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Abstract: Chiral cations have been used extensively as organocatalysts but their application to 

rendering transition metal catalyzed processes enantioselective remains rare. This is despite the 

success of the analogous charge-inverted strategy in which cationic metal complexes are paired 10 

with chiral anions. We report here a strategy to render a common bipyridine ligand anionic and 

pair its iridium complexes with a chiral cation derived from quinine. We have applied these ion-

paired complexes to long-range asymmetric induction in the desymmetrization of the geminal 

diaryl motif, located on a carbon or phosphorus center, by enantioselective C-H borylation. In 

principle, numerous common classes of ligand could likewise be amenable to this approach. 15 

One Sentence Summary: Chiral cations are used to induce asymmetry in a challenging, long-

range, transition metal-catalyzed C-H activation reaction. 

Main Text:  

Ion-pairing has been put to extensive use as a key design feature in the field of asymmetric 

catalysis (1). In the 1980s, pioneering studies on enantioselective phase-transfer catalysis paired a 20 

chiral cation with a reactive anionic intermediate in the enantiodetermining transition state (2), 

with cinchona alkaloid-derived cations dominating as effective and readily-accessible scaffolds 

(3). The numerous subsequent developments in this area have had enormous impact in the field of 

asymmetric organocatalysis, encapsulating such important transformations as Michael and aldol 

additions, as well as Mannich, fluorination, alkylation, and oxidative cyclization reactions, to name 25 

but a few (4-7) (Figure 1A, left panel). Over the last decade, the inverse strategy of using a chiral 

anion to associate with a cationic reaction intermediate has also proven extremely successful (1, 

8, 9). This latter strategy has been effective not only in an organocatalytic context (10, 11) but also 

in powerful combination with transition metal catalysts (12-14), cleverly capitalizing on the 

relatively common occurrence of cationic transition metal complexes in catalytic cycles. In 30 

contrast, it is far rarer to encounter anionic transition metal complexes as key intermediates. As 

such, the charge-inverted approach of pairing a chiral cation with an anionic transition metal 

catalyst has only been demonstrated in a handful of pioneering cases, notably asymmetric 

oxidation reactions involving anionic diphosphatobisperoxotungstate (15) and peroxomolybdate 

(16)  complexes as catalysts (Figure 1A, center panel) (17-21). Due to this scarcity of anionic metal 35 

complexes in the most commonly employed processes, the broader potential of uniting chiral 

cations with the versatile reactivity of transition metals has remained underexplored, despite the 

obvious potential presented by several privileged classes of chiral cation. Given the success of 

these motifs as chiral controllers in asymmetric organocatalysis (vide supra), a general strategy to 

integrate them with transition metal catalysis would likely have broad impact in the field of 40 

asymmetric catalysis.   
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In an important advance, which compellingly demonstrates this potential, Ooi and co-

workers incorporated a chiral cation covalently into the structure of a phosphine ligand, resulting 

in highly stereocontrolled formation of contiguous all-carbon quaternary stereocenters under 

palladium catalysis (Fig. 1A, right panel) (22, 23). At the outset of this project, we envisioned a 

potentially more generally applicable approach whereby an anionic handle is incorporated into a 5 

common ligand scaffold, providing the key point-of-interaction with the chiral cation (Fig. 1B). 

Judicious placement of this anionic group would be crucial to success – not close enough to the 

metal center to disrupt reactivity, but not so far that the chiral environment imparted by the cation 

would be ineffective. Various chiral cations could be introduced in the final step by simple ion 

exchange, allowing for rapid catalyst optimization. In pioneering work, Ooi and co-workers have 10 

previously demonstrated the productive combination of cationic ligands with chiral anions, as 

demonstrated effectively in enantioselective allylic alkylation (24, 25). We envisaged that, in 

principle, a wide variety of privileged ligand scaffolds for transition metal catalysis could be 

rendered anionic, creating exciting opportunities to explore the use of chiral cations as chiral 

controllers in a wealth of powerful transition metal catalyzed reactions.  15 

In seeking a rigorous and relevant test of the above-described approach, we targeted a 

transformation that lies at the cutting edge of what is currently possible in enantioselective 

catalysis. Whilst enantioselective, desymmetrizing C-H activation of arenes has been extensively 

explored with palladium (26, 27), rhodium (28, 29) and iridium (30, 31) catalysis, all but a single 

case functionalize at the arene ortho position (32). Only very recently did Yu and co-workers 20 

achieve enantioselective desymmetrization through direct arylation at the arene meta position 

