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Abstract 

Thousands of epigenomic datasets have been generated in the past decade, but it is difficult for 

researchers to effectively utilize all the data relevant to their projects. Systematic integrative 

analysis can help meet this need, and the VISION project was established for ValIdated 

Systematic IntegratiON of epigenomic data in hematopoiesis. Here, we systematically 

integrated extensive data recording epigenetic features and transcriptomes from many sources, 

including individual laboratories and consortia, to produce a comprehensive view of the 

regulatory landscape of differentiating hematopoietic cell types in mouse. By employing IDEAS 

as our Integrative and Discriminative Epigenome Annotation System, we identified and 

assigned epigenetic states simultaneously along chromosomes and across cell types, precisely 

and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of 

over 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and 

promoters. The transitions in epigenetic states of these cCREs across cell types provided 

insights into mechanisms of regulation, including decreases in numbers of active cCREs during 

differentiation of most lineages, transitions from poised to active or inactive states, and shifts in 

nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at 

cCREs and gene expression produced a versatile resource to improve selection of cCREs 

potentially regulating target genes. These resources are available from our VISION website 

(usevision.org) to aid research in genomics and hematopoiesis.  
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Introduction 

Individual laboratories and major consortia (e.g., The ENCODE Project Consortium 2012; 

Cheng et al. 2014; Yue et al. 2014; Roadmap Epigenomics et al. 2015; Stunnenberg et al. 2016; 

The ENCODE Project Consortium et al. 2019) have produced thousands of genome-wide 

datasets on transcriptomes and many epigenetic features, including nuclease accessibility, 

histone modifications, and transcription factor occupancy, across diverse cell types. However, it 

is challenging for individual investigators to find all the data relevant to their projects or to 

incorporate the data effectively into analyses and hypothesis generation. One approach to 

address this challenge of overwhelming data is to integrate the deep and diverse datasets 

(Ernst and Kellis 2010; Ernst and Kellis 2012; Hoffman et al. 2012; Hoffman et al. 2013; Zhou 

and Troyanskaya 2015; Greenside et al. 2018; Lee et al. 2018; Ludwig et al. 2019). An effective 

integration will produce simplified representations of the data that facilitate discoveries and lead 

to testable hypotheses about functions of genomic elements and mechanisms of regulatory 

processes. Our multi-lab project called VISION (for ValIdated Systematic IntegratiON of 

hematopoietic epigenomes) is endeavoring to meet this challenge by focusing on an important 

biological system, hematopoietic differentiation. Not only is hematopoietic differentiation an 

important biological and medical system with abundant epigenetic data available (e.g., Cheng et 

al. 2009; Fujiwara et al. 2009; Yu et al. 2009; Wilson et al. 2010; Pilon et al. 2011; Tijssen et al. 

2011; Wong et al. 2011; Wu et al. 2011; Kowalczyk et al. 2012; Su et al. 2013; Lara-Astiaso et 

al. 2014; Pimkin et al. 2014; Wu et al. 2014; Corces et al. 2016; Huang et al. 2016; Heuston et 

al. 2018; Ludwig et al. 2019), but it also provides a powerful framework for validation of the 

integrative modeling. Specifically, work over prior decades has established key concepts that a 

successful modeling effort should recapitulate, and predictions of the modeling can be tested 

genetically in animals and cell lines. Here, we report on our initial systematic integrative 

modeling of mouse hematopoiesis.  
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The production of many distinct blood cell types from a common stem cell 

(hematopoiesis) is critically important for human health (Orkin and Zon 2008), and it has been 

studied intensively in humans and mouse. Despite some differences between these species (An 

et al. 2014; Cheng et al. 2014; Pishesha et al. 2014), the mouse system has served as a good 

model for many aspects of hematopoiesis in humans and mammals (Sykes and Scadden 2013). 

In adult mammals, all blood cells are produced from mesodermally-derived, self-renewing 

hematopoietic stem cells (HSCs) located in the bone marrow (Till and McCulloch 1961; Kondo 

et al. 2003). Studies of populations of multilineage progenitor cells, purified using cell surface 

markers (Weissman and Shizuru 2008), show that hematopoietic differentiation proceeds from 

HSC through progenitor cells with progressively more restricted lineage potential, eventually 

committing to a single cell lineage (Reya et al. 2001). More recent analyses of single cell 

transcriptomes have revealed heterogeneity in each of these cell populations (Sanjuan-Pla et al. 

2013; Psaila et al. 2016). Overall, analyses of single cell transcriptomes support an ensemble of 

pathways for differentiation (Nestorowa et al. 2016; Laurenti and Gottgens 2018). Regardless of 

the complexity in cell-fate pathways, it is clear that changes in patterns of gene expression drive 

the differentiation program (Cantor and Orkin 2002; Graf and Enver 2009). Mis-regulation of 

gene expression patterns can cause diseases such as leukemias and anemias (Higgs 2013; 

Lee and Young 2013; Ling and Crispino 2020), and thus, efforts to better understand the 

molecular mechanisms regulating gene expression can help uncover the processes underlying 

cancers and blood disorders. 

Comprehensive epigenomic and transcriptomic data can be used to describe how both 

the patterns of gene expression and the regulatory landscapes change during hematopoietic 

differentiation. Previous reports provided many insights and datasets on epigenomic changes 

during hematopoiesis in mouse (e.g., Lara-Astiaso et al. 2014) and in human (e.g., Adams et al. 

2012; Corces et al. 2016). Additional informative datasets have come from detailed studies in 

cell line models of hematopoietic differentiation. In the intensively studied process of 
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hematopoiesis, such comprehensive datasets could encompass virtually all the regulatory and 

transcriptional changes that occur during differentiation. However, distilling the regulatory events 

that are most critical to producing the transcriptional patterns needed for distinctive cell types is 

still a major challenge. Here, our major aim is to systematically integrate the extensive 

epigenomic data to improve accessibility and understanding of the data and to facilitate the 

generation of novel hypotheses about changes in the regulatory landscape during 

hematopoietic differentiation. We determined epigenetic states, which are common 

combinations of epigenetic features, to generate a readily interpretable “painting” of the 

epigenomic landscape across selected mouse hematopoietic cell populations. The state 

assignments coupled with peaks of nuclease accessibility produced an initial compendium of 

over 200,000 candidate cis- regulatory elements (cCREs) active in one or more hematopoietic 

lineages in mouse, which are valuable for further studies of hematopoietic gene regulation.  

