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Abstract (111 words) 27	
  

Salicylic acid (SA) is a plant hormone essential for effective resistance to viral and 28	
  

non-viral pathogens.  SA biosynthesis increases rapidly in resistant hosts when a 29	
  

dominant host resistance gene product recognizes a pathogen. SA stimulates 30	
  

resistance to viral replication, intercellular spread and systemic movement.  However, 31	
  

certain viruses stimulate SA biosynthesis in susceptible hosts. This paradoxical 32	
  

effect limits virus titer and prevents excessive host damage, suggesting that these 33	
  

viruses exploit SA-induced resistance to optimize their accumulation.  Recent work 34	
  

showed that SA production in plants does not simply recapitulate bacterial SA 35	
  

biosynthetic mechanisms, and that the relative contributions of the shikimate and 36	
  

phenylpropanoid pathways to the SA pool differ markedly between plant species.      37	
  

 38	
  

Article Highlights 39	
  

• Salicylic acid (SA) stimulates plants to resist viral replication, cell-to-cell 40	
  

movement and systemic movement 41	
  

• Recent work indicates that SA also contributes to meristem exclusion of 42	
  

viruses and symptom amelioration 43	
  

• Certain viruses induce SA biosynthesis as they spread through susceptible 44	
  

hosts, suggesting they exploit SA-induced resistance to prevent over-45	
  

accumulation and to moderate host damage 46	
  

• Plant SA biosynthesis from isochorismate is completed in the cytosol, not in 47	
  

the plastid, and the relative importance of the shikimate versus 48	
  

phenylpropanoid pathways in SA biosynthesis varies between plants   49	
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Introduction: Salicylic acid has a central but ambiguous role in defense 50	
  

against viruses and other pathogens 51	
  

In a groundbreaking paper, White [1**] showed that applying aspirin (acetylsalicylic 52	
  

acid), benzoic acid (BA) or salicylic acid (SA) solutions enhanced virus resistance 53	
  

and induced pathogenesis-related (PR) protein accumulation in plants of three 54	
  

tobacco mosaic virus (TMV)-resistant tobacco cultivars.  PR proteins are known to 55	
  

effect resistance against certain cellular phytopathogens but at that time were 56	
  

suspected to be antiviral [2].  White’s discoveries led to the realization that SA is a 57	
  

phytohormone required for induction of systemic acquired resistance (SAR: a 58	
  

pathogen-induced or stress-induced plant-wide enhancement of resistance to 59	
  

secondary infection by a variety of phytopathogens), for localization of pathogens to 60	
  

the infection site during hypersensitive responses (HRs) induced by resistance (R) 61	
  

gene-mediated effector-triggered immunity, and for maintenance of basal resistance 62	
  

[3,4,5,6].   63	
  

Initial studies suggested that pathogen-induced SA biosynthesis was associated with 64	
  

necrosis occurring during the HR or caused by infection with necrotrophic pathogens 65	
  

such as Colletotrichum lagenarium [7,8].  However, subsequent work showed that 66	
  

certain viruses that spread systemically in hosts without causing necrosis can also 67	
  

induce SA accumulation [9,10,11,12]. Viruses that induce SA biosynthesis express 68	
  

factors that subvert SA-induced virus resistance, which explains how they can still 69	
  

replicate and spread.  However, this provides no clarity as to whether SA 70	
  

accumulation is an incidental effect of infection, if it is somehow advantageous to the 71	
  

virus, or if it represents a delayed or ineffective resistance response. In this article, 72	
  

we review recent advances in the understanding of plant SA biosynthesis and how 73	
  

some viruses may exploit its induction to optimize their accumulation.      74	
  



Murphy et al. Salicylic Acid Biosynthesis  4 

Plant salicylic acid biosynthetic pathways are distinct from those in bacteria 75	
  