(Figure 1, C) (33), taking advantage of an ingenious relay strategy via the ortho position, although 

relatively high loadings of the chiral norbornene mediator (CTM, 20-50 mol%) were required. C-

H borylation reactions have the useful attribute that the new C-B bond can undergo numerous 

diverse transformations (34, 35), but so far enantiocontrol in arene borylation has been realized 25 

only in two recent reports, from Shi, Hartwig and co-workers (30) and Xu, Ke and co-workers 

(31). In both cases the chiral information is covalently incorporated into the ligand scaffold in the 

conventional manner and a directing group guides borylation to the ortho position. In contrast, the 

creation of chirality over long ranges, where the enantiotopic site is far from the new stereocenter, 

is an outstanding challenge in which catalyst designs that incorporate non-covalent interactions 30 

offer unique opportunities (36-38).  
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Fig. 1. Strategy for incorporating chiral cations with transition metals. (A) Applications of 

chiral cations in asymmetric catalysis. (B) General strategy for integration of transition metal 

catalysis with chiral cations. (C) State-of-the-art in enantioselective remote C-H activation of 

arenes. (D) Our prior work controlling regioselectivity in arene borylation. (E) Summary of this 5 

work. 

We have recently developed anionic bipyridine ligands that bear a remote sulfonate group 

in order to impart control of regioselectivity in iridium-catalyzed C-H borylation via non-covalent 

interactions with the substrate (39-41). Throughout these studies, a single ligand scaffold 

consistently gave the optimal regiocontrol. In one particular study, we attributed the high 10 

regioselectivity for borylation at the arene meta position to the existence of a hydrogen bond 

between the substrate and the sulfonate group of the ligand in the regiodetermining transition state 

for C-H activation (Fig 1D) (40). We hypothesized that exchange of the achiral 

tetrabutylammonium counterion of the ligand for a chiral cation might allow enantioselective, 
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desymmetrizing C-H activation in a prochiral substrate (as in Fig. 1E). Herein we demonstrate 

that, using this approach, remote, enantioselective C-H borylation can be achieved for formation 

of chiral-at-carbon and chiral-at-phosphorous compounds, showcasing the thus far unexplored 

approach of combining a chiral cation with an anionic ligand for a reactive transition metal. 

We commenced our studies with symmetrical benzhydrylamide 2a (Fig. 2A). Numerous 5 

ion-paired ligands L·1, possessing a variety of chiral cations 1a–1i, could be readily obtained 

through counterion exchange. The chiral cations were all derived from dihydroquinine (DHQ) with 

varying N-benzyl substitution. At room temperature in tetrahydrofuran (THF) as solvent, low but 

encouraging levels of enantioselectivity were obtained with 3,5-di-tertbutyl and 3,5-dimethoxy 

benzyl groups (L·1a and L·1b, 31 and 30% ee). We next investigated placing substituted aromatic 10 

rings at the 3- and 5- positions of the quaternizing N-benzyl group. Encouragingly, L·1c (4-

CF3C6H4) gave increased enantioselectivity (39% ee) and L·1d  (3,4,5-F3C6H2) resulted in a 

further improvements (52% ee). Focusing attention on the meta positions of the outer arenes of the 

teraryl system, we then evaluated a series of substituents (L·1e  - L·1i). Trifluoromethyl (L·1e) 

and methoxy (L·1f) substitution again gave increases (both 60% ee), but the biggest gain came 15 

from the tert-butyl substituted L·1g (73% ee). At this point we investigated aryl groups in these 

positions to extend the reach even further, but both of these proved detrimental (L·1h and L·1i). 