 

Results 

Epigenomic and transcriptomic datasets of mouse hematopoietic cells 

We reasoned that integrative analysis of the large number of genome-wide determinations of 

RNA levels and epigenetic features should provide an accessible view of the information that 

would help investigators utilize these diverse datasets, and it may lead to novel insights into 

gene regulation. To conduct the integrative and discriminative analysis, we collated the raw 

sequence data for 150 determinations of relevant epigenetic features (104 experiments after 

merging replicates) across 20 cell types or populations (Fig. 1A), including histone modifications 

and CTCF by ChIP-seq, nuclease accessibility of DNA in chromatin by ATAC-seq and DNase-

seq, and transcriptomes by RNA-seq. The purified cell populations and cell lines are described 

in detail in the Supplemental Material, section1.  
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The epigenomic data were gathered from many different sources, including individual 

laboratories and consortia (Fig. 1B and Supplemental Tables). These data had quality metrics 

within the ENCODE recommendations (see Supplemental Material section 2 and Supplemental 

Tables). However, this diversity of sources presented a challenge for data analysis, since each 

experiment differed widely in sequencing depth, fraction of reads on target, signal-to-noise ratio, 

presence of replicates, and other properties (Xiang et al. 2020), all of which can impact 

downstream analyses. We employed two strategies to improve the comparability of these 

heterogeneous datasets. First, the sequencing reads from each type of assay were uniformly 

processed, using pipelines similar to or adapted from current ENCODE pipelines (see 

Supplemental Material section 2). One notable difference is that our VISION pipelines allow 

reads to map to genes and genomic intervals that are present in multiple copies, thereby 

allowing interrogation of duplicated chromosomal segments, including multigene families and 

regions subject to deletions and amplifications. Second, for the ChIP-seq and nuclease 

accessibility data, we applied a new normalization method, S3norm, that simultaneously adjusts 

for differences in sequencing depths and signal-to-noise ratios in the collected data (Materials 

and Methods and Xiang et al. 2020). As with other normalization procedures, the S3norm 

method gives similar signals in common peaks for an epigenetic feature, but it does so without 

inflating the background signal. Preventing an increased background was necessary to avoid 

introducing spurious signals during the genome-wide modeling of the epigenetic landscape. 

An overview of the similarities across all the datasets showed that most clustered by 

epigenetic features across cell types (Supplemental Fig. S4). For example, nuclease 

accessibility was highly correlated among the cell types examined, showing the global similarity 

in this primary feature of the regulatory landscape in blood cells (Fig. 1C). Other features such 

as CTCF and the signature marks for active promoters (H3K4me3) and enhancers (H3K27ac) 

showed notable but substantially lower correlations with the nuclease accessibility signal. In 

contrast, the H3K9me3 heterochromatin mark, the H3K27me3 Polycomb repressive mark, and 
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the H3K36me3 had almost no correlation with nuclease sensitivity, and H3K4me1 showed 

modest correlation. The groupings within epigenetic features were more apparent after S3norm 

normalization (Supplemental Fig. S5), which supports the effectiveness of the normalization. 

The similarity of patterns for a particular feature across cell types suggested that combinations 

of features may be more effective than a single epigenetic mark to find patterns distinctive to a 

cell type. 

In summary, our compilation of signal tracks, peak calls, estimates of transcript levels, 

and other material established a unified, consistently processed data resource for mouse 

hematopoiesis, which can be accessed at our VISION website (http://usevision.org). 

 

Simultaneous integration in two dimensions of non-binary epigenomic data 

The frequent co-occurrence of some histone modifications has led to discrete models for 

epigenetic structures of candidate cis-regulatory elements, or cCREs (reviewed in Noonan and 

McCallion 2010; Hardison and Taylor 2012; Long et al. 2016). Moreover, the co-occurrences 

can be modeled formally using genome segmentation to learn the most frequently occurring, 

unique combinations of epigenetic features, called epigenetic states, and assigning each 

segment of DNA in each cell type to an epigenetic state. Computational tools such as 

chromHMM (Ernst and Kellis 2012), Segway (Hoffman et al. 2012), and Spectacle (Song and 

Chen 2015) provide informative segmentations primarily in one dimension, usually along 

chromosomes. The Integrative and Discriminative Epigenome Annotation System (Zhang et al. 

2016; Zhang and Hardison 2017), or IDEAS, expands the capability of segmentation tools in 

several ways. It integrates the data simultaneously in two dimensions, along chromosomes and 

across cell types, thus improving the precision of state assignments. It uses continuous (not 

binarized) data as the input, and the number of epigenetic states is determined automatically 

(Supplemental Fig. S6). Also, when confronted with missing data, it can make state 

assignments with good accuracy (Zhang and Mahony 2019).  
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When applied to the normalized epigenomic data from the 20 hematopoietic cell types, 

IDEAS learned 27 epigenetic states, including many expected ones as well as others that have 

been less frequently studied. The IDEAS model summary shows the prevalence of the eight 

epigenetic features in each state as a heatmap, organized by similarity among the states (Fig. 

2A). The epigenetic state assignments were well supported by the underlying epigenomic data 

(Fig. 2B, Supplemental Fig. S3C). The epigenetic states described an informative landscape, 

distinguishing multiple state signatures representing distinct classes of regulatory elements 

(including enhancers, promoters and boundary elements). For example, six states showed a 

promoter-like signature, with high frequency of H3K4me3 (states 18, 21, 10, 15, 24, and 11); 

these are displayed in different shades of red, and P is the initial character in the explicit label. 

These six states distinguished promoter-like signatures by the presence or absence of other 

features with functional implications. For instance, the four promoter-like states that were also 

nuclease accessible (states 21, 10, 15, and 24) may encompass the nucleosome depleted 

region found adjacent to the transcriptional start site. Supporting this interpretation, three of 

these states (states 21, 10, and 24) also had the H3K27ac mark that frequently flanks the 

nucleosome-depleted region of active promoters. For all the major categories of chromatin 

associated with gene expression and regulation, including bivalent promoters, CTCF 

occupancy, enhancers, transcriptional elongation, repression, and heterochromatin, multiple 

states were discovered that differed in the combinations of associated features and their signal 

strengths. These are described in more detail in Supplemental Material section 7. 

The fraction of the genome in each state reveals the proportion of a genome associated 

with a particular activity. The most common state in all the epigenomes is quiescence, i.e. state 

0 with low signals for all the features (Fig. 2C). The mean percentage of the genome in this 

state was 86%, with values ranging from 85% to 92% in individual cell types. About 60% of the 

genome was in this state in all cell types examined, indicating that in hematopoietic cells, about 

40% of the mouse genome is incorporated within chromatin with the dynamic histone 
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modifications identified in this study. The most common non-quiescent states were transcribed, 

heterochromatic, and Polycomb repressed (Fig. 2C). The remaining portion of the genome was 

populated with a large number of active states, comprising ~4% of the genome. Thus, only a 

small proportion of the genome in each cell type was found in chromatin associated with the 

dynamic histone modifications assayed here. This small fraction of the genome is probably 

responsible for much of the regulated gene expression characteristic of each cell type. 

 

Visualizing the regulatory landscape across hematopoietic cell types as defined by the 

IDEAS segmentation 

The chromatin activity landscape inferred by IDEAS can be displayed by assigning the 

distinctive color for each state to DNA segments along chromosomes and across cell types. 

