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Abstract 
 
   The soot volume fraction (SVF) of waste cooking oil (WCO) biodiesel and blends was 

quantified and compared under the same total carbon flow rate via two experimental setups, namely 

prevaporised diffusion jet flames and pool flames using extinction calibrated laser induced-

incandescence (LII). The spatial SVF distribution shows that for diesel-rich fuels, soot formation peaks 

near the flame and is convected downstream, whereas biodiesel flames show a more evenly distributed 

SVF at the flame center region. An increase in biodiesel fraction in diesel results in a reduced 

propensity for soot, as evident in both pool and vapour flames. Comparison of the radial profiles of 

SVF along the centerline shows broader SVF profiles for pool flames, reflecting the longer residence 

times for soot diffusion and growth compared to vapour flames, which reflected the lower mass flux 

for the pool burner. The total soot produced from pool flames was found to be higher than vapour 

flame by a factor of two for the same fuel mass consumption rate. WCO biodiesel exhibited the lowest 

total SVF value regardless of flame type owing to the combined effects of lack of aromatic compounds 

and fuel chemistry. The soot primary particle sizes produced by WCO biodiesel show lower mean 

diameter values by a factor of approximately 1.5 compared to diesel-produced soot. The pool flames 

produced carbon particulates of larger mean diameter by around 22% and 8% for diesel and WCO 

biodiesel, respectively, relative to the counterpart vapour flames, as a result of extended soot surface 

growth period.  
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1. Introduction 

  Biodiesel is a type of non-toxic, biodegradable biofuel that is widely used as transportation fuel. 

The main composition of biodiesel is a mixture of monoalkyl esters and long chains of fatty acids 

derived from different types of oils and fats via the process of transesterification with alcohol in the 

presence of catalyst [1]. Biodiesels have become an important bioenergy source in the energy portfolio 

of many countries, often used as supplemental fuel blended with diesel via blending mandates, e.g. 

Indonesia (B20), Argentina (B10), Latvia (B7), Italy (B5), Malaysia (B7) etc [2, 3]. Most of the 

biodiesels produced are from first generation feedstock, e.g. food-based vegetable oils such as palm 

(Malaysia), rapeseed (Europe) and soy (US) [2]. In 2016, the global biodiesel production reached 36 

billion liters, accounting for 26.4% of the world biofuels production, and is projected to grow 

substantially in the near future [4]. However, the use of edible crops as feedstock for energy conversion 

is not without controversy, as the energy crops directly competes with food, water and land [5]. The 

production of biofuels at the expense of environmental sustainability is the main contention that drives 

the development of second or third generation biofuels which are non-food based, such as ligno-

cellulosic-based biomass or biowastes.    

  The Renewable Energy Directive (RED) II [6] published by the European Commission in 2018 

sets the target of 6.8% transportation fuels utilising advanced alternative fuels by 2030, placing 

emphasis on the use of renewable feedstocks such as algae, biowaste from households and industry, 

residues from agriculture (straw), industry (husks, nut shells), forestry (branches, black liquor) and 

energy crops [7]. One of the promising biowastes for biodiesel synthesis is waste cooking oil (WCO), 

which is abundantly available in urban areas and often treated as waste. It is estimated that the annual 

production of WCO in the US, China and Japan is 10, 4.5 and 0.45-0.57 million tonnes per year [8], 

respectively. The abundance of WCO presents an attractive viable source of bioenergy as it can 
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concomitantly address the issues of energy shortage and waste management, aligning with the effort 

of promoting urban circular economy. WCO does not compete with food demand and the cost is 

substantially lower than refined vegetable oil by a factor of 2-3 [9]. However, the drawback of WCO 

as a feedstock is the availability of compounds in addition to triacylglycerols, such as water, free fatty 

acids, polar compounds and non-volatile components as a result of chemical reactions during the food 

cooking processes. The presence of free fatty acids (FFA) in WCO ranges between 0.5-15 wt% as 

compared to refined oil, which contains less than 0.5 wt.% FFA [8]. Such variability in WCO content 

is a challenge that affects the transesterification reactions, yielding end products with inconsistent 

quality. Hence, additional processing is often needed to yield high quality biofuels, and thorough 

characterisation of the combustion properties is essential to ensure fuel-compatibility and safety of the 

systems [10]. 

The primary interest for WCO biofuel applications is in the transportation sector. In the 

aviation industry, WCO can be processed and formulated into high grade biojet fuel, such as those 

produced commercially and demonstrated in a KLM flight [11, 12]. In a recent aviation environmental 

report published by the European Aviation Safety Agency (EASA) report, WCO has been identified 

as a renewable feedstock that can reduce greenhouse gas emissions by up to 85%, but the potential 

reduction of soot emissions is not mentioned [13]. The processing method of hydroprocessed esters 

and fatty acids has been certified as one of the biojet fuel production paths by ASTM International 

[13]. In the ground transportation industry, WCO-derived biodiesel has shown to be a feasible 

blending agent with diesel. The post-combustion emissions and impact on the engine from the use of 