Thus, we shifted our attention to other reaction parameters with L·1g. A solvent evaluation 

identified cyclopentyl methyl ether (CPME) and as being optimal in that the reaction temperature 

could be reduced to -10 oC whilst high reactivity was maintained, resulting in isolation of 3a in 20 

72% yield and with 96% ee, following oxidation to the corresponding phenol with H2O2 (see inset 

box). This derivatization aided separation from any remaining starting material or difunctionalized 

material. The undesired borylation of monoborylated 3a’ to give a symmetrical diborylated 

byproduct did occur to varying degrees in the reactions, being unavoidable at higher conversions. 

We thus carried out careful experiments to establish whether kinetic resolution may be occurring 25 

in such instances, resulting in possible enhancement of the observed ee of 3a’ at the end of the 

reaction. Evaluating ee of 3a’ at various levels of conversion as well as submitting racemic 3a’ to 

the enantioselective borylation conditions with L·1g showed that there is no appreciable kinetic 

resolution occurring (Figs. S1 and S2). Finally, we evaluated a ligand paired with a Maruoka-type 

chiral cation which gave racemic product, a variant of L·1g in which the quinine hydroxyl group 30 

is methylated, which gave a reduced ee of 72%, and a variant of L·1g in which the stereochemistry 

of the quinine hydroxyl group is inverted, which gave only 11% ee (see Supplementary Materials, 

Table S1 for full optimization details). A survey of N-protecting groups under the optimized 

conditions demonstrated that trifluoroacetyl is optimal, although acetyl also performed well (Fig. 

S3).  35 
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Fig. 2. Enantioselective desymmetrizing C-H borylation of benzhydrylamides. (A) Reaction 

optimization. (B) Scope of enantioselective borylation using L·1g in substrates bearing no 

regioselectivity challenge. (C) Examples in which catalyst is controlling regioselectivity and 5 

enantioselectivity. Yield values refer to isolated yields. Regioisomeric ratios (rr) were 
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determined from the crude 1H-NMR spectrum prior to isolation. Enantiomeric excesses (ee) 

determined by chiral HPLC or SFC analysis. 

We proceeded to examine the scope of the reaction in terms of versatile substituents on the 

substrate aryl rings (Fig. 2B). Post-reaction derivatization of the BPin facilitated purification and 

we used oxidation with hydrogen peroxide to give the corresponding phenols. We were pleased to 5 

find that halide substitution was very well tolerated in the enantioselective borylation. Chloro- 

(3b), bromo- (3d) and iodo- (3e) substituted arenes all delivered excellent levels of 

enantioselectivity, the latter being of particular note as it would likely be incompatible with 

palladium catalysis and is a testament to the mild conditions and functional group tolerance of 

iridium-catalyzed borylation. The N-trifluoroacetyl group could be replaced by acetyl with little 10 

drop in ee, as demonstrated on substrate 3c. The absolute stereochemistry of compound 3e was 

determined by x-ray crystallographic analysis and all other compounds were assigned by analogy 

with this. Further variation of substituents revealed that trifluoromethoxy (3f), ester (3g) and nitrile 

(3h) were all well-accommodated at the 3-position of the substrates. We also examined vicinally 

dichlorinated (3i) and difluorinated (3j) substrates, which both worked effectively. Substrates 15 

bearing electron donating substituents exhibited lower reactivity under our conditions – 3-methoxy 

gave no conversion and 3-methyl gave <5% conversion, likely due to the reaction temperatures 

being lower than those typically used in C-H borylation. Performing the reactions at room 

temperature gave conversion, but with moderate enantioselectivity (Fig. S4). The substrates 

examined so far have all presented no regioselectivity challenge, due to the well-established 20 

preference for C-H borylation at the least hindered arene position (42). Given that the sulfonated 