Soon after SA was shown to be an endogenous defensive signal, rapid progress 76	
  

was made in tracing its biosynthesis from intermediates in the phenylpropanoid 77	
  

pathway (Figure 1).  In early work with tobacco and it was found that effective HR-78	
  

type resistance to TMV, which is dependent upon SA, is inhibited in transgenic 79	
  

plants with decreased expression of phenylalanine ammonia-lyase (PAL), which 80	
  

catalyzes the initial step of the phenylpropanoid pathway [13]. SA can be 81	
  

synthesized by hydroxylation of the phenylpropanoid pathway product BA by a 82	
  

cytochrome P450 oxygenase, BA 2-hydroxylase [14,15] or, as later work suggested, 83	
  

from ortho-coumarate [16]. During this early research it was also found that SA is 84	
  

metabolized to methyl-SA, a volatile resistance inducer, and to biologically inactive 85	
  

forms (SA-β-D-glucoside or to a lesser extent to SA-glucose ester) that serve as 86	
  

vacuole-localized SA reserves [17,18] (Figure 1).  Recent work indicated that the 87	
  

glycosylation status of di-hydroxylated SA metabolites helps regulate HR-related cell 88	
  

death [19**,20].  89	
  

In 2001 SA biosynthesis research re-focused almost exclusively to the shikimate 90	
  

pathway as a source of SA precursors.  This was stimulated by Wildermuth and 91	
  

colleagues’ [21] discovery that plants of the SA-deficient Arabidopsis mutant line SA 92	
  

induction-deficient 2 (sid2) were depleted in isochorismate synthase (ICS) activity.  93	
  

ICS catalyzes conversion of the shikimate pathway product chorismate to 94	
  

isochorismate (Figure 1).  Arabidopsis chloroplasts contain two enzymatically active 95	
  

ICS isozymes with similar catalytic properties: ICS1, encoded by the wild-type SID2 96	
  

gene, and ICS2 [21,22].  ICS1 is translated from an inducible mRNA, transcription of 97	
  

which is stimulated by pathogen attack and auto-regulated by SA, whereas ICS2 is 98	
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produced constitutively at low levels [22,23].  ICS1 but not ICS2 is indispensable for 99	
  

effective pathogen resistance in Arabidopsis [21]. 100	
  

Bacteria use ICS in the first step of conversion of chorismate to SA, which they use 101	
  

in synthesis of iron-scavenging molecules called siderophores [24,25].  The second 102	
  

step of bacterial SA synthesis is conversion of isochorismate to SA, catalyzed by 103	
  

isochorismate pyruvate-lyase (IPL).  Certain bacteria, including Yersinia 104	
  

enterocolitica, produce SA synthases: bifunctional proteins with ICS and IPL 105	
  

activities.  Others (e.g. Pseudomonas aeruginosa) produce separate ICS and IPL 106	
  

enzyme molecules [24,25] (Figure 1).  Several groups showed that plant ICS 107	
  

enzymes lack IPL activity (and are therefore not SA synthases) but attempts to 108	
  

identify IPL-like sequences in plant genomes proved unsuccessful [22].  A putative 109	
  

Arabidopsis IPL gene, encoding a protein with a sequence characteristic of a 110	
  

peroxidase (PRXR1), was detected by screening an Arabidopsis cDNA library using 111	
  

SA-responsive bacterial biosensors [26].  However, no work has been reported on 112	
  

SA biosynthesis in prxr1 mutants, or if PRXR1 converts isochorismate to SA in vitro. 113	
  

Thus, PRXR1’s conjectured IPL activity remains unconfirmed. 114	
  

A recent exciting paper by Rekhter and colleagues [27**] indicates that in 115	
  

Arabidopsis complete synthesis of SA from chorismate does not require an IPL.  116	
  

Previous work had established that the protein ENHANCED DISEASE 117	
  

SUSCEPTIBILITY 5 (EDS5) transports SA across chloroplast envelopes [28]. The 118	
  

new paper reported that EDS5 also extrudes isochorismate from the chloroplast into 119	
  

the cytoplasm where it encounters an amidotransferase, avrPphB SUSCEPTIBLE 3 120	
  

(PBS3) [27**].  PBS3 belongs to the Gretchen Hagen 3 group of proteins that 121	
  

catalyze formation of several phytohormone-amino acid conjugates.  PBS3 is 122	
  

required for normal levels of SA accumulation [29,30,31] and can bind isochorismate 123	
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or chorismate [27**,32].  Rekhter et al. [27**] demonstrated that PBS3 catalyzes a 124	
  

condensation reaction between isochorismate and glutamate to produce 125	
  

isochorismate-9-glutamate, a conjugate that decomposes to SA and 2-hydroxy-126	
  

acryloyl-N-glutamate (Figure 1).  Thus, it now appears that plant biosynthesis of SA 127	
  

from chorismate is completed in the cytosol and is distinct from the bacterial IPL-128	
  

dependent mechanism  129	
  

At this time it appears that plants synthesize SA using carbon skeletons abstracted 130	
  

either from the shikimate or phenylpropanoid pathways.  However, the proportion of 131	
  

total SA derived from each pathway differs between plant species.  For instance, in 132	
  