WCO biodiesel have been rigorously assessed at system level. Attia and Hassaneen [14] examined 

the emissions produced from a diesel engine operating at fixed 1500 rpm and varied load. The smoke 
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opacity was increased by 15%, an indication of increasing soot production. This contradicts a study 

by Elshaib et al [15] where the peak soot volume fraction was reported to decrease by 15% when 

using WCO biodiesel as operating fuel. Cheung et al. [16] characterised the composition of soot 

obtained from a 4-cylinder diesel engine operated with WCO biodiesel/diesel blends. The volatile 

mass fraction of the particulates was observed to increase with increasing fraction of biodiesel in the 

fuel. These results show that engine operating condition, combustion mode, types of fuel and fuel 

quality influence the complex soot formation process. To better understand the soot formation process 

of WCO biodiesel, fundamental combustion tests using simple flames and well-controlled conditions 

can be adopted to complement the results from system level testing. Such studies can provide insights 

on soot formation mechanism, in particular the evolution of soot inception, growth and oxidation, 

which are essential for the development of soot models.   

 There have been various fundamental experimental studies on the soot formation of WCO 

biodiesel, such as free-falling droplets [17], outwardly propagating spherical flames [18], and 

prevaporised diffusion flame and pool fires [19]. Xuan et al. [20] utilised the diffused-back 

illumination extinction imaging method to investigate the sooting propensities of hydrogenated WCO 

blended with diesel in a constant volume chamber at elevated pressure of 10-15 bar. The temporal 

soot mass produced by the blended fuel at the oxygen concentration of 15-21% was similar to the 

level produced by pure diesel. Hirnir et al. [18] reported that biodiesel soot produced in a constant 

volume combustion chamber with operating conditions of 50 bar and 978 K exhibited faster oxidation 

process, with a shorter duration of visible flame luminosity than that of diesel, based on flame imaging 

and hue analysis. The primary soot size was shown to decrease with increasing injection pressure, 

while the biodiesel soot size was found to be 1-2 nm smaller than that of diesel. 
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Merchan-Merchan et al. [21] investigated the soot morphology and formation process of 

different biodiesels (canola, cotton and soy) at different heights above burner in a prevaporised co-

flow diffusion flame. The study conclusively showed that the formation of soot precursors in the 

upstream region of the luminous flames of biodiesels are significantly lower compared to diesel. To 

identify the effects of oxygenated esters on soot formation, Abboud et al. [22] examined the effect of 

biodiesel surrogates, i.e. methylbutanoate, methyloctanoate in the diesel surrogates (70% n-decane 

and 30% α-methylnaphthalene) by using a co-flow diffusion flame burner. Result indicates that the 

ester functional groups in biodiesel effectively reduced the soot production. Longer alkyl chains were 

shown to exhibit lower soot reactivity. The soot suppressive effect of the oxygenated dibutyl ether 

(DBE) was demonstrated in a similar coflow diffusion flame setup, whereby DBE doping resulted in 

a nonlinear reduction of soot with DBE addition in methyl decanoate [23]. To date, there has been no 

similar diffusion flame setup for measurement of soot produced from WCO biodiesel. A possible 

reason relates to the variability in WCO composition depending on the source type. For example, the 

WCO biodiesel produced by Tacias-Pascacio et al. [24] contained 74.26% unsaturated methyl esters 

(55.2% single double bond), 1.05% free fatty acids (FFA), 400 mg/kg water, whereas those yielded 

by Yahya et al. [25] contained 65.2% unsaturated methyl esters (93% single double bond), 1.88% 

FFA and 2000 mg/kg water. Hence, thorough characterisation of the physio-chemical properties of 

the biodiesel depending on the batch of waste oil is necessary prior to combustion experiments. 

In our previous work, an open liquid pool diffusion flame setup was utilised to investigate the 

sooting propensities of different biodiesels [19]. The work demonstrated the effects of fuel chemistry 

on soot formation, whereby the sooting propensity of biodiesel ranked in accordance to the degree of 

unsaturation, highlighting the need to characterise biodiesel synthesised from different types of 
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feedstock. In the present study, we compare the open pool flame with prevaporised diffusion flame 

setups to investigate the sooting propensity of WCO biodiesel and WCO biodiesel/diesel blends.  

We show that the two methods yield similar results regarding the effects of biofuels on soot 

formation and the morphology of carbon particulates produced in the flames. The soot volume fraction 

(SVF) measurements for the flames is performed using the non-intrusive extinction-calibrated laser 

induced incandescence (LII) technique, which include the mapping of 2D SVF distribution map and 

quantification of the absolute value of total SVF by analysing the LII signals, followed by the 

investigation of the soot morphology using electron microscope. The sooting tendency of WCO and 

blends are examined and discussed. 

