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Abstract 

Fast-acting pneumatic valves, combined with a slip-control braking algorithm, have recently 

been used to improve the straight-line braking performance of an experimental heavy goods 

vehicle (HGV), on low friction roads, by 16%. This paper describes how the fast-acting 

valves, which were central to the aforementioned research, were designed for use on a 

commercial vehicle. Design equations, as well as a generalised design method, are first 

presented for the fast-acting bistable pneumatic valve. A pressure observer is developed to 

predict the brake chamber pressure in cases where a pressure transducer is mounted upstream. 

A simple fault detection algorithm is then introduced, which utilises some of the calculations 

made in the pressure observer, and is shown to correctly identify faults on a real vehicle. 

Performance comparisons are made between the new modulator and a conventional HGV 

electro-pneumatic brake system. Closed loop frequency response tests show that the control 

bandwidth of brake chamber pressure on a HGV can be increased from 1.5Hz to 10Hz using 

the new hardware.  
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Introduction 

Heavy goods vehicles (HGVs) exhibit considerably longer emergency stopping distances 

than automobiles [1, 2]. They can also experience problems arising from their larger 

dimensions, high centre of gravity and articulation points. Such issues include: roll-over, 

jack-knife, trailer-swing and excessive off-tracking [3]. Antilock braking systems (ABS) have 

been mandatory on HGVs in Europe and the US for some time. These systems prevent wheel 

lock during braking events on low friction surfaces, reducing the likelihood of jack-knife and 

trailer swing. In addition to ABS, electronic stability control (ESC) has also recently become 

common on HGVs, and mandatory on new vehicles in Europe from 2012. ESC and roll-

stability control (RSC) help improve the lateral performance of the vehicle during cornering 

events (on low and high adhesion surfaces respectively). This is achieved through automatic 

braking of particular axles, as well as differential braking between opposite sides of the 

vehicle.  

The performance of ABS, ESC and RSC are limited by the response time and control 

resolution of the braking system. HGV braking systems are pneumatic, differing from cars 

which typically use hydraulic brake systems. Their response times are strongly affected by 

pipe length, pipe diameter and actuator volume. In modern HGV braking systems an 

‘electronic braking system’ (EBS) is employed. These systems still use air as the actuation 

medium and still employ conventional antilock braking (ABS) pressure control algorithms 

for emergency stops, but EBS sends demand signals electronically to the pressure modulating 

valves, reducing signal propagation delays. A typical EBS for an HGV is shown 

schematically in Figure 1. As can be seen, driver demand signals are sent from the brake 

pedal (labelled 6) electronically to local modules (labelled 3, 4 and 5) which regulate the 

brake pressure at the wheels. Typically, on the front axle of an HGV, normal braking control 

is achieved using a single electronic proportional relay valve (4). The separate ABS 

modulator valves shown in Figure 1 (5) only come into effect during ABS or stability control 

events. Fully pneumatic back-up control circuits are also included to retain functionality if 

electrical power is lost. 

Studies have shown that, by further improving the response time of the pressure control 

modules at the wheel and implementing a slip-control strategy, the straight-line braking and 

lateral stability of an articulated HGV can be improved when compared to a modern HGV 

EBS [4, 5]. Miller et al. [4] presented straight-line braking tests obtained on a hardware-in-
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the-loop (HiL) test rig, using prototype fast-acting, high flow-rate, bistable pneumatic valves. 

The improvements seen using the prototype system in this study were significant; with 

stopping distance and air consumption reduced by 23% and 25% respectively compared to a 

modern semitrailer EBS. Although these improvements were promising, the prototype valves 

exhibited several undesirable attributes; these included: excessive electrical power 

consumption, inadequate maximum operating pressure and unreliable electronic drive 

circuitry. 

This paper builds upon work presented in [6] and describes how the proof-of-concept fast 

acting bistable valve prototypes described in [4, 6] have been further developed to enable 

implementation on a HGV. Simplified magnetic equations are presented to predict the 

magnetic forces within the bistable valve; key features are discussed that allow the bistable 

valve to operate at the supply pressures and battery voltages common to HGVs; pressure 

control equations and a brake chamber pressure observer are presented, allowing an 

aggressive, high-bandwidth pressure control regime to be implemented, even when pressure 

transducers cannot be mounted on the brake chamber. The pressure observer developed is 

also shown to provide a simple means of fault detection on a real vehicle. 

Fast-acting bistable pneumatic valve design 

A prototype bistable valve, used in a successful vehicle installation [5], is shown in Figure 2a. 

The valve includes a spring steel flexure which is cantilevered between the two arms of a 

mild-steel ‘C-frame’. Each arm incorporates a stainless steel through-tube with an internal 

diameter of 8mm, a permanent magnet and a pole-piece. The flexure tip can stick to either of 

the pole-pieces by a magnetic force. A rubber seat is incorporated onto the flexure tip to form 

an air-tight seal against either of the pole-piece rims so that oscillation of the flexure between 

the pole pieces opens and closes the air-flow path. A copper coil is wound around the flexure; 

when pulsed with electrical current this releases the valve from its current state ‘flicking’ the 

flexure to the opposite pole-piece.  

