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Abstract

This paper frames causal structure estimation as a machine learning task. The idea is to treat 

indicators of causal relationships between variables as ‘labels’ and to exploit available data on the 

variables of interest to provide features for the labelling task. Background scientific knowledge or 

any available interventional data provide labels on some causal relationships and the remainder are 

treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on 

bivariate histograms) within a manifold regularization framework. We present empirical results on 

three different biological data sets (including examples where causal effects can be verified by 

experimental intervention), that together demonstrate the efficacy and general nature of the 

approach as well as its simplicity from a user’s point of view.

Keywords

causal learning; manifold regularization; semi-supervised learning; interventional data; causal 
graphs

1 Introduction

Causal structure learning is concerned with learning causal relationships between variables. 

Such relationships are often represented using directed graphs with nodes corresponding to 
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the variables of interest. Consider a set of p variables or nodes indexed by V = {1, … , p}. 

The aspect we focus on in this paper is to determine, for each (ordered) pair (i, j) ∈ V × V, 

whether or not node i exerts a causal influence on node j. In particular, our focus is on the 

binary ‘detection’ problem (of learning whether or not node i exerts a causal influence on 

node j) rather than estimation of the magnitude of any causal effect.

Methods for learning causal structures can be usefully classified according to whether the 

graph is intended to encode direct or total (ancestral) causal relationships. For example if 

variable A acts on B which in turn acts on C, A has an ancestral effect on C (via B). Here, 

the graph of direct effects has edges A → B → C, while the graph of total or ancestral 

effects has in addition the edge A → C. Methods based on (causal) directed acyclic graphs 

(DAGs) are a natural and popular choice for causal discovery (Spirtes et al., 2000; Pearl, 

2009). The PC algorithm (Spirtes et al., 2000) is an important example of such a method. 

Using a sequence of tests of conditional independence, the PC algorithm estimates an 

underlying causal DAG. Due to the fact that the graph may not be identifiable, the output is 

an equivalence class of DAGs (encoded as a completed partially directed acyclic graph or 

CPDAG). Here the estimand is intended to encode direct influences. IDA (Intervention 

calculus when the DAG is Absent; Maathuis et al., 2009) uses the PC output to bound the 

quantitative total causal effect of any node i on any other node j. These estimated effects can 

be thresholded to provide a set of edges. FCI (Fast Causal Inference; Spirtes et al., 2000) and 

RFCI (Really Fast Causal Inference; Colombo et al., 2012) consider a type of ancestral 

graph as estimand and allow for latent variables. Greedy Interventional Equivalence Search 

(GIES; Hauser and Bühlmann, 2012) is a score-based approach that allows for the inclusion 

of interventional data.

Methods for learning causal structures (such as those above) are often rooted in data-

generating causal models. In a quite different vein, there have been some interesting recent 

efforts in the direction of labelling pairs of variables as causal or otherwise, such as in 

Lopez-Paz et al. (2015) and Mooij et al. (2016). These approaches are ‘discriminative’ in 

spirit, in the sense that they need not be rooted in an explicit data-generating model; rather 

the emphasis is on learning how to tell causal and non-causal apart. Our work is in this latter 

vein. We address a specific aspect of causal learning—that of estimating edges in a graph 

encoding causal relationships between a defined set of vertices—but via a machine learning 

approach that allows the inclusion of any available information concerning known cause-

effect relationships. The output of our method is a directed graph that need not be acyclic 

(see Spirtes, 1995; Richardson, 1996; Hyttinen et al., 2012, for discussion of cyclic 

causality) and whose edges may encode either direct or total/ancestral relationships, as 

discussed below. The main differences between our work and previous work on labelling 

causal pairs (Lopez-Paz et al., 2015; Mooij et al., 2016) are the specific methods and 

associated theory that we put forward, the manifold regularization framework, and the 

empirical examples.

In general terms the idea is as follows: let  denote the available data and Φ denote any 

available knowledge on causal relationships among the variables indexed in V (e.g., based 

on background knowledge or experimental intervention). We view the causal learning task in 

terms of constructing an estimator of the form Ĝ( , Φ), where Ĝ is a directed graph with 
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vertex set V and edge set E(Ĝ), with (i, j) ∈ E(Ĝ) corresponding to the claim that variable i 
has a causal influence on variable j. To put this another way: entries in a binary adjacency 

matrix encoding causal relationships are treated as ‘labels’ in a machine learning sense. 

From this point of view, the task of constructing the estimator Ĝ( , Φ) is essentially one of 

learning these labels from available data and from any a priori known labels (derived from 

Φ). Thus, a key difference with respect to a number of existing methods is the nature of the 

inputs needed: our approach requires causal background information Φ as an input while 

several existing methods (such as PC) use only observational data. The casual background 

information Φ need not be interventional data per se, but must encode knowledge on some 

causal relationships in the system (we consider both scenarios in empirical examples below). 

Note also that in our approach the causal status of multiple pairs is coupled via the learning 

scheme: loosely speaking (see below for technical details), it is the position of a test pair on 

a classification manifold (relative to other pairs) that determines its status.

Our approach differs in several ways from graphical model-based methods. In our approach, 

the same framework can be used to estimate either direct or ancestral causal relationships, 

depending on the precise input (we show real data examples of both tasks below). This is 

because the classifier can be agnostic to the label semantics: provided the Bayes’ risk for the 

label of interest is sufficiently low, these labels can in principle be learned. In contrast to 

much of the literature, our approach does not try to provide a full data-generating model of 

the causal system but instead focuses on the specific problem of learning edges encoding 

causal relationships. As we see in experiments below, this can lead to good empirical 

performance, but the output is in a sense less rich than a full causal model (see the 

Discussion). Our work is motivated by scientific problems where good performance with 

respect to this narrower task can be useful in reducing the hypothesis space and targeting 

future work.

