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Affine and topogical structural entropies in granular statistical mechanics:
Explicit calculations and equation of state
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We identify two orthogonal sources of structural entropy in rattler-free granular systems: affine, involving
structural changes that only deform the contact network, and topological, corresponding to different topologies
of the contact network. We show that a recently developed connectivity-based granular statistical mechanics
separates the two naturally by identifying the structural degrees of freedom with spanning trees on the graph
of the contact network. We extend the connectivity-based formalism to include constraints on, and correlations
between, degrees of freedom as interactions between branches of the spanning tree. We then use the statistical
mechanics formalism to calculate the partition function generally and the different entropies in the high-angoricity
limit. We also calculate the degeneracy of the affine entropy and a number of expectation values. From the latter,
we derive an equipartition principle and an equation of state relating the macroscopic volume and boundary stress
to the analog of the temperature, the contactivity.
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I. INTRODUCTION

Granular matter is one of the most significant forms of
matter in nature, both on Earth and celestially. It is also relevant
to human society in many ways, be it in the context of products
and technological applications or through our interactions with
the natural environment around us. Yet, a reliable fundamental
understanding of this form of matter is yet to emerge, a
situation that is limiting the development of predictive and
effective modeling. Consequently, this area has been the focus
of intensive research in recent years.

One of the main modeling tools in the theorist’s arse-
nal is statistical mechanics. This powerful method, devised
originally to deal with thermodynamic systems subject to
thermal fluctuations, is the ultimate coarse-graining technique.
Statistical studies of granular assemblies date back to the
1920s [1], but the introduction of granular statistical mechanics
(GSM) in 1989 [2,3] led to a significant increase in research
in this direction within the physics community. A number
of major advances include the calculation of the volume
function [4], the introduction of the stress ensemble [5,6],
the finding that the two ensembles are interdependent [7], and
the measurement of either ensemble’s equilibration [8]. The
potential advantage of statistical mechanics is the ability to
derive with it equations of state and constitutive relations, a
long-sought goal in the field. Yet, such relations have been
slow to emerge for a variety of reasons [9–11].

GSM is based on entropy, namely the number of structural
and stress configurations that static assemblies of macroscopic
particles can have [12–14]. Recently, the entropy of packs of
up to N = 128 soft particles was measured numerically and
found to be extensive after the subtraction of ln N ! [15–17].

In general, GSM consists of two subensembles, one of all
the structural configurations and the other of all stress mi-
crostates. Originally, the structural microstates were proposed
to occur with probability that depends on their volume [2,3],
but it was shown recently that this formulation is flawed [18],
which may have also been responsible for the little use of

the GSM in the community. Another formulation, based on a
connectivity function, was then proposed, but it has not been
tested yet. The connectivity-based partition function is

Z =
∫ Nc−1∏

n=1

d�rn

M∏
m=1

d �gm�({�r})G({�r})

×e− C({�r})
τ

−γ :F({�r},{�g}), (1)

where the vectors {�r} connect contacts around particles and {�g}
are the compressive forces acting on the boundary particles
[see Fig. 1 for an example in two dimensions (2D)]. τ =
∂〈C〉/∂S, with S the entropy, is the contactivity, a measure
of the connectivity fluctuations that is an analog of the
temperature.F is the force moment tensor, formed by the outer
product of the intergranular forces and their position vectors,
summed over all contacts. This function couples the structure
and the stress ensembles [5–7]. γαβ = 1/Xαβ is an (inverse)
angoricity tensor [5] and � includes the constraints on the
systems forming the ensemble, e.g., that they are in mechanical
equilibrium, generated by the same process and all have the
same mean coordination number z̄. G is called the measure,
which is independent of the exponential Boltzmann factor and
represents the probability to sample a specific configuration
of vectors �r . The measure may depend on the preparation and
sampling protocols, and need not be uniform, as recent results
suggest [15–17]. Its form is not known for our systems and, for
simplicity, we take it to be uniform. Nevertheless, the following
analysis can be carried out for any form of G: The connectivity,
C = ∑

q �rq · �rq , is a sum over all Nr intercontact vectors. Of
these vectors, only Nc − 1 are independent, where Nc is the
number of contacts. In principle, the structural degrees of
freedom (DFs) should also include the parameters specifying
the particle shapes. These are ignored here for brevity but could
be included without loss of generality [11].

In this paper, we demonstrate the use of the full structure-
stress partition function, whose structural part is based on
the recent connectivity function. The paper is constructed as
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follows: In Sec. II, we rewrite the partition function of Eq. (1)
in a convenient form. In Sec. III, we clarify the distinction
between two different types of entropies in granular materials:
affine and topological. In Sec. IV, we calculate expectation
values and the affine entropy. We also derive an equipartition
principle and an equation of state. In Sec. V, we show
that the connectivity partition function readily accommodates
structural constraints and correlations between the vectors �r . In
Sec. VI, we outline the calculation of the topological entropy.
We conclude in Sec. VII.

II. THE PARTITION FUNCTION

The vectors �r are the structural DFs. In 2D, they run
clockwise around each particle (see Fig. 1) and there are Nz̄

of them. A similar parametrization exists in three dimensions
(3D) [13,19]. For clarity, we focus here on 2D systems
experiencing no body forces. We denote by M the number
of boundary particles to which external compressive forces
are applied and by (α − 1)M [α = O(1)] the total number of
boundary particles. It follows that αM is the number of the
outermost boundary vectors �r in the system.

In 2D, the vectors �r form loops around particles and
around cells and, therefore, only Nρ = Nc − 1 of them are
independent. The set of independent vectors �r , of which there
are many possibilities, forms an undirected spanning tree on
the contact network [20]. As we will see below, it is convenient
to constrain our choice of spanning tree to include αM − 1 of
the outermost boundary vectors and denote those by �rb. For
brevity, we define �R as the (d × Nr long) vector, containing the
components of all the vectors �r . The entries of �R are ordered as
follows: First come the αM − 1 independent boundary vectors
�rb (d entries each), then Nc − αM independent vectors �r in

the bulk, and then the remaining (dependent) vectors �r . We
can then write

�R = A �ρ, (2)

where �ρ is a d × Nρ long vector, containing only the
components of the independent vectors �r . The top part of A

is clearly a unit matrix, whereas each line of the bottom part
describes the route along the spanning tree to get from the tail
to the head of a certain dependent �r . It follows that all the
entries of A are predominantly 0, with fewer ±1 entries. In
terms of �ρ we have

C/τ = �ρAT A �ρ/τ = 1

2
�ρB �ρ

(
B ≡ 2

τ
AT A

)
. (3)

The stress ensemble is controlled by the force moment
tensor, which can be written either as a sum over the outer
product of the contact force and position at every contact
point, or in terms of the loop forces, �f i , defined in Ref. [21],
namely, Fαβ = ∑

f i
αri

β . While the sum is over all the cells,

the contribution of internal cells vanishes. This is because �f i

is constant for every cell, and the sum over the vectors �r that
enclose the cell vanishes. It follows that the only contribution
to F comes from the boundary vectors,

∑αM
b=1 f b

α rb
β . These

vectors are all, but one, independent and constitute the first
entries of �ρ. The loop forces �f b are accumulation of the
boundary forces �gb (see Fig. 1). Recalling that the loop forces
are only defined up to a constant [21], we set the loop force,
associated with the single dependent boundary vector, to zero.
We can thus manipulate the force moment term in the partition
function to the form

γ : F = �gHT γE �ρ = �gQT �ρ (Q ≡ ET γ T H ). (4)

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ... 0 0

1 0 0 0 0 ... 0 0

1 1 0 0 0 ... 0 0

1 1 1 0 0 ... 0 0
...

