised continuous measure which can utilise the augmented binary method to
improve efficiency (continued). * denotes a single dichotomised variable which could use
the Suissa method to improve efficiency

Disease category Condition Endpoint
Cardiovascular • Aortic dissection Procedural success

• Aortic valve implantation Clinical efficacy
• Aortic valve stenosis Device success
• Atrial fibrillation AF control*
• Chronic leg admea Normal range of motion*
• Deep venous thrombosis and Major bleeding

pulmonary embolism
• Head and neck lymphatic Response*

malformation
• Mitrial regurgitation Mitrial regurgitation

Infectious disease • Influenza Resolution of fever
• Intra-abdominal infection Recovery
• Pneumonia Clinical stability

Urological • Acute kidney injury Proportion with acute
kidney injury

• Acute renal failure Proportion with acute
renal failure

• Male sexual dysfunction Severe dysfunction*

Lungs and airways • Connective tissue disease Decline in forced vital capacity*
associated lung disease

• Idiopathic pulmonary fibrosis Decline in forced vital capacity*

Neurology • Cerebral Palsy Modified Teacher’s Drooling scale*
• Chronic Demyelinating Impairment

Polyradiculoneuropath
• Headache >50% improvement in HA index
• Hypoxic-ischemic brain injury Moderate-severe disability
• Intracranial cerebral Acute and subacute arterial

atherosclerosis occlusions
• Multifocal Motor Neuropathy INCAT Sensory Sum Score
• Multiple Sclerosis Progression of disability
• Pain >30% reduction in pain scale*
• Traumatic brain injury Severe disability rating*
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Table 1.3: List of diseases using composite responder endpoints with at least one
dichotomised continuous measure which can utilise the augmented binary method to
improve efficiency (continued). * denotes a single dichotomised variable which could use
the Suissa method to improve efficiency

Disease category Condition Endpoint
Mental health and • Alcohol abuse Proportion heavy drinking days

addiction • Bipolar disorder Children’s depression rating*
• Major depressive disorder Response
• Nicotine abuse Abstinence

Orthopaedics and • ACL injury Knee function
trauma • Burns Response

• Dupuytren’s disease Contracture recurrence
• Low back pain Severe disability*

Rheumatology† • Acute gout Patients with sUA level <6.0mg*
• Ankylosing spondylitis ASAS20 response
• Idiopathic arthritis-associated Best corrected visual acuity and

uveitis no light perception
• Juvenile arthritis Response
• Juvenile dermatomyositis Responder index
• Prevention of fracture in high Response

risk populations
• Proliferative and membranous Urinary protein levels within

lupus renal disease normal range*
• Sarcopenia prevention Occurrence of sarcopenia
• Sjogren’s syndrome >30% reduction in three

analog scales
• Systemic Sclerosis SCP in normal range, no

renal crisis
• Vasculitis disorders Response/partial improvement*

Other • Endometriosis-related pain >30% reduction in symptom score
without use of rescue analgesics

• Gestational diabetes mellitus Gestational hypertension
• Neurofibromatosis Severe pain*

† Excluding rheumatoid arthritis and systemic lupus erythematosus
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The augmented binary method performs well in the case of one continuous and one
binary component. It can also be applied to more complex composite endpoints that
contain more components by combining any remaining information with the binary
indicator. However, in the case that the composite contains multiple continuous or
ordinal components, this will still result in a loss of information due to the continuous
and ordinal measures being treated as binary. We hypothesise that if we could retain
the information in multiple continuous and ordinal components then we may have
even larger efficiency gains. The aim of Chapter 3 is to develop methodology for
more complex composite endpoints and assess the performance through simulation and
application to a phase IIb trial in SLE.
Although a joint modelling approach to composite endpoint analysis has proved
promising, one restriction for employing the methods in the primary analysis is the
absence of a technique to calculate the sample size. The work in Chapter 4 aims to
develop a method for sample size estimation and to investigate how the structure of the
data, such as the correlation between components and the treatment effect structure
within the components, affects the sample size required.
Finally, Chapter 5 will focus on a discussion of the work along with the limitations
and areas for future work to further improve the analysis of composite endpoints in
practice.



Chapter 2

Composite Endpoints in Rare
Disease Trials

2.1 Introduction

2.1.1 Motivation

For stakeholders in rare disease communities, it is imperative to keep in mind that
rare diseases are far from ‘rare’ for those whose lives they consume, with the patient
experience for individuals suffering from a rare condition being extremely challenging at
every stage. The diagnosis process is typically much longer than for patients suffering
from more common diseases due to doctors being unfamiliar with the illness and its
manifestations. Once the disease is identified, patients are often given the choice of no
treatment options or extremely toxic experimental treatments. Patients may therefore
have to enrol in clinical trials to receive any treatment at all for their condition [39–41].
The last few decades have seen a societal shift which recognises some of these issues
and has resulted in a much greater focus on rare disease research. Some of these
shortfalls have been addressed by a surge in patient advocacy groups, that aim to
increase awareness of the disease and lobby the government to increase funding of rare
disease research. Furthermore, they undertake activities such as facilitating patient
registries and disease natural histories in order to ‘de-risk’ the drug development
process and increase access to treatments for rare disease patients [42]. The targeted
agenda of these organisations alongside advances in technologies, which improve
international communication between rare disease experts and patients, has resulted in
an improvement in education surrounding these diseases and hence the abilty to act
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quicker in the diagnosis and treatment phases [39]. However, the reality is that there
is still a lot of progress to be made.
A crucial factor inhibiting progress is that pharmaceutical companies have historically
neglected the rare disease sector, due to the large costs involved in product development
for what will ultimately be used by a relatively small group of patients. To address this
issue the European Medicines Agency (EMA) introduced incentives for drug companies
that aim to make the rare disease research market more attractive and lucrative. One
aspect of this initiative is market exclusivity for orphan drugs, offering ten years of
protection from market competition, allowing companies to recover some of the large
development costs. Other incentives include protocol assistance, fee reductions and
grants [43].
Another restrictive characteristic of rare disease trials is slow recruitment due to a small
available population. Standard methods to alleviate these problems involve running
multi-centre, international clinical trials. However, this is challenging due to there being
no formal standard of care for many rare conditions and the often varying definitions
of disease in different countries meaning the control arm in an international trial may
be highly heterogeneous. Consequently, achieving the desired sample size for rare
disease trials requires alternative approaches. The issues arising from high variability in
disease definition and care are exacerbated by the fact that rare diseases typically have
large variation in disease manifestation across patients, making running a coherent
trial with appropriate power extremely challenging. Composite endpoints are often
recommended to address some of these issues. If the components are appropriately
chosen, endpoints that require an event in only one of the components may have the
ability to improve the power to show a given treatment effect due to the increased
number of events [8–10].
These endpoints frequently feature in rare autoimmune diseases and rare cancers.
Examples of these are presented in Table 2.1, one of which is the chronic inflammatory
disorder Behçet disease. A review of the research performed in this area concludes
that evidence continues to be based on anecdotal case reports rather than randomised
trials [44]. As well as those shown in Table 2.1, any rare cancers using RECIST
criteria (Response Evaluation Criteria In Solid Tumors) to define responders and
non-responders use endpoints that assume this structure [14]. As discussed in the
introduction, methods currently employed to analyse these endpoints are inefficient and
waste a lot of valuable patient information. Due to the additional variation typically
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present in rare disease trials, novel statistical design and analysis methods are especially
necessary to make the best use of available information [40, 41].

Rare disease trials employing composite responder endpoints with continuous and
binary components, such as those shown in Table 2.1, may make use of the augmented
binary method, which was shown in more common diseases to reduce the required
sample size by 35% for a fixed power. Clearly, a precision gain of this magnitude would
be hugely beneficial in a rare disease trial however the method uses more parameters
than the standard binary method. Some evidence has suggested that it may not be
suitable for trials with small samples, perhaps due to issues with asymptotics [35]. The
objective of the work in this chapter is to evaluate the performance of the augmented
binary method in small sample settings, modify it using small sample corrections if
necessary and explore the feasibility of using this to reduce the required sample size
needed for enrolment in a rare disease trial.
If the gains provided by the augmented binary method in common diseases can be
realised in smaller samples, we envisage that impact may be obtained in multiple
ways. Firstly, it may allow us to gain information from randomised trials that would
otherwise not be possible due to the perceived infeasibility of reaching the target sample
size. Secondly, trials that already take place may report the treatment effect more
precisely, meaning that fewer rare disease trials will conclude with a confidence interval
so large that it leaves us uncertain about the utility of the treatment. Otherwise, the
efficiency gains could be used to recruit fewer patients resulting in shorter trials and
reduced costs for pharmaceutical companies and hence increasing innovation in this
area. Furthermore, speeding up the drug development process can benefit patients as
efficacious drugs may be brought to market and thus accessed sooner.
The initiatives and incentives currently in place have already dramatically improved
how research is conducted in rare diseases. If statisticians can join other stakeholders
in using their skills to tackle specific challenges in the rare disease sector, the research
landscape in this field may be further improved for previously neglected rare disease
populations.

2.1.2 Aims

To achieve the goals and impact discussed, we set a number of specific aims for the
work in this chapter. As discussed previously, the motivation is based entirely on
application in rare disease trials using composite responder endpoints and is therefore
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Table 2.1: Examples of rare disease clinical trials which use a composite responder
endpoint comprising continuous and binary measures to determine the effectiveness of
a treatment, where patients must respond in all components by meeting a predefined
responder threshold in order to be classed as a responder overall

Disease Example responder endpoint

Primary biliary • ALP<1.67×ULN
cholongitis (PBC) • Total bilirubin < ULN

• ALP decrease ≥ 15%

Behçets disease • Length of principal intestinal ulcer compared to size
at baseline (%)

• No new lesions

Lupus nephritis • eGFR no more than 10% below preflare value
• Proteinuria UPC ratio < 0.5
• Urine sediment: Inactive
• No rescue therapy

Neuroblastoma • <10mm residual soft tissue at primary site
• Complete resolution of MIBG of FDG-PET uptake

(for MIBG non avid tumours) at primary site

Advanced hepatocellular • <20% increase in the sum of the longest diameters
carcinoma of target lesions

• No new lesions

ALP alkaline phosphatase, ULN upper limits of normal, eGFR estimated glomerular filtra-
tion rate, UPC urinary protein to creatinine, MIBG metaiodobenzylguanidine, FDG-PET
18-fluorodeoxyglucose positron emission tomography
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focused on determining pragmatic approaches to data analysis using the information
available. Therefore, the objectives are to:

• Understand the performance of the standard binary and augmented binary
methods in small sample sizes

• Determine the differences in performance when using generalised least squares
(GLS) and generalised estimating equations (GEE) for modelling the continuous
component in the augmented binary method

• Identify the most appropriate way to express the treatment effect estimate based
on performance characteristics (risk difference vs. odds ratio)

• Identify and implement appropriate small sample corrections and compare the
performance with the uncorrected methods

• Determine the most efficient analysis methods to reduce the required sample size
in a rare disease trial or to report the treatment effect more precisely

• Make analysis recommendations for trials in rare diseases using composite end-
points

The chapter proceeds as follows. We introduce the methods and data that we will
use to investigate the performance through re-sampling. We show the behaviour of
the methods for varying sample size and response thresholds. We include a simulation
study to verify the findings of the re-sampling and conclude with a discussion and
recommendations for analysing rare disease trials using these endpoints.

2.2 Small Sample Adjustments

2.2.1 Binary Component Adjustment

Albert and Anderson show when fitting a logistic regression model to small samples that,
although the likelihood converges, at least one parameter estimate may be theoretically
infinite [45]. This phenomenon is commonly termed ‘perfect separation’ and occurs
if the model can perfectly predict the response or if there are more parameters in
the model than can be estimated because the data are sparse [46]. Firth provides
an alternative to maximum likelihood estimation (MLE) in these circumstances [47].
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This involves using penalised maximum likelihood (PML) to correct the mechanism
producing the estimate, namely the score equation, rather than the estimate itself.
More generally, penalised maximum likelihood can be thought of as a technique to
introduce a small amount of bias in the parameter estimates in order to circumvent
problems in the stability of parameter estimates that arise when the likelihood is
relatively flat [48].
The penalised likelihood is shown below in equation (2.1), where L(θ) is the usual
likelihood function for a logit model and I(θ) is the information matrix.

L∗(θ) = L(θ)|I(θ)| 1
2 (2.1)

As maximum likelihood estimates are always biased away from zero for logisitic
regression in small samples, bias correction therefore involves some degree of shrinkage
of the estimate towards this point [47]. This results in the method also reducing the
variance, so that bias reduction does not necessarily lead to a substantial loss in power.
This is an important and attractive property of the Firth correction, as a trade-off
between bias and variance usually exists.
We can intuitively understand why the correction results in variance reduction. In this
setting, the corrected estimate is always closer to zero, therefore it must always have a
reduced variance due to being bounded between zero and the uncorrected estimate.
The source of the bias is curvature in the score function s(y,θ), meaning that if the
score function is decreasing and curved in the area around the true parameter θtrue

then a high miss s(y,θ) > 0 implies an estimate well above the true value, so that
θmle >> θtrue and a low miss s(y,θ) < 0 implies an estimate only slightly below the
true value, so that θmle < θtrue. This implies that low misses and high misses do not
cancel and that the MLE is too large on average. This is discussed further in [49].
We will use the Firth correction in both the standard binary method and the multiple
logistic regression models in the augmented binary method. The modified estimator
can be easily implemented in R using the brglm package [50], which provides the
penalised likelihood estimates.

2.2.2 Continuous Component Adjustment for GEE

For continuous longitudinal data, there are a number of estimators providing estimates
θ̂ for θ. The generalised least squares (GLS) estimator is typically used in linear
mixed models and as it is likelihood based is a consistent and asymptotically unbiased
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estimator of θ. The validity of the inference from the GLS estimator is dependent on
correctly specifying the subject mean µij and variance Vi. The mixed model allows both
marginal and subject specific inference. Generalised estimating equations (GEE) allow
only for marginal inference. However, valid inference is possible from θ̂ in the GEE
method if µij is correctly specified, even if Vi is misspecified [51]. We are interested in
determining whether the estimator used for the continuous component has a substantial
effect on model performance. In larger samples we may expect the differences between
GLS and GEE to be negligible, however in small samples the estimation method may
be more influential.
GEE is typically considered to be a more robust method for model misspecification,
particularly as the variance estimator that is commonly used provides robust standard
error estimates. This robustness property could be desirable in this setting, where
model misspecification may be more problematic for the variance estimates than in
a larger sample. However when using these methods where the number of patients
is small, the robust standard error estimates are subject to downward bias leading
to inflated type I errors [52]. The standard robust sandwich covariance estimator is
shown in equation (2.2).

Vsand = (∑n
i=1 DiV

−1
i Di)−1(∑n

i=1 DiV
−1

i Cov̂(Yi)V −1
i Di)(

∑n
i=1 DiV

−1
i Di)−1 (2.2)

where:
Di = ∂µi

∂β

µi is the vector of mean responses
β is the parameter vector
Vi is the working variance-covariance matrix for Yi

Cov̂(Yi) = (Yi − µ̂i)(Yi − µ̂i)′

To address the limitations of this estimator in small samples, Morel, Bokossa and
Neerchal [53] propose a correction which inflates the variance estimate. The small
sample adjusted variance estimator VMBN is shown below.

VMBN =(∑n
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where:
k = N−1

N−p
n

n−1

p is the number of parameters
N is the total number of observations
n is the number of patients

δm =


p

n−p
, if n > 3p

1
2 , otherwise

ξ = max

1,
trace

(
(∑n

i=1 DiV
−1

i Di)−1(∑n

i=1 DiV
−1

i Cov(Yi)V −1
i Di)

)
p


An appealing property of this estimator is that as the sample size increases, k →
1 and δm → 0, so that VMBN → V . Note in ξ that the sum of the eigenvalues
is used. These eignevalues may also be referred to as ‘generalised design effects’
[54]. Alternative corrections may include a different function of the eigenvalues,
such as the maximum or the product, which corresponds to the determinant of(∑n

i=1 DiV
−1

i Di

)−1 (∑n
i=1 DiV

−1
i Cov(Yi)V −1

i Di

)
. However in this case we employ

the trace, as demonstrated by Morel et al. [53]. We implement this variance correction
in R using a modification of the code provided in the geesmv package [55] when using
the GEE estimator for the continuous component.

2.3 Assessing Properties: Re-sampling

2.3.1 Data

In order to determine the performance of the methods we will use data from the
OSKIRA-1 trial [56]. The trial was a phase III, multi-centre, randomised, double-blind,
placebo-controlled, parallel-group study investigating the use of fostamatinib in patients
with active rheumatoid arthritis. A common responder endpoint used in rheumatoid
arthritis is the ACR20, in which patients demonstrate clinical response if they achieve a
20% improvement from baseline, as measured by a continuous ACR (American College
of Rheumatology) score. It is worth noting that the ACR score is a percentage change
from baseline which is itself a composite combining seven components. In what follows
we will treat this as a single measure, as is the case in practice.
A benefit of responder analyses is that we can easily incorporate additional information
in the response definition. In the case of rheumatoid arthritis it is common to assign
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Figure 2.1: Structure of the composite responder endpoint used in rheumatoid arthritis
which combines a continuous ACR score which is dichotomised at a predefined threshold
and a binary indicator for additional medication use. These components form the overall
responder index, where patients must respond in both components to be considered a
responder overall

patients to being non-responders in the ACR20 endpoint if they require medications
restricted by the protocol, or withdraw from the study. Therefore, in order to be
a responder to treatment a patient needs to tolerate treatment, must not receive
restricted medications and must demonstrate clinical response. This non-responder
imputation allows discontinuations of treatment for lack of efficacy or for adverse events
to provide meaningful information on the drug effect and translates to estimating the
effect of a combination of continuous and binary components. The structure of the
composite responder index is shown in Figure 2.1.
Other endpoints of interest in rheumatoid arthritis are the ACR50 and ACR70 which
dichotomise the ACR score at 50% and 70% respectively. Although ACR20 was the
primary endpoint in the trial and is the endpoint that is generally used to formally
evaluate benefit in the regulatory setting, results for both the ACR50 and ACR70
endpoints are also discussed. These endpoints further characterise the benefit of a
treatment by considering different levels of improvement from baseline. Furthermore,
these endpoints will demonstrate how the methods perform with differing response
rates which we anticipate could substantially alter model performance, particularly in
small samples.
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2.3.2 Model Notation

We apply the standard binary and augmented binary models defined in Chapter 1. The
baseline ACR score for patient i is yi0, with Yi1, Yi2 denoting the continuous ACR scores
at the week 12 visit and week 24 visit respectively. Fi1 is an indicator variable taking
a value equal to 1 if the patient discontinues treatment or requires rescue medication
before the week 12 visit. Fi2 is the corresponding indicator for the period between the
week 12 and week 24 visit. Si is a binary variable indicating whether or not patient i
was a responder. For the ACR20 endpoint, Si = 1 if Yi2 ⩾ 20 and Fi1 = Fi2 = 0.

2.3.3 Re-sampling

As an alternative to simulating data from a specified data generating model, we
re-sample from the OSKIRA-1 trial. The re-sampling technique involves randomly
sampling N observations from a dataset without replacement in order to create a
new dataset. This process is repeated Nrep times to obtain the desired number of
replications. Note that Nrep represents the number of re-sampled datasets and so is
analogous to the number of simulated datasets Nsim in a simulation study. For the
purpose of investigating the small sample properties of the methods, we will make use
of two of the three arms in the trial, namely the fostamatinib 100mg bid for 52 wks
arm and the placebo arm. Furthermore, we obtain samples from these arms rather
than using the full sample size to mimic a rare disease scenario.
Acquiring data in this way in order to compare method performance is desirable
for a number of reasons. Characteristics of real data that are not known, such as
correlation structure and missing data, are present in the replicated datasets meaning
that conclusions drawn from the findings may be more applicable to real diseases than
those from a simulation model. Furthermore, if we find that the augmented binary
method performs well under re-sampling where the true data generating model is
unknown, then it could indicate robustness to model misspecification.
To assess and compare the model’s performance, we re-sample 5000 replicates, which
gives a Monte Carlo standard error of 0.3%, for each total sample size between 30
and 80 in increments of 10. To ensure balance we randomly sample half of the total
sample size we are interested in from the placebo arm and the other half from the
100mg arm of the trial. We apply all methods to each sub-sample and record the
treatment effect and 95% confidence interval. We do this for both the risk difference
and log-odds estimates of the treatment effect. An estimate of the power is the
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Table 2.2: Unadjusted and small sample adjusted methods to be compared through
re-sampling to assess suitability for application in rare disease trials using composite
responder endpoints with one continuous and one binary component

Methods Unadjusted Adjusted
Firth MBN

Standard binary X
Augmented binary GLS X
Augmented binary GEE X
Standard binary adj X
Augmented binary GLS adj X
Augmented binary GEE adj X X

proportion of confidence intervals from the 5000 sub-samples that do not contain zero.
By re-sampling, rather than simulating from a known distribution, thinking of this
quantity as power implicitly assumes the treatment effect in the trial to be the true
treatment effect in the population. This is similar to assuming that the data generating
model has the true structure when using simulation methods. To determine an estimate
for the type I error rate, we permute the treatment labels in each of the sub-samples
in order to remove the association between treatment and outcome. An estimate of
the type I error rate is the proportion of confidence intervals that do not contain zero.
The coverage is estimated as the complement of the type I error rate. The median
width of the confidence intervals and the average treatment effect for both methods
are also presented.

Table 2.2 details the methods to be compared along with the corrections that will
be implemented. Note that the adjusted augmented binary GEE method has two small
sample corrections whereas the other methods have only one, so we may expect to see
the largest modification in performance for this method.

2.3.4 OSKIRA-1 data

The OSKIRA-1 study was a multicentre, randomised, double-blind, placebo-controlled
(for 24 weeks) parallel-group study to investigate the efficacy and safety of fostamatinib
in patients with rheumatoid arthritis [56]. The study involved 141 centres in 17
countries, where 918 patients were randomised (1:1:1) to receive fostamatinib 100 mg
twice daily, fostamatinib 100 mg twice daily for 4 weeks and then 150 mg once daily,
or placebo, on a background of MTX treatment. The trial was blinded for 52 weeks,
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with placebo patients switching to fostamatinib treatment at week 24 or at week 12 if
requiring early rescue. For the purposes of this work, we consider only the period up
to the primary end point at week 24, as was the case in [36].
For the ACR20 endpoint the risk difference was 0.13 with a 95% confidence interval of
(0.05, 0.21). The corresponding values for the ACR50 and ACR70 endpoints were 0.15
(0.09, 0.20) and 0.08 (0.04, 0.11) respectively.

2.3.5 Results

The results for the ACR20, ACR50 and ACR70 endpoints on both the odds ratio and
risk difference scales are detailed below.

2.3.5.1 ACR20

Odds Ratio

The power for the unadjusted and adjusted methods for the log-odds treatment effect
are shown in Figure 2.2. The unadjusted augmented binary method provides higher
power than the standard binary method for all sample sizes. The highest gains in
power from the augmented binary method are achieved when the total sample size is
80, with power approximately equal to 50% for the augmented method and 23% for
the standard analysis. In terms of power, the performance of GEE and GLS are very
similar.
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Figure 2.2: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the log-odds
treatment effect estimate
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Figure 2.3: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
log-odds treatment effect estimate

The type I error rate of the unadjusted standard binary and augmented binary (GLS)
methods are approximately 5% when reporting the log-odds treatment effect, as shown
in Figure 2.3. The type I error rate of the augmented binary method (GEE) is 6%.
Implementing the Firth adjustment in the augmented binary method with GLS makes
negligible difference to the type I error rate. In the adjusted augmented binary method
with GEE, the type I error rate drops to 3-4%. Differences between the GLS and GEE
estimators diminish with increasing sample size. The small sample adjusted standard
method also has type I error rate of 3-4%.
Table 2.3 shows the average treatment effect estimates from the unadjusted and adjusted
methods in the null case. The Firth adjustment is useful for correcting the treatment
effect estimate in the binary case when the total sample size is less than 50 and reduces
the variance of the treatment effect estimates for all three methods. Table 2.3 also
shows the estimated average treatment effect from the methods when the intervention
has an effect. The findings are similar to the null case with a reduction in variance of
the reported treatment effect from all methods. Note that the robust standard errors
for the GEE method are larger than the conventional standard errors for the GLS
method, as we would expect. However, when the GEE standard errors are adjusted
for small samples they are reduced, despite being subject to downward bias in this
setting. This is likely due to the additional Firth correction in this case which reduces
the variance across all methods.
Table 2.4 contains the median confidence interval width and standard deviation for
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Table 2.3: Average log-odds treatment effect estimates and standard deviation (SD)
when the intervention does and does not have an effect from the unadjusted and small
sample adjusted standard binary and augmented binary methods

Standard binary Augmented binary (GLS) Augmented binary (GEE)
N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Null
30 0.011 0.005 0.001 0.001 -0.002 -0.002

(1.171) (0.742) (0.665) (0.641) (0.673) (0.646)
40 0.012 0.006 -0.005 0.000 0.014 0.002

(0.755) (0.645) (0.559) (0.537) (0.583) (0.555)
50 0.000 0.004 0.007 -0.003 -0.003 0.012

(0.608) (0.575) (0.487) (0.475) (0.512) (0.492)
60 -0.005 0.004 -0.003 0.000 -0.004 -0.005

(0.557) (0.527) (0.449) (0.437) (0.461) (0.452)
70 -0.004 0.001 0.004 0.000 -0.004 -0.007

(0.507) (0.411) (0.413) (0.487) (0.424) (0.417)
80 0.005 -0.009 0.005 -0.002 0.000 -0.001

(0.467) (0.457) (0.390) (0.354) (0.401) (0.386)

Effect
30 0.606 0.526 0.783 0.747 0.812 0.773

(1.096) (0.737) (0.649) (0.619) (0.678) (0.646)
40 0.595 0.543 0.794 0.765 0.828 0.796

(0.745) (0.634) (0.544) (0.525) (0.565) (0.545)
50 0.572 0.536 0.790 0.767 0.821 0.795

(0.587) (0.547) (0.478) (0.465) (0.495) (0.480)
60 0.570 0.540 0.788 0.770 0.816 0.795

(0.541) (0.510) (0.435) (0.425) (0.449) (0.438)
70 0.577 0.551 0.794 0.902 0.821 0.802

(0.476) (0.453) (0.394) (0.456) (0.406) (0.398)
80 0.568 0.546 0.790 0.707 0.817 0.801

(0.455) (0.436) (0.367) (0.333) (0.377) (0.370)
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Table 2.4: Median width of confidence interval with standard deviation in the parenthesis
(SD) for the log-odds treatment effect from the unadjusted and small sample adjusted
standard binary and augmented binary methods

Standard binary Augmented binary (GLS) Augmented binary (GEE)
N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
30 3.019 3.000 2.509 2.477 2.458 2.739

(431.8) (0.236) (1390.3) (0.212) (1413.6) (0.384)
40 2.602 2.592 2.155 2.145 2.134 2.325

(136.7) (0.163) (170.4) (0.150) (183.2) (0.175)
50 2.320 2.314 1.924 1.919 1.916 2.053

(0.135) (0.112) (61.746) (0.117) (81.195) (0.123)
60 2.117 2.112 1.755 1.753 1.755 1.861

(0.103) (0.089) (16.656) (0.096) (22.069) (0.099)
70 1.959 1.954 1.624 1.862 1.630 1.712

(0.081) (0.072) (0.588) (0.218) (1.318) (0.081)
80 1.832 1.828 1.521 1.378 1.531 1.598

(0.069) (0.063) (0.071) (0.129) (0.066) (0.069)

the treatment effects from the unadjusted and adjusted methods. The confidence
interval widths are substantially smaller for the augmented binary method however
the variation in these confidence interval widths is much larger for the unadjusted
augmented binary method than the unadjusted standard binary method. It is clear
from this that small sample adjustments should be implemented to avoid scenarios
where the treatment effect is reported with an extremely large confidence interval.

Risk Difference

Figure 2.4 shows the power for the risk difference, which is similar to the log-odds case.
Figure 2.5 shows the type I error rate of the unadjusted and small sample adjusted
methods. Both methods experience an inflation in type I error rate. Implementing
the correction in the augmented binary GLS method results in a small improvement
in the type I error rate with no power lost. GEE adjustments result in an average
reduction in type I error of approximately 2.5% however the power drops to below that
of the adjusted method using GLS. Again, differences in GLS and GEE diminish as
the sample size increases. The adjustment for the standard binary method reduces the
type I error rate from 7% to approximately 5%. For all methods the adjustment results
in the type I error rate being close to nominal and so should always be implemented
when using the risk difference treatment effect estimate.
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Figure 2.4: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the ACR20 risk
difference treatment effect estimate

0

2

4

6

8

30 40 50 60 70 80

0

2

4

6

8

30 40 50 60 70 80

AugBin (GEE)

AugBin (GLS)

Binary

Total sample size

T
y
p
e
 I
 e

rr
o
r 

(%
)

Figure 2.5: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
risk difference treatment effect estimate
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Table 2.5: Average risk difference treatment effect estimates and standard deviation
(SD) when the intervention does and does not have an effect from the unadjusted and
small sample adjusted standard binary and augmented binary methods

Standard binary Augmented binary (GLS) Augmented binary (GEE)
N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Null
30 -0.003 -0.002 0.001 0.000 -0.002 0.000

(0.182) (0.166) (0.151) (0.144) (0.154) (0.145)
40 0.001 0.000 0.001 -0.002 -0.004 0.000

(0.156) (0.148) (0.130) (0.123) (0.136) (0.130)
50 -0.001 -0.002 0.002 0.000 0.001 0.000

(0.142) (0.134) (0.117) (0.112) (0.121) (0.118)
60 0.000 -0.002 0.002 -0.003 -0.002 0.001

(0.129) (0.121) (0.106) (0.104) (0.113) (0.108)
70 -0.004 0.000 0.001 0.001 0.001 -0.001

(0.120) (0.114) (0.101) (0.098) (0.104) (0.101)
80 -0.002 0.000 0.001 0.000 0.000 -0.001
80 (0.112) (0.108) (0.094) (0.092) (0.097) (0.094)

Effect
30 0.129 0.118 0.180 0.170 0.179 0.168

(0.178) (0.163) (0.145) (0.137) (0.153) (0.143)
40 0.133 0.124 0.185 0.171 0.191 0.182

(0.153) (0.142) (0.124) (0.116) (0.128) (0.123)
50 0.131 0.124 0.186 0.195 0.193 0.185

(0.132) (0.125) (0.110) (0.117) (0.113) (0.109)
60 0.131 0.125 0.187 0.181 0.193 0.186

(0.123) (0.117) (0.101) (0.098) (0.104) (0.100)
70 0.134 0.129 0.189 0.184 0.195 0.190

(0.109) (0.104) (0.091) (0.089) (0.094) (0.091)
80 0.133 0.128 0.189 0.184 0.195 0.190

(0.104) (0.101) (0.085) (0.083) (0.087) (0.085)
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Table 2.6: Median width of confidence interval with standard deviation in the parenthesis
(SD) for the risk difference treatment effect produced from the unadjusted and small
sample adjusted standard binary and augmented binary methods

Standard binary Augmented binary (GLS) Augmented binary (GEE)
N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
30 0.675 0.686 0.567 0.554 0.554 0.614

(0.044) (0.037) (248.8) (0.045) (245.1) (0.142)
40 0.592 0.597 0.492 0.464 0.488 0.528

(0.030) (0.026) (36.558) (0.062) (39.049) (0.062)
50 0.536 0.539 0.442 0.470 0.442 0.472

(0.023) (0.021) (14.154) (0.059) (18.558) (0.033)
60 0.490 0.492 0.406 0.403 0.407 0.429

(0.018) (0.017) (3.985) (0.021) (5.229) (0.024)
70 0.455 0.456 0.377 0.375 0.379 0.396

(0.015) (0.014) (0.142) (0.018) (0.319) (0.020)
80 0.426 0.428 0.354 0.351 0.357 0.371

(0.013) (0.012) (0.016) (0.016) (0.017) (0.017)

Table 2.5 shows the average treatment effect in the null case from each of the unadjusted
and adjusted methods. The results are similar to the log-odds case; all methods estimate
the treatment effect well and have lower variance when small sample corrections are
implemented. The table also shows the average effect estimates when there is a
treatment effect present. As we do not know the true effect, we cannot quantify bias in
the methods however the corrections do modify the treatment effect point estimate and
reduce its variance. Table 2.6 shows the median width of the confidence intervals for
the risk difference treatment effect along with the standard deviation. The variation
in confidence interval size is large for the augmented binary methods however this is
corrected for with the small sample adjustments.
To further characterise the benefit of the small sample corrections it is useful to interpret
the proportion of cases experiencing perfect separation alongside the average width of
the confidence intervals. Table 2.7 shows the percentage of the 5000 sub-samples with
confidence intervals for the risk difference that are larger than 1. This is shown for
each method at each sample size. From this we can see that perfect separation has
occurred in the augmented binary method but not in the standard binary analysis.
This is intuitive as fewer events are modelled by each logistic regression model in the
augmented binary method, whereas the standard binary method incorporates all events
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Table 2.7: Percentage of cases experiencing extremely large variance due to perfect
separation from the unadjusted and adjusted standard binary and augmented binary
methods on probability scale (confidence interval width for difference >1)

Standard binary Augmented binary (GLS) Augmented binary (GEE)
N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
30 0.00 0.00 10.9 0.00 10.6 0.24
40 0.00 0.00 3.71 0.00 3.81 0.02
50 0.00 0.00 1.11 0.00 1.20 0.00
60 0.00 0.00 0.24 0.00 0.30 0.00
70 0.00 0.00 0.04 0.00 0.08 0.00
80 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.8: Percentage reduction in average confidence interval width and percentage
reduction in required sample size for the standard binary method vs. augmented binary
method with small sample adjustments on the log-odds and probability scales

Comparison Reduction in C.I. Reduction in sample
width (%) size (%)

Log-odds
Stand bin vs. aug bin (GLS) 17.4 31.8
Stand bin vs. aug bin (GEE) 11.2 21.1

Risk difference
Stand bin vs. aug bin (GLS) 17.6 32.1
Stand bin vs. aug bin (GEE) 12.3 23.1
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in one model. The results show that the perfect separation is corrected for using the
Firth adjustment and suggest that the corrections are most beneficial when N<60.
Table 2.8 shows the average reduction in confidence interval width for the adjusted
methods on both scales. We compare the standard binary with both implementations
of the augmented binary method and find that the augmented binary method with
GLS offers the largest gains in precision. This translates to the adjusted augmented
binary method requiring a 32% smaller sample size than what would be required for
the adjusted standard binary method.

2.3.5.2 ACR50

Odds Ratio

By investigating the performance of the methods for the ACR50 endpoint, we can
understand how lower response rates in both arms affect the behaviour of the methods.
The left panel in Figure 2.6 shows the type I error rate of each of the unadjusted
methods. The augmented binary method (GLS) has close to nominal type I error rate.
The implementation using GEE has a small inflation in type I error rate, which we
expect when using robust standard errors in small samples [57]. The type I error rate
for the standard binary method is below nominal and close to zero when the total
sample size equals 30. The corresponding small sample adjusted type I error rate is
shown in the right panel of Figure 2.6. The correction has no effect on the type I error
rate for the standard binary or augmented binary (GLS) methods however the type I
error rate of the augmented binary (GEE) reduces to below nominal.

Figure 2.7 shows the power of the standard binary and augmented binary methods
for the log-odds ACR50 response. The standard binary method has power of between
2% and 36% for total sample sizes between 30 and 80, whereas the augmented binary
(GLS) has between 20 and 50%. The small sample adjusted power is shown in the
right panel of Figure 2.7. The small sample adjustment does not alter the power
for the standard binary and augmented binary (GLS) methods. However, the GEE
adjustments reduce the power by 6-8%, meaning that in terms of type I error rate and
power, the augmented binary (GLS) method is the best way to model the composite
endpoint in trials of small populations and rare diseases for an odds ratio treatment
effect.
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Figure 2.6: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
ACR50 log-odds treatment effect estimate
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Figure 2.7: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the ACR50
log-odds treatment effect estimate
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Figure 2.8: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
ACR50 risk difference treatment effect estimate

Risk Difference

The type I error rate of the methods is shown in Figure 2.8. For sample size N<60 the
standard binary method has inflated type I error rate. The augmented binary method
has nominal type I error rate. This indicates that the augmented binary method still
performs well under lower response rates, even when using the risk difference treatment
effect. The right panel in the figure shows the type I error rate of the methods with
the small sample corrections. The Firth adjustment corrects the type I error rate for
the binary method. The augmented binary (GEE) has a reduced type I error rate from
having both the Firth and the GEE variance correction implemented. The augmented
binary (GLS) type I error rate remains close to nominal.
The power of the methods for the ACR50 risk difference treatment response is shown
in Figure 2.9. The power for the standard binary method is 24-47% for the sample sizes
investigated. The power of the augmented binary methods, for both GLS and GEE, is
20-50%. This means that the models have similar power for the ACR50 risk difference,
however while the type I error rate for the standard binary method is inflated, the type
I error rate for the augmented binary method is not. The power for the small sample
adjusted methods is shown in the right panel of Figure 2.9. When the type I error rate
is corrected, the power of the standard binary method is 16-43%. The power of the
augmented binary method (GLS) is 21-50% with nominal type I error rate. Correcting
the augmented binary (GEE) method means it has power of 13-45%. Therefore the
augmented binary method (GLS) is still the most favourable method in this case.
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Figure 2.9: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the ACR50 risk
difference treatment effect estimate

2.3.5.3 ACR70

In order to understand how the methods work with even lower response rates we
investigate the type I error rate and power for the ACR70 endpoint. In this context the
patients must improve their ACR by 70%. This is never used as a primary endpoint
as response rates at this level are so low, however it will often be considered as one
of the secondary endpoints in RA trials and so it is important to understand if the
augmented binary method is applicable in this setting.

Odds Ratio

The type I error rate for the log-odds ACR70 treatment response is shown in the left
panel of Figure 2.10. The standard binary method has a type I error rate equal to zero
for all sample sizes investigated. The type I error rate of the augmented binary method
(GLS) is inflated for N<50 and for N<60 for GEE. The small sample adjusted type I
error rates are shown in the right panel. The adjusted type I error rate for the standard
binary and augmented binary (GLS) method remains unchanged. The adjusted type I
error rate for the augmented binary (GEE) is reduced to below nominal.
Figure 2.11 contains the power of the methods for the log-odds ACR70 treatment effect.
The standard binary method has power equal to zero. This makes it inappropriate for
use when using the log-odds treatment effect estimate when response rates are low. The
power of the augmented binary method using GLS and GEE is similar, namely 19-48%
for the sample sizes investigated. The right panel of the figure shows the small sample
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Figure 2.10: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
ACR70 log-odds treatment effect estimate

adjusted power for the methods. The power for the standard binary and augmented
binary (GEE) methods remains unchanged. The small sample adjusted power for the
augmented binary (GEE) is 14-42%. This indicates that the augmented binary method
(GLS) continues to work well with lower response rates when working on the log-odds
scale and is the preferred method.

Risk Difference

The type I error rate of the methods for the ACR70 risk difference response is shown
in Figure 2.12. The standard binary has below nominal type I error rate for N<70
in this instance, however there is inflation present for N= 30. This is likely due to
the combination of a small sample size, very low response rates and a violation of the
normality assumption made when calculating the standard errors on the probability
scale. Both the augmented binary (GLS) and (GEE) have below nominal type I error
rates. The results for the small sample adjusted methods are shown in the right panel
of the figure. The adjustment overcorrects the standard binary and augmented binary
(GEE) methods in this case with type I error rate 0-3%. The type I error rate for the
augmented binary (GLS) remains unchanged.
Figure 2.13 shows the power of the methods for the ACR70 risk difference treatment
effect. The standard binary method has power 11-29%. The augmented binary method
with GLS and GEE has power 11-42% whilst also having a smaller type I error rate
than the standard binary method. The power of the small sample adjusted standard
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Figure 2.11: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the ACR70
log-odds treatment effect estimate
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Figure 2.12: Type I error rate of the unadjusted standard binary, augmented binary
(GEE) and augmented binary (GLS) methods (left) and the corresponding small sample
adjusted methods (right) for total sample sizes between 30 and 80 when reporting the
ACR70 risk difference treatment effect estimate
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binary method drops to 3-18% and the augmented binary (GEE) method to 3-33%.
The power of the small sample adjusted augmented binary (GLS) method remains
unchanged at 12-42%. Again, the augmented binary method using GLS performs well
even with low response rates in each arm.
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Figure 2.13: Power of the unadjusted standard binary, augmented binary (GEE) and
augmented binary (GLS) methods (left) and the corresponding small sample adjusted
methods (right) for total sample sizes between 30 and 80 when reporting the ACR70 risk
difference treatment effect estimate

2.4 Assessing Properties: Simulated Example

Despite the advantages in using re-sampling as a means of assessing model performance,
it is limited in the sense that we do not know the ‘correct’ answer in each scenario. To
verify the findings from the re-sampling, we consider a simulated example from a known
distribution. The simulated scenarios are for the ACR20 response, given that this is
usually the primary outcome. We begin by setting the probability of response equal to
0.470 in the treatment arm and 0.336 in the placebo arm, similar to the OSKIRA-1
study. Secondly, we simulate under the null where the probability of response equals
0.336 in both arms. We investigate power, type I error rate, average treatment effect
estimates and average confidence interval width for the small sample adjusted binary
and augmented binary methods.

2.4.1 Data Generating Model

The data generating model used is shown below, which is based on the augmented
binary model. As re-sampling investigated the performance of the method under a
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realistic data structure where assumptions may be violated, simulating data from the
augmented binary model will provide an indication of how the method works when
assumptions are satisfied and we know the true parameter values. In this case we
consider only the GLS for modelling the continuous component due to its superior
performance over GEE in the resampling analyses.

Yij = αF 0+αF 1TiI{j = 1} + αF 2TiI{j = 2} + αF 3yi0 + αj + εij

(εi1, εi2) ∼ N

(0, 0),
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (2.3)

logit (P (Fi1 = 1|Ti, yi0, Yi1, Yi2)) = βF 0 + βF 1Ti + βF 2yi0 (2.4)

logit (P (Fi2 = 1|Fi1 = 0, Ti, yi0, Yi1, Yi2)) = γF 0 + γF 1Ti + γF 2Yi1 (2.5)

We investigate the small sample adjusted measures for the risk difference estimator δ1.

2.4.2 Results

Table 2.9 shows the average ACR20 risk difference treatment effect for the small
sample adjusted methods. The true treatment effect estimate is 0.134. The methods
perform similarly with both slightly underestimating the treatment effect in smaller
samples and slightly overestimating in larger samples (n> 40). The variability in
estimated treatment effects is larger for the binary method in all sample sizes. The
power of the small sample adjusted binary method is 15-29% for the sample sizes
investigated. The corresponding small sample corrected power for the augmented
binary method is 17-43%. The absolute power estimates for both methods differ from
those in the re-sampling results, however the comparative conclusions are the same.
Namely that the power of the augmented binary method is always larger than that of
the standard binary method. Table 2.10 shows the average confidence interval width
and the reduction in required sample size from the augmented binary method. The
efficiency gains from the augmented binary method amount to reducing the required
sample size by 38% to show the same treatment effect. This is true for all sample sizes
investigated.
Table 2.11 shows the average treatment effects in the null case from the standard
binary and augmented binary methods. The methods are shown to be unbiased for all
sample sizes, with smaller variability in treatment effect estimates from the augmented
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Table 2.9: Average risk difference ACR20 response with standard deviation in parenthesis
(S.D.) and power for the small sample adjusted standard binary and augmented binary
methods in 5000 simulations for total sample size between 30 and 80

Total sample δ1 (S.D.) Power
size Binary Augmented binary Binary Augmented binary

30 0.128 (0.167) 0.130 (0.121) 0.145 0.172
40 0.132 (0.145) 0.133 (0.106) 0.179 0.226
50 0.138 (0.129) 0.135 (0.097) 0.213 0.278
60 0.137 (0.120) 0.136 (0.088) 0.240 0.329
70 0.135 (0.113) 0.136 (0.083) 0.269 0.367
80 0.138 (0.103) 0.138 (0.077) 0.293 0.425

αF 0 = −15, αF 1 = 2.5, αF 2 = 2, αF 3 = 4.1, α1 = 6, α2 = 12, σ1 = 1, σ2 =
1, ρ = 0.6,F 0 = −3.8, βF 1 = −0.1, βF 2 = 0.4, γF 0 = −0.8, γF 1 = −0.08, γF 2 =
−0.008, δ1 ≈ 0.134

binary method. The augmented binary method has nominal type I error rate, which
is consistent with the re-sampling results. However, the type I error for the adjusted
standard binary method is 6.8-8.1%, which is higher than the type I error rates found
from re-sampling. The average confidence interval width in the null case is shown in
Table 2.12. The results are consistent with the previous findings from re-sampling.

2.5 Discussion

In this chapter we have explored the small sample properties of the standard binary
and augmented binary methods and proposed adjustments to improve them, when
necessary. Our findings suggest that the increased efficiency of the augmented binary
method does indeed translate to a small sample setting. The method performs better
on the log-odds scale, where normality assumptions made when employing the delta
method are best satisfied. These assumptions are more questionable when working with
samples of this size on the probability scale, which is partly reflected in the differences
in inflation present. These findings have been published [58] and the paper is included
in Appendix B along with the supplementary material in Appendix C and D.
Taking a societal view of power, as discussed in [59], we can say that rare disease trials
are restricted in their capacity to detect treatment effects both because of small studies
and few studies running in any given disease. Therefore it follows that maximising
power within a single study is perhaps even more crucial than in more common diseases,
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Table 2.10: Average confidence interval width and reduction in required
sample size (%) for the risk difference ACR20 response for the small sample
adjusted standard binary and augmented binary methods in 5000 simulations
for total sample size between 30 and 80

Total sample size Average confidence interval width Sample size
Binary Augmented binary reduction (%)

30 0.630 0.496 38.0
40 0.550 0.431 38.6
50 0.493 0.386 38.7
60 0.452 0.353 39.0
70 0.419 0.328 38.7
80 0.392 0.306 39.1

αF 0 = −15, αF 1 = 2.5, αF 2 = 2, αF 3 = 4.1, α1 = 6, α2 = 12, σ1 =
1, σ2 = 1, ρ = 0.6,F 0 = −3.8, βF 1 = −0.1, βF 2 = 0.4, γF 0 =
−0.8, γF 1 = −0.08, γF 2 = −0.008, δ1 ≈ 0.134

Table 2.11: Average risk difference ACR20 response with standard deviation in paren-
thesis (S.D.) and type I error in the null case for the small sample adjusted standard
binary and augmented binary methods in 5000 simulations for total sample size between
30 and 80

Total sample δ1 (S.D.) Type I error
size Binary Augmented binary Binary Augmented binary

30 0.002 (0.157) 0.001 (0.102) 0.068 0.047
40 -0.001 (0.143) 0.001 (0.092) 0.080 0.047
50 0.000 (0.128) -0.002 (0.081) 0.081 0.044
60 -0.001 (0.118) 0.000 (0.075) 0.079 0.043
70 -0.001 (0.107) 0.000 (0.070) 0.073 0.043
80 0.000 (0.104) 0.000 (0.065) 0.081 0.049

αF 0 = −15, αF 1 = 2.5, αF 2 = 2, αF 3 = 4.1, α1 = 6, α2 = 12, σ1 = 1, σ2 =
1, ρ = 0.6,F 0 = −3.8, βF 1 = −0.1, βF 2 = 0.4, γF 0 = −0.8, γF 1 = −0.08, γF 2 =
−0.008, δ1 ≈ 0.134
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Table 2.12: Average confidence interval width for the ACR20 risk difference
response in the null case for the small sample adjusted standard binary and
augmented binary methods in 5000 simulations for total sample size between
30 and 80

Total sample size Average confidence interval width Reduction (%)
Binary Augmented binary

30 0.596 0.426 28.5
40 0.517 0.370 28.4
50 0.465 0.332 28.6
60 0.425 0.303 28.7
70 0.394 0.282 28.4
80 0.369 0.263 28.7

αF 0 = −15, αF 1 = 2.5, αF 2 = 2, αF 3 = 4.1, α1 = 6, α2 = 12, σ1 =
1, σ2 = 1, ρ = 0.6,F 0 = −3.8, βF 1 = −0.1, βF 2 = 0.4, γF 0 = −0.8, γF 1 =
−0.08, γF 2 = −0.008, δ1 ≈ 0.134

which can accumulate power over many studies as well as large individual studies.
This additional power may be realised in practice when conducting meta-analysis.
Consequently, the increased power offered from the augmented binary method is an
important development for analysing small sample data and should be considered for
the primary analysis method in trials of rare diseases using these endpoints.
Our findings show that the treatment effect scale and estimation method used is impor-
tant when conducting analysis in small samples. When implementing the augmented
binary method in rare disease trials we recommend the use of the Firth adjustment for
the logit models as it reduces the bias and variance of the estimates. This is especially
valuable in this setting due to the restrictive nature of sample size. For the continuous
component, we recommend the GLS estimator. As well as offering the best power
and precision, GLS methods make more realistic assumptions about the mechanism
for missing responses, namely that they are missing at random rather than missing
completely at random. Moreover they experience fewer convergence issues in very
small samples.
Another important consideration is the role of response rate in each arm on the oper-
ating characteristics of interest. The ACR50 and ACR70 results indicate that power
and type I error are highly dependant on responder rates. For the standard binary
method, the results show deflations in the type I error rate on the log-odds scale and
inflations on the probability scale, with type I error rates ranging from 0 to 8%. This
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is likely due to logistic regression methods having poorly estimated standard errors
when there are few events per parameter, as is the case for the ACR50 and ACR70
endpoints [60]. Overall, the augmented binary method shows fewer deviations from
nominal type I error rates whilst exhibiting increased power over the standard binary
method in every scenario investigated, indicating that it is still an appropriate analysis
method in small samples when response rates in each arm are low.
Using re-sampling from real data has the advantage that we test the performance of
the methods under realistic data structures and can understand how the methods
behave when the assumptions are not necessarily satisfied. However, as the power
and type I error rates are proxies for the true quantities it is useful to supplement the
re-sampling with simulations from a known distribution. The comparative findings
from the simulated example are in agreement with re-sampling and further reiterate
the problems with type I error rate control in the standard binary method. As the type
I error rate is more stable for the augmented binary method both in the re-sampling
and the simulated example, the overall findings show that it is more robust in the rare
disease setting than logistic regression methods.
Although it is recognised that novel methods developed for use in rare diseases may be
of more immediate utility than in common diseases, some resistance to implementing
the augmented binary method in real rare disease trials may be experienced due to
its increased complexity. To assist with this we have made the R code fully available
when publishing the work [58]. It is of paramount importance that the efficiency gains
provided by this method are not used as a substitute for other important efforts and
considerations undertaken when running rare disease trials. That is, the method should
be used to complement efforts in establishing international, multi-centre trials with
maximum feasible enrolment periods, alongside other achievable strategies to increase
sample size; not to replace them.
There are some limitations in what we have presented. We have only investigated the
performance of the method in small samples by re-sampling from rheumatoid arthritis
data. Similar procedures may be carried out in other data sets and the methods applied
directly to rare disease data, to ensure these gains are always experienced across a
range of responder indices and response rates. Moreover, due to the increased number
of parameters, the augmented binary method starts to experience some problems
when the total sample size is reduced to N=20. This is unlikely to be a problem in
practice, as a randomised trial as small as this would be unusual. If required, it may
be possible to make further assumptions in order to reduce the number of parameters
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to be estimated, such as assuming that the effect of the continuous measure on failure
probability is the same across all time points.
A further extension which will be considered in Chapter 3, is the development of
joint modelling methods for the instance when the composite is a more complicated
combination of outcomes, namely multiple continuous, ordinal and binary components.
We expect these methods to exhibit even larger efficiency gains due to using information
in multiple continuous and ordinal components. This will provide the potential to
further improve the frequency and quality of evidence generated in many rare disease
areas.