The remainder of the paper is organized as follows. We first introduce some notation and 

discuss in more detail how causal learning can be viewed as a semi-supervised task. We then 

discuss a specific instantiation of the general approach, based on manifold regularization 

using a simple bivariate featurization. Using this specific approach—which we call Manifold 

Regularized Causal Learning (MRCL)—we present empirical results using three biological 

data sets. The results cover a range of scenarios and include examples with explicitly 

interventional data.

2 Methods

2.1 Notation

Let V = {1, … , p} index a set of variables whose mutual causal relationships are of interest. 

Let G denote a directed graph with vertex set V and edge set E; where useful, we use V (G), 

E(G) to denote its vertex and edge sets and A(G) to denote the corresponding p×p binary 

adjacency matrix. To make the connection between causal relationships and machine 

learning more transparent, we introduce linear indexing by [k] of the pairs (i, j) ∈ V × V. 

Where needed, we make the correspondence explicit, denoting by (i[k], j[k]) the variable 

pair corresponding to linear index [k] and by [k(i, j)] the linear index for pair (i, j). Suppose 

A is the adjacency matrix of the unknown graph of interest. Let y[k] ∈ {−1, +1} be a binary 
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variable (for convenience mapped onto {−1, +1}) corresponding to the entry (i[k], j[k]) in A; 

these y[k]’s are the labels or outputs to be learned. Available data are denoted . Available a 
priori knowledge about causal relationships between the variables V is denoted Φ.

2.2 Causal Semantics

Given data  and background knowledge Φ we aim to construct an estimate Ĝ, the latter 

being a directed graph that need not be acyclic. The information in Φ guides the learner. Two 

main cases arise, both of which we consider in experiments below:

• Total or ancestral effects. Here, Φ contains information on total effects—for 

example via interventional experiments as performed in biology—and the edges 

in the estimate Ĝ are intended to describe such effects. This means that an edge 

(i, j) ∈ E(Ĝ) is interpreted to mean that node i is inferred to be a causal ancestor 

of node j.

• Direct effects. Here, Φ contains information on direct effects (relative to the 

variable set V) and the edges in the estimated graph Ĝ are intended to describe 

direct effects. Then, an edge (i, j) ∈ E(Ĝ) is interpreted to mean that i is inferred 

to be a direct cause of j (relative to the variable set V).

Our immediate motivation comes from the experimental sciences and we focus in particular 

on causal influences that can, at least in principle, be experimentally verified (even in the 

presence of latent variables) and where causal cycles are possible (as is often the case in 

biology or economics, see e.g., Hyttinen et al., 2012). Accordingly, we do not demand 

acyclicity. In our empirical work in biology, the nature of the underlying chemical/physical 

systems means that there are many small magnitude causal effects that are essentially 

irrelevant in the scientific context and this is a characteristic of many problem settings in the 

natural and social sciences. This motivates a pragmatic approach assuming that estimated 

graphs are not very dense or fully connected nor necessarily transitive1.

2.3 Semi-Supervised Causal Learning

With the notation above, the task is to learn the y[k]’s using  and Φ. This is done using a 

semi-supervised estimator ŷ[k]( , Φ) (we make the connection to semi-supervised learning 

explicit shortly). For now assume availability of such an estimator (we discuss one specific 

approach below). Then from the ŷ[k] we have an estimate of the graph of interest as Ĝ( , Φ) 

= (V, E(Ĝ( , Φ))) (recall that the vertex set V is known) with the edge set specified via the 

semi-supervised learner as

i, j ∈ E(Ĝ 𝒟, Φ ) ŷ k i, j 𝒟, Φ = 1. (1)

Background knowledge Φ could be based on relevant science or on available interventional 

data. For example, in a given scientific setting, certain cause-effect information may be 

1We emphasize that these are pragmatic assumptions motivated by the nature of experimental data and scientific applications, and not 
intended to be fundamental statements about causality. For example, Hyttinen et al. (2012) make the point that cycles can be removed 
by considering time-varying data on a suitable time scale, but that nevertheless cycles are common in causal scientific models in 
economics, engineering and biology due to the fact that measurements are usually taken at wider intervals.
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known from previous work or theory. Alternatively, if some interventional data are available 

in the study at hand, this gives information on some causal relationships. Whatever the 

source of the information, assume that it is known that certain pairs (i, j) are either causal 

pairs (positive information) or not causal pairs (negative information). Using the notation 

above, this amounts to knowing, for some pairs [k], the value of y[k]. In semi-supervised 

learning terms, the pairs whose causal status is known correspond to the labelled objects and 

the remaining pairs are the unlabelled objects.

For each pair [k], some of the data, or some transformation thereof will be used as predictors 

or inputs, denote these generically as g[k]( ). That is, g[k] is a featurization of the data, with 

the featurization specific to variables (i[k], j[k]). Let  be the set of linear indices (i.e., [k] ∈ 
 is a variable pair), ℒ ⊂ K be the variable pairs with labels available (via Φ) and  =  \ 

ℒ be the set of unlabelled pairs. Let yℒ be a binary vector comprising the mℒ = |ℒ| 

available labels and y  be an unknown binary vector of length m  = | |. The available 

labels are determined by the background information Φ and we can write yℒ(Φ) to make 

this explicit. A semi-supervised learner gives estimates for the unlabelled objects, given the 

data and available labels. That is, an estimate of the form ŷ (g( ), yℒ(Φ)). With these in 

hand we have estimates for all labels and therefore for all edges via (1).