...
...

...
...

. . .
...

...

1 1 1 1 1 ... 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

boundary boundary boundary boundary bulk

cell 1 cell 2 cell 3 cell M−1 vectors

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 −1 −1 −1 −1 −1 −1

1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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FIG. 1. A 2D polydisperse granular pack with (α − 1)M = 18
boundary particles (slightly shaded), of which M = 12 touch the
walls (and thus α = 2.5). The vectors �r (solid and dashed, thick
and thin) connect a particle’s nearest contacts, circulating clockwise.
Their components constitute the vector �R. The solid vectors (both
thick and thin) form a nondirectional spanning tree: They form no
loops, representing the independent DFs, and they reach every contact
point. Their components constitute the vector �ρ. Each dashed vector
is a linear combination of solid vectors, namely one can always get
from its tail to its head by walking along solid vectors. There are
αM = 30 boundary (thick) vectors �r , and our choice of spanning tree
includes all of them but one. Overall the pack has Nc = 56 contacts
and thus Nρ = 55 independent (solid) vectors �r . Also illustrated are
three boundary forces, �gb, and three boundary loop forces, �f b. As
explained in the text, we set �f 0 = 0, and the rest are accumulation of
the boundary forces, going counterclockwise around the pack.

The matrices E and H , that correspond to the system in
Fig. 1, are defined in Eq. (5) below. H is the accumulation
matrix, transforming from the boundary forces, �g, into the loop
forces, �f = H �g, where we set �f 0 = 0. E transforms from the
independent vectors, �ρ, into the boundary vectors, �rb, and
sums the boundary vectors �rb of each boundary cell. These are
always several consecutive vectors from the M − 1 first entries
of �ρ. Since the first cell includes one dependent boundary
vector, the sum of this cell’s vectors is the (negative) sum of
all the other boundary vectors �rb. Noting that the matrices
A, B, E, and H do not involve the Cartesian coordinates of
the matrix γ , the latter could be placed as shown in (1). This
position is arbitrary with respect to H or ET in the definition
of Q.

III. AFFINE AND TOPOLOGICAL
STRUCTURAL ENTROPIES

Before we continue, it is essential to identify and classify
three different sources contributing to the entropy of granular
systems,

S = Sr + Sa + St : (6)

(i) Sr is the rattler entropy, which consists of all the positional
variations of the rattlers inside voids. The rattlers are particles
that, in the absence of external and body forces, are not part of
the force-carrying structure. This contribution is essentially the
volume that these rattlers can occupy within any given structure
and as such it is straightforward to calculate. Nevertheless,
it has little bearing on most of the mechanisms governing
the physics of static granular assemblies, which involve force
transmission between particles. Therefore, this contribution is
ignored in the following discussion.

(ii) Sa is the affine entropy. Regarding the contact network
as vertices of a graph, whose edges are the vectors �r, Sa

consists of all the possible affine, i.e., connectivity-preserving,
distortions of this graph, which the given collection of N

force-carrying particles can make. We shall include the entropy
coming from the stress DFs in Sa as well.

(iii) St is the topological entropy, which consists of all the
possible different topologies, or connectivity networks, that
the same collection of particles can make.

Equation (6) is based on the assumption that the three
entropies are additive, i.e., that the partition function is a
product of three independent parts, Z = ZrZaZt. This mean-
field-like approximation is justified in Sec. VI. Note that the
distinction between Sa and St is useful mainly when the mean
coordination number is kept fixed across the systems in the
ensemble, which is implicitly assumed here. Letting it fluctuate
gives rise to different topologies, obviating the affine entropy.
As we will show below, the distinction between these two types
of entropy is crucial because their scaling with N is markedly
different.

IV. AFFINE ENTROPY: CALCULATION, EXPECTATION
VALUES, AND EQUATION OF STATE

All the connectivity, or topological, information is con-
tained in the matrix A in the sense that the connectivity of a
specific configuration corresponds to a specific set of entries
Aij . Thus, Sa is the result of the different changes in the vectors
�r , under the constraint that the matrix A, and hence B, are
fixed. To calculate the affine entropy, we use Eqs. (3) and (4)
to express the partition function of Eq. (1) in terms of �ρ and �g:

Za =
∫

e− 1
2 �ρB �ρ−�gQT �ρ(d �ρ)(d �g). (7)

In the following, we first calculate Za while ignoring
the constraints and taking � = 1. We will then point out
the problems that this simplification leads to and adjust the
calculation to model in the constraints. The integral in (7)
is Gaussian and its calculation straightforward. Changing
variables, �̃ρ ≡ �ρ + B−1Q�g, we have

− 1
2 �ρB �ρ − �gQT �ρ = − 1

2
�̃ρB �̃ρ + 1

2 �gP �g, (8)

with P ≡ QT B−1Q. The partition function then reduces to
two decoupled integrals,

Za =
∫

e− 1
2

�̃ρB �̃ρ(d �̃ρ)
∫

e+ 1
2 �gP �g(d �g), (9)

which can be calculated readily because B and P are
symmetric and hence diagonalizable by orthogonal matrices.
B is positive definite, since for any choice of �ρ �= 0 we have
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�ρB �ρ = �R · �R > 0, which means that all its eigenvalues are
positive. The matrix P , however, is singular—it has d zero
eigenvalues, leading to an integrand of 1. The other eigenvalues
are positive, leading to an increasing exponential due to the
positive sign in Eq. (9). This, however, does not lead to a
diverging integral because the boundary forces, �g, are finite.
The integrals in (9) are straightforward to calculate,

Za =
√

(2π )dNρ 23d(M−1)

|B|d |P |+ (2g)de
g2

2 Tr(P )
∏
pi>0

D(ai), (10)

where |B| is the determinant of B,pi are the eigenvalues
of P, |P |+ is its pseudodeterminant (i.e., the product of all
nonzero pi’s), g is the maximal boundary force, ai ≡ g

√
pi/2,

and D is the Dawson function:

D(α) ≡ e−α2
∫ α

0
ex2

dx. (11)

We can now use Eq. (10) to calculate the affine entropy and
several expectation values, for a given contact network. The
detailed calculations are shown in Appendix A and here we
present the main results.