A sectioned view of a single bistable valve in an enclosure is shown in Figure 2b. It can be 

seen that, although the valve incorporates two symmetrically positioned seats, only one is 

used to channel air flow. When mounted in an enclosure in this way, the bistable valve is 

equivalent to a conventional 2-2 (2 port, 2 state) solenoid valve, operating in either an open or 
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closed state. For brake pressure modulation, two valve assemblies are required: one intake 

(‘build’) valve and one exhaust (‘dump’) valve.  

Figure 3 shows the forces acting on a bistable valve’s central flexure. When the coil is 

inactive (i.e. when Fcoil  shown in Figure 3 is zero) the flexure is attracted to either of the 

pole-pieces by a magnetic hold force (Fmag), hence being referred to as ‘bistable’. In order for 

the flexure to ‘stick’ against the pole-piece the following condition must hold: 

flex
duseal

mag F
PPD

F 



4

)(
2


           (1) 

where Fflex is the bending force required to displace the flexure tip by δflex and Dseal is the 

diameter of the seal formed between the pole-piece and flexure seat and Pu and Pd are the 

absolute upstream and downstream pressures respectively. In the valve design shown, Dseal is 

approximately equal to the internal diameter of the through-tube. This differs from previous 

bistable valve designs where a larger O-ring was used to form the seal, increasing the force 

term in (1), and making switching more difficult. Providing a pulse of electrical current to the 

coil opposes the magnetic flux in the flexure, therefore reducing Fmag, enabling the valve to 

switch states (via the restoring force Fflex). In this analysis, the reduction in Fmag achieved by 

coil activation is considered as an additional opposing force, Fcoil . To switch the valve’s 

state, Fcoil must satisfy the following inequality: 

coilflex
duseal

mag FF
PPD

F 



4

)(
2


         (2) 

As indicated in the above equation, the magnitude of Fcoil required to switch the valve’s state 

mut exceed the difference between Fmag and Fflex. It increases as the pressure differential 

across the valve rises, and is also affected by the cross sectional area of the seal. 

Some interesting differences between this type of bistable valve and a conventional solenoid 

valve are listed below: 

(i) The bistable valve only requires electrical power to change states, whereas a 

conventional solenoid valve requires a constant electrical current to hold it in an 

active state. 

(ii) The bistable valve’s switching speed is governed predominantly by the stiffness 

and mass of the central flexure, which can be significantly higher and lower, 

respectively, than a conventional solenoid valve’s moving parts. 
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(iii) Large orifice sizes can be incorporated into the bistable valve, allowing the valve 

to be used directly in-line. Conventional solenoids are typically used indirectly as 

pilot valves in these types of applications. 

(iv) A bistable valve has no preferred fail-state, i.e. it cannot be classed as ‘normally-

open’ or ‘normally-closed’. 

(v) The maximum acceleration of the flexure occurs at the start of its motion, 

immediately after it is released from one pole-piece. The maximum velocity 

occurs in the middle, with the maximum deceleration and minimum velocity just 

before it lands on the opposite pole-piece. This is an ideal kinematic profile for 

minimising wear. Conversely a solenoid valve has its maximum acceleration in 

the middle of its stroke and maximum velocity at the end, just before striking the 

bump stop. This makes it slower and potentially noisier. 

Flexure design 

The flexure is the most important component of the bistable valve assembly. Selection of its 

dimensions and material properties directly influence a range of conflicting performance 

criteria, including: switching speed, maximum operating pressure and operating life.  

Accurately predicting magnetic hold forces in electromagnetic actuator circuits can be 

difficult due to large nonlinearities and the large number of possible flux paths. Previous 

researchers have generally used either Finite-Element-Analysis (FEA) magnetics packages 

(e.g. that used in [7]) or simplified nonlinear magnetic circuit models, which must be solved 

iteratively [8, 9], to calculate the magnetic fluxes around such systems.  

A simplified magnetic model was sought by the authors to be used as a design tool for future 

bistable valve designs, for cases where the overall valve shape would be similar. Figure 4 

shows the FEA simulation presented by Miller in [6] for the original bistable valve design. As 

can be seen, the pole-piece and flexure regions have considerably higher magnetic flux 

densities than the other parts of the valve. At these flux levels, magnetic saturation becomes 

significant. As these components approach complete saturation (typically between 1.5-2.2 T 

for steel alloys), their permeability tends towards that of free space (μm,0). By contrast, the 

relative permeability (μm,n /μm,0) of non-saturated low-carbon steel is between 2,400 and 2,800 

[10]. The magnetic reluctance of regions such as the c-frame (which is not saturated in Figure 

4) can therefore be considered negligible when compared to the large reluctances of the 

saturated regions. In order to increase the flux that can flow along the flexure, two ‘fingers’ 
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are mounted alongside it, with small air gaps to the wedges on the side of the flexure. These 

fingers increase the effective magnetic cross section of the flexure, without making it 

mechanically stiffer [11]. 

Bearing all of the above observations in mind, a simplified model of the flexure tip was 

devised to estimate both Fmag and Fcoil . The thickness of the flexure tip (ttip, shown in Figure 

3) is selected to ‘choke’ the flux in this region to a desired level, therefore controlling the 

Fmag and Fcoil forces directly. Flux paths through the flexure for the two valve operating 

conditions (coil inactive and coil active) are shown in Figure 5.  