Formulated in this way, it is clear that essentially any combination of featurization g and 

semi-supervised learner could be used in this setting. Below, as a practical example, we 

explore graph-based manifold learning (following Belkin et al., 2006) combined with a 

simple bivariate featurization.

2.4 A Bivariate Featurization

For distance-based learning, we require a distance measure between objects (here, variable 

pairs) [k], [k′] ∈ . The simplest candidate distance between variable pairs [k], [k′] is 

based only on the bivariate distribution for the variables comprising the pairs (we make this 

notion precise below). Proofs of propositions appearing in this Section are provided in 

Appendix A.

2.4.1 Distance between variable pairs—Let Z denote the p-dimensional random 

variable whose n realizations z(l), l = 1, …, n, comprise the data set . Assume Z ∈ Ƶp = 

[zmin, zmax]p and that Ƶp is endowed with the Borel σ-algebra ℬp = ℬ(Ƶp). Let  be the set of 

all twice continuously differentiable probability density functions, generically denoted π, 

with respect to Lebesgue measure Λ2 on (Ƶ2, ℬ2). Let Π[k] be the bivariate (marginal) 

distribution for components i[k], j[k] ∈ V of Z.

Assumption 1 Each Π[k] admits a density function π[k] ∈ .

If available, the densities π[k], π[k′] could be used to define a distance between the pairs [k], 

[k′]. Let d  :  ×  → [0, ∞) denote a pseudo-metric2 on . Since we do not have access 

to the underlying probability density functions, we construct an analogue using the available 

data . Let n ≔ [zmin, zmax]2n denote the space of possible bivariate samples (the sample 

2Recall that a pseudo-metric d satisfies all of the properties of a metric with the exception that d(x, y) = 0 ⇏ x = y.

Hill et al. Page 5

J Mach Learn Res. Author manuscript; available in PMC 2020 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



size is n) and S[k] ∈ n denote the subset of the data for the variable pair [k]. That is, 

S[k] = {(zi[k]
(l) , z j[k]

(l) )}l = 1, …, n ⊂ Ƶ2 .

Let κ : n →  be a density estimator (DE). We consider sample quantities of the form d
= d  ○ (κ × κ). That is, given data S[k], S[k′] ∈ n on two pairs [k], [k′], the DE is applied 

separately to produce density estimates κ(S[k]) and κ(S[k′]), that are compared using d  to 

give d  (S[k], S[k′]) = d  (κ(S[k]), κ(S[k′])). This construction ensures that d  is a pseudo-

metric without assumptions on the DE κ:

Proposition 1 Assume that d  is a pseudo-metric on . Then d  is a pseudo-metric on n. 
If, in addition, κ is injective and d  is a metric on , then d  is a metric on n.

2.4.2 Choice of distance—For semi-supervised learning we need a notion of distance 

under which causal pairs are relatively ‘close’ to each other. For a measurable space 

equipped with a measure ρ we let f
Lq ρ

≕ ∫𝒳
f qdρ

1
q < ∞ . The notion of distance that 

we consider is

d𝒫 π, π ≕ π − π
L2 Λ2

.

The right hand side exists since the integrand is continuous on a compact set and thus 

bounded. This can be contrasted with the kernel embedding that was proposed for 

supervised causal learning in Lopez-Paz et al. (2015).

Proposition 2 d  is a metric on .

The main requirement that we have of the DE is that it provides consistent estimation in the 

ǁ · ǁL2(Λ2) norm when π ∈ . Specifically, consider a sequence S(n) in n indexed by the 

number n of data points. In particular, suppose that S(n) is built from n independent data 

points whose distribution is Π (the shorthand notation S n ∼
i . i . d .

Π will be used). Let π be 

the density function for Π. Then κ is said to be “consistent” if ǁπ − κ(S(n))ǁL2(Λ2) = oP (1) 

holds for S n ∼
i . i . d .

Π whenever π ∈ .

Proposition 3 Suppose κ is consistent and that Π, Π admit densities π, π ∈ 𝒫 . Then, for 

S n ∼
i . i . d .

Π , S n ∼
i . i . d .

Π , where S(n) and S(n) are not necessarily independent, we have 

that d𝒮(S(n), S(n)) = d𝒫(π, π) + oP(1) .

Thus d  approximates the idealized metric d  in the limit of draws from Π and Π. Note 

that, in our intended use case, the S(n) and S(n) will correspond to bivariate scatter plots S[k], 

S[k′] generated from the same underlying z(l), l = 1, …, n, and hence S(n) and S(n) will not be 

independent.

Hill et al. Page 6

J Mach Learn Res. Author manuscript; available in PMC 2020 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



For the experiments in this paper, motivated by computational ease, we used a simple 

bivariate histogram as the DE κ. To this end, partition Ƶ2 into an M × M regular grid whose 

(m1, m2)th element is denoted Bm1,m2. The standard bandwidth notation h = M−1 will also 

be used. For a scatter plot S ∈ n, let xm1,m2 denote the number of elements that belong to 

the set Bm1,m2. Then the histogram estimator is

κ S z′ = ∑
m1, m2 = 1

M xm1, m2
n

1
h2 𝕀 z′ ∈ Bm1, m2

, z′ ∈ 𝒵2 . (2)

This DE is consistent in the sense of Proposition 3. Indeed:

Proposition 4 Let the bandwidth parameter h of the histogram estimator κ be chosen such 
that nh2 → ∞. Then κ is consistent. Moreover, an optimal choice of h ≍ n−1/4 leads to ǁπ − 

κ(S(n))ǁ L2(Λ2) = OP(n−1/4) whenever S n ∼
i . i . d .