(1) The mean connectivity can be calculated using 〈C〉a =
τ 2(∂ ln Za/∂τ ), while keeping A constant,

〈C〉a = τ

2

⎡
⎣d(Nρ − M + 1) +

∑
ai>0

ai

D(ai)

⎤
⎦. (12)

In the high angoricity limit, ai/D(ai) = 1, and since there are
d(M − 1) of them, Eq. (12) becomes

〈C〉a = Nρdτ/2 . (13)

This is an equipartition principle [18]: The mean connectivity
is shared among the dNρ structural DFs, with each getting
on average τ/2, analogously to the mean energy of kBT /2
per DF in thermal systems. Equation (12) deviates from this
by O(M ∼ √

N 	 N ), since the sum on the right is over
d(M − 1) elements of O(1).

In the low angoricity limit, D(ai) ≈ 1/2ai , and the sum on
the right-hand side of (12) becomes g2T r(P ). This is a sum
over O(M) finite terms and it scales as τ Tr(γ 2). Thus, it is
also negligible relative to the first term as long as g2τ Tr(γ 2) <

O(M), and equipartition holds in this regime too up to terms
of O(

√
N ).

(2) The mean squared norm of the force vector is

〈�g · �g〉a = − Tr(
) +
∑
ai>0

g2

2aiD(ai)
, (14)

where 
 is the pseudoinverse matrix of P,P
P = P . Note
that P
 �= I , as P is singular. The statistics of the boundary
forces should be hardly dependent on the precise internal
topology and, hence, 〈�g · �g〉a = 〈�g · �g〉. The first term on
the right-hand side scales as 1/[τ Tr(γ 2)]. The dependence
of the second term on τ and γ is more complex as it is via
the nonlinear Dawson function. However, this dependence can
be obtained in two limits. In the high angoricity limit D(ai) ≈

ai and the dependence is the same, 1/[τ Tr(γ 2)]. In the low
angoricity limit, D(ai) ≈ 1/2ai , the second term approaches
a constant and its dependence on τ and γ disappears.

(3) Taking the system to be a square of
√

Na × √
Na,

where a is the typical size of a particle, and assuming
isotropic boundary stresses, the total force normal to one
side is M〈gx〉a/4, with gx the component of a boundary
force normal to the wall. An explicit calculation of the
expectation value 〈gx〉a (see Appendix A) gives 〈gx〉a =
|G|/√M , with G an M-long vector, whose components are
Gi = g(1 − e−a2

i )/[2aiD(ai)]. Summing over all the normal
components of the external forces along the side and dividing
by the length, we obtain the expectation value of the normal
stress

〈σnn〉a = M

4
√

Na

|G|√
M

≈ |G|
4a

4
√

N
. (15)

The components of G range between 0.5 and 1, as we show
explicitly in Appendix C, leading to |G| = O(

√
M ≈ 4

√
N ).

Therefore, 〈σnn〉a is independent of system size, as expected.
(4) The affine entropy, given by Sa = 〈C〉a/τ + ln Za , is

Sa = −d

2
ln |B| − 1

2
ln |P |+ + g2

2
Tr(P )

+
∑
ai>0

[
ln D(ai) + ai

2D(ai)

]

+d

2

[
Nρ ln(2πe) + 2 ln(2g) + (M−1) ln

(
8

e

)]
. (16)

There is more to this result than being satisfyingly exact and
testable: It also provides the following significant observation.
The terms involving |B| and Nρ are of order N , thus domi-
nating over all the other terms, which are of order M ∼ √

N .
Since these two terms originate only in the structure, they are
independent of the external boundary forces. This means that,
for sufficiently large systems, the boundary forces contribute
negligibly to the affine entropy regardless of the angoricity
value. Consequently, Eq. (16) substantiates the generality of
previous results obtained in the high angoricity limit. Keeping
only these two terms, we obtain

Sa ≈ d

2
[Nρ ln(2πe) − ln |B|]. (17)

This result was also derived and calculated numerically in
Ref. [18]. In particular, it was shown there to scale linearly
with N . This makes the affine entropy conveniently extensive.
It also increases with τ , the measure of structural fluctuations,
as expected. In Appendix B we discuss in more detail different
approximations for Sa .

(5) To calculate the mean volume, note that the volume is a
quadratic function of all the independent vectors �r, V ≡ �ρW �ρ.
Rewriting it in terms of the transformed variables of Eq. (8),
we have

V = �ρW �ρ = �̃ρW �̃ρ − 2�gQT B−1W �̃ρ + gUg, (18)
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with U ≡ QT B−1WB−1Q. The cross term vanishes on inte-
gration over the symmetric distribution of �ρ, giving

〈V 〉a = 1

Za

∫
( �̃ρW �̃ρ + gUg)e− 1

2
�̃ρB �̃ρ+ 1

2 �gP �g(d �̃ρ)(d �g)

= d Tr(WB−1) − Tr(U
) +
∑
ai>0

g2U ′
ii

2aiD(ai)
, (19)

with U ′ being the matrix U , rotated to the basis where P is
diagonal (see Appendix A for details). The first two terms in
Eq. (19) are linear in τ and are independent of γ , but the third
term depends on both τ and γ . As in Eq. (14), this dependence
is not simple. However, in the high angoricity limit it becomes
also linear in τ , and at low angoricity it scales as τ 2 Tr(γ 2).
The expectation value 〈V 〉a suffers from a problem, which we
discuss in detail and then resolve in the next section.

(6) To obtain the affine contribution to the equation of state,
we combine Eqs. (15) and (19) to obtain

〈σnn〉a〈V 〉a = F (τ,Xαβ,g). (20)

The form of this expression resembles that of the ideal gas
equation of state, PV = NkBT : The left-hand side involves
two macroscopically measurable quantities, while the right-
hand side is a function of the temperature-like variables alone,
the angoricity and contactivity.

The above expectation values and equation of state, (12),
(14), (15), (16), (19), and (20), can be simplified by approx-
imating the Dawson function for low and high angoricities,
as we show in detail in Appendix B. In particular, in the high
angoricity limit, we obtain the following explicit equation of
state:

〈σnn〉a〈V 〉a ≈ g

8
M

[
d Tr(WB−1) + g2

3
Tr(U
P )

]
. (21)

In this expression, the first term on the right-hand side scales
as τ and the second term scales as τ 2 Tr(γ 2). In this limit,
the second term, which originates in the forces entropy, is
negligibly small compared to the first, in agreement with our
observation, Eq. (16).