Arabidopsis most SA is produced from chorismate via isochorismate and 133	
  

isochorismate-9-glutamate, with an additional <10% arising from the 134	
  

phenylpropanoid pathway [27**,33].   But in some dicots, such as tobacco and 135	
  

Prunus, SA arises predominantly from phenylpropanoid pathway activity 136	
  

[13,14,15,34].  Similar variation occurs in the grasses.  For example, most SA in 137	
  

barley is synthesized from chorismate [35] whereas SA biosynthesis in maize is 138	
  

largely dependent upon PAL activity [36**].   Soybean is a particularly interesting 139	
  

case in that the shikimate and phenylpropanoid pathways are equally important in 140	
  

providing the carbon skeletons needed to generate sufficient SA to support defense 141	
  

against pathogens [37**]. 142	
  

Variation between plants that are mostly dependent upon ICS activity versus those 143	
  

dependent upon PAL activity for SA production may reflect specific metabolic needs 144	
  

or limitations in each plant, or the nature of external challenges (including viruses 145	
  

and other pathogens), or the degree of metabolic flexibility required to rise to various 146	
  

challenges.  Chorismate is essential for production of several vital metabolites 147	
  

synthesized in chloroplasts, including aromatic amino acids, folate and 148	
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phylloquinone [18]. Some plants may not have sufficient metabolic flexibility to be 149	
  

able to maintain synthesis of these compounds while drawing on what might be a 150	
  

limited chorismate pool to synthesize SA. 151	
  

Salicylic acid-induced resistance to viruses: Still not fully understood 152	
  

We recently reviewed the topic of SA-induced resistance to viruses and how it 153	
  

connects with resistance mechanisms regulated by signals such as jasmonic acid, 154	
  

abscisic acid, azelaic acid, glycerol-3-phosphate, nitric oxide, reactive oxygen 155	
  

species (ROS) and pipecolic acid [2].  Therefore, the mechanisms suspected to be 156	
  

involved in SA-induced resistance will only be summarized here (Figure 2). 157	
  

For the most part SA influences virus resistance by acting as a signal over various 158	
  

ranges to stimulate genetic and physiological changes in the plant. An exception to 159	
  

this occurs in the case of the viral replicase complex of tomato bushy stunt virus, 160	
  

where SA binds directly to a host factor, a glyceraldehyde 3-phosphate 161	
  

dehydrogenase (GAPDH) isoform, required for regulating the ratio of viral genomic 162	
  

(plus-sense) to viral minus-strand synthesis [38*].  In SA-treated tobacco the relative 163	
  

proportions of minus and plus strands of TMV RNA and of sub-genomic mRNAs 164	
  

synthesized were also altered. But in that plant-virus combination the effect of SA on 165	
  

viral RNA synthesis was indirect and mediated by defensive signaling modulated by 166	
  

the mitochondrial respiratory enzyme, alternative oxidase (AOX) [39] (Figure 2).     167	
  

AOX and AOX-like enzymes occur in mitochondria of plants, certain fungi, 168	
  

invertebrates and proteobacteria, but not in mitochondria of higher vertebrates [40*].  169	
  