Π and π ∈ .

We note that this histogram DE is not rate optimal for the class  (for comparison, kernel 

DEs attain a rate of OP (n−2/3) over the same class  of twice continuously differentiable 

bivariate densities considered here, see Wand and Jones, 1994). However, an important 

advantage of the histogram DE is that the subsequent evaluation of κ(S) is O(1), compared 

with O(n) for the kernel DE.

2.4.3 Implementation of the DE—The above arguments support the use of a bivariate 

histogram to provide a simple featurization for variable pairs. In practice, for all examples 

below, the data were standardized, then truncated to [−3, 3]2, following which a bivariate 

histogram with bins of fixed width 0.2 was used. The dimension of the resulting feature 

matrix was then reduced (to 100) using PCA.

2.5 Manifold Regularization

Recall that the goal is to estimate binary labels y  for a subset  ⊂  of variable pairs 

given available data  and known labels yℒ(Φ) for a subset ℒ =  \  (these are taken to be 

obtained from available interventional experiments and/or background knowledge). For any 

two pairs [k], [k′] ∈ , we also have available a distance d (S[k], S[k′]). This is a task in 

semi-supervised learning (see e.g., Belkin et al., 2006; Fergus et al., 2009) and a number of 

formulations and methods could be used for estimation in this setting. Here we describe a 

specific approach in detail, using manifold regularization methods discussed in Belkin et al. 

(2006).

Let x[k] denote a vector whose entries are the bin-counts xi,j, 1 ≤ i, j ≤ M, appearing in (2), 

for scatter plot S[k]. Let  = ×1≤i,j≤M[0, n] and note that x[k] ∈ . Then we make the 

observation that, for the histogram estimator,

d𝒮 S k , S k′ ∝ x k − x k′ 2 ⋅

Hill et al. Page 7

J Mach Learn Res. Author manuscript; available in PMC 2020 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



This perspective emphasizes that g[k]( ) = x[k] is the featurization that underpins this work, 

and that the classification task can be considered as the construction of a map c :  → {−1, 

+1}. To develop an approach to semi-supervised classification in the manner of Belkin et al. 

(2006), let ρ  be a reference measure on  and let K :  ×  → ℝ be a Mercer kernel; 

i.e., continuous, symmetric and positive semi-definite. The reproducing kernel Hilbert space, 

ℋK, associated to K can be defined via the integral operator ∑K : L2(ρ ) → L2(ρ ) where

∑K f x = ∫ K x, x f x dρX x .

From the fact that K is a Mercer kernel it follows that ∑K is self-adjoint, positive semi-

definite and compact. In particular, ΣK
α  is well-defined for α ∈ (0, ∞). The reproducing 

kernel Hilbert space is defined as ℋK = ΣK

1
2 L2 ρ𝒳  and its norm is 

f ℋK
: = ΣK

− 1
2 f

L2 ρ𝒳
; c.f. Corollary 4.13 in Cucker and Zhou (2007).

Recall that mℒ = |ℒ| is the number of available labels and m  = | | the number of 

unlabelled pairs. Let m = m +mℒ (= | |) be the total number of pairs. Using the distance 

function d  we first define an m × m similarity matrix W with entries

W k , k′ = exp − 1
2σ1

2 x k − X k′ 2
2

(3)

where σ1 > 0 must be specified. The squared-exponential form is motivated by an analytic 

connection between the heat kernel and the Laplace-Beltrami operator, which will be 

exploited in Section 2.5.1. We will use a partition of the matrix corresponding to the sets , 
ℒ as follows

W = Wℒℒ Wℒ𝒰

W𝒰ℒ W𝒰𝒰

where we have assumed, without loss of generality, that the variable pairs are ordered so that 

the labelled pairs appear in the first mℒ places, followed by the m  = m − mℒ unlabelled 

pairs. Correspondingly let

y = yℒ

y𝒰 ∈ −1, + 1 m

denote a label matrix, where +1 indicate those pairs [k] for which y[k] = 1. The vector y  is 

unknown and is the object of estimation.

Let D be the m × m diagonal matrix with diagonal entries D[k],[k] = ∑[k′]∈  W[k],[k′]. 

Define L = D − W (i.e., the un-normalized graph Laplacian; all matrices with O(m2) entries 
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are denoted as bold capitals to emphasize the potential bottleneck that is associated with 

storage and manipulation of these matrices). Let

f = fℒ

f𝒰 ∈ ℝm

be a vector corresponding to a classification function f :  → ℝ evaluated at the m variable 

pairs , with the superscripts indicating correspondence with the labelled and unlabelled 

pairs. Intuitively, we want the sign of f to agree with the known labels yℒ and also to take 

account of the manifold structure encoded in L.

In this work we consider a classifier of the form ĉ(x) = sign( f (x)) where f  arises from the 

Laplacian-regularized least squares method

f = arginf
f ∈ ℋK

yℒ − fℒ
2
2

mL
+ λ1

f⊤Lf
m + λ2 f ℋK

2 , (4)

following Section 4.2 of Belkin et al. (2006). Here the first term relates the known labels to 

the values of the function f. The second term imposes ‘smoothness’ on the label assignment 

in the sense of encouraging solutions where the labels do not change quickly with respect to 

the distance metric. The third term is principally to ensure that the infimum remains well-

defined and unique in the situation where there is insufficient data for the first penalty alone 

to be sufficient (see Remark 2 in Belkin et al., 2006).