For simple magnetic circuits with a single airgap, the magnetic hold force can be estimated 

by: 

A
F

m

mag

0,

2

2


             (3) 

where ϕ is the magnetic flux that passes through the airgap, μm,0 is the magnetic permeability 

of free space and A is the effective cross sectional area of the air gap [12,13]. This 

approximation was found to provide reasonable predictions of the attractive force between 

each of the two pole pieces and the flexure; the difference between these two forces could be 

used to derive the overall force acting on the flexure tip as follows: 

30,

2

3

10,

2

1

22 AA
F

mm

mag







             (4) 

where the subscripts shown correspond to the flux paths shown in Figure 5a. Fringing (shown 

in Figure 5) was taken into account in the definition of the air gap cross sectional areas (A1 

and A3) by adding the air gap length ln to the outside radius of the pole piece and subtracting 

it from the inside diameter (as suggested in [14] and used by Miller et al in [6]). For example, 

A3 in Figure 5 is defined as follows: 

4

)2()2( 2

3

2

3

3

lDlD
A

orificepole 



          (5) 

where l3 is the air gap length shown in Figure 5. 

Assuming both 1 and 2  are saturated, calculation of the three flux paths shown in Figure 5a 

can be estimated by the following relationships: 
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])min([ ,,1,1 magmagrseatflexspoles ABABAB         (6)

])min([ 12,2  AB flexs              (7)

213                 (8) 

where Bs,flex  and  Bs,pole correspond to the saturation flux densities (in Wb/m
2
) of the flexure 

and pole-piece materials respectively, and the Br,mag and Amag terms are the remnant flux 

density
1
 and cross sectional area of the permanent magnets respectively. Aseat in these 

equations corresponds to the cross-sectional area of the flexure seat, and is assumed to have 

the same outside diameter as the pole-piece, but with no central hole. 

When the coil is activated, its magnetomotive force opposes the flux in the flexure. As 

electrical current is increased in the coil the flux is eventually reversed in the flexure region 

and channelled back towards the other pole-piece. Flux no longer passes through A2 (as 

shown in Figure 5b), and the flux equations become: 

])min([ ,,1,1 magmagrseatflexspoles ABABAB           (9) 

02                                   (10) 

13                           (11) 

The effective Fcoil is calculated by the difference between Fmag calculated using equations 6-8 

(the coil inactive case) and equations 9-11 (the coil active case). 

Magnetic hold force predictions from the above model were first compared to those obtained 

from FEA (Figure 4) and Miller’s magnetic circuit model for the earlier generation valve. 

Agreement was found to be good, but comparison to gaussmeter readings indicated the 

predicted flux densities through the air gaps were approximately 20% too high. The fluxes 

used in equation 5 were therefore corrected using a flux leakage coefficient (βleakage), similar 

to that used in [9]. Each flux was redefined as follows 

leakage

,



 n

usefuln            (12) 

with n  coming directly from equations 6-11. 

                                                 

1
 The remnant magnetization of a magnetic material is the flux density (B) which remains in the material once 

an applied field has been removed. For the permanent magnets in this case it represents the maximum flux 

density generated by the magnet in an effective ‘short-circuit’ case. 
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A comparison of the magnetic hold force predicted by the above model (with 
leakage = 1.3) to 

experimental results for three pole-piece/flexure combinations plotted as a function of pole-

piece diameter and flexure tip thickness is shown Figure 6. As can be seen, the model fits the 

experimental data reasonably well. The derivation of Fcoil (the difference between the coil 

active and coil in-active cases) is also shown schematically in the figure, where the ‘0mm 

Flexure’ data represents a case where no flux passes through the flexure to the yokes (A2 in 

Figure 5). As can be seen, increasing the flexure tip thickness from 1.7mm to 3.4mm 

approximately doubles Fcoil.  

Figure 6 also shows the effect of pole-piece diameter on magnetic hold force. At a fixed 

flexure tip thickness, Dpole can be selected to maximise the magnetic hold force. This strategy 

is often referred to as pole-piece focusing. Three distinct regions can be seen in Figure 6 for 

increasing pole-piece diameter (zones 1-3). In zone 1, flux through the flexure seat is limited 

by saturation in the pole-piece face; zone 2 corresponds to a saturated flexure seat (Aseat in 

Figure 5) and zone 3 corresponds to full remnant flux being provided by the permanent 

magnets (i.e. magnetic short circuit). To maximise Fmag for a given flexure thickness, the 

pole-piece diameter should be selected at the boundary between zones 2 and 3, where the 

flexure seat is saturated and no further magnetic flux can be provided by the permanent 

magnets. Beyond this point the achievable Fmag reduces, due to a lower flux density passing 

through the pole-piece face. 

Referring back to equation 1 it can be noted that Fflex (the restoring force acting on the flexure 

due to bending) must be less than Fmag in order for the flexure to hold to the pole-piece (at 

zero pressure). The bending properties of the flexure are governed predominantly by the root 

part of the flexure (i.e. the troot and L1 dimensions shown in Figure 3). In order to simplify the 

calculation of Fflex for a given flexure displacement at the centre of the pole-piece, the thicker 

tip region is assumed to have infinite bending stiffness. Standard deflection equations for a 

beam subject to a transverse force and moment (taking into account the offset at which Fmag 

acts, L2 in Figure 3) can be combined and rearranged to give the following equation for Fflex  

[15]: 

















2

221

2

1
1

3
LLL

L
L

EI
F

flex

flex


          (13) 
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where E is the Young’s Modulus of the flexure material, I is the second moment of area of 

the flexure root region and δflex is the transverse deflection of the flexure tip at the centre of 

the pole-piece (shown in Figure 3). 