Chapter 3

Complex Composite Structures

3.1 Motivation

The augmented binary method discussed in Chapter 2 appears to perform well when
the composite is formed from one continuous measurement and one binary indicator.
Furthermore, it can be employed in any responder endpoint with multiple components,
provided that at least one is continuous. However, given that modelling one continuous
component through the augmented binary method is shown to reduce the required
sample size by at least 32%, we hypothesise that modelling additional continuous
components would result in an even greater improvement in efficiency.
The aim of the work in this chapter is to extend and employ methodology to appro-
priately model composite endpoints with a structure more complex and information
rich than what was previously considered. Table 3.1 shows examples of endpoints with
multiple continuous and discrete components. Response definitions vary, for instance
responders in fibromyalgia must respond in two continuous and one ordinal category
however responders in trials for frailty or soft tissue infections must respond in a total
of five continuous and discrete components. It is therefore desirable that the methods
developed in this chapter allow for these variations in response definitions, either by
modelling all of the outcomes or collapsing additional outcomes into a single binary
indicator. The primary motivating example for this work is a composite endpoint used
in SLE, which is made up of two continuous, one ordinal and one binary component. We
will explore this endpoint in detail and propose methodology for analysing it however
the developments will be applicable to many other diseases that use similar endpoints.
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Table 3.1: Examples of diseases that use complex composite endpoints combining
multiple discrete and continuous measures to determine effectiveness of a treatment
including criteria for response and how each component is typically measured

Disease Responder endpoint Measured by
Fibromyalgia • 30% improvement in pain Electronic diary

• 30% improvement in functional Subscale of Fibromyalgia
status Impact Questionnaire (FIQ)

• improved, much improved, or 7-point Patient Global
very much improved Impression of Change (PGIC)

Frailty • BMI<18.5 kg/m2 OR >10% weight and height
weight loss since last wave

• One positive answer to CES-D questionnaire
exhaustion questions

• Low grip strength (M < 31.12 Jamar hand dynamometer
kg, F < 17.60 kg)

• Gait speed (M < 0.691 m/s, Distance/time
F < 0.619 m/s)

• Low activity (M < 16.5 activity Activity units derived using
units F < 13.5 activity units) intensity vs. frequency

Necrotizing • Alive until day 28 yes/no
Soft Tissue • Day 14 debridements ≤ 3 surface area
Infections • No amputation if debridement yes/no

• Day 14 mSOFA score ≤ 1 mSOFA score
• Reduction of at least 3 score mSOFA score
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3.1.1 Application: Systemic Lupus Erythematosus

SLE is a complex multisystem autoimmune disease resulting from a diversity of clinical
features and factors (genetic, hormonal and environmental) [61]. In the US population,
the prevalence was 52.2 per 100,000, with a comparative figure of 26.2 in the UK [62].
These figures are substantially higher in some ethnic populations. Treatment of SLE is
typically challenging because of the limited efficacy and poor tolerability of standard
therapy. Furthermore, due to its intricate nature, it is challenging to effectively measure
disease status and indeed improvement. In an attempt to capture the complexity of the
disease, SLE makes use of a Systemic Lupus Responder Index (SRI) which is comprised
of a continuous SLE Disease Activity Index (SLEDAI), a continuous Physicians Global
Assessment (PGA) and an ordinal British Isles Lupus Assessment Group measure (BI-
LAG) [63, 64]. To determine efficacy in many SLE trials, the SRI endpoint is combined
with a binary indicator containing information about additional medication, such as
the tapering of oral corticosteroids, to form the responder index. The structure of the
composite is shown in Figure 3.1. Note that the continuous SLEDAI measure is a scor-
ing system composed of 102 items and the ordinal BILAG measure arises from 24 items.

Figure 3.1: Structure of the composite endpoint used in trials of systemic lupus erythe-
matosus (SLE), where patients must respond in all components to be responders overall.
The continuous Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), con-
tinuous Physicians Global Assessment (PGA) and ordinal British Isles Lupus Assessment
Group (BILAG) measures are dichotomised and combined to form the binary Systemic
Lupus Erythematosus Response Indicator (SRI) which is then combined with the binary
corticosteroids taper variable to form the overall binary SLE responder index
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Table 3.2: Response definition in the four components of the Systemic Lupus Ery-
thematosus Responder Index (SRI): Systemic Lupus Erythematosus Disease Activity
Index (SLEDAI), British Isles Lupus Assessment Group (BILAG), Physician’s Global
Assessment (PGA) and corticosteroid taper measure

Component Response definition
SLEDAI-2K Reduction from baseline of at least 4 points in the Systemic

Lupus Erythematosus Disease Activity Index 2000 according to
the SRI-4 response definition

BILAG No new organ systems affected as defined by 1 or more British
Isles Lupus Assessment Group A or greater than one Group B
item compared to baseline

PGA No worsening from baseline in subjects lupus disease activity
defined by an increase 0.30 points on a 3-point visual analogue
scale (VAS)

Corticosteroids No discontinuation of investigational drug or use of restricted
medications beyond the protocol-allowed threshold with a
sustained reduction in the dose of corticosteroids

As is standard in responder analysis, this is also analysed by dichotomising each com-
ponent and using logistic regression on the overarching responder endpoint. Employing
the standard binary method in this instance is subject to even greater losses in efficiency
due to losing information in multiple continuous and ordinal outcomes. In order to
appropriately reflect the structure of the endpoint and retain information from each
component’s original scale the method must allow for joint modelling two continuous,
an ordinal and a binary outcome. Table 3.2 shows the response definition in each of
the four components. SRI-4 is the endpoint commonly employed in trials which means
that the improvement threshold from baseline is set at 4 points on the SLEDAI scale.
Other endpoints of interest are SRI-5 and SRI-6, which result in lower response rates.

SLEDAI-2K

The SLEDAI-2K index is an assessment which consists of 24 lupus-related items
that a physician will complete to decide whether each of the 24 items is ‘present’
or ‘absent’ in the last 4 weeks. It is a weighted instrument, in which the presence
of a descriptor is multiplied by the particular organ’s ‘weight’, for example, renal
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Table 3.3: Grading system in the British Isles Lupus Assessment Group index (BI-
LAG) used to measure disease activity across nine organ systems in systemic lupus
erythematosus

BILAG grade Definition
Grade A Active disease requiring immunosuppressive drugs and/or a

prednisone dose of >20 mg/day or equivalent

Grade B Moderate disease activity requiring a lower dose of corticosteroids,
topical steroids, immunosuppressives, antimalarials, or NSAIDs

Grade C Mild, stable disease

Grade D No disease activity but the system has previously been affected

Grade E No current or previous disease activity

descriptors are multiplied by 4 and central nervous descriptors by 8. These weighted
organ manifestations are subsequently totalled to obtain the final score. The assessment
also includes the collection of blood and urine to evaluate the laboratory categories.
The overall SLEDAI-2K score range is 0 to 105 points with 0 indicating inactive disease
[65].

BILAG

The BILAG-2004 is a translational index with nine organ systems, namely General,
Mucocutaneous, Neuropsychiatric, Musculoskeletal, Cardiorespiratory, Gastrointestinal,
Ophthalmic, Renal and Haematology. It has ordinal scales by design and records disease
activity across the different organ systems by comparing manifestations occurring in
the last 4 weeks with the previous 4 weeks. The nine organ systems incorporate a total
of 97 items, each of which will receive a grade based on the grading system in Table
3.3.

PGA

The PGA is a global assessment, factoring in all aspects of the subjects lupus disease
activity and is completed by a certified investigator. It represents the physician’s
overall assessment of average SLE disease severity on a visual analogue scale (VAS)
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with 0 representing no disease to 3 indicating severe disease activity over the last 4
weeks. A score of 3 refers to the most severe possible disease in all SLE subjects and
therefore the rating should virtually never reach 3. Any disease rated greater than 2.5
is very severe, moderate disease covers approximately 1.5 to 2.4 and mild disease falls
below 1.5. The instrument is similar to a logarithmic scale, with greater distances or
demarcations possible among more mild-moderate symptoms. When scoring the PGA,
the mark on the VAS should be moved relative to the score from the previous visit
and wherever possible should be completed by the same physician for a given patient.

Corticosteroid Tapering

In this instance the binary indicator contains information on oral corticosteroid use.
Specifically, in order to be a responder in this outcome a patient must have no
discontinuation of the investigational drug or use of restricted medications beyond
the protocol-allowed threshold prior to assessment with a sustained reduction in the
dose of corticosteroids. However, this binary indicator may contain any combination of
additional criteria that clinicians or patients may feel is important to meet in order to
demonstrate improvement. It is also the case that the outcome of interest may be the
SRI-4 endpoint alone and so the methodology should be flexible to the inclusion or
exclusion of this component in the overall composite.

3.2 Background

The main obstacle when jointly modelling variables of a different nature is the non-
existence of an obvious multivariate distribution. Over the past 20 years there have
been substantial developments in statistical methodology for the analysis of mixed
data. Many of these ideas have roots in much earlier work but advances in computing
have made them practical for use more recently.

3.2.1 Copulas

One family of models used to model mixed outcome types which feature frequently in
economics and finance are copulas. These are functions that join or couple multivariate
distribution functions to their uniform one-dimensional marginal distribution functions
[66]. Copulas offer a flexible framework in this setting, as the marginal distribution
functions need not come from the same parametric family. While the construction of
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copulas is considered to be mathematically elegant and the flexibility with which we
can model appealing, they are not without their shortcomings. Extensions beyond the
bivariate setting are difficult and have failed to perform well in many applications [67].
Other practical implications include poor out-of-sample predictions due to the wide
variety of copulas available. These restrictions, along with difficulties in longitudinal
settings with unbalanced data structures, have seen few applications of copulas for
mixed outcome types in the medical statistics literature [68]. Applications of copulas
in mixed outcome settings include [69, 70].

3.2.2 Factorisation

One likelihood based method for handling mixed data is the factorisation model.
The objective is to factorise the joint distribution and fit a univariate model to
each component of the factorisation [67]. This accounts for correlations between
the outcomes by including one response as a covariate in the model for the other
response. In the graphical modelling literature this has been termed the ‘Conditional
Gaussian Distribution’(CGD) [71, 72] and is the basis for the augmented binary method
[35, 36, 58]. An advantage of these methods in relation to the composite endpoint
problem is that we may account for correlations between measurements whilst making
inference directly on the outcomes that we have measured, hence they fall within
a broader class of ‘direct methods’. Examples of other applications of these ideas,
which build on the work of Olkin and Tate [73], include developmental toxicity studies
[74]. One difficulty with these methods beyond the bivariate scenario is the range of
possibilities for the factorisations, with no consensus on how this should be determined.
In the case of the SLE responder endpoint containing four components, this amounts
to 24 possible factorisations, each of which may result in different conclusions [67, 68].
Furthermore, modelling the endpoint using these methods would account for correlation
between outcomes, but only in a restricted way as this is accounted for by including
the outcome measured on one component as a covariate in the model for the other
component.

3.2.3 Latent Variable Models

Another likelihood based method that allows for more flexibility when modelling the
correlations between outcomes falls within the framework of latent variable models [75].
The multiple outcomes are assumed to be physical manifestations of some underlying
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latent process, by including the same latent variable in each of the models for the
observed responses. The outcomes are then assumed to be independent conditional
on this latent variable. This solves the problem of deciding the order of factorisations
in previously discussed methods however this formulation results in the inclusion of
some covariance parameters in the mean structure, leaving the model sensitive to
misspecification of the correlation structure [76]. One example of these models is
seen in [77], where effects of covariates of interest are modelled through this shared
latent variable. Although these models have the intuitive interpretation that each
outcome is attempting to capture underlying disease activity, the correlation matrix is
restricted to allow for the same correlation between each pair of outcomes, which is
unlikely in practice. This structure is relaxed in [78], where the effects of covariates are
included in the model separately from the latent variable. The correlation structure
can be further relaxed to allow for a different latent variable for each outcome, meaning
that pairs of outcomes are not assumed to have the same correlation. However these
models would require integrating out each of the latent variables in order to obtain
the joint distribution of interest [79]. Furthermore, they are relevant in applications
with multiple time points however less so for a single time point, as is the case for the
composite endpoint problem.

3.2.4 Extensions to Multivariate Probit Models

Latent variables have also been used in the setting of mixed continuous and discrete
variables to a different end. Namely, the outcomes adopt a correlated Gaussian distri-
bution by assuming that the discrete outcomes are coarsely measured manifestations
of underlying continuous variables subject to some threshold specifications [80, 81].
Specifying discrete variables in terms of a partitioning of the latent variable space
dates back to Pearson in 1904 [82] in relation to his generalised theory of alternative
inheritance, and has received much consideration in the literature since. Terminology
surrounding these models is inconsistent but they are often referred to as multivariate
probit models [80]. In the graphical modelling literature they have been termed ‘condi-
tional grouped continuous models’ (CGCMs) [83] and elsewhere have been referred
to as ‘multivariate ordered probit models’ [84], ‘correlated probit models’ [85] and
‘generalized multivariate probit models’ [86]. The general mixed-data model introduced
by [87] for mixed nominal, ordinal, and continuous data also reduces to a CGCM in
the absence of nominal outcomes. By formulating the distribution in this way, we can
correlate the error terms for the components and work within the familiar paradigm of
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Gaussian distributions and maximum likelihood theory. The theory and application
of these ideas for a mixture of continuous and binary outcomes has featured in the
statistics literature, see for example [88–90]. Generalisations of these ideas, which
appear less frequently in the literature, lead to methods for modelling continuous and
ordinal variables, with applications in developmental toxicology and the joint modelling
of hybrid traits in genetics [91–96]. A CGCM has also been proposed in clinical trials to
deal with the problem of multiple continuous and binary co-primary endpoints, where
a treatment effect must be achieved in all outcomes to conclude it is successful overall
[97, 98]. Despite the advantages, the multivariate probit model has not realised its full
potential in the applied biostatistics literature. This was noted by [99] and we believe
it still to be the case today, where any applications that do appear tend to demonstrate
bivariate scenarios. Other work has combined thresholding the response variables and
introducing latent variables in the model however this is simply a reparameterisation
of the case with latent outcomes only. Examples of this in the binary and continuous
cases, including generalisations for the longitudinal setting, can be found in [67, 85],
and the continuous and ordinal case in [100, 101].
The latent outcome framework employed in the CGCM is sufficiently complex and
we propose its use for the composite endpoint problem. However, the purpose of this
work is to employ the framework to a different end. Rather than using the latent
Gaussian distribution to make inference on multivariate outcomes we will use it to
model the multiple components within a composite, while still making inference on
the one-dimensional composite endpoint based on proportions of patients crossing
responder thresholds on each outcome. By employing the latent structure to collapse
the multiple outcomes after the model is fitted rather than before, we aim to greatly
improve efficiency whilst still providing the same overall treatment effect measure on
the composite.

3.3 Latent Variable Model

3.3.1 Notation

Let Yi = (Yi1, Yi2, Yi3, Yi4)T represent the vector of observed outcomes for patient
i ∈ N with mean values (µ1, µ2, µ3, µ4)T and Y = (Y1, . . .YN)T represent the observed
outcomes for all patients. Yi1 and Yi2 are the observed continuous SLEDAI and PGA
measures. Let Yi3 denote BILAG, the observed ordinal manifestation of Y ∗

i3 with
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mean µ∗
3 and Yi4 the observed binary taper variable for latent Y ∗

i4 with mean µ∗
4.

We therefore let Y∗
i = (Yi1, Yi2, Y

∗
i3, Y

∗
i4)T denote the vector of observed and latent

continuous measures for patient i and Y∗ = (Y∗
1, . . .Y∗

N)T . Ti represents the treatment
indicator for patient i, yi10 and yi20 are the baseline measures for Yi1 and Yi2 respectively.

3.3.2 Model

The mean structure for the outcomes is shown in (3.1). The baseline measures y10 and
y20 are included in the model for Y1 and Y2 respectively.

Yi1 = α0 + α1Ti + α2yi10 + εi1

Yi2 = β0 + β1Ti + β2yi20 + εi2

Y ∗
i3 = γ1Ti + ε∗

i3

Y ∗
i4 = ψ0 + ψ1Ti + ε∗

i4

(3.1)

The observed discrete variables are related to the latent continuous variables by
partitioning the latent variable space, as shown in (3.2). The lower and upper thresholds
for both discrete variables are set at τ03 = τ04 = −∞, τ53 = τ24 = ∞. The intercept
term for the ordinal variable in (3.1) is set at γ0 = 0 so that the cut-points τ13, τ23, τ33, τ43

may be estimated. The intercept for the binary outcome ψ0 may be estimated, as
τ14 = 0.

Yi3 =



Grade E if τ03 ≤ Y ∗
i3 < τ13,

Grade D if τ13 ≤ Y ∗
i3 < τ23,

Grade C if τ23 ≤ Y ∗
i3 < τ33,

Grade B if τ33 ≤ Y ∗
i3 < τ43,

Non-responder if τ43 ≤ Y ∗
i3 < τ53

Yi4 =

0, if τ04 ≤ Y ∗
i4 < τ14,

1, if τ14 ≤ Y ∗
i4 < τ24

(3.2)

Following these assumptions, we can model the error terms in (3.1) as multivariate
normal with zero mean and variance-covariance matrix Σ, as shown in (3.3). Note that
the error variances for ε∗

3, ε
∗
4 are σ3 = 1 and σ4 = 1 however this does not represent a

constraint on the model but rather a rescaling required for identifiability.
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(εi1, εi2, ε
∗
i3, ε

∗
i4) ∼ N(0,Σ) Σ =


σ2

1 ρ12σ1σ2 ρ13σ1 ρ14σ1

ρ12σ1σ2 σ2
2 ρ23σ2 ρ24σ2

ρ13σ1 ρ23σ2 1 ρ34

ρ14σ1 ρ24σ2 ρ34 1

 (3.3)

The joint likelihood contribution for patient i with for instance, Yi3 = Grade C and
Yi4 = 0, can be factorised as shown below.

l (θ; Y∗
i ) = f(Yi1, Yi2; θ)

∫ τ33

τ23

∫ 0

−∞
f(Y ∗

i3, Y
∗

i4|Yi1, Yi2; θ)dy∗
4dy

∗
3 (3.4)

where,
θ = (α0, α1, α2, β0, β1, β2, γ1, ψ0, ψ1, σ1, σ2, ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, τ13, τ23, τ33, τ43)

Note that it is possible to evaluate the joint likelihood contribution for patient i using
f(Yi1, Yi2, Y

∗
i3, Y

∗
i4; θ) however factorising as in (3.4) may reduce computational times,

particularly in high-dimensional models. This formulation also allows us to express the
observed likelihood as shown in (3.5).

l(θ; Y) =
N∏

i=1

5∏
w=1

2∏
k=1

f(Yi1, Yi2; θ) [pr (Yi3 = w, Yi4 = k|Yi1 = yi1, Yi2 = yi2; θ)]I{Yi3=w,Yi4=k}

(3.5)

The joint probability of patients having discrete measurements Yi3 = w and Yi4 = k

must be multiplied over the five ordinal levels and two binary levels resulting in ten
combinations of the probabilities in (3.6) to be calculated.

P (Yi3 = w, Yi4 = k|Yi1 = yi1, Yi2 = yi2; θ) =

Φ2
(
τw3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
− Φ2

(
τ(w−1)3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
−

Φ2
(
τw3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
+ Φ2

(
τ(w−1)3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
(3.6)

where Φ2 is the bivariate standard normal distribution function, µ3|1,2, µ4|1,2 are the
conditional means of Y3,4|1,2 and Σ3,4|1,2 is the corresponding covariance matrix. These
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0
τ13 τ23 τ33 τ43

τ14

τ13 τ23 τ33 τ43

Y3|1,2

Y
4

|1
,2

τ14

0

Figure 3.2: The figure shows the continuous space of Y3|1,2 and Y4|1,2 including the
thresholds which are assumed to partition the continuous space to form discrete variables.
The joint probabilities in each of the 10 combinations can then be determined using the
bivariate distribution function and the thresholds

are derived using conditional multivariate normality rules, resulting in (3.7).

µ3|1,2 =µ3 + (ρ13−ρ12ρ23)
σ1(1−ρ2

12) (Yi1 − µ1) + (ρ23−ρ12ρ13)
σ2(1−ρ2

12) (Yi2 − µ2)

µ4|1,2 =µ4 + (ρ14−ρ12ρ24)
σ1(1−ρ2

12) (Yi1 − µ1) + (ρ24−ρ12ρ14)
σ2(1−ρ2

12) (Yi2 − µ2)
(3.7)

Σ3,4|1,2 =
 1 − ρ2

13−2ρ12ρ13ρ23+ρ2
23

1−ρ2
12

ρ34 − ρ13ρ14−ρ12ρ13ρ24−ρ12ρ14ρ23+ρ23ρ24
1−ρ2

12

ρ34 − ρ13ρ14−ρ12ρ13ρ24−ρ12ρ14ρ23+ρ23ρ24
1−ρ2

12
1 − ρ2

14−2ρ12ρ14ρ24+ρ2
24

1−ρ2
12



For the SLE case, where w = 5 and k = 2, the intuition for the bivariate conditional

probability in (3.6) is shown in Figure 3.2. The probability of a given patient falling

within the highlighted section, which indicates a Grade C BILAG reading and non-
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response in the oral corticosteroids measure, is determined by (3.8).

P (Yi3 = 3, Yi4 = 2|Yi1 = yi1, Yi2 = yi2; θ) =

Φ2
(
τ33 − µ3|1,2, τ24 − µ4|1,2; Σ3,4|1,2

)
− Φ2

(
τ(23 − µ3|1,2, τ24 − µ4|1,2; Σ3,4|1,2

)
−

Φ2
(
τ33 − µ3|1,2, τ(14 − µ4|1,2; Σ3,4|1,2

)
+ Φ2

(
τ23 − µ3|1,2, τ14 − µ4|1,2; Σ3,4|1,2

)
(3.8)

3.3.3 Estimation

As the variance parameters (σ1, σ2) are required to be greater than 0, we introduce
parameters (υ1, υ2) such that

σ1 =exp(υ1)

σ2 =exp(υ2)

This transformation ensures that the variance is above 0 whilst allowing the esti-
mated parameter to take any real value. We must also ensure that the correla-
tion parameters (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) are estimated within (-1,1) by introducing
(υ12, υ13, υ14, υ23, υ24, υ34), where

ρ12 = 2logit−1(υ12) − 1

ρ13 = 2logit−1(υ13) − 1

ρ14 = 2logit−1(υ14) − 1

ρ23 = 2logit−1(υ23) − 1

ρ24 = 2logit−1(υ24) − 1

ρ34 = 2logit−1(υ34) − 1

The model is fit in R by coding the likelihood function, where the bivariate distribution
functions in (3.6) are estimated using ‘pmvnorm’, adopting the method of Genz [102].
The optimisation is conducted using the ‘optimx’ package, which is an extension
of ‘optim’ that enables the comparison of optimisation methods. A commonly used
optimisation method that can be implemented is that of Nelder and Mead [103], which
is robust but relatively slow. Another is that of Fletcher [104] which is a quasi-Newton
technique that updates an approximation to the inverse Hessian function and is referred
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to as the ’BFGS’ method. A limited memory alternative to this can also be implemented
which allows for box constraints [105]. Another quasi-Newton method which uses port
routines is available under the ‘nlminb’ option and is the best performing method in
this setting in terms of accuracy and convergence rate, however also is the slowest. The
nlminb function does not facilitate altering the tolerance of the computation of the
Hessian separately to that of the mean parameters and so we use the ‘Hessian’ function
in the ‘numDeriv’ package to obtain the Hessian matrix using Richardson extrapolation
[106]. The covariance matrix of the model parameters is obtained by inverting the
Hessian. In a small number of cases the Hessian may not be positive definite because
of computational error, meaning that it cannot be inverted. This is rectified in these
cases by using the ‘near PD’ function, which implements the algorithm of Higham [107]
to compute the nearest positive definite matrix. Another consideration for estimation
is that the optimisation performs better when the components are positively correlated,
which is in agreement with suggestions in [108]. Consequently, it may be necessary to
transform some of the outcomes, depending on the data structure.

3.3.4 Inference

We wish to make inference on the probability of response at time point one. Let Si

be an indicator for patient i denoting whether or not they achieved response and let
Si=1 if Yi1 ≤ η1, Yi2 ≤ η2, Y

∗
i3 ≤ η3, Y

∗
i4 ≤ η4, where ηk represents the dichotomisation

threshold for outcome k. Therefore,

P (S = 1 | T, y10, y20) =
∫ η1

−∞

∫ η2

−∞

∫ η3

−∞

∫ η4

−∞
fY∗(Y∗;T, y10, y20)dy∗

4dy
∗
3dy2dy1 (3.9)

where fY∗(Y∗; .) is the multivariate normal density function for the observed and
latent continuous measures. We obtain the integrand in (3.9) by using the fitted
values of the parameters in the conditional mean and conditional covariance matrix in
(3.7), assuming that each patient was treated and not treated. The integral in (3.9)
is evaluated using the ‘R2Cuba’ package. Parameter estimates from these methods
are maximum likelihood estimates and so we avail of asymptotic maximum likelihood
theory. Note that this reliance on asymptotic theory in addition to the large number
of parameters may be problematic for application in rare disease trials. The standard
error estimates are obtained using the delta method.



3.3 Latent Variable Model 65

3.3.5 Pragmatic Considerations

The potential gains from retaining more of the information are offset somewhat by the
increased complexity in implementation. Some practical considerations related to the
implementation of the method are discussed below.

Starting Values

One important consideration in applying the latent variable method is how to choose
the starting values for the likelihood optimisation algorithm. Initially, we try setting all
the starting values at zero, to determine if this is a practical solution. In this setting,
the algorithm is extremely slow to converge. Furthermore, setting the thresholds at
the same starting values can be problematic due to the necessary ordering. That is, if
at any point the lower limits of the integration in (3.6) exceed the upper limits, the
probability cannot be computed and the optimisation fails.
We are interested in choosing more appropriate starting values to reduce the chances of
these computational problems as well as to reduce the computational time and increase
our chances of converging at the global maximum. One suggestion for this is to use
random restarts, starting the algorithm at randomly chosen start points repeatedly
[109]. This is computationally intensive and often runs in to difficulty due to restrictions
in place, for example that the thresholds must be ordered. Another suggestion is to use
the data to inform the choice of start value. This is more challenging in this context
due to the fact that we are treating the discrete outcomes as latent.
Proceeding by using the data, the parameters related to the observed continuous
variables can be set by fitting separate linear models. The variance and correlation
parameters related to these can be set to the values estimated using the data. Treating
the ordinal variable as continuous and fitting a linear model with no intercept provides
a good starting value for the BILAG treatment parameter. Fitting a linear model
to the binary outcome provides poor starting values for the the binary intercept and
treatment parameter, however the algorithm still performs well if only these values are
poorly specified. Treating these discrete variables as continuous in order to determine
the correlations performs well and provides good starting values for these parameters.
Having identified proposed starting values for the mean, variance and correlation
parameters the latent outcome corresponding to the ordinal BILAG measure can
be simulated. Ordinal threshold starting values can be obtained by comparing the
distribution of the latent measure with the corresponding observed frequencies in the
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Table 3.4: Average execution time in seconds across 1000 runs for the latent variable,
augmented binary and standard binary methods to produce log-odds treatment effect
estimates and standard errors

Method Elapsed User System
Binary 0.464 0.439 0.020
Augmented Binary 9.591 9.480 0.092
Latent Variable 4925.2 4862.3 50.42

ordinal measure. However, this technique for selecting the starting values is clearly
simplistic. A more elaborate search strategy could be conducted that may substantially
speed up the optimisation. This will not be investigated within this thesis and is
identified as an area for further research.

Computational Time

Another factor in the application of the latent variable model is increased compu-
tational time. The average execution time to provide the outcome of interest with
standard errors is shown in Table 3.4. The time of interest is the elapsed time, which
expresses the wall clock time taken to fit the model, get maximum likelihood parameter
estimates, obtain the probability of interest and its standard error. The standard
binary estimate is obtained in less than a second and the augmented binary estimate
requires approximately 10 seconds however the latent variable requires much longer,
taking 4920 seconds or approximately 82 minutes.

As mentioned previously, the application of these models has been limited in the
past by availability of sufficient computational power, which is now more readily
available. However, applications of similar latent variable methods in the literature are
still largely limited to modelling two outcomes, due to the non-linearity of execution
times with increasing outcomes. This is in agreement with our findings, as modelling
one outcome using the binary method is nine times faster than modelling two outcomes
using the augmented binary method, whilst modelling these two outcomes is over
500 times faster than modelling four outcomes using the latent variable method. Of
course these timings depend on many factors, in particular the type of outcome and
the number of levels in the ordinal variable. In our case, we find the number of ordinal
levels to be the most influential factor in computational time. This is due to the fact
that 5 levels in the ordinal variable leads to 10 probability calculations in (3.6), however
3 levels would require the computation of 6 of these joint probabilities. Consequently,
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Table 3.5: Benchmarked time in seconds of each of the processes required to fit the
latent variable method to the systemic lupus erythematosus composite endpoint

Function Elapsed time
Likelihood maximisation 3683.1
Hessian 845.6
Probability of response 3.064
Partial derivatives 266.3

the run time will be substantially increased if there are multiple ordinal levels and
decreased if the discrete variables are binary.
The increased complexity means that many factors may be responsible for the much
slower progression of this model fitting. As we program the likelihood, rather than
using a package to do this, it may be possible to code the method more efficiently.
Another factor is that due to the increased number of outcomes, the unstructured
covariance matrix and the thresholds, the number of parameters to model is greatly
increased from nine in the augmented binary method to 21 in the latent variable
method. Searching over this 21 parameter space to find a global maximum is complex
and computationally intensive and therefore relatively slow. Furthermore, for reasons
discussed previously, the Hessian is calculated separately with increased tolerance and
the partial derivatives are computed to obtain the standard errors. Table 3.5 shows the
benchmarked times of the processes involved in fitting the latent variable method. This
highlights that obtaining the maximum likelihood estimates of the parameters accounts
for 77% of the required computational time. Benchmarking the optimisation process
provides a clearer picture of the bottleneck. Within each iteration, the most time
consuming task is the calculation of the bivariate probabilities in (3.6). It is possible to
parallelise this calculation using the ‘parapply’ function in R however for our problem
we find that this slows down the overall computation. This is due to the fact that there
are many of these calculated repeatedly but that each individual calculation does not
require much time. In other words, in the time it takes to redistribute the calculations
to separate cores, the result is already available on one core. The true bottleneck
comes from the fact that the algorithm iterates many times in order to converge. For a
problem of this nature it is common to consider coding it in a low level language such
as C++. Due to the fact that the process requiring the most time is the optimisation
itself, we conclude that it is not worthwhile given that although the model would be
written in C++ it would still have to be optimised in R using a similar algorithm.



68 Complex Composite Structures

We conclude that when fitting to one dataset in an applied problem, a computation
time of 82 minutes is not infeasible. However for exploring the performance of the
methods through simulation, we require an alternative. The solution we propose for
this, and apply in our case, is to parallelise at a simulation level across many cores on
a High Performance Computer (HPC). For 1000 simulated data sets, using 200 cores,
the simulation would complete in under 7 hours.

Model Fit

Goodness-of-fit statistics are well established when fitting univariate models however
the assessment of multivariate methods is more challenging. Graphical techniques
that involve inspecting plots of the residuals to determine the validity of assumptions
such as homoscedasticity and normality are limited in their capacity to capture the
structure in more than two dimensions. Furthermore, solutions providing comparative
values must add an appropriate penalty for the additional outcomes, for example a
modified Akaike Information Criterion (AIC). This is exacerbated by the fact that
a subset of the outcomes are latent and therefore difficult to visualise or test. One
suggestion in the literature for assessing goodness-of-fit is introduced in [92] for the
case when there is one continuous and one ordinal variable. This may be extended to
allow for two continuous, one ordinal and one binary outcome for application in SLE,
as shown below.
As before, let Yi = (Yi1, Yi2, Yi3, Yi4)′ be the vector of observed responses for patient i.
Partitioning the observed and latent continuous measures, we let Ycts = (Y1, Y2)
and Ydis = (Y3, Y4). Then, Σ̂11 = V̂ ar(Ycts), Σ̂22 = V̂ ar(Ydis), Σ̂12 = Σ̂21 =
Ĉov(Ycts,Ydis). The modified Pearson residuals taking in to account the correla-
tion between responses are shown in (3.10).

rp
i = Σ̂− 1

2 (Yi − µ̂i) (3.10)

where,
µ̂i = (Ê(Yi1, Yi2, Yi3, Yi4))T (3.11)

and

Σ̂ =
Σ̂11 Σ̂12

Σ̂21 Σ̂22

 (3.12)
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A Cholesky decomposition may be used to obtain Σ̂− 1
2 in (3.10). The covariance

between the vector of observed continuous and observed discrete responses is shown
below.

Σ12 =E(YctsYdis) − E(Ycts)E(Ydis)

=E(YctsE(Ydis | Ycts)) − E(Ycts)E(Ydis)

=E(Y1Y2E(Y3, Y4 | Y1, Y2)) − E(Ycts)E(Ydis)

=
∫

y1

∫
y2
y1y2

∑
y3

∑
y4

y3y4P (Y3 = w, Y4 = k|Y1 = y1, Y2 = y2) fY1,Y2(y1, y2)dy1dy2

− E(Ycts)E(Ydis)

Where,

P (Yi3 = w, Yi4 = k|Yi1 = yi1, Yi2 = yi2; θ) =

Φ
(
τw3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
− Φ

(
τ(w−1)3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
−

Φ
(
τw3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
+ Φ

(
τ(w−1)3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)

µ3|1,2, µ4|1,2 and Σ3,4|1,2 are defined in (3.7). Furthermore,

E(Ycts) =
∫

y1

∫
y2
y1y2fY1,Y2(y1, y2)dy1dy2

E(Ydis) =
∑
y3

∑
y4

y3y4P (Y3 = w, Y4 = k)

and

P (Yi3 = w, Yi4 = k) = Φ(τw3 − µ3, τk4 − µ4; ρ3,4) − Φ(τ(w−1)3 − µ3, τk4 − µ4; ρ3,4)−

Φ(τw3 − µ3, τ(k−1)4 − µ4; ρ3,4) + Φ(τ(w−1)3 − µ3, τ(k−1)4 − µ4; ρ3,4)

The Pearson residual is based on the Pearson goodness-of-fit statistics,
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χ2
p =

N∑
i=1

χ2
p(Yi, µ̂i) (3.13)

where p = (w × k) − 1 with ith component,

χ2
p(Yi, µ̂i) = (Yi − µ̂i)′Σ̂−1(Yi − µ̂i) (3.14)

Comparing the residuals to the chi-squared value allows us to identify observations which
the model does not fit well, as the residuals should follow a chi-squared distribution with
p degrees of freedom if the model fits well. If there are many observations unexplained
by the model then it may indicate a poor choice, which may be due to the covariance
structure Σ̂ and its assumed distribution. Otherwise the joint normality of the errors
may be an unreasonable assumption indicating that the latent variable model may not
be appropriate. It is possible to fit latent variable models which assume a different
multivariate distribution for the error terms, however this will not be investigated
within this thesis.

3.4 Models for Comparison

3.4.1 Augmented Binary Method

We modify the augmented binary model presented in Chapter 1 to allow for one
time point, as shown below. The baseline measures for Yi1 and Yi2 are included for
comparison, as they are included in the mean structure of the latent variable method.
As only one time point is modelled we can use a linear model for Yi1. Note that Yi1 or
Yi2 may be chosen as the continuous measure to be retained and will be determined by
which is the most informative.

Yi1 = α0 + αF 1Ti+ αF 2yi10 + αF 3yi20 + εi1 (3.15)

In this case, the failure time binary indicator will contain information from the
remaining three components. Fi is set to equal 0 if Yi2 ≤ η2, Yi3 is Grade B-E and
Yi4 = 0, otherwise the patient is a non-responder in these components and Fi = 1.

logit(Pr(Fi = 1|Ti, yi10, yi20) = βF 0 + βF 1Ti + βF 2yi10 + βF 3yi20 (3.16)

Fi is modelled using one logistic regression model in this case.
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3.4.2 Standard Binary Method

The standard binary method models treatment and both baseline measures, as shown
below.

logit(Pr(Si = 1|Ti, yi10) = ψF 0 + ψF 1Ti + ψF 2yi10 + ψF 3yi20 (3.17)

The probability of response and standard errors are obtained from the logistic regression
as detailed in Chapter 1.

3.5 Simulation Study

3.5.1 Data Generating Models

Initially we investigate the properties of the methods when the assumptions of the
latent variable model are satisfied. The parameter values in the ‘baseline’ case are
chosen to simulate a scenario where composite endpoints are typically recommended
for use. Namely, that all four components drive response and items are correlated
but not so highly that the composite becomes redundant. The parameter values have
been informed by the MUSE trial dataset, in particular the correlation structure. The
response probability in the control arm is 0.275 and in the treatment arm is 0.381,
resulting in an odds ratio equal to 1.6. The parameter values selected for the model in
(3.1) are shown below.

Baseline: N = 300, α0 = −4.9, α1 = −0.28, α2 = −0.5, β0 = −1.2, β1 =
−0.35, β2 = −0.5, γ1 = −0.24, ψ0 = −0.2, ψ1 = −0.18, σ1 = σ2 = 1, ρ12 = 0.5, ρ13 =
ρ24 = 0.35, ρ14 = 0.25, ρ23 = 0.4, ρ34 = 0.3, τ13 = −1, τ23 = −0.1, τ33 = 0.45, τ43 =
1.3, η1 = −4, η2 = −0.6, η3 = 0.45, η4 = 0

From this baseline case, we vary parameters to determine how the methods behave
under various scenarios, the values of which are detailed in Table 3.6.

3.5.2 Performance Measures

The performance measures and Monte Carlo standard errors (MCSE) are shown in
Table 3.7. More details can be found in [110].
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Table 3.6: Parameter values for the simulated scenarios which investigate the effect
of varying the responder threshold η1, changing the components driving response and
differing treatment effects on the performance of the latent variable, augmented binary
and standard binary methods for the systemic lupus erythematosus composite endpoint

Scenario Parameters Investigates
η1 = −2 η1 = −2 100% of patients respond in Y1
η1 = −3 η1 = −3 96% of patients respond in Y1
η1 = −4 η1 = −4 82% of patients respond in Y1
η1 = −5 η1 = −5 52% of patients respond in Y1
η1 = −6 η1 = −6 20% patients respond in Y1

Y1, Y4 η1 = −5, η2 = 2, η3 = 2 Continuous and binary variable
driving response

Y4 η1 = −2, η2 = 2, η3 = 2 Binary variable driving
response

Y1, Y2, Y3 η4 = 2 Two continuous and ordinal
drive response

Treat case 1
α0 = −4.9, α1 = −0.09, β0 = −1.2,
β1 = −0.11, γ1 = −0.145, ψ0 = −0.2,

ψ1 = −0.07
Odds ratio = 1.217

Treat case 2
α0 = −4.9, α1 = −0.20, β0 = −1.2,
β1 = −0.25, γ1 = −0.2, ψ0 = −0.2,

ψ1 = −0.12
Odds ratio = 1.426

Treat case 3
α0 = −4.9, α1 = −0.30, β0 = −1.2,
β1 = −0.50, γ1 = −0.3, ψ0 = −0.2,

ψ1 = −0.22
Odds ratio = 1.794

Treat case 4
α0 = −4.9, α1 = −0.32, β0 = −1.2,
β1 = −0.65, γ1 = −0.39, ψ0 = −0.2,

ψ1 = −0.27
Odds ratio = 2.007

Treat case 5
α0 = −4.9, α1 = −0.33, β0 = −1.2,
β1 = −0.72, γ1 = −0.45, ψ0 = −0.2,

ψ1 = −0.33
Odds ratio = 2.198

Null α1 = β1 = γ1 = ψ1 = 0 Type I error rate
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Table 3.7: Performance measures and Monte Carlo standard errors used to assess the
behaviour of the latent variable, augmented binary and binary methods in a simulation
study for the systemic lupus erythematosus composite endpoint

Performance measure Estimate MCSE

Bias 1
nsim

nsim∑
j=1

δ̂j − δ

√
1

nsim(nsim−1)

nsim∑
j=1

(δ̂j − δ̄)2

Coverage 1
nsim

nsim∑
j=1

1(δ̂low,j ≤ δ ≤ δ̂upp,j)
√

ĉov.(1−ĉov.)
nsim

Bias-corrected coverage 1
nsim

nsim∑
j=1

1(δ̂low,j ≤ δ̄ ≤ δ̂upp,j)
√

B̂Ecov.(1−B̂Ecov.)
nsim

Power 1
nsim

nsim∑
j=1

1(pj < cv)
√

P̂ ower(1−P̂ ower)
nsim

MSE
nsim∑
j=1

(δ̂j − δ)2

√√√√nsim∑
j=1

[(δ̂j−δ)2−M̂SE]2

nsim(nsim−1)

Empirical SE
√

1
nsim−1

nsim∑
j=1

(δ̂i − δ̄)2 ̂EmpSE√
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Figure 3.3: Bias reported from the latent variable method, augmented binary method
and standard binary method when nsim=5000, total sample size N=300 for true log-odds
treatment effect between 1.2 and 2.2. The composite endpoint of interest contains four
components: two continuous, one ordinal, one binary and treatment effects are present
in all four components

3.5.3 Findings

The simulation results for the different scenarios are presented in Tables 3.8 - 3.15. In
what follows, we discuss the most interesting and relevant findings in more detail.

3.5.3.1 Varying Treatment Effect

An important property for an estimator in clinical trials is that it is unbiased. Figure
3.3 shows the bias of the methods as the treatment effect varies. The standard binary
method is unbiased, as we would expect for a logistic regression in a large sample. The
latent variable method is unbiased for smaller treatment effects but a small bias towards
the null is introduced as the treatment effect increases. The augmented binary method
is biased away from the null in this setting and the bias increases as the treatment
effect increases. Given that this performance is worse than is suggested from previous
applications of the augmented binary method in [35, 36], this would suggest that the
augmented binary method may be biased when the true data generating mechanism is
more similar to the latent variable model.
Figure 3.4 shows the coverage of the methods. The binary method has approximately
nominal coverage. For smaller treatment effects the latent variable method has nominal
coverage, however the coverage probability decreases as the treatment effect increases.
The augmented binary method has coverage of approximately 0.91, which also decreases
when the treatment effect increases. In order to diagnose this under-coverage in the
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Figure 3.4: Coverage probability reported from the latent variable method, augmented
binary method and standard binary method for nsim=5000, total sample size N=300 for
true log-odds treatment effect between 1.2 and 2.2. The composite endpoint of interest
contains four components: two continuous, one ordinal, one binary and treatment effects
are present in all four components
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Figure 3.5: Coverage probability (left) and bias-corrected coverage probability (right)
reported from the latent variable method, augmented binary method and standard
binary method for nsim=5000, total sample size N=300 for true log-odds treatment
effect between 1.2 and 2.2. The composite endpoint of interest contains four components:
two continuous, one ordinal, one binary and treatment effects are present in all four
components
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Figure 3.6: Statistical power reported from the latent variable method, augmented
binary method and standard binary method for nsim=5000, total sample size N=300 for
true log-odds treatment effect between 1.2 and 2.2. The composite endpoint of interest
contains four components: two continuous, one ordinal, one binary and treatment effects
are present in all four components

joint modelling methods we can look at bias-corrected coverage, as recommended in
[110]. Figure 3.5 shows both the coverage and bias-corrected coverage. The properties
of the standard binary method remain unchanged. The bias-corrected coverage of
the latent variable method is 0.95, which indicates that any under-coverage is due
to the bias present. This is not true for the augmented binary method which shows
small improvements in bias-corrected coverage so that it is approximately 0.92. This
indicates that under-coverage is present in this method due to bias as well as other
factors, which is likely to be model misspecification. The power of the three methods is
shown in Figure 3.6. The performance of the binary and augmented binary method is
as we would expect based on previous findings in [110] and the latent variable method
offers much higher power. In this setting it has close to 100% power for odds ratios
larger than 1.6, an effect that is plausible to observe in a trial.
To investigate improvements in efficiency we consider the relative precision of each of
the methods versus another. Obtaining the relative precision in each of the simulated
data sets and plotting the median, 10th centile and 90th centile facilitates an intuitive
interpretation, as illustrated in Figure 3.7. The augmented binary method is 1.5 times
as precise as the binary method and consistently so across the different odds ratios
considered. The latent variable method offers much larger gains in precision over
both the augmented and standard binary methods however the variability in precision
gains is much larger than those demonstrated with the augmented binary method.
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Figure 3.7: Median, 10th centile and 90th centile estimated relative precision reported
from the latent variable method, augmented binary method and standard binary method
for nsim=5000, total sample size N=300 for true log-odds treatment effect between 1.2
and 2.2. The composite endpoint of interest contains four components: two continuous,
one ordinal, one binary and treatment effects are present in all four components

In this setting, the latent variable method is approximately 8 times as precise as the
binary method. These findings have indicated that the standard binary method has
the smallest bias and that the latent variable method has the smallest variance. The
mean squared error (MSE) provides a combined measure of bias and variance. Figure
3.8 shows the MSE of the three methods as the treatment effect varies. The MSE for
the standard and augmented binary methods is approximately 6.5 times that of the
latent variable method. However, this measure should be interpreted with care due to
the fact that the MSE is more sensitive to the sample size than comparisons of bias or
empirical SE alone [110].

3.5.3.2 Varying η1

To understand more about the precision performance of the augmented binary method
in particular, we vary the responder threshold η1 to change the proportion of responders
in that outcome. Figure 3.9 shows the density of the Y1 variable and the relative
precision of the methods as the responder threshold varies. The precision gains from
the augmented binary method diminish as the threshold increases, which is intuitive as
improvements in efficiency fall as the continuous component becomes less responsible
for driving response. It is interesting to note that all precision gains are lost for any
thresholds above -4. Therefore, even when 20% of patients are non-responders, all
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Figure 3.8: Mean Squared Error (MSE) reported from the latent variable method,
augmented binary method and standard binary method for nsim=5000, total sample size
N=300 for true log-odds treatment effect between 1.2 and 2.2. The composite endpoint of
interest contains four components: two continuous, one ordinal, one binary and treatment
effects are present in all four components

efficiency gains are lost. The percentage of responders needed to improve efficiency
using the augmented binary method will of course depend on the correlation structure
employed. Due to the additional information in the other components, the latent
variable method is five times as precise as the other methods. Figure 3.10 shows the
power of the methods as the Y1 dichotomisation threshold changes. The power of the
latent variable reduces slightly as the proportion of responders increases. Although this
loss in power appears negligible, it is worth noting that a power of 0.999 vs 0.998 may
be substantial in terms of sample size required. There are power gains available from
employing the augmented binary method, even when only a very small proportion of
patients are non-responders.

3.5.3.3 Components Contributing to Response

An important consideration when investigating performance is how the precision
changes when different combinations of outcomes are responsible for driving response.
Figure 3.11 shows boxplots of the relative precision for the methods when response
is driven by (Y1, Y2, Y3, Y4), (Y1, Y2, Y3), (Y1, Y4) and (Y4). When all four components
contribute to response, the latent variable method offers large precision gains over
the other two methods. The latent variable method always outperforms the other
methods in this setting however the variability in the magnitude of gains offered is
large. The median result is that the treatment effect reported by the latent variable



3.5 Simulation Study 79

−8 −6 −4 −2

Y
1
 d

e
n

s
it
y

0

10

20

30

40

−6 −5 −4 −3 −2
R

e
la

ti
v
e

 p
re

c
is

io
n

method

Aug vs Bin

Lat vs Aug

Lat vs Bin

Y1 responder threshold

Figure 3.9: Density of continuous Y1 variable (left) and estimated relative precision
of augmented binary versus standard binary method, latent variable versus augmented
binary method and latent variable versus standard binary method as the Y1 responder
threshold η1 varies between η1 = −6 and η1 = −2 (right) for nsim=5000 and total
sample size N=300. The composite endpoint of interest contains four components:
two continuous, one ordinal, one binary and treatment effects are present in all four
components
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Figure 3.10: Statistical power of latent variable method, augmented binary method and
standard binary method as the Y1 responder threshold η1 varies between η1 = −5 and
η1 = −2 (right) for nsim=5000 and total sample size N=300. The composite endpoint of
interest contains four components: two continuous, one ordinal, one binary and treatment
effects are present in all four components
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Figure 3.11: Estimated relative precision gains from augmented binary versus standard
binary method, latent variable versus augmented binary method and latent variable
versus standard binary method when different combinations of components drive response.
Response driven by (Y1, Y2, Y3, Y4), (Y1, Y2, Y3), (Y1, Y4) and (Y4) where Y1 and Y2 are
continuous, Y3 is ordinal, Y4 is binary for nsim=5000 and total sample size N=300. The
composite endpoint of interest contains four components: two continuous, one ordinal,
one binary and treatment effects are present in all four components
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method is eight times as precise as that reported by the binary method and six times
as precise as the augmented binary method. If response is driven by (Y1, Y2, Y3) then
the relative gains for the latent variable method are larger, however note that in
less than 2% of cases the treatment effect is reported equally or less precisely than
both of the other methods. The findings are similar for when response is driven by
(Y1, Y4), however the median gains are smaller. The treatment effect is reported five
times more precisely from the latent variable method than the binary method here.
Note that as the augmented binary method models the relevant components, it still
performs well and again better than the latent variable method in a very small number
of cases. When binary Y4 determines response, the augmented binary method offers
no improvement in precision whereas the latent variable method is approximately 1.5
times more precise. It is clear from the results that the magnitude of the precision gain
from the latent variable method is highly dependent on the structure of the data.