(Fig. 2D). For example, genes transcribed in all cell types, such as Gtf3c5, were painted red at 

the active promoter and green for regions of transcriptional elongation. Within and between the 

transcription units were short purple segments indicating CTCF binding, aligning with the CTCF 

occupancy data available for tissues like fetal liver and providing a prediction for CTCF binding 

in other cell types. The gene Gfi1b, encoding a transcription factor required in specific 

hematopoietic lineages, showed different state assignments across the cell types, with active 

promoters (red), intronic enhancers (orange), and transcribed regions (green) in CMP, erythroid, 

and megakaryocytic cells but fewer active states in other cell types. Downstream (left) of Gfi1b 

was a large region with many DNA segments assigned to enhancer-associated states; these 

were model-generated candidates for regulating expression of Gfi1b. The potential roles of the 

intronic and downstream candidate enhancers were supported by binding of the coactivator 

EP300 observed both in mouse fetal liver and MEL cells (Yue et al. 2014; The ENCODE Project 

Consortium et al. 2020), information that was not included in training the model. Furthermore, 

previous studies of cross-regulation between GATA2 and GFI1B revealed three enhancers 

downstream of the Gfi1b gene by reporter gene assays in transgenic mouse and transfected 
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cells (Moignard et al. 2013). These enhancers overlapped with the model-predicted enhancers 

and provided strong experimental validation of the predictions from the IDEAS segmentation.  

  

cCREs across mouse hematopoiesis 

While genomic regions potentially involved in gene regulation can be discerned from the 

segmentation views of regulatory landscapes, it is important to assign discrete genomic 

intervals as candidate cis-regulatory elements (cCREs) to clarify assessments and validations of 

regulatory elements and to empower systematic modeling of regulatory systems. Therefore, we 

combined our nuclease sensitivity data with IDEAS segmentation to infer a set of 205,019 

cCREs in the 20 cell types.   

A cCRE was defined as a DNA segment assigned as a reproducible peak by ATAC-seq 

or DNase-seq that was not in a quiescent epigenetic state in all cell types (Supplemental Fig. 

S8). We considered ATAC-seq or DNase-seq data to be reproducible when peaks were called 

in each replicate (when replicates were available). Some peaks were assigned to the quiescent 

state in all cell types, and these were removed from the set of cCREs. No cell type-specific 

cCREs could be called in mature MK or CLP cells because no ATAC-seq or DNase-seq data 

were available for these cell types; however, we inferred the epigenetic states in these two cell 

types for the DNA segments predicted to be cCREs in other cell types. This information about 

the locations and epigenetic states of cCREs in hematopoietic cell types provides a valuable 

resource for detailed studies of regulation both at individual loci and globally across the 

genome. 

Because a wide range of hematopoietic cells was interrogated for epigenetic features, 

we expected that the set of cCREs from the VISION project would expand and enhance other 

collections of cCREs. Thus, we compared the VISION cCRE set with the Blood Cell Enhancer 

Catalog, which contains 48,396 candidate enhancers based on iChIP data in sixteen mouse 

hematopoietic cell types (Lara-Astiaso et al. 2014), and a set of 56,467 cCREs from mouse fetal 
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liver released by the ENCODE project (The ENCODE Project Consortium et al. 2020). 

Furthermore, we examined the set of 431,202 cCREs across all assayed mouse tissues and cell 

types in the SCREEN cCRE catalog from ENCODE (The ENCODE Project Consortium et al. 

2020). The overlapping DNA intervals among combinations of datasets revealed substantial 

consistency in the inferred cCREs (Fig. 3A). A large proportion of the VISION cCREs (70,445 or 

41.5%) were in the iChIP Blood Enhancer Catalog and/or the SCREEN fetal liver cCREs. 

Conversely, a majority of the cCREs in the iChIP catalog (78.7%) were also in VISION cCREs, 

as expected given the large contribution of iChIP data to the VISION compilation. An even 

larger proportion (84%) of the SCREEN fetal liver catalog was in VISION cCREs. The cCREs 

that are common among these collections, despite differences in data input and analysis, are 

strongly supported as candidate regulatory elements. 

The VISION cCRE set is substantially larger than either the iChIP Blood Enhancer 

Catalog or the SCREEN fetal liver cCREs, and we hypothesized that the larger size reflected 

the inclusion of greater numbers of cell types and features in the VISION catalog. This 

hypothesis predicts that VISION cCREs that were not in the other blood cell cCRE sets may be 

found in larger collections of cCREs, and we tested this prediction by comparing VISION cCREs 

to the entire set of ENCODE SCREEN cCREs. Indeed, we found another 58,504 (34.5%) 

VISION cCREs matching this catalog across mouse tissues, supporting the interpretation that 

the VISION cCRE set is more comprehensive than other current blood cell cCRE collections. 

Overall, the comparisons with other collections supported the specificity and accuracy of the 

VISION cCRE set. 

To further assess the quality of the VISION cCRE set, we evaluated its ability to capture 

known cis-regulatory elements (CREs) and independently determined DNA elements 

associated with gene regulation. Using a collection of 212 experimentally determined, erythroid 

CREs curated from the literature (Dogan et al. 2015) as known erythroid CREs, we found that 

while the iChIP Blood Enhancer catalog captured only a small portion, the VISION and 
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SCREEN fetal liver cCREs overlapped with almost all the erythroid CREs (Fig. 3B). The latter 

two collections were built from datasets that included highly erythroid tissues, such as fetal liver, 

which may explain their more complete coverage than the Blood Enhancer Catalog, which was 

built from datasets from fewer erythroid cell types. Increasing the number of cCREs to over 

400,000 in the SCREEN mouse cCREs did not substantially increase the number of known 

CREs that overlap. Thus, the VISION cCREs efficiently captured known erythroid CREs.  

The co-activator EP300 catalyzes the acetylation of histone H3K27, and it is associated 

with many active enhancers. We used ChIP-seq data on EP300 as a comparison set of blood 

cell candidate enhancers that were determined independently of the data analyzed in VISION. 

The ENCODE consortium has released replicated datasets of EP300 ChIP-seq data determined 

in three blood-related cell types from mouse, MEL cells representing maturing proerythroblasts, 

CH12 cells representing B cells, and mouse fetal liver from day E14.5 (Yue et al. 2014; The 

ENCODE Project Consortium et al. 2020). After re-processing the ChIP-seq data using the 

VISION project pipelines, replicated peaks were merged across the cell types to generate a set 

of over 60,000 EP300 peaks in blood related cells. The VISION cCRE set efficiently captured 

the EP300 peaks, hitting almost two-thirds of these proxies for regulatory elements, a much 

larger fraction than captured by the Blood Enhancer catalog or ENCODE fetal liver cCREs (Fig. 

3B). Expanding the number of SCREEN cCREs to over 400,000 gave only a small increase in 

the number of EP300 peaks captured. The EP300 peaks not captured by the VISION cCREs 

tended to have lower signal strength and were less associated with ontology terms such as 

those for mouse phenotype (Supplemental Fig. S9), suggesting that VISION cCREs captured 

the more likely functional EP300 peaks. 