Plant AOX is an accessory respiratory chain component that prevents over-reduction 170	
  

of ubiquinone, neutralizes excess reducing power from photosynthesis, and 171	
  

moderates mitochondrial ROS accumulation [40*].  AOX uses ubiquinol to catalyze 172	
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reduction of oxygen to water, without concomitant generation of ATP [40*].  There 173	
  

are multiple examples of virus-plant interactions in which AOX is a factor in SA-174	
  

induced virus resistance (reviewed in [2]).  175	
  

Modulation of mitochondrial ROS by AOX is theorized to affect nuclear gene 176	
  

expression via retrograde signaling. This probably involves signaling transduced via 177	
  

reversible oxidation of sulfhydryl groups and reduction of disulfide bridges on 178	
  

mitochondrial sensor proteins [41].  SA stimulates mitochondrial ROS production by 179	
  

interactions with α-ketoglutarate dehydrogenase and/or inhibition of electron 180	
  

transport [2,42*]. Increased mitochondrial ROS levels activate AOX activity and a 181	
  

transient increase in AOX gene expression to counteract further ROS production 182	
  

[2,42*]. Consistent with this idea, altering glutathione levels can compensate for 183	
  

decreased SA accumulation in induction of virus resistance [43].  However, AOX is 184	
  

not always a factor in SA-induced virus resistance.  While SA-induced resistance is 185	
  

modulated by AOX in Arabidopsis, tobacco and N. benthamiana, it is AOX-186	
  

independent in squash [2,44,45] (Figure 2).        187	
  

SA-induced virus resistance is not dependent on any known PR protein and in most 188	
  

cases is not dependent on NPR1 (‘Non-Expresser of PR proteins 1’), a regulator of 189	
  

PR gene expression (reviewed in [2]) (Figure 2).  However, NPR1 is implicated in 190	
  

two examples of virus resistance.  One is virus localization during the HR [46]. The 191	
  

second is the suggested role of NPR1 in resistance induced by the SA analog 192	
  

benzothiadiazole against plantago asiatica mosaic virus in Arabidopsis [47].  SA can 193	
  

induce resistance to viral replication, cell-to-cell movement, and systemic movement. 194	
  

But which step of the infection cycle is inhibited depends upon the virus-host 195	
  

combination [2,6,45,47]. 196	
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SA treatment can limit access of viruses to tissues adjacent to the meristem; the 197	
  

growing tip where most cell division and differentiation occurs [48].  The extent of 198	
  

viral invasion of meristematic tissue correlates with symptom severity [48,49].  Until 199	
  

recently, meristem access was thought to be controlled predominantly by RNA 200	
  

silencing mediated by RNA-dependent RNA polymerase (RDR) 6 (which is not SA-201	
  

regulated) and RDR1, which SA induces at the transcriptional level and activates at 202	
  

the enzymatic level [48,49].  Although RNA silencing and its reinforcement by SA 203	
  

explains exclusion of TMV and potato virus X from meristems and symptom 204	
  

amelioration [48,49], Medzihradszky and colleagues [50**] contend that for 205	
  

tombusviruses, such as cymbidium ringspot virus, virus-induced changes in host 206	
  

gene expression are more important for exclusion.  Most significantly, they point to 207	
  

decreased gene expression for GAPDH, which, as previously noted, is not only a 208	
  

host factor required for efficient tombusvirus replication but is also a target for SA 209	
  

[38*,50**] (Figure 2).  210	
  

RDR1 is an ancillary RNA silencing component that maintains basal resistance 211	
  

against several viruses and SA enhances its expression in an NPR1-dependent 212	
  

fashion [23,48,51].  However, neither RDR1, nor core RNA silencing components 213	
  

such as the endonucleases Dicer-like (DCL) 2, 3, or 4 are essential for resistance 214	
  

induced by SA or its functional analogs [47,52].  Thus, SA-induced virus resistance 215	
  

is not dependent upon RNA silencing.  However, RDR1 enhances expression of 216	
  

RDR6, AOX and of a suspected antiviral factor (Inhibitor of Viral Replication [51]). 217	
  

Taken together with data showing that RDR1 expression, but not AOX expression, is 218	
  

regulated by NPR1 [23], it seems that a complex but incompletely elucidated 219	
  

regulatory network coordinates SA-induced resistance with other aspects of SAR 220	
  

and with RNA silencing (Figure 2). 221	
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Balancing act: Salicylic acid as a pro-viral factor 222	
  

Treatment of susceptible plants with exogenous SA, synthetic resistance inducers or 223	
  

induction of endogenous SA biosynthesis prior to inoculation inhibits infection by 224	
  

most viruses, although it is not as effective as ETI in completely preventing infection 225	
  