The required δflex was selected such that the cross-sectional area available for air flow past the 

flexure was greater than the orifice diameter of the through-tube (8mm), i.e.:  

4

2

pole

flexpole

D
D


              (14) 

This ensures that the high air flow rates needed for EBS control are achievable. The pole-

piece angle was set at a fixed value, corresponding to the predicted angle of the flexure tip 

(θtip) at the specified flexure deflection (δflex) and was calculated using equation 15 (once 

again obtained from standard beam deflection equations for an applied force and moment) 

[16]. 

EI

LLFLF flexflex

tip
2

2 12

2

1 
            (15) 

Valve switching speed was required to be at least the same as that achieved by Miller’s [4] 

valves (approximately 3-4ms). Switch time for bistable valves is made up of two main 

components: firstly, the time taken for electrical current to build in the coil, and secondly, the 

time taken for the flexure to move to the opposite pole-piece. Previous testing had suggested 

that both of these delays were significant [16]. The overall desired switch time was therefore 

split equally between the two. The time taken for the flexure to travel to the other pole-piece 

is governed by the first natural frequency of vibration of the flexure. The flexure design 

incorporates significant mass and rotational inertia at its tip. Rayleigh’s Principle was used to 

estimate the value of the first natural frequency (ω1) of the thick tip flexure design. This 

method calculates the approximate natural frequency (ωn) for a specified mode shape as [17]: 

max

max2

~
T

V
n               (16) 

where Vmax is the maximum potential energy of the vibration mode, and max

~
T is a maximum 

kinetic energy term with the time derivatives removed [17]. Substituting in the relevant 

functions for a point mass and inertia (the thick flexure tip) positioned at the end of a uniform 

beam (the flexure root), equation 16 becomes: 
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




















1

1

0

2

1

2

1

2

0

2

2

2

2

)(
2

1
)(

2

1

2

1

2

1

L

tiptipflexrootroot

L

flex

n

LJLumdxuA

dx
dx

ud
EI



      (17) 

where u(xflex) is the mode shape, xflex is position along the longitudinal axis of the flexure root 

(shown in Figure 3), θ(xflex) is the flexure angle at position xflex (i.e. du/dxflex), mtip is the mass 

of the flexure tip and Jtip is the moment of inertia of the tip region taken about the bending 

axis at the end of the thin part of the flexure (xflex = L1). 

In order to obtain a reasonable estimate of ω1 a simple cubic mode shape was assumed. This 

provided zero displacement and gradient at x = 0, and maximum displacement, gradient and 

curvature at xflex = L1. 

Substituting this into equation 17 gives the following estimate of ω1: 

1

3

1

4

1

2

1

9
7

12

LJLm
LA

EI

tiptip
root 




          (18) 

Comparing the natural frequency obtained from equation 18 to that obtained by an FEA 

analysis (Abaqus) for a model of the thick tip flexure indicated that 1 estimates using the 

above approximation were around 10% higher than the FEA solution. This error was 

considered to be sufficiently small, for equation 18 was to be used as a design tool to estimate 

how flexure design changes would influence the valve’s switching time, avoiding the need to 

build detailed FEA model for each design change. 

Assuming that the flexure travels from one seat to the other with a motion approximating half 

a sine wave, the mechanical switching time will be π /ω1. The total switching time ( switcht ) 

can therefore be estimated as: 

coilswitcht 


 
1

         (19) 

where τcoil is the rise-time of the electrical current in the coil.  

In order to estimate the fatigue life of the flexure (due to cyclic bending of the flexure root), 

bending stress ( root ) at the base of the flexure was calculated using Equation 24.  
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C
I

tLLF rootflex

root
2

)( 21 
              (20) 

with Fflex calculated according to equation 13, C representing the stress concentration factor 

of the flexure root. As a steel flexure was to be used, setting a maximum allowable root  to 

50% the ultimate tensile strength of the material ensured a theoretical infinite fatigue life 

[18]. 

Pressure switch tests 

The pneumatic supply pressure on the tractor units of HGVs is typically 12 bar, it was 

therefore necessary for the bistable valve to operate at this pressure before any vehicle 

implementation could be carried out. Experimental pressure switch tests were carried on 

various valve and flexure design iterations to ensure that this design goal was met. In this test, 

the valve was subjected to a fixed pressure difference and the current in the coil was 

increased until the flexure switched pole pieces. Figure 7 shows the maximum switching 

pressure achieved relative to magnetomotive force generated by the coil (Amp-turns in the 

coil windings) for 3 different bistable valve designs. The main features of the different valve 

generations shown are as follows: 

(i) Generation 1: this is the original prototype presented by Miller in [19]. The flexure 

was flat and made of spring steel. The seal was formed between the pole-piece and 

flexure using an O-ring on the pole-piece face. 