3.5.3.4 Probability of Response in Each Arm

We are also interested in how well the probability of response in each arm is estimated.
Figure 3.12 shows that the binary method estimates the probability of response in each
arm well. The latent variable method slightly underestimates the probability of response
as the treatment effect increases. The augmented binary method largely underestimates
the probability of response in both arms. Figure 3.13 shows the estimation of the
probability of response in each arm as the treatment effect varies. The standard binary
method estimates the probability of response in both arms perfectly for all treatment
effects considered. The latent variable method is underestimating the probability of
response by less than 0.01 in the control arm however underestimates the probability in
the treatment arm by 0.005-0.02, with the magnitude of the underestimation increasing
with increasing treatment effect. This explains the increasing bias as the true treatment
effect increases. The augmented binary method underestimates the probability of
response in both arms by approximately 0.05 for all treatment effects considered.
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Figure 3.12: Estimation of the probability of response in each arm by the latent variable
method, augmented binary method and standard binary method for nsim=5000 and
total sample size N=300. The composite endpoint of interest contains four components:
two continuous, one ordinal, one binary and treatment effects are present in all four
components
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Figure 3.13: Probability of response in each arm reported from the latent variable
method, augmented binary method and standard binary method for nsim=5000, total
sample size N=300 for true log-odds treatment effect between 1.2 and 2.2. The composite
endpoint of interest contains four components: two continuous, one ordinal, one binary
and treatment effects are present in all four components
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Table 3.8: Median estimates of the operating characteristics (Monte Carlo standard
errors in parentheses) of the latent variable, augmented binary and binary methods
applied to the systemic lupus erythematosus endpoint when the assumptions of the latent
variable method are satisfied, N=300 and nsim = 5000

Performance Scenario Method
measure Latent Variable Augmented Binary Binary

Bias Baseline -0.017 (0.085) 0.070 (0.239) 0.004 (0.251)
η1 = −2 -0.008 (0.080) 0.004 (0.245) 0.000 (0.245)
η1 = −3 -0.010 (0.086) 0.018 (0.243) 0.000 (0.244)
η1 = −4 -0.014 (0.079) 0.049 (0.245) 0.003 (0.247)
η1 = −5 -0.022 (0.090) 0.091 (0.256) 0.004 (0.279)
η1 = −6 -0.040 (0.092) 0.137 (0.292) 0.006 (0.366)
Y1, Y4 -0.026 (0.090) 0.031 (0.200) 0.005 (0.251)
Y4 -0.003 (0.081) -0.010 (0.238) -0.006 (0.237)

Y1, Y2, Y3 -0.020 (0.079) 0.064 (0.222) 0.004 (0.236)
Treat case1 -0.009 (0.071) 0.020 (0.234) 0.001 (0.260)
Treat case2 -0.014 (0.080) 0.053 (0.238) 0.002 (0.260)
Treat case3 -0.024 (0.079) 0.083 (0.247) 0.006 (0.258)
Treat case4 -0.030 (0.088) 0.099 (0.253) 0.009 (0.261)
Treat case5 -0.047 (0.087) 0.090 (0.250) 0.008 (0.257)

Null -0.003 (0.036) -0.004 (0.104) 0.000 (0.116)

Coverage Baseline 0.949 (0.004) 0.907 (0.005) 0.944 (0.004)
η1 = −2 0.951 (0.008) 0.945 (0.007) 0.949 (0.007)
η1 = −3 0.948 (0.008) 0.938 (0.008) 0.948 (0.007)
η1 = −4 0.949 (0.008) 0.913 (0.009) 0.946 (0.008)
θ1 = −5 0.946 (0.009) 0.883 (0.011) 0.948 (0.009)
η1 = −6 0.931 (0.012) 0.858 (0.013) 0.954 (0.008)
Y1, Y4 0.952 (0.008) 0.918 (0.009) 0.945 (0.008)
Y4 0.948 (0.008) 0.952 (0.007) 0.952 (0.007)

Y1, Y2, Y3 0.953 (0.008) 0.893 (0.010) 0.949 (0.008)
Treat case1 0.951 (0.007) 0.921 (0.009) 0.950 (0.008)
Treat case2 0.947 (0.007) 0.911 (0.009) 0.946 (0.008)
Treat case3 0.940 (0.008) 0.900 (0.010) 0.951 (0.008)
Treat case4 0.931 (0.009) 0.895 (0.010) 0.948 (0.008)
Treat case5 0.919 (0.009) 0.894 (0.010) 0.949 (0.008)

Null 0.951 (0.003) 0.921 (0.004) 0.948 (0.003)
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Table 3.9: Median estimates of the operating characteristics (Monte Carlo standard
errors in parentheses) of the latent variable, augmented binary and binary methods
applied to the systemic lupus erythematosus endpoint when the assumptions of the latent
variable method are satisfied, N=300 and nsim = 5000

Performance Scenario Method
measure Latent Variable Augmented Binary Binary

Bias-corrected Baseline 0.956 (0.003) 0.920 (0.004) 0.945 (0.004)
coverage η1 = −2 0.951 (0.008) 0.943 (0.007) 0.949 (0.007)

η1 = −3 0.949 (0.008) 0.942 (0.008) 0.948 (0.007)
η1 = −4 0.951 (0.008) 0.920 (0.009) 0.946 (0.008)
η1 = −5 0.952 (0.009) 0.897 (0.011) 0.949 (0.009)
η1 = −6 0.958 (0.012) 0.903 (0.013) 0.955 (0.008)
Y1, Y4 0.954 (0.008) 0.923 (0.009) 0.948 (0.008)
Y4 0.949 (0.008) 0.950 (0.007) 0.954 (0.007)

Y1, Y2, Y3 0.961 (0.008) 0.904 (0.010) 0.950 (0.008)
Treat case1 0.955 (0.007) 0.917 (0.009) 0.950 (0.008)
Treat case2 0.951 (0.007) 0.912 (0.009) 0.947 (0.008)
Treat case3 0.953 (0.008) 0.914 (0.010) 0.952 (0.008)
Treat case4 0.949 (0.009) 0.911 (0.010) 0.951 (0.008)
Treat case5 0.951 (0.009) 0.913 (0.010) 0.951 (0.008)

Null 0.952 (0.003) 0.925 (0.004) 0.948 (0.003)

Power Baseline 0.983 (0.002) 0.748 (0.007) 0.504 (0.008)
η1 = −2 0.976 (0.004) 0.473 (0.016) 0.474 (0.016)
η1 = −3 0.979 (0.003) 0.528 (0.016) 0.478 (0.016)
η1 = −4 0.981 (0.002) 0.661 (0.015) 0.498 (0.016)
η1 = −5 0.987(0.001) 0.784 (0.015) 0.505 (0.018)
η1 = −6 0.990 (0.001) 0.835 (0.014) 0.359 (0.018)
Y1, Y4 0.920 (0.008) 0.699 (0.015) 0.434 (0.016)
Y4 0.316 (0.015) 0.228 (0.013) 0.224 (0.013)

Y1, Y2, Y3 0.993 (0.001) 0.845 (0.012) 0.595 (0.016)
Treat case1 0.634 (0.016) 0.203 (0.013) 0.118 (0.011)
Treat case2 0.975 (0.004) 0.510 (0.016) 0.304 (0.015)
Treat case3 0.986 (0.001) 0.862 (0.011) 0.671 (0.015)
Treat case4 0.993 (0.001) 0.960 (0.006) 0.828 (0.012)
Treat case5 0.997 (0.001) 0.988 (0.004) 0.899 (0.010)
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Table 3.10: Median estimates of the mean squared error (Monte Carlo standard errors
in parentheses) of the latent variable, augmented binary and binary methods applied to
the systemic lupus erythematosus endpoint when the assumptions of the latent variable
method are satisfied, N=300 and nsim = 5000

Scenario Method
Latent Variable Augmented Binary Binary

Baseline 0.007 (<0.001) 0.057 (<0.001) 0.063 (<0.001)
η1 = −2 0.012 (<0.001) 0.060 (<0.001) 0.060 (0.003)
η1 = −3 0.011 (<0.001) 0.059 (0.003) 0.059 (0.003)
η1 = −4 0.009 (<0.001) 0.060 (0.003) 0.061 (0.003)
η1 = −5 0.007 (<0.001) 0.066 (0.003) 0.078 (0.004)
η1 = −6 0.007 (<0.001) 0.085 (0.005) 0.134 (0.008)
Y1, Y4 0.013 (<0.001) 0.040 (0.002) 0.063 (0.003)
Y4 0.041 (0.002) 0.057 (0.002) 0.056 (0.002)

Y1, Y2, Y3 0.004 (<0.001) 0.049 (0.002) 0.056 (0.003)
Treat case1 0.006 (<0.001) 0.055 (0.002) 0.068 (0.003)
Treat case2 0.007 (<0.001) 0.057 (0.003) 0.068 (0.003)
Treat case3 0.008 (<0.001) 0.061 (0.003) 0.067 (0.003)
Treat case4 0.009 (<0.001) 0.064 (0.003) 0.068 (0.003)
Treat case5 0.011 (<0.001) 0.062 (0.003) 0.066 (0.003)

Null 0.006 (<0.001) 0.055 (0.001) 0.068 (0.001)
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Table 3.11: Median estimates of the empirical standard error and model standard error
(Monte Carlo standard errors in parentheses) of the latent variable, augmented binary
and binary methods applied to the systemic lupus erythematosus endpoint when the
assumptions of the latent variable method are satisfied, N=300 and nsim = 5000

Performance Scenario Method
measure Latent Variable Augmented Binary Binary

EmpSE Baseline 0.084 (0.001) 0.229 (0.003) 0.251 (0.003)
η1 = −2 0.108 (0.002) 0.245 (0.006) 0.245 (0.006)
η1 = −3 0.106 (0.002) 0.243 (0.006) 0.244 (0.006)
η1 = −4 0.096 (0.002) 0.240 (0.006) 0.247 (0.006)
η1 = −5 0.079 (0.002) 0.240 (0.006) 0.279 (0.007)
η1 = −6 0.074 (0.002) 0.257 (0.007) 0.363 (0.010)
Y1, Y4 0.111 (0.003) 0.198 (0.004) 0.251 (0.006)
Y4 0.203 (0.005) 0.238 (0.005) 0.237 (0.005)

Y1, Y2, Y3 0.055 (0.001) 0.213 (0.005) 0.236 (0.005)
Treat case1 0.080 (0.002) 0.233 (0.005) 0.260 (0.006)
Treat case2 0.084 (0.002) 0.232 (0.005) 0.260 (0.006)
Treat case3 0.088 (0.002) 0.233 (0.005) 0.258 (0.006)
Treat case4 0.089 (0.002) 0.233 (0.005) 0.260 (0.006)
Treat case5 0.088 (0.002) 0.233 (0.005) 0.257 (0.006)

Null 0.080 (0.001) 0.234 (0.002) 0.260 (0.003)

ModSE Baseline 0.008 (0.004) 0.042 (0.001) 0.061 (0.001)
η1 = −2 0.011 (0.003) 0.055 (0.001) 0.055 (0.001)
η1 = −3 0.011 (0.003) 0.053 (0.001) 0.056 (0.001)
η1 = −4 0.009 (0.004) 0.046 (0.001) 0.057 (0.001)
η1 = −5 0.006 (0.006) 0.041 (0.001) 0.067 (0.001)
η1 = −6 0.006 (0.012) 0.048 (0.002) 0.130 (0.003)
Y1, Y4 0.012 (0.005) 0.032 (0.001) 0.056 (0.001)
Y4 0.041 (0.004) 0.056 (0.001) 0.057 (0.001)

Y1, Y2, Y3 0.004 (0.012) 0.034 (0.001) 0.053 (0.001)
Treat case1 0.007 (0.007) 0.044 (0.001) 0.063 (0.001)
Treat case2 0.007 (0.004) 0.043 (0.001) 0.062 (0.001)
Treat case3 0.008 (0.004) 0.042 (0.001) 0.060 (0.001)
Treat case4 0.008 (0.004) 0.041 (0.001) 0.060 (0.001)
Treat case5 0.008 (0.005) 0.041 (0.001) 0.059 (0.001)

Null 0.007 (0.002) 0.046 (0.001) 0.066 (0.001)
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Table 3.12: Median estimate of the probability of response from the latent variable
model (Lat Var), augmented binary method (Aug Bin) and standard binary method
(Bin) applied to the systemic lupus erythematosus endpoint when the assumptions of the
latent variable method are satisfied, N=300 and nsim = 5000

Pr(resp| T = 0) Pr(resp| T = 1)
Scenario True Lat Var Aug Bin Bin True Lat Var Aug Bin Bin

Baseline 0.275 0.267 0.222 0.274 0.381 0.367 0.332 0.382
η1 = −2 0.366 0.363 0.365 0.366 0.475 0.469 0.473 0.474
η1 = −3 0.361 0.354 0.350 0.361 0.471 0.461 0.462 0.470
η1 = −4 0.328 0.317 0.289 0.327 0.438 0.422 0.405 0.438
η1 = −5 0.226 0.223 0.171 0.225 0.324 0.316 0.269 0.325
η1 = −6 0.094 0.106 0.060 0.093 0.152 0.164 0.112 0.153
Y1, Y4 0.302 0.302 0.269 0.303 0.397 0.390 0.366 0.399
Y4 0.571 0.567 0.577 0.578 0.643 0.638 0.645 0.646

Y1, Y2, Y3 0.388 0.375 0.325 0.389 0.512 0.491 0.459 0.513
Treat case1 0.273 0.267 0.224 0.275 0.314 0.306 0.263 0.316
Treat case2 0.275 0.267 0.223 0.275 0.351 0.339 0.300 0.351
Treat case3 0.275 0.268 0.223 0.274 0.405 0.390 0.357 0.406
Treat case4 0.275 0.269 0.222 0.274 0.433 0.417 0.386 0.434
Treat case5 0.275 0.269 0.222 0.274 0.455 0.435 0.406 0.452

Null 0.275 0.269 0.222 0.274 0.275 0.269 0.221 0.274
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Table 3.13: Median estimates of the odds ratio treatment effect estimate (95% confidence
intervals in parentheses) from the latent variable model (Lat Var), augmented binary
method (Aug Bin) and standard binary method (Bin) applied to the systemic lupus
erythematosus endpoint when the assumptions of the latent variable method are satisfied,
N=300 and nsim = 5000

Treatment effect
Scenario True Lat Var Aug Bin Bin

Baseline 1.623 1.592 (1.348, 1.880) 1.744 (1.165, 2.611) 1.643 (1.013, 2.666)
η1 = −2 1.566 1.555 (1.263, 1.914) 1.573 (0.991, 2.496) 1.567 (0.988, 2.486)
η1 = −3 1.573 1.560 (1.273, 1.912) 1.602 (1.019, 2.518) 1.575 (0.992, 2.500)
η1 = −4 1.600 1.578 (1.312, 1.897) 1.680 (1.101, 2.563) 1.612 (1.009, 2.574)
η1 = −5 1.642 1.606 (1.375, 1.874) 1.797 (1.206, 2.677) 1.665 (1.002, 2.768)
η1 = −6 1.721 1.653 (1.425, 1.918) 1.973 (1.282, 3.037) 1.800 (0.890, 3.638)
Y1, Y4 1.522 1.475 (1.189, 1.829) 1.570 (1.105, 2.230) 1.530 (0.960, 2.436)
Y4 1.353 1.348 (0.910, 1.998) 1.339 (0.841, 2.133) 1.335 (0.838, 2.128)

Y1, Y2, Y3 1.655 1.613 (1.436, 1.811) 1.582 (1.230, 2.529) 1.670 (1.059, 2.609)
Treat case1 1.217 1.207 (1.028, 1.417) 1.242 (0.824, 1.870) 1.218 (0.744, 1.996)
Treat case2 1.426 1.407 (1.194, 1.657) 1.503 (1.001, 2.256) 1.437 (0.882, 2.340)
Treat case3 1.794 1.751 (1.480, 2.073) 1.947 (1.305, 2.907) 1.816 (1.122, 2.938)
Treat case4 2.007 1.948 (1.642, 2.312) 2.215 (1.489, 3.296) 2.041 (1.264, 3.295)
Treat case5 2.198 2.097 (1.766, 2.490) 2.406 (1.620, 3.572) 2.203 (1.366, 3.552)

Null 1.000 0.996 (0.828, 1.197) 0.995 (0.655, 1.513) 1.000 (0.604, 1.656)
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Table 3.14: Median estimates of the relative precision [with 10th centile and 90th
centile values in parentheses] from the latent variable model (Lat Var), augmented binary
method (Aug Bin) and standard binary method (Bin) applied to the systemic lupus
erythematosus endpoint when the assumptions of the latent variable method are satisfied,
N=300 and nsim = 5000

Treatment effect
Scenario Lat Var vs Bin Lat Var vs Aug Bin Aug Bin vs Bin

Baseline 8.678 [6.365, 11.62] 6.015 [4.447, 8.112] 1.437 [1.381, 1.499]
η1 = −2 4.919 [3.962, 6.225] 4.935 [3.973, 6.220] 1.000 [0.989, 1.018]
η1 = −3 5.172 [4.105, 6.584] 4.952 [3.967, 6.285] 1.043 [1.028, 1.063]
η1 = −4 6.483 [5.058, 8.468] 5.283 [4.125, 6.859] 1.231 [1.192, 1.279]
η1 = −5 11.05 [7.763, 15.78] 6.838 [4.806, 9.691] 1.618 [1.532, 1.716]
η1 = −6 23.81 [14.12, 39.46] 9.059 [5.507, 14.71] 2.627 [2.268, 2.991]
Y1, Y4 4.756 [3.595, 6.563] 2.709 [2.028, 3.763] 1.753 [1.672, 1.855]
Y4 1.407 [1.257, 1.617] 1.402 [1.251, 1.605] 1.005 [0.993, 1.024]

Y1, Y2, Y3 15.89 [13.05, 19.09] 10.16 [8.321, 12.17] 1.562 [1.508, 1.623]
Treat case1 9.594 [7.247, 12.98] 6.587 [4.980, 8.933] 1.453 [1.391, 1.522]
Treat case2 8.965 [6.625, 12.05] 6.157 [4.652, 8.402] 1.441 [1.384, 1.499]
Treat case3 8.301 [6.127, 11.17] 5.713 [4.269, 7.739] 1.445 [1.387, 1.510]
Treat case4 7.920 [5.894, 10.62] 5.457 [4.066, 7.312] 1.453 [1.397, 1.513]
Treat case5 7.860 [5.865, 10.51] 5.382 [4.019, 7.191] 1.461 [1.404, 1.522]

Null 9.939 [7.437, 13.35] 6.833 [5.099, 9.127] 1.455 [1.386, 1.521]



90 Complex Composite Structures

Table 3.15: Median confidence interval width (standard deviation in parentheses) for
log-odds treatment effects reported from the latent variable model (Lat Var), augmented
binary method (Aug Bin) and standard binary method (Bin) applied to the systemic
lupus erythematosus endpoint when the assumptions of the latent variable method are
satisfied, N=300 and nsim = 5000

Average CI width % reduction CI width
Scenario Lat Var Aug Bin Bin Lat Var Aug Bin

Baseline 0.328 (0.04) 0.806 (0.02) 0.966 (0.03) 66.00 16.50
η1 = −2 0.416 (0.04) 0.922 (0.01) 0.921 (0.01) 54.85 -0.11
η1 = −3 0.407 (0.04) 0.903 (0.01) 0.923 (0.01) 55.93 2.11
η1 = −4 0.368 (0.04) 0.844 (0.02) 0.936 (0.02) 60.66 9.82
η1 = −5 0.305 (0.05) 0.797 (0.03) 1.013 (0.04) 69.89 21.39
η1 = −6 0.287 (0.07) 0.862 (0.04) 1.394 (0.12) 79.44 38.17
Y1, Y4 0.427 (0.06) 0.703 (0.02) 0.930 (0.02) 54.13 24.45
Y4 0.784 (0.07) 0.929 (0.02) 0.930 (0.02) 15.66 0.16

Y1, Y2, Y3 0.226 (0.05) 0.721 (0.02) 0.901 (0.01) 74.90 19.92
Treat case1 0.319 (0.05) 0.818 (0.02) 0.984 (0.03) 67.61 16.88
Treat case2 0.326 (0.04) 0.811 (0.02) 0.973 (0.03) 66.50 16.62
Treat case3 0.333 (0.04) 0.799 (0.02) 0.960 (0.03) 65.29 16.76
Treat case4 0.339 (0.04) 0.793 (0.02) 0.956 (0.03) 64.53 16.96
Treat case5 0.339 (0.04) 0.790 (0.02) 0.954 (0.03) 64.50 17.22

Null 0.320 (0.06) 0.836 (0.03) 1.006 (0.03) 68.25 16.90
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3.6 Sensitivity Analysis

The latent variable method has been shown to perform well when the assumptions
of joint normality are satisfied. It is important to understand the robustness of the
method when these assumptions are not satisfied, especially as the joint normality
assumption cannot be tested in this instance. A distribution which should sufficiently
represent these deviations from normality is the skew-normal distribution.

3.6.1 Multivariate Skew-Normal Distribution

The multivariate skew-normal is an extension of the univariate skew normal distribution
introduced by Azzalini and Dalla Valle [111], which they define as follows. A random
vector Y=(Y1, ..., Yk)T has k-variate skew-normal distribution, if its density function is

fk(y) = 2ϕk(y; Ω)Φ(αT y),y ∈ Rk (3.18)

where ϕk(y; Ω) is the probability density function of the k-variate normal distribution
with standardised marginals and correlation matrix Ω. The shape parameter vector
α determines the skew, where a large positive α value results in a large right skew
and conversely a large negative α value results in a large left skew. When α = 0 it
reduces the density in (3.18) to the N(0,Ω) density and when α → ±∞ it is reduced
to the half-normal density. Scenarios of interest are shown in Table 3.16. The first
scenario considers when all four components are mild-moderately skewed. We have not
considered large values for skew given that the continuous outcomes can be transformed
in this scenario. Scenarios 2-3 consider different magnitudes of skew in the latent
continuous components only. This tests the robustness of the method to the assumption
that the discrete variables manifest from a true normal continuous variable. Scenario
4 investigates when a small amount of skew is present and there is no effect of the
intervention.
It is often useful to understand the deviations from normality being investigated
through visualisation. Figure 3.14 shows histograms for a random sample of univariate
error terms when α = 0.1 and α = 0.05 for N=300.

3.6.2 Results

The bias, coverage, bias-corrected coverage and power are shown in Table 3.17 for
all four scenarios. In scenarios 1-3, the non-normality introduces bias which results
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Table 3.16: Simulation scenarios considered to investigate deviations from joint normal-
ity for the components of the systemic lupus erythematosus composite endpoint based
on the multivariate skew-normal distribution where α determines the magnitude of the
skew in each component

Scenario α Purpose
skew1 (0.1, 0.1, 0.1, 0.1) Skew in all four components
skew2 (0, 0, 0.1, 0.1) Skew in discrete components only
skew3 (0, 0, 0.05, 0.05) Smaller skew in discrete components only
skew4 (0, 0, 0.05, 0.05) Skew in discrete components only: null case
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Figure 3.14: Histogram of univariate skew-normal distributed error terms with expec-
tation equal to zero for α = 0.1 (left) and α = 0.05 (right)

in under-coverage. The bias-corrected coverage is close to nominal for all scenarios.
However, the coverage of the latent variable method is nominal in the null case. This
is consistent with our findings when the joint normality assumption is satisfied, in that
bias is introduced in the estimation of the treatment arm. However the magnitude of
this bias is much smaller when the assumptions are satisfied. It is worth noting that this
case investigates mild-moderate skew and that for larger values of skew we would expect
the bias and under-coverage to be substantial. The augmented binary and standard
binary methods behave similarly to when the joint normality assumptions are satisfied,
which is expected given that the model assumptions are violated in both contexts. The
latent variable method still offers large power gains over the other methods. Table
3.18 shows the MSE, Empirical SE and Model SE of the three methods. The latent
variable method consistently performs best across these performance measures. As the
MSE is a combined bias and variance estimator, it is a useful summary for the overall
performance of the methods. The augmented binary and standard binary methods
have an MSE across all scenarios of approximately 0.06 whilst the MSE of the latent
variable method is between 0.01 and 0.04. This indicates that the large reduction in
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variance is useful despite the introduction of bias. We acknowledge however that this
may not hold across all sample sizes [110].
Table 3.19 shows the probability of response in each arm for each of the methods. The
findings are consistent with when the assumptions are satisfied. Namely, the latent
variable method estimates the probability of response in the control arm well however
underestimates the probability of response in the treatment arm. The magnitude of
this underestimation is unaffected by the degree of skew or whether the skew is present
in the observed continuous components. The odds ratio treatment effect estimates are
shown in Table 3.20. The latent variable method is biased towards the null and the
augmented binary method is biased away from the null. The binary method slightly
underestimates the treatment effect in this setting however all are close to true for the
null case. The median relative precision of the methods is shown in Table 3.21, with
their 10th centile and 90th centile values. These are again consistent with our previous
findings indicating that the violation of joint normality only affects the bias and not
the variance. This is further reiterated by the reduction in confidence interval width
shown in Table 3.22.
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Table 3.17: Operating characteristics (Monte Carlo standard errors in parentheses)
of the latent variable, augmented binary and binary methods when the components of
the systemic lupus erythematosus endpoint are drawn from a multivariate skew-normal,
N=300 and nsim = 1000

Performance measure Scenario Method
Latent Variable Augmented Binary Binary

Bias skew1 -0.173 (0.012) 0.041 (0.252) -0.015 (0.258)
skew2 -0.103 (0.008) 0.036 (0.251) -0.020 (0.255)
skew3 -0.068 (0.008) 0.038 (0.244) -0.016 (0.245)
skew4 -0.033 (0.008) 0.007 (0.254) 0.001 (0.255)

Coverage skew1 0.556 (0.018) 0.933 (0.009) 0.939 (0.009)
skew2 0.811 (0.013) 0.928 (0.008) 0.941 (0.008)
skew3 0.884 (0.010) 0.934 (0.008) 0.950 (0.007)
skew4 0.933 (0.009) 0.923 (0.009) 0.950 (0.008)

Bias-corrected skew1 0.962 (0.007) 0.929 (0.009) 0.943 (0.008)
coverage skew2 0.936 (0.008) 0.930 (0.008) 0.943 (0.007)

skew3 0.940 (0.008) 0.929 (0.008) 0.954 (0.007)
skew4 0.948 (0.008) 0.926 (0.009) 0.950 (0.008)

Power skew1 0.897 (0.011) 0.646 (0.017) 0.487 (0.018)
skew2 0.959 (0.006) 0.637 (0.015) 0.471 (0.016)
skew3 0.982 (0.004) 0.641 (0.015) 0.495 (0.016)
skew4 - - -
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Table 3.18: Operating characteristics (Monte Carlo standard errors in parentheses)
of the latent variable, augmented binary and binary methods when the components of
the systemic lupus erythematosus endpoint are drawn from a multivariate skew-normal,
N=300 and nsim = 1000

Performance measure Scenario Method
Latent Variable Augmented Binary Binary

MSE skew1 0.039 (0.001) 0.063 (0.003) 0.066 (0.003)
skew2 0.021 (0.001) 0.063 (0.003) 0.065 (0.003)
skew3 0.014 (0.001) 0.060 (0.003) 0.060 (0.003)
skew4 0.010 (0.001) 0.064 (0.004) 0.065 (0.003)

EmpSE skew1 0.097 (0.003) 0.248 (0.006) 0.257 (0.007)
skew2 0.102 (0.002) 0.249 (0.006) 0.254 (0.006)
skew3 0.099 (0.002) 0.241 (0.005) 0.245 (0.006)
skew4 0.094 (0.002) 0.254 (0.006) 0.255 (0.006)

ModSE skew1 0.010 (0.006) 0.052 (0.001) 0.064 (0.001)
skew2 0.010 (0.003) 0.050 (0.001) 0.060 (0.001)
skew3 0.010 (0.015) 0.048 (0.001) 0.059 (0.001)
skew4 0.009 (0.004) 0.051 (0.001) 0.063 (0.001)

Table 3.19: Median estimated probability of response in the treatment and placebo
arms (with standard deviation in parentheses) from the latent variable model (Lat Var),
augmented binary method (Aug Bin) and standard binary method (Bin) when the
components of the systemic lupus erythematosus endpoint are drawn from a multivariate
skew-normal, N=300 and nsim = 1000

Pr(resp| T = 0) Pr(resp| T = 1)
Scenario True Lat Var Aug Bin Bin True Lat Var Aug Bin Bin

skew1 0.259 0.263 0.221 0.258 0.365 0.330 0.326 0.359
(0.024) (0.031) (0.035) (0.031) (0.037) (0.040)

skew2 0.290 0.287 0.253 0.290 0.398 0.370 0.361 0.392
(0.025) (0.033) (0.037) (0.033) (0.039) (0.041)

skew3 0.309 0.302 0.271 0.308 0.418 0.394 0.382 0.413
(0.025) (0.34) (0.037) (0.033) (0.040) (0.041)

skew4 0.309 0.299 0.269 0.307 0.309 0.292 0.270 0.307
(0.025) (0.034) (0.037) (0.029) (0.034) (0.038)
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Table 3.20: Estimated odds ratio treatment effect from the latent variable model (Lat
Var), augmented binary method (Aug Bin) and standard binary method (Bin) when the
components of the systemic lupus erythematosus endpoint are drawn from a multivariate
skew-normal, N=300 and nsim = 1000

Method
Scenario True Lat Var Aug Bin Bin

skew1 1.640 1.379 (1.140, 1.668) 1.708 (1.093, 2.668) 1.616 (0.985, 2.651)
skew2 1.617 1.459 (1.203, 1.770) 1.676 (1.083, 2.594) 1.586 (0.980, 2.565)
skew3 1.611 1.505 (1.243, 1.822) 1.674 (1.089, 2.572) 1.585 (0.987, 2.548)
skew4 1.000 0.967 (0.807, 1.160) 1.007 (0.647, 1.566) 1.001 (0.613, 1.634)

Table 3.21: Relative precision of the latent variable, augmented binary and binary
methods when the components of the systemic lupus erythematosus endpoint are drawn
from a multivariate skew-normal, N=300 and nsim = 1000

Method comparison
Scenario Lat Var vs Bin Lat Var vs Aug Bin Aug Bin vs Bin

skew1 6.903 [5.336, 8.972] 5.579 [4.376, 7.313] 1.231 [1.189, 1.275]
skew2 6.263 [5.013, 7.917] 5.177 [4.096, 6.518] 1.213 [1.178, 1.252]
skew3 6.326 [5.016, 7.995] 5.192 [4.098, 6.548] 1.219 [1.184, 1.257]
skew4 7.384 [5.729, 9.343] 5.985 [4.655, 7.629] 1.231 [1.192, 1.273]

Table 3.22: Median confidence interval width (standard deviation in parentheses) of
the treatment effect reported from the latent variable model (Lat Var), augmented
binary method (Aug Bin) and standard binary method (Bin) when the components of
the systemic lupus erythematosus endpoint are drawn from a multivariate skew-normal,
N=300 and nsim = 1000

Average CI width % reduction CI width
Scenario Lat Var Aug Bin Bin Lat Var Aug Bin

skew1 0.376 (0.05) 0.890 (0.03) 0.986 (0.03) 61.86 9.75
skew2 0.384 (0.04) 0.872 (0.02) 0.960 (0.02) 60.00 9.18
skew3 0.377 (0.07) 0.858 (0.02) 0.946 (0.02) 60.17 9.37
skew4 0.362 (0.04) 0.882 (0.03) 0.978 (0.03) 63.02 9.86
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3.7 Case Study

3.7.1 Trial Data

To understand more about how the methods perform in real data, we apply them to
the MUSE trial [112]. The trial was a phase IIb, randomised, double-blind, placebo-
controlled study investigating the efficacy and safety of anifrolumab in adults with
moderate to severe SLE. Patients (n=305) were randomised to receive anifrolumab
(300mg or 1000mg) or placebo, in addition to standard therapy every 4 weeks for
48 weeks. The primary end point was the percentage of patients achieving an SRI
response at week 24 with sustained reduction of oral corticosteroids (<10mg/day and
less than or equal to the dose at week 1 from week 12 through 24).

3.7.2 MUSE Primary Analysis

Due to data sharing policy, we conduct the analysis for a subset of the patients, namely
n=278 rather than n=305 reported in the paper, thus the results will differ from the
original paper. Table 3.23 shows the demographics and baseline clinical characteristics
of the patients enrolled. Table 3.24 shows the efficacy results at week 24. We present
the results for both the tapered SRI(4) endpoint including the oral corticosteroid
information and the results for the SRI(4) excluding the tapering information. Within
each case we also present the results for the high and low interferon (IFN) gene signature
subgroups, as was the case for the primary analysis. Using this subset of the original
trial data, we find the point estimates differ from the primary analysis, however the
conclusions are the same. Therefore, the effect sizes from our re-analysis should not be
taken as a contradiction of the original findings and our interest here will instead be
focused on the comparable model performance.

3.7.3 Exploratory Data Analysis

The simulation results indicate that the structure of the data is an important factor in
the performance of the methods and in particular that the latent variable method is
sensitive to the assumptions made. A complication for exploratory data analysis in this
context is that the key assumption of joint normality of the four components cannot
be assessed, due the two latent outcomes. This is an obstacle for the application of
these methods in practice, given that we know that violation of these assumptions can
be problematic. Although univariate normality of the observed continuous components
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Table 3.23: Demographic and baseline clinical characteristics of the patients enrolled
in each of the three arms of the phase IIb MUSE trial in adults with moderate to severe
systemic lupus erythematosus (modified ITT population)*

Placebo (n=87) Anifrolumab
300mg (n=95)

Anifrolumab
1000mg (n=96)

Age, years 39.2 ± 12.5 38.9 ± 11.9 41.0 ± 11.6
Sex, no. (%)

female
79 (90.3) 89 (93.7) 91 (94.8)

Weight, kg 69.7 ± 19.4 69.3 ± 17.1 71.2 ± 17.0
Height, cm 161.4 ± 8.4 161.5 ± 8.6 162.0 ± 6.7

Race, no. (%)
White 38 (43.7) 33 (34.7) 48 (50.0)

African American 8 (9.2) 18 (18.9) 10 (10.4)
Asian 7 (8.0) 3 (3.2) 5 (5.2)

American
Indian/Alaska

Native

0 (0.0) 4 (4.2) 0 (0.0)

Other 34 (39.1) 37 (38.9) 33 (34.4)
Ethnicity, no. (%)

non-Hispanic
48 (55.2) 50 (52.6) 59 (61.5)

High IFN gene
signature, no. (%)

64 (73.6) 72 (75.8) 72 (75.0)

SLEDAI-2K global
score

11.0 ± 4.3 10.8 ± 3.8 10.8 ± 4.1

BILAG 2004 global
score

19.9 ± 6.0 19.6 ± 5.8 18.3 ± 5.5

Physician’s global
assessment

1.75 ± 0.41 1.86 ± 0.39 1.85 ± 0.39
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Table 3.24: Summary of efficacy results for the anifrolumab 200mg arm versus placebo and the anifrolumab 1000mg arm versus
placebo in the phase IIb MUSE trial in adults with moderate to severe systemic lupus erythematosus

Placebo
(n=87)

Anifrolumab
300mg
(n=95)

OR (95% CI) P
Anifrolumab

1000mg
(n=96)

OR (95% CI) P

Week 24

SRI(4) (including taper) 18/87
(20.7)

34/95
(35.8) 2.14 (1.14, 4.00) 0.017 29/96

(30.2) 1.66 (0.87, 3.15) 0.122

High IFN gene signature 10/64
(15.6)

27/72
(37.5) 3.24 (1.48, 7.11) 0.003 21/72

(29.2) 2.22 (1.00, 4.92) 0.048

Low IFN gene signature 8/23 (0.35) 7/23 (30.4) 0.82 (0.26, 2.56) 0.746 8/24
(33.3) 0.94 (0.29, 3.06) 0.922

SRI(4) (excluding taper) 38/87
(43.7)

52/95
(54.7) 1.56 (0.87, 2.80) 0.137 57/96

(59.4) 1.88 (1.05, 3.37) 0.033

High IFN gene signature 27/64
(42.2)

40/72
(55.6) 1.71 (0.87, 3.38) 0.120 45/72

(62.5) 2.28 (1.15, 4.52) 0.017

Low IFN gene signature 11/23
(47.8)

12/23
(52.2) 1.19 (0.39, 3.63) 0.773 12/24

(0.50) 1.09 (0.35, 3.38) 0.889

* adjusted for three stratification factors
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does not imply joint normality of these, we will look at the outcomes individually
and jointly in order to learn more about the structure of the data. Although the
covariate adjustment will be informed by clinical relevance in practice, we will look
at the distribution of the residuals under various covariate adjustments to determine
under what covariate structures the assumptions are most justified.
Table 3.25 shows the decomposition of responders and non-responders in each of the
components by treatment arm. In both the treatment and the control arm, almost all
patients are responders in both the PGA and BILAG measures. This indicates that
these components do not enrich the composite endpoint and so it is the SLEDAI and
taper measures that are responsible for driving response rates. From the simulated
scenarios, we may expect smaller precision gains than if three or four components
determined response. We also expect that the augmented binary method may perform
more similarly to the latent variable model in terms of efficiency, due to modelling the
two informative components.

Physician’s Global Assessment (PGA)

The PGA measure used in the primary analysis is the change score at week 24. To
derive this change score, the baseline PGA measure is subtracted from the observed
measure at week 24. If this change is <0.3, then the patient is considered to be a
responder in this endpoint. Figure 3.15 shows the histograms for the PGA change
measures and PGA raw measures. These are also shown by treatment arm. Figure
3.16 shows the distribution of the residuals for two different covariate adjustments.
The model on the left includes the treatment arm. The mean structure of the PGA
measure of interest in our analysis will include both the treatment and PGA baseline
measure, as in the right hand figure.

SLEDAI-2K

The SLEDAI-2K measure included in the primary analysis is the change score at
week 24. This change score is derived by obtaining the difference between an imputed
SLEDAI score at week 24 and the observed baseline SLEDAI score. The imputation
involves using the raw SLEDAI score at week 24, if it has been observed. If not, it is
imputed using the last observed measure i.e. last observation carried forward. This
imputation procedure was planned and conducted by AstraZeneca for the primary
analysis. It is possible to investigate the influence of their choice of imputation method
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Figure 3.15: Histogram plots for Physicians Global Assessment (PGA) measures: PGA
change score (top left), PGA raw score (top right), PGA change score in anifrolumab
300mg arm and placebo arm (bottom left) and PGA raw score in anifolumab 300mg arm
and placebo arm (bottom right) in the phase IIb MUSE trial in patients with systemic
lupus erythematosus
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Figure 3.16: Histogram plots for residuals in the Physicians Global Assessment (PGA)
measure adjusted for treatment arm (left) and adjusted for treatment arm and baseline
PGA measure (right) in the phase IIb MUSE trial in patients with systemic lupus
erythematosus
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Table 3.25: Observed response rates in each of the SLE responder index components in
the anifrolmab 300mg arm and placebo arm of the phase IIb MUSE trial. SLE index is
comprised of a continuous SLEDAI outcome, continuous PGA outcome, ordinal BILAG
outcome and binary taper outcome where response in each component is achieved when
the patient meets the criteria shown

Components Response criteria Treatment arm
Anifrolumab 300mg Placebo

SLEDAI Change in SLEDAI ≤ -4 58/89 41/76

PGA Change in PGA < 0.3 87/89 75/76

BILAG No Grade A or more than
one Grade B 86/89 72/76

Taper Sustained reduction in oral
corticosteroids 53/95 37/87

SLE
responder
endpoint

Responder in all four
components above 34/95 18/87

on the analysis and conclusions by employing different imputation procedures and
determining how this affects the conclusions. However, for the purpose of this work,
we will proceed using the imputation in the primary analysis.
Figure 3.17 shows the histograms for the change score and imputed week 24 score.
These are both shown by treatment arm. Figure 3.18 shows the distribution of the
residuals for two different covariate adjustments. The analysis of interest includes
treatment and baseline SLEDAI measure, as in the right hand figure.

BILAG-2004

The BILAG component grades patients A-E on an ordinal scale across nine organ
systems at each visit. They are then given a global BILAG score based on these grades.
Each grade is assigned points and this is used to calculate the continuous global score.
Grade A is scored 12, Grade B is scored 8, Grade C scored 1 and Grade D and E are
both scored 0. If the global score is not observed, the last observation is imputed. A
patient is considered to be a non-responder in BILAG if one or more body systems
has been scored 12 at week 24 which had been scored 8 or less at baseline or two
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Figure 3.17: Histogram plots for Systemic Lupus Erythematous Disease Activity Index
(SLEDAI) measures: SLEDAI change score (top left), SLEDAI raw score (top right),
SLEDAI change score in anifrolumab 300mg arm and placebo arm (bottom left) and
SLEDAI raw score in anifolumab 300mg arm and placebo arm (bottom right) in the
phase IIb MUSE trial in patients with systemic lupus erythematosus
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Disease Activity Index (SLEDAI) measure adjusted for treatment arm (left) and adjusted
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patients with systemic lupus erythematosus
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Figure 3.19: Barplot showing the British Isles Lupus Assessment Group (BILAG)
measure in the Phase IIb MUSE trial in patients with systemic lupus erythematosus

or more body systems scored 8 at week 24 which scored 1 or less at baseline. As
with the other components, BILAG is treated as a binary variable in the primary
analysis. A responder will have no new grade A’s and no more than one new grade B
from baseline at week 24. Table 3.25 shows that 158/165 patients are responders in
BILAG. Due to the implicit ordinal scaling, we model BILAG on the ordinal scale for
the overall measure. The plot in Figure 3.19 shows the frequency of patients in each
category. Note that very small numbers of non-responders may make the estimation of
the thresholds more difficult.

Tapering

In order to be a responder in the tapering component, patients had to achieve a
sustained reduction of oral corticosteroids. This is defined as <10mg/day and less than
or equal to the dose at week 1 from week 12 through 24. This outcome contributed
substantially in discriminating between responders and non-responders, as can be seen
in Table 3.25. The observed binary variable will be used in the analysis, setting the
threshold to zero, allowing for estimation of an intercept term.

Multivariate Plots

We can visualise the 4-D mixed outcome data as shown in Figure 3.20. The continuous
PGA and SLEDAI measures are shown on the x and y axis respectively. The ordinal
BILAG measure is shown as different coloured data points, where non-responders
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are shown in purple. The taper responders are shown in the left panel and the non-
responders in the right. Overall SLE responders are shown in the bottom left hand
quadrant of the left hand panel. It is worth noting we can also determine visually
that responder status is completely specified by SLEDAI and taper outcomes. This is
demonstrated as there are no BILAG or PGA non-responders in the bottom half of
the left panel.
A heatmap for the correlations is shown in Figure 3.21. We can see that the components
of the SRI-4 variable are strongly positively correlated and that none of the variables
are strongly correlated with the tapering outcome. SLEDAI and PGA are strongly
negatively correlated with their respective baseline measures, as we would expect due
to their inclusion in the change outcome. Violin plots are useful to visualise the density
of the observed continuous measures by treatment arm across the categories of the
observed discrete variables. Figure 3.22 shows the violin plots for the SLE index
components. These plots are similar to boxplots however also show the probability
density of the data values which has been smoothed using a Gaussian kernal. PGA and
SLEDAI measures are not substantially different across the tapering levels, which we
would expect due to their low correlation. The correlation between BILAG and both
measures is indicated by rising values of PGA and SLEDAI change when approaching
the response threshold.
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Figure 3.20: Observed response rates in each of the SLE responder index components
in the phase IIb MUSE trial. To be classed a responder a patient must be: below -4 to
respond in the continuous SLEDAI outcome (left), below 0.3 in the continuous PGA
measure (bottom), any colour but purple for BILAG and be placed in the left hand panel
for taper response. Overall responders are shown in the bottom left quadrant of the left
hand panel
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Figure 3.21: Heatmap showing correlations between the four systemic lupus erythe-
matosus composite endpoint components and their baseline variables: British Isles Lupus
Assessment Group (BILAG), oral corticosteroid tapering (tapering), Physicians Global
Assessment (PGA), Physicians Global Assessment baseline measure (PGAbase), Systemic
Lupus Erythematosus Disease Activity Index (SLEDAI) and Systemic Lupus Erythe-
matosus Disease Activity Index baseline measure (SLEDAIbase) in the phase IIb MUSE
trial
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3.7.4 MUSE Trial Re-Analysis

Table 3.26 shows the estimated probability of response in each arm of the trial for each
of the three methods. The probability of response in the placebo arm is similar for
all methods. A much larger discrepancy is shown in the treatment arm, which agrees
with the findings from the simulation study.

Table 3.26: Estimated probability of response from the latent variable, augmented
binary and standard binary methods in the anifrolumab 300mg arm and placebo arm of
the phase IIb MUSE trial in adults with systemic lupus erythematosus

Method Anifrolumab
300mg Placebo

Latent Variable 0.311 0.199
Augmented Binary 0.324 0.211
Binary 0.382 0.224

The log-odds treatment effect point estimates and confidence intervals are shown in
Figure 3.23. Both joint modelling methods estimate the treatment effect more precisely.
Although there may be bias towards the null present in the point estimates for the
joint modelling methods, the confidence intervals entirely overlap with that of the
binary method. All three methods indicate that anifrolumab 300mg performs better
than placebo, as in the original findings.

Bin

AugBin

LatVar

0.0 0.5 1.0 1.5

Log−odds ratio

M
e
th

o
d

Figure 3.23: Estimated log-odds treatment effect estimates from the latent variable,
augmented binary and standard binary methods in the phase IIb MUSE trial in adults
with systemic lupus erythematosus

In terms of estimated precision, it is interesting to determine where the trial data set
lies in the distribution of datasets generated in the simulation study. Table 3.27 shows
the estimated relative precision gains in the MUSE data. The latent variable method is
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Table 3.27: Relative precision comparison of the treatment effect estimates reported
from the latent variable, augmented binary and standard binary methods in the Phase
IIb MUSE trial in adults with systemic lupus erythematosus

Comparison Relative precision Reduction required sample size
Lat Var vs Bin 2.549 60.4%
Lat Var vs Aug Bin 1.056 4.40%
Aug Bin vs Bin 2.415 58.6%

2.5 times as precise as the binary method in this setting, whilst the augmented binary
method is 2.4 times as precise. This similar performance is expected as the augmented
binary method models the SLEDAI and taper variables - the only components driving
response. This increase in precision from the latent variable method compared with
the binary method amounts to a 60% reduction in required sample size.

3.7.5 Model Fit

We assess the goodness-of-fit of the latent variable model in the MUSE trial dataset
using the modified Pearson residuals introduced earlier. Figure 3.24 shows the residuals
for each patient in the trial. The model appears to fit well with only two observations
poorly explained. Figure 3.25 shows a histogram of the residuals. If the model fits well,
the residuals should follow the χ2

9 distribution shown. The residuals seem to follow the
χ2

9 distribution except for the observations with residuals equal to 40, which confirms
that the model fits the data well apart from these two measurements.

3.8 Bias Correction Using the Bootstrap

The simulations have shown that the variance of the treatment effect reported by the
latent variable method is always largely reduced from that of the standard binary
method, however bias is introduced in settings with large treatment effects and when
joint normality assumptions are not satisfied. Furthermore, the bias-corrected coverage
of the confidence interval is nominal even when the coverage is poor. In theory, if the
bias could be estimated from the observed data then we could subsequently correct for
this to obtain the desirable property of an unbiased estimator with nominal coverage.
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Figure 3.24: Plot of the Modified Pearson residuals from the latent variable model for
each patient in the MUSE trial. The residuals highlight that two patients observations
are poorly explained by the model but that the model is a good fit for the remaining
patients
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3.8.1 Bootstrap Method

Efron’s bootstrap [113] is a general method which is used for estimating various
properties of a given statistic, in particular its bias and variance. The concept is based
on treating the observed sample as the population and then sampling with replacement
from this nboot times. Note that this is not a permutation distribution due to the
replacement when sampling. Efron constructs the problem by assuming a random
sample of size N is observed from an unspecified distribution F,

Xi = xi, Xi ∼ind F i = 1, 2, ..., N (3.19)

Given a specified random variable R(X, F), we wish to estimate the sampling
distribution of R on the basis of the observed data x. The bootstrap method to solve
this problem is as follows:

1. Construct the sample probability distribution F̂ , putting mass 1
N

at each point
x1, x2, ..., xN .

2. With F̂ fixed, draw a random sample of size N from F̂ to obtain the bootstrap
sample

X∗
i = x∗

i , X∗
i ∼ind F̂ i = 1, 2, ..., N (3.20)

3. Approximate the sampling distribution of R(X,F) by the bootstrap distribution
of

R∗ = R(X∗, F̂ ) (3.21)

In theory, the distribution of R∗ can be calculated exactly once the data x is
observed and will equal the desired distribution of R if F = F̂ .

3.8.2 Application in the One-Sample Multivariate Case

To investigate how the bootstrap would work in practice, we demonstrate it using the
MUSE trial data. In this scenario N=182 and due to the computational complexity we
choose nboot=1000. Therefore the procedure is as follows:

1. Sample with replacement N=182 patients from the MUSE trial

2. Compute the treatment effect using the latent variable, augmented binary and
standard binary methods
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Table 3.28: Log-odds treatment effect estimates and 95% confidence intervals from the
latent variable method, augmented binary method and standard binary method in the
phase IIb MUSE trial and the bootstrap sample when N=182 and nboot = 1000

Method Log-odds treatment effect
MUSE trial estimate Bootstrap estimate

Latent Variable 0.641 (0.217, 1.072) 0.682 (0.275, 1.137)

Augmented binary 0.580 (0.139, 1.021) 0.608 (0.096, 1.111)

Binary 0.763 (0.078, 1.449) 0.809 (0.112, 1.561)

3. Repeat step 1 and 2 nboot=1000 times

4. Obtain an estimate of the bias using the difference between the treatment effect
in the MUSE trial and the mean of the bootstrap treatment effects

Importantly, a 95% bootstrap confidence interval for the treatment effect estimate
can be obtained by ordering the 1000 bootstrap estimates of the treatment effect and
taking the 25th and 975th estimate. The point estimates and 95% confidence intervals
from the MUSE trial and from the re-sampling are shown in Table 3.28.
The log-odds point estimate from the latent variable method has shifted away from the
null by approximately 0.04. This is the magnitude of bias that the simulation results
suggested for this treatment effect. The width of the confidence interval has remained
the same in the bootstrap sample, indicating that the variance is well estimated in
the trial dataset. Ideally, we would investigate this further across a larger number
of datasets however this is too computationally intensive. To perform this on one
replicate, where nboot = 1000 using 200 cores on the HPC currently takes 7 hours.
Exploring this further through bootstrapping or employing alternative multivariate
distributions is an area for future research.

3.9 Discussion

The work in this chapter aimed to address the large loss of information in modelling
complex composite endpoints. One challenge in this work was determining an appro-
priate joint model for the components when these are measured on different scales.
By partitioning latent variable outcome spaces we were able to model the observed
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structure of the composite endpoint which resulted in large gains in efficiency. These
gains in efficiency were offset by the introduction of a small bias when the treatment
effect is large. Sensitivity analyses showed that this bias is exacerbated when the
assumptions of joint normality were not satisfied, however similar reductions in variance
were observed. Application to the MUSE trial data reinforced the simulation findings,
in that the treatment effect reported from the latent variable method was 2.5 times as
precise as that reported from the logistic regression and appeared to be biased towards
the null.
Bias correction seems to perform well in the real data, where the crucial assumptions
cannot be tested. The point estimate is shifted by a magnitude that would have been
expected from the simulation results and the estimate of the variance is similar to
that obtained in the single trial dataset. Furthermore the latent variable bootstrap
confidence interval for the treatment effect is contained within that for the binary
method, which offers further reassurance for application. However, these results are
not definitive and more work could be done on investigating different structures and
scenarios to ensure that the bias correction is always what we would expect from
simulation results.
The potential precision gains offered by the latent variable method offer justification for
the additional complexity however the magnitude of these gains are highly dependent
on the components that drive response. The baseline case in the simulations was
chosen to reflect when a composite endpoint is recommended for use, i.e. when all four
components were responsible for driving response. In this scenario the precision gains
achieved resulted in the latent variable method reporting the effect 2.5 to 17.5 times
more precisely than the standard binary method. However, in practice in SLE trials
this has not been found to be the case. A review of two phase III trials (N= 2262) using
the SRI-5 index found the SRI-5 response rate at week 52 for all patients was 32.8%
[114]. Non-response due to a lack of SLEDAI improvement, concomitant medication
non-compliance or dropout was 31, 16.5 and 19.1%, respectively. Non-response due to
deterioration in BILAG or PGA after SLEDAI improvement, concomitant medication
compliance and trial completion was 0.5%. This is in agreement with our findings
from the MUSE trial data, which suggests that the precision gains in the baseline case
are optimistic. The simulation results show that when one continuous and one binary
component drive response, the latent variable method may be anywhere between 1 and
12 times as precise. This means that in a very small number of cases (<2%) there are
no precision gains from the increased complexity of the latent variable method. The
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potential gains available in 98% of cases ensure that implementing the latent variable
method is very much a worthwhile endeavour, for all stakeholders in a clinical trial.
Another useful metric in considering whether the method should be employed in prac-
tice is the MSE, as this is a combined measure of bias and variance. The simulation
results show that the MSE of the reported treatment effect from the latent variable
method (0.01-0.04) is always smaller than that of the standard binary method (0.06).
Another important consideration comes from an ethical context. Having the skills to
interpret these performance measures means that statisticians also have an ethical
obligation when recommending methods for use. If the confidence interval has close
to nominal coverage, it is important to consider whether an unbiased point estimate
is crucial, especially when the required sample size may be reduced by 60%+. This
sample size reduction would mean that fewer patients are subjected to placebo, effective
drugs may make it to market sooner and could allow randomisation ratio to be moved
away from 1:1 without affecting power. We therefore recommend the latent variable
method for use in practice in SLE trials. Should the method not be employed as the
primary analysis method, it should at least be fitted as a secondary analysis measure
to enhance understanding of the trial data.
In addition to SLE, we have identified other disease areas that have a similar complex
composite structure, meaning the potential to improve efficiency extends well beyond
the SLE paradigm. However, it must be acknowledged that the exact structure of the
endpoint may offer different magnitudes of bias, precision and computational time. In
addition, as we have coded the likelihood ourselves with no generic package available
to do this, the likelihood and probability of response code will have to be tailored
specifically to each endpoint. In order to promote implementation in the general case of
multiple continuous and discrete outcomes, we will need to develop a software package.
This is beyond the remit of this thesis but is an important consideration for future
work.
Obtaining maximum likelihood estimates from latent variable models has been achieved
in different ways throughout the literature. In this work we have used a quasi-Newton
algorithm however these and Newton type algorithms are not without their limitations,
such as tending to be slow or intractable in higher dimensions [85]. The EM algorithm
has been proposed in this setting as it lends itself well to situations with unknown
parameters such as the τ -thresholds, however conditioning on these parameters as
in (3.4) violates regularity conditions. Hence a Parameter-Expanded EM algorithm
which transforms the latent variables and expands the parameter space may be more
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appropriate [115]. For an implementation of this estimation method when identifying
genetic factors for comorbid conditions, see the work conducted by Zhang [96]. Im-
plementing the method as we have done in this paper is computationally demanding
however we would not expect the Parameter Expanded EM algorithm to rectify this
and may actually lead to increased computational time. More work is required to
compare estimation methods for latent variable models in general.
The work in this chapter advocates the use of novel methodology to extract more
available information from a complex composite endpoint. An obstacle for the uptake
and implementation of this method is the lack of an existing method to perform a
sample size calculation for a given trial. We explore this in the following chapter.