These analyses show that the VISION cCREs included almost all known erythroid CREs 

and they captured a large fraction of potential enhancers identified in relevant cell types by a 

different feature (EP300).  
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Global comparisons of regulatory landscapes and transcriptomes 

The collection of cCREs and transcriptomes in VISION provided an opportunity to examine the 

relationships between cell types, including both purified populations of primary cells and cell 

lines. In conducting this analysis, we distinguished a cCRE from an active cCRE. A cCRE, 

which is a DNA interval predicted to be a regulatory element in any cell type, is present in all cell 

types, just as a gene is present in all cell types. However, a cCRE can show evidence of activity 

(either positive or negative) differentially across cell types, just as genes may be active in only 

some cell types. Thus, we refer to cCREs in epigenetic states indicative of regulatory activity as 

active cCREs, including states with either positive or negative associations with gene 

expression.  

The epigenetic modifications at cCREs are a prominent feature of the regulatory 

landscape. Thus, to compare the regulatory landscape across cell types, we used the 

correlations between the nuclease accessibility signals in cCREs across cell types to group the 

cell types by hierarchical clustering (Fig. 4A). All erythroid cell types, including the G1E and 

G1E-ER4 cell lines, clustered with MEP to the exclusion of other cell types. The remaining cell 

types formed two groups. One consisted of hematopoietic stem and multilineage progenitor 

cells (LSK, CMP and GMP) along with early progenitor (CFUMK) and immature (iMK) 

megakaryocytic cells. The other contained both innate (NEU, MON) and acquired (B, NK, T-

CD4, T-CD8) immunity cells. Comparisons using a dimensional reduction approach (principal 

component analysis or PCA) also supported these groupings (Supplemental Fig. S10A).  

Furthermore, the PCA and subsequent analyses showed that a substantial reduction in 

the number of active cCREs was a major contributor to the differences in the landscape of 

nuclease accessibility during hematopoietic differentiation. The first principal component (PC1) 

captured a large fraction (82%) of the variation, placing the cell types along an axis with many 

multilineage progenitor cells on one end and many mature cells on the other (Supplemental Fig. 

S10A). That PC1 axis was highly correlated with the numbers of active cCREs (Supplemental 
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Fig. S10B, and a direct comparison showed a progressive decline in numbers of cCREs active 

in most maturing blood cells (Fig. 4B). We conclude that a reduction in numbers of active 

cCREs is a major trend during mouse hematopoietic differentiation. 

The gene expression landscape was also compared across cell types, using estimates 

of gene transcript levels from RNA-seq data in a subset of 12 cell types interrogated by the 

same method within our VISION laboratories. RNA-seq data on acquired immunity cells were 

not included because the assay was done by a substantially different procedure (Lara-Astiaso et 

al. 2014), and this difference in RNA-seq methodology dominated the combined comparison. 

The hierarchical clustering results (Fig. 4C) and PCA (Supplemental Fig. S10C) revealed three 

clusters that were largely consistent with the analysis of the regulatory landscape, grouping 

megakaryocytic cells with multilineage progenitors while keeping primary erythroid cells (CFUE 

and ERY) and innate immune cells (NEU and MON) in distinct groups. In contrast, MEP cells 

grouped with progenitor cells in the transcriptome profiles whereas they grouped with erythroid 

cells by nuclease sensitivity data. MEP cells have a pronounced erythroid bias in differentiation 

(Psaila et al. 2016), and this difference in the grouping of MEPs suggests that the regulatory 

landscape of MEP has shifted toward the erythroid lineage prior to reflecting that bias in the 

transcriptome data. G1E and G1E-ER4 cell lines, which are models for GATA1-dependent 

erythroid differentiation, also were placed differently based on cCRE and transcriptome data, 

forming a separate cluster in the transcriptome data. While that result reveals a difference in the 

overall RNA profiles between G1E and G1E-ER4 cells versus primary cells, their grouping with 

primary erythroid cells by cCRE landscape supports the use of these cell lines in specific 

studies of erythroid differentiation. 

The decrease in numbers of cCREs during differentiation and maturation was associated 

with a decrease in numbers of genes expressed. The highest numbers of protein-coding genes 

were expressed in the progenitor (LSK, CMP, GMP, MEP) and megakaryocytic (CFUMK and 

iMK) cells, with fewer in MON and NEU, and the lowest number in erythroid cells (CFUE and 
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ERY) (Fig. 4D). A larger number of genes were expressed in the ES-derived cell lines, G1E and 

G1E-ER4, than in the primary erythroid cells. A similar decline was observed over a ten-fold 

range of thresholds for declaring a gene as expressed (TPM exceeding 1, 5 or 10). The parallel 

decreases in numbers of active cCREs and expressed genes led to a strong positive 

association between these two features (coding genes: Fig. 4D; Pearson correlation r= 0.90 or 

0.78 when values for G1E and G1E-ER4 cells were excluded and included, respectively, in a 

linear fit; noncoding genes: Supplemental Fig. S10D). Similar results were reported for 

transitions during megakaryopoiesis and erythropoiesis in Heuston et al (2018) based on peak 

calls for histone modification and nuclease accessibility. Our results based on integrative 

modeling confirm these conclusions and show that the reduction in numbers of expressed 

genes and active cCREs was observed broadly across hematopoiesis. Considering specifically 

genes encoding hematopoietic regulators, we found that this general decline in transcription led 

to a reduction in the number of hematopoietic regulators produced in differentiated, maturing 

erythroid cells but not in other hematopoietic cell types (Supplemental Fig. S11). We conclude 

that the breadth of transcription declines during differentiation, and furthermore the loss of 

activity of cCREs may contribute to the decrease in numbers of genes expressed.  

 

Epigenetic states of cCREs vary across cell types in an informative manner. 

The VISION catalog of cCREs, annotated by their epigenetic state in each cell type, can be 

used to track both the timing and types of transitions in epigenetic states during differentiation, 

which provide insights into regulatory mechanisms, e.g. which CREs are likely to be inducing or 

repressing a target gene. The full scope of state transitions in cCREs across cell types is 

complex, and in this section, we focus on major transitions contributing to changes in the 

numbers and state of active cCREs.  
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Within the dominant pattern of decreasing numbers of active cCREs during commitment and 

maturation of lineages (except MK), the reduction was particularly pronounced for cCREs in 

state 9 (EN) and state 13 (CN) (Fig. 5A), while changes in the numbers of cCREs in other states 

were more modest (Fig. 5B, Supplemental Fig. S12 A, B). These state-specific reductions 

suggested that many active cCREs in progenitor and MK cells were in a poised enhancer mode 

(state 9 EN) or in a CTCF-bound, nuclease accessible state (state 13 CN). We then determined 

the states into which these cCREs tended to transition by examining all state transitions in 

cCREs between all pairs of cells. In the case of CMP cells differentiating to ERY, we found that 

cCREs in the poised enhancer state 9 in CMP did not tend to stay in state 9, but rather they 

more frequently transitioned to states 12 (active enhancer), 3 (polycomb), and 0 (quiescent) in 

ERY (Supplemental Fig. S12C). These classes of state transitions were strongly supported by 

examination of the underlying signals for the nuclease sensitivity and histone modifications (Fig. 