(ii) Generation 2: this flexure design was also presented by Miller in [4]. ‘Finger’ 

components were incorporated into the flexure to provide additional flux carrying 

paths, while not affecting the bending stiffness of the flexure. 

(iii) Generation 3: this design once again incorporated additional ‘fingers’. These were 

cantilevered from the base of the flexure, reducing the overall mass of the moving 

part of the flexure. The flexure tip thickness was increased to carry more flux. The 

rubber seat was attached to flexure, allowing Dseal to be reduced relative to the 

previous valve generations. 

The improvements achieved by the additional fingers can be seen by comparing the 

generation 1 and generation 2 results. The additional improvements achieved by the 

generation 3 valve/flexure design can also be seen. The generation 3 prototype achieved a 

maximum switching pressure beyond 12 bar (higher pressures could not be tested due to 

limitations in the compressed air supply). Its results also have a much steeper gradient than 
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those obtained for the other two valves. This is due to the reduction of Dseal in the revised 

rubber seat design which required less force to lift the flexure from the seat at a given 

pressure.  

Predicted Fcoil values obtained from equations 6-11 for the generation 1 and generation 3 

flexures are superimposed on Figure 7. The prediction for the flat flexure agrees well with the 

saturation limit that can be seen as a ‘knee’ in the experimental results. For reference, the 

magnetomotive force corresponding to a 100 turn (a feasible number of windings that could 

fit around the flexure in the bistable valves), 2Ω coil, operating at 24V is also shown on 

Figure 7 at approximately 1200 A-t. HGVs typically use 24V batteries, so any commercial 

bistable valve system would need to be able to run at this voltage. Clearly the generation 1 

and 2 designs are well below the required maximum switch pressure (12 bar) at this point. By 

contrast the generation 3 valve should be able to switch 12 bar at 24V.  

The preceding sections of this paper have presented various simplified models which can be 

used to estimate the performance of a bistable valve design. Figure 8 shows a flow chart of 

the design process, using these equations, to design a bistable valve to meet arbitrary 

performance metrics. The process is separated into two main steps; first the magnetic 

requirements are met by choosing appropriate flexure tip dimensions. Then, flexure root 

dimensions are selected to achieve the desired mechanical performance metrics. As can be 

seen in Figure 8 the process may require some iteration if the desired valve specifications 

cannot be met while ensuring an infinite flexure fatigue life. 

Closed loop pressure control 

Two separate 2-2 valves are required to modulate air pressure at the brake chamber. In a 

conventional pneumatic ABS system, this type of valve manifold is referred to as an ABS 

modulator valve (shown in Figure 1). A CAD model of the bistable modulator assembly 

(housing 2 valves) is shown in Figure 9; the inlet and outlet valves, along with the pneumatic 

flow paths into and out of the brake chamber, are clearly shown. The size of this assembly is 

comparable to a conventional ABS modulator valve, allowing the valves to be mounted close 

to the brake chamber. 
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Pressure controller details 

A flow diagram of the control tasks carried out by a local wheel-slip control module is shown 

in Figure 10. As can be seen in the figure, the pressure controller receives pressure demands 

from a wheel slip controller, which is designed to track the maximum available adhesion 

force between the tyre and road. For more detail regarding the slip control and Fx observer 

blocks shown in Figure 10 please refer to [20]. The pressure control and pressure observer 

blocks are presented in more detail below. 

Flow through each of the bistable valves is controlled via pulse-width-modulation (PWM), 

where the mark-space ratio (RMS) of each valve governs how long they spend open during a 

particular control cycle; for example, when RMS  = 0.75, a valve will be open for 75% of a 

single control cycle. RMS is recalculated at the start of each control cycle; a cycle time of 

20ms was used for the bistable valves in the work described here. 

A simple proportional pressure controller was used to define the desired mark-space ratio 

(RMS) for the inlet and outlet valves, using the following relationship: 

)( cdempressMS PPkR             (21) 

where Pc is the brake chamber pressure, Pdem is the demand pressure and kpress is a tuning 

gain. Here, positive RMS values correspond to an inlet valve demand, and negative RMS 

corresponding to an outlet valve demand. Two physical changes were made relative to the 

system used with the earlier bistable valves [16]. Firstly, the main pressure control 

calculation and the PWM parts of the controller were implemented in a single digital 

microprocessor, as opposed to the analogue circuitry used in [16]. This change enabled more 

flexibility in the control algorithms, and reduced the number of electrical components at the 

wheel station, since the same microprocessor could be used for slip control calculations. The 

second change was the repositioning of the pressure transducer. In previous HiL testing [4] 

the pressure transducer was mounted to a second port on the brake chamber. This provided a 

direct measurement of brake chamber pressure (Pc). However, HGV brake chambers that also 

incorporate spring-brakes (which are common to most vehicles) only have a single inlet port, 

making mounting a pressure transducer in this configuration impossible. Including the 

pressure transducer in the valve enclosure assembly was seen as a more elegant solution, 

allowing the new valve block assembly with integral pressure transducer to be fitted to a 
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range of different brake chambers. The pressure transducer location is marked on the CAD 

model of the valve enclosure shown in Figure 9.  