V. EXTENDING THE FORMALISM: INCLUDING
CONSTRAINTS AND VECTOR-VECTOR INTERACTIONS

A close scrutiny of the result for 〈V 〉a , Eq. (19), reveals
a problem: The expected volume vanishes. To see this, we
introduce a projection operator onto the Cartesian coordinates,
J . Using this operator on B, which does not depend on the
Cartesian coordinates, gives J (B) = 1, with 1 the 2D identity
matrix; J (W ) = ε, with ε the 2D Levi-Civita symbol, since
volume is a sum of cross products;J (P ) = γ γ T ; andJ (U ) =
γ εγ T . Using these, the first term on the right-hand side of
Eq. (19) vanishes, Tr(WB−1) ∝ Tr (J (WB−1)) = Tr(ε) = 0.
The second term also vanishes because Tr(U
) ∼ Tr(ε) = 0.
Similar considerations give that U ′

ii = 0, which means that the
third term also vanishes and we obtain that overall 〈V 〉a = 0.

This, of course, cannot be correct. The problem can be
traced to the omission of the function � from the partition
function, which allowed the independent vectors, �r , to be
unconstrained in the integral (19). In particular, for every
occurrence of �r there is an occurrence of −�r . This means

that, for every structural configuration we consider, there is
a configuration with a volume of the opposite sign, which
cancels its contribution to the integral.

Indeed, the integration over the independent vectors �r
cannot be unconstrained since they must not cross one another
(see, e.g., Fig. 1). To accommodate this condition in two di-
mensions, we constrain the vectors to rotate always clockwise
around particles and anticlockwise around cells. This can be
implemented by ensuring that the cross-product of successive
vectors must be negative in circulating around particles and
positive in circulating around cells. Thus, defining the trend
function,

T (�ri,�rj ) ≡ �ri × �rj , (22)

we introduce the following constraints into Za:

� ≡
grains∏

g

zg∏
i=1

H[−T (�r (g,i),�r (g,i+1))]

·
cells∏

c

zc∏
i=1

H[T (�r (c,i),�r (c,i+1))], (23)

withH being the Heaviside step function. To satisfy these con-
straints, we augment the connectivity function by introducing
a set of Lagrange multipliers, λ(g/c,i):

C = C0 −
∑
g,i

λ(g,i)T (�r (g,i),�r (g,i+1))

+
∑
c,i

λ(c,i)T (�r (c,i),�r (c,i+1)) . (24)

An advantage of this formulation is that it does not
complicate the calculation. Our added constraints involve
only quadratic terms in �ρ and, therefore, they only modify
the numerical values of the entries of the matrix B in the
partition function. It follows that our results, Eqs. (12)–(20)
are still valid, but with a modified matrix B → BT . Using
our projection operator, J (T) = ε and, hence, J (BT ) �= 1,
resolving the problem of the vanishing mean volume in
Eq. (19).

We now note that a similar tactic can be employed to
take into account correlations between vectors �r , which are
inherently present in real granular packs. For example, the
angle, θij , between two successive vectors, �ri and �rj , assumes
very specific values, given the order of the particle or cell that
they share. To demonstrate this, we analyze 396 computer-
generated systems of 64 soft particles [16]. The particle radii
are normally distributed, with a mean of 1 and a standard
deviation of 0.1 in arbitrary units. The systems were generated
at a constant volume fraction, φ = 0.84, and their mean
coordination numbers range between 4 and 4.4 (discarding
rattlers). Figure 2 shows a histogram of θij , according to cell
and particle order. Given the order of the particle or cell, θij is
narrowly distributed around a certain value, μ(θ)

ij , with a certain

standard deviation, σ
(θ)
ij . Using a combination of dot products

and cross-products, we can construct potential wells around
these preferred values. Concretely, by adding the following
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(a) (b)

FIG. 2. The histograms of θij , for 396 systems of 64 particles
each, in two cases: (a) when �ri and �rj share a particle and (b) when
they share a cell. The colors red, yellow, green, and blue correspond
to a particle and cell of order 3, 4, 5, and 6, respectively. The angle
in cells of order 3, for example, is narrowly distributed around π/3,
corresponding to an equilateral triangle. The deviation from π/3 is
due to the distribution of particle sizes.

term to the connectivity,

C(θ)
ij = a(�ri · �rj ) + b(�ri × �rj )

= |�ri ||�rj |(a cos θij + b sin θij ), (25)

we create a potential well around μ
(θ)
ij = arctan(b/a). The

magnitudes of a and b determine the depth of the well and
thus determine σ

(θ)
ij . Such a term can be added for every

two successive vectors, with the appropriate parameters a

and b. These additions, like the augmented connectivity of
Eq. (24), are all quadratic in �ρ, and thus do not complicate the
calculation.

The addition of such terms introduces explicitly interactions
between the DFs, a concept that has been absent from the
original formulation of GSM.

Another example of an interaction between DFs is the
inherent correlation between the lengths of successive vectors
�r around a particle. Figures 3(a) and 3(b) show the histogram
of |�r|, sampled in two different ways: one by the order of its cell
[Fig. 3(a)] and the other by the order of its particle [Fig. 3(b)].
We see that |�r| increases with cell order and decreases with
particle order. This has a geometrical origin—the more vectors
surround a particle, the shorter they must be, but the more
vectors constitute a cell, the longer they can be (see Fig. 1). Let
us focus on order 3 cells, the tall peak in Fig. 3(a). Figures 3(c)
and 3(d) show, respectively, 2D histograms (shown as heat
maps) of the expected correlation-free and actual occurrence
frequencies of the lengths of successive vectors, �ri and �rj ,
around order 3 cells. The differences between the two indicate
a positive correlation between the lengths, which is the result
of a correlation in the lengths of the three vectors upon increase
of the size of any of the three particles around the cell.

The same can be done for particles of any number of
contacts or cells of any order. In Figs. 3(e) and 3(f), we
show, respectively, the expected correlation-free and actual
distributions for order 4 cells. Here too the two differ
significantly, but with a negative correlation that arises from a
geometrical origin: The lengths of two opposite edges in order
4 cells are sensitive to the distance between the two respective
particles (see Fig. 1): the longer one pair of opposite edges,
the shorter the other.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. [(a), (b)] The histogram of |�r|, for 396 systems of 64
particles each, in units of the average particle radius. Each vector �r
belongs to one particle and one cell, and the histogram is divided
according to the order of the cell (a) and the particle (b), with orders
3, 4, 5, and 6 represented by red, yellow, green and blue, respectively.
[(c), (e)] The expected 2D histogram of successive vectors, �ri and �rj ,
around order 3 and 4 cells, respectively, according to panel (a), and
not taking correlations into account. [(d), (f)] The actual 2D histogram
corresponding to panels (c) and (e). The heat maps on the right differ
from those on the left due to positive correlations for order 3 cells
and negative correlations for order 4 cells.

To take account of such correlations, we can include in the
connectivity function another interaction-like term between
two successive vectors �ri and �rj :

C|r|
ij = (|�ri |2 − |�rj |2)2, (26)

which is quartic in �ρ. The calculation of the partition function
with quartic terms is more complex and is left for a future
study.