5C). Discrete classification of cCREs by their state assignments across cell types also reveal 

these major transitions (Supplemental Fig. S13). This systematic analysis of transitions in 

epigenetic states across cell types helps uncover the differentiation history of cCREs and 

provides mechanistic insights into regulation. For example, using SeqUnwinder (Kakumanu et 

al. 2017) to discover discriminative motifs, we found that the CMP cCREs that transition from 

poised to active enhancer in the erythroid lineage were enriched for the GATA transcription 

factor binding site motif, whereas those that transition to a polycomb state were enriched in 

motifs for binding ETS transcription factors such as PU.1 (Supplemental Fig. S14). These 

results are consistent with the known antagonism between GATA1 and PU.1 in erythroid versus 

myeloid differentiation (Rekhtman et al. 1999; Zhang et al. 1999). Thus, they illustrate the value 

of machine-learning approaches, such as assigning epigenetic states systematically and finding 

discriminative motifs, to uncover relationships from genome-wide data that fit with models 

derived from decades of experimentation. 
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Another major state of cCREs in progenitor and megakaryocytic cells was CTCF-bound 

and nuclease accessible (state 13). Much of the decrease in numbers of cCREs in this state 

occurred through a loss of accessibility while retaining occupancy by CTCF (state 7, 

Supplemental Fig. S12C and D). To eliminate the possibility that the inferred loss of nuclease 

sensitivity was an artifact of low sensitivity in the ATAC-seq data, we examined these cCREs for 

DNase sensitivity in an independent experiment conducted on ERY from fetal liver (ERY_fl). We 

found that the cCREs undergoing the transition from state 13 to state 7 had low nuclease 

sensitivity in ERY by both assays, as well as in CFUE, while retaining a strong CTCF signal 

(Fig. 5D). Thus, we concluded that the state 13 to state 7 transition was not an artifact of poor 

sensitivity of the accessibility assays. The loss of nuclease accessibility at this subset of CTCF-

bound sites occurred between MEP and CFUE stages, suggesting that it could be connected to 

the process of erythroid commitment. By examining genes in the vicinity of the CTCF-bound 

cCREs, we found that this loss of nuclease sensitivity at CTCF-bound sites occurred in more 

gene-poor regions, and it was associated to some extent with gene repression (Supplemental 

Figure S15). The CTCF-bound cCREs that retained nuclease accessibility during differentiation 

were enriched at TAD boundaries that were common across myelo-erythroid differentiation 

(Supplemental Fig. S16).  

In summary, the number of active cCREs declined dramatically as cells differentiated 

from stem and progenitor cells to committed, maturing blood cells. This decrease in cCREs was 

strongly associated with a reduction in the numbers of expressed genes in committed cells. Our 

analysis of epigenetic states in cCREs across this process revealed major declines in two 

states. First, the poised enhancer state was prevalent in cCREs in stem and progenitor cells, 

and it had two major fates. One was a transition to an active enhancer state, and in the erythroid 

lineage this transition was associated with GATA transcription factor binding site motifs, as 

expected for activation of erythroid genes. The other fate was to lose nuclease sensitivity and 

switch to a repressed state. Those state transitions were not novel observations, but our 
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extensive annotation of the cCREs allows investigators to identify which cCREs around genes 

of interest make those transitions. Second, another state prevalent in stem and progenitor cells 

was a CTCF-bound and nuclease accessible state. The number of cCREs in that state declined 

during differentiation, with many cCREs transitioning to a state with CTCF still bound but no 

longer nuclease accessible. Further studies are needed to better understand the roles of these 

different classes of CTCF-bound sites. 

 

Estimating regulatory output and assigning target genes to cCREs 

We investigated the effectiveness of the collection of mouse hematopoietic cCREs from VISION 

in explaining levels of gene expression. We developed a modeling approach to evaluate how 

well the cCREs, in conjunction with promoters, could account for levels of expression in the 

twelve cell types for which the RNA-seq measurements were determined in the same manner. 

This modeling approach had the additional benefit of making predictions of target genes for 

each cCRE. 

We reasoned that the epigenetic state assignments for each cCRE DNA interval in each 

cell type could serve as a versatile proxy for cCRE regulatory activity, since the states were 

based on a systematic integration of multiple epigenetic signals. As explained in detail in the 

Supplemental Material, section 17, we estimated promoter and cCRE effects on expression by 

treating the states as categorical variables and training a multivariate linear model of gene 

expression on the states. Each cCRE and promoter could be composed of multiple epigenetic 

states (Fig. 6A), and we used the proportion of promoters and the proportion of pooled cCREs 

covered by a state as the predictor variable for that state (Fig. 6B). However, in our sub-

selection training, a given cCRE is represented by a single state rather than a weighted sum of 

states (Supplemental Material).  All cCREs within 1Mb of the TSS of a gene were initially 

considered and then filtered by a minimum correlation to that gene’s expression. Not all cCREs 

within the 2 Mb region surrounding a gene’s TSS were expected to influence expression. Thus, 



 

19 

CREs predicted to have limited contribution to explaining expression were removed via a sub-

selection strategy during iterations of model fitting (Fig. 6B, Supplemental Fig. 17B).  

The regression coefficients, β, determined for the epigenetic states showed some 

expected trends. For example, the coefficients for the set of differentially expressed genes were 

high for most promoter-like and enhancer-like states and low for most polycomb-repressed and 

heterochromatin states (Fig. 6B, and  a full set of values is presented in Supplemental Fig. 

17D). 

We evaluated the accuracy of predicting gene expression from the weighted sum of the 

state-specific regression coefficients using a leave-one-out strategy. Specifically, we trained a 

linear model on data from eleven of the twelve cell types, minimizing mean squared error 

(MSE), and then computed the adjusted r2 for the accuracy of the predicted expression levels 

compared to the actual expression levels in the left-out cell type. This procedure was repeated 

leaving out each of the cell types in turn. Coefficients were calculated using only promoters, only 

cCREs, or a combination of both. In the case of the cCRE trained model, we defined the sum of 

coefficients weighted by each cCRE state proportion as the epigenetic regulatory potential 

(eRP) score. The predicted expression for each gene was the mean of the eRP scores for all 

paired cCREs. For expression of all genes, the prediction accuracy was around 50% for 

promoters only or eRPs only, and it improved to about 60% when both were combined (Fig. 6C, 

graph All genes).  

Some portion of the explanatory power was expected to derive from the strong 

differences in epigenetic signals for expressed versus silent genes. In an effort to remove this 

effect from the predictions of accuracy, we repeated the linear regression modeling and 

evaluations on four categories of genes separately, specifically those with (1) consistently low, 

(2) differentially low, (3) differentially high, and (4) consistently high expression across cell 

types. The values of β varied across the four categories (Supplemental Fig. 17D). Using gene 
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category partitioning, the accuracy of predicting expression levels in the leave-one-out strategy 

showed a much smaller impact of the promoters (Fig. 6C, graphs 1-4), suggesting that a major 

effect of the epigenetic states around the TSSs was to establish expression or silencing. In 

contrast, the distal cCREs did contribute to expression variation within the gene categories, 

especially for differentially expressed genes (Fig. 6C, graphs 2 and 3). Overall, these 

evaluations indicate that promoters contributed strongly to the broad expression category 

(expressed or not, differential or constitutive), and distal cCREs contributed to the expression 

level of each gene within a category. 