Preliminary testing 

Preliminary testing of the pressure controller identified a potential problem with the new 

system layout. Simulations of the original analogue pressure controller by Miller et al [4], had 

suggested that the minimum proportional gain (kpress) needed to be close to 2x10
-5

Pa
-1

 in 

order to achieve a control bandwidth above the typical HGV wheel-hop frequency (12.5Hz) 

[4]. A gain of 1.5x10
-5

Pa
-1

 was achieved during the HiL testing in [4].  

Figure 11 shows the pressures in the valve block enclosure and brake using a kpress = 1.5x10
-

5
Pa

-1
 with the new bistable valve hardware. Excessive ‘chatter’ can be seen, as well as a clear 

difference between Pencl (the valve block enclosure pressure used in the pressure control 

calculations) and the actual brake chamber pressure (Pc). The large spikes in enclosure 

pressure seen in Figure 11 are due to the throttling of air through the restrictions between the 

bistable modulator and the actual brake chamber and the dynamics of the air volume between 

the modulator and the brake chamber.  

A chamber pressure observer was proposed to estimate Pc from the measured pressure in the 

valve enclosure. This is presented in the following section. 

Chamber pressure observer 

Detailed models of the air flow through the bistable valves, as well as the brake chamber’s 

volume versus pressure characteristics, were presented in [4]. These provided a good 

understanding of the brake chamber’s response to changes in valve state.   

Flow through each of the bistable valve orifices was estimated using one-dimensional fluid 

flow theory, as described in detail in [16,20]. The governing equations are presented below: 

    𝑚̇𝑣 = 𝑆𝑣𝐶𝑓𝐴𝑣𝐶1
𝑃𝑢

√𝑇𝑐ℎ𝑎𝑚
     if    (choked)       (22) 

𝑚̇𝑣 = 𝑆𝑣𝐶𝑓𝐴𝑣𝐶2
𝑃𝑢

√𝑇𝑐ℎ𝑎𝑚
(
𝑃𝑑

𝑃𝑢
)

1

𝛾√1 − (
𝑃𝑑

𝑃𝑢
)

𝛾−1

𝛾
   if 

cr

u

d p
P

P
   (non-choked)     (23) 

where the subscript v corresponds to either the inlet (in) or outlet (out) valve, Sv is the valve 

state (open = 1, closed = 0), Cf is the valve discharge coefficient (determined experimentally 

cr

u

d p
P

P

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by Miller in [19]), Av is the cross-sectional area of the valve orifice, Pu is the upstream 

pressure, and Pd is the downstream pressure. C1 and C2 are constants defined by: 

 ;       (24) 

pcr is the critical pressure ratio,  defining when the air flow through the orifice is choked or 

non-choked, and is calculated by the equation 26. 

5.0
1

2 1


















crp for air        (25) 

The air within the brake chamber volume was modelled as a polytropic gas of the form 

PV
α
=const, where P and V are absolute pressure and volume respectively. Brake chamber 

pressure was therefore described by the following relationship: 

(𝛼𝑖𝑛𝑚̇𝑖𝑛 − 𝛼𝑜𝑢𝑡𝑚̇𝑜𝑢𝑡) =
𝑉𝑐𝑃̇𝑐

𝑅𝑇𝑐
+

𝛼𝑐𝑉̇𝑐𝑃𝑐

𝑅𝑇𝑐
        (26) 

where  Vc is the chamber volume, R is the gas constant for air and Tc is the brake chamber 

temperature. 

In order to design a suitable brake chamber pressure observer, the existing brake chamber 

model (equations 23-27) was extended to include an additional restriction, Cc, and an 

additional valve block enclosure volume, Vencl  (these are shown schematically in Figure 9). 

Cc and cross-sectional area, Ac, were obtained via experiment and direct measurement 

respectively. 𝑚̇𝐶 (the mass flow rate of air into the brake chamber) was calculated using the 

flow equations presented in equations 23-26, with Sv (valve state) set to 1. Valve enclosure 

pressure (Pencl) was modelled by the following equation: 

  (𝛼𝑖𝑛𝑚̇𝑖𝑛 − 𝛼𝑜𝑢𝑡𝑚̇𝑜𝑢𝑡 − 𝛼𝑐𝑚̇𝑐) =
𝑉𝑒𝑛𝑐𝑙𝑃̇𝑒𝑛𝑐𝑙

𝑅𝑇𝑒𝑛𝑐𝑙
      (27) 

where Vencl was assumed fixed, and taken directly from the CAD model of the valve 

enclosure. The Tencl and α values here correspond to the valve block enclosure temperature 

and the polytropic flow constants respectively.  