[2,6].   Paradoxically, some of the viruses that would be inhibited in some aspect of 226	
  

their infection cycle in plants pre-treated with SA can induce SA biosynthesis, 227	
  

although this does not prevent infection (Figure 3).  Examples include potyviruses, 228	
  

cucumber mosaic virus (CMV) and cauliflower mosaic virus (CaMV), which induce 229	
  

SA biosynthesis during compatible interactions with plants [9,10,11,36**,53].  230	
  

Probably the best-studied viral factors that enable viruses to overcome at least some 231	
  

aspects of SA-induced resistance include the CMV 2b protein [54,55], the potyviral 232	
  

HC-Pro protein [56,57*] and the P6 protein of CaMV [11].  Interestingly, these viral 233	
  

gene products also enable their respective viruses to overcome RNA silencing, and 234	
  

provoke disease symptoms through interference with small RNA pathways as well 235	
  

as via other mechanisms [58,59].  Two amino acid sequences within P6 condition 236	
  

suppression of SA-mediated signaling by CaMV [60].  For the 2b protein, the N- and 237	
  

C-terminal domains are required for evasion of SA-induced resistance to local virus 238	
  

accumulation.  These domains, plus the region containing superimposed nuclear 239	
  

localization and RNA binding sequences, and the central gly-ser-glu-leu sequence 240	
  

contribute to priming of SA biosynthesis, which is induced by another, unidentified 241	
  

CMV gene product.  The phosphorylation (nucleus-cytoplasm shuttling) domain 242	
  

negatively regulates SA biosynthesis [10,55,61].  For potyviruses, HC-Pro both 243	
  

induces SA biosynthesis and allows potyviruses to evade the antiviral effects of SA, 244	
  

with inhibition of downstream signaling caused by interaction with SA-binding protein 245	
  

3  [57*,62].     246	
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Recently, it was found that the tobacco rattle virus (TRV) 16K protein induces SA 247	
  

biosynthesis and expression of RDR1 and other SA-regulated genes in systemically 248	
  

infected N. benthamiana plants [63**].  Mechanistically, the process hinges on 249	
  

interaction of the 16K protein with the host protein coilin, leading to coilin’s relocation 250	
  

from the intra-nuclear Cajal bodies to the nucleoli, which triggers SA-induced 251	
  

resistance to further TRV accumulation [63**]. Once invoked, this process prevents 252	
  

significant accumulation of TRV in young, developing tissues, which display no 253	
  

discernable symptoms: a recovery phenotype.  When TRV-induced SA accumulation 254	
  

was hindered by transgenic expression of the SA-degrading enzyme SA hydroxylase, 255	
  

knockdown of coilin expression, or infection with a TRV 16K-deletion mutant, 256	
  

infected plants exhibited aggravated symptoms culminating in necrosis [63**]. 257	
  

Shaw and colleagues [63**] showed that recovery, previously attributed solely to 258	
  

RNA silencing (critically reviewed in [64]), is SA-dependent and that, rather than 259	
  

being a pure resistance phenomenon, may represent viral manipulation of host 260	
  

resistance to optimize virus accumulation, whilst limiting damage to the host.  Other 261	
  

evidence for viral self-limitation and symptom amelioration by inducing SA 262	
  

biosynthesis is provided by studies where transgenic expression of SA hydroxylase 263	
  

led to increased pathogenicity in potato virus Y-infected potato plants [53], and in 264	
  

PAL-depleted maize plants infected with sugarcane mosaic virus [36**]. SA might be 265	
  

considered to be pro-viral where it facilitates limitation of virus accumulation to avoid 266	
  

excessive host damage such as necrosis, which would inactivate virus particles in 267	
  

dying tissues or might render hosts unattractive to vectors (Figure 3).      268	
  

Concluding comments: Future studies of SA-induced resistance 269	
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Although SA-induced virus resistance occurs independently of RNA silencing, it 270	
  

appears that these two phenomena reinforce each other [48,56] and are linked, 271	
  

perhaps through the action of RDR1 [51]. It is plausible that SA accumulation in virus 272	
  

infected plants primes RNA silencing. This is suggested by observations that in 273	
  

transgenic Arabidopsis plants expressing the CMV 2b protein AGO2 expression 274	
  

becomes SA-inducible [10], and that AGO2 provides a second line of defense 275	
  

against CMV [65].  Priming of RNA silencing by SA, whether though induction and 276	
  

activation of RDR1, or by increasing core components of silencing such as AGO2 277	
  

would strengthen SA-induced resistance (Figure 3a) but may also be exploitable by 278	
  

viruses to control their own accumulation (Figure 3b). Further research on the SA - 279	
  