 

2. Experimental 
 
2.1 Pool flame burner setup 

A stainless-steel cup of 20 mm in diameter, 20 mm depth was utilised to establish a laminar 

liquid pool flame. The cup was placed concentrically with a co-flow of air at 0.18 m/s to assist in flame 

stabilisation. A ceramic heating plate of 24 mm in diameter was placed beneath the fuel crucible to 

heat up the liquid fuel to the temperature ~200 oC to enable ignition, yet not too high as to cause fuel 

pyrolysis. The pool flame cup was connected to a leveling fuel tank so that the consumed liquid fuel 

by the flame is continually replenished to maintain the constant fuel level in the fuel cup. A K-type 

thermocouple was placed in the middle of the fuel cup through a small hole on the side wall to monitor 

the temperature. The established pool flame was observed to be stable throughout the measurement. 

The fuel pool surface was maintained at a constant level of 1 mm below the cup lip. 
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2.2 Prevaporised diffusion jet flame setup 

  The liquid fuel was preheated and prevaporised prior to injecting into a stainless-steel central 

jet tube of 10 mm diameter to establish a diffusion jet flame. The liquid fuel mass flow rate was 

regulated at the rate identical to the mass consumption rate of pool fire by using a syringe pump 

(InfusionONE Syringe Pump with ±0.5% accuracy). Vaporisation of the fuel took place in a hollow 

stainless tube heated by an external heating tape. A temperature controller was utilised to regulate the 

heating temperature. Measurement of the jet vapour exiting the central jet tube showed the temperature 

to be ~390 oC. The central jet flame was shrouded by a coflow of air at 0.18 m/s to assist in flame 

stabilisation. A honeycomb structure was used in the annular co-flow tube in both burner setups to 

ensure flow laminarity. Figure 1 shows the schematic of the pool flame and prevaporised diffusion 

flame burner setups. The operating conditions of the two burner setups are summarised in Table 1. 

      
Figure 1: Schematics of the co-flow stabilised laminar (a) pool flame and (b) prevaporised diffusion 
jet flame burners. Dimensions are in mm. 
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Table 1: Geometry and operating conditions of the burner systems 
Laminar pool flame 

Crucible diameter (mm) 20 
Crucible depth (mm) 20 
Fuel vapourisation Heat conduction, radiation from the 

pool flame to pool fuel surface 
Fuel heating temperature (oC) 190-200 
Co-flow medium Air 
Co-flow velocity (cm/s) 18 
Fuel consumption rate (g/min) 0.1191 (diesel) 

0.1055 (WCO) 
Laminar diffusion jet flame 

Jet diameter (mm) 10 
Fuel vapourisation Fuel injection, preheat and 

prevapourised 
Fuel preheating temperature (oC) 350-390 
Co-flow medium Air 
Co-flow velocity (cm/s) 18 
Fuel flow rate (g/min) 0.1191 (diesel) 

0.1055 (WCO) 
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2.3 Fuel preparation 
 
 

Biodiesel is produced from WCO through two distinct stages of physical pre-treatment 

followed by a chemical process. Initially, the WCO sourced from local restaurants was filtered with 

vacuum filtration method to remove impurities. The filtration process was conducted thrice by using 

filter papers with nominal pore size of 11 µm. The post-filtered WCO, which is primarily composed 

of triglycerides, was converted into biodiesel (methyl ester) through a 3-step transesterification process 

as per reactions 1-3: 

Triglyceride + Methanol 
!"#
!⎯#  Methyl ester + Diglyceride   (1) 

Diglyceride + Methanol 
!"#
!⎯#  Methyl ester + Monoglyceride     (2) 

Monoglyceride + Methanol 
!"#
!⎯#  Methyl ester + Glycerol       (3) 

 

The triglycerides from WCO and methanol were reacted in a transesterification process, 

catalysed by alkaline-based potassium hydroxide (KOH). The KOH catalytic load was set as 1% wt, 

while the molar ratio of methanol:WCO was fixed at 6:1. Prior to the reaction, WCO was preheated to 

60 °C before being mixed with room temperature methanol and catalyst mixture. The reactant 

temperature was maintained at 60 °C in an isothermal bath over a 4-hour reaction period. At the end 

of the chemical reaction, biodiesel in the form of methyl esters and glycerol were synthesised, with 

small amounts of impurities such as catalyst, soap and excess methanol present. The main 

transesterification products were left to separate via gravity, and the biodiesel was decanted and 

washed to remove all impurities. Water from the washing process was evaporated at 120 °C. The 

physical pre-treatment and chemical processes for WCO biodiesel production is shown in Figure 2. 

 



 

10 
Accepted to Fuel, 23 Feb 2020 

 
 
Figure 2: Physical pre-treatment and chemical process for waste vegetable oil biodiesel production.  