Equations 23-28 were combined to create a simple non-linear pressure observer, based on an 

observer design presented by Bigras and Khayati in [21]. The general observer structure was 

as follows: 

1

1

1
1

2 























R
C

)1(

2
2








R
C
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[
𝑃̇𝑐

𝑃̇𝑒𝑛𝑐𝑙
] = [

𝛼𝑐𝑅𝑐𝑇𝑐

𝑉𝑐(𝑃𝑐)
𝑚̇𝑐

𝑅𝑇𝑒𝑛𝑐𝑙

𝑉𝑒𝑛𝑐𝑙
(𝛼𝑖𝑛𝑚̇𝑖𝑛 − 𝛼𝑜𝑢𝑡𝑚̇𝑜𝑢𝑡 − 𝛼𝑐𝑚̇𝑐)

] + [
𝐾𝑐
𝐾𝑒𝑛𝑐𝑙

] (𝑃𝑒𝑛𝑐𝑙 − 𝑃̂𝑒𝑛𝑐𝑙) (28) 

where states with a ‘^’ represent estimates, and Kc and Kencl are observer gains. The Pencl 

signal shown is the sensor signal obtained from the pressure transducer. Several assumptions 

and simplifications were made here, so that real-time implementation was feasible. Variable 

brake chamber volume was only included in the Vc term. The 
cVterm, which was included in 

[4], was neglected here to reduce computational load. This simplification introduced some 

inaccuracies in the plant model. The resulting error was, however, considered acceptable as  

𝑃𝑐𝑉̇𝑐 and 𝑉𝑐𝑃̇𝑐 values calculated for a typical for a chamber fill process (equation 27) indicated 

that the later term was generally around 2 orders of magnitude larger than the former. All 

mass flow rate terms were implemented as pre-calculated look-up tables relative to the ratio 

Pd /Pu (via equations 23-26).  

The observer gains (Kc and Kencl) were iteratively tuned by post-processing data obtained 

from HiL experiments. Sample results obtained from the observer are shown in Figure 12a 

and Figure 12b, for chamber fill and exhaust cycles respectively. Agreement between the 

actual and observed states is good. Figure 13 shows the closed loop response of the pressure 

controller to a step pressure demand, using the estimated pressure as the feedback signal for 

the digital pressure controller. The actual brake chamber pressure data shown is only included 

as a reference. Comparing Figure 13 to Figure 11, a significant improvement in controller 

stability can be seen. The chattering seen in the earlier case has been removed completely and 

the controller now takes approximately 50ms to reach steady state (as opposed to 200ms for 

the same pressure controller without an observer). 

Fault Detection 

In addition to improving the pressure control response of the bistable valve system, the 

chamber pressure observer can also be used to detect faults. The enclencl PP ˆ  term in equation 

29 provides a measure of how well the measured valve enclosure pressure agrees with the 

expected value, given the current valve state demands. Monitoring this term can therefore 

identify failures relating to both bistable valve hardware (e.g. a blocked valve orifice) and the 

high-current valve drive electronics (e.g. a blown transistor). One advantage of this type of 
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fault detection strategy is that the error term is already calculated during the pressure observer 

calculations, so very little additional computational capacity is required to check for faults.  

During the vehicle tests carried out in [5] the fault detection strategy discussed above was 

implemented in real-time. The enclencl PP ˆ  term was passed through a simple first-order filter 

with a 0.1 second time constant to reduce the chance of false positive fault detections during 

pressure transients. An error threshold of 0.5 bar was then used to trigger a ‘fault detected’ 

flag which could be used for safety intervention if needed. An example of the fault detector 

correctly identifying a problem during a constant pressure demand commissioning test is 

shown in Figure 14. As can be seen, the brake chamber at wheel 1 did not fill correctly in this 

case (due to a failure in the drive circuit electronics). The failure was correctly identified by 

the fault detector within 0.1 seconds. 

Hardware-in-the-loop testing: bandwidth comparisons 

To control slip in the presence of the wheel-hop vibration mode, a control bandwidth of at 

least 12.5Hz is required [4]. Figure 15 shows sample pressure traces of the generation 2 and 

generation 3 bistable valves attached to brake chambers, responding to a 10Hz pressure 

demand. The response of a conventional HGV EBS system is also shown for reference. The 

conventional hardware is not capable of following the sinusoidal brake pressure demand at 

this frequency. The bistable valves achieve significantly better pressure demand tracking, 

with the generation 3 showing much better performance than generation 2.  

Miller et al [4] used a sinusoidal chirp signal of 0.75bar amplitude, centred about 4bar 

(absolute pressure), to estimate the bandwidth of the bistable valve pressure control loop. The 

amplitude and offset of the chirp signal were chosen to represent a typical ABS or slip control 

stop on a low to medium friction road. Identical tests were carried out with the generation 3 

system to enable a direct comparison against the previous generation system.  The pressure 

demand chirp signal lasted 30 seconds and spanned a frequency range of 0.5-50Hz. The same 

tests were also carried out with a conventional EBS system as a baseline comparison.  Figure 

16 shows the frequency response (as a Bode plot) of the three systems for frequencies 

between 1 and 50Hz. The generation 3 results shown here correspond to the ensemble 

average responses of 6 prototype valve enclosures. The results for the generation 2 system 

correspond to the tests carried out by Miller et al in [4]. For linear systems, the bandwidth is 

defined as the frequency at which a 3dB drop in gain occurs. These points are marked on 
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Figure 16. By this measure, the generation 3 valve has a bandwidth of 20Hz while 

conventional valves have a bandwidth of 6Hz. As the system is highly nonlinear, a more 

realistic measure of bandwidth is the frequency where a 45
o
 lag in phase occurs (which for 

linear systems would correspond to the -3dB frequency). These are also marked on Figure 16, 

with the generation 3 system achieving an apparent control bandwidth of just over 10Hz. This 

is significantly higher than both the conventional EBS (1.5Hz) and generation 2 bistable 

valves (6Hz).  