Chapter 4

Sample Size Estimation using the
Latent Variable Model

4.1 Motivation

Sample size estimation plays an integral role in the design of a clinical trial. The
objective is to determine the minimum sample size that is large enough to detect, with
a specified power, a predetermined clinically meaningful treatment effect. Although
it is crucial that investigators have enough patients enrolled to detect this effect,
overestimating the sample size also has ethical and practical implications. Namely, in a
placebo-controlled trial, more patients are subjected to a placebo arm than is necessary
therefore withholding access to potentially beneficial drugs from them and delaying
access to future patients. Furthermore it results in longer, more expensive trials, using
resources that could be allocated elsewhere.
Mixed outcome components may be collapsed into a binary composite endpoint based
on response thresholds, as we have seen previously. If a composite is selected as
the primary endpoint in a trial then a sample size calculation is needed and this
is typically based on the overall binary responder endpoint analysed using logistic
regression. Sample size calculations performed in this way are valid but when applying
a novel analysis approach that increases power, such as the latent variable model in
Chapter 3, it is desirable to have the option to take this into account in the sample
size calculation. If we can develop an approach to calculate the sample size using the
latent variable method then the potential efficiency gains are much more likely to be
realised in practice.
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4.2 Literature Review

A recent and comprehensive overview of the existing literature for sample size deter-
mination in clinical trials with multiple endpoints is provided by Sozu et al. [116].
The review found many proposals for power and sample size calculations for multiple
continuous outcomes. Some of these suggestions were based on assuming that the
endpoints were bivariate normally distributed [97, 117]. Extensions of these methods
discussed the case where there are more than two endpoints and provided practical
formulae for implementation [98, 118]. Other work focused on testing procedures
and found two-sample t-tests, which reject only if each t-statistic is significant, to be
conservative and biased, sometimes resulting in large sample sizes [119, 120]. Other
efforts were focused on investigating and controlling the type I error rate [33, 121–123].
All of these methods focus on the requirement of effects on all endpoints. Methods for
effects on at least one endpoint also exist [33, 123–125].
Substantially less consideration has been given to the case of multiple binary endpoints.
Five methods of power and sample size calculation based on three association measures
are introduced for co-primary binary endpoints by Sozu et al. [126]. Sample size
calculation for trials using multiple risk ratios and odds ratios for treatment effect
estimation is discussed by Hamasaki et al. [127]. Song [128] explores co-primary
endpoints in non-inferiority clinical trials. Consideration has also been given to the
case where two co-primary endpoints are both time-to-event measures where effects
are required in both endpoints [129–131] and at least one of the endpoints [132].
Despite these advances for multiple outcomes measured on the same scale, very little
consideration has been given to the mixed outcome setting. One paper considers overall
power functions and sample size determinations for multiple co-primary endpoints that
consist of mixed continuous and binary variables [133]. They assume that response
variables follow a multivariate normal distribution, where binary variables are observed
in a dichotomized normal distribution, and use Pearson’s correlations for association.
A modification was suggested to this method using latent-level tests and pairwise
correlations [134]. These methods focus on the co-primary endpoint case, where effects
are required in all outcomes. To date, the case of composite endpoints where the
components are measured on different scales has not been considered. Rather than
requiring effects on each component, the focus here will be on the combination of the
outcomes.
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4.3 Aims

In this chapter we will extend the work in [133, 134] for co-primary continuous and
binary endpoints to include any combination of continuous, ordinal and binary measures
which require effects in all of the endpoints. We will demonstrate the application of the
method on the four dimensional endpoint in the MUSE trial dataset, assuming for this
purpose that it is a co-primary endpoint rather than a composite. We will then consider
how we can determine the required sample size in the case of mixed outcome composite
endpoints, allowing the components to be a combination of continuous, ordinal and
binary endpoints and retaining the outcome of interest on the overall composite. We
will investigate the power and sample size using the method developed and determine
how they are affected by the correlation between components. Finally we will apply
the method to the MUSE trial data to determine the sample size required in a future
trial and make recommendations for future work.

4.4 Model

We set up the model as follows. Let nT and nC represent the number of patients in the
treatment group and the control group respectively and let K be the number of outcomes
measured for each patient. Let YTi = (YT i1, ..., YT iK)T , i = 1, ..., nT be vector of K
responses for patient i on the treatment arm and YCi = (YCi1, ..., YCiK)T , i = 1, ..., nC

the vector of K responses for patient i on the control arm. The first 1 ≤ k ≤ km

elements of YTi and YCi are observed as continuous variables, the next km < k ≤ ko

are observed as ordinal and the remaining ko < k ≤ K are observed as binary. As
before we use the biserial model of association by Tate in [88], which is based on latent
continuous measures manifesting as discrete variables. Formally, we say that YTi and
YCi have latent variables Y∗

Ti and Y∗
Ci respectively, where Y∗

Ti ∼ NK(µT ,ΣT ) and
Y∗

Ci ∼ NK(µC ,ΣC)

ΣT =


σ2

T 1 . . . ρT 1KσT 1σT K

... . . . ...
ρT 1KσT 1σT K · · · σ2

T K

 , ΣC =


σ2

C1 . . . ρC1KσC1σCK

... . . . ...
ρC1KσC1σCK · · · σ2

CK



For k ̸= k′ : 1 ≤ k < k′ ≤ K we let V ar(YT ik) = σ2
T k, V ar(YCik) = σ2

Ck, Corr(YT ik, YT ik′) =
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ρT kk′ , Corr(YCik, YCik′) = ρCkk′ , where ρT kk′ and ρCkk′ are the association measures
between the endpoints. Then, for:

• 1 ≤ k ≤ km : YT ik = Y ∗
T ik and YCik = Y ∗

Cik

• km < k ≤ ko :

YT ik =



0 if τk0 ≤ Y ∗
T ik < τk1,

1 if τk1 ≤ Y ∗
T ik < τk2,

... ...

wk if τkwk
≤ Y ∗

T ik < τk(wk+1)

YCik =



0 if τk0 ≤ Y ∗
Cik < τk1,

1 if τk1 ≤ Y ∗
Cik < τk2,

... ...

wk if τkwk
≤ Y ∗

Cik < τk(wk+1)

• ko < k ≤ K : YT ik =

0 if τk0 ≤ Y ∗
T ik < τk1,

1 if τk1 ≤ Y ∗
T ik < τk2

YCik =

0 if τk0 ≤ Y ∗
Cik < τk1,

1 if τk1 ≤ Y ∗
Cik < τk2

We set τk0 = −∞, τk(wk+1) = ∞ for km < k ≤ ko meaning that the intercept must be
set to zero in order to estimate the cut-points and τk0 = −∞, τk1 = 0, τk2 = ∞ for
ko < k ≤ K so that the intercepts can be estimated for the outcomes observed as
binary. Furthermore, for km < k ≤ K, σ2

T k = σ2
Ck = 1.

Letting Σ = ΣT = ΣC and partitioning Σ =
 Σ11 Σ12

Σ21 Σ22

 so that Σ is as shown in

(4.1).

Σ =



σ2
1 · · · ρ1kmσ1σkm ρ1km+1σ1 · · · ρ1Kσ1
... . . . ... ... . . . ...

ρ1kmσ1σkm · · · σ2
km

ρkmkm+1σkm · · · ρkmKσkm

ρ1km+1σ1 . . . ρkmkm+1σkm 1 . . . ρkm+1K

... . . . ... ... . . . ...
ρ1Kσ1 · · · ρkmKσkm ρkm+1K · · · 1


(4.1)

For km < k ≤ K we can define the conditional mean for outcome k as µk|1...km =
µ∗

k + Σ12Σ−1
22 (yk − µk) where µ∗

k is the latent mean.
The correlation matrix for the outcomes can then be defined using the pairwise
correlations between elements of Yi and Y ∗

i as below.
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Γ =
D− 1

2 Σ11D
− 1

2 D− 1
2 Σ12

Σ22

 (4.2)

where D− 1
2 = diag(σ−1

1 , ..., σ−1
km

).

4.5 Mixed Outcome Co-Primary Endpoints

As mentioned in Section 4.2, one potential application of the latent variable model
is to mixed outcome co-primary endpoints. Sozu et al. [133] propose a method to
calculate the sample size for a mixture of continuous and binary endpoints which we
can easily extend to ordinal outcomes, as shown below.

4.5.1 Hypothesis Testing

In many clinical trials the hypothesis of interest is based on superiority, namely that
the proposed treatment will perform better than the control treatment, defined by
some predefined margin. The null hypothesis is that the difference in treatment effects
for the treatment arm and control arm is zero. This is straightforward to formalise
in the case of one endpoint but less so when there are multiple co-primary endpoints,
particularly when they are measured on different scales. Based on the work by Sozu et
al. [133] we can state the hypothesis of interest as shown in (4.3).

H0 : ∃k s.t. πT k − πCk ≤ 0

H1 : πT k − πCk > 0 ∀k
(4.3)

For ko < k ≤ K we can specify πT ik = P (YT ik = 0) = P (Y ∗
T ik < 0) and πCik =

P (YCik = 0) = P (Y ∗
Cik < 0) for the treatment and control group respectively. We

can generalise this assumption from [133] to account for the ordinal endpoints based
on the fact that for km < k ≤ ko πT ik = P (YT ik = wk) = P (τkwk

< Y ∗
T ik < τk(wk+1)).

Therefore, multiple levels in the ordinal outcomes can be considered by selecting
the appropriate τ thresholds. For instance, πT ik = P (YT ik = 0) + P (YT ik = 1) +
P (YT ik = 2) = P (−∞ < Y ∗

T ik < τk3). As the latent means are estimable by maximum
likelihood, µT i1 = Φ−1(πT i1), . . . , µ∗

T iK = Φ−1(πT iK) in the treatment group and µCi1 =
Φ−1(πCi1), . . . , µ∗

CiK = Φ−1(πCiK) in the control group.
We can proceed by specifying the hypothesis in (4.3) holds if and only if the hypothesis
in (4.4) holds [134].
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H∗
0 : ∃k s.t. δ∗

k ≤ 0

H∗
1 : δ∗

k > 0 ∀k
(4.4)

where δ∗
k = µ∗

T k − µ∗
Ck. The maximum likelihood estimates µ̂∗

T k and µ̂∗
Ck can be used

and the variance can be obtained using the inverse of the Fisher information matrix.

4.5.2 Overall Power

Having specified the hypothesis in Section 4.5.1 to include ordinal outcomes, the power
in this case is as defined for mixed continuous and binary co-primary endpoints [134], as
shown in (4.5). This can be summarised as the overall probability of the standardised
Z values exceeding the standardised z values for each of the K individual hypotheses.
Note that the only difference between the case for the observed continuous and latent
continuous outcomes is the σk = 1 for k ≥ km+1 as assumed by the model.

1 − β = P

 km⋂
k=1

{Zk > zα}
K⋂

km+1

{Z∗
k > zα} | δ

 ≃ P

(
K⋂

k=1
{Z†

k > z†
k} | δ

)
(4.5)

for δ = (δ1, ..., δkm , ..., δko , ..., δK)T ̸= 0 and

Z†
k =



Zk − δk

σk

√ κnT

1 + κ
= ȲT k − ȲCk − δk

σk

√
1 + κ

κnT

, k = 1, ..., km

Z∗
k − δ∗

k

√ κnT

1 + κ
= µ̂∗

T k − µ̂∗
Ck − δ∗

k√
1 + κ

κnT

, k = km+1, ..., K

z†
k =



zα − δk

σk

√ κnT

1 + κ
, k = 1, ..., km

zα − δ∗
k

√ κnT

1 + κ
, k = km+1, ..., K

where δk = µT k − µCk, δ∗
k = µ∗

T k − µ∗
Ck, κ = nC/nT and zα is the (1 −α)100th standard

normal percentile.
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1 − β ≃ P

(
K⋂

k=1
{Z†

k > z†
k} | δ

)
= ΦK

(
−z†

1, ...,−z
†
K ; Γ

)
(4.6)

Therefore the power of the K co-primary endpoints can be evaluated using the K-
dimensional cumulative normal distribution function as shown in (4.6). Assuming
nT = nC = n, we can input different values for n to achieve the required power.

4.5.3 Sample Size Calculation

It is possible, as discussed in [116], to rearrange (4.6) to obtain a sample size formula
in terms of n.

1 − β ≤
∫ ∞

z1−α

. . .
∫ ∞

z1−α

f
(
z1, . . . , zkm , z

∗
km+1 , . . . , z

∗
K ;

√
nkδ†,Γ

)
dz1, . . . , dz

∗
K (4.7)

where δ† =
(
δ1

σ1
, . . . ,

δK

σK

)
. This can also be expressed as:

n = (Ck + z1−α)2

kδ2
k

(4.8)

where Ck is the solution of

1 − β =
∫ γ1Ck+z1−α(γ1−1)

−∞
. . .
∫ γk−1Ck+z1−α(γk−1−1)

−∞

∫ Ck

−∞
f (z1, . . . , z

∗
K ; 0,Γ) dz∗

K . . . dz1

4.5.4 Application to MUSE Trial

We can apply the theory to the four dimensional endpoint used in the MUSE trial
[112] for systemic lupus erythematosus by assuming that we require a treatment effect
in each of the four endpoints, rather than forming a composite endpoint. As before
Y1 is the continuous SLEDAI outcome, Y2 is the continuous PGA outcome, Y3 is the
observed ordinal BILAG measure assumed to come from latent Y ∗

3 with levels w = 5
and Y4 is the binary taper variable arising from latent Y ∗

4 .
We can use the MUSE trial to design a future study that assumes a treatment effect in
each of the outcomes is required to conclude that the treatment is beneficial. Table 4.1
shows the sample sizes required in each group, for the co-primary endpoint to obtain an
overall power of at least 80% to detect a difference of δ1 = 0.88 in SLEDAI, δ2 = 0.38 in
PGA, δ3 = 0.24 in BILAG and δ4 = 0.40 in the taper outcome at alpha level α = 0.025,
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Table 4.1: Sample sizes n = nC = nT for the systemic lupus erythematosus co-
primary endpoint for overall power 1 − β ≈ 0.80, α = 0.025, k2 = 2, ko = K = 1.
SS1, SS2, SS3, SS4 are sample sizes required per group for the individual endpoints for a
power of at least 1 − β = 0.80

SLEDAI PGA BILAG Taper n SS1 SS2 SS3 SS4

δ1 σ2
1 δ2 σ2

2 (πT 3, πC3) δ∗
3 (πT 4, πC4) δ∗

4
0.88 18 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 365 39 273 99
0.88 19 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 419 386 39 273 99
0.88 20 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 435 406 39 273 99

0.88 18 0.38 0.45 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 365 18 273 99
0.88 18 0.38 0.55 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 365 22 273 99
0.88 18 0.38 0.65 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 365 26 273 99

based on the values observed in the trial. We also allow for uncertainty in the variance
of the continuous measures by setting σ2

1 = 18, 19, 20 and σ2
2 = 0.35, 0.45, 0.55, 0.65.

The sample sizes required for each individual endpoint are also shown in Table 4.1
based on achieving a power of at least 80%.
Sample sizes required for the individual endpoints vary based on the different assumed
treatment effects. The sample size required for SLEDAI is 365 per arm based on
an effect size of 0.21, PGA would require 39 per arm to detect an effect size of 0.64,
BILAG would require 273 per arm for effect size of 0.24 and powering for the taper
variable would only require 99 per arm to detect an effect size of 0.40. The sample
sizes shown for the co-primary endpoint range from 403 to 435 per group, based on the
different variances assumed for the SLEDAI outcome. Changing the variance assumed
for the PGA outcome between σ2

2 = 0.35 and σ2
2 = 0.65 does not change the number of

patients required for the co-primary endpoint. The main factor driving the required
sample size for the co-primary endpoint is the individual endpoint requiring the largest
number of patients for a given treatment effect and power. Note that as the original
MUSE trial, which was designed to detect differences based on the composite endpoint
required n=100, would have been underpowered to show a statistical significance of
the co-primary endpoints which require n=403.
Figure 4.1 shows the power for the co-primary endpoints and each of the individual
endpoints for different sample sizes based on the effects in the MUSE trial. Overall
for the individual endpoints, the power is largest across all sample sizes for the PGA
outcome and lowest for the SLEDAI outcome, as expected from the assumed effect sizes.
The sample size required for a given power is largest for the co-primary endpoints,
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Figure 4.1: Overall power 1 − β to detect the treatment effects assumed from the
MUSE trial for the systemic lupus erythematosus co-primary endpoints SLEDAI, PGA,
BILAG and Taper and power for individual endpoints for different sample sizes per group
n = nC = nT

which is intuitive given it is the number of patients required to show a statistical
significance in all four of the outcomes. Figure 4.2 shows the resulting power for a
range of sample sizes when the co-primary endpoints are PGA, BILAG and taper and
when the co-primary endpoints are PGA and taper. The results agree with the four
outcome scenario, where the power to detect significant differences in the co-primary
endpoints from a given sample size is either slightly less than or equivalent to the
power to detect the smallest effect size in the individual outcomes.
Figure 4.3 shows the resulting power to detect the stated treatment effects in the
co-primary endpoints for different correlations between the endpoints. The power is
lowest for a given sample size when the correlation between the endpoints is zero and
rises as the correlation increases. To achieve 80% power, the required sample size
ranges from approximately 385 per group to 415 per group.

4.6 Mixed Outcome Composite Endpoints

In practice, most studies using composite endpoints are aiming to detect a difference
in probability in response between arms rather than show all components are different.
Consequently, a sample size calculation using the latent variable model for composite
endpoints will have to take this in to account. We can begin by assuming the latent
variable structure. Let Yi be the vector of outcomes for patient i, where the first
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Figure 4.2: Overall power 1 − β to detect the treatment effects assumed from the
MUSE trial for the systemic lupus erythematosus co-primary endpoints and individual
endpoints for different sample sizes per group n = nC = nT for co-primary endpoints
PGA, BILAG and Taper (left) and co-primary endpoints PGA and Taper (right)
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Figure 4.3: Overall power 1 − β to detect the treatment effects assumed from the
MUSE trial for the systemic lupus erythematosus co-primary endpoints for different
sample sizes per group n = nC = nT and differing correlations between outcomes, where
Low=0.3, Medium=0.5 and High=0.8
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1 ≤ k ≤ km elements are observed as continuous variables, the next km < k ≤ ko are
observed as ordinal and the remaining ko < k ≤ K are observed as binary. We can
specify piT and piC , the probability of response for patient i in the treatment and
control arm respectively, as shown below.

piT = P (Si = 1|Ti = 1) =
∫ η1

−∞
. . .
∫ ηK

−∞
fY1,...,YK

(yi1, . . . , yiK |Ti = 1,θ)dyK . . . dy1

piC = P (Si = 1|Ti = 0) =
∫ η1

−∞
. . .
∫ ηK

−∞
fY1,...,YK

(yi1, . . . , yiK |Ti = 0,θ)dyK . . . dy1

The quantities (η1, . . . , ηK) are the predefined responder thresholds and θ is the vector
of model parameters. We can assume that pT ∼ N(δT , σδT

) and pC ∼ N(δC , σδC
). As

in the case of co-primary endpoints, the assumptions allow us to estimate latent means
(µ∗

km+1 , . . . , µ
∗
K) for the observed discrete components using the model parameters.

4.6.1 Hypothesis Testing

An important consideration for hypothesis testing in the mixed outcome composite end-
point setting is that whilst we are exploiting the latent multivariate Gaussian structure
for precision gains, we are ultimately still interested in the one dimensional endpoint.
This is distinct from the co-primary endpoint case where the overall hypothesis test
must be based on some union or intersection of the hypotheses for the individual
outcomes. This is illustrated in Figure 4.4, which compares the different stages in
analysis and hypothesis testing for the composite endpoint using the binary and latent
variable methods and for co-primary endpoints using the latent variable model.

For the composite endpoint, the test statistic of interest is p̄T −p̄C

σδ
where σδ =√

σδT

nT
+ σδC

nC
, nT is the number of patients in the treatment group and nC is the number

of patients in the control group. Therefore, we can formulate the hypothesis as shown
in (4.9).

H0 : δ = µ0

H1 : δ ̸= µ0
(4.9)

In this instance we consider a risk difference however we can also state the hypothesis
of interest in the form of a risk ratio or odds ratio. For sample size estimation, we
require the distribution of the test statistic δ under H1, which we can assume to be
δ ∼ N(δT − δC , σ

2
δ ). The delta method, based on Taylor series expansion, is a useful

technique for determining approximate distributions. The theory states that if we have



128 Sample Size Estimation using the Latent Variable Model

  
    

  
   𝑌1> 𝜂1 … 𝑌𝐾 𝜂𝐾  

1 1 1 

0 1 1 

1 0 1 

S 

1 

0 

0 

𝑌1 … 𝑌𝐾 

   

   

   

𝑌1 … 𝑌𝑘𝑚

∗  … 𝑌𝐾
∗ 

     

     

     

𝑌1 … 𝑌𝑘𝑚

∗  … 𝑌𝐾
∗ 

     

     

     

1. Raw data 
 

 

2. Data manipulation 
 

3. Modelling   
 

Logistic 
regression 𝛿 = 𝑃ሺ𝑆 = 1ȁ𝑇 = 1ሻ − 𝑃ሺ𝑆 = 1ȁ𝑇 = 0ሻ 

Latent variable 
model 

𝛿1 = 𝜋1𝑇 − 𝜋1𝐶  
… 

𝛿𝐾
∗ = 𝜋𝐾𝑇

∗ − 𝜋𝐾𝐶
∗  

 
 

Latent variable 
model 

𝑌1>𝜂1 

𝑌𝐾
∗>𝜂𝐾  

 = 𝑃ሺ𝑆 = 1ȁ𝑇 = 1ሻ − 𝑃ሺ𝑆 = 1ȁ𝑇 = 0ሻ 
…  

(A) 

(B) (C) 

(A) 

(B) 

(C) 

Treatment works 

Treatment works 

4. Hypothesis testing    
 

𝛿
𝜎𝑏𝑖𝑛

ൗ  

𝛿
𝜎𝑙𝑎𝑡

ൗ  

𝛿𝑘𝑚+1

∗  𝛿1
𝜎1

ൗ  

Significant 

Significant 

ALL 
Significant 

Treatment works 
(C) 

(A) 

(B) 

(A) Composite: binary  (B) Composite: latent variable  (C) Co-primary: latent variable  
 

(A)   

… … 
𝛿𝐾

∗  

Figure 4.4: Stages in analysis and hypothesis testing for a composite using the standard
binary method, a composite using the latent variable method and co-primary endpoints
using the latent variable model, where Y1...YK : observed outcomes, Y ∗

km
...Y ∗

K : latent
outcomes, η1...ηK : response thresholds, S: overall response, δ: treatment effect, σbin:
standard error from binary method, σlat: standard error from latent variable method
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a random variable X ∼ N(µ, σ2) and W= g(X), where g(µ) ̸= 0, then W will have an
approximate normal distribution which may be found using the usual rules for linear
transformations of normals [135]. To first order:

E(W ) ≈g′(µ)µ+ g(µ) − g′(µ)µ

=g(µ)
(4.10)

var(W ) ≈ var(g(X)) =(g(X) − g(µ))2

=(g′(µ)(X − µ))2

=(g′(µ))2(X − µ)2

=(g′(µ))2var(X)

(4.11)

Therefore, in our case we can evaluate δT and δC as shown in (4.12).

δT =ΦK(η1, · · · , ηK ; µT ,ΣT )

δC =ΦK(η1, · · · , ηK ; µC ,ΣC)
(4.12)

where ΦK(.; µ,Σ) is the K dimensional multivariate normal distribution function,
with mean vector µ and covariance matrix Σ. Estimates of the quantities can
be obtained using the estimated model parameters θ̂. Namely, δT is estimated by
δ̂T = ΦK(η1, · · · , ηK ; µ̂∗

T , Σ̂T ) and δC is estimated by δ̂C = ΦK(η1, · · · , ηK ; µ̂∗
C , Σ̂C),

where µ∗
T is the K-dimensional vector of mean values in the treatment arm and µ∗

C is
the corresponding vector for the control arm. Note that for k ≤ km the quantities are
observed and for k > km the quantities are latent.
Given that we are interested in a function of θ̂, δ̂ = ΦK(η1, · · · , ηK ; µ̂∗

T , Σ̂T ) −
ΦK(η1, · · · , ηK ; µ̂∗

C , Σ̂C), and can obtain Cov(θ̂), then we can use (4.11) to obtain
the quantity σ2

δ as follows.

var(δ̂) ≈ (′′δ)TCov(θ̂)(′′δ) (4.13)

which is estimated by v̂ar(δ̂) = (′′δT )T Ĉov(θ̂)(′′δT ), where ′′δ is the vector of partial
derivatives of δ with respect to each of the parameter estimates. One potential difficulty
for conducting sample size estimation using the latent variable model in practice is that
the vector of model parameters θ may be large depending on the number of outcomes,
with certain quantities difficult to elicit such as the biserial correlation between binary
outcomes.



130 Sample Size Estimation using the Latent Variable Model

4.6.2 Obtaining Required Quantities

An important aspect of the sample size calculation is defining the target difference.
Hislop et al. [136] performed a systematic review to determine how the target difference
is determined in RCT sample size calculations in the literature. They found seven
different methods, employed to varying degrees, which were used for specifying this
difference. A more recent literature review and Delphi study agreed with the findings
[137]. We briefly summarise the methods suggested in Table 4.2.
In order to obtain the distribution of the test statistic under the alternative, we need
estimates for θ and Cov(θ). From the methods suggested in Table 4.2, we can use pilot
trial data to obtain the target difference, hence also obtaining parameter estimates
θ̂ and an estimate for their covariance matrix Ĉov(θ̂). If all model parameters and
their covariance matrix could be specified, fitting the model on pilot data would not
be required, however this would be difficult in practice.

4.6.3 Critical Value

To test the hypothesis in (4.9), we need to determine the critical value, cv. As the
endpoint of interest is specified in terms of the overall one dimensional composite
endpoint, we can do this using the formula used when employing the standard binary
method and the approximation for the distribution of the test statistic δ under H1.

α/2 = P (p̄T − p̄C ≥ cv | H0)

= 1 − P
(
p̄T − p̄C − µ0

σδ

≤ cv − µ0

σδ

| H0

)
= 1 − Φ

(
cv − µ0

σδ

)
zα/2 = cv − µ0

σδ

cv = µ0 + σδzα/2

4.6.4 Power

Let us assume that σT = σC = σ and nT = nC = n, so that δ ∼ N(δT − δC , 2σ2/n).
We can determine the power in the standard way by using the critical value, as
demonstrated below.
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Table 4.2: Methods for determining the target difference in a sample size calculation,
identified in a systematic review of randomised controlled trials along with advantages
and disadvantages in the application of each

Method Definition Advantages Disadvantages

Anchor Chosen using patient • Could include patient • Possible recall bias
or professional & clinician perspective and response shift
judgement

Distribution Value based on • Takes account of • Difficult to translate
using distributional uncertainty to target disease
variation

Health Economic Any method using • Accounts for • Complex to implement
the principle of resources
economic evaluation
e.g. decision theory

Standardised Magnitude of effect • Easy to compare • Difficult to establish
effect size is defined on across studies and why different effect

standardised scale and conditions sizes are observed

Pilot study Obtains estimate • Estimated from • Imprecise effect size
through a smaller relevant data
study

Opinion-seeking Eliciting plausible • Relatively easy • Not representative
values from individuals to implement of wider community
e.g. patients, clinicians

Evidence base Uses current evidence, • Provides important • May not be
ideally a meta-analysis and/or realistic appropriate for the
of existing RCTs difference new population



132 Sample Size Estimation using the Latent Variable Model

1 − β = P
(
p̄T − p̄C ≥ µ0 + zα/2

√
2σ2/n | H1

)

= 1 − P

 p̄T − p̄C − δ√
2σ2/n

≤
µ0 + zα/2

√
2σ2/n − δ√

2σ2/n

| H1


=1 − Φ

µ0 + zα/2

√
2σ2/n − δ√

2σ2/n


= Φ

 δ − µ0√
2σ2/n

− zα/2



4.6.5 Sample Size Estimation

Note that 2σ2

n
= σ2

δ , however for sample size estimation we will need to separate n
from the variance estimate. Although obtaining the variance using the delta method
gives us the quantity σ2

δ , by fitting the model to pilot trial data we can obtain σ2 as
we know the value of n in this instance. We can get an estimate for the sample size by
rearranging the standard power formula, as shown below.

1 − β = Φ
δ − µ0√

2σ2

n

− zα/2


z1−β = δ − µ0√

2σ2

n

− zα/2

2σ2

n
(z1−β + zα/2)2 = (δ − µ0)2

n = 2σ2(z1−β + zα/2)2

(δ − µ0)2

In summary, as we are interested in the one dimensional overall composite endpoint,
the sample size formula is the same as the binary case. However, due to exploiting the
latent structure the values of δ and σδ used are likely to be quite different to those used
in the standard binary case. Therefore, the main challenge with sample size estimation
using the latent variable model is the specification of the model parameters and their
covariance matrix. Using existing pilot trial data or data from an earlier phase study
will alleviate these problems, however this comes with the assumption that the existing
data provides reasonable estimates for the future study. In practice it is perhaps wise
to use conservative parameter and covariance estimates hence reducing the sample size
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from that required for the binary method, along with the potential for higher power if
the estimates are too conservative in reality.

4.7 Empirical Comparisons

The simulation study in Chapter 3 highlighted the importance of data structure in
the potential precision gains available. One crucial element is the factors that drive
response, which we will investigate in relation to sample size. Furthermore, we consider
the relationship between the correlation structure of the components and required
sample size for different combinations of endpoints.

4.7.1 One Continuous, One Ordinal, One Binary

We begin by considering the case where the composite is a combination of one continuous,
one ordinal and one binary outcome and the components are dichotomised at their
mean, so that all three drive response. We use the median variance estimate from 1000
simulated datasets to estimate σ2. Figure 4.5 shows the change in estimated sample
size per group as the overall treatment effect on the composite endpoint changes and
everything else remains constant. This is shown for a range of correlations between
the three endpoints. The sample size required for the latent variable method generally
decreases slightly as the correlation between the endpoints increases. However, there
is also a small rise in sample size required when the correlation is high. This is not
true for the binary method, which requires an increasing sample size as the correlation
increases. The sample size decreases exponentially as the treatment effect increases for
both methods.
Figure 4.6 shows the boxplots of the estimated variance for the standard binary and
latent variable methods from 1000 simulated datasets for a range of correlation between
the endpoints when all components drive response. The estimated variance reported
from the latent variable method is always smaller than that obtained from the standard
binary method. The difference in variance from the methods is smallest when there is
zero correlation between the outcomes. The variation in variance estimates is larger
for the binary method. Figure 4.7 shows the corresponding boxplots in terms of the
sample size required per group using the latent variable method and standard binary
method for different correlations between components. Figure 4.8 shows violin plots
of the sample size required per group from the standard binary and latent variable
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Figure 4.5: Estimated sample size per group for different values of the risk difference
using the latent variable and standard binary methods when the composite endpoint is
formed from one continuous, one ordinal and one binary outcome, where all components
drive response and correlations between the outcomes are between 0 and 0.8, where
ρ = (ρ12, ρ13, ρ23)
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methods for different treatment effect structures in the components. For both methods
the sample size does not appear to depend on the underlying treatment effect structure
in the components. Instead it depends only on the overall treatment effect in the
composite outcome.
Figure 4.9 shows boxplots of the estimated reduction in required sample size when
employing the latent variable method rather than the standard binary method for a
range of correlations between the endpoints. This is shown for the scenarios where
response is driven by all three components, the continuous and binary components and
the binary component only, where the difference between treatment arms is 0.08. In
the case where all three components drive response and the correlation between the
endpoints is zero, the latent variable method can reduce the sample size by 18-77%.
However when there is correlation between the endpoints, the sample size is reduced
by 80-90%. A similar pattern occurs when response is driven by the continuous and
binary components, however there is a small drop in efficiency. For example, when
the correlation between endpoints is low, the reduction in required sample size drops
from 85% to approximately 77%, indicating that the ordinal component with 5 levels
contributes to the increased precision. When the binary component is the only driver
of response and there is no correlation between the endpoints, the median sample
size required is the same for both methods. However, when the binary component
is the only driver of response and there is correlation present between the endpoints,
the latent variable method offers precision gains over the standard binary method.
The magnitude of the gain depends on the strength of the correlation between the
endpoints, where a higher correlation results in a larger reduction in required sample
size.
Table 4.3 shows the median estimated sample size per group using the latent variable
method for different treatment effect structures under a range of correlation assumptions.
Generally, increasing the correlation between endpoints results in a smaller sample
size estimate, however this is not true for high correlations between endpoints, where
the sample size increases. The corresponding results for the binary method are shown
in Table 4.4. When all three components drive response, increasing the correlation
between the endpoints results in a larger sample size. When response is driven by
the binary component only, the sample size is unaffected by correlation between the
endpoints. Table 4.5 shows the empirical power of the method for a range of sample
sizes and correlations where response is driven by (Y1, Y2, Y3), (Y1, Y3) and (Y3) for
overall treatment effect δ = 0.05, 0.10 and 0.15. This was obtained from 5000 samples



136 Sample Size Estimation using the Latent Variable Model

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0,0,0)

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0,0,0.8)

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0.3,0.3,0.3)

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0.3,0.3,0.8)

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0.5,0.5,0.5)

0.00

0.05

0.10

0.15

0.20

0.25

ρ=(0.8,0.8,0.8)

Method

Bin

LatVar

V
a
ri

a
n
c
e

Figure 4.6: Boxplots of the estimated variance from 1000 simulated datasets for the
standard binary and latent variable methods for a range of correlations between one
continuous, one ordinal and one binary measure when all outcomes have equal treatment
effect and drive response and ρ = (ρ12, ρ13, ρ23)
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Figure 4.7: Boxplots of the estimated sample size per group from 1000 simulated
datasets for the standard binary and latent variable methods for a range of correlations
between one continuous, one ordinal and one binary measure when all outcomes have
equal treatment effect and drive response and where ρ = (ρ12, ρ13, ρ23)
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Figure 4.8: Violin plots of the estimated sample size from 1000 simulated datasets for
the latent variable and standard binary methods for different treatment effect structures
between one continuous, one ordinal and one binary measure when all outcomes drive
response
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Figure 4.9: Boxplots of the estimated reduction in required sample size from employing
the latent variable method instead of the standard binary method for a range of correla-
tions between one continuous, one ordinal and one binary measure when all outcomes
have equal treatment effect. Response is driven by all components in the top panel, the
continuous and binary in the middle panel and only the binary in the bottom panel
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Table 4.3: Median sample sizes n = nC = nT for overall power 1 − β ≈ 80%, α = 0.05,
km = ko = K = 1, δ = µT − µC : overall risk difference on the composite, δ† : treatment
effect structure in the components, for a combination of correlations 0, L=0.3, M=0.5,
H=0.8 using the latent variable model when the composite is made up of one continuous,
one ordinal and one binary outcome

Response δ† δ Correlation (ρ12, ρ13, ρ23)
000 00H LLL LLH MMM MMH HHH

Y1, Y2, Y3 δ1 = δ2 = δ3 0.05 206 339 128 119 112 108 145
0.10 52 85 32 30 28 27 38
0.15 23 38 15 14 13 12 17

δ3 = 0 0.05 201 334 123 117 105 112 159
0.10 51 84 31 30 27 28 40
0.15 23 38 14 13 12 13 18

δ2 = δ3 = 0 0.05 197 329 119 114 101 106 121
0.10 49 81 29 29 27 21 30
0.15 21 36 14 13 12 12 15

Y1, Y3 δ1 = δ2 = δ3 0.05 474 494 289 200 267 205 240
0.10 119 124 73 50 67 52 60
0.15 53 55 33 23 30 23 27

δ3 = 0 0.05 468 499 286 195 264 203 248
0.10 117 125 72 49 66 51 62
0.15 52 56 32 22 30 23 28

δ2 = δ3 = 0 0.05 470 501 287 196 264 204 249
0.10 119 123 73 49 67 51 63
0.15 53 55 32 23 31 24 28

Y3 δ1 = δ2 = δ3 0.05 1493 1472 1250 1113 948 793 609
0.10 374 368 313 279 237 199 153
0.15 166 164 139 124 106 89 68

δ3 = 0 0.05 1502 1468 1256 1113 960 806 622
0.10 376 367 315 279 240 202 156
0.15 176 164 140 124 107 90 70

δ2 = δ3 = 0 0.05 1504 1465 1259 1115 963 807 624
0.10 376 370 316 280 241 203 156
0.15 174 164 139 126 106 90 70
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Table 4.4: Median sample sizes n = nC = nT for overall power 1 − β ≈ 80%, α = 0.05,
km = ko = K = 1, δ = µT − µC : overall risk difference on the composite, δ† : treatment
effect structure in the components, for a combination of correlations ranging from 0,
L=0.3, M=0.5, H=0.8 using the standard binary method when the composite is made
up of one continuous, one ordinal and one binary outcome

Response δ† δ Correlation (ρ12, ρ13, ρ23)
000 00H LLL LLH MMM MMH HHH

Y1, Y2, Y3 δ1 = δ2 = δ3 0.05 680 965 980 1141 1138 1214 1352
0.10 170 242 245 286 285 304 338
0.15 76 108 109 127 127 135 151

δ3 = 0 0.05 628 939 928 1098 1102 1183 1332
0.10 157 235 232 275 276 296 333
0.15 70 105 104 122 123 132 148

δ2 = δ3 = 0 0.05 609 920 914 1086 1097 1171 1310
0.10 147 231 228 270 271 290 328
0.15 68 101 101 119 121 130 146

Y1, Y3 δ1 = δ2 = δ3 0.05 1127 1136 1255 1261 1334 1320 1425
0.10 282 284 314 316 334 330 357
0.15 126 127 140 141 149 147 159

δ3 = 0 0.05 1078 1072 1216 1218 1298 1296 1403
0.10 270 268 304 305 325 324 351
0.15 120 120 136 136 145 144 156

δ2 = δ3 = 0 0.05 1066 1063 1202 1209 1296 1297 1403
0.10 263 259 300 299 319 324 351
0.15 121 119 133 131 143 143 156

Y3 δ1 = δ2 = δ3 0.05 1547 1548 1550 1548 1550 1550 1549
0.10 387 387 388 387 388 388 388
0.15 172 172 173 172 173 173 173

δ3 = 0 0.05 1544 1545 1549 1548 1549 1548 1545
0.10 386 387 388 387 388 387 387
0.15 172 172 173 172 173 172 172

δ2 = δ3 = 0 0.05 1544 1546 1549 1546 1551 1549 1545
0.10 386 389 387 385 388 388 387
0.15 173 172 173 173 172 172 172
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Table 4.5: Empirical power (%) for n = nC = nT , α = 0.05, δ = µT − µC : overall risk
difference on the composite, δ1 = δ2 = δ3, for a combination of correlations ranging from
0, L=0.3, M=0.5, H=0.8 using the latent variable method when the composite is made
up of one continuous, one ordinal and one binary outcome

Response δ n=50 n=100 n=200
000 MMM HHH 000 MMM HHH 000 MMM HHH

Y1, Y2, Y3 0.05 79.1 80.1 80.3 80.0 80.0 80.3 80.5 80.1 79.8
0.10 80.1 80.4 80.1 80.0 80.4 79.9 80.1 80.0 80.2
0.15 80.8 80.9 80.4 80.2 80.5 80.0 80.3 80.2 80.4

Y1, Y3 0.05 79.8 80.2 80.1 79.9 80.1 80.3 80.2 79.5 80.1
0.10 80.1 80.3 80.0 79.9 80.2 80.1 80.0 80.0 79.8
0.15 80.2 80.4 80.3 80.1 80.2 80.7 80.3 80.1 80.0

Y3 0.05 80.1 79.7 80.2 80.1 79.2 80.4 80.0 80.1 79.9
0.10 80.4 80.0 80.3 79.7 80.1 80.2 80.4 80.5 80.2
0.15 80.0 80.2 80.1 80.2 80.2 80.0 80.1 80.1 80.2

from the latent variable model by fitting the method and determining the proportion
of confidence intervals that do not contain zero. The empirical power is close to the
desired power of 80% across the cases investigated.

4.7.2 Two Continuous, One Ordinal, One Binary

As well as considering a composite endpoint made up of one of each type of component,
it is interesting to consider the efficiency gains from an additional continuous component.
In this instance Y1 and Y2 are continuous measures, Y3 is ordinal and Y4 is binary.
Figure 4.10 compares the boxplots of sample sizes required from the latent variable
method when the composite has one continuous, one ordinal and one binary outcome
and when an additional continuous component is added. The results show that when
using the latent variable method, adding a second continuous component which also
drives treatment response can reduce the median required sample size by a further
46-58% for the different correlation structures investigated.
The boxplots of the estimated percentage reduction in required sample size from using
the latent variable method rather than the standard binary method is shown in Figure
4.11. When the correlation between the components is zero, the median reduction in
sample size is 80%. For any correlation between the outcomes, the median reduction
in required sample size is approximately 94%. The reduction in required sample size is
the same when the binary component is included and when it is removed. However,
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Figure 4.10: Boxplots comparing the estimated sample size from 1000 simulated
datasets using the latent variable method for composites containing one continuous,
one ordinal and one binary component and composites containing two continuous, one
ordinal and one binary component, when all outcomes drive response. Correlations
between components are low=0.3, medium=0.5 and high=0.8, the risk difference between
treatment arms in 0.2 and the treatment effect is the same on all components.

this is not true for the ordinal component, as the percentage reduction in sample size
is smaller when the ordinal component is removed. These results indicate that most of
the efficiency gains are obtained from the continuous measures and only a very small
amount of this is from the ordinal variable.
Table 4.6 and Table 4.7 show the median sample size per group required for power
equal to 80% and α = 0.05 for different combinations of correlations, treatment effects
and drivers of response, when using the latent variable method and standard binary
method respectively. The findings for the latent variable method from Table 4.6
are visualised in Figure 4.12. From this we can see that the sample sizes required
are similar across different treatment effect structures in the components, including
when the effects of components are in different directions as in δ1 = −δ2. Based on
the theory introduced in Chapter 1 we would have expected for the treatment effect
structure within the components to have had a more substantial impact on the sample
size required, particularly when the treatment effect on different components are in
opposite directions. The sample sizes required are similar when response is driven
by (Y1, Y2, Y3, Y4) and (Y1, Y2, Y3). In this setting the sample size is largest for zero
correlation and reduces when the components are correlated. However, the median
sample size is smaller for lower correlations between outcomes and increases slightly
for larger correlations. Sample sizes are similar for all correlations when response is
driven by (Y1, Y2, Y4).
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Figure 4.11: Boxplots of the estimated reduction in required sample size in 1000
simulated datasets from employing the latent variable method instead of the standard
binary method for correlations of zero, low=0.3, medium=0.5 and high=0.8 between two
continuous (Y1, Y2), one ordinal (Y3) and one binary (Y4) measure. Response is driven
by all components in the top panel, two continuous and ordinal in the middle panel and
two continuous and binary in the bottom panel
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Table 4.6: Median sample sizes per group n = nC = nT for overall power 1 − β ≈ 80%,
α = 0.05, km = 2, ko = K = 1, δ = µT − µC : overall risk difference on the composite
, δ†: treatment effect structure in the components, for a combination of correlations 0,
L=0.3, M=0.5, H=0.8 using the latent variable model when the composite is comprised
of two continuous, one ordinal and one binary outcome

Response δ† δ Correlation (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34)
000000 LLLLLL MMMMMM HHHHHH

Y1, Y2, Y3, Y4 δ1 = δ2 = δ3 = δ4 0.05 70 51 41 81
0.10 18 13 11 21
0.15 8 6 5 9

δ3 = δ4 = 0 0.05 62 41 47 67
0.10 16 11 12 17
0.15 7 5 6 8

δ1 = −δ2 0.05 55 34 45 72
0.10 14 9 12 18
0.15 7 4 5 8

Y1, Y2, Y3 δ1 = δ2 = δ3 = δ4 0.05 139 71 63 105
0.10 35 18 16 27
0.15 16 8 7 12

δ3 = δ4 = 0 0.05 120 63 75 85
0.10 30 16 19 22
0.15 13 7 9 10

δ1 = −δ2 0.05 105 50 76 99
0.10 27 13 19 25
0.15 12 6 9 11

Y1, Y2, Y4 δ1 = δ2 = δ3 = δ4 0.05 166 106 105 112
0.10 42 27 27 28
0.15 19 12 12 13

δ3 = δ4 = 0 0.05 147 105 113 111
0.10 37 27 29 28
0.15 17 12 13 13

δ1 = −δ2 0.05 132 78 88 86
0.10 33 20 22 22
0.15 15 9 10 10
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Table 4.7: Median sample sizes per group n = nC = nT for overall power 1 − β ≈ 80%,
α = 0.05, km = 2, ko = K = 1, δ = µT − µC : overall risk difference on the composite, δ†:
treatment effect structure in the components, for a combination of correlations 0, L=0.3,
M=0.5, H=0.8 using the standard binary method when the composite is comprised of
two continuous, one ordinal and one binary outcome

Response δ† δ Correlation (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34)
000000 LLLLLL MMMMMM HHHHHH

Y1, Y2, Y3, Y4 δ1 = δ2 = δ3 = δ4 0.05 386 739 665 1240
0.10 97 185 167 310
0.15 43 83 74 138

δ3 = δ4 = 0 0.05 324 665 867 1205
0.10 81 167 217 302
0.15 36 74 97 134

δ1 = −δ2 0.05 331 666 858 1169
0.10 83 167 215 293
0.15 37 74 96 130

Y1, Y2, Y3 δ1 = δ2 = δ3 = δ4 0.05 690 956 912 1300
0.10 173 239 228 325
0.15 77 107 102 145

δ3 = δ4 = 0 0.05 650 912 1053 1283
0.10 163 228 264 321
0.15 73 102 117 143

δ1 = −δ2 0.05 605 866 1017 1232
0.10 152 217 255 308
0.15 68 97 113 137

Y1, Y2, Y4 δ1 = δ2 = δ3 = δ4 0.05 690 962 919 1298
0.10 173 241 230 325
0.15 77 107 103 145

δ3 = δ4 = 0 0.05 642 919 1058 1281
0.10 161 230 265 321
0.15 72 103 118 143

δ1 = −δ2 0.05 610 876 1007 1225
0.10 153 219 252 307
0.15 68 98 112 137
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Figure 4.12: Boxplots of the estimated sample size per group from 1000 simulated
datasets using the latent variable method for composites containing two continuous, one
ordinal and one binary component and correlation between endpoints is zero, low=0.3,
medium=0.5 or high=0.8. These are shown when response is driven by (Y1, Y2, Y3, Y4),
(Y1, Y2, Y3) or (Y1, Y2, Y4) and the treatment effect structure in the components is δ1 =
δ2 = δ3 = δ4, δ3 = δ4 = 0 or δ1 = −δ2
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Figure 4.13: Boxplots of the estimated sample size per group from 1000 simulated
datasets using the standard binary method for composites containing two continuous, one
ordinal and one binary component where correlation between endpoints is zero, low=0.3,
medium=0.5 or high=0.8. These are shown when response is driven by (Y1, Y2, Y3, Y4),
(Y1, Y2, Y3) or (Y1, Y2, Y4) and the treatment effect structure in the components is δ1 =
δ2 = δ3 = δ4, δ3 = δ4 = 0 or δ1 = −δ2
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Figure 4.13 is the corresponding figure for the binary method. In this instance the
sample sizes estimated are the same across different treatment effect structures. The
sample sizes are smallest when response is driven by Y1, Y2 and Y3. As the correlation
between the endpoints increases, the required sample size increases almost linearly.

4.8 Application: MUSE Trial

We illustrate the method for composite endpoint sample size determination on the
MUSE trial [112]. The primary end point was the percentage of patients achieving an
SRI response at week 24 with sustained reduction of oral corticosteroids (<10mg/day
and less than or equal to the dose at week 1 from week 12 through 24). The study
had a target sample size of 100 patients per group based on providing 88% power at
the 0.10 alpha level, to detect at least 20% absolute improvement in SRI(4) response
rate at week 24 for anifrolumab relative to placebo. The investigators assumed a 40%
placebo response rate.
Table 4.8 shows the sample size required per group from the latent variable method,
allowing for uncertainty in σδ. The estimated variance for the risk difference from the
trial dataset is σδ = 0.048 with correlation parameters ρ12 = 0.448, ρ13 = 0.521, ρ14 =
0.003, ρ23 = 0.448, ρ24 = −0.031, ρ34 = 0.066. For a risk difference of 0.2, the required
sample size per group is 20, compared to 100 for 88% power in the standard binary
method. However, the observed binary variance is lower than that assumed in the
original sample size calculation so we allow for variation in the latent variable treatment
effect variance. Allowing σδ = 0.10 would increase the required sample size per group
to 40, which is a more conservative estimate for use in practice. If the method were to
be employed for increased power, rather than a decrease in required sample size, the
estimated power of the latent variable method is over 99.99% for sample sizes giving
88% power at the 0.10 alpha level in the binary method. The empirical power is shown
for the latent variable method in 1000 simulated datasets, which is approximately 88%
for each sample size, as required.
Figure 4.14 shows the power from the latent variable method to detect a risk difference
between the anifrolumab 300mg arm and the placebo arm of 0.05 to 0.20. This is shown
for treatment effect variance σδ between 0.05 and 0.10. The latent variable method
has the required 88% power to detect a risk difference of 0.125 when the variance is
0.10 and a difference of 0.08 when the variance is 0.05. This is in contrast with the
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Table 4.8: Sample sizes n = nC = nT from the latent variable method for overall power
1 − β ≈ 88%, α = 0.10, k2 = 2, ko = K = 1 to detect a response risk difference of 0.2,
0.18 and 0.16 as in the original MUSE trial sample size determination. Estimated power
is shown from the latent variable method for the sample size required by the standard
binary method

Risk difference σδ n.latent Empirical power (%) n.binary Power (%)

0.20 0.05 20 88.05 100 99.99
0.20 0.06 24 87.01 100 99.99
0.20 0.07 28 87.62 100 99.98
0.20 0.08 32 87.04 100 99.96
0.20 0.09 36 87.83 100 99.89
0.20 0.10 40 88.12 100 99.89

binary method, which has 88% power to detect a difference of 0.20 based on the values
assumed in the MUSE trial [112].