 

 The WCO biodiesel produced is compliant with the EN14214 biodiesel standards requirement 

of 96.5% (m/m) yield. The composition of the biodiesel is measured using a gas chromatograph (GC, 

Agilent 7620A) based on the EN14103 standard. Figure 3 shows the gas chromatographic signal (flame 

ionization detector) of WCO biodiesel, indicating the simple composition of the fuels where saturated 

steric (48.1 % wt.) and palmitate (38.7%) methyl esters are the main components in the biodiesel. From 

the ultimate analysis, the present WCO biodiesel contains 76.2% of C element by mass, followed by 

12.6% and 11.2% of H and O mass fractions, respectively, thus forming the molecular formula of 

C18.14H36.04O2. The calorific value of the WCO biodiesel was determined to be 37.15 MJ/kg using a 

bomb calorimeter (Parr 6100). The soot emissions propensity is examined for a series of blends with 

conventional diesel fuel. The blends are indicated alphanumerically, where the initial of B indicates 

biofuel fraction, followed by the percentage by volume, e.g. B50 refers to 50% biodiesel blend with 

diesel by volume. The measured burning rate of WCO biodiesel under the laminar pool fire setup is 

0.1055 g/min under the present conditions, which is slightly lower than diesel (0.1191 g/min) by 11.4%. 

The properties of the WCO biodiesel are shown in Table 2.  
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Figure 3: Gas chromatograph for WCO biodiesel and breakdown of the methyl esters composition by 
mole. 
 
 
 

Table 2: Properties of fuels used 
Properties WCO biodiesel Diesel [26] 
Unsaturation 0.1185 - 
Average C Chain 17.14 - 
MW (g/mol) 285.68 170 
△H (MJ/kg) 37.15 43.09 
General formula C18.14H36.04O2 C12H24 
C mass fraction 0.7618 0.8635 
H mass fraction 0.1261 0.1366 
O mass fraction 0.1120 - 
Density (kg/m3) 870 850 

 
 
 
2.4 Measurement technique 
 

2.4.1 Laser induced-incandescence (LII) setup 

   Measurement of the SVF for both the pool flame and the diffusion flame were performed using  

2D laser induced incandescence (LII) and calibrated with continuous-wave laser cavity extinction [27]. 

The LII system consists of a 532 nm Ng:YAG laser (Litron nanoPIV, 10-25 Hz) and an intensified 

charge-coupled device (ICCD) camera (LaVision Nanostar, 1024x1028 pixels). The laser beam was 

Methyl Palmitate

Methyl Myristate Methyl Oleate

Methyl Stearate

Methyl Oleate, 
12.28%

Methyl Myristate, 
0.95%

Methyl Stearate, 
48.1%

Methyl Palmitate, 
38.68%
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collimated into a parallel sheet by a series of beam shaping optics, followed by an aperture to generate 

a top-hat velocity profile. A bandpass filter (Thorlabs FB400-40, central λ= 400 ±8 nm, FWHM = 40 

nm) was coupled to the camera lens to filter out the luminosity interference from flame radiation, 

polycyclic aromatic hydrocarbon (PAH) and C2 fluorescence. The intensifier was set to a delay of 30 

ns and a relative short gate of 20 ns to avoid interference of PAH LIF and residual laser scatter.  

The dependence of the LII signal on the fluence of the laser sheet for the two unblended cases 

is shown in Figure 4. Measurement of the LII signal was performed over a range of 1 to 32 mm height 

above burner (HAB), where each LII signal from each fluence represents the average value of 100 

images obtained at 20 Hz (the total number of images was previously shown to be sufficient for 

convergence). The LII signal peak was identified by normalizing the maximum value for each case. 

Typically, the LII signal is observed to rise with increasing laser fluence due to the increase in particle 

temperature until the sublimation point, during which the temperature is almost fixed while the signal 

at the fluence was around 0.15 J/cm2, as indicated in Figure 4. Figure 5 shows the normalised top-hat 

beam profile and variance over 500 shots obtained by fluorescing the Rhodamine 6G contained in a 

cuvette via a laser sheet. The local intensity fluctuation of the laser sheet is below 5%, while the error 

induced by the fluctuations in spatial fluence is within 6%. The imaging field of view is 32 x 32 mm2, 

translating to 40 μm/pixel.  
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Figure 4: Fluence dependence of the LII signal for the neat WCO biodiesel as a function of the fluence 
of laser sheet. The values of LII signal intensities are normalized by the maximum value of each flame 
type. The plateau region (highlighted in rectangle) is selected for the LII measurement. 

 

 

Figure 5: (left) Rhodamine 6G fluorescence excited by laser sheet in a cuvette and (right) the 
normalized laser intensity profile over the vertical region along vertical coordinate z, as highlighted in 
the cuvette. The fluctuation of the laser intensity or spatial fluency is reflected in the error bars, for 
values below 6% of the average.   
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2.4.2 LII calibration via absorption measurements 
 
 

Continuous wave laser cavity extinction measurements were performed for a quantitative 

calibration of the LII signal. A diode laser with the output power of 150 mW at the wavelength of 638 

nm was used as the laser source for extinction, as described in detail in [27]. The signal processing 

includes the effect of light trapping in the high soot loading cases via an iteration-based deconvolution 

method to correct the 2D LII images, as detailed in [28]. The location of height above burner (HAB) 

of 25 mm for the case of pure diesel pool flame is selected to conduct the extinction calibration. The 

calibration is used for all cases including vapourised and pool flames. SVF values both pre- and post- 

signal trapping correction are shown in the Fig. 6. The results show that the signal trapping effect in 

the tested cases led to a maximum underestimation of soot concentration in the flame by 4-13% at 

HAB=25 mm.  