Conclusions 

(i) Experimental results show that a simplified magnetic model, which assumes 

magnetic flux through the magnetic circuit is limited by saturation in one or more 

components, can be used to correctly predict the magnetic hold force and 

maximum switching force of a bistable pneumatic valve. 

(ii) A bistable valve flexure and seat design that incorporates a ‘thick tip’ and 

additional magnetic flux channelling components can meet the necessary 

performance criteria for implementation in a conventional heavy goods vehicle 

(HGV) pneumatic brake system, (12bar maximum supply pressure, 8mm orifice 

diameter and 24V operation). These performance criteria were not met by previous 

bistable valve designs. 

(iii) A pressure observer that includes a non-linear pneumatic model of a brake 

chamber and its orifices can be used to accurately predict brake chamber pressure 

with a pressure transducer located at some distance upstream from the brake 

chamber. This facilitates precise control of pressure in the brake chamber. 

(iv) The error term included in a brake chamber pressure observer can be used to 

identify faults in bistable valve hardware and electronics on a real vehicle while 

requiring very little additional computational capacity. 

(v) Closed loop pressure control tests indicate that a bistable ABS modulator valve 

connected to a brake chamber with a digital pressure controller can achieve a 

pressure control bandwidth of 10Hz, significantly higher than conventional HGV 

EBS hardware (1.5Hz) and a previous-generation bistable valve system (6Hz). 
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Figures 

 

Figure 1: Schematic showing typical heavy goods vehicle (HGV) electronic brake system 

(EBS)  layout [22]; (1) EBS central module, (2) Trailer control valve, (3)Two channel axle 

modulator, (4) Electronic proportional relay valve, (5) ABS modulator valve, (6) Foot valve, 

(7) Pneumatic relay valve, (8) Redundancy valve, (9) Park brake control, (10) Compressed 

air storage tanks. 
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(b) 

Figure 2: A bistable pneumatic valve; (a) prototype used in vehicle tests [5], (b) schematic 

showing single bistable valve in an enclosure 
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Figure 3: Forces acting on bistable valve flexure 
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Figure 4: Magnetic flux paths predicted through early bistable valve concept using FEA 

simulation [6]. Red and blue regions correspond to high and low values of magnetic flux 

density respectively. 
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Figure 5: Flux paths through flexure tip; (a) Coil inactive, flexure held to pole-piece, (b) Coil 

active, flexure released. Effective areas A1-A3 are shown schematically by shaded bars. 
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thickness’ case – difference in force corresponds to Fcoil 

Zone 1 Zone 2 Zone 3 

Dpole Dpole 

 

Figure 6: Influence of pole-piece focussing and flexure tip thickness on magnetic hold force 

(Fmag ) of a bistable valve. 0mm flexure corresponds to case where no flux travels through 

flexure back to the yokes (A2 in Figure 5) 
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Figure 7: Maximum valve switching pressure, comparing various bistable valve designs 
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Figure 8: General bistable valve design process 
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Specify the following performance criteria: 

1. Desired orifice cross sectional area 

2. Maximum supply pressure 

3. Maximum allowable switching delay 

Calculate F
coil

 required to switch (equation 2) 

Calculate required flexure tip thickness and 

pole-piece diameter (equations 4-11) 

Search for combination of L
1
 and t

root
 that 

achieve: 

1. F
flex

 = 0.8F
mag

 to ensure flexure holds to 

magnet (δ
flex 

 calculated by equation 14, 

F
flex

 calculated by equation 13) 

2. 2π/ω
1
 ≤ maximum switching delay 

(equation 19, calculating J
tip

 and L
2
 from 

tip thickness and pole-piece diameter 

defined in previous step) 

Manufacture and test prototype. Fine tuning of 

F
mag  

can be achieved by machining material 

off pole piece surface 

Check flexure root stress (equation 21)  
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Figure 9: Generation 3 bistable valve enclosure and brake chamber model used in brake 

chamber pressure observer 
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Figure 10: Local wheel controller flow diagram for slip control system with bistable valve 

hardware 

 

  

Page 28 of 36

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

         

 

 

29 

 

 

 

 

 

Figure 11: Preliminary pressure controller performance, generation 3 valve enclosure (kpress 

= 1.5x10
-5

Pa
-1

) 
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(a) (b) 

 

Figure 12: Brake chamber pressure observer performance: (a) Chamber fill, (b) Chamber 

exhaust 
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Figure 13: Closed loop pressure control performance of generation 3 valve enclosure, brake 

chamber pressure observer active (kpress = 1.5x10
-5

Pa
-1
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Figure 14: Fault detection during vehicle pressure control commissioning; (a) Brake 

chamber pressures, (b) Error measurements generated by brake chamber pressure observer 

 

(a) 

(b) 

Fault on wheel 1 

correctly 

identified 

Error threshold 
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(a) 

(b) 

(c) 

 

Figure 15: Pressure controller performance, response to 10Hz sinusoidal pressure demand: 

(a) Conventional EBS hardware, (b) Generation 2 bistable valve system, (c) Generation 3 

bistable valve system 
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Figure 16: Frequency response obtained from conventional EBS and generation 2 and 

generation 3 bistable valve systems using HiL test rig (dashed lines indicating bandwidth) 
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