RNA silencing linkage is likely to yield important new insights into plant-virus 280	
  

relationships. 281	
  

Work on the tobacco-TMV pathosystem suggested that in general SA accumulation 282	
  

is not induced during infection of susceptible plants [7].  However, virus-induced SA 283	
  

accumulation has now been observed in many susceptible hosts, which suggest that 284	
  

this may be the rule, and that the TMV-tobacco system might be an exception. 285	
  

Further research in this area may reveal additional functions for virus-induced SA 286	
  

accumulation in infected plants beyond modulation of virus titer.  Aguilar and 287	
  

colleagues have shown that SA is needed to establish virus-induced drought 288	
  

resistance [66] and that virus-induced SA accumulation protects plants against 289	
  

secondary infection by bacteria [67**]. Both effects have mutual benefits for host and 290	
  

virus and it is conceivable that SA will prove to be a key factor in facilitating quasi-291	
  

mutualistic ‘pay-backs’ between viruses and their hosts.  292	
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Figure Legends 632	
  

Figure 1. Biosynthetic Pathways for Production of Salicylic Acid in Plants and 633	
  

Bacteria.  (a) In plants SA biosynthesis can utilize carbon skeletons derived from 634	
  

either or both of the shikimate or phenylpropanoid pathways. The relative importance 635	
  

of each of these pathways varies between plant species. SA derived from the 636	
  

phenylpropanoid pathway and dependent upon the conversion of phenylalanine to 637	
  

trans-cinnamic acid by PAL and subsequent conversion by either of two CoA-638	
  

dependent routes or a CoA-independent route to BA, which is converted to SA by 639	
  

the action of a cytochrome P450 enzyme, BA2H, using molecular oxygen.  SA 640	
  

produced from carbon skeletons provided by the shikimate pathway is derived from 641	
  

isochorismate produced in the plastid. Isochorismate is translocated into the cytosol 642	
  

by EDS5 and conjugated to glutamate by PBS3. The resulting compound,	
  643	
  

isochorismate-9-glutamate, decomposes to release SA and 2-hydroxy-acryloyl-N-644	
  

glutamate (1). Alternatively, but only in Brassicaceae, EPS can catalyze 645	
  

decomposition of isochorismate-9-glutamate to N-pyruvoyl-L-glutamate (an 2-646	
  

hydroxy-acryloyl-N-glutamate isomer) and SA [68] (2). A large proportion of SA is 647	
  

glucosylated to SA-β-D-glucoside (labelled SA-glucose) and a smaller proportion to 648	
  

the glucose-SA ester and both of these biologically inactive molecules accumulate in 649	
  

the vacuole and may act as stores or reserves of SA.  SA can also be metabolized to 650	
  

various dihydroxybenzoates, which can also be glycosylated (omitted here for 651	
  

simplicity). Methyl-SA is volatile and can act as a resistance inducer and also 652	
  

influences plant-insect interactions. (b) In bacteria SA, which is typically utilized for 653	
  

the synthesis of siderophores, is derived from the shikimate pathway. In some 654	
  

bacteria (e.g. Pseudomonas aeruginosa), chorismate is converted to SA via 655	
  

isochorismate by two enzymes, ICS and IPL (i). In others (e.g. Yersinia 656	
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enterocolitica) an SA synthase, i.e. a bifunctional enzyme with both ICS and IPL 657	
  

activity, converts chorismate directly to SA (shown with isochorismate as a transient 658	
  

intermediate) (ii).  Abbreviations: AO4, aldehyde oxidase 4; BA, benzoic acid; BA2H, 659	
  