 
Fig. 6: Corrected (solid blue line) and uncorrected (red dashed line) SVF profiles at HAB = 25 mm of 
pure diesel pool flame (top) and prevapourised flame (bottom).  
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2.4.3 Soot sampling 
 

The soot produced from the flames was collected by using a quartz plate pre-cooled to 0 oC。The 

size of the plate is 76.2 × 25.4 ×1.0 mm, placed in the flame at the fixed HAB of 15 mm for a duration 

of approximately 2 s. A fixed sampling HAB was used to ensure the residence time for the soot sampled 

from the two setups were the approximately the same, so that the results are comparable. The soot 

sampled from the flames was cooled and examined via the use of a scanning electron microscopy (LEO 

GEMINI 1530VP FEG-SEM) system. The primary particle diameter was determined via direct 

measurement from the SEM images. Subsequently, the distribution of the particles was determined 

and fitted using lognormal distributions based on the measurement of random 100 soot particles.  

 

3. Results and discussion 

 

3.1 Flame imaging and SVF distribution 
 

A comparison of the global flame shape and luminosity of pool flames and vapourised diffusion 

flames of pure diesel, WCO biodiesel and blends is shown Figure 7. The corresponding SVF 

distribution in the flame derived from the deconvolution of LII images is shown below each flame. 

The planar imaging of the LII signal was performed over the fixed field of view of HAB=32 mm to 

obtain the optimum balance of maximum allowable field of view with sufficiently strong LII signals. 

In the present case, the rates of fuel mass consumption were specifically matched according to fuel 

type to offer a fair comparison between the vapourised case and the liquid case. From a macro 

perspective, both flame types exhibit the characteristic stable cone shape of a diffusion flame. Matched 

fuel mass flow rates between the vapourised and pool flames allow a reasonably direct comparison of 
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the total soot formed above the flame. However, the detailed thermal conditions are different between 

the two cases, owing to the obvious distinct boundary conditions. The use of a larger diameter for the 

pool flame burner (20 mm) is required due to the need to stabilise the buoyancy-controlled flame, yet 

to ensure minimal geometrical effect such as heat loss to the cup rim. Non-dimensionalising the flame 

height with cup diameter yields similar global physical trend for both flame types, as shown in Fig. 8. 

Nevertheless, the vapour flames are consistently longer compared to the pool flames across all blend 

ratios. This arises because the velocities are approximately four times higher in the case of the vapour 

flames, since the fuel flow rates are the same and the diameters differ by a factor of two. For buoyancy-

controlled diffusion flames, the flame height is linearly dependent on the volumetric flow rate [29], 

hence the jet fuel velocity and burner exit diameter would account for part of the difference between 

the flames.  

Another difference between the pool and vapour flames is the different temperature profiles 

within the inner flame zone: liquid flames require that the fuel be vapourised prior to reaction, and thus 

one would expect lower temperatures, for the same ratio of HAB/D. The self-sustained pool flame 

mechanism is based on the heat conduction and radiative flux from the flame front and sooting region 

to the pool surface, [30]. Therefore, it is plausible that the peak flame temperatures are lower in the 

case of pool flames compared to vapourised flames. The corresponding stoichiometric mixture 

fractions for each fuel are shown in Table 3. The stoichiometric mixture fraction 𝑍$% of each case is 

calculated using Eq. (1): 

𝑍!" =
#!",$/%

#%&,$&#!",$/%
                              (1) 

In which 𝑌&',) is the mass fraction of oxygen in the oxidizer stream, 𝑌*+,)is the mass fraction 

of fuel in the fuel stream, 𝑆 is the oxygen-to-fuel ratio in mass at stoichiometry. For the mixture of 
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WCO biodiesel and diesel, the overall value of 𝑆 can be evaluated using  𝑆,𝑌,+𝑆-𝑌-, where the 

subscripts b and d represent the neat WCO biodiesel and pure diesel respectively. Thus, the overall 

mixture fraction of each case 𝑍./ can be calculated using Eq. (2): 

𝑍%' =
(.*++

(%'#'&%(#()&(.*++
                             (2) 

The values of 𝑆, and 𝑆- can be obtained using chemical stoichiometric calculation, which are 

shown in Table 3; 𝑌, and 𝑌- = 1 − 𝑌, are evaluated based on the volume ratio and density:  

𝑌. =
/'0'

/(0(&/'0'
                                 (3) 

where 𝜌, and 𝜌- are densities of diesel and WCO biodiesel respectively. The stoichiometric 

mixture fraction is slightly different for each fuel. Neat biodiesel flame should be slightly narrower as 

it sits at a wider iso-Z curve. 