By considering these linear regression coefficients as proxies for the regulatory output of 

cCREs in a particular epigenetic state, we used them to estimate the impact of histone 

modifications around cCREs close to differentially expressed genes. Many expected 

associations were found, but in addition, this analysis revealed that H3K27ac was the histone 

modification at cCREs most distinctly associated with gene activation, CTCF at a cCRE was 

associated with repression, and H3K4me1 and nuclease accessibility were about equally 

frequent in states with positive or negative impacts on expression (Supplemental Fig. S18).  

The positive predictive power of these initial estimates of eRP scores supported their 

utility in assigning candidates for target genes for cCREs. The estimated eRP scores can serve 

as one indicator of the potential contribution of each cCRE to the regulation of a gene in its 

broad vicinity. Thus, a set of likely cCRE-target gene pairs can be obtained at any desired eRP 

threshold. We provide a large table of potential cCRE-target gene pairs at the VISION project 

website, along with a versatile filtering tool for finding cCREs potentially regulating a specified 

gene in a particular cell type. The filtering tool also allows further restriction of cCREs to those 

within the same topological associated domain or compartment as the candidate target gene. 

The example from the Alas2 locus (Fig. 6D) illustrates how these eRP scores were consistent 

with results from previous experimental assays for CREs within the gene (Wang et al. 2006), 

and they raise the possibility of additional, distal cCREs regulating the gene. These data-driven, 
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integrated resources should allow users to make informed decisions about important but 

challenging issues such as finding the set of cCREs likely to regulate a particular gene. 

 

Discussion 

One goal of the VISION project is to gather information from our laboratories, other laboratories, 

and consortia to conduct systematic integrative analysis and produce resources of high utility to 

investigators of genome biology, blood cell differentiation, and other processes. In this study, we 

compiled and generated epigenomic and transcriptomic data on cell types across hematopoietic 

differentiation in mouse. The data were systematically analyzed by the IDEAS method to assign 

genomic intervals to epigenetic states in twenty cell types, with each state defined by a 

quantitative spectrum of nuclease sensitivity, histone modifications, and CTCF occupancy. Most 

of these combinations of epigenetic features are associated with specific regulatory elements or 

events, such as active promoters, poised enhancers, transcribed regions, or quiescent zones, 

and thus, the epigenetic state assignments provide a guide to potential functions of each 

genomic interval in each cell type. In effect, the IDEAS segmentation pipeline reduced 150 

dimensions (or tracks) of epigenomic data to twenty dimensions, i.e. the number of cell types 

examined. While the cell populations studied can be conceptualized as cell “types”, it is 

important to keep in mind that these populations, especially of stem and progenitor cells, are 

heterogeneous, and thus our integrative analyses do not delve into all the stages of 

hematopoietic differentiation and maturation. We further focused the epigenomic data by 

constructing an initial registry of 205,019 cCREs, which are discrete genomic intervals with 

features predictive of a potential regulatory role in one or more hematopoietic cell types, along 

with state assignments and initial estimates of regulatory output for candidate target genes in 

each cell type. Investigators now have simplified ways to view the large amount of data, e.g. in a 

genome browser, and to operate computationally on the state assignments and cCREs. 
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We provide multiple ways for investigators to access and interact with the data via our 

VISION website (usevision.org). The raw and normalized data tracks can be downloaded for 

further analysis. The regulatory and transcriptomic landscapes around individual genes can be 

viewed in our custom genome browser, which is built on the familiar framework of the UCSC 

Genome Browser (Haeussler et al. 2019). Tables of annotated cCREs and their associations 

with specific genes by regression can be downloaded, and cCREs for specific genes and 

genomic intervals can be obtained by queries at the website. Links are provided to additional 

resources such as CODEX for more extensive transcription factor occupancy and histone 

modification data (Sanchez-Castillo et al. 2015), the 3D Genome Browser for visualizing 

matrices of chromatin interaction frequencies (Wang et al. 2018), and the ENCODE registry of 

cCREs (The ENCODE Project Consortium et al. 2020).  

We chose IDEAS as the systematic integration method because its joint segmentation 

along chromosomes and across cell types retains position-specific information, thereby 

providing more precision to the state assignments (Zhang et al. 2016; Zhang and Hardison 

2017). Furthermore, the IDEAS method does not require determination of all features in all cell 

types, and thus cell types with missing data were included (Zhang and Mahony 2019). Even an 

extreme case of the cell type CFUMK, for which the only epigenomic dataset was ATAC-seq, 

was assigned a meaningful segmentation pattern. The local clustering of cell types by their 

epigenomic profiles in IDEAS allows the system to learn the signal distribution for a feature 

missing in one cell type from the available signal in locally related cell types, and then use that 

signal distribution when assigning likely states in the cell type with missing data. While full 

determination of all biochemical features in each cell type is preferred, attaining complete 

coverage is difficult, especially for rare cell types. Indeed, many integrative analysis projects are 

contending with the challenges of missing data (Ernst and Kellis 2015; Schreiber et al. 2020; 

The ENCODE Project Consortium et al. 2020). We suggest that the IDEAS method provides a 

principled approach with good utility for integrative analyses in the face of missing data. 
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Our collection of cCREs in mouse blood cells efficiently captures known erythroid 

regulatory elements and potential enhancers predicted by available EP300 occupancy data. 

However, this initial cCRE registry is unlikely to be complete, especially for cell lineages 

underrepresented in our collection. The VISION resources can be useful for analysis of new 

data from users, such as searching for overlaps of the cCREs with peaks from new datasets. 

Also, parallel efforts, such as the Immunological Genome Project (Yoshida et al. 2019), are 

generating complementary resources that can expand the cCRE registry. Only DNA intervals in 

nuclease accessible chromatin were assigned as cCREs, and thus, any regulatory elements 

that function in nuclease inaccessible regions will be missed. Such elements may be discovered 

by further studies on inaccessible regions that are bound by transcription factors. Given the 

absence of comprehensive reference sets of known regulatory elements, neither the 

completeness nor the specificity of the cCRE collections can be evaluated rigorously. Future 

work evaluating experimentally the impact of cCREs on gene expression will provide a more 

complete assessment of the quality of the registry.  

Each cCRE has been annotated with its epigenetic state in each cell type and an initial 

estimate of the epigenomic regulatory potential (eRP) score for regulating candidate target 

genes. These initial eRP scores for cCREs, derived from a multivariate regression and sub-

selection procedure, can explain a substantial portion of variance in gene expression, but a 

considerable amount of expression variance remains unexplained. Estimates for regulatory 

output could be improved by incorporating transcription factor binding site motifs (Weirauch et 

al. 2014), transcription factor occupancy (Dogan et al. 2015), and patterns in multi-species 

genome sequence alignments (Taylor et al. 2006). The target gene assignments can be refined 

by inclusion of data on chromatin interaction frequencies, e.g. by restricting cCRE-gene pairs to 

those within a topologically associated domain, or TAD (Oudelaar et al. 2017). The VISION 

project has analyzed Hi-C data in G1E-ER4 cells (Hsu et al. 2017) and HPC7 cells (Wilson et al. 