bipyridine ligand scaffold was originally designed for the purpose of controlling regioselectivity 

in substrates that would typically be non-selective, we were keen to evaluate whether L·1g would 

be able to control both of these important selectivity factors for a substrate that possessed ortho-

substituted aromatic rings (Fig. 2C) (40). We were concerned that the introduction of ortho 25 

substituents may significantly change the preferred substrate conformation, potentially impacting 

on crucial interactions with the chiral cation. Also, it was possible that the complex chiral cation 

might disrupt the regioselectivity that we had previously observed when using 

tetrabutylammonium as cation. However, we were delighted to find that an ortho-chloro substrate 

gave the meta-borylated product 3k with excellent regioselectivity (10:1 rr) and only a small 30 

reduction in enantioselectivity (85% ee). In contrast to this, the control borylation with standard 

borylation ligand dtbpy resulted in a 1.6:1 ratio of regioisomers (Fig. S5). An ortho-bromo 

substrate performed similarly (3l), as did an ortho-CF3 (3m) and ortho-OCF3 (3o). We also 

examined a meta-fluoro substrate which presents regioselectivity challenges using standard 

ligands due to the small size of the fluorine atom (42), but with L·1g high regioselectivity was 35 

observed (3n). In addition, we carried out preliminary experiments with non-symmetrical 

substrates to assess the viability of using the reaction in kinetic resolution mode. These showed 

that it is indeed viable, although further investigations and optimization are likely required to 

enable this to be a general procedure (Fig. S6). 

At this stage, we envisaged that a compelling demonstration of the potential of this 40 

approach would be to successfully apply it to a different class of compound entirely. For this 

purpose, we identified symmetrical diarylphosphinamides which contain a prochiral, 

configurationally stable phosphorous atom at the heart of the compound. We reasoned that such 

substrates would test our chiral cation directed C-H borylation strategy in tackling an additional 

prominent challenge to synthetic chemists – that of how to synthesize P-chiral compounds in a 45 

catalytic asymmetric manner (43). Whilst there are several recently reported methods for 
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enantioselective desymmetrizing C-H activation of phosphinamides using chiral Pd and Rh 

complexes, both result in ortho-functionalized products (44, 45). Given the broad utility of P-

chiral compounds in catalysis as well as increasingly in medicinal chemistry, we envisaged that 

remote desymmetrization would be of substantial practical utility (46). We were pleased to observe 

that a symmetrical phosphinamide, bearing a para-methoxy phenyl group on the phosphinamide 5 

nitrogen, was borylated to give 3p with 90% ee using ligand L·1g, which had been optimal for the 

benzhydrylamide substrate class (Fig. 3). X-ray crystallographic analysis of 3p showed that this 

product had analogous absolute stereochemistry to that obtained in the amide series, relative to the 

position of the NH hydrogen bond donor.  Experiments stopped at various conversions 

demonstrated that secondary kinetic resolution to form diborylated product is not contributing to 10 

the observed high enantioselectivity (Fig. S7). N-substitution was found not to be limited to 

aromatic moieties, as demonstrated by N-tert-butyl substituted 3q (95% ee). As in the amide 

substrate class, a variety of useful functional groups were tolerated on the aromatic ring, 

encompassing bromide (3r), ester (3s), iodide (3t), trifluoromethoxy (3u), trifluoromethyl (3v) and 

nitrile (3w). In some cases, yields are modest due to poor substrate solubility under the reaction 15 

conditions (as in 3s). There are numerous established avenues for the manipulation of the 

phosphinamide functional group in a stereospecific manner, such as to tertiary phosphine oxides, 

which have been amply demonstrated elsewhere (44).  To test whether the catalyst may be able to 

influence both regioselectivity and enantioselectivity in this substrate class we tested an ortho-

substituted symmetrical phosphinamide but found that both outcomes were poor (Fig. S8). We 20 

speculate that this may arise due to the ortho-substituted aromatic ring and bulky nature of the 

quaternary phosphorous center, relative to the benzhydrylamide, having a conformational impact 

on the substrate that adversely affects crucial substrate-ligand interactions.  
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Fig. 3. Substrate scope of the enantioselective C-H borylation of diaryl phosphinamides. 
Yield values refer to isolated yields.  