4.9 Discussion

The work in this chapter aimed to develop a method for determining the sample
size required when using the latent variable model for mixed multiple outcomes. We
extended work by Sozu et al. [133] to determine the sample size required in multiple
co-primary continuous, ordinal and binary endpoints. We applied the method to the
MUSE trial with two continuous, one ordinal and one binary outcome to demonstrate
how to calculate the sample size in a future study requiring significant improvement
in all outcomes. Furthermore, we provided a method for determining the sample
size for mixed outcome composite endpoints, which involves using data to obtain
maximum likelihood parameter estimates and their covariance matrix and using these
to approximate the distribution of the risk difference under the alternative hypothesis.
We found that the sample size required depended only on the overall treatment effect
in the composite and not the treatment structure in the components. Sample sizes
varied depending on the components driving response and the correlation between
outcomes. We found that the magnitude of the increase in power offered by the latent
variable method is smallest when the components are uncorrelated.
Our results show that the sample sizes required from the standard binary method
increase as the correlation between the components increase. These results are unex-
pected as sample size typically decreases with increasing correlation. This is possibly
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Figure 4.14: Power of the latent variable method in the MUSE trial dataset to detect
a risk difference between the anifrolumab 300mg and placebo arms of 0.05 to 0.20 for σδ

between 0.05 and 0.10 based on alpha level 0.10 and sample size 100 per group

due to the fact that as the correlation increases a patient is more likely to be a responder
in both components if they are a responder in one and therefore more likely to be
a responder overall. This would result in a smaller proportion of the patients being
labelled as non-responders, hence requiring a larger sample size. For the latent variable
method the sample size is largest for zero correlation, as we would expect. However,
the sample size required is smaller for low correlation between the components than for
medium and high correlation between outcomes. This ambiguity in how the correlation
structure affects sample size is problematic for determining the sample size using this
method in practice. One possible conservative solution is to allow for uncertainty in
the correlations and use the maximum required sample size, which will still offer an
improvement over the binary method.
One important result from the work in this chapter is quantifying the efficiency gain
from adding a second continuous component to the composite, provided both com-
ponents drive response. We found the median required sample size is reduced by
46-58% by including the additional continuous component. The results showed that the
inclusion of the ordinal component with five levels is only responsible for a very small
proportion of the precision gains. Given that the inclusion of the ordinal component
substantially increases complexity and computational demand, it may be the case that
it is sufficient to combine any ordinal components with the binary outcome. It is likely
that the precision gains will be larger for ordinal variables with a larger number of
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categories however this will greatly increase computation time, as discussed in Chapter
3. Ordinal outcomes with a large number of levels may be included as continuous
components.
In order to determine the sample size for the co-primary endpoints, we require the
parameter estimates for the latent variable method. It may be possible to determine
these in multiple ways, such as from pilot trial data or by eliciting the values from
experts. However, to determine the sample size using the latent variable model for
composite endpoints we must fit the method to data. This is due to using the delta
method to obtain the variance of the risk difference, requiring the covariance matrix of
the parameter values. Basing the calculation on pilot data is potentially challenging
and restrictive for a number of reasons. Firstly, it requires that a pilot or earlier
phase trial must have already taken place in order to apply the method in a certain
disease area. This is particularly undesirable in the case of rare diseases which would
benefit most from the increased efficiency but where trials are run very infrequently.
Furthermore, the pilot data could be fundamentally different to the future trial and
observed effects may be imprecise. Therefore, placing too much emphasis on the
existing data may lead to problems in the main trial. In theory, it is possible to elicit
the required covariance parameters without data. In practice this would be difficult
but allowing for uncertainty in the elicited quantities and choosing conservative values
should provide an appropriate sample size estimate. An alternative when there is no
data available is to apply the method using the sample size required to achieve 80%
power for the binary method. Applying the latent variable method would then result in
the study having a power much larger than this. We could extend this approach to use
adaptive sample size re-estimation, or an internal pilot to allow for reductions in the
required sample size in the trial as we collect more information about the treatment
effect variability. Future work could focus on developing the method further to obtain
an exact distribution for the test statistic rather that the approximation obtained using
the delta method. The result would be that the covariance matrix of the parameter
values and hence pilot data would not be required.
A further limitation of this work is that we have only applied the method to one trial
dataset. In order to understand more about how the method works in real data we
should apply this to multiple datasets, with a range of composite structures. In partic-
ular, it would be beneficial to apply the method to endpoints where all components
drive response and investigate the empirical power in this case.





Chapter 5

Discussion

5.1 Summary

Composite endpoints are widely used in medical research studies for a number of
reasons, discussed in Chapter 1. This thesis has proposed methods for analysing them
more efficiently hence making better use of available resources. Due to the fact that
composite endpoints are frequently recommended in studies of rare diseases, one of
our objectives was to understand the most efficient way to model these endpoints for
application in rare disease or small population clinical trials. In Chapter 2 we compared
the standard binary method often used with the augmented binary method, a novel
joint modelling approach shown to improve efficiency in larger samples. Given that
statistical methods are most sensitive to assumptions in small samples we implemented
both GLS and GEE to estimate the parameters in the longitudinal continuous model.
We introduced small sample corrections and compared the corrected methods with the
uncorrected methods for total sample sizes between 30 and 80 patients. We found that
small sample adjustments are required to correct the type I error rate in the augmented
binary method and in some scenarios in the standard binary method. We identified the
small sample corrected augmented binary method using GLS as the most appropriate
method, as the type I error rate is controlled and it offers substantial power gains over
the standard analysis. We found that for the same statistical power the augmented
binary method could reduce the required sample size in a rare disease trial using these
endpoints by 32% [58].
Based on the fact that the augmented binary method performs well in the analysis of
composite endpoints with one continuous and one binary outcome, we hypothesised
that we could achieve even larger gains in efficiency if we employed a joint modelling
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framework in composites with multiple continuous and ordinal outcomes. Motivated
by a four dimensional endpoint in SLE containing two continuous, one ordinal and one
binary outcome, in Chapter 3 we proposed a latent variable framework which assumes
that discrete variables are manifestations of latent continuous variables. The results
showed that retaining the information in multiple continuous and ordinal components
greatly improved efficiency, supporting our theory that the augmented binary method
could be improved upon in this setting. However, the magnitude of these gains depends
on which components drive response (i.e. divide patients into responders and non-
responders). We implemented the latent variable, augmented binary and standard
binary methods in a phase IIb trial in patients with moderate to severe SLE and
found that the treatment effect was reported 2.5 times more precisely using the latent
variable model compared with logistic regression. This translates to a 60% reduction in
required sample size [138]. As the simulation study showed that bias was introduced in
to the treatment effect reported by the latent variable method when the joint normality
assumptions were not satisfied, we introduced a bootstrap procedure to correct for this.
We implemented a novel method to assess goodness of fit which showed that the latent
variable method explained the data well.
As the methods development in this thesis is strongly motivated by practice, another
objective of this work was to develop a method to calculate the sample size required
should the latent variable model be used as a primary analysis method. In Chapter 4,
we built on the work of [133] on sample size estimation for mixed continuous and binary
co-primary endpoints, applying it to the SLE endpoint. We developed a method for
calculating the sample size using the latent variable method for composite endpoints.
This involved using the delta method to estimate the distribution of the test statistic
under the alternative, which can subsequently be used for power and sample size
calculation. We investigated the effect of correlation and component structure on a
general endpoint containing one continuous, one ordinal and one binary outcome and
through simulation found only a small variability in the sample sizes suggested by the
method when the components are correlated. We quantified the effect of adding an
additional continuous component driving response as reducing the sample size by an
additional 46-58% when using the latent variable method. As the work in this chapter
covered endpoints with differing numbers of components, different response profiles
and different treatment effect structures for different correlation patterns, it is highly
generalisable to clinical trials using any composite endpoint with mixed continuous,
ordinal and binary components.
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Overall, we were able to address the existing limitations that we had identified and
are confident that this work could substantially change the practice of wasting large
amounts of information in composite endpoint trials. However there exist limitations,
which are highlighted below.

5.2 Limitations

Although the adjusted augmented binary method performed well in small samples,
the generalisability of this work is potentially limited. Evaluating the performance
in the ACR50 and ACR70 endpoints indicated the effect of differing response rates,
however as the primary investigation of its behaviour was based on re-sampling from
an existing trial in rheumatoid arthritis, our findings do not necessarily apply to the
structures present in other diseases. We verified our findings using a simulated example
however this does not ensure the applicability of the method in all rare disease trials.
Another limitation in applying this in practice is that we have not focused on sample
size estimation using the augmented binary method. Therefore applying the method
as a secondary analysis measure in rare disease trials where it can offer additional
power, rather than reduce the sample size, may be more realistic. This is still highly
advantageous in small studies, however in practice there may be instances with very rare
diseases that would benefit more from a reduction in required sample size. One option
is to explore the small sample properties of the latent variable method, combining some
components to increase events in each if necessary. Given the promising performance
of the latent variable model for more common diseases, investigating its application in
small samples would follow on aptly from the work in this thesis.
One problem with realising the efficiency gains from the latent variable method in
practice is the computational burden of the method. To apply the latent variable
method in a real trial, we would require some form of preliminary data to inform
the parameter values. When the data is collected, the analysis would be performed
and the outcome of interest obtained. If there are concerns about joint normality of
the components, which could not be tested, then we would advise implementing the
bootstrap procedure as shown in Chapter 3. This is substantially more demanding than
performing a logistic regression. It is also worth noting that the methods developed
in chapters 3 and 4 assume one follow-up time. Adding additional follow-up times
would further increase the computational burden. Furthermore, as we have not yet
developed a general package for application in composite endpoints, anyone performing
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the analysis would have to edit the code for endpoints with different structures to that
of the SLE endpoint.
A limitation of the work presented in Chapter 4 is the requirement for some form
of existing data for sample size calculation. Even if this data exists, there may be
concerns about how relevant the data is and how well it will estimate parameters
for the new trial population. Although this is a serious consideration that must be
taken in to account, this is a general concern for many trials using pilot data to inform
parameter estimates. Alternatively all of the parameters and their covariance matrix
could be elicited, although this may not be the best approach should data exist. In
practice, a conservative choice of estimates could be selected based on those suggested
by the data.
Finally, throughout the thesis we focused on the application of the methods to drug
trials. This is not a necessary requirement and the methods could be more widely
employed in studies with alternative interventions. However, in some cases this
may require adaptations to the methods, for instance if problems were to arise with
unbalanced data in longitudinal studies, if the data was collected continuously through
wearable devices or if complex interventions were administered such as those typical in
mental health trials.

5.3 Recommendations

Based on our findings we have recommendations for how this work can effect change.
The methods in Chapter 2, 3 and 4 should initially be implemented retrospectively
in relevant existing trials to ensure that they have been applied across a range of
diseases and endpoints, and that treatment effect estimates that arise from the new
method are broadly consistent with the existing. Should the analysis methods in
Chapter 2 and 3 prove to be generalisable then they could be implemented as secondary
analysis methods, allowing studies to avail of the increased power. One implication
for this application is that the interpretations of results from each analysis method
is decided prospectively. This is in order to avoid scenarios where investigators could
use the method for ad-hoc justifications of efficacy, when the confidence interval for
the treatment effect reported from the binary method includes the null and that from
the augmented binary or latent variable method does not. Eventually, we recommend
that the methods are employed as primary analysis measures in clinical trials. Table
5.1 shows the methods that we recommend in various scenarios based on the research
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Table 5.1: Summary of the analysis methods recommended in a range of scenarios with
different structures of composite endpoints and how to determine the sample size required
in each scenario based on the research conducted to date. GLS refers to Generalised
Least Squares estimation and the Firth correction is the penalised maximum likelihood
method proposed by Firth

Scenario Analysis method Sample size
determination

Rare diseases • Aug Bin method Calculate using binary method:
• Continuous measure - GLS • Use 30% reduction or
• Binary measure - Firth correction • Increase power

1 continuous, • Aug Bin method with Box-Cox • Reduce standard by 35%
1 binary or

• Lat Var method with bootstrap • Using method in Section 4.6.5

>1 continuous, • Lat Var with bootstrap • Using method in Section 4.6.5
1 binary

>1 continuous, • Lat Var with bootstrap • Using method in Section 4.6.5
1 or more ordinal • If ordinal levels ≤ 5, combine with

binary component
• If ordinal levels > 5, retain

conducted to date. One restriction in applying the small sample corrected augmented
binary method as a primary analysis measure is that we still do not have a method for
calculating the required sample size. Consequently, for application in rare disease trials
an approximation of the sample size could be used based on a conservative estimate
of the reduction from the standard binary method. Although this is not ideal, it is
often the case in the rare disease setting that resources are so limited that regulators
are more willing to accept novel design and analysis methods than in more common
diseases. Therefore it may be the case that the augmented binary method is adopted
in practice quicker than the latent variable model. Overall we feel that given the
potential for the methods to improve practice, every effort should be made to ensure
implementation.

5.4 Future Work

We have identified key areas of possible future research to improve the scope for
application, which are considered briefly below.
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5.4.1 Multiple Time Points

For many trials using composite responder endpoints the investigators may be interested
in response at multiple time points, as was the case for the rheumatoid arthritis endpoint.
The latent variable method proposed in this thesis requires extension for application in
this setting. As identified in the literature review for Chapter 3, there are different ways
this could be approached. One possibility is to adopt the set-up in [85] by including a
latent variable in the mean structure of the model, as shown in (5.1). In this scenario
Yijk is the observed continuous measure k for patient i at time point j, where Y ∗

ijk

indicates a latent continuous measure as assumed in Chapter 3 and Chapter 4.

Yij1 = xT
ij1β1 + zT

ij1bi1 + εij1

...

Y ∗
ijK = xT

ijKβ1 + zT
ijKbiK + ε∗

ijK

(5.1)

where xijk and zijk are known vectors of outcome k for patient i measured at time
point j and β1 and β2 are unknown parameter vectors. The random effects and random
errors are normally distributed as shown below.

bi =


bi1
...

biK

 ∼ N (0,Σ) = N



0
...
0

 ,


Σ11 · · · Σ1K

... . . . ...
ΣK1 · · · ΣKK


 (5.2)

εij =


εij1

...
εijK

 ∼ N (0,Σe) = N



0
...
0

 ,


σ2
1 · · · ρ1Kσ1
... . . . ...

ρ1Kσ1 · · · 1


 (5.3)

We can specify the distribution in terms of the joint distribution of observed and latent
outcomes Y ∗ given the random effects bi and the joint distribution of the random
effects. To obtain the distribution of interest we can integrate over the random effects
as demonstrated in (5.4).

f(Y1, · · · , Y ∗
K ; θ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(Y1, · · · , Y ∗

K |b; θ)f(b; θ)db (5.4)

A closed form solution to the likelihood can be found by exploiting properties of the
skew-normal distribution [139]. This could then be used to determine the probability
of response and its standard error can be obtained using the delta method, as shown
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in Chapter 3.
Note that in the case of multiple time points, it is not necessary to make the assump-
tion that the discrete outcomes are manifestations of latent outcomes and instead
correlation could be accounted for using additional random effects. Exploring the
possible formulation of the model for mixed composite responder endpoints measured
at multiple time points is an important next step. This would ensure the efficiency
gains we have found for a single time point can be translated to longitudinally measured
outcomes.

5.4.2 Estimation Methods

Another aspect that could be potentially improved upon to increase the uptake of the
latent variable method in the case of the SLE endpoint is estimation. The current
computational time is approximately 75 minutes however now that we know that the
method offers large efficiency gains, our future work could explore and compare various
approaches to estimation in an attempt to speed up the process.
The estimation procedure employed in Chapter 3 is a quasi-Newton method available
under the nlminb option in the optimx package in R. One advantage of this method
is the high convergence rate, however it is the slowest of those available in optimx
package. An alternative quasi-Newton method is the Fletcher-Powell algorithm used
by Poon and Lee [83] for maximum likelihood estimates of multivariate polyserial and
polychoric correlation coefficients. Another possibility would be to explore the use of
GEE as an alternative to maximum likelihood estimation as considered by Catalano
[91] and Regan and Catalano [94], however our results in Chapter 2 showed that this
may not be the most appropriate choice when the sample size is small. Given that
the EM algorithm is a natural choice in the presence of unobserved data, such as the
τ -thresholds, it is an important estimation technique to consider. This approach was
shown to perform well for mixed discrete and continuous outcomes by Sammel et al.
[77]. Some concerns have been raised about using the EM algorithm when transforming
τ from latent to observable data, where the support of y∗|y depends on parameter
values θ, as this may violate regularity conditions [115]. The Parameter Expanded
EM algorithm was proposed to address this limitation [96]. Another alternative is
the Monte Carlo ECM algorithm applied by Chib and Greenberg [81], which they
compare to an MCMC algorithm for posterior estimation. Other suggestions include
Gaussian quadrature, adaptive Gaussian quadrature and marginal modelling [79]. An



160 Discussion

extensive comparison of these methods would be an important contribution to the joint
modelling literature.

5.4.3 Other Outcome Types

An important extension of the work in this thesis will be to introduce methodology to
model additional outcome types within the composite responder endpoint. We examine
possible developments that could be implemented to accommodate nominal, count and
time-to-event components.

Nominal

To model a composite containing a nominal outcome, in addition to continuous and
ordinal outcomes, we could build on the work of de Leon and Carrière [140]. They
define a general mixed-data model which reduces to a CGCM in the absence of nominal
outcomes. Suppose that we have a composite endpoint containing one nominal binary
outcome Y1, one continuous outcome Y2 and one ordinal outcome Y3. The joint
distribution can be factorised as shown in (5.5).

f(Y1, Y2, Y3) = f(Y1)f(Y2|Y1)f(Y3|Y1, Y2) (5.5)

As before we can introduce a threshold model for Y3 based on Y ∗
3 so that,

f(Y1, Y2, Y
∗

3 ) = f(Y1)f(Y2, Y
∗

3 |Y1) (5.6)

The conditional distribution of Y2 and Y ∗
3 can be assumed to be multivariate normal

with mean and covariance derived from conditional normality rules, as shown in Chapter
3. We can introduce an M × 1 vector x = (X1, ..., XM)T where Xm is either 0 or 1
depending on which of M states Y1 is in. Then, x(m) is the vector x with Xm = 1
and Xm′ = 0 for m′ ≠ m and ∑M

m=1 Xm = 1. We can then model x using a product
multinomial distribution so that f(x; π) = ∏M

m=1 π
xm
m where π = (π1, ..., πM)T is the

vector of state probabilities and xm is the observed value of Xm. Having defined
the joint distribution we could proceed as outlined previously in chapters 2 and 3
to determine the probability of response. Other approaches for including nominal
components could also be explored and compared.
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Count

In order to model count data within a mixed outcome composite endpoint we may have
to move away from the CGCM framework and consider an alternative application of
latent variables. McCulloch [79] provides an overview of some of the techniques which
could be considered. One possibility is to use shared random effects, which include the
same random effect in the model for each observed outcome, however as the variance
is a function of the mean in a Poisson distribution this may result in problems such as
connections between the overdispersion and the observed correlation. An alternative
is to introduce correlated random effects. Let us assume the composite outcome of
interest is made up of one count outcome Y1, one continuous outcome Y2 and one ordinal
outcome Y3. We can assume, as shown in (5.7), that the count variable conditioned on
a random effect bi is Poisson distributed and that the continuous variable conditioned
on a random effect is normally distributed.

Yi1|bi ∼ indep.Poisson(µi1)

log(µi1) = α0 + α1xi + bi1

Yi2|bi ∼ indep.N(µi2, σ
2)

µi2 = β0 + β1xi + bi2

(5.7)

By assuming the ordinal variable Y3 comes from latent Y ∗
3 and including a random

effect bi means we can model Y3 as shown below.

Y ∗
i3|bi ∼ N(µ∗

i3, 1)

µ∗
i3 = γ1xi + bi3

(5.8)

The correlation between the outcomes is accounted for by assuming,

bi =


bi1

bi2

bi3

 ∼ N(0,Σb),Σb =


σ2

b1 σb1σb2ρ12 σb1σb3ρ13

σb1σb2ρ12 σ2
b2 σb2σb3ρ13

σb1σb3ρ13 σb2σb3ρ13 σ2
b3

 (5.9)

A binary outcome could be included in the same way or modelled directly using a
logistic regression. Joint modelling the components in this way provides a flexible
framework for different outcome types, however it may become infeasible with a large
number of outcomes due to integrating out the random effects and then integrating
over the joint distribution to obtain the probability of response. Determining the



162 Discussion

behaviour of these models for the composite problem poses an interesting avenue for
future research.

Time-to-event

The joint modelling of time-to-event and longitudinal continuous outcomes has received
much consideration in the literature. Modelling these with discrete outcomes has
also been studied, although to a lesser extent. Let us assume in this scenario that a
composite endpoint of interest is a combination of a time-to-event outcome Y1 and a
continuous outcome Y2 with covariate vectors X1 and X2 respectively. One approach
is to introduce a latent trajectory function Y ∗

2 and assume that X2 affects Y2 only
through Y ∗

2 and that Y1 and Y2 are conditionally independent given Y ∗
2 [141]. Therefore,

the joint distribution can be specified as shown below.

f(Y1, Y2|X1,X2) =
∫ ∞

−∞
f(Y1|X1, Y

∗
1 )f(Y2|Y ∗

2 )f(Y ∗
2 |X2)dY ∗

2 (5.10)

The time-to-event component f(Y1|X1, Y
∗

1 ) can be modelled using a survival model
and the f(Y2|Y ∗

2 ) and f(Y ∗
2 |X2) components can be analysed within the generalised

linear mixed modelling framework. Other methods to account for dependency between
time-to-event and longitudinal continuous or discrete data are discussed in [142].
Although there is much existing methodology for joint modelling time-to-event and
other outcome data, it would be important to compare these methods to determine
the most appropriate in the composite endpoint setting.

5.4.4 Further Research Directions

In addition to the research areas discussed above, there are other important future work
topics to be addressed. One focus could be on assuming a different distribution for the
latent variable model in Chapter 3, such as the multivariate t distribution. Modelling
the endpoint using a different distribution may make the method more robust to the
assumptions, therefore eliminating the need for the bootstrap procedure when applying
it to real data. Another crucial consideration is to explore the methods performance
under different patterns of missing data and highlight the most appropriate techniques
for handling this. Finally, the development of packages to implement the methods in
various software should be prioritised to ensure uptake.
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5.5 Conclusion

The research undertaken in this thesis has made an important contribution to the
composite endpoint and joint modelling literature. We have shown that large gains
in efficiency can be achieved using the data originally collected, by modelling the
composite in a way that reflects its true structure. For patients to benefit from the
efficiency gains found in this work it will be crucial to focus on the dissemination of
the methods.
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Abstract

Background

Clinical trials and other studies commonly assess effectiveness of an 

intervention through use of responder-based endpoints. These classify 

patients based on whether they meet a number of criteria which often 

involve continuous variables categorised as being above or below a 

threshold. The proportion of patients who are responders is estimated 

and, where relevant, compared between groups. An alternative method 

called the augmented binary method keeps the definition of the endpoint 

the same but utilises information contained within the continuous 

component to increase the power considerably (equivalent to increasing 

the sample size by >30%). In this article we summarise the method and 

investigate the variety of clinical conditions that use endpoints to which it 

could be applied.

Methods 

We reviewed a database of physiological and mortality trial endpoints 

recommended for collection in clinical trials of different disorders. We 

identified responder-based endpoints where the augmented binary 

method would be useful for increasing power.

Results

We identified 68 new clinical areas where endpoints were used that would 

be more efficiently analysed using the augmented binary method. 

Conclusions
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The augmented binary method can potentially provide large benefits in a 

vast array of clinical areas. Further methodological development is 

needed to account for some types of endpoint. 

Keywords: Augmented binary method; composite endpoint, efficiency, 

responder analysis, statistical analysis

Background

In clinical trials gathering evidence about the effectiveness of a medical 

intervention, it is necessary to specify a primary endpoint. An endpoint 

should represent how patients respond after being given the treatment; it 

should be expected that the distribution of the endpoint will be more 

favourable if a treatment is effective than if it is ineffective. In many 

disorders it is difficult to specify just one specific endpoint, as an 

intervention may have a variety of effects that cannot be adequately 

measured through one measurement. For this reason, it is common in 

many conditions to combine multiple distinct endpoints (which we will 

refer to as components) into a composite endpoint.

Composite endpoints have been recommended when there is large 

variability in the disease manifestation, e.g. complex multisystem 

diseases, allowing multiple equally relevant outcomes to be considered 

without the need to correct for multiplicity. They have also been 

advocated for rare diseases, where they might improve the power by 

increasing the number of events observed. On the other hand, they have 

been criticised for making trial results  more difficult to interpret (1). 
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One specific type of composite endpoint is a composite responder 

endpoint, which divides patients into responders and non-responders on 

the basis of the set of components. Some of these components may be 

binary (present or absent), some may be continuous. In the case of 

continuous components, some dichotomisation is necessary, so that 

patients are responders only if the continuous component is above or 

below a specified threshold. In Table 1, we provide examples of some 

commonly used responder-based endpoints and their definitions. In some 

cases (such as tumour response in Table 1), a patient must meet all the 

criteria to be a responder; in other cases (such as Rheumatoid Arthritis in 

Table 1) a patient must meet a set number. Some responder endpoints 

are not composite and are just formed from a single dichotomised 

continuous endpoint. 

Responder endpoints are appealing as they simplify several (potentially 

complex) pieces of information into one responder/non-responder 

variable. The proportion of patients who are responders serves as an easy 

to interpret measurement of the effectiveness of a treatment. 

From a statistical point of view, however, this appealing simplicity comes 

at a non-appealing cost when one or more component is continuous. 

Dichotomising continuous variables loses information, a point which has 

been made many times (e.g. (2)). This means that if considering one 

continuous endpoint, it is substantially more efficient to analyse it as a 

continuous variable rather than dichotomise it and test as a binary 

variable. As a rule of thumb, the minimum cost of dichotomisation is 
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requiring a 35% higher sample size for the same level of statistical 

precision(2). 

Assuming that avoiding dichotomisation is desirable, it is not obvious how 

this is possible when the responder endpoint consists of a mix of 

continuous and binary components. Even in the case of a single 

continuous component, there may be compelling clinical reasons to keep 

a responder endpoint dichotomised (3): ease of interpretation to 

researchers and patients, wide acceptance as important, meaningful 

clinical diagnosis (e.g. diabetes or hypertension).

This motivates statistical methods that can be used to keep to what is 

clinically relevant by inferring the proportion of patients who are 

responders, but utilise information contained in continuous components to 

improve the efficiency. For the single-component responder, this idea 

dates back to the 90s, where Suissa and Blais (4,5) proposed methods for 

doing this for a single continuous component case. To our knowledge, this 

method rarely is applied in practice despite its advantages over analysing 

the endpoint as binary. More recently, an approach known as the 

augmented binary method has been developed that allows composite 

responder endpoints (that consist of at least one continuous component) 

to be analysed in a more efficient way, whilst maintaining the definition of 

the endpoint.
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In this paper (and associated supplementary material) we first describe 

the augmented binary method, focusing on its advantages and 

drawbacks. We next present a review that identifies new clinical areas 

where trial efficiency can be improved through use of the augmented 

binary method. Finally, we discuss some further developments to the 

method that are motivated by the review.

The augmented binary method - intuition, benefits and drawbacks

The augmented binary method extends previous work focused on a single 

dichotomised continuous  endpoint (4,5) to composite responder 

endpoints with a mixture of continuous and binary endpoints. The original 

motivation was solid-tumour oncology (6,7), but subsequent papers have 

focused on developing the methodology for rheumatology(8) and rare 

diseases using composite endpoints (9).

For simplicity we focus on the case of a composite responder endpoint 

that combines a dichotomised continuous component with a binary 

component. For example, response in solid-tumour oncology consists of 

the sum of target lesion diameters shrinking by at least 30% from a 

baseline scan (dichotomised continuous) and no new tumour lesions 

appearing on a scan (binary). The traditional, binary analysis would work 

with the data on whether or not each patient is a responder or not. If a 

patient meets the criteria they are a responder, otherwise not. If analysing 

a randomised controlled trial (RCT), then one might test for a difference 

between arms in the proportion of patients who are responders with an 
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established method (e.g., logistic regression if there are baseline 

covariates to adjust for, Pearson chi-squared or Fisher exact test if not).

A detailed description of how to fit the method is provided in the 

supplementary material.  The main intuition behind the method is to first 

fit a more sophisticated model to the data from the different components, 

and second to use this model to estimate a probability of response and 

test for a difference between arms. The second step can be thought of 

weighting the different patients as a proportion of a response with this 

proportion depending on how close the continuous component was to the 

threshold. This is demonstrated in Figure 1, where patients are measured 

on a continuous and binary component. The continuous measurement 

must be above 1 for the patient to be a responder, however patients must 

also meet the additional binary criteria. The binary method treats the 

information as 0s and 1s whereas the augmented binary method uses a 

‘response weight’ which is determined from the underlying model and is 

higher as the continuous component increases. The supplementary 

material contains a link to an R package that can be used to fit the model.

The benefit of the method is primarily the increased power. By better 

using the available information, the proportion of patients who respond 

(and therefore any differences between arms in a RCT) can be estimated 

more precisely. In more statistical language, the variance of the estimate 

is lower and the width of the confidence interval (CI) is narrower. 

Simulation studies presented in (6) found that the average gain in power 

was equivalent to increasing the sample size by between 30-50% 
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depending on the scenario. This theoretical gain in power has been 

confirmed in analysis of a real RCT in rheumatoid arthritis, which showed 

the reduction in CI width was equivalent to an increase in sample size of 

>50%. It should be emphasised that this gain in power does not rely on 

additional data being collected – it just comes from using the existing data 

more efficiently.

There are some additional benefits of the approach. First, due to the 

underlying model being fitted, it better allows for missing data. This is 

especially true when there is the possibility of some components having 

more missing data than others. Second, it may also help address issues of 

misclassification due to measurement error: if a patient is truly close to 

the responder threshold then a measurement error will have a potentially 

very large impact on the binary method, but a small impact on the 

augmented binary method.

There are also drawbacks. First, it is undoubtedly more complex to apply 

the method compared with standard binary approaches. Some code is 

available (see supplementary material) for applying the method in specific 

cases but a more generic implementation in different commonly used 

statistical programs is a high priority for the future. Second, the method 

makes more assumptions, for instance that the distribution of the 

continuous components is normal. This means that it is necessary to 

check this prior to analysing the data and use a suitable correction if 

assumptions are not met, such as applying a Box-Cox transformation (10) 
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to ensure the continuous component is normally distributed. Third, if the 

number of components or number of timepoints at which the endpoint is 

measured is large, applying the method can require a large amount of 

computational time. This is generally not an issue for an analysis of a 

single trial; however assessing the performance of the method on a large 

number of computer simulations can become infeasible.

Up to now, the method has been applied to datasets in solid tumour 

oncology(6,7), rheumatoid arthritis(8) and systemic lupus erythematosus 

(SLE)(11). Based on personal experience of peer-reviewing clinical trial 

papers and discussion with a wider group of clinicians, we hypothesised 

that there might be a much greater number of diseases where the 

augmented binary method could be useful. We decided that a more 

systematic attempt to identify these clinical areas was warranted.

Materials and methods

We made use of the COMET (Core Outcome Measures in Effectiveness 

Trials) database (http://www.comet-initiative.org/resources), which lists 

completed and ongoing projects in core outcome set (COS) development. 

COS represent the minimum that should be measured and reported in all 

clinical trials of a specific condition(12,13). 

We reviewed physiological and mortality trial outcomes (categorised 

according to (14)) recorded within all core outcome sets (COS) in the 
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COMET database that were published before 2016. These were split 

amongst the three authors (JW MM and SD) to review. Each core outcome 

set paper was reviewed to determine if any responder (composite or 

categorised continuous) endpoints were recommended for reporting in all 

clinical trials within that condition. In some cases, a potentially relevant 

endpoint was not clearly described in the core outcome paper. In this 

case, we examined RCTs that had used the endpoint to determine 

whether it was a suitable responder endpoint.

Results

This process allowed us to identify 45 clinical areas (additional to solid 

tumour oncology, rheumatoid arthritis, and SLE) where the augmented 

binary method could be utilised to gain efficiency. An additional 23 clinical 

areas had used responder endpoints formed from a single 

categorised/dichotomised continuous variable. Table 2 breaks down the 

number by clinical classification. A full listing of these clinical areas is 

given in supplementary material. These are given by clinical classification 

in supplementary tables 1a-1m. 

The clinical classifications that the method appears most useful to in 

terms of number of endpoints are rheumatology (11 found), non-solid 

tumour oncology (10 found), neurology (9 found), and cardiovascular (8 

found).

We note that this was not a systematic review and represents a likely 

substantial underestimate of the number of clinical areas where suitable 
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endpoints are used, as our review only covered clinical areas which were 

covered by a COS published by 2016. As an example, table 1 mentions 

type II diabetes and shows diabetes remission would be a suitable 

endpoint; however, since there was no associated COS published by 2016, 

it does not appear in the identified clinical areas (although gestational 

diabetes does).

Discussion 

In this paper we have shown how a more efficient analysis approach 

called the augmented binary method can be used to improve analysis of 

composite responder outcomes. The method allows retention of clinically 

relevant endpoints whilst improving the power of analyses by an amount 

equivalent to a considerable increase in sample size. 

Through our review of core outcome sets we have found a great deal of 

new disease areas where the augmented binary method could be applied 

to gain power. We acknowledge that many of the core outcome sets were 

developed prior to best-practice guidance(15) existed and therefore the 

quality of them may differ.

Although the results indicate the widespread utility of the method, there 

are several areas where further methodological research is required to 

fully realise the possible benefits.
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There are several endpoints which are typically analysed using time-to-

event methods. Many progression, remission and relapse endpoints are 

used and the time until such a negative event occurs is the quantity of 

interest. Although the augmented binary method is well developed for 

composite responder outcomes that are analysed at a single timepoint or 

longitudinally, further work is needed to apply it to time-to-event 

outcomes. 

In some cases, the composite responder outcomes are particularly 

complex with more than two components and with response being defined 

as meeting some, but not all, of the criteria. Recent work in this area (11) 

shows the potential efficiency gain is even larger in this case.  In addition, 

the method, with some modification to the underlying latent variable 

model, could be applied in the case of a categorised responder endpoint 

with more than 2 levels. 

We have focused on how the method can improve power of trials. An 

alternative way to use this improved power would be to reduce the 

sample size needed for a target power level. A barrier to widespread use 

of the method in this way is sample size estimation. In all cases that we 

have ever come across, the augmented binary method improves the 

power compared to a traditional binary analysis. However, the extent of 

the power gain is variable. It is therefore difficult to determine how to 

power the trial if the augmented binary method is to be used as a primary 

analysis. We are working on new methods to determine suitable sample 

size so that the trial is not inappropriately under- or over-powered.

Conclusions
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In this paper we have shown that responder composite outcomes are used 

as primary clinical trial endpoints in many diseases. Analysing data from 

these trials using the augmented binary approach would improve power 

equivalent to increasing the sample size by at least 35%. Further methods 

research is needed to improve time-to-event analyses using these 

outcomes as events.

List of Abbreviations: CI – confidence interval; COMET - Core Outcome 

Measures in Effectiveness Trials; COS – core outcome set; RCT – 

randomized controlled trial; SLE - systemic lupus erythematosus 
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Table 1 – examples of responder endpoints used in different areas of 

medicine; italicised components denote continuous dichotomisations.

Clinical area Endpoint Components and definition

Oncology Tumour 

response

1. Sum of longest diameter of target 

tumour lesions >=30% shrinkage 

from baseline

2. No new tumour lesions

Rheumatology ACR20 1. Swollen joint count >=20% 

improvement

2. Tender joint count >=20% 

improvement

3. 20% improvement in at least three 

of:

a. patient assessment

b. physician assessment

c. pain scale

d. disability/functional 

questionnaire
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e. acute phase reactant (ESR or 

CRP)

4. No rescue therapy given.

Type II 

diabetes

Diabetes 

remission

1. Glycated haemoglobin A1c 

concentration <=6.5%

2. Fasting glucose concentration <=5.6 

mmol/L

3. No non-study pharmacological 

treatment given

Table 2 – number of new  clinical areas identified by classification; full list 
provided in supplementary material; if a condition had both composite 
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and non-composite responder endpoints identified, they were only 
included in the composite column. *excludes oncology

Classification Number of conditions 
with suitable composite 
responder endpoints

Number of conditions with 
single-variable responder 
endpoints

Bleeding and 
Transfusion

2 1

Cancer* 8 2
Cardiovascular 
and circulation

5 3

Dentistry and 
vision

2 1

Gastroenterology 3 2
Infectious 
diseases

3 0

Lungs and 
airways

0 2

Mental health 
and addiction

3 1

Neurology 4 5
Orthopaedics 
and trauma

3 0

Renal and 
urology

2 1

Rheumatology 8 3
Unclassified 2 1

Figure 1 - demonstration of how information from patients is weighted by 
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the two different methods. Non-responders are made up of those in whom 

the continuous component is below 1 and those who do not respond 

according to another binary criterion. Underlying the augmented binary 

method is a joint model that is fitted to the continuous and binary data 

and yields fitted ‘response weights’ for each patient, which can then be 

compared between arms.
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Abstract

Background: Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently
capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and
binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations
of continuous components. The augmented binary method offers a more efficient alternative and is therefore
especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties
when the sample size is small. Here we investigate small sample properties and implement small sample corrections.

Methods: We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary
and augmented binary methods and determine the power, type I error rate, coverage and average confidence
interval width for each of the estimators. We implement Firth’s adjustment for the binary component models and a
small sample variance correction for the generalized estimating equations, applying the small sample adjusted
methods to each sub-sample as before for comparison.

Results: For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to
12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference
in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6–8%.
The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in
average confidence interval width when using the adjusted augmented binary method is 17–18%. This is equivalent
to requiring a 32% smaller sample size to achieve the same statistical power.

Conclusions: The augmented binary method with small sample corrections provides a substantial improvement for
rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in
relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the
quality of evidence generated from rare disease trials rather than replace them.

Keywords: Responder analysis, Composite endpoints, Improving efficiency

Background
For stakeholders in rare disease communities, it is imper-
ative to keep in mind that rare diseases are far from
‘rare’ for those whose lives they consume. The last few
decades have seen a societal shift which recognises this
and has resulted in a much greater focus on rare disease
research. This is characterised by a surge in patient advo-
cacy groups, a shift in regulation and incentives, increased
government funding of rare disease research and advances
in technologies to improve international communication

*Correspondence: martina.mcmenamin@mrc-bsu.cam.ac.uk
1MRC Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge, UK
Full list of author information is available at the end of the article

between rare disease experts and patients [1]. Despite
this, for most rare diseases if treatment options even exist
many of them have been approved with very limited evi-
dence. Novel statistical design and analysis methods are
needed to make the best use of information provided by
studies in rare diseases [2, 3].
One way to maximise information from rare disease

trials is to use composite endpoints [4]. These are end-
points which combine a number of individual outcomes in
order to assess the effectiveness or efficacy of a treatment.
They are typically used in situations where it is difficult

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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to identify a single relevant endpoint to sufficiently cap-
ture the change in disease status incited by the treatment.
Furthermore, if the components are appropriately chosen,
composite endpoints that require an event in only one of
the components (a or b or c etc.) may have the ability to
improve the power to show a given treatment effect due
to the increased number of events [5–7]. These charac-
teristics appeal to rare diseases where many realisations
of the diseases are highly variable and availability of the
population may be a binding constraint.
Many composite endpoints take the form of respon-

der indices where a binary indicator is formed based on
whether the patient has experienced a predefined change
in each of the components or not. In particular, in many
disease areas the composite is a mixture of continuous and
binary components. These endpoints frequently feature
in rare autoimmune diseases and rare cancers. Exam-
ples of these are presented in Table 1, one of which
is the chronic inflammatory disorder Behçet disease. A
review of the research performed in this area concludes
that evidence continues to be generated from anecdotal
case reports rather than randomised trials [8]. As well as
those shown in Table 1, any rare cancers using RECIST

Table 1 Examples of rare diseases which could make use of the
augmented binary method

Disease Example responder endpoint

Primary biliary cholongitis (PBC) • ALP< 1.67×ULN

• Total bilirubin < ULN

• ALP decrease ≥ 15%

Behçets disease • Length of principal intestinal

ulcer compared to size at baseline (%)

• No new lesions

Lupus Nephritis • eGFR no more than 10% below

preflare value or normal

• Proteinuria UPC ratio < 0.5

• Urine sediment: Inactive

• No rescue therapy

Neuroblastoma • < 10mm residual soft tissue at

primary site

• Complete resolution of MIBG of

FDG-PET uptake (for MIBG non avid

tumours) at primary site

Advanced hepatocellular carcinoma• < 20% increase in the sum of the

longest diameters of target lesions

• No new lesions

ALP alkaline phosphatase, ULN upper limits of normal, eGdFR estimated glomerular
filtration rate, UPC urinary protein to creatinine,MIBGmetaiodobenzylguanidine,
FDG-PET 18-fluorodeoxyglucose positron emission tomography

criteria (Response Evaluation Criteria In Solid Tumors)
to define responders and non-responders use endpoints
which assume this structure [9].
Analyses of these outcomes typically treat them as

binary, thus only using the dichotomisations of continu-
ous components. An alternative in these circumstances is
the augmented binary method [10]. This involves jointly
modelling the continuous component with the binary
component in order to improve the efficiency of esti-
mates by making use of how close patients were to being
responders in the continuous component. For a fixed
sample size, the method was shown to provide a sub-
stantial increase in the power over the standard binary
method currently in use, whilst still making inference on
the outcome of interest to clinicians. This was illustrated
in both solid tumour cancer and rheumatoid arthritis
data [10, 11].
Although the method provides substantially more

power it also uses more parameters. Some evidence has
suggested that it may not be suitable for trials with small
samples, perhaps due to issues with asymptotics [10].
We will explore the properties of the augmented binary
method in small samples and introduce and implement
two small sample corrections from the literature to deter-
mine whether we can improve the performance.
If the gains provided by the augmented binary method

in common diseases can be realised in smaller samples,
this may allow us to gain information from randomised
trials that would otherwise not have been possible.
This could greatly improve outcomes for many rare
disease patients. Further small sample applications of
the method include earlier phase 2 trials, or when
more doses are of interest but the number of patients
are limited.

Methods
Data
In order to investigate the properties of the methods
in small samples, we will use data from the OSKIRA-1
trial [12]. The trial was a phase III, multicentre, ran-
domised, double-blind, placebo-controlled, parallel-group
study investigating the use of fostamatinib in patients with
active rheumatoid arthritis. For the purpose of investi-
gating the small sample properties of the methods, we
will only make use of two of the three arms in the trial,
namely the fostamatinib 100 mg bid for 52 wks arm and
the placebo arm.
A common responder endpoint used in rheumatoid

arthritis is the ACR20, in which patients demonstrate clin-
ical response if they achieve a 20% improvement from
baseline, as measured by a continuous ACR-N (American
College of Rheumatology) score. It is worth noting that the
ACR-N score is a percentage change from baseline which
is itself a composite combining 7 components but in what
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follows we will treat this as a single measure, as is the
case in practice. The structure of the endpoint is shown
in Fig. 1.
A benefit of responder analyses is that we can easily

incorporate additional information in the response defi-
nition. In the case of rheumatoid arthritis it is common
to assign patients to being non-responders in the ACR20
endpoint if they require medications restricted by the pro-
tocol or withdraw from the study. Therefore, in order
to be a responder to treatment a patient needs to tol-
erate treatment, must not receive restricted medications
and they must demonstrate clinical response. This allows
discontinuations of treatment for lack of efficacy or for
adverse events to provide meaningful information on the
drug effect and translates to estimating the effect of a
combination of continuous and binary components.
Other endpoints of interest in rheumatoid arthritis are

the ACR50 and ACR70 which dichotomise the ACR-N
score at 50% and 70% respectively. We will discuss the
findings and conclusions for the ACR20 endpoint in what
follows, as this was the primary endpoint in the trial and

Fig. 1 Structure of the responder endpoint in rheumatoid arthritis.
For the ACR20 endpoint, the continuous ACR-N score is dichotomised
at 20% and combined with the rescue medication indicator to form a
binary responder index. X1...X8 denotes the disease activity measures
which are combined to form the continuous ACR-N score

is the endpoint that is generally used to formally evalu-
ate benefit in the regulatory setting. Results for both the
ACR50 and ACR70 endpoints are detailed in the supple-
mentary material (see Additional file 1). These endpoints
further characterise the benefit of a treatment by con-
sidering different levels of improvement from baseline.
Furthermore, they will demonstrate how the methods
perform with different response rates.

Standard binary method
The method currently employed to analyse these end-
points in trials is a logistic regression on the binary
indicator for response. We refer to this as the standard
binary method.
The odds ratio and confidence interval are obtained

directly. We can also obtain predicted probabilities
for each patient as if they were treated p̃i1 and not
treated p̃i0. This allows us to construct both the dif-
ference in response probabilities and the risk ratio.
Their corresponding confidence intervals are obtained
through the delta method, details of which are pro-
vided in the supplementary material (see Additional
file 2).

Augmented binary method
The augmented binary method models the joint distribu-
tion of the continuous and binary components at multi-
ple time points by employing factorisation techniques to
model each of the components separately. We can then
combine these to obtain predicted probabilities for each
patient as if they were treated p̃i1 and untreated p̃i0 [10]. It
follows that we can obtain the difference in response prob-
abilities, the odds ratio and the risk ratio, as well as their
confidence intervals as before (see Additional file 2).
Figure 2 shows a schematic for both the standard binary

and augmented binary methods. From this it is clear that
the augmented binary method models the components
of the composite endpoint directly whereas the standard
binary method throws away information before the analy-
sis stage.
Note that we fit the repeated measures models for the

continuous component in the augmented binary method
using both generalised least squares (GLS) and gener-
alised estimating equations (GEE).

Binary component adjustment
Albert and Anderson show that when fitting a logistic
regression model to small samples, that although the like-
lihood converges, at least one parameter estimate may be
theoretically infinite [13]. This phenomenon is commonly
termed ‘perfect separation’ and occurs if the model can
perfectly predict the response or if there are more param-
eters in the model than can be estimated because the data
are sparse [14]. Firth provides an alternative to maximum
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Fig. 2 Schematic comparing the stages involved in employing the standard binary and augmented binary methods (*small sample adjustments
implemented)

likelihood estimation (MLE) in these circumstances
[15]. This involves using penalised maximum likelihood
(PML) to correct the mechanism producing the esti-
mate, namely the score equation, rather than the estimate
itself.
As maximum likelihood estimates are always biased

away from zero in this setting, bias correction there-
fore involves some degree of shrinkage of the estimate
towards this point. This results in the method also reduc-
ing the variance, so that bias reduction does not neces-
sarily lead to a substantial loss in power. We will make
these adjustments to both the standard binary method
and the logit models in the augmented binary method.
This can be easily implemented in R using the brglm
package [16].

Continuous component adjustment
It is recognised that when using these methods when the
number of clusters, in our case patients, is small that the
robust standard error estimates are subject to downward
bias, leading to inflated type I errors. We will implement
a correction by Morel, Bokossa and Neerchal to inflate
the variance estimate when modelling the continuous
component using GEE methods [17]. We implement this
in R using a modification of the code provided in the
geesmv package [18].
The technical details for themodels and adjustments are

available in the supplementary material (see Additional
file 2). The code to implement these in R is also available
(see Additional file 3).

Assessing small sample properties
In order to determine the performance of the unadjusted
and adjusted methods, we re-sample from the OSKIRA-
1 trial. Employing re-sampling techniques allows us to
investigate the properties of the methods under a realistic
data structure.
To determine the power we re-sample 5000 replicates

for each total sample size between 30 and 80 in incre-
ments of 10, which gives a Monte Carlo standard error of
0.3%. To ensure balance we randomly sample half of the
total sample size we are interested in from the placebo
arm and the other half from the 100 mg arm of the trial.
We apply all methods to each sub-sample and record the
treatment effect and 95% confidence interval. We do this
for both the difference in response probabilities and log-
odds estimates of the treatment effect. An estimate of the
power is then the proportion of confidence intervals that
do not contain zero. By re-sampling, rather than simulat-
ing from a known distribution, thinking of this quantity as
power implicitly assumes the treatment effect in the trial
to be the true treatment effect in the population. To ensure
these results agree with the conventional power results,
we present the power from a simulated example in the
supplementary material (see Additional file 4).
To determine the type I error rate, we permute the treat-

ment labels in the sub-samples in order to remove the
association between treatment and outcome. An estimate
of the type I error rate is then the proportion of confi-
dence intervals that do not contain zero. The coverage
is estimated as the complement of this. Again, to ensure
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these results agree with whenwe have simulated under the
null, we present an additional simulated example in the
supplementary material. The median width of the confi-
dence intervals and the average treatment effect for both
methods are also presented in the supplementary material
(see Additional file 5).
The unadjusted methods to be applied are the standard

binary method, the augmented binary method with GLS
and the augmented binary method with GEE. The adjust-
ments refer to the standard binary method fitted with
PML, the augmented binary method with GLS and PML
and the augmented binary method with the GEE variance
correction and PML.

Results
Log-odds scale
The power and type I error rates for the unadjusted
and adjusted methods are shown in Fig. 3. The unad-
justed augmented binary method provides higher power
than the standard binary method for all sample sizes.
The type I error rate of both methods is approximately
5%. Implementing the firth adjustment in the augmented
binary method with GLS makes negligible difference to
the power or type I error rate. In the adjusted augmented
binary method with GEE, the type I error rate drops to
3–4%. Differences between the GLS and GEE estimators
diminish with increasing sample size. The standard binary

method experiences a substantial drop in type I error rate
when the Firth correction is implemented.

Probability scale
Figure 4 shows the power and type I error rates for the
difference in response probabilities. The power is sim-
ilar to the log-odds case however both methods expe-
rience an inflation in type I error rate. Implementing
the correction in the GLS augmented binary method
results in a small improvement in the type I error rate
with no power lost. GEE adjustments result in an aver-
age reduction in type I error of approximately 2.5% but
the power drops to below that of the adjusted GLS.
Again, differences in GLS and GEE diminish as the sam-
ple size increases. The adjustment for the standard binary
reduces the type I error rate from 7% to approximately
5% however the power is below 20% for all sample sizes
investigated.
Table 2 shows the average reduction in confidence

interval width for the adjusted methods on both scales.
We compare the standard binary with both implementa-
tions of the augmented binary method. We see from this
that the augmented binary method with GLS offers the
most precision. This translates to the adjusted augmented
binary method requiring a 32% smaller sample size than
what would be required for the adjusted standard binary
method.
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Fig. 3 Operating characteristics of the unadjusted (left) and adjusted (right) standard binary and augmented binary methods on the log-odds scale
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Fig. 4Operating characteristics of the unadjusted (left) and adjusted (right) standard binary and augmented binary methods on the probability scale

To better understand the benefit of the small sam-
ple corrections it is useful to interpret the proportion of
cases experiencing perfect separation alongside the aver-
age width of the confidence intervals. Table 3 shows the
percentage of the 5000 sub-samples with confidence inter-
vals for the difference in response probabilities larger

Table 2 Comparison in average confidence interval width for
the small sample adjusted methods on the log-odds and
probability scales

Comparison Average reduction
in C.I. width (%)

Reduction
in required
sample size (%)

Log-odds

Standard binary vs

Augmented binary (GLS) 17.4 31.8

Standard binary vs

Augmented binary (GEE) 11.2 21.1

Difference in response probabilities

Standard binary vs

Augmented binary (GLS) 17.6 32.1

Standard binary vs

Augmented binary (GEE) 12.3 23.1

C.I. confidence interval

than 1. This is shown for each method at each sample
size. This would suggest that the corrections are most
beneficial when N<60.

Simulated example
Although re-sampling is beneficial as it details perfor-
mance information under realistic data structures, the
findings may be enriched by considering an example from
a known distribution. We firstly set the probability of
response equal to 0.470 in the treatment arm and 0.336
in the placebo arm, similar to the OSKIRA-1 study. Sec-
ondly, we simulate under the null where the probability
of response equals 0.336 in both arms. We investigate
power, type I error rate, average treatment effect estimates
and average confidence interval width for the small sam-
ple adjusted binary and augmented binary methods. The
results are presented in the supplementary material (see
Additional file 4).
In summary, our comparative findings from the re-

sampling are supported, in that the augmented binary
method offers higher power and precision with a reduc-
tion in required sample size of approximately 38%. The
augmented binary method has nominal type I error rate,
which is consistent with the re-sampling results. However,
the type I error for the adjusted standard binary method is
6.8–8.1%, which is higher than the type I error rates found
from re-sampling. The absolute power estimates for both
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Table 3 Percentage of cases experiencing extremely large variance due to perfect separation on probability scale (confidence interval
for difference > 1)

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.00 0.00 10.9 0.00 10.6 0.24

40 0.00 0.00 3.71 0.00 3.81 0.02

50 0.00 0.00 1.11 0.00 1.20 0.00

60 0.00 0.00 0.24 0.00 0.30 0.00

70 0.00 0.00 0.04 0.00 0.08 0.00

80 0.00 0.00 0.00 0.00 0.00 0.00

methods also differ from those in the re-sampling results,
however the comparative conclusions are the same. The
methods provide approximately equal treatment effect
estimates. A simulated example dataset is included should
readers wish to fit the models (see Additional file 6).