Remark 5 (Choice of loss) It is important to comment on our choice of a squared-error loss 
function in (4), which differs from the more natural approach of using hinge loss for a binary 
classification task. Our motivation here is principally computational expedience; the 
computational burden associated with the m = O(p2) different scatter plots requires that a 
light-weight estimation procedure is used. However, we note that we are not the first to 
propose the use of squared-error loss in the classification context; it is in fact a standard 
approach to classification in the situation when the number of classes is > 2 (e.g., Wang et 
al., 2008).

2.5.1 Consistency of the Classifier—As explained in Remark 5, the use of a squared-

error loss function in a classification context is somewhat unnatural. It is therefore 

incumbent on us to establish consistency of the proposed method.

To this end, we exploit the specific form of the similarity matrix used in (3). Indeed, if we 

re-write

f⊤Lf
m = 1

2m ∑
k , k′ ∈ 𝒦

f x k − f x k′
2W k , k′ (5)

then it can be established (under certain regularity conditions) that, if input data x are 

independently drawn from ρ , then (5) converges to the quantity ∫ f x Δℳ f x dρ𝒳
2 x  (up 
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to proportionality), a smoothness penalty based on weighted Laplace-Beltrami operator Δℳ 
on the manifold ℳ induced by ρ  (Grigor’yan, 2006). The convergence occurs as 

m, σ1
2md + 2 ∞ (Theorem 3.1 of Belkin and Niyogi, 2008).

This convergence of the graph Laplacian to the Laplace-Beltrami operator underlies existing 

consistency results for semi-supervised regression (e.g., Cao and Chen, 2012) and is 

exploited again to establish the consistency of our classifier ĉ(x) = sign( f (x)) in Appendix B. 

In summary, the ability to assign the correct label to an unlabelled pair [k] ∈ ℒ depends on 

both the intrinsic predictability of the label as a function of the scatter plot S[k], as quantified 

by the Bayes risk, and the smoothness of the Bayes classifier fρ as quantified by the largest 

value α ∈ (0, 1] such that ΣK
− α

2 f ρ ∈ L2 ρ𝒳 ; see Corollary 9 in Appendix B for full detail.

2.5.2 Implementation of the Classifier—Given training labels yℒ, label estimates ŷ
 = sign(f ) are obtained by minimizing the objective function described above, as 

explained in Equation 8 in Belkin et al. (2006). This gives

f𝒰 = K𝒰, 𝒦
Imℒ

0

0 0
K𝒦, 𝒦 + λ2mℒIm +

λ1mℒ
m2 LK𝒦, 𝒦

−1 yℒ

0
(6)

where K ,  is the m  × m kernel matrix based on the unlabeled  and total  data, K

,  is the m × m kernel matrix based on the total data  and Im denotes an m-dimensional 

identity matrix.

Here ŷU provides a point estimate for the unknown labels while f  is real-valued and can be 

used to rank candidate pairs if required. The linear system in (6) can be solved at a naive 

computational cost of O(m3). Computation for large-scale semi-supervised learning has been 

studied in the literature (see e.g., Fergus et al., 2009) and a number of approaches could be 

used to scale up to larger problems, but were not pursued in this work.

For experiments reported below we employed a similarity matrix (with length scale σ1 as in 

(3)) and a kernel

K(x, x′) = exp − 1
2σ2

2 x−x′ 2
2

whose length-scale parameter σ2 was set equal to σ1 in the absence of prior knowledge 

about the manifold ℳ. The scale σ1 was set to the average distance to the nearest 50 points 

in the feature space (in practice estimated via a subsample).

The two penalty parameters in (4) were set to small positive values (λ1 = λ2 = 0.001; we 

found results were broadly insensitive to this choice). Following common practice we 

worked with the normalized graph Laplacian L ≔ D
− 1

2LD
− 1

2  in place of L (see Remark 3 of 

Belkin et al., 2006).
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3 Empirical Results

We tested our approach using three data sets with different characteristics. The key features 

of each data set are outlined below, with a full description of each data set appearing in the 

respective subsection. In all cases performance was assessed using either held-out 

interventional data or scientific knowledge.

• D1: Yeast knockout data. Here, we used a data set due to Kemmeren et al. 

(2014), previously considered for causal learning in Peters et al. (2016); 

Meinshausen et al. (2016). The data consist of a large number of gene deletion 

experiments with corresponding gene expression measurements.

• D2: Kinase intervention data from human cancer cell lines. These data, due 

to Hill et al. (2017), involve a small number of interventions on human cells, 

with corresponding protein measurements over time.

• D3: Protein data from cancer patient samples. These data arise from The 

Cancer Genome Atlas (TCGA) and are presented in Akbani et al. (2014). There 

are no interventional data, but the data pertain to relatively well-understood 

biological processes allowing inferences to be checked against causal scientific 

knowledge.

An appealing feature of MRCL is the simplicity with which it can be applied to diverse 

problems. In each case below, we simply concatenate available data to form the data set 

and available knowledge/interventions to form Φ, then directly apply the methods as 

described.