2016) to provide coordinates of TADs (An et al. 2019) and compartments (Zheng and Zheng 
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2018), and our query interface allows users to use this information to refine choices of cCREs 

for specific genes. 

The IDEAS segmentation results across cell types revealed some known transitions 

between states, such as poised enhancers in multilineage progenitor cells either shifting to 

active enhancers or losing their pre-activation signatures to become repressed or quiescent in 

more differentiated cells. However, one of the most common transitions has not been described 

previously (to our knowledge). Of the CTCF-bound sites in LSK that were also accessible to 

nuclease, a substantial proportion became much less nuclease accessible while retaining CTCF 

occupancy in differentiated cells. The reduction in accessibility reflects a change in the 

chromatin structure to a more closed state, but unexpectedly, the CTCF protein remains bound. 

Initial studies suggested that the CTCF-bound-but-inaccessible sites were associated with 

repressed, gene-poor regions while the CTCF-bound-and-accessible sites were enriched at 

constitutive TAD boundaries. However, further studies are needed to more fully investigate the 

functions of different categories of CTCF-bound sites.  

We found a substantially larger number of cCREs in hematopoietic progenitor cells than 

in mature cells, with the notable exception of megakaryocytic cells. The reduction in numbers of 

cCREs coincides with the decrease in the size of the nucleus during differentiation and 

maturation after commitment to a single lineage (Baron and Barminko 2016) and a decrease in 

the number of genes being expressed (Fig. 4D). While this reduction in numbers of active genes 

and regulatory elements appears to occur in most lineages of blood cells, it was not observed in 

megakaryocytic cells, which retain aspects of the regulatory landscape and transcriptomes of 

multilineage progenitor cells. Similarity of MK to multilineage progenitor cells has been 

discerned previously from phenotypic similarities (Huang and Cantor 2009), transcriptome data 

(Sanjuan-Pla et al. 2013; Psaila et al. 2016), and global epigenetic profiles (Heuston et al. 

2018). Recent studies have shown that MK cells can be derived from multiple stages of 

progenitor cells, including HSC, CMP, and MEP (Sanjuan-Pla et al. 2013; Psaila et al. 2016). It 
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is intriguing to speculate that the similarity of MK to multilineage progenitor cells may indicate 

that multiple stages of progenitor cells could differentiate into MK without substantial changes to 

the regulatory landscape. Such a conservative process differs from other lineage commitment 

and maturation processes that involved substantial changes to the epigenome and reduction in 

numbers of genes expressed. 

The systematic integration of 150 tracks of epigenetic data on mouse hematopoietic 

cells has produced an easily interpretable representation of the regulatory landscapes across 

these cell types along with predictions of and annotations of candidate regulatory elements. 

Similar systematic integration of epigenetic data in human blood cells is on-going, which will 

generate equivalent resources. Such resources should provide guidance on many important 

problems, such as suggesting specific hypotheses for mechanisms by which genetic variants in 

non-coding regions can be associated with complex traits and diseases (Ulirsch et al. 2016; Bao 

et al. 2019).   

 

Methods 

Cell populations and sources of epigenomic and transcriptomic data 

Detailed information about the cell populations and cell lines analyzed is in Supplemental 

Material, section 1. The ChIP-seq and ATAC-seq procedures followed previously published 

methods (Wilson et al. 2010; Buenrostro et al. 2013; Wu et al. 2014; Heuston et al. 2018). 

Detailed information about the experimental methods, sources of datasets, bioinformatic 

pipelines, and quality assessments are in Supplemental Material, section 2 and Supplemental 

Tables. 

 

Data normalization and comparison 
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A novel method for normalization, called S3norm (Xiang et al. 2020), was used to produce 

comparable peaks signals without inflating background regions. This method is described in 

more detail in sections 3 and 5 of the Supplemental Material, and the pipeline is deposited at 

GitHub (https://github.com/guanjue/S3norm). The methods for comparing epigenetic signals 

across cell types are described in section 4 of the Supplemental Material. 

 

Integrative analysis and cCRE calls 

The implementation of IDEAS (Zhang et al. 2016; Zhang and Hardison 2017) for the mouse 

hematopoietic cell datasets is described in Supplemental Material section 6, and the software is 

available from GitHub (https://github.com/guanjue/IDEAS_2018). The method for calling cCREs 

is in Supplemental Material section 8. The methods for comparing signals in peaks of nuclease 

sensitivity and in transcriptomes across cell types are in section 10 of the Supplemental 

Material.  

 

Estimating impact of cCREs on candidate target genes 

The methodology for estimating the output of individual cCREs based on their epigenetic states 

and correlations with expression of candidate target genes is presented in section 17 of the 

Supplemental Material. 

 

Additional code 

In addition to the pipelines for S3norm and IDEASs already mentioned in GitHub, code and 

scripts used in the analysis are in the GitHub repository 

https://github.com/rosshardison/VISION_mouseHem_code 
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Data access  

All raw and processed sequencing data generated in this study have been submitted to the 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession 

number GSE [submission in progress]. Data and servers for visualization also are available at 

the VISION Project website (http://usevision.org). 
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Figure legends 
 
 
Figure 1. Hematopoietic cell types and datasets used for integrative analysis. A. Schematic 

representation of the main lineage commitment steps in hematopoiesis, along with three 

immortalized cell lines (HPC7, G1E, G1E-ER4) and their approximate position relative to the 

primary cell populations shown. Abbreviations for cell populations are LSK = Lin-Sca1+Kit+ 

(which includes hematopoietic stem cells and multipotent progenitor cells), CMP = common 

myeloid progenitor cells, GMP =  granulocyte monocyte progenitor cells, MEP = megakaryocyte 

erythrocyte progenitor cells, CLP = common lymphoid progenitor cells, CFUE = colony forming 

unit erythroid, ERY = erythroblasts, RBC = red blood cells, CFUMK = colony forming unit 
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megakaryocyte, iMK = immature megakaryocytes, MK_fl = maturing megakaryocytes from fetal 

liver, PLTS = platelets, EOS = eosinophils, MAS = mast cells, NEU = neutrophils, MON = 

monocytes, T_CD8 = CD8+ T-cells, T_CD4 = CD4+ T-cells, B = B-cells, NK = natural killer 

cells. B. Available hematopoietic datasets. Shown in each row: Cell type along with its 

representative color, tissue stage (Ad = adult, ES diff = Embryonic stem cell derived, 

differentiated) and source (BM = bone marrow, sp = spleen, liver, blood). Shaded boxes indicate 

the presence of the dataset, and letters denote the source (V = VISION, L = Lara-Astiaso et. al 

2014, O = other); see Supplemental Table S1 for more information. C. Correlations of nuclease 

accessible signals with all features (S3norm normalized) and across cell types. The genome-

wide Pearson correlation coefficients r were computed for each cell type-feature pair and 

displayed as a heatmap after hierarchical clustering (using 1-r as the distance measure). The 

features are indicated by a characteristic color (first column on right), and the cell types are 

indicated in the second column to the right using the same colors as panel B. The full 

correlation matrix of all features across all cell types is in Supplemental Fig. S4. 