 

Table 3: Calculation of the overall mixture fraction 𝑍./ 	of each case 
WCO in volume 0 20% 40% 60% 80% 100% 

𝑺𝒅 14.8159 
𝑺𝒃 12.6560 
𝒀𝒅 1 0.7963 0.5944 0.3944 0.1963 0 
𝒀𝒃 0 0.2037 0.4056 0.6056 0.8037 1 
𝒁𝑺𝑻 0.0155 0.0159 0.0164 0.0170 0.0175 0.0181 
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Figure 7: Natural luminosity of pool flames (top row) and vapour flames (third row) for diesel (0%), 
WCO biodiesel (100%) and blends (WCO biodiesel 20-80% vol), along with the corresponding SVF 
map from HAB = 0 to 32 mm. The stoichiometric mixture faction for each flame is indicated in Table 
3. 
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The soot formation mechanism for both pool and vapour flames are somewhat similar in spite 

of the differences in flame and burner configuration. For diffusion-controlled flame, the streamlines 

carry the precursors into the high temperature flame reaction zone. Soot is prone to form in the region 

where temperature is higher, i.e. at the stoichiometric reactive layer where fuel and oxidizer meets, 

overlapping the luminous zone of the flames. In the case of the pre-vaporised flames, the fuel is 

available in vapour form at high temperature. The fuel burns immediately in the downstream region of 

the luminous zone by oxidation and gets converted into soot. In the case of the pool flame, the 

temperatures are lower, hence it takes longer for soot to incept and subsequent soot surface growth. 

Therefore, the soot production zone is wider, extending from the edges of the flame to the centerline, 

of which one can think of them as iso-temperature surfaces. The relatively low temperature prevents 

oxidation near the flame tip region (where soot is formed and velocities are highest, thus leaving the 

shortest time for oxidation), leading to the opening up of a smoke point.  

    The strong influence of fuel chemistry on the soot formation is evident from the different 

flame shapes and SVF distribution in flame. The diesel flames show the longest flame height for both 

pool and vapour flame setups. The soot profile follows the contour of the luminous flame up to the 

point where they can be observed. In contrast, the luminous height of the pure WCO biodiesel flame 

is the shortest, both in the case of the liquid pool and the gaseous flames. The flame height is observed 

to decrease monotonically with the increase of WCO biodiesel fraction for both flame types. The 

visible long streaks of sooty regions for diesel-rich flames shown in both flame types arise from the 

incomplete oxidation of soot, indicating high sooting propensity. Heavily sooting flame is known to 

form soot at the flame wings close to stoichiometry rather than at the centerline region of the flame 

[31]. The strong radiation from soot results in the strong yellow luminosity, overshadowing the blue 
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high temperature reaction zone. The bluish flame wings as visibly observed in the neat biodiesel pool 

flame as the soot inception near the wing region is relatively low compared to diesel. The double-wing 

structure at the lower part of the flame merges into a single peak distribution in the mid zone of the 

flame, before proceeding to fade at the flame tip along the axial direction. The stoichiometric mixture 

fraction , Zst = (Φs+1)-1 is inversely proportional to the stoichiometric fuel to air mass ratio, so lower 

oxygen demand corresponds to higher Zst. Biodiesel flames require 14% lower air-to-fuel ratio to reach 

stoichiometric reaction at the interface of fuel and oxidizer: the flame interface would be expected to 

be slightly narrower (towards the fuel side) under a diffusion-controlled system, but otherwise similar 

characteristics. Although the heating value for biodiesel is lower than that of diesel by 13.8%, the 

adiabatic flame temperature for the former (~2278 K) is only marginally lower than the latter (~2291 

K) at stoichiometric conditions at 1 bar and 300 K. The high content of saturates (C16:0 and C18:0) in 

the present biodiesel slightly decreases the enthalpy of combustion [32]. 

Diesel typically consists of a range of high boiling point straight-chain and aromatic 

compounds, in contrast with the oxygenated biofuel, which consists primarily of oxygenated methyl 

esters. The high aromatic content of diesel fuel creates a ready path pyrolysis reaction capable of 

producing soot nucleation and formation. Kitamura et al. [33] showed the degradation of diesel fuel 

led to the generation of high density PAH and corresponding inception in the relatively long pre-flame 

zone. The sooting region for biodiesel is much more limited, both in the case of the liquid pool and 

vapourised flame, as expected due to the composition of esters without the presence of aromatics. 

Whereas the hottest regions are still expected at the wings of the flames, most of the soot is measured 

within the central region of the flame, as the high temperature wings of the flame merge within the 

short height, in line with the trend shown in our previous work using different types of vegetable based-
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biodiesels [19]. The tendency of soot to form in the centerline region of biodiesel flame, as opposed to 

those formed at the flame wings for diesel, concurs with the result reported by Arad et al. [34]. It was 

shown in their numerical study of vapor flame that the neat biodiesel exhibits a decrease of soot surface 

growth rates at the wings while the maximum rates shift from the wings to the centerline [35]. The 

tendency to form less soot by the biodiesel is attributed to the fuel chemistry effect of which biodiesel 

is inherently oxygenated. The presence of oxygen in biodiesel promotes soot oxidation process, thus 

reducing the surface growth of particles [36]. It is observed that for blends with biodiesel fraction of 

60% vol. and above, no smoke was formed at the tip of the flame, indicating the soot produced was 

entirely consumed and oxidised in the flame. 