3.1 General Problem Set-Up

The basic idea in all three problems was as follows: given data on a set of variables, for each 

(ordered) pair (i, j) of variables we sought to determine whether or not i has a causal effect 

on j. In the case of data sets D1 and D2 the results were assessed against the outcome of 

experiments involving explicit interventions. As discussed above, such experiments reveal 

ancestral relationships (that need not be direct) and the goal in these examples was to learn 

such relationships. The availability of a large number of interventions in D1 allowed a wider 

range of experiments, whereas D2 is a smaller data set (but from human cells), allowing only 

a relatively limited assessment. In the case of D3, where interventional data (i.e., 

interventions on the same biological material that give rise to the training data) were not 

available but the relevant biological mechanisms are relatively well understood, we 

compared results to a reference mechanistic graph derived from the domain literature. The 

literature itself is in effect an encoding of extensive interventional experiments combined 

with biochemical and biophysical knowledge. This gives information on direct edges and 

here the edges learned are intended to represent direct causes (relative to the set of observed 

variables). Within the semi-supervised set-up, a subset of pairs were labelled at the outset 

and the remaining pairs were unlabelled. All empirical results below are for unlabelled pairs; 

that is, in all cases assessment is carried out with respect to causal (and non-causal) 

relationships that were not used to train the models.
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3.2 Data Set D1: Yeast Gene Expression

Data—The data consisted of gene expression levels (log ratios) for a total of ptotal = 6170 

genes. Some of the data samples were measurements after knocking out a specific gene 

(interventional data) and the other samples were without any such intervention 

(observational data), with sample sizes of nint = 1479 and nobs = 153 respectively. Each of 

the genes intervened on was one of the ptotal genes. Let t(l) be the index of the gene targeted 

by the lth intervention. That is, the lth interventional sample was an experiment in which 

gene t(l) was knocked out. Let T = {t(1), … , t(nint)} be the subset of genes that were the 

target of an interventional experiment.

Problem set-up—Our problem set-up was as follows. We sampled a subset C ⊂ T of the 

genes that were intervened upon, with |C| = 50, and treated this as the vertex set of interest 

(i.e., setting V = C and p = |C| = 50). The goal was to uncover causal relationships between 

these p variables.

Since by design interventional data were available for all variables j ∈ C, we used these data 

to define an interventional ‘gold standard’. To this end we used a robust z-score that 

considered the change in a variable of interest under intervention, relative to its 

observational variation. Let Zij
int denote the expression level of gene j following intervention 

on gene i. For any pair of genes i, j ∈ C we say that gene i has a causal effect on gene j if and 

only if ζij = Zij
int − M j

obs /IQR j
obs > τ , where M j

obs is the median level of gene j (calculated 

using half of the observational data samples; the remaining samples were used as training 

data—see below), IQR j
obs the corresponding inter-quartile range and τ = 5 was a fixed 

threshold. That is, we say there is an (experimentally verified) causal relationship between 

gene i and gene j if and only if ζij > τ. An absence of causal effects precludes estimation of 

true positive rates; hence we sampled C subject to a sparsity condition (that at least 2.5% of 

gene pairs show an effect).

Let A(C) be a p×p binary matrix encoding the causal effects as described in the foregoing 

(i.e., A(C)ij = 1 indicates that i has an experimentally verified causal effect on j). Then, given 

data on genes C, we set up the learning problem as follows. We treated a fraction ρ of the 

entries in A(C) as the available labels Φ. Thus, here m = p2 = 2500, mℒ = ⌊ρ m⌋ and m  = 

m – mℒ. Using these labels and data on the variables C, we learned causal edges as 

described. This gave estimates for the remaining (unseen) entries in A(C), which we 

compared against the corresponding true values. The data set  comprised expression 

measurements for the genes in C for ntrain
obs = 76 observational data samples (those samples 

not used to calculate the robust z-scores), plus ntrain
int  interventional data samples where genes 

outside the set of interest were intervened upon; that is, a subset of the 1429 genes in T\C. 

This set-up ensured that  include neither any of the interventional nor observational data 

that was used to obtain the ground-truth matrix A(C). The total amount of training data is 

denoted by ntrain = ntrain
obs + ntrain

int . We considered ntrain = 200, 500 and 1000 (corresponding to 

ntrain
int = 124, 424 and 924 respectively, sampled at random).
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Results—We compared the proposed Manifold Regularized Causal Learning (MRCL) 

approach with the following approaches:

• Penalized regression with an ℓ1 penalty (Lasso; Tibshirani, 1996). Each variable j 
∈ C was regressed on all other variables i ∈ C, i ≠ j to obtain regression 

coefficients. This is not a causal approach as such, but is included as a simple 

multivariate baseline.

• Intervention-calculus when the DAG is absent (IDA; Maathuis et al., 2009, 

2010). A lower bound for the total causal effect of variable i on variable j was 

estimated for each pair i, j ∈ C, i ≠ j.

• The PC algorithm (PC; Spirtes et al., 2000). This provides a CPDAG estimate 

for the variables C.

• GIES (GIES; Hauser and Bühlmann, 2012). This provides an essential graph 

estimate for the variables C, and allows inclusion of interventional data in a 

principled manner.

As simple baselines, we also included Pearson and Kendall correlation coefficients (Pearson 
and Kendall) and, following a suggestion from a referee, a simple k-nearest neighbor 

approach based on the featurization introduced above (k-NN).

We note that the causal methods compared against here differ in various ways from MRCL 

in the nature of their inputs and outputs and should not be regarded as direct competitors. 

Rather, the aim of the experiments is to investigate how MRCL performs on real data, whilst 

providing a set of baselines corresponding to well-known causal tools and standard 

correlation measures.

For the methods resulting in a score sij for all pairs i, j ∈ C, i ≠ j (i.e., correlation or 

regression coefficients, total causal effects, or, for MRCL, the real-valued f  in (6)), the 

scores were thresholded and pairs (i, j) whose absolute values of the score fell above the 

threshold were labelled as ‘causal’. Varying the threshold and calculating true positives and 

false positives with respect to the binary unseen entries in the matrix A(C) resulted in a 

receiver operating characteristic (ROC) curve.