VI. THE TOPOLOGICAL ENTROPY

The topological entropy arises from all the possible changes
in the contact network, i.e., the topology. Each such change,
which corresponds to making or breaking a contact, effects a
change in the matrix A. The inverse, however, is not generally
true—many different matrices A may correspond to the same
topology because the choice of the spanning tree is not unique.
Thus, to obtain the number of possible topologies, we need to
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divide the total number of possible matrices A,�t , by the
number of spanning trees describing a typical configuration,
NST. We call the latter multiplicity of a microstate.

The statistics of A can be described by a multivariate
probability density function of its components, P ({Aij }). The
partition function is then

Z =
∑
Aij

P ({Aij })Za(A), (27)

where the sum is over all possible values of Aij .
To estimate P ({Aij }), we first recall that the top part of A,

corresponding to the Nρ independent vectors, is always a unit
matrix. The rest of the matrix consists of entries of 0 and ±1,
whose ij positions can change from topology to topology. A
straightforward naive approximation is to assume that each
Aij is independent and can take the values 0, 1, and −1
with respective probabilities P0, P1, and P−1 = 1 − P0 − P1.
These probabilities are constrained by the requirement that
P1 + P−1 = 〈l〉/Nρ , where 〈l〉 is the average number of steps
along the spanning tree needed to describe a dependent vector �r
in terms of the independent ones. The average 〈l〉 is carried out
over all possible topologies (possible matrices A) generated
by the same packing procedure of a specific collection of N

particles, resulting in the same mean coordination number z̄.
However, this estimate can be improved. Since each line of

A represents a route along the spanning tree, a more realistic
estimate is

P ({Aij }) =
∏

i

P
(
n

(i)
0 ,n

(i)
1 ,n

(i)
−1

)
,

with n
(i)
0 , n

(i)
1 , and n

(i)
−1, respectively, being the numbers of

0’s, 1’s, and −1’s in the ith row of A. Different topologies
correspond to different bottom parts of A, consisting of Nr −
Nρ ∼ 2Nc − Nc = Nc rows and Nρ ∼ Nc columns. Typically,
each of those Nc rows has n ≡ 〈l〉/2, of 1’s and −1’s.
Therefore, with n 	 Nc, the total number of possible different
A matrices is

�t ≈
[(

Nc

n

)(
Nc

n

)]Nc

≈
(

Nn
c

n!

)2Nc

, (28)

and we have

ln �t = 2Nc[n ln Nc − ln n!] + O(n). (29)

We now need to estimate the multiplicity of spanning trees
per topology, NST. This can be done using a result from graph
theory: For a wide class of graphs [22],

lim
NV →∞

N
(G)
ST = eζGNV , (30)

where ζG is a constant, whose value depends on the particular
topology of the graph G, and NV is the number of the graph’s
vertices, which is Nc in our case. A straightforward upper
bound on NST can be established by assuming that any choice
of Nρ(∼ Nc) vectors out of the possible Nr (∼ 2Nc) is a
possible spanning tree,

NST <

(
2Nc

Nc

)
≈

√
4Nc

π
22Nc . (31)

Using this bound we get, in the large Nc limit,

ζG < 1.386 + O(ln Nc/Nc). (32)

This bound is too high since most choices of a random set of
Nc vectors �r include forbidden vector combinations of closed
loops. A better estimate would be by using a known bound for
regular graphs [23,24]:

N
(G)
ST � 2 ln NV

NV K ln K
(CK )NV , (33)

where K is the valency of the vertices of G, and CK ≡ [K −
1]K−1/[K(K − 2)]K/2−1. Thus, in the large NV limit, ζG �
ln CK . Almost all the vertices of graphs describing contact
network connect four vectors �r (see, e.g., Fig. 1) and have K =
4. The exceptions are (i) K = 3 for contacts of two-contact
particles, but these consist a small fraction, ε, of all particles;
(ii) K = 2 for chains of two-contact particles, but these are
unstable mechanically and rarer still; (iii) K = 2 for generic
boundary contacts, but the number of these scale as M 	 Nc.
The total number of contacts is Nc = (Nz̄ + M)/2 and the
total number of edges is NE = N (z̄ − ε). Since M 	 N and
ε 	 1 for sufficiently large systems,

K = 2NE

NV

≈ 4

(
1 − M

Nz̄
− ε

z̄

)
≈ 4. (34)

Using Eq. (33), we then obtain CK = (1.5)3 and an improved
upper bound, compared to (32),

NST � (1.5)3Nc , ζG � 1.216. (35)

However, ζG depends not only on K but also on further
details of the structure. For example, the square and kagome
lattices, both regular graphs with K = 4, have different values,
ζSq = 1.166 and ζKag = 1.136 [23,24]. The difference between
these structures is their distributions of cell orders, or the K

value of their dual graphs. The dual of the square lattice is also
regular with K = 4, but the dual of the kagome lattice has 2/3
vertices with K = 3 and 1/3 with K = 6. Since, of the two
graphs, the latter’s distribution of cell orders is closer to that of
real systems, in which these range between 3 and 6 (see Fig. 1),
then we conjecture that the kagome lattice should describe our
systems more closely. This provides us the best estimate,

ζG ≈ 1.136, (36)

which is lower than both Eqs. (32) and (35).
To test this result, we analyzed 2D experimental systems,

each of 1172 discs of three different radii, produced by the
3SR Lab, as described in Ref. [25]. We divided the image of
each system to several nonoverlapping subsystems of different
sizes, and constructed the contact network for each subsystem.
Figure 4 demonstrates this procedure and shows one choice of
a spanning tree. We counted the number of possible spanning
trees for each subsystem using Kirchhoff’s theorem [26]. We
then calculated ζG as a function of system size, using Eq. (30).
Figure 5 shows ζG as a function of 1/Nc alongside ζSq and
ζKag of lattices of the same size, for which the values were also
obtained by using Kirchhoff’s theorem. Indeed, the value of
ζG in the disordered systems converges to that of the kagome
lattice, supporting our result (36).

Having a reliable estimate of the multiplicity, NST, we can
now estimate the topological entropy:

St = ln(�t/NST)

= 2nNc ln Nc − (2 ln n! + ζG)Nc + O(n). (37)
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(a) (b)

(c) (d)

FIG. 4. (a) The bottom-left corner of a tridisperse 2D experimen-
tal granular system, produced by the 3SR Lab [25]. (b) The network
of vectors �r , circulating every particle and cell. The directionality of
the vectors, clockwise around particles and counterclockwise around
cells, is not plotted to avoid cluttering. (c) The connectivity network
of this system. (d) One choice of a spanning tree, i.e., a subset of
independent vectors �r . All boundary vectors �r but one are chosen.