 

 
Figure 8: Ratio of visible flame height L to the diameter of the fuel cup or burner nozzle D against the 
blending ratio of WCO.  
 
 
3.2 Analysis of SVF distribution profiles in flames 

The images in Fig. 7 show that the flame sooting zone extends far beyond the measured region. 

This means that analysis of the total flame zone is not entirely possible. Instead, the maximum SVF 
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value determined from the 2D SVF map as a function of biodiesel fraction for both flame types is used 

as a surrogate for comparing fuel behavior, and is shown in Fig. 9. Even though the SVF distribution 

map is limited to HAB=32 mm, the maximum SVF value is located within the field of view, i.e., at the 

highest temperature region of flame wings which is approximately 1/3 from the burner outlet. Further 

downstream close to the flame tip is the cooling off region where soot is less likely to form, but still 

exists as it is transported. In general, both pool and vapour flames show a monotonic decrease in peak 

SVF value with increasing biodiesel fraction. Diesel is expectedly generating the highest SVF owing 

to the presence of aromatic hydrocarbons such as alkylbenzenes, teralins, napthalenes and 

phenanthrenes, as soot precursors. For pool flames, the peak SVF for diesel, B20, B40 and B60 blends 

are somewhat higher than those of vapour flames. The B80 blend marks a crossing point, beyond which 

there is a lower peak SVF for pool flames at B100. The higher pool flame peak SVF could be attributed 

to the longer residence time available in the pool flame for soot to grow and coalesce since their 

inception.  

The sooting tendency can be correlated to the content of esters in the fuel. Addition of 

biodiesel to diesel is seen to effectively reduce the formation of soot, as the esters molecules in 

biodiesel reduce the concentration of C2H4, which is a key species in the formation of C2H2 as soot 

precursor [37]. Further, the carbonyl molecules present in biodiesel acts as soot suppressant, as was 

previously shown in the work by McEnally et al. [38] where the doping of small concentration of 

aldehydes and ketones in a non-premixed methane flame resulted in the reduction of soot. For neat 

biodiesel flame, the peak SVF for WCO biodiesel is lower than diesel by approximately 6 times, 

regardless of the type of flame. The reaction pathway of esters is different from the n-alkane which 

explains the low sooting tendency for pure biodiesel flames.  
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Figure 9: Maximum SVF as a function of biodiesel blending fraction. The error bars in the figure are 
calculated from the LII image variances.  

 

A snapshot of the rate of soot production along the flame can be obtained by a comparison of 

the radially integrated mean SVF along the axial location of height above burner for both pool and 

vapour flames is shown in Fig. 10. The mean SVF is derived via 4
5 ∫ 𝑟𝑓6(𝑟)	𝑑𝑟

5
) , where r is the radius 

of the pool. The SVF profiles are normalized against the maximum value of peak SVF. Under the same 

fuel consumption rate, the overall radial SVF profiles with respect to increasing HAB for both flames 

are rather similar. The peak SVF initially appears in the annular region near the flame front at the lower 

region of the flame before shifting to the flame centerline as the HAB increases. Whilst keeping the 

same fuel consumption rate for both flame types, the mean SVF profiles for pool flames show higher 

values for diesel and blends. In particular, the diesel pool flame exhibits a higher peak soot by a factor 

of two compared to the vaporised flame. In the case of biodiesel, the magnitude of peak soot emitted 

is about the same for both flame types. The broader SVF distribution profiles in the pool flames arises 

from the lower mass fluxes and consequent lower axial velocities, owing to the doubling of the area 

for the pool flame relatively to the vapour flame, resulting in a longer time for the soot to grow before 
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oxidation at the flame. The incomplete consumption of the soot in the flame can be observed in the 

form of “smoke” produced at the tip of the flame. Diesel and B20 pool flames with long visible flame 

length exhibit the evolution of SVF distribution that extends to relatively high HAB with no distinct 

peak SVF before decreasing gradually when approaching the flame tip region. For blends of B60 and 

B80, the soot is oxidised completely within the flame, hence the SVF decreased to almost a minimum 

after peaking at the flame region of HAB= 10-20 mm. The vapour flames show lower SVF values 

peaking at HAB <10 mm for all fuel types before reducing to a minimum downstream near the flame 

tip.  

 

 

 
Figure 10: Comparison of the normalized radially integrated mean SVFs of diesel, WCO biodiesel and 
blends of (a) pool flames and (b) vapour flames as a function of HAB. The mean SVF is derived via 
4
5 ∫ 𝑟𝑓6(𝑟)	𝑑𝑟

5
) , where r is the radius. 