BA 2-hydroxylase; BSMT, BA/SA carboxyl methyltransferase; 4-CL, 4-660	
  

coumarate:CoA ligase; EDS5, Enhanced Disease Susceptibility 5 (isochorismate 661	
  

transporter); EPS1, a member of the BAHD acyltransferase protein family; ICS, 662	
  

isochorismate synthase; IPL, isochorismate pyruvate-lyase; PAL, phenylalanine 663	
  

ammonia-lyase; PBS3, avrPphB SUSCEPTIBLE 3 (an amidotransferase), and SA, 664	
  

salicylic acid.  Based on references [17,18,24,25,27**,68]. 665	
  

  666	
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Figure 2. Salicylic acid sits at the center of a complex network regulating 667	
  

resistance to viruses and other pathogens. The diagram depicts in simplified form 668	
  

some of the SA-dependent resistance phenomena described in this article (blue-669	
  

outlined boxes).  SA can have direct effects on antiviral defense (pale blue arrows) 670	
  

through its effects on ROS generation in mitochondria or its inhibitory effect on 671	
  

GAPDH (a component of tombusviral replicase complexes). SA-induced ROS 672	
  

increases in the mitochondria result in increased resistance to viruses and AOX 673	
  

activity and glutathione levels modulate this form of signaling. SA can also stimulate 674	
  

resistance to viral intercellular movement via a less well-characterized AOX-675	
  

independent signaling system (dark blue arrow). Working through the master 676	
  

regulatory factor NPR1 (and its partners NPR3 and 4 and TGA transcription factors, 677	
  

which are omitted for simplicity) SA stimulates the transcription of PR mRNAs, 678	
  

contributing to defense against non-viral pathogens. SA-stimulated increases in 679	
  

RDR1 transcription (and possibly SA-stimulated increases in RDR1 activity) are also 680	
  

dependent on NPR1. RDR1 also influences transcription of RDR6 and AOX 681	
  

(indicated by asterisks). Abbreviations: AOX, alternative oxidase; GAPDH, 682	
  

glyceraldehyde 3-phosphate dehydrogenase; NPR1, Non-Expresser of PR proteins 683	
  

1; PR, pathogenesis-related protein; RDR, RNA-dependent RNA polymerase, and 684	
  

ROS, reactive oxygen species. Based on references [2,23,38*,41,44,45,49,50**,51].  685	
  

 686	
  

  687	
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Figure 3. Salicylic acid as anti-viral or pro-viral factor. (a) In plants possessing a 688	
  

dominant virus-specific resistance (R) gene, recognition of virus (depicted in this 689	
  

cartoon by an icosahedron) triggers a hypersensitive reaction (HR), a resistance 690	
  

response in which localization of the invading virus to the vicinity of the inoculation 691	
  

site is dependent in part upon rapid production of salicylic acid by the host (SA). In 692	
  

susceptible plants that have been treated with exogenous SA, the spread of virus out 693	
  

of the inoculation zone is inhibited but not always completely halted. (b) Certain 694	
  

viruses (e.g. potyviruses, cauliflower mosaic virus, cucumber mosaic virus, and 695	
  

tobacco rattle virus) stimulate endogenous SA biosynthesis as they spread 696	
  

systemically through susceptible hosts, which limits virus accumulation and 697	
  

ameliorates disease symptoms.  (c) In plants depleted in SA (by transgenic 698	
  

expression of SA-hydroxylase, or in mutant plants lacking SA biosynthetic capacity) 699	
  

virus accumulation is enhance but this may lead to severe stunting of plants (and an 700	
  

overall decrease in virus yield per plant) or symptoms may be exacerbated leading 701	
  

to necrosis (likely leading to inactivation of virus particles present in the necrotizing 702	
  

tissue).  Thus, in scenario (b), the virus is exploiting SA as a pro-viral factor by 703	
  

ensuring that virus accumulation is optimized.  Based on references 704	
  

[1,2,4,5,35,53,63*]. 705	
  

 706	
  

  707	
  



Murphy et al. Salicylic Acid Biosynthesis  26 

 708	
  

 709	
  

 710	
  

 711	
  

 712	
  

 713	
  

 714	
  

 715	
  

 716	
  



Murphy et al. Salicylic Acid Biosynthesis  27 

 717	
  

 718	
  

 719	
  



Murphy et al. Salicylic Acid Biosynthesis  28 

 720	
  

 721	
  