Discussion
In this paper we have explored the small sample proper-
ties of the standard binary and augmented binarymethods
and proposed adjustments to improve them. It would
appear that the increased efficiency of the augmented
binarymethod does indeed translate to a small sample set-
ting. The method performs better on the log-odds scale,
where normality assumptions made when employing the
delta method are best satisfied. These assumptions are
more questionable when working with samples of this size
on the probability scale, which is partly reflected in the
differences in inflation present.
As rare disease trials are restricted in their capacity

to detect treatment effects both because of small studies
and few studies running in any given disease, it follows
that maximising power within a single study is perhaps
even more crucial than in more common diseases. Conse-
quently, we recommend the use of the augmented binary
method as the primary analysis method in trials of rare
diseases using these endpoints.
When implementing the augmented binary method in

rare disease trials, we recommend the use of the Firth
adjustment for the logit models as it reduces the bias and
variance of the estimates. This is especially valuable in this
setting due to the restrictive nature of sample size. For the
continuous component, we recommend the GLS estima-
tor. As well as offering the largest power and precision,
GLS methods make more realistic assumptions about the
mechanism for missing responses, namely that they are
missing at random rather than missing completely at ran-
dom. Moreover they experience fewer convergence issues
in very small samples.
We have previously acknowledged the potential util-

ity of composite endpoints in rare diseases, however
guidance must be followed in order to ensure valid

and meaningful implementation in clinical trials [5].
Composite endpoints should be coherent, in that the
components are measuring the same underlying patho-
physiologic process. However, the components should not
be so closely related that the patient is likely to experi-
ence all of them, hence making the combined endpoint
redundant [19]. The magnitude of the gains from adopt-
ing a composite endpoint depends on the correlation
between components, the direction of treatment effect in
each component and hence the patient responder rates.
It is therefore crucial for interpretation that effects are
reported on individual components as secondary results.
Binary components of the composite can be analysed
with standard binary methods. Dichotomised continuous
components of the composite may be analysed with stan-
dard binary methods, a continuous test or by testing the
dichotomised component whilst making use of the contin-
uous information, a technique similar to the augmented
binary approach and originally proposed by Suissa [20].
This may be preferable to maintain the clinical definition
of the component whilst improving the power.
It is useful to consider further the role of response rate

in the composite endpoint on the operating characteristics
of interest. The ACR50 and ACR70 results presented in
the supplementary material indicate that power and type
I error are highly dependant on responder rates and treat-
ment effect scales (see Additional file 1). For the standard
binary method, the results show deflations in the type
I error rate on the log-odds scale and inflations on the
probability scale, with type I error rates ranging from 0 to
10%. This is likely to be due to logistic regression meth-
ods having poorly estimated standard errors when there
are few events per parameter, as is the case for the ACR50
and ACR70 endpoints [21]. Overall, the augmented binary
method shows fewer deviations from nominal type I error
rates whilst exhibiting increased power over the standard
binary method in every scenario investigated.
The findings from the simulated example in the sup-

plementary material further reiterate these problems with
type I error rate control in the standard binary method.
As the type I error rate is more stable for the augmented
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binary method both in the re-sampling and the simu-
lated example, we would suggest that it is perhaps more
robust in the rare disease setting than logistic regression
methods.
Although it is recognised that novel methods developed

for use in rare diseases may be of more immediate utility
than in common diseases, some resistance to implement-
ing the augmented binary method in real rare disease
trials may be experienced due to its increased complexity.
To assist with this we supply full R code for all unadjusted
and adjusted versions of the method. It is of paramount
importance that the efficiency gains provided by this
method are not used as a substitute for other important
efforts and considerations undertaken when running rare
disease trials. That is, the method should be used to com-
plement efforts in establishing international, multi-centre
trials with maximum feasible enrolment periods, along-
side other achievable strategies to increase sample size;
not to replace them.
There are some limitations in what we have presented.

We have only investigated the performance of the method
in small samples in relation to the rheumatoid arthri-
tis endpoint. Similar procedures may be carried out in
other data sets and the methods applied directly to rare
disease data, to ensure these gains are always experi-
enced across a range of responder indices and response
rates. Moreover, due to the increased number of param-
eters, the augmented binary method starts to experience
some problems when we reduce the total sample size to
n=20. This is unlikely to be a problem in practice, as
a randomised trial as small as that would be unusual.
If required, it may be possible to make further assump-
tions in order to reduce the number of parameters to be
estimated.
Our future work aims to improve the uptake of the aug-

mented binary method in rare disease trials by developing
methods for performing power calculations. This would
overcome using the approximation that, for fixed power,
the average gains equate to reducing the required sample
size by at least 32%. A further extension on which we are
currently working is developing joint modelling methods
for the instance when the composite is amore complicated
combination of outcomes, namely multiple continuous,
ordinal and binary components.We expect thesemethods
to exhibit even larger efficiency gains due to using infor-
mation in multiple continuous and ordinal components.
This will provide the potential to improve even further the
frequency and quality of evidence generated in many rare
disease areas.

Conclusion
In rare diseases where there are few or no available treat-
ments and limited opportunity to test emerging new treat-
ments, the power to detect an effective treatment is of

critical importance. The augmented binary method with
small sample adjustments offers a substantial improve-
ment for trials in these populations over methods cur-
rently being used, which throw away valuable information.
We recommend the use of the augmented binary method
in relevant rare disease trials using composite endpoints
and supply R code to assist with the implementation.
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Appendix C

Orphanet Paper: Supplementary
Materials

C.1 Models and Small Sample Adjustments

Notation

Suppose we have i patients, with i ∈ {1, ..., n}. Let Ti ∈ {1, 2} indicate the treatment
arm of patient i. The baseline ACR-N score is yi0, with Yi1, Yi2 denoting the continuous
ACR-N scores at the week 12 visit and week 24 visit respectively. Fi1 is an indicator
variable taking a value equal to 1 if the patient discontinues treatment or requires
rescue medication before the week 12 visit. Fi2 is the corresponding indicator for the
period between the week 12 and week 24 visit. Si is then a binary variable indicating
whether or not patient i was a responder. For the ACR20 endpoint, Si = 1 if Yi2 ⩾ 20
and Fi1 = Fi2 = 0.

Standard Binary Method

The standard binary method is a logistic regression on the binary indicator Si.

logit (P (Si = 1|Ti, yi0)) = α + βTi + γyi0 (C.1)

This provides us with maximum likelihood estimates θ̂SB = {α, β, γ} and Cov( ˆθSB).
From this we can obtain a fitted probability of response for each patient i as if they
were treated with the experimental treatment p̃i1 and the control treatment p̃i0.

From this we can then can construct various quantities of interest:
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1. Difference in Response Probabilities

δ̃1 =
∑n

i=1 p̃i1 −∑n
i=1 p̃i0

n
(C.2)

2. Risk ratio

δ̃2 =
∑n

i=1 p̃i1∑n
i=1 p̃i0

(C.3)

3. Odds ratio

δ̃3 =

( ∑n
i=1 p̃i1

n−∑n
i=1 p̃i1

)
( ∑n

i=1 p̃i0

n−∑n
i=1 p̃i0

) (C.4)

Confidence intervals for these treatment effect estimates can be constructed by
obtaining standard error estimates through the delta method. This requires the
covariance matrix of the maximum likelihood estimates Cov(θ̂SB) and the vector of
partial derivatives of δ̃ with respect to each of the parameter estimates, ′′δ̃.
For example, the variance of δ̃1:

V ar(δ̃1) = (′′δ̃1)TCov(θ̂SB)(′′δ̃1) (C.5)

Augmented Binary Method

The augmented binary method models the joint distribution of (Y1, Y2, F1, F2)|T, Y0

by employing factorisation techniques to model each of the components separately, as
shown by the equations below.

Yij = α + β1TiI{j = 1} + β2TiI{j = 2} + γyi0 + δj + εij

(εi1, εi2|Ti, yi0) ∼ N

(0, 0),
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (C.6)

logit (P (Fi1 = 1|Ti, yi0, Yi1, Yi2)) = αF 1 + βF 1Ti + γF 1yi0 (C.7)

logit (P (Fi2 = 1|Fi1 = 0, Ti, yi0, Yi1, Yi2)) = αF 2 + βF 2Ti + γF 2Yi1 (C.8)
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We fit repeated measures models using both generalised least squares (GLS) and
generalised estimating equations (GEE) to the continuous component. GLS estimates
the variance-covariance matrix using restricted maximum likelihood methods and GEE
makes use of robust variance estimation techniques.
After fitting these models and obtaining maximum likelihood estimates
θ̂AB = {α̂, β̂1, β̂2, γ̂, δ̂1, δ̂2, ˆαF 1, ˆβF 1, ˆγF 1, ˆαF 2, ˆβF 2, ˆγF 2}, we can obtain the overall proba-
bility in response in each arm. For patient i, the probability of response in the ACR20
endpoint is:

P (Yi2 ⩾ 20, Fi1 = Fi2 = 0|Ti, yi0)

=
∫ ∞

−∞

∫ ∞

−∞
P (Yi2 ⩾ 20, Fi1 = Fi2 = 0|Ti, yi0, Yi1 = yi1, Yi2 = yi2)f(yi1, yi2; Ti, yi0)dy2dy1

=
∫ ∞

−∞

∫ ∞

20
P (Fi1 = Fi2 = 0|Ti, yi0, Yi1 = yi1, Yi2 = yi2)f(yi1, yi2; Ti, yi0)dy2dy1

=
∫ ∞

−∞

∫ ∞

20
P (Fi2 = 0|Fi1 = 0, Ti, yi0, Yi1 = yi1)P (Fi1 = 0|Ti, yi0, Yi1 = yi1)f(yi1, yi2; Ti, yi0)dy2dy1

Again, we can obtain a fitted probability of response for each patient i as if they were
treated with the experimental treatment p̃i1 and the control treatment p̃i0. Treatment
effect estimates and confidence intervals are constructed as before, where Cov(θ̂AB) is
as shown in equation (C.9).

Cov(θ̂AB) =


Cov(α̂, β̂1, β̂2, γ̂, δ̂1, δ̂2) 0 0

0 Cov( ˆαF 1, ˆβF 1, ˆγF 1) 0
0 0 Cov( ˆαF 2, ˆβF 2, ˆγF 2)


(C.9)

Binary Component Adjustment

The penalised likelihood is shown below, where L(θ) is the usual likelihood function
for a logit model and I(θ) is the information matrix.

L∗(θ) = L(θ)|I(θ)| 1
2 (C.10)

Continuous Component Adjustment

The standard robust sandwich covariance estimator is shown in equation C.11.
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Vsandwich = (∑n
i=1 DiV

−1
i Di)−1(∑n

i=1 DiV
−1

i Cov̂(Yi)V −1
i Di)(

∑n
i=1 DiV

−1
i Di)−1 (C.11)

where:
Di = ∂µi

∂β

µi is the vector of mean responses
β the parameter vector
Vi is the working variance-covariance matrix for Yi

Cov̂(Yi) = (Yi − µ̂i)(Yi − µ̂i)′.

The small sample adjusted variance estimator is shown in equation C.12.

VMBN =
(∑n

i=1 DiV
−1

i Di

)−1 (∑n
i=1 DiV

−1
i

(
kCov̂(Yi)+δmξVi

)
V −1

i Di

) (∑n
i=1 DiV

−1
i Di

)−1

(C.12)
where:

k = N−1
N−p

n
n−1

p is the number of parameters
N is the total number of observations

δm =


p

n−p
, if n>3p

1
2 , otherwise

ξ = max

1,
trace

(
(∑n

i=1 DiV
−1

i Di)−1(∑n

i=1 DiV
−1

i Cov(Yi)V −1
i Di)

)
p
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C.2 Supplementary Results: ACR20

Table C.1: Median width of confidence intervals of the standard binary and augmented binary methods
for the log-odds treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 3.019 (431.8) 3.000 (0.236) 2.509 (1390) 2.477 (0.212) 2.458 (1413.6) 2.739 (0.384)
40 2.602 (136.7) 2.592 (0.163) 2.155 (170.4) 2.145 (0.150) 2.134 (183.2) 2.325 (0.175)
50 2.320 (0.135) 2.314 (0.112) 1.924 (61.75) 1.919 (0.117) 1.916 (81.20) 2.053 (0.123)
60 2.117 (0.103) 2.112 (0.089) 1.755 (16.656) 1.753 (0.096) 1.755 (22.07) 1.861 (0.099)
70 1.959 (0.081) 1.954 (0.072) 1.624 (0.588) 1.862 (0.218) 1.630 (1.318) 1.712 (0.081)
80 1.832 (0.069) 1.828 (0.063) 1.521 (0.071) 1.378 (0.129) 1.531 (0.066) 1.598 (0.069)

Results shown on logarithmic scale
GLS generalised least squares, GEE generalised estimating equations

Table C.2: Median width of confidence intervals of the standard binary and augmented binary methods
for the difference in response probabilities treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.675 (0.044) 0.686 (0.037) 0.567 (248.8) 0.554 (0.045) 0.554 (245.1) 0.614 (0.142)
40 0.592 (0.030) 0.597 (0.026) 0.492 (36.558) 0.464 (0.062) 0.488 (39.049) 0.528 (0.062)
50 0.536 (0.023) 0.539 (0.021) 0.442 (14.154) 0.470 (0.059) 0.442 (18.558) 0.472 (0.033)
60 0.490 (0.018) 0.492 (0.017) 0.406 (3.985) 0.403 (0.021) 0.407 (5.229) 0.429 (0.024)
70 0.455 (0.015) 0.456 (0.014) 0.377 (0.142) 0.375 (0.018) 0.379 (0.319) 0.396 (0.020)
80 0.426 (0.013) 0.428 (0.012) 0.354 (0.016) 0.351 (0.016) 0.357 (0.017) 0.371 (0.017)

Results shown on probability scale
GLS generalised least squares, GEE generalised estimating equations
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Table C.3: Average treatment effect in subsamples using the standard binary and augmented binary
methods for the log-odds treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.606 (1.096) 0.526 (0.737) 0.783 (0.649) 0.747 (0.619) 0.812 (0.678) 0.773 (0.646)
40 0.595 (0.745) 0.543 (0.634) 0.794 (0.544) 0.765 (0.525) 0.828 (0.565) 0.796 (0.545)
50 0.572 (0.587) 0.536 (0.547) 0.790 (0.478) 0.767 (0.465) 0.821 (0.495) 0.795 (0.480)
60 0.570 (0.541) 0.540 (0.510) 0.788 (0.435) 0.770 (0.425) 0.816 (0.449) 0.795 (0.438)
70 0.577 (0.476) 0.551 (0.453) 0.794 (0.394) 0.902 (0.456) 0.821 (0.406) 0.802 (0.398)
80 0.568 (0.455) 0.546 (0.436) 0.790 (0.367) 0.707 (0.333) 0.817 (0.377) 0.801 (0.370)

Results shown on logarithmic scale
GLS generalised least squares, GEE generalised estimating equations

Table C.4: Average treatment effect in subsamples using the standard binary and augmented binary
methods for the difference in response probabilities treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.129 (0.178) 0.118 (0.163) 0.180 (0.145) 0.170 (0.137) 0.179 (0.153) 0.168 (0.143)
40 0.133 (0.153) 0.124 (0.142) 0.185 (0.124) 0.171 (0.116) 0.191 (0.128) 0.182 (0.123)
50 0.131 (0.132) 0.124 (0.125) 0.186 (0.110) 0.195 (0.117) 0.193 (0.113) 0.185 (0.109)
60 0.131 (0.123) 0.125 (0.117) 0.187 (0.101) 0.181 (0.098) 0.193 (0.104) 0.186 (0.100)
70 0.134 (0.109) 0.129 (0.104) 0.189 (0.091) 0.184 (0.089) 0.195 (0.094) 0.190 (0.091)
80 0.133 (0.104) 0.128 (0.101) 0.189 (0.085) 0.184 (0.083) 0.195 (0.087) 0.190 (0.085)

Results shown on probability scale
GLS generalised least squares, GEE generalised estimating equations
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Table C.5: Average treatment effect in permuted subsamples using the standard binary and augmented binary
methods for the log-odds treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 0.011 (1.171) 0.005 (0.742) 0.001 (0.665) 0.049 (0.641) -0.002 ( 0.673) -0.002 (0.646)
40 0.012 (0.755) 0.006 (0.645) -0.005 (0.559) 0.000 (0.537) 0.014 (0.583) 0.002 (0.555)
50 0.000 (0.608) 0.004 (0.575) 0.007 (0.487) -0.003 (0.475) -0.003 (0.512) 0.012 (0.492)
60 -0.005 (0.557) 0.004 (0.527) -0.003 (0.449) 0.000 (0.437) -0.004 (0.461) -0.005 (0.452)
70 -0.004 (0.507) 0.001 (0.411) 0.004 (0.413) 0.000 (0.487) -0.004 (0.424) -0.007 (0.417)
80 0.005 (0.467) -0.009 (0.457) 0.005 (0.390) -0.002 (0.354) 0.000 (0.401) -0.001 (0.386)

Results shown on logarithmic scale
GLS generalised least squares, GEE generalised estimating equations

Table C.6: Average treatment effect in permuted subsamples using the standard binary and augmented
binary methods for the difference in response probabilities treatment effect

Standard binary Augmented binary (GLS) Augmented binary (GEE)

N Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

30 -0.003 (0.182) -0.002 (0.166) 0.001 (0.151) 0.000 (0.144) -0.002 (0.154) 0.000 (0.145)
40 0.001 (0.156) 0.000 (0.148) 0.001 (0.130) -0.002 (0.123) -0.004 (0.136) 0.000 (0.130)
50 -0.001 (0.142) -0.002 (0.134) 0.002 (0.117) 0.000 (0.112) 0.001 (0.121) 0.000 (0.118)
60 0.000 (0.129) -0.002 (0.121) 0.002 (0.106) -0.003 (0.104) -0.002 (0.113) 0.001 (0.108)
70 -0.004 (0.120) 0.000 (0.114) 0.001 (0.101) 0.001 (0.098) 0.001 (0.104) -0.001 (0.101)
80 -0.002 (0.112) 0.000 (0.108) 0.001 (0.094) 0.000 (0.092) 0.000 (0.097) -0.001 (0.094)

Results shown on probability scale
GLS generalised least squares, GEE generalised estimating equations
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C.3 Supplementary Results: ACR50, ACR70

Table C.7: Type I error of the log-odds ACR50 response in standard binary and augmented binary methods
in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating equations, PML is
penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Type I error Small sample adjusted type I error

N Binary AugBin AugBin Binary AugBin AugBin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.005 (0.001) 0.059 (0.003) 0.069 (0.004) 0.005 (0.001) 0.054 (0.003) 0.035 (0.003)
40 0.011 (0.001) 0.058 (0.003) 0.068 (0.004) 0.010 (0.001) 0.048 (0.003) 0.040 (0.003)
50 0.019 (0.002) 0.053 (0.003) 0.063 (0.003) 0.014 (0.002) 0.056 (0.003) 0.044 (0.002)
60 0.025 (0.002) 0.055 (0.003) 0.060 (0.003) 0.020 (0.002) 0.052 (0.003) 0.041 (0.002)
70 0.034 (0.003) 0.057 (0.003) 0.059 (0.003) 0.025 (0.002) 0.050 (0.003) 0.044 (0.003)
80 0.034 (0.003) 0.056 (0.003) 0.059 (0.003) 0.029 (0.002) 0.053 (0.003) 0.050 (0.003)

Table C.8: Power of the log-odds ACR50 response in standard binary and augmented binary methods in
5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating equations, PML is
penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Power Small sample adjusted power

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.022 (0.002) 0.196 (0.006) 0.232 (0.006) 0.034 (0.003) 0.208 (0.006) 0.150 (0.005)
40 0.061 (0.003) 0.263 (0.006) 0.298 (0.006) 0.073 (0.004) 0.265 (0.006) 0.216 (0.006)
50 0.133 (0.005) 0.324 (0.007) 0.359 (0.007) 0.142 (0.005) 0.321 (0.007) 0.279 (0.006)
60 0.193 (0.006) 0.381 (0.007) 0.407 (0.007) 0.207 (0.006) 0.378 (0.007) 0.339 (0.007)
70 0.269 (0.006) 0.436 (0.007) 0.459 (0.007) 0.277 (0.006) 0.433 (0.007) 0.400 (0.007)
80 0.357 (0.007) 0.493 (0.007) 0.512 (0.007) 0.348 (0.007) 0.490 (0.007) 0.460 (0.007)
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Table C.9: Type I error of the ACR50 difference in response probabilities in standard binary and augmented
binary methods in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating
equations, PML is penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Type I error Small sample adjusted type I error

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.091 (0.004) 0.054 (0.003) 0.065 (0.003) 0.039 (0.003) 0.051 (0.003) 0.031 (0.002)
40 0.065 (0.003) 0.059 (0.003) 0.066 (0.003) 0.045 (0.003) 0.054 (0.003) 0.038 (0.003)
50 0.067 (0.004) 0.055 (0.003) 0.061 (0.003) 0.042 (0.003) 0.054 (0.003) 0.035 (0.003)
60 0.055 (0.003) 0.061 (0.003) 0.062 (0.003) 0.047 (0.003) 0.052 (0.003) 0.046 (0.003)
70 0.054 (0.003) 0.051 (0.003) 0.060 (0.003) 0.051 (0.003) 0.053 (0.003) 0.044 (0.003)
80 0.064 (0.003) 0.049 (0.003) 0.061 (0.003) 0.045 (0.003) 0.058 (0.003) 0.044 (0.003)

Table C.10: Power of the ACR50 difference in response probabilities in standard binary and augmented
binary methods in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating
equations, PML is penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Power Small sample adjusted power

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.243 (0.006) 0.202 (0.006) 0.208 (0.006) 0.157 (0.005) 0.211 (0.006) 0.133 (0.005)
40 0.273 (0.006) 0.270 (0.006) 0.284 (0.006) 0.224 (0.006) 0.272 (0.006) 0.199 (0.005)
50 0.318 (0.007) 0.334 (0.007) 0.344 (0.007) 0.274 (0.007) 0.329 (0.007) 0.264 (0.007)
60 0.363 (0.007) 0.395 (0.007) 0.394 (0.007) 0.314 (0.007) 0.385 (0.007) 0.324 (0.007)
70 0.415 (0.007) 0.441 (0.007) 0.444 (0.007) 0.370 (0.007) 0.436 (0.007) 0.387 (0.007)
80 0.474 (0.007) 0.500 (0.007) 0.498 (0.007) 0.432 (0.007) 0.496 (0.007) 0.446 (0.007)
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Table C.11: Type I error of the log-odds ACR70 response in standard binary and augmented binary methods
in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating equations, PML is
penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Type I error Small sample adjusted type I error

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.000 (0.000) 0.063 (0.003) 0.074 (0.004) 0.000 (0.000) 0.056 (0.003) 0.036 (0.003)
40 0.000 (0.000) 0.061 (0.003) 0.068 (0.004) 0.000 (0.000) 0.054(0.003) 0.041 (0.003)
50 0.000 (0.000) 0.052 (0.003) 0.071 (0.004) 0.000 (0.000) 0.058 (0.003) 0.045 (0.003)
60 0.000 (0.000) 0.056 (0.003) 0.064 (0.003) 0.000 (0.000) 0.058 (0.003) 0.038 (0.003)
70 0.000 (0.000) 0.048 (0.003) 0.058 (0.003) 0.002 (0.001) 0.058 (0.003) 0.046 (0.003)
80 0.002 (0.001) 0.055 (0.003) 0.055 (0.003) 0.002 (0.001) 0.053 (0.003) 0.046 (0.003)

Table C.12: Power of the log-odds ACR70 response in standard binary and augmented binary methods in
5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating equations, PML is
penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Power Small sample adjusted power

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.000 (0.000) 0.191 (0.006) 0.229 (0.006) 0.000 (0.000) 0.205 (0.006) 0.142 (0.005)
40 0.000 (0.000) 0.247 (0.006) 0.284 (0.006) 0.000 (0.000) 0.253 (0.006) 0.199 (0.006)
50 0.001 (0.001) 0.307 (0.007) 0.340 (0.007) 0.004 (0.001) 0.308 (0.007) 0.258 (0.006)
60 0.003 (0.001) 0.352 (0.007) 0.378 (0.007) 0.007 (0.001) 0.350 (0.007) 0.312 (0.007)
70 0.007 (0.001) 0.411 (0.007) 0.433 (0.007) 0.021 (0.002) 0.411 (0.007) 0.370 (0.007)
80 0.015 (0.001) 0.460 (0.007) 0.478 (0.007) 0.036 (0.003) 0.460 (0.007) 0.424 (0.007)
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Table C.13: Type I error of the ACR70 difference in response probabilities in standard binary and augmented
binary methods in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating
equations, PML is penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Type I error Small sample adjusted type I error

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.056 (0.003) 0.029 (0.002) 0.031 (0.002) 0.006 (0.001) 0.030 (0.002) 0.008 (0.001)
40 0.040 (0.003) 0.032 (0.002) 0.039 (0.003) 0.013 (0.002) 0.034 (0.003) 0.010 (0.001)
50 0.032 (0.003) 0.031 (0.002) 0.037 (0.003) 0.020 (0.002) 0.034 (0.003) 0.015 (0.002)
60 0.041 (0.003) 0.034 (0.003) 0.041 (0.003) 0.022 (0.002) 0.036 (0.003) 0.022 (0.002)
70 0.049 (0.003) 0.040 (0.003) 0.040 (0.003) 0.020 (0.002) 0.045 (0.003) 0.025 (0.002)
80 0.048 (0.003) 0.045 (0.003) 0.039 (0.003) 0.026 (0.002) 0.040 (0.003) 0.031 (0.002)

Table C.14: Power of the ACR70 difference in response probabilities in standard binary and augmented
binary methods in 5000 sub-samples where GLS is generalised least squares, GEE is generalised estimating
equations, PML is penalised maximum likelihood and GEE adj is the GEE small sample adjustment

Power Small sample adjusted power

N Binary Aug Bin Aug Bin Binary Aug Bin Aug Bin
(GLS) (GEE) (GLS, PML) (GEE adj, PML)

30 0.108 (0.004) 0.118 (0.005) 0.110 (0.004) 0.029 (0.002) 0.120 (0.005) 0.034 (0.003)
40 0.112 (0.004) 0.173 (0.005) 0.165 (0.005) 0.065 (0.003) 0.174 (0.005) 0.077 (0.004)
50 0.136 (0.004) 0.243 (0.006) 0.228 (0.006) 0.095 (0.004) 0.240 (0.006) 0.140 (0.005)
60 0.185 (0.005) 0.304 (0.007) 0.281 (0.006) 0.128 (0.005) 0.301 (0.006) 0.206 (0.006)
70 0.250 (0.006) 0.366 (0.007) 0.345 (0.007) 0.156 (0.005) 0.363 (0.007) 0.269 (0.006)
80 0.288 (0.006) 0.417 (0.007) 0.399 (0.007) 0.184 (0.005) 0.415 (0.007) 0.331 (0.007)
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C.4 Supplementary Results: Simulated Example

Model
Yij = α + β1TiI{j = 1} + β2TiI{j = 2} + γyi0 + δj + εij

(εi1, εi2|Ti, yi0) ∼ N

(0, 0),
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (C.13)

logit (P (Fi1 = 1|Ti, yi0, Yi1, Yi2)) = αF 1 + βF 1Ti + γF 1yi0 (C.14)

logit (P (Fi2 = 1|Fi1 = 0, Ti, yi0, Yi1, Yi2)) = αF 2 + βF 2Ti + γF 2Yi1 (C.15)

Results

We investigate the power and type I error rate for the small sample adjusted measures
for the difference in response probability estimator, as shown below.

δ̃1 =
∑n

i=1 p̃i1 −∑n
i=1 p̃i0

n
(C.16)

where p̃i1 and p̃i0 are the fitted probabilities of response for patient i on the experimental
treatment and the control treatment respectively.

Table C.15: Power and average confidence interval width in ACR20 response in the small sample adjusted
standard binary and augmented binary methods in 5000 simulations

Total sample δ̃1 (S.D.) Power Average CI width Sample size

size Bin Aug bin Bin Aug bin Bin Aug bin reduction (%)

30 0.128 (0.167) 0.130 (0.121) 0.145 0.172 0.630 0.496 38.0
40 0.132 (0.145) 0.133 (0.106) 0.179 0.226 0.550 0.431 38.6
50 0.138 (0.129) 0.135 (0.097) 0.213 0.278 0.493 0.386 38.7
60 0.137 (0.120) 0.136 (0.088) 0.240 0.329 0.452 0.353 39.0
70 0.135 (0.113) 0.136 (0.083) 0.269 0.367 0.419 0.328 38.7
80 0.138 (0.103) 0.138 (0.077) 0.293 0.425 0.392 0.306 39.1

α = −15, β1 = 2.5, β2 = 2, γ = 4.1, δ1 = 6, δ2 = 12, σ1 = 1, σ2 = 1, ρ = 0.6, αF 1 = −3.8, βF 1 =
−0.1, γF 1 = 0.4, αF 2 = −0.8, βF 2 = −0.08, γF 2 = −0.008, δ̃1 ≈ 0.134
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Table C.16: Type I error rate and average confidence interval width in ACR20 response in
the small sample adjusted standard binary and augmented binary methods in 5000 simulations

Total sample δ̃1 (S.D.) Type I error Average CI width

size Bin Aug bin Bin Aug bin Bin Aug bin

30 0.002 (0.157) 0.001 (0.102) 0.068 0.047 0.596 0.426
40 -0.001 (0.143) 0.001 (0.092) 0.080 0.047 0.517 0.370
50 0.000 (0.128) -0.002 (0.081) 0.081 0.044 0.465 0.332
60 -0.001 (0.118) 0.000 (0.075) 0.079 0.043 0.425 0.303
70 -0.001 (0.107) 0.000 (0.070) 0.073 0.043 0.394 0.282
80 0.000 (0.104) 0.000 (0.065) 0.081 0.049 0.369 0.263

α = −15, β1 = 0, β2 = 0, γ = 4.1, δ1 = 6, δ2 = 12, σ1 = 1, σ2 = 1, ρ = 0.6, αF 1 =
−3.8, βF 1 = 0, γF 1 = 0.4, αF 2 = −0.8, βF 2 = 0, γF 2 = −0.008, δ̃1 = 0





Appendix D

Small Sample Adjusted Methods:
R Code

D.1 Augmented Binary: GLS

1 library ( gtools )
2 library ( geepack )
3 library (nlme)
4 library ( R2Cuba )
5 library (boot)
6 library ( mvtnorm )
7 library (MASS)
8 library ( brglm )
9 library (gee)

10
11
12 ### AUGMENTED BINARY METHOD - GENERALISED LEAST SQUARES (GLS)
13 ## UNADJUSTED
14
15 integrand <-function (acrn , meantreated , meanuntreated ,Sigma ,failure1 ,failure2 , baseline )
16 {
17 n= length ( baseline )
18
19 f1treat =inv. logit ( cbind (rep (1,n),baseline ,rep (1,n))%*% failure1 $ coefficient )
20 f1untreat =inv. logit ( cbind (rep (1,n),baseline ,rep (0,n))%*% failure1 $ coefficient )
21
22 f2treat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (1,n))%*% failure2 $ coefficient )
23 f2untreat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (0,n))%*% failure2 $ coefficient )
24
25 pdftreat = dmvnorm ( cbind (- meantreated [ ,1]+ acrn [1],- meantreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c( Sigma

[1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
26 pdfuntreat = dmvnorm ( cbind (- meanuntreated [ ,1]+ acrn [1],- meanuntreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c(

Sigma [1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
27
28 return (c(mean ((1 - f1treat )*(1- f2treat )* pdftreat ),mean ((1 - f1untreat )*(1- f2untreat )* pdfuntreat )))
29 }
30
31
32 probofsuccess = function ( continuous ,baseline ,failure1 ,failure2 ,dich)
33 {
34
35 n= length ( baseline )
36
37 meantreated = cbind ( cbind (rep (1,n),rep (1,n),rep (0,n),baseline ,rep (1,n))%*% continuous $ coefficient ,
38 cbind (rep (1,n),rep (0,n),rep (1,n),baseline ,rep (2,n))%*% continuous $ coefficient )
39
40 meanuntreated = cbind ( cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (1,n))%*% continuous $ coefficient ,
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41 cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (2,n))%*% continuous $ coefficient )
42
43
44 #find lower and upper points for integration :
45 maxmean1 =max(c( meantreated [,1], meanuntreated [ ,1]))
46 maxmean2 =max(c( meantreated [,2], meanuntreated [ ,2]))
47 minmean1 =min(c( meantreated [,1], meanuntreated [ ,1]))
48 minmean2 =min(c( meantreated [,2], meanuntreated [ ,2]))
49
50
51 # integrate
52
53 a= cuhre (2,2, integrand =integrand , meantreated = meantreated , meanuntreated = meanuntreated , Sigma = getVarCov ( continuous ),

failure1 =failure1 , failure2 =failure2 , baseline =baseline , lower =c( qnorm (1e -08 , minmean1 ,sqrt( getVarCov (
continuous )[1 ,1])),qnorm (1e -08 , minmean2 ,sqrt( getVarCov ( continuous )[2 ,2]))),

54 upper =c( qnorm (1 -1e -08 , maxmean1 ,sqrt( getVarCov ( continuous )[1 ,1])), dich),flags =list( verbose =0, final =1,
pseudo . random =0, mersenne .seed=NULL))

55
56
57 # return (a$ value [1] -a$ value [2]) # ABSOLUTE VALUE
58 return (log(a$ value [1]/(1-a$ value [1]))-log(a$ value [2]/(1-a$ value [2]))) # LOGODDS
59 }
60
61 getVarCov .gls <-
62 function (obj , ...)
63 {
64
65 S <- corMatrix (obj$ modelStruct $ corStruct )
66 #get which individuals have a full correlation matrix :
67
68 temp1 = sapply (S, function (x) return (sum(dim(x))))
69
70
71 vw <- 1/ varWeights (obj$ modelStruct $ varStruct )
72
73 cor=S[[ min( which ( temp1 ==4))]]
74
75 varianceweights =c(min(vw),max(vw))
76
77 vars =( obj$ sigma * varianceweights )^2
78
79 result <- t(cor * sqrt(vars))*sqrt(vars)
80 result
81 }
82
83
84 get. partials <-function ( continuous ,baseline ,failure1 ,failure2 ,dich)
85 {
86
87 fit1= probofsuccess ( continuous ,baseline ,failure1 ,failure2 ,dich)
88 augbin . partials =as. vector (rep (0 ,11))
89
90 # continuous model
91
92 for(i in 1:5)
93 {
94
95 valueupdate1 = continuous
96 valueupdate1 $ coefficient [i]= valueupdate1 $ coefficient [i ]+0.000001
97
98 updateprob = probofsuccess ( valueupdate1 ,baseline ,failure1 ,failure2 ,dich)
99

100 augbin . partials [i]=( updateprob -fit1)/ 0.000001
101
102 }
103
104 # failure model1
105
106 for(i in 1:3)
107 {
108
109 valueupdate2 = failure1
110 valueupdate2 $ coefficient [i]= valueupdate2 $ coefficient [i ]+0.000001
111
112 updateprob = probofsuccess ( continuous ,baseline , valueupdate2 ,failure2 ,dich)
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113
114 augbin . partials [i +5]=( updateprob -fit1)/ 0.000001
115 }
116
117 # failure model2
118
119 for(i in 1:3)
120 {
121
122 valueupdate3 = failure2
123 valueupdate3 $ coefficient [i]= valueupdate3 $ coefficient [i ]+0.000001
124
125 updateprob = probofsuccess ( continuous ,baseline ,failure1 , valueupdate3 ,dich)
126
127 augbin . partials [i +8]=( updateprob -fit1)/ 0.000001
128 }
129
130 return (c( augbin .partials ,fit1))
131 }
132
133
134
135 # ##################################################
136 # APPLY IN RHEUMATOID ARTHRITIS EXAMPLE FROM PAPER :#
137 # ##################################################
138
139 dichotomisationthreshold =20 # change this depending on example
140 data=#OSKIRA -1 TRIAL
141
142 acrn .12 <-data$ acrn12 # CONTINUOUS MEASURE AT TIME POINT ONE
143 acrn .24 <-data$ acrn24 # CONTINUOUS MEASURE AT TIME POINT TWO
144 rescuemedicationupto12 <-data$ rescuemedicationupto12 # BINARY MEASURE AT TIME POINT ONE
145 rescuemedicationupto24 <-data$ rescuemedicationupto24 # BINARY MEASURE AT TIME POINT TWO
146 baselinediseaseactivity <-data$ baselinediseaseactivity # BASELINE CONTINUOUS SCORE
147 arm <-data$arm # BINARY TREATMENT INDICATOR
148 patientid <-data$ patientid # PATIENT NUMBER
149
150
151 # CHANGE TO RELATIVE ACRN AND BOXCOX TRANSFORM
152 acrn .12=1 - acrn .12/100
153 acrn .24=1 - acrn .24/100
154
155 lm1=lm(acrn .12~1)
156 lm2=lm(acrn .24~1)
157
158 temp= boxcox (lm1 , plotit =F, lambda =seq (0,2, length =100) )
159 lambda .12= temp$x[ which .max(temp$y)]
160 temp= boxcox (lm2 , plotit =F, lambda =seq (0,2, length =100) )
161 lambda .24= temp$x[ which .max(temp$y)]
162 lambda =mean(c( lambda .12 , lambda .24))
163
164 acrn .12= boxcoxtransform (acrn .12 , mean(c( lambda .12 , lambda .24)))
165 acrn .24= boxcoxtransform (acrn .24 , mean(c( lambda .12 , lambda .24)))
166
167 y=c(acrn .12 , acrn .24)
168
169 #DATA FRAME FOR CONTINUOUS MODEL
170 id=c(1:( length (y)/2) ,1:( length (y)/2))
171 y=y[ order (id)]
172 X=data. frame ( intercept =rep (1, length (y)),trt1=c(armnew ,rep (0, length (y)/2)),trt2=c(rep (0, length (y)/2) ,armnew ),

baselinediseaseactivity =c( baselinediseaseactivity , baselinediseaseactivity ),time=c(rep (1, length (y)/2) ,rep (2,
length (y)/2)))

173 X=X[ order (id) ,]
174 id=sort(id)
175
176 # CONTINUOUS MODEL
177 continuousmodel =gls(y~trt1+trt2+ baselinediseaseactivity +time , correlation = corSymm (form=~1| id),weights = varIdent (form

=~1| time),na. action =na.omit ,data=X)
178
179 # BINARY MODEL 1
180 failuremodel1 =glm( rescuemedicationupto12 ~ baselinediseaseactivity +armnew , family =" binomial ")
181
182 # BINARY MODEL 2
183
184 rescuemedicationupto24 = rescuemedicationupto24 [ rescuemedicationupto12 ==0]
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185 interim =( baselinediseaseactivity *acrn .12)[ rescuemedicationupto12 ==0]
186 armnew = armnew [ rescuemedicationupto12 ==0]
187
188 failuremodel2 =glm( rescuemedicationupto24 ~ interim +armnew , family =" binomial ")
189
190
191 partials =get. partials ( continuousmodel , baselinediseaseactivity [!is.na( baselinediseaseactivity )], failuremodel1 ,

failuremodel2 ,((1 - dichotomisationthreshold /100)^lambda -1)/ lambda )
192 mean= partials [12]
193 partials = partials [1:11]
194 covariance = matrix (0 ,11 ,11)
195
196 covariance [1:5 ,1:5]= continuousmodel $ varBeta
197 covariance [6:8 ,6:8]= summary ( failuremodel1 )$cov. unscaled
198 covariance [9:11 ,9:11]= summary ( failuremodel2 )$cov. unscaled
199
200 variance =t( partials )%*% covariance %*% partials
201
202 CI. augbin =c(mean -1.96 *sqrt( variance ),mean ,mean +1.96 *sqrt( variance ))
203
204
205
206
207
208 ## ADJUSTED
209
210 #For adjustments change failure model 1 and failure model 2 to:
211
212 failuremodel1 = brglm ( rescuemedicationupto12 ~ baselinediseaseactivity +armnew , family =" binomial ")
213 failuremodel2 = brglm ( rescuemedicationupto24 ~ interim +armnew , family =" binomial ")

D.2 Augmented Binary: GEE
1 library ( geesmv )
2 library (gee)
3 library ( gtools )
4 library ( geepack )
5 library (gee)
6 library (nlme)
7 library ( R2Cuba )
8 library (boot)
9 library ( mvtnorm )

10 library (MASS)
11 library ( brglm )
12
13
14
15 ## AUGMENTED BINARY - GENERALISED ESTIMATING EQUATIONS (GEE)
16
17 ## UNADJUSTED
18
19 integrand <-function (acrn , meantreated , meanuntreated ,Sigma ,failure1 ,failure2 , baseline )
20 {
21 n= length ( baseline )
22
23 f1treat =inv. logit ( cbind (rep (1,n),baseline ,rep (1,n))%*% failure1 $ coefficient )
24 f1untreat =inv. logit ( cbind (rep (1,n),baseline ,rep (0,n))%*% failure1 $ coefficient )
25
26 f2treat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (1,n))%*% failure2 $ coefficient )
27 f2untreat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (0,n))%*% failure2 $ coefficient )
28
29 pdftreat = dmvnorm ( cbind (- meantreated [ ,1]+ acrn [1],- meantreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c( Sigma

[1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
30 pdfuntreat = dmvnorm ( cbind (- meanuntreated [ ,1]+ acrn [1],- meanuntreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c(

Sigma [1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
31
32 return (c(mean ((1 - f1treat )*(1- f2treat )* pdftreat ),mean ((1 - f1untreat )*(1- f2untreat )* pdfuntreat )))
33 }
34
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35
36
37
38 probofsuccess = function ( continuous ,baseline ,failure1 ,failure2 ,dich)
39 {
40
41 n= length ( baseline )
42
43 meantreated = cbind ( cbind (rep (1,n),rep (1,n),rep (0,n),baseline ,rep (1,n))%*% continuous $ coefficient ,
44 cbind (rep (1,n),rep (0,n),rep (1,n),baseline ,rep (2,n))%*% continuous $ coefficient )
45
46 meanuntreated = cbind ( cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (1,n))%*% continuous $ coefficient ,
47 cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (2,n))%*% continuous $ coefficient )
48
49
50 #find lower and upper points for integration :
51 maxmean1 =max(c( meantreated [,1], meanuntreated [ ,1]))
52 maxmean2 =max(c( meantreated [,2], meanuntreated [ ,2]))
53 minmean1 =min(c( meantreated [,1], meanuntreated [ ,1]))
54 minmean2 =min(c( meantreated [,2], meanuntreated [ ,2]))
55
56
57 # integrate
58
59 a= cuhre (2,2, integrand =integrand , meantreated = meantreated , meanuntreated = meanuntreated , Sigma =Sigma1 , failure1 =

failure1 , failure2 =failure2 , baseline =baseline , lower =c( qnorm (1e -08 , minmean1 ,sqrt( Sigma1 [1 ,1])),qnorm (1e -08 ,
minmean2 ,sqrt( Sigma1 [2 ,2]))),

60 upper =c( qnorm (1 -1e -08 , maxmean1 ,sqrt( Sigma1 [1 ,1])), dich),flags =list( verbose =0, final =1, pseudo . random =0,
mersenne .seed=NULL))

61
62
63 # return (a$ value [1] -a$ value [2])
64 return (log(a$ value [1]/(1-a$ value [1]))-log(a$ value [2]/(1-a$ value [2])))
65 }
66
67
68
69
70 get. partials <-function ( continuous ,baseline ,failure1 ,failure2 ,dich)
71 {
72
73 fit1= probofsuccess ( continuous ,baseline ,failure1 ,failure2 ,dich)
74 augbin . partials =as. vector (rep (0 ,11))
75
76 # continuous model
77
78 for(i in 1:5)
79 {
80
81 valueupdate1 = continuous
82 valueupdate1 $ coefficient [i]= valueupdate1 $ coefficient [i ]+0.000001
83
84 updateprob = probofsuccess ( valueupdate1 ,baseline ,failure1 ,failure2 ,dich)
85
86 augbin . partials [i]=( updateprob -fit1)/ 0.000001
87
88 }
89
90 # failure model1
91
92 for(i in 1:3)
93 {
94
95 valueupdate2 = failure1
96 valueupdate2 $ coefficient [i]= valueupdate2 $ coefficient [i ]+0.000001
97
98 updateprob = probofsuccess ( continuous ,baseline , valueupdate2 ,failure2 ,dich)
99

100 augbin . partials [i +5]=( updateprob -fit1)/ 0.000001
101 }
102
103 # failure model2
104
105 for(i in 1:3)
106 {



226 Small Sample Adjusted Methods: R Code

107
108 valueupdate3 = failure2
109 valueupdate3 $ coefficient [i]= valueupdate3 $ coefficient [i ]+0.000001
110
111 updateprob = probofsuccess ( continuous ,baseline ,failure1 , valueupdate3 ,dich)
112
113 augbin . partials [i +8]=( updateprob -fit1)/ 0.000001
114 }
115
116 return (c( augbin .partials ,fit1))
117 }
118
119
120
121
122
123 # ##################################################
124 # APPLY IN RHEUMATOID ARTHRITIS EXAMPLE FROM PAPER :#
125 # ##################################################
126
127
128 dichotomisationthreshold =20 # change this depending on example
129 data=#OSKIRA -1 TRIAL
130
131 acrn .12 <-data$ acrn12 # CONTINUOUS MEASURE AT TIME POINT ONE
132 acrn .24 <-data$ acrn24 # CONTINUOUS MEASURE AT TIME POINT TWO
133 rescuemedicationupto12 <-data$ rescuemedicationupto12 # BINARY MEASURE AT TIME POINT ONE
134 rescuemedicationupto24 <-data$ rescuemedicationupto24 # BINARY MEASURE AT TIME POINT TWO
135 baselinediseaseactivity <-data$ baselinediseaseactivity # BASELINE CONTINUOUS SCORE
136 arm <-data$arm # BINARY TREATMENT INDICATOR
137 patientid <-data$ patientid # PATIENT NUMBER
138
139
140 # CHANGE TO RELATIVE ACRN AND BOXCOX TRANSFORM
141 acrn .12=1 - acrn .12/100
142 acrn .24=1 - acrn .24/100
143
144 lm1=lm(acrn .12~1)
145 lm2=lm(acrn .24~1)
146
147 temp= boxcox (lm1 , plotit =F, lambda =seq (0,2, length =100) )
148 lambda .12= temp$x[ which .max(temp$y)]
149 temp= boxcox (lm2 , plotit =F, lambda =seq (0,2, length =100) )
150 lambda .24= temp$x[ which .max(temp$y)]
151 lambda =mean(c( lambda .12 , lambda .24))
152
153 acrn .12= boxcoxtransform (acrn .12 , mean(c( lambda .12 , lambda .24)))
154 acrn .24= boxcoxtransform (acrn .24 , mean(c( lambda .12 , lambda .24)))
155
156 y=c(acrn .12 , acrn .24)
157
158 #DATA FRAME FOR CONTINUOUS MODEL
159
160 id=c(1:( length (y)/2) ,1:( length (y)/2))
161 y=y[ order (id)]
162 X=data. frame ( intercept =rep (1, length (y)),trt1=c(arm ,rep (0, length (y)/2)),trt2=c(rep (0, length (y)/2) ,arm),

baselinediseaseactivity =c( baselinediseaseactivity , baselinediseaseactivity ),time=c(rep (1, length (y)/2) ,rep (2,
length (y)/2)))

163 X=X[ order (id) ,]
164 id=sort(id)
165
166 # CONTINUOUS MODEL
167 continuousmodel =gee(y~trt1+trt2+ baselinediseaseactivity +time , data=X, id=id , corstr =" exchangeable ", na. action =na.

omit)
168 Sigma1 <-as. matrix ( continuousmodel $ scale * continuousmodel $ working . correlation )
169
170 # BINARY MODEL 1
171 failuremodel1 =glm( rescuemedicationupto12 ~ baselinediseaseactivity +arm , family =" binomial ")
172
173 # BINARY MODEL 2
174
175 rescuemedicationupto24 = rescuemedicationupto24 [ rescuemedicationupto12 ==0]
176 interim =( baselinediseaseactivity *acrn .12)[ rescuemedicationupto12 ==0]
177 arm=arm[ rescuemedicationupto12 ==0]
178
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179 failuremodel2 =glm( rescuemedicationupto24 ~ interim +arm , family =" binomial ")
180
181
182
183 partials =get. partials ( continuousmodel , baselinediseaseactivity [!is.na( baselinediseaseactivity )], failuremodel1 ,

failuremodel2 ,((1 - dichotomisationthreshold /100)^lambda -1)/ lambda )
184
185 mean= partials [12]
186 partials = partials [1:11]
187 covariance = matrix (0 ,11 ,11)
188
189 covariance [1:5 ,1:5]= continuousmodel $ robust . variance
190 covariance [6:8 ,6:8]= summary ( failuremodel1 )$cov. unscaled
191 covariance [9:11 ,9:11]= summary ( failuremodel2 )$cov. unscaled
192
193 variance =t( partials )%*% covariance %*% partials
194
195 CI. augbin =c(mean -1.96 *sqrt( variance ),mean ,mean +1.96 *sqrt( variance ))
196
197
198
199
200
201
202
203
204 ### ADJUSTED
205
206
207 GEE.mbn <- function (formula , id , data , corstr = " independence ",
208 d = 2, r = 1)
209 {
210
211 init <- model . frame (formula , data)
212 init$num <- 1: length (init[, 1])
213 m <- model . frame (formula , data)
214 mt <- attr(m, " terms ")
215 data$ response <- model . response (m, " numeric ")
216 mat <- as.data. frame ( model . matrix (formula , m))
217 gee.fit <- gee(formula , data = data , id = id , family = " gaussian ",
218 corstr = corstr )
219 beta_est <- gee.fit$ coefficient
220 alpha <- gee.fit$ working . correlation [1, 2]
221 scale <- summary (gee.fit)$ scale
222 len <- length (beta_est)
223 len_vec <- len ^2
224 data$id <- gee.fit$id
225 cluster <- cluster .size(data$id)
226 ncluster <- max( cluster $n)
227 size <- cluster $m
228 mat$subj <- rep( unique (data$id), cluster $n)
229 var <- switch (corstr , independence = cormax .ind( ncluster ),
230 exchangeable = cormax .exch(ncluster , alpha ), ‘AR -M‘ = cormax .ar1(ncluster ,
231 alpha ), unstructured = summary (

gee.fit)$ working . correlation
)

232
233 cov.beta <- unstr <- matrix (0, nrow = len , ncol = len)
234 step11 <- matrix (0, nrow = len , ncol = len)
235 for (i in 1: size) {
236 y <- as. matrix (data$ response [data$id == unique (data$id)[i]])
237 covariate <- as. matrix ( subset (mat [ ,1:5] , data$id ==i))
238 ncluster = cluster $n[i]
239 var1 = var [1: ncluster , 1: ncluster ]
240 Vi <- gee.fit$ scale * var1
241 xx <- t( covariate ) %*% solve (Vi) %*% covariate
242 step11 <- step11 + xx
243
244 }
245 k <- (sum( cluster $n) - 1)/(sum( cluster $n) - len) * size/(size -
246 1)
247 delta <- ifelse (size > ((d + 1) * len), len/(size - len),
248 1/d)
249 step00 <- matrix (0, nrow = len , ncol = len)
250 for (i in 1: size) {
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251 y <- as. matrix (data$ response [data$id == unique (data$id)[i]])
252 ncluster = cluster $n[i]
253 covariate <- as. matrix ( subset (mat [ ,1:5] , data$id ==i))
254 var1 = var [1: ncluster , 1: ncluster ]
255
256 Vi <- gee.fit$ scale * var1
257 xy <- t( covariate ) %*% solve (Vi) %*% (y - covariate %*%
258 beta_est)
259 step00 <- step00 + xy %*% t(xy)
260
261
262 }
263 tracexi <-max(diag( solve ( step11 ) %*% step00 ))/len
264 xi <- pmax(r, max(diag( solve ( step11 ) %*% step00 ))/len)
265 step12 <- matrix (0, nrow = len , ncol = len)
266 step13 <- matrix (0, nrow = len_vec , ncol = 1)
267 step14 <- matrix (0, nrow = len_vec , ncol = len_vec)
268 p <- matrix (0, nrow = len_vec , ncol = size)
269 for (i in 1: size) {
270 y <- as. matrix (data$ response [data$id == unique (data$id)[i]])
271 covariate <- as. matrix ( subset (mat [ ,1:5] , data$id ==i))
272 ncluster = cluster $n[i]
273 var1 = var [1: ncluster , 1: ncluster ]
274
275 Vi <- gee.fit$ scale * var1
276 xy <- t( covariate ) %*% solve (Vi) %*% (k * (y - covariate %*%
277 beta_est) %*% t(y - covariate %*% beta_est) +
278 delta * xi * Vi) %*% solve (Vi) %*% covariate
279 step12 <- step12 + xy
280 step13 <- step13 + vec(xy)
281 p[, i] <- vec(xy)
282 }
283 for (i in 1: size) {
284 dif <- (p[, i] - step13 /size) %*% t(p[, i] - step13 /size)
285 step14 <- step14 + dif
286 }
287 cov.beta <- solve ( step11 ) %*% ( step12 ) %*% solve ( step11 )
288 cov.var <- size/(size - 1) * kronecker ( solve ( step11 ), solve ( step11 )) %*%
289 step14 %*% kronecker ( solve ( step11 ), solve ( step11 ))
290 return (list( summary (gee.fit)$ coefficients , summary (gee.fit)$scale , summary (gee.fit)$ working . correlation ,cov.beta