Figure 1 shows the area under the ROC curve (AUC) as a function of the proportion ρ of 

entries in A(C) that were observed, for the three sample sizes. Results were averaged over 25 

iterations. MRCL showed good performance relative to the other approaches for all 12 

considered combinations of ntrain and ρ (for the other methods shown in Figure 1, any 

variation in performance with ρ was solely due to the changing test set as these methods do 

not use the background knowledge Φ). Results for PC, which provides a point estimate of a 

graphical object, are shown as points on the ROC plane for the 12 different regimes in 

Appendix C (Fig. 6). We considered also the transitive closure (motivated by the nature of 

the experimental data) and exploiting the background information Φ via additional 

constraints. MRCL performs well relative to the other methods in all regimes (see also the 

Discussion).
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In the above results the pairs whose causal relationship was to be predicted were chosen at 

random (i.e., the set of unlabelled pairs was a random subset of the set of all pairs). In 

contrast, in some settings it may be relevant to predict the effect of intervening on variable i, 
without knowing the effect of intervening on i on any other variable. For this setting, the 

unlabelled set should comprise entire rows of the causal adjacency matrix A(C). Figure 2 

considers this case. To ensure a sufficient number of rows were non-empty, we imposed the 

additional restriction on the gene subset C that at least half of the rows had at least one 

causal effect. Results for PC are shown in Appendix C (Fig. 7) as points on the ROC plane. 

As for the random sampling case above, MRCL offers an improvement over the other 

methods. k-NN also performs well relative to the other approaches here.

We additionally compared MRCL with GIES. GIES and MRCL differ in terms of their 

required inputs: In addition to data , MRCL requires binary labels on causal relationships 

via background information Φ, while GIES requires the interventional data itself and 

metadata specifying the intervention targets. For row-wise sampling, to allow for a 

reasonable comparison, we ran GIES providing the interventional data corresponding to the 

rows whose labels are provided to MRCL. The same data was also provided as input to the 

other approaches, including in data set  for MRCL. This means the data matrices differ 

from those above, with sample size dependent on ρ, and for MRCL,  now includes data 

that was used to obtain background information Φ (train/test validity is preserved since it 

remains the case that all testing is done with respect to entirely unseen interventions). 

Results appear in Figure 3, with PC and GIES shown as a points on the ROC plane. MRCL 

appears to offer an improvement relative to the other methods (see also the Discussion). 

Note that GIES is not directly applicable to the random sampling setting above since it 

requires the interventional data with respect to all other variables (and not just a subset 

thereof).

3.3 Data Set D2: Protein Time-Course Data

Data—The data consisted of protein measurements for p = 35 proteins measured at seven 

time points in four different ‘cell lines’ (BT20, BT549, MCF7 and UACC812; these are 

laboratory models of human cancer) and under eight growth conditions. The proteins under 

study act as kinases (i.e., catalysts for a biochemical process known as phosphorylation) and 

interventions were carried out using kinase inhibitors that block the kinase activity of 

specific proteins. A total of four intervention regimes were considered, plus a control regime 

with no interventions. The data used here were a subset of the complete data set reported in 

detail in Hill et al. (2017) and were also previously used in a Dialogue for Reverse 

Engineering Assessments and Methods (DREAM) challenge on learning causal networks 

(Hill et al., 2016).

Problem set-up—Treating each cell line as a separate, independent problem, the 

intervention regimes were used to define an interventional ‘gold standard’, in a similar vein 

as for data set D1. This followed the procedure described in detail in Hill et al. (2016) with 

an additional step of taking a majority vote across growth conditions to give a causal gold 

standard for each cell line c. For each cell line c, we formed a data matrix Zc consisting of 

all available data for the p = 35 proteins except for one of the intervention regimes. The 
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intervention regime not included was a kinase inhibitor targeting the protein mTOR. This 

intervention was entirely held out and used to provide the test labels. As background 

knowledge Φc we took as training labels causal effects under the other interventions. With 

this set-up, the task was to determine the (ancestral) causal effects of the entirely unseen 

intervention. Note that each cell line c was treated as an entirely different data set and task, 

with its own data matrix, background knowledge and interventional test data.

Results—Figure 4 shows AUCs (with respect to changes seen under the test intervention) 

for each of the four cell lines and each of the methods. There was no single method that 

outperformed all others across all four cell lines. MRCL performed particularly well relative 

to the other methods for cell lines BT549 and MCF7 (k-NN also performed well for BT549), 

was competitive for cell line UACC812, but performed less well for cell line BT20. We note 

also that, for cell lines BT549 and MCF7, the performance of MRCL was competitive with 

the best performers in the DREAM challenge and with an analysis reported in Hill et al. 

(2017). The latter involved a Bayesian model specifically designed for such data. In contrast, 

MRCL was applied directly to a data matrix comprising all training samples simply 

collected together.

3.4 Data Set D3: Human Cancer Data

Data—The data consisted of protein measurements for p = 35 proteins measured in n = 820 

human breast cancer samples (from biopsies). The data originate from The Cancer Genome 

Atlas (TCGA) Project, are described in Akbani et al. (2014) and were retrieved from The 

Cancer Proteome Atlas (TCPA) data portal (Li et al., 2013, https://tcpaportal.org; data 

release version 4.0; Pan-Can 19 Level 4 data). Data for many cancer types are available, but 

here we focus on a single type (breast cancer) to minimize the potential for confounding by 

cancer type. It is at present difficult to carry out interventions in biopsy samples of this kind. 

However, we focused on the same 35 proteins as in data set D2, whose mutual causal 

relationships are relatively well-understood, and used a reference causal graph for these 

proteins based on the biochemical literature (as reported in Hill et al., 2017).

Problem set-up—We formed a data set  consisting of measurements for the p = 35 

proteins for three different sample sizes: (i) ntrain = 200, (ii) ntrain = 500 or (iii) all ntrain = 

820 patient samples. For (i) and (ii) patient samples were selected at random. We then used a 

random fraction ρ of the reference graph as background knowledge, testing output on the 

(unseen) remainder.