In the calculation above, we assumed that Sa(A) depends
only weakly on the topology. To test this assumption, we
first note that the contribution of the boundary forces to Sa

is negligible compared to the structural configurations and
that Sa ≈ ln |B| + O(

√
N ). Calculating the value of ln |B| for

FIG. 5. ζN , defined in Eq. (30), as a function of the inverse
of the number of vertices, 1/NV , for different graphs: the kagome
lattice (green line), the square lattice (blue line), and the connectivity
network of the experimental 2D systems (black open circles,
interpolated by red line). The value of ζN for the kagome lattice and the
experimental systems is calculated numerically, by constructing the
graphs and using Kirchhoff’s theorem to get the number of spanning
trees. ζN for the square lattice is calculated analytically. In dashed
lines are quadratic extrapolations to 1/NV → 0.

FIG. 6. The histogram of ln |B| for 1000 systems of 64 particles
each (white bars). Each blue dot represents a single system, at the
appropriate x value and a random y value.

1000 systems of 64 soft disks each, computer-generated by the
same protocol [16], we plot its distribution in Fig. 6. Indeed, we
find that ln |B| has a well-defined value with a relative width
of 2.9/167 = 1.7%, supporting well the above assumption.
Using Nc = Nz̄/2 and n = 〈l〉/2, we can express St in terms
of the number of particles, N :

St = z̄

2
〈l〉N ln N + z̄

2

(
〈l〉 ln

ez̄

〈l〉 − ζG

)
N . (38)

Thus, St is dominated by the term N ln N , reflecting the fact
that it corresponds to arrangements of all the particles in a
network, whose number is of order N !.

This result is very significant: It indicates that the topolog-
ical structural entropy is extensive, i.e., linear in system size,
only when subtracting (z̄〈l〉/2) ln N ! from it. This observation
is reminiscent of the much discussed ln N ! subtraction in
thermal statistical mechanics. However, it is interesting that,
in GSM, only the topological entropy incurs this term. Thus,
together with result (17), the total structural entropy, Sa + St ,
is extensive. Significantly, relation (38) is supported by, and
provides the theoretical explanation for, the numerical obser-
vations in Refs. [15,16], which observed directly the N ! factor.

VII. DISCUSSION

In this paper, we extended the connectivity-based granular
statistical mechanics, proposed in Ref. [18], and derived a
number of fundamental results as follows. First, we calculated
the complete partition function, Eq. (1), beyond the structural
contribution and included the explicit contribution of the stress
ensemble. The quadratic exponential in Eq. (7) allowed us to
not only solve it, Eq. (10), but also to calculate explicitly
expectation values for (i) the connectivity, 〈C〉a , showing that
there exists an equipartition principle for it; (ii) the squared-
norm of the force vector, 〈�g · �g〉a; (iii) the boundary normal
stress, 〈σnn〉a; and (iv) the volume, 〈V 〉a . Using these, we
derived an equation of state, Eq. (20).
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Second, we identified two main sources for the structural
entropy, affine and topological, with the former describing
microstates with the same topology of the contact network and
the latter describing microstates of different topologies. The
connectivity-based formulation was shown to be convenient
for separating these two contributions, Eq. (27), with all
the topology encoded in the connectivity matrix A. This
separation made it possible to calculate explicitly each of these
contributions. We calculated the affine entropy explicitly from
Eq. (16) and found that it scales linearly with the number of
particles; i.e., it is extensive.

Third, we established that, to calculate the affine contribu-
tion to the partition function, one must take into consideration
explicitly the correlations between the DFs as constraints
and that ignoring these constraints lead to grossly unphysical
results, such as a vanishing mean volume. We then modified
the connectivity function to include these constraints, Eq. (24),
and showed that these remedy the calculation and give more
physical results.

Fourth, we showed that our method of including constraints
can be used to describe correlations between the DFs as
interactions. This constitutes an extension of the granular
statistical mechanics formalism beyond the traditional analog
of self-energy-like description. We demonstrated that granular
systems possess inherent positive and negative correlations
between angles, as well as lengths, of successive DFs along
connectivity loops and outlined how to include these as
interaction terms in the modified connectivity function. These
interactions are convenient in that they resemble nearest
neighbor interactions in more traditional systems.

Fifth, we calculated the topological entropy, using the
statistics of the matrix A, which describes the topology of
a granular assembly as a spanning tree [20]. This calculation
was complicated by the concept of multiplicity, namely, that
a specific structural configuration can be described by NST

spanning trees. We calculated NST ∼ e1.136z̄N/2, yielding that
the number of microstates is �t/NST . It follows that the overall
entropy is extensive only when subtracting (z̄〈l〉/2) ln N !
from it. This result provides a theoretical explanation of the
observations in Refs. [15,16].

Sixth, by calculating explicitly the structure- and force-
based entropies, we established that, in the large system limit,
the latter is negligible relative to the former. This result is the
direct consequence that the structure phase space is of size
N while the force phase space is of size N (d−1)/d . Another
consequence is that the dependence of expectation values of
structural properties on the angoricity tensor [5] is negligible,
at least for rigid particles. The implication of this conclusion
for force-based expectation values remains to be studied, but
we showed that the equation of state (20), which includes the
boundary stress, depends negligibly on the angoricity unless
its value is extremely small.

Our results hold for an ensemble of mechanically stable
granular packs, all generated by the same protocol and all
having the same mean coordination number, z̄. Extending the
analysis to distributions of z̄ across the ensemble is possible,
in principle, albeit cumbersome, as it involves enumeration
over matrices A of varying dimensions. We reiterating that
our estimate of the topological entropy, St , was made under
the assumption, supported numerically for a certain class of

systems in Sec. VI, that different topologies have similar
occurrence probabilities. When this assumption does not hold,
Eq. (37) must be replaced by the more general Gibbs entropy,
St = − ∑

Pt ln Pt , with Pt the probability of each topology.
Thus, Eq. (37) is an upper bound since a uniform distribution
maximizes the entropy.

The formalism presented here can be extended readily to
3D systems, following the same conceptual approach. First,
one constructs a network of vectors �r that form a convex hull
around each grain [13,19]. Then, choosing a spanning tree
of this network, using the same principle as described above,
the connectivity function can be calculated straightforwardly.
More care is required in calculating the stress ensemble, since
3D cells are surrounded by both grains and throats, which are
the openings connecting neighboring cells. Each throat is made
of a loop of vectors �r . As in 2D, the intergranular forces can
be solved for in terms of the boundary forces and, if required,
additional constitutive relations. The boundary forces are the
DFs of the stress ensemble. It then follows that one can define
the 3D equivalents of the matrices E and H , and the rest of
the analysis is the same as above.

We look forward to numerical and experimental tests of this
formulation.
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APPENDIX A: CALCULATING EXPECTATION
VALUES AND ENTROPY

The different expectation values are all derivatives of ln Za

and, using Eq. (10), it is convenient to define

ln Za = ln Z0 + ln Z1, (A1)

where

ln Z0 ≡ − d

2
ln |B| − 1

2
ln |P |+,

ln Z1 ≡g2

2
Tr(P ) +

∑
ai>0

ln D(ai) + κ, (A2)

and κ is a function of Nρ,M , and g, whose exact form is
immaterial at the moment.