 

For both classes of compounds demonstrated, the C-H borylation products typically 5 

possess three versatile functional groups on the aromatic rings for further elaboration into complex 

scaffolds, at the heart of which lies the newly formed stereocenter. By virtue of the 

desymmetrization strategy employed, two of these functional groups must necessarily be identical 

and we sought to demonstrate that site-selectivity between these in the product should be possible 

in many instances by electronic differentiation arising from introduction of the new substituent. In 10 

the first example, we carried out borylation and oxidation of dichloride 2b to give the phenol 3b 

with good yield and high enantioselectivity (Fig 4A, upper scheme). By carrying out Suzuki-

Miyaura coupling on 3b in the presence of one equivalent of tetrabutylammonium hydroxide, we 

were able to achieve >20:1 site selectivity for cross-coupling on the non-phenolic aromatic ring. 

We anticipate that this is a result of the highly electron-rich nature of the in situ generated 15 

phenolate disfavoring oxidative addition to the C-Cl bond on the same ring. In the second case, we 

carried out borylation of diester 2g followed by cyanation to obtain 6 (Fig 4A, lower scheme)(47). 

Careful treatment of 6 with NaOH selectively hydrolyzed the ester on the same ring as the nitrile 
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due to electronic factors that can be readily rationalized and predicted using substituent Hammett 

parameters (48), giving 7 in >20:1 rr after amide coupling.   

To emphasize the practicality of our process, we demonstrated borylation using ligand 

L·1j, possessing a diastereomeric chiral cation derived from quinidine, the pseudoenantiomer of 

quinine. This proceeded smoothly giving (R)-3a with 90% ee (Fig. 4B). Next, we performed 5 

experiments to probe the hydrogen bonding interaction of substrate with ligand. The N-methylated 

variant (2x) of successful substrate 2d underwent no borylation under the optimized conditions at 

-10 oC and the temperature had to be raised to +10 oC to obtain product, which was found to have 

only 8% ee (Fig. 4C). This outcome highlights the importance of the hydrogen bond donor in the 

substrate for both reactivity and selectivity, in line with our initial hypothesis (Fig. 1E). We also 10 

performed an experiment in which ion-paired ligand L·1g was replaced with neutral 

5,5’dimethylbipyridine (8) together with the optimal chiral cation as its bromide salt (Br·1g). The 

product was racemic, demonstrating the requirement for ligand and chiral cation to be associated 

to achieve enantioinduction. We also ran a reaction in which ligand L·NBu4, bearing achiral 

tetrabutylammonium as cation, was used in conjunction with Br·1g. In this case, 58% ee was 15 

obtained in the product, consistent with some degree of counterion exchange occurring between 

the two, leading to moderate enantioinduction.  

We have demonstrated a strategy for pairing privileged chiral cations with an iridium-

bipyridine complex, enabled by substitution of an anionic sulfonate group to the ligand scaffold. 

In principle, numerous widely-used transition metal catalyzed reactions could be amenable to this 20 

approach, as evidenced by the numerous common ligand classes that have been sulfonated for the 

purpose of engendering water solubility (49). We anticipate that wider incorporation of chiral 

cations into mainstream transition metal catalysis could have broad implications in asymmetric 

organic synthesis. 

 25 



Submitted Manuscript: Confidential 

10 

 

 

Fig. 4. Product elaboration and further experiments. (A) Use of arene electronics to control 

site-selective derivatization of reaction products. HATU, hexafluorophosphate azabenzotriazole 

tetramethyl uronium. (B) Use of a pseudoenantiomeric chiral cation to form (R)-3a. (C) Control 

experiments to probe ligand-substrate interactions. (D) Control experiments to probe ligand-5 

cation interactions. Yield values refer to isolated yields 
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