 
Figure 2. Segmentation of the epigenomes of hematopoietic cells after integrative modeling 

with IDEAS. A. Heatmap of the emission frequencies of each of the 27 states discovered by 

IDEAS, with state number and function-associated labels. Each letter in the label indicates a 

function associated with the combination of features in each state, defined in the box. The 

indicator for transcribed is H3K36me3, active is H3K27ac, enhancer-like is 

H3K4me1>H3K4me3, promoter-like is H3K4me3>H3K4me1, heterochromatin is H3K9me3, and 

polycomb is H3K27me3. B. Example of normalized epigenetic data from ERY in fetal liver 

around the Gfi1b locus, covering 70kb from chr2:28,565,001-28,635,000 in GRCm38/mm10, 

used as input to IDEAS for segmentation. The signal tracks are colored distinctively for each 

feature, with the inferred epigenetic states shown on the last track. The upper limit for signal in 

each normalized track is given at the right. C. Bar graphs of the average coverage of genomes 
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by each state. The top graph emphasizes the high abundance of state Q, and the second graph 

shows the abundances of the 26 non-quiescent states. The key for annotated colors is the same 

order as the states in the bar graph. D. Segmentation pattern across cell types around the Gfi1b 

exemplar locus. Signal tracks for EP300 (ENCSR982LJQ, ENCODE consortium) and CTCF 

from mouse fetal liver were included for validation and confirmation, along with the locations of 

enhancers shown to be active (Enh_vald; Moignard et al. 2013).  

 
 
Figure 3. Comparative analysis of VISION cCREs.  A. Overlaps of the VISION cCREs with 

three other cCRE catalogs. The overlapping cCREs in all four datasets were merged. The 

numbers of merged cCREs in each set were labeled on each row, and the numbers in each 

level of overlap were shown in columns, visualized using an UpSet plot (Lex et al. 2014). The 

sets compared with the VISION cCREs were the Blood Enhancer Catalog derived from iChIP 

data (iChIP; Lara-Astiaso et al. 2014), the SCREEN cCREs specific to mouse fetal liver at E14.5 

(SCR_FL), and those for all tissues and cell types in mouse (SCR_all). B. The VISION cCREs 

capture known regulatory elements and orthogonal predicted cCREs. The number of known 

CREs that are also present in each cCRE collection was plotted against the number of 

regulatory elements (known or inferred) in each dataset. The EP300 peaks were deduced from 

EP300 ChIP-seq data from ENCODE, reprocessed by VISION pipelines, from FL E14.5, MEL, 

and CH12 cells. Replicated peaks were combined into one dataset and merged, to get over 

60,000 peaks. The number of known EP300 peaks that were also present in each cCRE 

collection was plotted against the number of cCREs in each dataset.  

 

Figure 4.  Global comparisons of nuclease accessibility profiles and transcriptomes across 

mouse hematopoietic cell types.  A. Heatmap of the hierarchical clustering of nuclease-sensitive 

elements (ATAC-seq and DNase-seq, using S3norm for normalization), with Spearman’s rank 

correlation r as the similarity measure, and 1-r as the distance measure for hierarchical 
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clustering across 18 cell types. Results include replicates for cell types with replicated data 

(indicated by bars next to the cell type name).  B. Numbers of dynamic cCREs in each cell type, 

determined from ATAC-seq and DNase-seq profiles, and analyzed as both peak calls from 

Homer or from peaks after S3 normalization. C. Heatmap of the hierarchical clustering of RNA-

seq (TPM values for all genes, quantile normalized, showing replicates), with Spearman’s r as 

the similarity measure. D. Concordant decreases during hematopoietic differentiation in 

nuclease accessibility and expressed genes, shown as the association between numbers of 

genes expressed and numbers of dynamic cCREs across cell populations and types. 

 
Figure 5.  Transitions in epigenetic states at cCREs across hematopoietic differentiation. A and 

B. The numbers of cCREs in each cell type are colored by their IDEAS epigenetic state, 

emphasizing decreases in numbers of cCREs in states 9 and 13 (A), while numbers in other 

states less variable (B).  C. Aggregated and individual signal profiles for cCREs in the poised 

enhancer state 9 in CMPs as they transition from LSK through CMP and MEP to CFUE and 

ERY. Profiles for up to four relevant epigenetic features are presented. Data for H3K27me3 are 

not available for CMP, MEP, or CFUE. The first graph in each panel shows the aggregated 

signal for all cCREs in a class, and graphs beneath it are heatmaps representing signal intensity 

in individual cCREs. In the aggregated signal, red lines show signals for cCREs that transition 

from poised state 9 to active enhancer-like state 12, and blue lines show signals for cCREs that 

transition from poised state 9 to polycomb repressed state 3. D. Aggregated and individual 

signal profiles for CTCF-bound cCREs that either retain or lose nuclease accessibility during 

differentiation from LSK to ERY. In the aggregated signal, red lines show signals for cCREs that 

stay in the CTCF-bound, nuclease sensitive state 13, and blue lines show signals for CTCF-

bound cCREs that lose nuclease sensitivity as they transition from state 13 to state 7. Signals 

were normalized by S3norm. Abbreviations are AT=ATAC, 4m1=H3K4me1, 27ac=H3K27ac, 

27m3=H3K27me3, CT=CTCF. 
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Figure 6.  Initial estimates of regulatory output and target gene prediction using regression 

models of IDEAS states in promoters and cCREs versus gene expression. A. Illustration of 

promoters and cCREs around two potential target genes, showing expression profiles of the 

genes across cell types (shades of blue, left) and promoters/cCREs with one or more epigenetic 

states assigned in each cell type. B. Multivariate linear regression of proportion of promoters 

and pooled cCREs in each state against expression levels of potential target genes, keeping 

promoters and cCREs separate and learning the regression coefficients iteratively in a sub-

selection strategy. Values of the regression coefficients beta for each epigenetic state for 

promoters and cCREs for differentially expressed genes. The values of the regression 

coefficients for each epigenetic state are presented as a blue to red heatmap. C. Ability of eRP 

scores of cCREs to explain levels of expression on chr1-chr19 and chrX in the twelve cell types 

for all genes and (1-4) in the four categories of genes. A leave-one-out strategy was employed 

to calculate the accuracy predicting expression. The distribution of adjusted r2 values are shown 

as box-plots for promoters, distal cCREs, and combined. D. Illustration of eRP scores for cCREs 

in and around the Alas2 gene, including a comparison with previously measured enhancer and 

promoter activities. Nested TADs called by OnTAD (An et al. 2019) are shown in the bottom 

tracks. 
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