(1) The connectivity
The connectivity expectation value is obtained by

〈C〉a = τ 2 ∂

∂τ
(ln Z0 + ln Z1) ≡ 〈C〉0 + 〈C〉1. (A3)

Starting with 〈C〉0, both terms of ln Z0 are proportional to a
power of τ :

|B| ∼ τ−Nρ , |P |+ ∼ τ d(M−1),

and, using the fact that if f (x) ∼ xα then

∂ ln f

∂x
= α

x
, (A4)

we obtain

〈C〉0 = dτ

2
(Nρ − M + 1). (A5)
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To calculate 〈C〉1, we note that ln Z1 depends on τ through
Tr(P ) ∼ τ and ai ∼ √

pi ∼ √
τ . One can also obtain from

Eq. (11):

∂ ln D(ai)

∂ai

= 1

D(ai)
− 2ai, (A6)

and thence

〈C〉1 = τ 2

⎧⎨
⎩ g2

2τ
Tr(P ) +

∑
ai>0

[
1

D(ai)
− 2ai

]
ai

2τ

⎫⎬
⎭

= τ

2

∑
ai>0

ai

D(ai)
, (A7)

where the first and last terms in the first line cancel out.
Summing (A5) and (A7) yields 〈C〉a in Eq. (12).

(2) The volume
The mean volume is obtained from Eq. (18) via

〈V 〉a = −2Wjk

∂ ln Za

∂Bjk

+ 2Ujk

∂ ln Za

∂Pjk

. (A8)

Using again (A2), we express a corresponding separation:
〈V 〉a = 〈V 〉0 + 〈V 〉1. Starting with 〈V 〉0 and noting that the
dependencies on Bjk and Pjk originate in |B| and |P |+,
respectively, we have

〈V 〉0 = −2Wjk

∂ ln Z0

∂|B|
∂|B|
∂Bjk

+ 2Ujk

∂ ln Z0

∂|P |+
∂|P |+
∂Pjk

.

Using Eq. (A4) again we have

〈V 〉0 = dWjk

|B|
∂|B|
∂Bjk

− Ujk

|P |+
∂|P |+
∂Pjk

. (A9)

To evaluate these expressions, we express the determinants,
e.g., |B|, as |B| = ∑

CjkBjk , which leads to

∂|B|
∂Bjk

= Cjk = |B|(B−1)kj , (A10)

with B−1 the inverse matrix of B. Similarly, for the pseudode-
terminant |P |+, we have

∂|P |+
∂Pjk

= |P |+(
)kj , (A11)

with 
 being the pseudoinverse of P . Substituting (A10) and
(A11) into (A9) we obtain

〈V 〉0 = d Tr(WB−1) − Tr(U
). (A12)

Turning to 〈V 〉1, ln Z1 depends on Pjk through Tr(P ) and
the eigenvalues pi . The former gives ∂ Tr(P )/∂Pjk = δjk . For
the latter, note that if O is the orthogonal diagonalization
matrix of P, (OPOT )ij = �ij = piδij , then [27]

∂pi

∂Pjk

= OijOik, (A13)

which also holds for nonzero eigenvalues of a singular matrix.

Together with (A6), these give

〈V 〉1 = g2Ujkδjk + 2Ujk

∑
ai>0

(
1

D(ai)
− 2ai

)
aiOijOik

2pi

= g2 Tr(U ) +
∑
ai>0

(
1

2aiD(ai)
− 1

)
g2U ′

ii

=
∑
ai>0

g2U ′
ii

2aiD(ai)
, (A14)

where we abbreviated UjkOijOik = (OUOT )ii ≡ U ′
ii . The

first and last terms on the second line cancel out because
T r(U ) = T r(U ′). Summing (A12) and (A14) gives 〈V 〉a in
Eq. (19).

(3) The mean squared norm of the force vector
Noting that the expression

〈�g · �g〉a = 1

Za

∫
(gg)e− 1

2
�̃ρB �̃ρ+ 1

2 �gP �g(d �̃ρ)(d �g) (A15)

has the same form as the volume expectation value in Eq. (18),
with W = 0 and U = 1, we obtain 〈�g · �g〉a by substituting
these values in Eq. (19). This gives straightforwardly the result,
Eq. (14).

(4) The entropy
In analogy to thermal statistical mechanics, the affine

entropy is given by

Sa = 〈C〉a
τ

+ ln Za. (A16)

Its calculation requires the explicit form of κ in Eq. (A2),

κ = d

2
[Nρ ln(2π ) + (M − 1) ln(8) + 2 ln(2g)]. (A17)

To obtain Sa in Eq. (16), we substitute Eqs. (A2), (12), and
(A17) into Eq. (A16).

(5) The boundary normal stress
To obtain an explicit expression for 〈σnn〉a , we must

calculate it directly from the partition function. We shall use
the following calculation:∫ g

0 g′e
1
2 pg′2

dg′∫ g

0 e
1
2 pg′2

dg′ = (ea2 − 1)√
2p ea2

D(a)
= g(1 − e−a2

)

2aD(a)
, (A18)

where p � 0 and a ≡ g
√

p/2. In the limit p → 0 (A18)
reduces to g/2. Using this result, we define

Gj ≡ 1 − e−a2
j

2ajD(aj )
g (A19)

and proceed to calculate the expectation value of the normal
component of a boundary force,〈

gi
x

〉
a

= 1

Za

∫
e− 1

2
�̃ρB �̃ρ(d �̃ρ)

∫
gi

xe
+ 1

2 �gP �g(d �g) . (A20)

The first set of integrals cancels out with the corresponding
integrals of Za . To solve the second set of integrals, we
diagonalize P and use (A18) and (A19) to obtain

〈
gi

x

〉
a

=
∑

j

OT
ij

∫
g′

j e
1
2 pj g

′
j

2

dg′
j∫

e
1
2 pj g

′
j

2

dg′
j

=
∑

j

OT
ijGj , (A21)
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with O the diagonalization matrix. Squaring,

〈gx〉2
a = 1

M

∑
i

〈
gi

x

〉2
a

= 1

M

∑
i,j,k

OT
ij O

T
ikGjGk, (A22)

and using the orthogonality,
∑

i O
T
ij O

T
ik = δjk , we get

〈gx〉2
a = 1

M

∑
j

G2
j = |G|2

M
, (A23)

where |G| is the norm of a dM-long vector, whose components
are Gj . Combining (A23) with 〈σnn〉a = M〈gx〉a/4

√
Na, as

discussed in the main text, gives relation (15).