= cov.beta))
291 }
292
293
294 integrand <-function (acrn , meantreated , meanuntreated ,Sigma ,failure1 ,failure2 , baseline )
295 {
296 n= length ( baseline )
297
298 f1treat =inv. logit ( cbind (rep (1,n),baseline ,rep (1,n))%*% failure1 $ coefficient )
299 f1untreat =inv. logit ( cbind (rep (1,n),baseline ,rep (0,n))%*% failure1 $ coefficient )
300
301 f2treat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (1,n))%*% failure2 $ coefficient )
302 f2untreat =inv. logit ( cbind (rep (1,n),acrn [1]*baseline ,rep (0,n))%*% failure2 $ coefficient )
303
304 pdftreat = dmvnorm ( cbind (- meantreated [ ,1]+ acrn [1],- meantreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c( Sigma

[1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
305 pdfuntreat = dmvnorm ( cbind (- meanuntreated [ ,1]+ acrn [1],- meanuntreated [ ,2]+ acrn [2]) , mean=c(0 ,0) ,sigma = matrix (c(

Sigma [1 ,1] , Sigma [1 ,2] , Sigma [2 ,1] , Sigma [2 ,2]) ,2,2))
306
307 return (c(mean ((1 - f1treat )*(1- f2treat )* pdftreat ),mean ((1 - f1untreat )*(1- f2untreat )* pdfuntreat )))
308 }
309
310
311
312
313 probofsuccess = function ( continuous ,baseline ,failure1 ,failure2 ,dich)
314 {
315
316 n= length ( baseline )
317
318 meantreated = cbind ( cbind (rep (1,n),rep (1,n),rep (0,n),baseline ,rep (1,n))%*% continuous [[1]][ ,1] ,
319 cbind (rep (1,n),rep (0,n),rep (1,n),baseline ,rep (2,n))%*% continuous [[1]][ ,1])
320
321 meanuntreated = cbind ( cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (1,n))%*% continuous [[1]][ ,1] ,
322 cbind (rep (1,n),rep (0,n),rep (0,n),baseline ,rep (2,n))%*% continuous [[1]][ ,1])
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323
324
325 #find lower and upper points for integration :
326 maxmean1 =max(c( meantreated [,1], meanuntreated [ ,1]))
327 maxmean2 =max(c( meantreated [,2], meanuntreated [ ,2]))
328 minmean1 =min(c( meantreated [,1], meanuntreated [ ,1]))
329 minmean2 =min(c( meantreated [,2], meanuntreated [ ,2]))
330
331
332 # integrate
333
334 a= cuhre (2,2, integrand =integrand , meantreated = meantreated , meanuntreated = meanuntreated , Sigma =Sigma1 , failure1 =

failure1 , failure2 =failure2 , baseline =baseline , lower =c( qnorm (1e -08 , minmean1 ,sqrt( Sigma1 [1 ,1])),qnorm (1e -08 ,
minmean2 ,sqrt( Sigma1 [2 ,2]))),

335 upper =c( qnorm (1 -1e -08 , maxmean1 ,sqrt( Sigma1 [1 ,1])), dich),flags =list( verbose =0, final =1, pseudo . random =0,
mersenne .seed=NULL))

336
337
338 return (a$ value [1] -a$ value [2])
339 # return (log(a$ value [1]/(1-a$ value [1]))-log(a$ value [2]/(1-a$ value [2])))
340 }
341
342
343
344
345 get. partials <-function ( continuous ,baseline ,failure1 ,failure2 ,dich)
346 {
347
348 fit1= probofsuccess ( continuous ,baseline ,failure1 ,failure2 ,dich)
349 augbin . partials =as. vector (rep (0 ,11))
350
351
352 # split in to three separate models
353
354 # continuous model
355
356 for(i in 1:5)
357 {
358
359 valueupdate1 = continuous
360 valueupdate1 [[1]][i ,1]= valueupdate1 [[1]][i ,1]+0.000001
361
362 updateprob = probofsuccess ( valueupdate1 ,baseline ,failure1 ,failure2 ,dich)
363
364 augbin . partials [i]=( updateprob -fit1)/ 0.000001
365
366 }
367
368 # failure model1
369
370 for(i in 1:3)
371 {
372
373 valueupdate2 = failure1
374 valueupdate2 $ coefficient [i]= valueupdate2 $ coefficient [i ]+0.000001
375
376 updateprob = probofsuccess ( continuous ,baseline , valueupdate2 ,failure2 ,dich)
377
378 augbin . partials [i +5]=( updateprob -fit1)/ 0.000001
379 }
380
381 # failure model2
382
383 for(i in 1:3)
384 {
385
386 valueupdate3 = failure2
387 valueupdate3 $ coefficient [i]= valueupdate3 $ coefficient [i ]+0.000001
388
389 updateprob = probofsuccess ( continuous ,baseline ,failure1 , valueupdate3 ,dich)
390
391 augbin . partials [i +8]=( updateprob -fit1)/ 0.000001
392 }
393
394 return (c( augbin .partials ,fit1))
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395 }
396
397
398 # ##################################################
399 # APPLY IN RHEUMATOID ARTHRITIS EXAMPLE FROM PAPER :#
400 # ##################################################
401
402 dichotomisationthreshold =20 # change this depending on example
403 data=#OSKIRA -1 TRIAL
404
405 acrn .12 <-data$ acrn12 # CONTINUOUS MEASURE AT TIME POINT ONE
406 acrn .24 <-data$ acrn24 # CONTINUOUS MEASURE AT TIME POINT TWO
407 rescuemedicationupto12 <-data$ rescuemedicationupto12 # BINARY MEASURE AT TIME POINT ONE
408 rescuemedicationupto24 <-data$ rescuemedicationupto24 # BINARY MEASURE AT TIME POINT TWO
409 baselinediseaseactivity <-data$ baselinediseaseactivity # BASELINE CONTINUOUS SCORE
410 arm <-data$arm # BINARY TREATMENT INDICATOR
411 patientid <-data$ patientid # PATIENT NUMBER
412
413
414 # CHANGE TO RELATIVE ACRN AND BOXCOX TRANSFORM
415 acrn .12=1 - acrn .12/100
416 acrn .24=1 - acrn .24/100
417
418 lm1=lm(acrn .12~1)
419 lm2=lm(acrn .24~1)
420
421 temp= boxcox (lm1 , plotit =F, lambda =seq (0,2, length =100) )
422 lambda .12= temp$x[ which .max(temp$y)]
423 temp= boxcox (lm2 , plotit =F, lambda =seq (0,2, length =100) )
424 lambda .24= temp$x[ which .max(temp$y)]
425 lambda =mean(c( lambda .12 , lambda .24))
426
427 acrn .12= boxcoxtransform (acrn .12 , mean(c( lambda .12 , lambda .24)))
428 acrn .24= boxcoxtransform (acrn .24 , mean(c( lambda .12 , lambda .24)))
429
430 y=c(acrn .12 , acrn .24)
431
432 #DATA FRAME FOR CONTINUOUS MODEL
433 id=c(1:( length (y)/2) ,1:( length (y)/2))
434 y=y[ order (id)]
435 X=data. frame ( intercept =rep (1, length (y)),trt1=c(arm ,rep (0, length (y)/2)),trt2=c(rep (0, length (y)/2) ,arm),

baselinediseaseactivity =c( baselinediseaseactivity , baselinediseaseactivity ),time=c(rep (1, length (y)/2) ,rep (2,
length (y)/2)))

436 X=X[ order (id) ,]
437 id=sort(id)
438 X$y<-y
439 X$id <-id
440 X<-na.omit(X)
441 Xnew <-transform (X, id= match (X$id , unique (X$id)))
442
443 # CONTINUOUS MODEL
444 continuousmodel =GEE.mbn(y~trt1+trt2+ baselinediseaseactivity +time , data=Xnew , id=Xnew$id , corstr =" exchangeable ")
445 Sigma1 <-as. matrix ( continuousmodel [[2]] * continuousmodel [[3]])
446
447 # BINARY MODEL 1
448 failuremodel1 = brglm ( rescuemedicationupto12 ~ baselinediseaseactivity +arm , family =" binomial ")
449
450 # BINARY MODEL 2
451
452 rescuemedicationupto24 = rescuemedicationupto24 [ rescuemedicationupto12 ==0]
453 interim =( baselinediseaseactivity *acrn .12)[ rescuemedicationupto12 ==0]
454 arm=arm[ rescuemedicationupto12 ==0]
455 failuremodel2 = brglm ( rescuemedicationupto24 ~ interim +arm , family =" binomial ")
456
457
458
459 partials =get. partials ( continuousmodel , baselinediseaseactivity [!is.na( baselinediseaseactivity )], failuremodel1 ,

failuremodel2 ,((1 - dichotomisationthreshold /100)^lambda -1)/ lambda )
460
461 mean= partials [12]
462 partials = partials [1:11]
463
464 covariance = matrix (0 ,11 ,11)
465
466 covariance [1:5 ,1:5]= continuousmodel $cov.beta
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467 covariance [6:8 ,6:8]= summary ( failuremodel1 )$cov. unscaled
468 covariance [9:11 ,9:11]= summary ( failuremodel2 )$cov. unscaled
469
470 variance =t( partials )%*% covariance %*% partials
471
472 CI. augbin =c(mean -1.96 *sqrt( variance ),mean ,mean +1.96 *sqrt( variance ))

D.3 Standard Binary
1 library ( gtools )
2 library ( geepack )
3 library (nlme)
4 library ( R2Cuba )
5 library (boot)
6 library ( mvtnorm )
7 library (MASS)
8 library ( brglm )
9 library (gee)

10
11
12 ## STANDARD BINARY METHOD
13 # UNADJUSTED
14
15
16 boxcoxtransform = function (y, lambda )
17 {
18 return ((y^lambda -1)/ lambda )
19 }
20
21
22
23 differenceinprob . binary = function (glm1 ,t,x)
24 {
25 #get fitted probs for each arm from model :
26
27 fittedvalues . control =as. double (inv. logit ( cbind (rep (1, length (t[t ==0]) ),rep (0, length (t[t ==0]) ),x[t ==0]) %*%glm1$

coef))
28
29 fittedvalues .exp=as. double (inv. logit ( cbind (rep (1, length (t[t ==1]) ),rep (1, length (t[t ==1]) ),x[t ==1]) %*%glm1$coef))
30
31
32 return (log(mean( fittedvalues .exp ,na.rm=T)/(1- mean( fittedvalues .exp ,na.rm=T)))-log(mean( fittedvalues .control ,na.

rm=T)/(1- mean( fittedvalues .control ,na.rm=T))))
33 # return (mean( fittedvalues .exp ,na.rm=T)-mean( fittedvalues .control ,na.rm=T))
34
35 }
36
37
38 partialderivatives . binary = function (glm1 ,t,x)
39 {
40
41
42 value = differenceinprob . binary (glm1 ,t,x)
43
44 partials =rep (0 ,3)
45
46 tempglm1 =glm1
47 tempglm1 $coef [1]= tempglm1 $coef [1]+0.00001
48
49 partials [1]=( differenceinprob . binary (tempglm1 ,t,x)-value )/ 0.00001
50
51 tempglm1 =glm1
52 tempglm1 $coef [2]= tempglm1 $coef [2]+0.00001
53
54 partials [2]=( differenceinprob . binary (tempglm1 ,t,x)-value )/ 0.00001
55
56 tempglm1 =glm1
57 tempglm1 $coef [3]= tempglm1 $coef [3]+0.00001
58
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59 partials [3]=( differenceinprob . binary (tempglm1 ,t,x)-value )/ 0.00001
60
61 return (c(value , partials ))
62
63 }
64
65
66 # ##################################################
67 # APPLY IN RHEUMATOID ARTHRITIS EXAMPLE FROM PAPER :#
68 # ##################################################
69
70
71 # UNADJUSTED
72
73 dichotomisationthreshold =20 # change this depending on example
74 data=#OSKIRA -1 TRIAL
75
76 acrn .12 <-data$ acrn12 # CONTINUOUS MEASURE AT TIME POINT ONE
77 acrn .24 <-data$ acrn24 # CONTINUOUS MEASURE AT TIME POINT TWO
78 rescuemedicationupto12 <-data$ rescuemedicationupto12 # BINARY MEASURE AT TIME POINT ONE
79 rescuemedicationupto24 <-data$ rescuemedicationupto24 # BINARY MEASURE AT TIME POINT TWO
80 baselinediseaseactivity <-data$ baselinediseaseactivity # BASELINE CONTINUOUS SCORE
81 arm <-data$arm # BINARY TREATMENT INDICATOR
82 patientid <-data$ patientid # PATIENT NUMBER
83
84 success . binary = ifelse (acrn .24 > dichotomisationthreshold & rescuemedicationupto24 ==0 ,1 ,0)
85
86 glm1=glm( success . binary ~ armnew + baselinediseaseactivity , family =" binomial ") # CHANGE THIS FOR ADJUSTED METHOD
87
88 partials . binary = partialderivatives . binary (glm1 ,armnew , baselinediseaseactivity )
89 mean. binary = partials . binary [1]
90 partials . binary = partials . binary [ -1]
91
92 covariance = summary (glm1)$cov. unscaled
93
94 var. binary =t( partials . binary )%*% covariance %*% partials . binary
95
96
97 CI. binary =c(mean.binary -1.96 *sqrt(var. binary ),mean.binary ,mean. binary +1.96 *sqrt(var. binary ))
98
99

100 # ADJUSTED
101
102 # CHANGE GLM1 ABOVE TO:
103 glm1=glm( success . binary ~ armnew + baselinediseaseactivity , family =" binomial ")
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Summary

Composite endpoints that combine multiple outcomes on different scales are common in clinical

trials, particularly in chronic conditions. In many of these cases, patients will have to cross a

predefined responder threshold in each of the outcomes to be classed as a responder overall. One

instance of this occurs in systemic lupus erythematosus (SLE), where the responder endpoint

combines two continuous, one ordinal and one binary measure. The overall binary responder

endpoint is typically analysed using logistic regression, resulting in a substantial loss of informa-

tion. We propose a latent variable model for the SLE endpoint, which assumes that the discrete

outcomes are manifestations of latent continuous measures and can proceed to jointly model the

components of the composite. We perform a simulation study and find the method to offer large

efficiency gains over the standard analysis. We find that the magnitude of the precision gains
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are highly dependent on which components are driving response. Bias is introduced when joint

normality assumptions are not satisfied, which we correct for using a bootstrap procedure. The

method is applied to the Phase IIb MUSE trial in patients with moderate to severe SLE. We

show that it estimates the treatment effect 2.5 times more precisely, offering a 60% reduction in

required sample size.

Key words: Latent variable models; Composite endpoints; Responder analysis; Systemic lupus erythe-

matosus

1. Introduction

Composite endpoints combine multiple outcomes in order to determine the effectiveness or ef-

ficacy of a treatment for a given disease. They are typically recommended when a disease is

complex or multi-system and meaningful improvement cannot be captured in a single outcome.

Furthermore, the endpoint may be a combination of continuous and discrete outcomes which are

collapsed in to a single binary responder index.

Table 1 shows examples of diseases that use composite endpoints combining multiple continuous

and discrete components. Responders in fibromyalgia must respond in two continuous and one or-

dinal component however responders in trials for frailty or soft tissue infections must respond in a

total of five continuous and discrete components. Generally, these composite responder endpoints

will be treated as a single binary outcome and analysed using a logistic regression model, which

we term the standard binary method. This solves problems with multiplicity however results in

large losses in efficiency (Wason and Seaman (2013)). The aim of this paper is to propose a joint

modelling framework within which we can model the components of the composite, retaining

the information on the original scales of the outcomes, hence increasing efficiency. One likelihood

based method for handling mixed data is the factorisation model. The objective is to factorise the
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Table 1. Examples of diseases that use complex composite endpoints combining multiple discrete and
continuous measures to determine effectiveness of a treatment including criteria for response and how
each component is measured

Disease Responder endpoint Measured by

Fibromyalgia • achieved a 30% improvement in Electronic diary
pain
• 30% improvement in functional Subscale of Fibromyalgia Impact
status Questionnaire (FIQ)
• improved, much improved, or 7-point Patient Global Impression of
very much improved Change (PGIC) scale

Frailty • BMI<18.5 kg/m2 OR >10% weight and height
weight loss since last wave
• One positive answer to exhaustion CES-D questionnaire
questions
• Low grip strength (M < 31.12 kg, Eg. Jamar hand dynamometer
F < 17.60 kg)
• Gait speed (M < 0.691 m/s, Distance/time
F < 0.619 m/s)
• Low activity (M < 16.5 activity Activity units derived using intensity
units, F < 13.5 activity units) vs. frequency

Necrotizing • Alive until day 28 yes/no
Soft Tissue • Day 14 debridements 6 3 surface area
Infections • No amputation if debridement yes/no

• Day 14 mSOFA score 6 1 mSOFA score - composite additively
combining scores in different systems

• Reduction of at least 3 score mSOFA score - composite additively
points in mSOFA score combining scores in different systems

Systemic lupus • Change in SLEDAI 6 -4 SLE Disease Activity Index
erythematosus • Change in PGA < 0.3 Physicians Global Assessment

• No Grade A or more than one British Isles Lupus Assessment Group
Grade B in BILAG
• Reduction in oral corticosteroids Notes

joint distribution and fit a univariate model to each component of the factorisation (de Leon and

Carriere (2013)). This accounts for correlations between the outcomes by including one response

as a covariate in the model for the other response. In the graphical modelling literature this has

been termed the ‘Conditional Gaussian Distribution’ (Whittaker (1990); Lauritzen and Wermuth
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(1989)). An advantage of these methods in relation to the composite endpoint problem is that

we may account for correlations between measurements whilst making inference directly on the

outcomes that we have measured, hence they fall within a broader class of ‘direct methods’. Ex-

amples of applications of these ideas, which build on the work of Olkin and Tate (1961), include

developmental toxicity studies by Fitzmaurice and Laird (1995) and in the longitudinal setting,

the augmented binary method was developed for application to composite endpoints in clinical

trials where the composite is formed of one continuous and one binary outcome (Wason and

Seaman (2013); Wason and Jenkins (2016); McMenamin and others (2018)). One difficulty with

these methods beyond the bivariate scenario is the range of possibilities for the factorisations,

with no consensus on how this should be determined. In the case of the SLE responder endpoint

with four components, this amounts to 24 possible factorisations, each of which may result in

different conclusions (Verbeke and others (2014); de Leon and Carriere (2013)).

Another family of models used to model mixed outcome types which feature frequently in eco-

nomics and finance are copulas. These are functions that join or couple multivariate distribution

functions to their uniform one-dimensional marginal distribution functions as discussed by Nelsen

(1999). Copulas offer a flexible framework in this setting, as the marginal distribution functions

need not come from the same parametric family. While the construction of copulas is considered

to be mathematically elegant and the flexibility with which we can model appealing, they are not

without their shortcomings. Extensions beyond the bivariate setting are difficult and have failed

to perform well in many applications (de Leon and Carriere (2013)). Other practical implications

include poor out-of-sample predictions due to the wide variety of copulas available. These restric-

tions, along with difficulties in longitudinal settings with unbalanced data structures, have seen

few applications of copulas for mixed outcome types in the medical statistics literature (Verbeke

and others (2014)). Applications of copulas in mixed outcome settings include de Leon and Wu

(2010) and Wu and de Leon. A.R. (2014).
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Another likelihood based method that allows for more flexibility when modelling the correlations

between outcomes falls within the framework of latent variable models (Skrondal and Rabe-

Hesketh (2004)). The multiple outcomes are assumed to be physical manifestations of some

underlying latent process. This is modelled by including the same latent variable in each of the

models for the observed responses. The outcomes are then assumed to be independent condi-

tional on this latent variable. This solves the problem of deciding the order of factorisations in

previously discussed methods however this formulation results in the inclusion of some covariance

parameters in the mean structure, leaving the model sensitive to misspecification of the correla-

tion structure (Sammel and Ryan (2002)). One example of these models is introduced by Sammel

and others (1997), where effects of covariates of interest are modelled through this shared latent

variable. Although these models have the intuitive interpretation that each outcome is attempting

to capture underlying disease activity, the correlation matrix is restricted to allow for the same

correlation between each pair of outcomes, which is unlikely in practice. This structure is relaxed

in work by Dunson (2000), where the effects of covariates are included in the model separately

from the latent variable. The correlation structure can be further relaxed to allow for a different

latent variable for each outcome, meaning that pairs of outcomes are not assumed to have the

same correlation. However these models would require integrating out each of the latent variables

in order to obtain the joint distribution of interest (McCulloch (2008)). Furthermore, they are

relevant in applications with multiple time points however less so for a single time point, as is

the case for the composite endpoint problem.

Latent variables have also been used in the setting of mixed continuous and discrete variables to

a different end. Namely, the outcomes adopt a correlated Gaussian distribution by assuming that

the discrete outcomes are coarsely measured manifestations of underlying continuous variables

subject to some threshold specifications, as seen in Ashford and Sowden (1970) and Chib and

Greenberg (1998). Specifying discrete variables in terms of a partitioning of the latent variable



6 McMenamin and others

space into non-overlapping intervals dates back to Pearson (1904) in relation to his generalised

theory of alternative inheritance and has received much consideration in the literature since. Ter-

minology surrounding these models is inconsistent but they are often referred to as multivariate

probit models (Ashford and Sowden (1970)). This theory can also be found to underpin condi-

tional grouped continuous models (Poon and Lee (1987)). By formulating the distribution in this

way, we can correlate the error terms between models and work within the familiar paradigm

of Gaussian distributions and maximum likelihood theory. The theory and application of these

ideas for a mixture of continuous and binary outcomes has featured in the statistics literature,

see for example work by Tate (1955), Cox and Wermuth (1992) and Catalano and Ryan (1992).

Generalisations of these ideas, which appear less frequently in the literature, lead to methods

for modelling continuous and ordinal variables, with applications in developmental toxicology

(Catalano (1997); Samani and Ganjali (2008); Arminger and Kusters (1988); Regan and Cata-

lano (2000); Faes and others (2002)). Despite the advantages, the multivariate probit model has

not realised its full potential in the applied biostatistics literature. This was noted by Lessafre

and Molenberghs (1991) and we believe it still to be the case today. The few applications that do

appear tend to demonstrate bivariate scenarios or those that mix continuous and binary or con-

tinuous and ordinal, rather than all three. Furthermore, these models have not been considered

specifically to address challenges with modelling composite endpoints. Other work has combined

thresholding the response variables and introducing latent variables in the model, examples in-

clude work by Gueorguieva and Agresti (2001), de Leon and Carriere (2013), Gueorguieva and

Sanacora (2003) and Gueorguieva and Sanacora (2006), however these ideas are most applicable

in the longitudinal setting. We will therefore employ the latent outcome framework and investi-

gate its use for the composite endpoint problem.

The paper proceeds as follows. In Section 2 we discuss systemic lupus erythematosus (SLE), the

motivating example for the methods. In Section 3 we introduce the latent variable model and
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discuss how we conduct estimation and inference. In Section 4 we compare the behaviour of the

latent variable model with the augmented binary and standard binary methods, including the

case when the key assumptions are not satisfied. In Section 5 we apply the methods to the Phase

IIb MUSE trial in patients with moderate to severe SLE. Finally, in Section 6 we discuss our

findings and make some recommendations.

2. Motivating example

In what follows we will focus specifically on systemic lupus erythematosus (SLE), however the

methods introduced will be relevant to other diseases using endpoints with a similar structure. The

SLE endpoint is shown in Figure 1. It combines a continuous PGA measure, a continuous SLEDAI

measure, an ordinal BILAG measure and a binary corticosteroids measure, where patients must

meet the response criteria in all components in order to be classed as a responder overall. Note that

the SLEDAI and BILAG measures are themselves composite scores deriving from a combination

of items, however this will not be considered in the analysis.

The real data underpinning this motivation comes from the MUSE study (Furie and others

(2017)). It was a Phase IIb, randomised, double-blind, placebo-controlled study investigating the

efficacy and safety of anifrolumab in adults with moderate to severe SLE. Patients (n=305) were

randomised to receive anifrolumab (300mg or 1000mg) or placebo, in addition to standard therapy

every 4 weeks for 48 weeks. The primary end point was the percentage of patients achieving an

SRI response at week 24 with sustained reduction of oral corticosteroids (<10mg/day and less

than or equal to the dose at week 1 from week 12 through 24). The methods discussed will make

inference at one time point, as this is the case in the trial, although they can be easily extended

for the longitudinal case.
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Fig. 1. Structure of the composite endpoint use in trials of systemic lupus erythematosus. The continuous
SLEDAI, continuous PGA and ordinal BILAG measures are dichotomised and combined to form the
binary SRI indicator which is then combined with the binary taper variable to form the overall binary
SLE responder index

3. Methods

3.1 Notation

Let Yi = (Yi1, Yi2, Y
∗
i3, Y

∗
i4) represent the vector of observed and latent continuous measures for

patient i. Yi1 and Yi2 are the observed continuous SLEDAI and PGA measures. Let Yi3 denote

BILAG, the observed ordinal manifestation of Y ∗i3 and Yi4 the observed binary taper variable for

Y ∗i4. Ti represents the treatment indicator for patient i, yi10 and yi20 are the baseline measures

for Yi1 and Yi2 respectively.

3.2 Model

The mean structure for the outcomes is shown in (3.1). The baseline measures y10 and y20 are

included in the model for Y1 and Y2 respectively.
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Yi1 = α0 + α1Ti + α2yi10 + εi1

Yi2 = β0 + β1Ti + β2yi20 + εi2

Y ∗i3 = γ1Ti + ε∗i3

Y ∗i4 = ψ0 + ψ1Ti + ε∗i4

(3.1)

The observed discrete variables are related to the latent continuous variables by partitioning

the latent variable space, as shown in (3.2). The lower and upper thresholds for both discrete

variables are set at τ03 = τ04 = −∞, τ53 = τ24 = ∞. The intercept term for the ordinal variable

in (3.1) is set at γ0 = 0 so that the cut-points τ13, τ23, τ33, τ43 may be estimated. The intercept

for the binary outcome ψ0 may be estimated, as τ14 = 0.

Yi3 =





Grade E if τ03 6 Y ∗i3 < τ13,

Grade D if τ13 6 Y ∗i3 < τ23,

Grade C if τ23 6 Y ∗i3 < τ33,

Grade B if τ33 6 Y ∗i3 < τ43,

Non-responder if τ43 6 Y ∗i3 < τ53

Yi4 =

{
0, if τ04 6 Y ∗i4 < τ14,

1, if τ14 6 Y ∗i4 < τ24
(3.2)

Following these assumptions, we can model the error terms in (3.1) as multivariate normal

with zero mean and variance-covariance matrix Σ, as shown in (3.3). Note that the error variances

for ε∗3, ε
∗
4 are σ3 = 1 and σ4 = 1. This does not represent a constraint on the model but rather a

rescaling required for identifiability.

(εi1, εi2, ε
∗
i3, ε

∗
i4) ∼ N(0,Σ) Σ =




σ2
1 ρ12σ1σ2 ρ13σ1 ρ14σ1

ρ12σ1σ2 σ2
2 ρ23σ2 ρ24σ2

ρ13σ1 ρ23σ2 1 ρ34
ρ14σ1 ρ24σ2 ρ34 1


 (3.3)

Subsequently, we may factorise the joint likelihood contribution for patient i as shown below.
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l(θ; Y) = f(Yi1, Yi2;θ)f(Y ∗i3, Y
∗
i4|Yi1, Yi2;θ) (3.4)

where θ is a vector which contains all model parameters. The observed likelihood can then

be expressed as in (3.5).

l(θ; Y) =
n∏

i=1

5∏

w=1

2∏

k=1

f(Yi1, Yi2;θ) [pr (Yi3 = w, Yi4 = k|Yi1 = yi1, Yi2 = yi2;θ)]
I{Yi3=w,Yi4=k}

(3.5)

The joint probability of patients having discrete measurements Yi3 = w and Yi4 = k must be

multiplied over the five ordinal levels and two binary levels resulting in ten combinations of the

probabilities in (3.6) to be calculated. We discuss the intuition for (3.6) in Appendix A.

pr (Yi3 = w, Yi4 = k|Yi1 = Yi1, Yi2 = Yi2;θ) =

Φ2

(
τw3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
− Φ2

(
τ(w−1)3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
−

Φ2

(
τw3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
+ Φ2

(
τ(w−1)3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
(3.6)

where Φ2 is the bivariate standard normal distribution function and µ3|1,2, µ4|1,2 and Σ3,4|1,2

are derived using the rules of conditional multivariate normality, resulting in (3.7).

µ3|1,2 =µ3 + (ρ13−ρ12ρ23)
σ1(1−ρ212)

(Yi1 − µ1) + (ρ23−ρ12ρ13)
σ2(1−ρ212)

(Yi2 − µ2)

µ4|1,2 =µ4 + (ρ14−ρ12ρ24)
σ1(1−ρ212)

(Yi1 − µ1) + (ρ24−ρ12ρ14)
σ2(1−ρ212)

(Yi2 − µ2)
(3.7)

Σ3,4|1,2 =


 1− ρ213−2ρ12ρ13ρ23+ρ223

1−ρ212
ρ34 − ρ13ρ14−ρ12ρ13ρ24−ρ12ρ14ρ23+ρ23ρ24

1−ρ212
ρ34 − ρ13ρ14−ρ12ρ13ρ24−ρ12ρ14ρ23+ρ23ρ24

1−ρ212
1− ρ214−2ρ12ρ14ρ24+ρ224

1−ρ212
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3.3 Estimation

As the variance parameters (σ1, σ2) are required to be greater than 0, we introduce parameters

(δ1, δ2) such that σ1 = exp(δ1) and σ2 = exp(δ2). This transformation ensures that the variance

is above 0 whilst allowing the parameter we estimate to take any real value. We must also

ensure that the correlation parameters (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) are estimated within (-1,1) by

introducing (δ12, δ13, δ14, δ23, δ24, δ34), where ρ12 = 2expit(δ12) − 1, ρ13 = 2expit(δ13) − 1, ρ14 =

2expit(δ14)− 1, ρ23 = 2expit(δ23)− 1, ρ24 = 2expit(δ24)− 1, ρ34 = 2expit(δ34)− 1.

We fit the model in R by coding the likelihood function, probability of response and using the

delta method to obtain standard errors. The bivariate distribution functions in (3.6) are estimated

using ‘pmvnorm’, using the method of Genz (1992). The likelihood maximisation is conducted

using the ‘nlminb’ function in the ‘optimx’ package, which is the best performing method in terms

of accuracy and convergence rate, however is the slowest. We use the ‘Hessian’ function in the

‘numDeriv’ package to obtain the Hessian matrix and invert this to get the covariance matrix

of the model parameters. In a small number of cases the Hessian is not positive definite because

of computational error, meaning that it cannot be inverted. This is rectified in these cases by

using the ‘near PD’ function in the ‘Matrix’ package, which computes the nearest positive definite

matrix.

3.4 Inference

We wish to make inference on the probability of response. Let Si be an indicator for patient

i denoting whether or not they achieved response defined by Si=1 if Yi1 6 θ1, Yi2 6 θ2, Y
∗
i3 6

θ3, Y
∗
i4 6 θ4. Therefore,

P (Si = 1 | Ti, yi10, yi20) =

∫ θ1

−∞

∫ θ2

−∞

∫ θ3

−∞

∫ θ4

−∞
fY(Y;Ti, yi10, yi20)dy∗i4dy

∗
i3dyi2dyi1 (3.8)

We obtain the integrand in (3.8) by using the fitted values of the parameters in the conditional
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mean and conditional covariance matrix in (3.7). Parameter estimates from these methods are

maximum likelihood estimates and so we avail of asymptotic maximum likelihood theory. The

integral in (3.8) is evaluated using the ‘R2Cuba’ package to obtain estimates for each patient,

assuming they were treated p̃i1 and not treated p̃i0. The odds ratio treatment effect is then defined

as shown in (3.9).

δ̃ =

( ∑N
i=1 p̃i1

N −∑N
i=1 p̃i1

)

( ∑N
i=1 p̃i0

N −∑N
i=1 p̃i0

) (3.9)

Note that we can easily define a risk difference or risk ratio using these quantities but in what

follows we consider δ̃ to be the effect of interest. The standard error estimates are obtained using

the delta method. This requires the covariance matrix of the maximum likelihood estimates

Cov(θ̂) and ′′δ̃, the vector of partial derivatives of δ̃ with respect to each of the parameter

estimates. The variance of δ̃ is obtained as shown in (3.10).

V ar(δ̃) = (′′δ̃)TCov(θ̂)(′′δ̃) (3.10)

Alternatively, the quantity in (3.8) can also be considered to be a multivariate Gaussian

hidden truncation distribution, from which we can obtain a closed form solution, and proceed as

detailed by Arnold (2009).

Another important consideration for the model is how to assess goodness-of-fit. We propose an

extension to an existing method for application in this case, which is detailed in Appendix B in

the supplementary material.

4. Simulation study

We are interested in comparing the performance of the latent variable, augmented binary and

standard binary methods through simulation. The models for the augmented binary and standard
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binary methods are included in Appendix C in the supplementary material.

4.1 Data generating model

Initially, we investigate the properties of the methods when the assumptions of the latent variable

model are satisfied. The parameter values in the ‘baseline’ scenario are chosen to simulate a

scenario where composite endpoints are typically recommended for use. Namely, that all four

components drive response and items are correlated but not so highly that the composite becomes

redundant. The parameter values have been informed by the MUSE trial dataset, in particular the

correlation structure. The response probability in the control arm is 0.275 and in the treatment

arm is 0.381, resulting in an odds ratio equal to 1.6, values typically observed in trials requiring

response in all four components. The parameter values selected for the model in (3.1) are shown in

Table 2. From this baseline case, we vary parameters to determine how the methods behave under

various scenarios of interest. In particular, under varying treatment effect, varying responder

threshold and varying drivers of response. The parameter values for these data generating models

are included in Appendix D in the supplementary material.

Table 2. Parameter values for the data generating model in the baseline simulation scenario comparing
the performance of the latent variable, augmented binary and standard binary methods for analysing
a composite endpoint, where the values correspond to a treatment effect in all components and all
components drive response

Purpose Values

Total sample size N=300
Intercept α0 = −4.9, β0 = −1.2, ψ0 = −0.2
Treatment α1 = −0.28, β1 = −0.35, γ1 = −0.24, ψ1 = −0.18
Baseline value α2 = −0.5, β2 = −0.5
Variance σ1 = σ2 = 1
Correlation ρ12 = 0.5, ρ13 = ρ24 = 0.35, ρ14 = 0.25, ρ23 = 0.4, ρ34 = 0.3
Discrete cut-point τ13 = −1, τ23 = −0.1, τ33 = 0.45, τ43 = 1.3
Responder threshold θ1 = −4, θ2 = −0.6, θ3 = 0.45, θ4 = 0
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4.2 Results

The methods are evaluated against a range of performance criteria, which are included with their

Monte Carlo standard errors in Appendix E of the supplementary material. For further details

see Morris and others (2017).

4.2.1 Varying treatment effect Figure 2 shows the bias of the methods as the treatment effect

varies. The standard binary method is unbiased, as we would expect for a logistic regression

in a large sample. The latent variable method is unbiased for smaller treatment effects but a

small bias towards the null is introduced as the treatment effect increases. The augmented binary

method is biased away from the null in this setting and the bias increases as the treatment effect

increases. Given that this performance is worse than is suggested from previous applications of

the augmented binary method in Wason and Seaman (2013) and Wason and Jenkins (2016), this

would suggest that the treatment effect from the augmented binary method may be biased if the

model is misspecified. The coverage of the methods is shown in Figure 3. The binary method has
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Fig. 2. Bias reported from the latent variable method, augmented binary method and standard binary
method when nsim=5000, total sample size N=300 for true log-odds treatment effect between 1.2 and 2.2.
The composite endpoint of interest contains four components: two continuous, one ordinal, one binary
and treatment effects are present in all four components
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approximately nominal coverage. The latent variable method has nominal coverage for smaller

treatment effects, however the coverage probability decreases as the treatment effect increases.

The augmented binary method has coverage of approximately 0.91, which also decreases when the

treatment effect increases. In order to diagnose this under-coverage in the joint modelling methods
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Fig. 3. Coverage probability reported from the latent variable method, augmented binary method and
standard binary method for nsim=5000, total sample size N=300 for true log-odds treatment effect
between 1.2 and 2.2. The composite endpoint of interest contains four components: two continuous, one
ordinal, one binary and treatment effects are present in all four components

we can look at bias-corrected coverage, as recommended in Morris and others (2017). Figure 4

shows both the coverage and bias-corrected coverage for the three methods. The properties of the

standard binary method remain unchanged. The bias-corrected coverage of the latent variable

method is 0.95, which indicates that any under-coverage is due to the bias present. This is not true

for the augmented binary method which shows small improvements in bias-corrected coverage,

indicating that under-coverage is present in this method due to reasons other than bias. Again,

this may be down to model misspecification. The power of the three methods is shown in Figure

5. The performance of the binary and augmented binary methods are as we would expect based

on previous findings in Wason and Seaman (2013) and Wason and Jenkins (2016). The latent

variable method offers much higher power. In this setting it has close to 100% power for odds
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Fig. 4. Coverage probability (left) and bias-corrected coverage probability (right) reported from the latent
variable method, augmented binary method and standard binary method for nsim=5000, total sample
size N=300 for true log-odds treatment effect between 1.2 and 2.2. The composite endpoint of interest
contains four components: two continuous, one ordinal, one binary and treatment effects are present in
all four components

ratios larger than 1.6, an effect that is plausible to observe in a trial. These findings have indicated
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Fig. 5. Statistical power reported from the latent variable method, augmented binary method and stan-
dard binary method for nsim=5000, total sample size N=300 for true log-odds treatment effect between
1.2 and 2.2. The composite endpoint of interest contains four components: two continuous, one ordinal,
one binary and treatment effects are present in all four components

that the standard binary method has the smallest bias and that the latent variable method has

the smallest variance. The mean squared error (MSE) provides a combined measure of bias and
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variance. Figure 6 shows the MSE of the three methods as the treatment effect varies. The MSE

for the standard and augmented binary methods is approximately 6.5 times that of the latent

variable method. However, this measure should be interpreted with care due to the fact that the

MSE is more sensitive to the sample size than comparisons of bias or empirical SE alone (Morris

and others (2017)).
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Fig. 6. Mean Squared Error (MSE) reported from the latent variable method, augmented binary method
and standard binary method for nsim=5000, total sample size N=300 for true log-odds treatment effect
between 1.2 and 2.2. The composite endpoint of interest contains four components: two continuous, one
ordinal, one binary and treatment effects are present in all four components

4.2.2 Varying θ1 To understand more about the precision performance of the augmented binary

method in particular, we vary the responder threshold θ1 to change the proportion of responders

in that outcome. Figure 7 shows the density of the Y1 variable and the relative precision of

the methods, as the responder threshold varies. The precision gains from the augmented binary

method diminish as the threshold increases. This is intuitive, as improvements in efficiency fall as

the continuous component becomes less responsible for driving response. It is interesting to note

that all precision gains are lost for any thresholds above -4. Therefore, even when 20% of patients

are non-responders, all efficiency gains are lost. The percentage of responders needed to improve
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efficiency using the augmented binary method will of course depend on the correlation structure

employed. Due to the additional information in the other components, the latent variable method

is still five times as precise as the other methods.
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Fig. 7. Density of continuous Y1 variable (left) and estimated relative precision of augmented binary versus
standard binary method, latent variable versus augmented binary method and latent variable versus
standard binary method as the Y1 responder threshold θ1 varies between θ1 = −6 and θ1 = −2 (right) for
nsim=5000 and total sample size N=300. The composite endpoint of interest contains four components:
two continuous, one ordinal, one binary and treatment effects are present in all four components

4.2.3 Components contributing to response An important consideration when investigating per-

formance is how the precision changes when different combinations of outcomes are responsible for

driving response. Figure 8 shows boxplots of the relative precision for the methods for four differ-

ent response combinations, namely when response is driven by (Y1, Y2, Y3, Y4), (Y1, Y2, Y3), (Y1, Y4)

and (Y4), where Y1 and Y2 are observed as continuous variables, Y3 is ordinal and Y4 is binary.

When all four components contribute to response, the latent variable method outperforms the

other methods, offering large precision gains. The variability in the magnitude of these gains is

large, with the median result showing that the latent variable method reports the treatment effect

8 times more precisely than the binary method and 6 times more precisely than the augmented

binary method. If response is driven by (Y1, Y2, Y3) then the relative median gains for the latent
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Fig. 8. Estimated relative precision gains from augmented binary versus standard binary method, latent
variable versus augmented binary method and latent variable versus standard binary method when differ-
ent combinations of components driving response. Response driven by Y1, Y2, Y3, Y4 (top left), Y1, Y2, Y3

(top right), Y1, Y4 (bottom left) and Y4 (bottom right) where Y1, Y2 are continuous, Y3 is ordinal, Y4 is
binary for nsim=5000 and total sample size N=300. The composite endpoint of interest contains four
components: two continuous, one ordinal, one binary and treatment effects are present in all four com-
ponents

variable method are larger, however note that in less that 2% of cases the treatment effect is

reported equally or less precisely than from both of the other methods. The findings are similar

when response is driven by (Y1, Y4), however the median gains are much smaller. The treatment

effect is reported 5 times more precisely from the latent variable method than the binary method

in this setting. Note that as the augmented binary method models the relevant components it still

performs well and again better than the latent variable method in a very small number of cases.

When binary Y4 determines response, the augmented binary method offers no improvement in

precision whereas the latent variable method is approximately 1.5 times more precise. It is clear

from the results that the magnitude of the precision gains from the latent variable method is
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highly dependent on the structure of the data.

4.3 Sensitivity analysis

The key assumptions in this model are that of joint normality of the four components and that

the discrete variables are realisations of latent continuous variables. Although it is not possible

to test these assumptions in real data, we can investigate how robust the latent variable method

is to deviations from these conditions. We can do this by drawing from the multivariate skew-

normal distribution with different degrees of skew in each of the components. The first scenario

investigated considers when all four components are skewed. Scenarios 2-3 consider different

magnitudes of skew in the latent continuous components only. This tests the robustness of the

method to the assumption that the observed discrete variables manifest from a true normal

continuous variable. Scenario 4 is the null case for scenario 3. The results are shown in Appendix

F of the supplementary material.

In summary, scenarios 1-3 have increased bias resulting in under-coverage as the bias-corrected

coverage is close to nominal for all scenarios. The coverage of the latent variable method is nominal

in the null case. This is consistent with our previous findings however the magnitude of the bias

is much smaller when the assumptions are satisfied. The latent variable method still offers large

power gains over the other methods. The MSE is smallest for the latent variable method across

all scenarios investigated, indicating that the large reduction in variance is useful despite the

introduction of bias. The latent variable method estimates the probability of response in the

control arm well however underestimates the probability of response in the treatment arm. The

magnitude of this underestimation is unaffected by the degree of skew or whether the skew

is present in the observed continuous components. The relative precision of the methods are

consistent with our previous findings indicating that the violation of joint normality only affects

the bias and not the variance. The augmented binary and standard binary methods behave
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similarly to when the joint normality assumptions are satisfied, which is expected given that the

assumptions of those models are violated in both contexts.

5. Case study

5.1 Data structure

Due to data sharing policy, we conduct the analysis for a subset of the patients, N=278 rather

than N=305 reported in the paper, so the results will differ from the original paper. Furthermore,

only the anifrolumab 300mg arm (n=95) and the placebo arm (n=87) will be used to illustrate

the methods.

The simulation results have suggested that the structure of the data is important for how the

methods will perform, in particular the magnitude of the precision gains depends highly on which

components drive response. Table 3 shows the criteria for response in each component and the

rates of response in each by treatment arm. This suggests that the components responsible for

responder discrimination are the continuous SLEDAI measurement and the binary taper measure.

We can further explore the structure of the data by visualising the 4-D endpoint. Figure 9 shows

a plot of the four components in the SLE index. The two panels show taper responders and

non-responders, the levels in BILAG are denoted using colours where any coloured data points

representing Grade B - Grade E are responders. The response thresholds for the continuous

measurements are included, where a patient must be below the threshold to be considered a

responder. We can conclude that response is entirely driven by SLEDAI and the taper variable,

as there are no PGA non-responders not already accounted for by SLEDAI and no purple data

points in the responder quadrant.
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Table 3. Observed response rates in each of the SLE responder index components in the anifrolmab 300mg
arm and placebo arm of the Phase IIb MUSE trial. SLE index is comprised of a continuous SLEDAI
outcome, continuous PGA outcome, ordinal BILAG outcome and binary taper outcome where response
in each component is achieved when the patient meets the criteria shown

Components Response criteria Treatment arm

Anifrolumab 300mg Placebo

SLEDAI Change in SLEDAI 6 -4 58/89 41/76

PGA Change in PGA < 0.3 87/89 75/76

BILAG No Grade A or more than 86/89 72/76
one Grade B

Taper Sustained reduction in 53/95 37/87
oral corticosteroids

SLE responder index Responder in all four components 34/95 18/87

Taper responder Taper non−responder
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Fig. 9. Observed response rates in each of the SLE responder index components in the Phase IIb MUSE
trial. SLEDAI is plotted on the y-axis and PGA on the x-axis, along with their corresponding dichotomi-
sation thresholds. Levels of BILAG are represented by different colours and taper responders and non-
responders are split across two panels.

5.2 Results

The probability of response in the placebo arm is estimated as 0.199 by the latent variable

method, 0.211 by the augmented binary method and 0.224 by the standard binary method.
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A much larger discrepancy between the methods is shown in the treatment arm, where the

probability of response is estimated at 0.311, 0.324 and 0.382 in the latent variable, augmented

binary and standard binary methods respectively.

The log-odds treatment effect point estimates and confidence intervals for the MUSE trial are

shown in Table 4. Both joint modelling methods estimate the treatment effect more precisely.

Although there may be bias present in the point estimates for the joint modelling methods, the

confidence intervals entirely overlap with that of the binary method. All three methods indicate

that anifrolumab 300mg performs better than placebo, as in the original findings. The latent

variable model fits the data well according to the modified Pearson residuals, see Appendix G.

The simulation results indicated that the latent variable method may report the treatment

effect with bias and have problems with bias related under-coverage when the treatment effect

is large and when the assumption of joint normality is not satisfied. As the problems with the

performance are bias related, we suggest implementing a bootstrap procedure to correct for this.

In this scenario N=182 and nboot=1000, therefore the procedure is as follows:

1. Sample with replacement N=182 patients from the MUSE trial

2. Compute the treatment effect using the latent variable, augmented binary and standard

binary methods

3. Repeat step 1 and 2 nboot=1000 times

4. Obtain an estimate of the bias using the difference between the treatment effect in the

MUSE trial and the mean of the bootstrap treatment effects

A 95% bootstrap confidence interval for the treatment effect estimate can be obtained by

ordering the 1000 bootstrap estimates of the treatment effect and taking the 25th and 975th

estimate. The point estimates and 95% confidence intervals from the MUSE trial and from the

bootstrap re-sampling are shown in Table 4. The log-odds point estimate from the latent variable
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Table 4. Log-odds treatment effect estimates and 95% confidence intervals from the latent variable
method, augmented binary method and standard binary method in the Phase IIb MUSE trial and the
bootstrap sample when N=182 and nboot = 1000

Method Log-odds treatment effect

MUSE trial estimate Bootstrap estimate

Latent Variable 0.641 (0.217, 1.072) 0.682 (0.275, 1.137)

Augmented binary 0.580 (0.139, 1.021) 0.608 (0.096, 1.111)

Binary 0.763 (0.078, 1.449) 0.809 (0.112, 1.561)

method has been shifted away from the null by approximately 0.04. This is the magnitude of

bias that the simulation results suggested for this treatment effect. The width of the confidence

interval hasn’t changed much from the original estimate in the bootstrap sample, indicating that

the variance is well estimated in the trial dataset. The point estimate for the binary method has

also been shifted substantially, despite the simulations showing this method to be unbiased. This

is likely due to the large imprecision in the treatment effect reported by the binary method.

In terms of estimated precision, it is interesting to determine where the trial data set lies in

the distribution of datasets generated in the simulation study. The latent variable method reports

the treatment effect 2.5 times more precisely than the standard binary method in this setting,

whilst the augmented binary method is 2.4 times more precise. We would have expected this

similar performance as the augmented binary method models the SLEDAI and taper variables -

the only components driving response. This increase in precision from the latent variable method

compared with the binary method amounts to a 60% reduction in required sample size.

6. Discussion

In this paper we addressed the issue of substantial losses of information when modelling complex

composite endpoints. By employing concepts of partitioning latent variable outcome spaces we
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could model the observed structure of the composite endpoint, which resulted in large gains

in efficiency. Sensitivity analyses showed that a bias is introduced when the assumptions of

joint normality were not satisfied, however similar reductions in variance were observed. When

applying the methods to the MUSE trial, we implemented a bootstrap procedure to correct for

the presumed bias, as joint normality could not be assessed. The treatment effect was reported

2.5 times more precisely than that reported from the standard binary method.

Bias correction appears to perform well in the real data, where the crucial assumptions cannot

be tested. The point estimate is shifted by a magnitude that would have been expected from

the simulation results and the estimate of the variance is similar to that obtained in the single

trial dataset. Furthermore the bootstrap confidence interval for the treatment effect is contained

within that for the binary method, which offers further reassurance for application. However,

more work could be done to investigate different structures and scenarios to ensure that the bias

correction is always performing as expected. Ideally, we would investigate this further across a

large number of datasets however this is too computationally intensive. To perform this on one

replicate, where nboot = 1000 using 200 cores on a high performance computer (HPC) currently

takes 7 hours. Exploring this further through bootstrapping or employing alternative multivariate

distributions is an area for future research.

The precision gains offered by the latent variable method offer justification for the additional

complexity. However, the magnitude of these gains are highly dependent on the components that

drive response. The baseline case in the simulations was chosen to reflect when a composite

endpoint is recommended for use, i.e. when all four components determine response rates. In this

scenario, the precision gains achieved resulted in the latent variable method reporting the effect

2.5 to 17.5 times more precisely than the standard binary method. However, in practice in SLE

trials, this has not been found to be the case. A review of two phase 3 trials (N= 2262) using the

SRI-5 index found the SRI-5 response rate at week 52 for all patients was 32.8% (Kalunian and
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others (2018)). Non-response due to a lack of SLEDAI improvement, concomitant medication non-

compliance or dropout was 31, 16.5 and 19.1%, respectively. Non-response due to deterioration

in BILAG or Physicians Global Assessment after SLEDAI improvement, concomitant medication

compliance and trial completion was 0.5%. This is in agreement with our findings from the

MUSE trial data, which suggests that the precision gains in the baseline case are optimistic. The

simulation results show that when one continuous and one binary component drive response, the

latent variable method may be anywhere between 1 and 12 times as precise as the binary method

and up to 7 times as precise as the augmented binary method. In a very small number of cases

(<2%) there are no efficiency gains from using the latent variable method in this scenario. However

the potential gains available in 98% of cases ensures that implementing the latent variable method

is still very much a worthwhile endeavour, for all stakeholders in a clinical trial.