 
 

  The total soot produced from the flames established at different blending ratios for pool and 

vapour flames is estimated by integrating the SVF in the radial and axial direction over the volume of 

the entire flame, via a normalized mean soot volume fraction by area and height,                

SVFv = 4
75!# ∫ ∫ 2π𝑟𝑓6(𝑟)	d𝑟

5
)

#
) d𝑧. This is of course an approximation, since the total density and 
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velocities change across the flame. Nevertheless, given that the total mass of carbon flowing into the 

system is fixed, the integrated amounts represent a surrogate of how much of the fuel has been 

converted into soot. The calculated total soot SVFv as a function of biodiesel blending ratio is shown 

in Fig. 11. For the pool flames of neat diesel and B20, the flame height exceeds the field of view of 

the camera and hence the actual volumetric SVFv is not calculated. It is evident for the blends of B40, 

B60 and B80, the total SVFv for the pool flame is higher than that of vapour flames, but the value for 

neat biodiesel is similar for both flame types. Both flames show a reduction of SVF with increasing 

WCO biodiesel blending fraction in an almost linear trend, with the pool flame showing a larger 

gradient. The neat WCO biodiesel prevapourised flames produced lower total SVF by a factor of 7 

compared to diesel. The results suggest that overall, pool flames produce higher values of soot 

compared to prevapourised flames, with the rate of change of SVF with biodiesel fraction 50% higher 

for the former.  

 

Figure 11: The total SVF as a function of blend ratio of WCO biodiesel. The total SVFv is derived via 
SVFv = 4

75!# ∫ ∫ 2π𝑟𝑓6(𝑟)	d𝑟
5
)

#
) d𝑧., where r is the radius of the pool and z is the axial height. The 

SVFv are normalized with the maximum SVF value. The error bars of SVFv were evaluated using the 
standard deviation of SVF in 100 LII images.   
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3.3 Soot particle morphology and distribution 

  Comparison of sample soot images produced by diesel and pure WCO biodiesel under pool 

and vaporised flames, alongside the corresponding soot particle size distribution determined from the 

SEM images is shown in Fig. 12. From the SEM images, the soot primary particles produced from the 

flames are observed to be rather spherical. The best lognormal fit to the diameter distribution is shown 

by the red curve, while the best fit values of geometric mean diameter Dm and the distribution width 

sigma are shown in the histogram of each case. The SEM images show that diesel in general produces 

larger soot particles than WCO diesel. The mean diameters for diesel soot are 62.9 nm and 51.6 nm 

for pool flame and vapour flame, respectively, compared to 37.7 nm and 34.9 nm for WCO. Pool 

flames produced particulates of larger size than vapour flames, presumably owing to the longer 

residence times available for the soot to grow. The results are consistent with those reported for a 

laminar diffusion co-flow burner by Abboud et al. [22], who showed that biodiesel-derived soot was 

not only smaller in diameter, but also less reactive compared to those of diesel-derived soot. It is noted 

that WCO biodiesel soot shows a narrower size distribution of 20-40 nm, as opposed to the diesel soot 

size band of 20-100 nm. The overall smaller soot particles for WCO biodiesel is due to the smaller 

soot precursors incepted compared to those produced by diesel flame [39].   
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Figure 12: SEM pictures and particles size distribution of pure diesel pool flame (upper left); pure 
WCO pool flame (upper right); pure diesel prevapourised flame (lower left), and pure WCO 
prevapourised flame (lower right) obtained from direct soot sampling using quartz glass. The best 
lognormal-fitting of the diameter distribution is shown with the red curve and the best fitting values of 
geometric mean diameter Dm and distribution width sigma are shown in the histogram of each case. 
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4. Conclusions 
 

  The SVF of WCO biodiesel and WCO biodiesel/diesel blends produced from pool flames and 

prevaporised diffusion flames was quantified using a laser-extinction calibrated laser induced-

incandescence technique. Both pool and vapour flames exhibited similar cone-shape, yellowish sooty 

flames under the same fuel mass burn rate as a result of the strong radiation. The spatial distribution 

of SVFs varied with on flame type and extent of blending. In diesel-rich fuel flames soot is found in 

the high temperature regions at the diffusion flame interface, and are quickly convected upwards. In 

biodiesel-rich flames, significantly smaller amounts of soot are form and diffuse towards the centerline 

regions. Peak SVF was higher for pool than prevapourised flames, and higher for diesel than blends. 

A comparison of the radially integrated SVF along the axial profiles reveals that pool flames exhibited 

significantly higher soot than vapour flames, indicating the higher sooting tendency for the former due 

to the longer residence time for soot growth. Evolution of the SVF profile along the axial HAB shows 

the soot for blends of B60, B80 and neat biodiesel were oxidised entirely in the flame, hence no smoke 

was observed at the flame tip. The soot produced by the flames shows a log normal distribution, with 

WCO biodiesel exhibiting 37.7 and 34.9 nm on average for pool and vapour flame setups, as opposed 

to the slightly larger mean diameter of 62.9 nm (pool) and 51.6 (vapour) for diesel. The result shows 

that WCO biodiesel produces lower soot volume fraction with smaller particulates compared to 

conventional diesel fuel, as expected based on the absence of aromatic compounds and the oxygenated 

nature in methyl esters in WCO. This work also shows that although pool and prevaporised flame 

setups are suitable for the investigation of the sooting propensity of liquid fuel, the simpler pool flame 

method which requires no vapourisation may be a simpler yet quantitative method to characterize soot 

formation in liquid fuels.  
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