APPENDIX B: APPROXIMATIONS OF
THE DAWSON FUNCTIONS

The partition function contains d(M − 1) Dawson in-
tegrals, which give rise to cumbersome sums of Dawson
functions, D(ai), in the entropy (16) and the expectation values
(12), (14), and (19). In this appendix, we approximate these
sums in the limits of large and small ai = g

√
pi/2 ∼ g

√
τγj ,

with γj=1,2 the two eigenvalues of the inverse angoricity γ . It
is convenient to define the dimensionless parameter

χ ≡ g
√

τ |γ |, (B1)

whose limits correspond to the limits of the parameters ai .
The second-order approximations of D(α), for small and

large values of α, are, respectively,

D(α 	 1) = α

(
1 − 2

3
α2

)
, (B2)

D(α � 1) = 1

2α

(
1 + ln 2

α2

)
. (B3)

In Fig. 7 we show these approximations and observe that they
are very accurate, except in the range 0.5 < α < 1.5, with a
relative error of less than 3%. The arguments of the Dawson

FIG. 7. The Dawson function, in solid blue line, alongside
its small- and large-parameter two-term approximations, in green
and red dashed lines, respectively. The accuracy of the respective
approximations is better than 3% outside the range 0.5 < α < 1.5.

function, ai , are proportional to the maximal magnitude of
a boundary force, g, to

√
τ , and to the inverse angoricity

eigenvalues, γ1,2. Thus, for a given values of g and τ , the values
of ais are small at high angoricity and vice versa. Nevertheless,
we also need to find a good approximation for the regime
ai ≈ 1, which we do next.

(1) Approximation of the mean volume
Here, we wish to approximate the sum

∑
1/[aiD(ai)] in

Eq. (19). From relations (B2) and (B3), we observe that the sum
is dominated by the small ais. We also note from [25] that, for
a typical 2D system and gγ1,2

√
τ = 1 we get 0.5 � ai � 200,

with most ais smaller than 1. Using then the small-parameter
approximation, we have∑

ai>0

g2U ′
ii

2aiD(ai)
≈

∑
ai>0

g2U ′
ii

2a2
i

(
1 + 2

3
a2

i

)

=
∑
ai>0

U ′
ii

pi

+ g2

3

∑
ai>0

U ′
ii

= Tr(U
) + g2

3
Tr(U
P ). (B4)

For the last step, we used again the diagonalization of 
 to
establish that the first sum is equal to Tr(U ′�−1) = Tr(U
)
and the second sum is equal to Tr(�−1�U ′) = Tr(U
P ).
Plugging these into Eq. (19), we obtain for the mean volume

〈V 〉a ≈ d Tr(WB−1) + g2

3
Tr(U
P ). (B5)

(2) Approximation of the mean squared norm of force vector
An approximation of expectation value for the boundary

forces can be obtained either by following the same route as
above or by substituting W = 0 and U = 1 in Eq. (B5), which
yields

〈�g · �g〉a ≈ g2

3
Tr(
P ) = g2

3
d(M − 1) . (B6)

This is again a second-order approximation; to first order,
− Tr(
) of Eq. (14) cancels out with the sum to give, not sur-
prisingly, 〈�g · �g〉a = 0. This expression is independent of the
contactivity, as one would expect intuitively. Its independence
of the angoricity is only a feature of the leading term—the next
term would be proportional to Tr(
PP ), scaling as τT r(γ 2).

(3) Approximations of the mean boundary normal stress
and equation of state

For these approximations, we use Eqs. (15), (A19), and
(A23). Approximating Gj for small aj , we have

Gj = g

2aj

1 − e−a2
j

D(aj )
≈ g

2aj

a2
j

aj

= g

2
. (B7)

Substituting this in Eq. (15), we get

〈σnn〉a ≈
√

M

4
√

Na

√
M

(g

2

)2
≈ g

8a
. (B8)

Using the approximations for 〈V 〉a , Eq. (B5), and 〈σnn〉a ,
Eq. (B8), we obtain the second-order approximation for the
equation of state in the limit of low χ

〈V 〉a〈σnn〉a ≈ g

8a

[
d Tr(WB−1) + g2

3
Tr(U
P )

]
. (B9)
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FIG. 8. Blue, thin line: the exact affine entropy, calculated
according to Eq. (16), for a 2D system of 1172 discs, as a function of
the two squared eigenvalues (fixed to be equal) of γ . The contactivity,
τ , and the maximal boundary force, g, are set to 1. Green, thick line:
the relative error of approximating the Dawson functions, namely
the difference between calculating S according to Eq. (B11) and
according to Eq. (16) over the latter.

(4) Approximation of the entropy
To this end, we need to approximate the expression � ≡∑
[ln D(ai) + ai/2D(ai)] in Eq. (16). Using relations (B2)

and (B3), for small ai’s � ≈ 0.5 + ln ai and for large ai’s
� ≈ a2

i − ln(4ai). It follows that large ai’s dominate the sum.

Moreover, using the definition of ai , the term g2

2 Tr(P ) in
Eq. (16) is also proportional to

∑
a2

i , making the large ai

limit even more dominant. Using then (B3), we have

� =
∑
ai>0

[
ln D(ai) + ai

2D(ai)

]

≈
∑
ai>0

[
a2

i − ln ai − ln 4
]

= g2

2
Tr(P ) − 1

2
ln |P |+ − d

2
(M − 1) ln 8g2. (B10)

Substituting this in Eq. (16), we get

Sa ≈−d

2
ln |B| − ln |P |+ + g2 Tr(P )

+d

2
[Nρ ln(2πe)+2 ln(2g)−(M−1) ln(eg2)]. (B11)

FIG. 9. A numerical check that indeedGj (aj ) is bounded between
g/2 and g for all j .

The accuracy of this approximation depends on the different
noise parameters through the dimensionless parameter χ .
Whenever χ � 1, the approximation (B11) is accurate to
more than 3%. This is demonstrated in Fig. 8 for γ1 = γ2

and τ = g = 1—it shows the relative error, (Sapprox − S)/S,
between the approximated entropy, Eq. (B11), and the exact
result, Eq. (16), for different values of χ2. We find similar
graphs when varying τ, g or the ratio of the eigenvalues of γ .

APPENDIX C: ESTIMATION OF THE BOUNDARY
NORMAL STRESS

Here, we first establish that g/2 < Gj < g for all j and,
thence, that |G| = O(

√
M), as stated in Sec. IV. Using the

definition of G(ai) and the small χ approximation for D(ai),
we have shown in Eq. (B7) that Gj (aj 	 1) ≈ g/2. Similarly,
using the large χ approximation, relation (B3), we have

Gj (aj � 1) ≈ g

(
1 − ln 2

a2
j

)
< g. (C1)

This indicates that the value of Gj (aj ) is bounded between
g/2 and g for all j ’s. We substantiate this by a calculation of
the function Dj (aj ), shown in Fig. 9. Thus, g

√
M/2 < |G| <

g
√

M , and we obtain that, generally, |G| = O(M).
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