In addition to SLE, we have identified other disease areas that have a similar complex composite

structure, meaning the potential to improve efficiency extends well beyond SLE. However, it

must be acknowledged that the exact structure of the endpoint may offer different magnitudes

of bias and precision, and may require longer computational time. Furthermore, in conditions

where longitudinal data is required to sufficiently capture disease activity, trials may include

multiple follow-up times and the method will need to be extended to include latent variables in

the mean structure to account for this. In terms of scalability to more complex endpoints, the

computational time depends on many things, in particular the number of outcomes, the outcome

scale and the number of levels in the ordinal variable. In our case, we find the number of ordinal

levels to be the most influential factor in computational time. This is due to the fact that 5

levels in the ordinal variable leads to 10 probability calculations in (3.6), however 3 levels would

require the computation of 6 joint probabilities. Consequently, the run time will be substantially

increased if there are multiple ordinal levels and decreased if the discrete variables are binary. If

the computational time for a particular endpoint is deemed to be too large, then we may reduce
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the complexity of the endpoint by collapsing the least informative components in to a single

binary variable. It must be acknowledged that as we have coded the likelihood, with no package

available to do this, the likelihood and probability of response code will have to be tailored

specifically to each endpoint. The potential gains in efficiency justify this additional complexity.

We have shown that the latent variable method is a powerful tool in composite endpoint analysis

and should be considered as a primary analysis method in a trial using these endpoints. In order

for implementation in the general case, where the composite contains any number of continuous

and discrete outcomes and to ensure the uptake of the method in clinical trials, we will need to

develop a software package. Furthermore, if patients and investigators are to benefit from the

efficiency gains, we will need a method to calculate the required sample size in a given trial. We

are currently working on addressing these issues to aid in the application of the method.
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Supplementary material

Appendix A

The joint probability below expresses, for patient i with Y1 = yi1 and Y2 = yi2, the probability

that they will have a Y3 score w and a Y4 score k.

pr (Yi3 = w, Yi4 = k|Yi1 = Yi1, yi2 = yi2;θ) =

Φ2

(
τw3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
− Φ2

(
τ(w−1)3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
−

Φ2

(
τw3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
+ Φ2

(
τ(w−1)3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
(A.1)

The intuition for the joint probability can be seen below in Figure 10, specifically for the SLE

endpoint, where w = 5 and k = 2.

The blue box indicates the region where w = 3 and k = 2. As τ03 = τ04 = −∞ and τ53 =

τ24 =∞, the corresponding probability is shown in (A.2).

pr (Yi3 = 3, Yi4 = 2|Yi1 = yi1, Yi2 = yi2;θ) =

Φ2

(
τ33 − µ3|1,2,∞− µ4|1,2; Σ3,4|1,2

)
− Φ2

(
τ23 − µ3|1,2,∞− µ4|1,2; Σ3,4|1,2

)
−

Φ2

(
τ33 − µ3|1,2, τ(14 − µ4|1,2; Σ3,4|1,2

)
+ Φ2

(
τ23 − µ3|1,2, τ14 − µ4|1,2; Σ3,4|1,2

)
(A.2)
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Fig. 10. The figure shows the conditional outcome Y3|1,2 on the x-axis and Y4|1,2 on the y-axis with their
corresponding underlying continuous densities and partitioning thresholds. The area where w = 3 and
k = 2 is highlighted for illustration
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Appendix B

One suggestion in the literature for assessing goodness-of-fit in latent variable models is introduced

by Samani and Ganjali (2008) for the case when there is one continuous and one ordinal variable.

This may be extended to allow for two continuous, one ordinal and one binary outcome for

application in SLE, as shown below.

As before, let Yi = (Yi1, Yi2, Yi3, Yi4)′ be the vector of observed responses for patient i. Then,

partitioning the observed and latent continuous measures, we let Ycts = (Y1, Y2) and Ydis =

(Y3, Y4). Then, Σ̂11 = ˆV ar(Ycts), Σ̂22 = ˆV ar(Ydis), Σ̂12 = Σ̂21 = ˆCov(Ycts,Ydis).

The modified Pearson residuals, taking in to account the correlation between responses are shown

below.

rpi = Σ̂−
1
2 (Yi − µ̂i) (B.1)

where,

µ̂i = (Ê(Yi1, Yi2 | Xi1, Xi2), Ê(Yi3, Yi4 | Xi3, Xi4))′ (B.2)

and

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
(B.3)

A Cholesky decomposition may be used to obtain Σ̂−
1
2 in (B.1). The covariance between the

vector of observed continuous and observed discrete responses is shown below.

Σ12 =E(YctsYdis)− E(Ycts)E(Ydis)

=E(YctsE(Ydis | Ycts))− E(Ycts)E(Ydis)

=E(Y1Y2E(Y3, Y4 | Y1, Y2))− E(Ycts)E(Ydis)

=

∫

y1

∫

y2

y1y2
∑

y3

∑

y4

y3y4P (Y3 = w, Y4 = k|Y1 = y1, Y2 = y2) fY1,Y2
(y1, y2)dy1dy2

− E(Ycts)E(Ydis)
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Where,

P (Y3 = w, Y4 = k|Y1 = y1, Y2 = y2) =

Φ
(
τw3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
− Φ

(
τ(w−1)3 − µ3|1,2, τk4 − µ4|1,2; Σ3,4|1,2

)
−

Φ
(
τw3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)
+ Φ

(
τ(w−1)3 − µ3|1,2, τ(k−1)4 − µ4|1,2; Σ3,4|1,2

)

E(Ycts) =

∫

y1

∫

y2

y1y2fY1,Y2
(y1, y2)dy1dy2

E(Ydis) =
∑

y3

∑

y4

y3y4P (Y3 = w, Y4 = k)

and

P (Y3 = w, Y4 = k) = Φ(τw3 − µ3, τk4 − µ4; ρ3,4)− Φ(τ(w−1)3 − µ3, τk4 − µ4; ρ3,4)−

Φ(τw3 − µ3, τ(k−1)4 − µ4; ρ3,4) + Φ(τ(w−1)3 − µ3, τ(k−1)4 − µ4; ρ3,4)

The Pearson residual is based on the Pearson goodness-of-fit statistics

χ2
p =

n∑

i=1

χ2
p(Yi, µ̂i) (B.4)

with ith component

χ2
p(Yi, µ̂i) = (Yi − µ̂i)′Σ̂−1(Yi − µ̂i) (B.5)

The distribution of the residuals should follow a chi-squared distribution with p degrees of free-

dom. Comparing the residuals to the chi-squared value allows us to identify observations which

the model does not fit well. If there are many observations unexplained by the model then it

could indicate a poor choice of model. This may be due to the covariance structure Σ̂ and its

assumed distribution. The model may be refitted with various covariance structures and to obtain

a model which is found to satisfactorily explain the observed data. If this is not achieved then

joint normality of the error terms may be an unreasonable assumption indicating that the latent

variable model may not be appropriate. It is possible to fit latent variable models which assume

a different multivariate distribution for the error terms, however this is not considered here.
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Appendix C

Augmented binary method

The augmented binary model is shown below. The baseline measures for Yi1 and Yi2 are included

for comparison, as they are accounted for in the mean structure of the latent variable method.

As one time point is modelled we can use a linear model for Yi1 as shown in (C.1). Note that Yi1

or Yi2 may be chosen as the continuous measure to retain and should always be determined by

which is the most informative.

Yi1 = δ0 + δ1Ti+ δ2yi10 + δ3yi20 + εi (C.1)

where εi|Ti, yi10, yi20 ∼ N(0, σ). In this case, the failure time binary indicator will contain

information from the remaining three components. Fi is set to equal 0 if Yi2 6 θ2, Yi3 is Grade

B-E and Yi4 = 0, otherwise the patient is labelled a non-responder in these components and

Fi1 = 1. Fi is modelled using the logistic regression model in (C.2).

logit(Pr(Fi = 1|Ti, yi10, yi20) = αF + βFTi + γF yi10 + ψF yi20 (C.2)

Maximum likelihood estimates for the parameters are obtained from fitting models (C.1) and

(C.2). The probability of response is shown in (C.3).

P (Yi1 6 θ1, Fi1 = 0|Ti, yi10, yi20) =

∫ θ1

−∞
P (Fi1 = 0|Ti, yi10, yi20)fY1(yi1;Ti, yi10, yi20)dyi1 (C.3)

As in the latent variable method, (C.3) is used to obtain probability of response estimates for

each patient, assuming they were treated p̃i1 and not treated p̃i1, which are used to define an

odds ratio, risk ratio or risk difference.
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Standard binary method

The standard binary method is a logistic regression on the overall responder index, as shown in

(C.4).

logit(Pr(Si = 1|Ti, yi10) = α+ βTi + γyi10 + ψyi20 (C.4)

The odds ratio and standard error estimates can be obtained directly.

Appendix D

Table 5. Performance measures and Monte Carlo standard errors used to assess the behaviour of the
latent variable, augmented binary and binary methods in a simulation study for the systemic lupus
erythematosus composite endpoint

Performance measure Estimate MCSE

Bias 1
nsim

nsim∑
j=1

θ̂j − θ
√

1
nsim(nsim−1)

nsim∑
j=1

(θ̂j − θ̄)2

Coverage 1
nsim

nsim∑
j=1

1(θ̂low,j 6 θ 6 θ̂upp,j)
√

ˆcov.(1− ˆcov.)
nsim

Bias-corrected coverage 1
nsim

nsim∑
j=1

1(θ̂low,j 6 θ̄ 6 θ̂upp,j)

√
ˆBEcov.(1− ˆBEcov.)

nsim

Power 1
nsim

nsim∑
j=1

1(pj < α)

√
ˆPower(1− ˆPower)

nsim

MSE
nsim∑
j=1

(θ̂j − θ)2

√
nsim∑
j=1

[(θ̂j−θ)2− ˆMSE]2

nsim(nsim−1)

Empirical SE

√
1

nsim−1
nsim∑
j=1

(θ̂i − θ̄)2 ˆEmpSE√
2(nsim−1)

Model SE

√
1

nsim−1
nsim∑
j=1

ˆV ar(θ̂j)

√
ˆV ar[ ˆV ar(θ̂)]

4nsim
ˆModSE

2 †

Relative precision A vs. B
ˆV ar(θ̂j)B
ˆV ar(θ̂j)A

-

θ̂j : estimated log-odds treatment effect in simulated data j
θ̄: mean log-odds treatment effect over nsim datasets
θ̂low,j , θ̂upp,j lower and upper limit of confidence interval for iteration j
† ˆV ar[ ˆV ar(θ̂)] = 1

nsim−1
∑nsim

j=1 { ˆV ar(θ̂i)− 1
nsim

∑nsim

j=1
ˆV ar(θ̂j)}2
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Appendix E

Table 6. Parameter values for the simulated scenarios which investigate the effect of varying responder
threshold θ1, changing the components driving response and differing treatment effects on the perfor-
mance of the latent variable, augmented binary and standard binary methods for the systemic lupus
erythematosus composite endpoint

Scenario Parameters Investigates

θ1 = −2 θ1 = −2 100% of patients respond in Y1
θ1 = −3 θ1 = −3 96% of patients respond in Y1
θ1 = −4 θ1 = −4 82% of patients respond in Y1
θ1 = −5 θ1 = −5 52% of patients respond in Y1
θ1 = −6 θ1 = −6 20% patients respond in Y1

Y1, Y4 θ1 = −5, θ2 = 2, θ3 = 2
Continuous and binary variable

driving response

Y4 θ1 = −2, θ2 = 2, θ3 = 2
Binary variable driving

response

Y1, Y2, Y3 θ4 = 2
Two continuous and ordinal

drive response

Treat case 1
α0 = −4.9, α1 = −0.09, β0 = −1.2,
β1 = −0.11, γ1 = −0.145, ψ0 = −0.2,

ψ1 = −0.07
Odds ratio = 1.217

Treat case 2
α0 = −4.9, α1 = −0.20, β0 = −1.2,
β1 = −0.25, γ1 = −0.2, ψ0 = −0.2,

ψ1 = −0.12
Odds ratio = 1.426

Treat case 3
α0 = −4.9, α1 = −0.30, β0 = −1.2,
β1 = −0.50, γ1 = −0.3, ψ0 = −0.2,

ψ1 = −0.22
Odds ratio = 1.794

Treat case 4
α0 = −4.9, α1 = −0.32, β0 = −1.2,
β1 = −0.65, γ1 = −0.39, ψ0 = −0.2,

ψ1 = −0.27
Odds ratio = 2.007

Treat case 5
α0 = −4.9, α1 = −0.33, β0 = −1.2,
β1 = −0.72, γ1 = −0.45, ψ0 = −0.2,

ψ1 = −0.33
Odds ratio = 2.198
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Appendix F

Multivariate skew-normal distribution

To test the robustness of the latent variable method to deviations from joint normality of the

components, we can generate the data so that the components are drawn from a multivariate skew-

normal. The multivariate skew-normal is an extension of the univariate skew-normal distribution

introduced by Azzalini and A. (1996). They define it as follows. A random vector Y=(Y1, ...,k )T

has k-variate skew-normal distribution, if its density function is

fk(y) = 2φk(y; Ω)Φ(αTy),y ∈ Rk (F.1)

where φk(y; Ω) is the probability density function of the k-variate normal distribution with stan-

dardised marginals and correlation matrix Ω. The shape parameter α determines the skewness,

where α = 0 reduces the density in (F.1) to the N(0,Ω) density.

Scenarios of interest are shown in Table 7. The first scenario considers when all four components

are skewed. Scenarios 2-3 consider different magnitudes of skew in the latent continuous compo-

nents only. This tests the robustness of the method to the assumption that the observed discrete

variables manifest from continuous variables. Scenario 4 is the null case for scenario 3.

Table 7. Simulation scenarios considered to investigate deviations from joint normality for the compo-
nents of the systemic lupus erythematosus composite endpoint based on the multivariate skew-normal
distribution where α determines the magnitude of the skew in each component

Scenario α Purpose

skew1 (0.1, 0.1, 0.1, 0.1) Skew in all four components
skew2 (0, 0, 0.1, 0.1) Skew in discrete components only
skew3 (0, 0, 0.05, 0.05) Smaller skew in discrete components only
skew4 (0, 0, 0.05, 0.05) Smaller skew in discrete components only in the null case
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Results

The bias, coverage, bias-corrected coverage and power are shown in Table 8 for all four sce-

narios. In scenarios 1-3, the non-normality introduces bias which results under-coverage. The

bias-corrected coverage is close to nominal for all scenarios however the coverage of the latent

variable method is nominal in the null case. This is consistent with our findings when the joint

normality assumption is satisfied in that bias is introduced in the estimation of the treatment

arm, however the magnitude of this bias is much smaller when the assumptions are satisfied. The

augmented binary and standard binary methods behave similarly to when the joint normality

assumptions are satisfied, which is expected given that the assumptions of those models are vi-

olated in both contexts. The latent variable method still offers large power gains over the other

methods.

Table 9 shows the MSE, empirical SE and model SE of the three methods. The latent variable

method performs best consistently across these performance measures. The augmented binary

and standard binary methods have an MSE across all scenarios of approximately 0.06 whilst

the MSE of the latent variable method is between 0.01 and 0.04. This indicates that the large

reduction in variance is useful despite the introduction of bias. We acknowledge however that this

may not hold across all sample sizes (Morris and others (2017)).

Table 10 shows the probability of response in each arm for each of the methods. The findings

are consistent with when the assumptions are satisfied. Namely, the latent variable method esti-

mates the probability of response in the control arm well however underestimates the probability

of response in the treatment arm. The magnitude of this underestimation is unaffected by the

degree of skew or whether the skew is present in the observed continuous components.

The odds ratio treatment effect estimate from each method is shown in Table 11. The latent

variable method is biased towards the null, the augmented binary method is biased away from

the null. The binary method slightly underestimates the treatment effect in this setting however
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Table 8. Operating characteristics of the latent variable, augmented binary and binary methods when the
components of the systemic lupus erythematosus endpoint are drawn from a multivariate skew-normal,
N=300 and nsim = 1000

Performance measure Scenario Method

Latent Variable Augmented Binary Binary

Bias skew1 -0.173 (0.012) 0.041 (0.252) -0.015 (0.258)
skew2 -0.103 (0.008) 0.036 (0.251) -0.020 (0.255)
skew3 -0.068 (0.008) 0.038 (0.244) -0.016 (0.245)
skew4 -0.033 (0.008) 0.007 (0.254) 0.001 (0.255)

Coverage skew1 0.556 (0.018) 0.933 (0.009) 0.939 (0.009)
skew2 0.811 (0.013) 0.928 (0.008) 0.941 (0.008)
skew3 0.884 (0.010) 0.934 (0.008) 0.950 (0.007)
skew4 0.933 (0.009) 0.923 (0.009) 0.950 (0.008)

Bias-corrected skew1 0.962 (0.007) 0.929 (0.009) 0.943 (0.008)
coverage skew2 0.936 (0.008) 0.930 (0.008) 0.943 (0.007)

skew3 0.940 (0.008) 0.929 (0.008) 0.954 (0.007)
skew4 0.948 (0.008) 0.926 (0.009) 0.950 (0.008)

Power skew1 0.897 (0.011) 0.646 (0.017) 0.487 (0.018)
skew2 0.959 (0.006) 0.637 (0.015) 0.471 (0.016)
skew3 0.982 (0.004) 0.641 (0.015) 0.495 (0.016)
skew4 - - -

all are close to true for the null case.

The median relative precision of the methods are shown in Table 12, with the 10th centile and

90th centile values. These are consistent with our previous findings indicating that the violation

of joint normality only affects the bias and not the variance.
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Table 9. Operating characteristics (Monte Carlo standard errors in parentheses) of the latent variable,
augmented binary and binary methods when the components of the systemic lupus erythematosus end-
point are drawn from a multivariate skew-normal, N=300 and nsim = 1000

Performance measure Scenario Method

Latent Variable Augmented Binary Binary

MSE skew1 0.039 (0.001) 0.063 (0.003) 0.066 (0.003)
skew2 0.021 (0.001) 0.063 (0.003) 0.065 (0.003)
skew3 0.014 (0.001) 0.060 (0.003) 0.060 (0.003)
skew4 0.010 (0.001) 0.064 (0.004) 0.065 (0.003)

EmpSE skew1 0.097 (0.003) 0.248 (0.006) 0.257 (0.007)
skew2 0.102 (0.002) 0.249 (0.006) 0.254 (0.006)
skew3 0.099 (0.002) 0.241 (0.005) 0.245 (0.006)
skew4 0.094 (0.002) 0.254 (0.006) 0.255 (0.006)

ModSE skew1 0.010 (0.006) 0.052 (0.001) 0.064 (0.001)
skew2 0.010 (0.003) 0.050 (0.001) 0.060 (0.001)
skew3 0.010 (0.015) 0.048 (0.001) 0.059 (0.001)
skew4 0.009 (0.004) 0.051 (0.001) 0.063 (0.001)

Table 10. Estimated probability of response in the treatment and placebo arms from the latent variable
model (Lat Var), augmented binary method (Aug Bin) and standard binary method (Bin) when the
components of the systemic lupus erythematosus endpoint are drawn from a multivariate skew-normal,
N=300 and nsim = 1000

Pr(resp | T = 0) Pr(resp | T = 1)

Scenario True Lat Var Aug Bin Bin True Lat Var Aug Bin Bin

skew1 0.259 0.263 0.221 0.258 0.365 0.330 0.326 0.359
skew2 0.290 0.287 0.253 0.290 0.398 0.370 0.361 0.392
skew3 0.309 0.302 0.271 0.308 0.418 0.394 0.382 0.413
skew4 0.309 0.299 0.269 0.307 0.309 0.292 0.270 0.307
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Table 11. Estimated odds ratio treatment effect from the latent variable model (Lat Var), augmented
binary method (Aug Bin) and standard binary method (Bin) when the components of the systemic lupus
erythematosus endpoint are drawn from a multivariate skew-normal, N=300 and nsim = 1000

Treatment effect

Scenario True Lat Var Aug Bin Bin

skew1 1.640 1.379 (1.140, 1.668) 1.708 (1.093, 2.668) 1.616 (0.985, 2.651)
skew2 1.617 1.459 (1.203, 1.770) 1.676 (1.083, 2.594) 1.586 (0.980, 2.565)
skew3 1.611 1.505 (1.243, 1.822) 1.674 (1.089, 2.572) 1.585 (0.987, 2.548)
skew4 1.000 0.967 (0.807, 1.160) 1.007 (0.647, 1.566) 1.001 (0.613, 1.634)

Table 12. Estimated relative precision from the latent variable model (Lat Var), augmented binary method
(Aug Bin) and standard binary method (Bin) when the components of the systemic lupus erythematosus
endpoint are drawn from a multivariate skew-normal, N=300 and nsim = 1000

Treatment effect

Scenario Lat Var vs Bin Lat Var vs Aug Bin Aug Bin vs Bin

skew1 6.903 [5.336, 8.972] 5.579 [4.376, 7.313] 1.231 [1.189, 1.275]
skew2 6.263 [5.013, 7.917] 5.177 [4.096, 6.518] 1.213 [1.178, 1.252]
skew3 6.326 [5.016, 7.995] 5.192 [4.098, 6.548] 1.219 [1.184, 1.257]
skew4 7.384 [5.729, 9.343] 5.985 [4.655, 7.629] 1.231 [1.192, 1.273]
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Appendix G
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Fig. 11. Plot of the modified Pearson residuals from the latent variable model for each patient in the
MUSE trial. The residuals highlight that two patients observations are poorly explained by the model
but that the model is a good fit for the remaining patients.
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Fig. 12. Histogram of the modified Pearson residuals from the latent variable model in the MUSE trial
dataset with the corresponding χ2 density. The modified Pearson residuals should follow the distribution
of the χ2 density shown if the model fits well.





Appendix F

Latent Variable Method: R Code

1 library (MASS)
2 library ( stats )
3 library ( mvtnorm )
4 library (nlme)
5 library (boot)
6 # library (car)
7 library ( matrixcalc )
8 # library ( profvis )
9 library ( numDeriv )

10 library ( R2Cuba )
11 library ( optimx )
12 library ( brglm )
13 library ( Matrix )
14
15 ### LATENT VARIABLE CODE FOR FOUR DIMENSIONAL COMPOSITE ENDPOINT
16 ### COMPONENTS : TWO CONTINUOUS , ONE ORDINAL , ONE BINARY
17
18 ## STARTING VALUES
19
20 X<-c() #Add based on data
21 dat <-data. frame (id ,treat ,Z1 ,Z2 ,Z3ord ,Z4ord ,Z10 ,Z20) ## ORDER OF DATA INPUT
22
23 ## LIKELIHOOD FUNCTION
24
25 f<-function (X,dat)
26 {
27
28 dat <-dat[!is.na(dat [ ,3]) ,]
29
30 # parameters
31 alpha0 <- X[1]
32 alpha1 <- X[2]
33 beta0 <- X[3]
34 beta1 <- X[4]
35 gamma1 <- X[5]
36 psi0 <- X[6]
37 psi1 <- X[7]
38
39 # covariance parameters
40 sig1 <- exp(X[8])
41 sig2 <- exp(X[9])
42 rho12 <- 2*inv. logit (X [10]) -1
43 rho13 <- 2*inv. logit (X [11]) -1
44 rho14 <- 2*inv. logit (X [12]) -1
45 rho23 <- 2*inv. logit (X [13]) -1
46 rho24 <- 2*inv. logit (X [14]) -1
47 rho34 <- 2*inv. logit (X [15]) -1
48
49 # ordinal cutoffs
50 tau13 <- X[16]
51 tau23 <- X[17]
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52 tau33 <- X[18]
53 tau43 <- X[19]
54
55 # addition baseline parameters
56 alpha2 <- X[20]
57 beta2 <- X[21]
58
59
60 # Known cutoffs
61 tau03 <- -Inf
62 tau53 <- +Inf
63 tau04 <- -Inf
64 tau14 <- 0
65 tau24 <- +Inf
66
67 # model means
68 muz1 <-alpha0 + alpha1 *dat [ ,2]+ alpha2 *dat [ ,7]
69 muz2 <-beta0 + beta1 *dat [ ,2]+ beta2 *dat [ ,8]
70 muz3 <-gamma1 *dat [ ,2]#+ gamma2 *dat [ ,9]
71 muz4 <-psi0+psi1*dat [ ,2]
72
73 # conditional means
74 muz3cond <- muz3 +(( rho13 - rho12 * rho23 )*(dat [,3]- muz1)/(sig1*(1 -( rho12 )^2)))+(( rho23 - rho13 * rho12 )*(dat [,4]- muz2)/(

sig2*(1 -( rho12 )^2)))
75 muz4cond <- muz4 +(( rho14 - rho12 * rho24 )*(dat [,3]- muz1)/(sig1*(1 -( rho12 )^2)))+(( rho24 - rho14 * rho12 )*(dat [,4]- muz2)/(

sig2*(1 -( rho12 )^2)))
76
77 # condational covariance
78 matcond11 <- 1 -((( rho13 )^2 -2* rho12 * rho13 * rho23 +( rho23 )^2)/(1 -( rho12 )^2))
79 matcond12 <- rho34 -(( rho13 *rho14 - rho13 * rho12 *rho24 - rho12 * rho14 * rho23 + rho23 * rho24 )/(1 -( rho12 )^2))
80 matcond22 <- 1 -((( rho14 )^2 -2* rho12 * rho14 * rho24 +( rho24 )^2)/(1 -( rho12 )^2))
81 Sigcond <- matrix (c(matcond11 , matcond12 , matcond12 , matcond22 ), nrow =2, ncol =2)
82 Sigcond2 <-( Sigcond *t( Sigcond ))^0.5
83
84 # continuous bivariate covariance
85
86 matbiv11 <- (sig1)^2
87 matbiv12 <- rho12 *sig1*sig2
88 matbiv22 <- (sig2)^2
89 Sigbiv <- matrix (c(matbiv11 , matbiv12 , matbiv12 , matbiv22 ), nrow =2, ncol =2)
90 Sigbiv <- ( Sigbiv *t( Sigbiv ))^0.5
91
92 # upperlimits
93 mu11 <-matrix (c(tau13 -muz3cond , tau14 - muz4cond ), ncol =2)
94 mu01 <-matrix (c(tau03 -muz3cond , tau14 - muz4cond ), ncol =2)
95 mu10 <-matrix (c(tau13 -muz3cond , tau04 - muz4cond ), ncol =2)
96 mu00 <-matrix (c(tau03 -muz3cond , tau04 - muz4cond ), ncol =2)
97 mu21 <-matrix (c(tau23 -muz3cond , tau14 - muz4cond ), ncol =2)
98 mu20 <-matrix (c(tau23 -muz3cond , tau04 - muz4cond ), ncol =2)
99 mu31 <-matrix (c(tau33 -muz3cond , tau14 - muz4cond ), ncol =2)

100 mu30 <-matrix (c(tau33 -muz3cond , tau04 - muz4cond ), ncol =2)
101 mu41 <-matrix (c(tau43 -muz3cond , tau14 - muz4cond ), ncol =2)
102 mu40 <-matrix (c(tau43 -muz3cond , tau04 - muz4cond ), ncol =2)
103 mu51 <-matrix (c(tau53 -muz3cond , tau14 - muz4cond ), ncol =2)
104 mu50 <-matrix (c(tau53 -muz3cond , tau04 - muz4cond ), ncol =2)
105 mu12 <-matrix (c(tau13 -muz3cond , tau24 - muz4cond ), ncol =2)
106 mu02 <-matrix (c(tau03 -muz3cond , tau24 - muz4cond ), ncol =2)
107 mu22 <-matrix (c(tau23 -muz3cond , tau24 - muz4cond ), ncol =2)
108 mu32 <-matrix (c(tau33 -muz3cond , tau24 - muz4cond ), ncol =2)
109 mu42 <-matrix (c(tau43 -muz3cond , tau24 - muz4cond ), ncol =2)
110 mu52 <-matrix (c(tau53 -muz3cond , tau24 - muz4cond ), ncol =2)
111
112 pr11 <-apply (mu11 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
113 pr01 <-apply (mu01 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
114 pr10 <-apply (mu10 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
115 pr00 <-apply (mu00 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
116 pr21 <-apply (mu21 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
117 pr20 <-apply (mu20 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
118 pr31 <-apply (mu31 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
119 pr30 <-apply (mu30 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
120 pr41 <-apply (mu41 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
121 pr40 <-apply (mu40 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
122 pr51 <-apply (mu51 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
123 pr50 <-apply (mu50 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
124 pr12 <-apply (mu12 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
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125 pr02 <-apply (mu02 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
126 pr22 <-apply (mu22 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
127 pr32 <-apply (mu32 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
128 pr42 <-apply (mu42 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
129 pr52 <-apply (mu52 ,1, function (x){ return ( pmvnorm ( lower =c(-Inf ,-Inf),upper =x,mean=c(0 ,0) ,sigma = Sigcond2 ))})
130 prz12 <-dmvnorm ( cbind (dat [,3], dat [ ,4]) , c(mean(muz1), mean(muz2)), Sigbiv )
131
132 ## Likelihood function
133
134 # components of likelihood , w=1 ,..5 ( ordinal ); k=1 ,2 ( binary )
135 l1 <-log(pr11 -pr01 -pr10+pr00)+log( prz12 )#w=1,k=1
136 l2 <-log(pr21 -pr11 -pr20+pr10)+log( prz12 )#w=2, k=1
137 l3 <-log(pr31 -pr21 -pr30+pr20)+log( prz12 )#w=3, k=1
138 l4 <-log(pr41 -pr31 -pr40+pr30)+log( prz12 )#w=4, k=1
139 l5 <-log(pr51 -pr41 -pr50+pr40)+log( prz12 )#w=5, k=1
140 l6 <-log(pr12 -pr02 -pr11+pr01)+log( prz12 )#w=1, k=2
141 l7 <-log(pr22 -pr12 -pr21+pr11)+log( prz12 )#w=2, k=2
142 l8 <-log(pr32 -pr22 -pr31+pr21)+log( prz12 )#w=3, k=2
143 l9 <-log(pr42 -pr32 -pr41+pr31)+log( prz12 )#w=4, k=2
144 l10 <-log(pr52 -pr42 -pr51+pr41)+log( prz12 )#w=5, k=2
145
146 data0 <- cbind (dat [,5], dat [,6],l1)#1,1
147 data1 <- cbind (dat [,5], dat [,6],l2)#2,1
148 data2 <- cbind (dat [,5], dat [,6],l3)#3,1
149 data3 <- cbind (dat [,5], dat [,6],l4)#4,1
150 data4 <- cbind (dat [,5], dat [,6],l5)#5,1
151 data5 <- cbind (dat [,5], dat [,6],l6)#1,2
152 data6 <- cbind (dat [,5], dat [,6],l7)#2,2
153 data7 <- cbind (dat [,5], dat [,6],l8)#3,2
154 data8 <- cbind (dat [,5], dat [,6],l9)#4,2
155 data9 <- cbind (dat [,5], dat [,6], l10)#5,2
156
157 #1,1
158 data0 [ data0 [ ,1]==1 ,3] <-0 #2 ,1==0
159 data0 [ data0 [ ,1]==2 ,3] <-0 #3 ,1==0
160 data0 [ data0 [ ,1]==3 ,3] <-0 #4 ,1==0
161 data0 [ data0 [ ,1]==4 ,3] <-0 #5 ,1==0
162 data0 [ data0 [ ,2]==1 ,3] <-0 # ,1==0
163
164 #2,1
165 data1 [ data1 [ ,1]==0 ,3] <-0 #1 ,1==0
166 data1 [ data1 [ ,1]==2 ,3] <-0 #3 ,1==0
167 data1 [ data1 [ ,1]==3 ,3] <-0 #4 ,1==0
168 data1 [ data1 [ ,1]==4 ,3] <-0 #5 ,1==0
169 data1 [ data1 [ ,2]==1 ,3] <-0 #1 ,2==0
170
171 #3,1
172 data2 [ data2 [ ,1]==0 ,3] <-0 #1 ,1==0
173 data2 [ data2 [ ,1]==1 ,3] <-0 #2 ,1==0
174 data2 [ data2 [ ,1]==3 ,3] <-0 #4 ,1==0
175 data2 [ data2 [ ,1]==4 ,3] <-0 #5 ,1==0
176 data2 [ data2 [ ,2]==1 ,3] <-0 #1 ,2==0
177
178 #4,1
179 data3 [ data3 [ ,1]==0 ,3] <-0 #1 ,1==0
180 data3 [ data3 [ ,1]==1 ,3] <-0 #2 ,1==0
181 data3 [ data3 [ ,1]==2 ,3] <-0 #3 ,1==0
182 data3 [ data3 [ ,1]==4 ,3] <-0 #5 ,1==0
183 data3 [ data3 [ ,2]==1 ,3] <-0 #1 ,2==0
184
185 #5,1
186 data4 [ data4 [ ,1]==0 ,3] <-0 #1 ,1==0
187 data4 [ data4 [ ,1]==1 ,3] <-0 #2 ,1==0
188 data4 [ data4 [ ,1]==2 ,3] <-0 #3 ,1==0
189 data4 [ data4 [ ,1]==3 ,3] <-0 #4 ,1==0
190 data4 [ data4 [ ,2]==1 ,3] <-0 #1 ,2==0
191
192 #1,2
193 data5 [ data5 [ ,2]==0 ,3] <-0 #1 ,1==0
194 data5 [ data5 [ ,1]==1 ,3] <-0 #2 ,1==0
195 data5 [ data5 [ ,1]==2 ,3] <-0 #3 ,1==0
196 data5 [ data5 [ ,1]==3 ,3] <-0 #4 ,1==0
197 data5 [ data5 [ ,1]==4 ,3] <-0 #5 ,1==0
198
199 #2,2
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200 data6 [ data6 [ ,2]==0 ,3] <-0 #1 ,1==0
201 data6 [ data6 [ ,1]==0 ,3] <-0 #2 ,1==0
202 data6 [ data6 [ ,1]==2 ,3] <-0 #3 ,1==0
203 data6 [ data6 [ ,1]==3 ,3] <-0 #4 ,1==0
204 data6 [ data6 [ ,1]==4 ,3] <-0 #5 ,1==0
205
206 #3,2
207 data7 [ data7 [ ,2]==0 ,3] <-0 #1 ,1==0
208 data7 [ data7 [ ,1]==0 ,3] <-0 #2 ,1==0
209 data7 [ data7 [ ,1]==1 ,3] <-0 #3 ,1==0
210 data7 [ data7 [ ,1]==3 ,3] <-0 #4 ,1==0
211 data7 [ data7 [ ,1]==4 ,3] <-0 #5 ,1==0
212
213 #4,2
214 data8 [ data8 [ ,2]==0 ,3] <-0 #1 ,2==0
215 data8 [ data8 [ ,1]==0 ,3] <-0 #1 ,1==0
216 data8 [ data8 [ ,1]==1 ,3] <-0 #2 ,1==0
217 data8 [ data8 [ ,1]==2 ,3] <-0 #3 ,1==0
218 data8 [ data8 [ ,1]==4 ,3] <-0 #5 ,1==0
219
220 #5,2
221 data9 [ data9 [ ,2]==0 ,3] <-0 #1 ,1==0
222 data9 [ data9 [ ,1]==0 ,3] <-0 #2 ,1==0
223 data9 [ data9 [ ,1]==1 ,3] <-0 #3 ,1==0
224 data9 [ data9 [ ,1]==2 ,3] <-0 #4 ,1==0
225 data9 [ data9 [ ,1]==3 ,3] <-0 #5 ,1==0
226
227
228 t0 <- sum( data0 [ ,3])
229 t1 <- sum( data1 [ ,3])
230 t2 <- sum( data2 [ ,3])
231 t3 <- sum( data3 [ ,3])
232 t4 <- sum( data4 [ ,3])
233 t5 <- sum( data5 [ ,3])
234 t6 <- sum( data6 [ ,3])
235 t7 <- sum( data7 [ ,3])
236 t8 <- sum( data8 [ ,3])
237 t9 <- sum( data9 [ ,3])
238
239 #-log( likelihood )
240 Tfinal <-sum(t0)+sum(t1)+sum(t2)+sum(t3)+sum(t4)+sum(t5)+sum(t6)+sum(t7)+sum(t8)+sum(t9)
241
242 return (- Tfinal )
243 }
244
245 lowerlim <- c(-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf ,-Inf)
246 upperlim <- c(+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+Inf ,+ Inf)
247
248
249 ## PROBABILITY OF RESPONSE
250
251 ## INTEGRAND
252 integrand <-function (Zint ,meantreat , meanuntreat ,mle)
253 {
254
255 sigmahat = matrix (nrow =4, ncol =4)
256 sigmahat [1 ,1]=( exp(mle [8]))^2
257 sigmahat [2 ,1]=(2*inv. logit (mle [10]) -1)*(exp(mle [8]))*exp(mle [9])
258 sigmahat [3 ,1]=(2*inv. logit (mle [11]) -1)*(exp(mle [8]))
259 sigmahat [4 ,1]=(2*inv. logit (mle [12]) -1)*(exp(mle [9]))
260 sigmahat [1 ,2]= sigmahat [2 ,1]
261 sigmahat [2 ,2]=( exp(mle [9]))^2
262 sigmahat [3 ,2]=(2*inv. logit (mle [13]) -1)*(exp(mle [9]))
263 sigmahat [4 ,2]=(2*inv. logit (mle [14]) -1)*(exp(mle [9]))
264 sigmahat [1 ,3]= sigmahat [3 ,1]
265 sigmahat [2 ,3]= sigmahat [3 ,2]
266 sigmahat [3 ,3]=1
267 sigmahat [4 ,3]=2*inv. logit (mle [15]) -1
268 sigmahat [1 ,4]= sigmahat [4 ,1]
269 sigmahat [2 ,4]= sigmahat [4 ,2]
270 sigmahat [3 ,4]= sigmahat [4 ,3]
271 sigmahat [4 ,4]=1
272
273 xtreat <-cbind (- meantreat [ ,1]+ Zint [1] , -meantreat [ ,2]+ Zint [2] , -meantreat [ ,3]+ Zint [3] , -meantreat [ ,4]+ Zint [4])
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274 xuntreat <-cbind (- meanuntreat [ ,1]+ Zint [1],- meanuntreat [ ,2]+ Zint [2],- meanuntreat [ ,3]+ Zint [3],- meanuntreat [ ,4]+ Zint
[4])

275
276 pdftreat = dmvnorm (xtreat , mean=c(0 ,0 ,0 ,0) ,sigma = sigmahat )
277 pdfuntreat = dmvnorm (xuntreat , mean=c(0 ,0 ,0 ,0) ,sigma = sigmahat )
278
279 return (c(mean( pdftreat ),mean( pdfuntreat )))
280 }
281
282
283 #### PROBABILITY OF SUCCESS
284
285 probofsuccess <-function (mle ,n,dat ,eta)
286 {
287 n=n
288
289 meantreat = cbind ( cbind (rep (1,n),rep (1,n),dat [ ,7])%*%c(mle [1:2] , mle [20]) ,cbind (rep (1,n),rep (1,n),dat [ ,8])%*%c(mle

[3:4] , mle [21]) ,rep (1,n)*mle [5] ,
290 cbind (rep (1,n),rep (1,n))%*%mle [6:7])
291 meanuntreat = cbind ( cbind (rep (1,n),rep (0,n),dat [ ,7])%*%c(mle [1:2] , mle [20]) ,cbind (rep (1,n),rep (0,n),dat [ ,8])%*%c(

mle [3:4] , mle [21]) ,rep (0,n)*mle [5] ,
292 cbind (rep (1,n),rep (0,n))%*%mle [6:7])
293
294 # lower and upper bounds
295 minmean1 =min(c( meantreat [,1], meanuntreat [ ,1]))
296 minmean2 =min(c( meantreat [,2], meanuntreat [ ,2]))
297 minmean3 =min(c( meantreat [,3], meanuntreat [ ,3]))
298 minmean4 =min(c( meantreat [,4], meanuntreat [ ,4]))
299
300 maxmean1 =max(c( meantreat [,1], meanuntreat [ ,1]))
301 maxmean2 =max(c( meantreat [,2], meanuntreat [ ,2]))
302 maxmean3 =max(c( meantreat [,3], meanuntreat [ ,3]))
303 maxmean4 =max(c( meantreat [,4], meanuntreat [ ,4]))
304
305 lower =c( qnorm (1e -15 , minmean1 ,exp(mle [8])),qnorm (1e -15 , minmean2 ,exp(mle [9])),qnorm (1e -15 , minmean3 ,1) ,qnorm (1e -15 ,

minmean4 ,1))
306 upper =c(eta [1] , eta [2] , eta [3] , eta [4])
307
308 a= cuhre (4,2, integrand =integrand , meantreat = meantreat , meanuntreat = meanuntreat ,
309 mle=mle , lower =lower , upper =upper , flags =list( verbose =0, final =1, pseudo . random =0, mersenne .seed=NULL))
310
311 # return (c(a$ value [1] -a$ value [2] ,a$ value [1] ,a$ value [2])) ## RISK DIFFERENCE
312 return (c(( log(a$ value [1]/(1-a$ value [1]))-log(a$ value [2]/(1-a$ value [2]))),a$ value [1] ,a$ value [2])) ##LOG -ODDS
313 # return (log(a$ value [1]/a$ value [2])) ## LOG RISK RATIO
314 }
315
316
317 #### PARTIAL DERIVATIVES
318
319 partials <-function (mle ,n,dat ,eta)
320 {
321 p= length (mle)
322 fit1 <- probofsuccess (mle ,n,dat ,eta)
323 fit <-fit1 [1]
324 partials . augbin <-as. vector (rep (0,p))
325
326 for(i in 1:p){
327 valueupdate =mle
328 valueupdate [i]= valueupdate [i ]+0.000001
329 updateprob = probofsuccess ( valueupdate ,n,dat ,eta)[1]
330 partials . augbin [i]=( updateprob -fit)/ 0.000001
331 }
332
333 return (c( partials .augbin ,fit1))
334 }
335
336
337
338 ### AUGMENTED BINARY METHOD
339 ##BOX -COX TRANSFORM FOR CONTINUOUS COMPONENT
340
341 boxcoxtransform = function (y, lambda )
342 {
343 return ((y^lambda -1)/ lambda )
344 }
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345
346
347 ### INTEGRAND
348
349 integrand .aug <-function (acrn , meantreated , meanuntreated ,Sigma ,failure1 , baseline1 , baseline2 )
350 {
351 n= length ( baseline1 )
352
353 f1treat =inv. logit ( cbind (rep (1,n),baseline1 ,baseline2 ,rep (1,n))%*% failure1 $ coefficient )
354 f1untreat =inv. logit ( cbind (rep (1,n),baseline1 ,baseline2 ,rep (0,n))%*% failure1 $ coefficient )
355
356 pdftreat = dnorm (- meantreated [ ,1]+ acrn [1] , mean =0,sd= Sigma )
357 pdfuntreat = dnorm (- meanuntreated [ ,1]+ acrn [1] , mean =0,sd= Sigma )
358
359 return (c(mean ((1 - f1treat )* pdftreat ),mean ((1 - f1untreat )* pdfuntreat )))
360
361 }
362
363 ## PROBABILITY OF SUCCESS
364
365 probofsuccess .aug= function ( continuous ,baseline1 ,baseline2 ,failure1 ,dich)
366 {
367
368 n= length ( baseline1 )
369
370 meantreated = cbind (rep (1,n),rep (1,n),baseline1 , baseline2 )%*% continuous $ coefficient
371
372 meanuntreated = cbind (rep (1,n),rep (0,n),baseline1 , baseline2 )%*% continuous $ coefficient
373
374
375 #find lower and upper points for integration :
376 maxmean1 =max(c( meantreated [,1], meanuntreated [ ,1]))
377 minmean1 =min(c( meantreated [,1], meanuntreated [ ,1]))
378
379
380 # integrate
381
382 a= cuhre (1,2, integrand = integrand .aug , meantreated = meantreated , meanuntreated = meanuntreated , Sigma = summary ( continuous

)$sigma , failure1 =failure1 , baseline1 =baseline1 , baseline2 =baseline2 ,
383 lower = qnorm (1e -08 , minmean1 , summary ( continuous )$ sigma ),upper =dich , flags =list( verbose =0, final =1, pseudo .

random =0, mersenne .seed=NULL))
384
385 # return (c(a$ value [1] -a$ value [2] ,a$ value [1] ,a$ value [2])) ### RISK DIFFERENCE
386 return (c(( log(a$ value [1]/(1-a$ value [1]))-log(a$ value [2]/(1-a$ value [2]))),a$ value [1] ,a$ value [2])) ## LOG -ODDS
387
388 }
389
390
391 ### PARTIAL DERIVATIVES
392
393 get. partials <-function ( continuous , baseline1 , baseline2 ,failure1 ,dich)
394 {
395
396 fit= probofsuccess .aug( continuous ,baseline1 ,baseline2 ,failure1 ,dich)
397 fit1=fit [1]
398 augbin . partials =as. vector (rep (0 ,8))
399
400
401 # split in to three separate models
402
403 # continuous model
404
405 for(i in 1:4)
406 {
407
408 valueupdate1 = continuous
409 valueupdate1 $ coefficient [i]= valueupdate1 $ coefficient [i ]+0.000001
410
411 updateprob = probofsuccess .aug( valueupdate1 ,baseline1 ,baseline2 ,failure1 ,dich)[1]
412
413 augbin . partials [i]=( updateprob -fit1)/ 0.000001
414
415 }
416
417 # failure model1
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418
419 for(i in 1:4)
420 {
421
422 valueupdate2 = failure1
423 valueupdate2 $ coefficient [i]= valueupdate2 $ coefficient [i ]+0.000001
424
425 updateprob = probofsuccess .aug( continuous ,baseline1 , baseline2 , valueupdate2 ,dich)[1]
426
427 augbin . partials [i +4]=( updateprob -fit1)/ 0.000001
428 }
429
430 return (c( augbin .partials ,fit))
431 }
432
433
434 #### STANDARD BINARY METHOD
435
436 differenceinprob . binary = function (glm1 ,t,x1 ,x2)
437 {
438 #get fitted probs for each arm from model :
439
440 fittedvalues . control =as. double (inv. logit ( cbind (rep (1, length (t[t ==0]) ),rep (0, length (t[t ==0]) ),x1[t==0] , x2[t ==0]) %

*%glm1$coef))
441
442 fittedvalues .exp=as. double (inv. logit ( cbind (rep (1, length (t[t ==1]) ),rep (1, length (t[t ==1]) ),x1[t==1] , x2[t ==1]) %*%

glm1$coef))
443
444
445 return (c(log(mean( fittedvalues .exp ,na.rm=T)/(1- mean( fittedvalues .exp ,na.rm=T)))-log(mean( fittedvalues .control ,na

.rm=T)/(1- mean( fittedvalues .control ,na.rm=T))),mean( fittedvalues .exp ,na.rm=T),mean( fittedvalues .control ,na.
rm=T))) ###LOG -ODDS

446
447 # return (c(mean( fittedvalues .exp ,na.rm=T)-mean( fittedvalues .control ,na.rm=T), mean( fittedvalues .exp ,na.rm=T),

mean( fittedvalues .control ,na.rm=T))) ### RISK DIFFERENCE
448 # return (log(mean( fittedvalues .exp ,na.rm=T)/mean( fittedvalues .control ,na.rm=T))) ### LOG RISK RATIO
449 }
450
451
452 ## PARTIAL DERIVATIVES
453
454 partialderivatives . binary = function (glm1 ,t,x1 ,x2)
455 {
456
457 value1 = differenceinprob . binary (glm1 ,t,x1 ,x2)
458 value = value1 [1]
459
460 partials =rep (0 ,4)
461
462 tempglm1 =glm1
463 tempglm1 $coef [1]= tempglm1 $coef [1]+0.00001
464
465 partials [1]=( differenceinprob . binary (tempglm1 ,t,x1 ,x2)[1] - value )/ 0.00001
466
467 tempglm1 =glm1
468 tempglm1 $coef [2]= tempglm1 $coef [2]+0.00001
469
470 partials [2]=( differenceinprob . binary (tempglm1 ,t,x1 ,x2)[1] - value )/ 0.00001
471
472 tempglm1 =glm1
473 tempglm1 $coef [3]= tempglm1 $coef [3]+0.00001
474
475 partials [3]=( differenceinprob . binary (tempglm1 ,t,x1 ,x2)[1] - value )/ 0.00001
476
477 tempglm1 =glm1
478 tempglm1 $coef [4]= tempglm1 $coef [4]+0.00001
479
480 partials [4]=( differenceinprob . binary (tempglm1 ,t,x1 ,x2)[1] - value )/ 0.00001
481
482 return (c(value ,partials , value1 [2] , value1 [3]))
483
484
485 }
486
487 ##### CALCULATE PROBABILITY OF SUCCESS USING LATENT VARIABLE METHOD
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488
489 n=dim(dat)[1]
490
491 eta=c() ##SET DICHOTOMISATION THRESHOLDS BASED ON DATA
492 mlefit = optimx (X,f, lower =lowerlim , upper =upperlim , method =" nlminb ",dat=dat ,eta=eta , control =list(rel.tol =1e -12))
493 mle <-coef( mlefit [1 ,])
494 hess <-attr(mlefit ," details ")[" nlminb " ,]$ nhatend
495 mlecov =ginv(hess)
496 mlecov <-nearPD ( mlecov )$mat
497 se <-sqrt(diag( mlecov ))
498 part <-partials (mle ,n,dat ,eta)
499 mean <-part [22]
500 parts <-part [1:21]
501 variance =t( parts )%*% mlecov %*% parts
502 variance = variance [1 ,1]
503
504 CI <-c(mean -1.96 *sqrt( variance ),mean ,mean +1.96 *sqrt( variance ),part [23] , part [24])
505
506
507
508 ## AUGMENTED BINARY
509 dichotomisationthreshold =eta [1] ### SET BASED ON DATA
510 cont <-dat$Z1
511 dat$ myresp <-ifelse (dat$Z2 <=( eta [2]) & dat$ Z3ord !=3 & dat$ Z3ord !=4 & dat$ Z4ord ==0 ,0 ,1) ### SET BINARY RESPONSE

CRITERIA BASED ON DATA
512 failure <-dat$ myresp
513 baselinediseaseactivity <-dat$Z10
514 baseline2 <-dat$Z20
515 arm <-dat$ treat
516 patientid <-dat$id
517
518 #fit continuous model
519 continuousmodel =gls(Z1~ treat +Z10+Z20 ,data=dat)
520
521 # first model - all patients :
522 failuremodel1 =glm( myresp ~Z10+Z20+treat , family =" binomial ",data=dat)
523
524 partial .aug=get. partials ( continuousmodel , baselinediseaseactivity ,baseline2 , failuremodel1 ,

dichotomisationthreshold )
525
526 mean.aug= partial .aug [9]
527 partials .aug= partial .aug [1:8]
528
529 covariance .aug= matrix (0 ,8 ,8)
530 covariance .aug [1:4 ,1:4]= continuousmodel $ varBeta
531 covariance .aug [5:8 ,5:8]= summary ( failuremodel1 )$cov. unscaled
532 variance .aug=t( partials .aug)%*% covariance .aug%*% partials .aug
533
534 # confidence interval for difference in mean probability of success
535 CI. augbin =c(mean.aug -1.96 *sqrt( variance .aug),mean.aug ,mean.aug +1.96 *sqrt( variance .aug),partial .aug [10] , partial .

aug [11])
536
537
538 ### STANDARD BINARY
539
540 dat$resp <-ifelse (dat$Z1 <=( eta [1]) & dat$Z2 <=( eta [2]) & dat$ Z3ord !=3 & dat$ Z3ord !=4 & dat$ Z4ord ==0 , 1 ,0) ##SET

BASED ON DATA
541 success . binary =dat$resp
542
543 glm1=glm( success . binary ~ treat +Z10+Z20 , family =" binomial ")
544
545 partial . binary = partialderivatives . binary (glm1 ,treat ,Z10 ,Z20)
546 mean. binary = partial . binary [1]
547 partials . binary = partial . binary [2:5]
548 covariance = summary (glm1)$cov. unscaled
549 var. binary =t( partials . binary )%*% covariance %*% partials . binary
550
551 CI. binary =c(mean.binary -1.96 *sqrt(var. binary ),mean.binary ,mean. binary +1.96 *sqrt(var. binary ),partial . binary [6] ,

partial . binary [7])
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