Results—Figure 5 shows AUCs (with respect to the held-out causal labels) as a function of 

the proportion ρ of causal labels that were observed, for each of the methods and for the 

three sample sizes. Results were averaged over 25 iterations. MRCL performed well relative 

to the other methods, with performance improving with ρ. Results were qualitatively similar 

for the three sample sizes, with increases in AUC for ntrain = 820 and ntrain = 500 relative to 

ntrain = 250. Results for PC are shown in Appendix C (Fig. 8) as points on the ROC plane.
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4 Discussion

In this paper, we showed how a key aspect of causal structure learning can be framed as a 

machine learning task. Although many available approaches, including those based on 

DAGs and related graphical models, offer a well-studied framework, we think it may be 

fruitful to revisit some questions in causality using machine learning tools.

In our experiments, based on three real data sets, we found that MRCL performed well 

relative to a range of graphical model-based approaches. However, two points should be 

noted regarding these comparative results. First, the various methods differ with respect to 

their required inputs and the nature of their outputs. This means that in some cases specific 

methods may not be an ideal fit to the context of the specific data/task (as detailed when 

presenting the empirical results above). Second, the biological systems underlying these data 

sets are likely to have features (such as causal insufficiency and cycles) that violate one or 

more of the assumptions of some of these methods. That said, we think biological data sets 

of the kind we focused on here offer perhaps the best opportunity at present to empirically 

study causal learning methods and that causal learning tasks of the kind addressed here are 

highly relevant in many applications, in biology and beyond. Hence, we think that pursuing 

empirical work on such data is valuable both from methodological and applied points of 

view. As more interventional data become available in the future, it will be important to 

carry out similar analyses in other contexts, in order to better understand the extent to which 

our findings generalize to other scientific settings.

An open question from a theoretical point of view is to understand conditions on data-

generating processes needed to permit a discriminative approach as pursued here and we 

think this will be an interesting direction for future work. One point of view—analogous to 

that used in practical applications of classification—is to estimate the risk of the learner and 

thereby report an estimate of (causal) efficacy without having to directly consider 

requirements on the underlying system. We think this approach is acceptable when some 

causal information is available, since one can then empirically test problem-specific efficacy 

(as in our examples above). This then gives confidence with respect to generalization to new 

interventions on the system of interest (but does not address the broader theoretical 

question).

In our approach, information on multiple variable pairs is coupled via the classifier but not 

by global constraints on the graph. In the scientific settings we focused on we did not 

consider further coupling via global constraints but such constraints (e.g. enforcing 

transitivity) could be relevant in some applications and an interesting direction for further 

work. The main advantage of our approach is that it allows regularities in the data to emerge 

via learning, rather than having to be encoded via an explicit causal or mechanistic model. It 

also naturally provides some uncertainty quantification, in the sense of scores that can be 

used to guide decisions or future experimental work. The main disadvantage relative to 

methods rooted in DAGs and related graphical models is the lack of a full causal model. 

Albeit under relatively strong assumptions, DAG-based models, once estimated, can be used 

to shed light on a huge range of questions concerning causal relationships, including direct 

and ancestral effects, and details of post-intervention distributions. In contrast, our approach 
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in itself provides only estimates of binary causal relationships. That said, given the efficacy 

and simplicity of our approach, we think it would be fruitful to consider coupling it to 

established causal tools in a two-step approach, with our methods used to learn an edge 

structure in a data-driven manner and this structure used to inform a full analysis in a second 

step. Such an approach would require some care to avoid bias, and sample splitting 

techniques that have been studied in high-dimensional statistics could be relevant 

(Wasserman and Roeder, 2009; Städler and Mukherjee, 2017).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results for data set D1 (yeast data), random sampling. Area under the ROC curve (AUC; 

with respect to causal relationships determined from unseen interventional data), as a 

function of the fraction ρ of labels available (labels were sampled at random). Results are 

shown for three training data sample sizes ntrain. Results are mean values over 25 iterations 

and error bars indicate standard error of the mean. Additional results for the PC algorithm 

appear in Appendix C (see text for details).
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Figure 2. 
Results for data set D1 (yeast data), row-wise sampling. As Figure 1, except the subset of 

labels available to the learner were obtained by sampling entire rows of the causal adjacency 

matrix. As before, a proportion ρ were sampled. The remaining rows were then used as test 

data. Additional results for the PC algorithm appear in Appendix C (see text for details).
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Figure 3. 
Results for data set D1 (yeast data), comparison including GIES, row-wise sampling. ROC 

curves are shown with respect to causal relationships determined from unseen interventional 

data. “TC” indicates use of a transitive closure operation and “cnstrnts” indicates that the 

background information Φ was included via input constraints. Results for PC and GIES are 

shown as points on the ROC plane. Note that due to the nature of input required by GIES the 

data matrices in this example differ from the row-wise sampling example in Figure 2 (see 

text for details). Results are averages over 25 iterations.
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Figure 4. 
Results for data set D2 (protein time course data). Each panel is a different cell line, with its 

own training and (interventional) test data. AUC is with respect to an entirely held-out 

intervention. See text for details.
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Figure 5. 
Results for data set D3 (human cancer data). Data are protein measurements from breast 

cancer patient samples from The Cancer Genome Atlas (TCGA). AUC is with respect to a 

reference graph based on the (causal) biochemical literature. Results are mean values over 

25 iterations and error bars indicate standard error of the mean. See text for details. 

Additional results appear in Appendix C.
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