
An Adversarial Approach to Private Flocking in Mobile Robot Teams

Hehui Zheng1, Jacopo Panerati2, Giovanni Beltrame2, Amanda Prorok1

Abstract— Privacy is an important facet of defence against
adversaries. In this letter, we introduce the problem of private
flocking. We consider a team of mobile robots flocking in
the presence of an adversary, who is able to observe all
robots’ trajectories, and who is interested in identifying the
leader. We present a method that generates private flocking
controllers that hide the identity of the leader robot. Our
approach towards privacy leverages a data-driven adversarial
co-optimization scheme. We design a mechanism that optimizes
flocking control parameters, such that leader inference is
hindered. As the flocking performance improves, we succes-
sively train an adversarial discriminator that tries to infer the
identity of the leader robot. To evaluate the performance of
our co-optimization scheme, we investigate different classes of
reference trajectories. Although it is reasonable to assume that
there is an inherent trade-off between flocking performance and
privacy, our results demonstrate that we are able to achieve
high flocking performance and simultaneously reduce the risk
of revealing the leader.

I. INTRODUCTION

To date, with the exception of a few recent works
(e.g., [1]–[3]), the topic of privacy remains poorly addressed
within robotics at large. Yet, privacy can be an important
facet of defence against active adversaries for many types of
robotics applications. Using privacy as a defence mechanism
is particularly relevant for collaborative robot teams, where
individual robots assume different roles with varying degrees
of specialization. As a consequence, specific robots may be
critical to securing the system’s ability to operate without
failure. Our premise is that a robot’s motion may reveal
sensitive information about its role within the team. To
avoid threats that arise when the roles can be determined
by adversaries, we need methods that ensure the anonymity
of robots when their motion can be observed.

In this work, we are interested in achieving flocking behav-
ior with private leaders, where privacy refers to preventing
the inference of the leader’s identity, based on observable
motion behavior. Although classical privacy schemes, such
as differential privacy, are now increasingly deployed on
continuous control problems [4], they require knowledge of
the output distribution of the dynamical system. Even though
it is straightforward to define a basic flocking control scheme,
and even sample results from its output distribution through
simulation, there are no readily available analytical models
that could be used to represent this distribution.

For this reason, we choose an approach towards privacy
that leverages data-driven adversarial co-optimization. In

1Hehui Zheng and Amanda Prorok are with the Department of Computer
Science and Technology, University of Cambridge, Cambridge, United
Kingdom {hz337, asp45}@cam.ac.uk

2Jacopo Panerati and Giovanni Beltrame are with the
Department of Software and Computer Engineering, Polytechnique
Montréal, Montréal, Québec, Canada {jacopo.panerati,
giovanni.beltrame}@polymtl.ca

specific, we design a mechanism that optimizes flocking
control parameters, such that the risk of leader inference
is minimized. As the flocking performance improves, we
train an adversarial discriminator that tries to infer the
identity of the leader. To evaluate the performance of our
co-optimization scheme, we investigate three complementary
classes of reference trajectories (line, sine, and chevron).

A. Background
Flocking is a class of formation control algorithms that

rely on velocity synchronization and regulation of relative
distances within a group of mobile robots [5]. The aim of
formation control is to drive multiple robots to satisfy certain
constraints on their physical position, using local or limited
information [6]. Movement in formation is crucial for a wide
variety of robotics applications including surveillance [7],
transportation [8], space flight control [9], and environmental
monitoring [10]. The problem varies greatly depending on
the desired topology of the formation, and the sensing and
communication capabilities available to the robots. Given
these varying constraints and the complexity of the problem,
a vast number of formation control schemes have been
proposed, e.g., [5], [6], [11]–[14].

Formation control schemes generally fall into three
classes: (i) leader-follower schemes, (ii) virtual structure
schemes, and (iii) behavioral formation control schemes.
Leader-follower schemes designate one or more robots as
leaders and give them access to the desired trajectory of the
formation [13], [15]. The followers use local information
about the leader’s position and kinematics to maintain a
specified offset that forms the desired formation.

In virtual structure schemes, the robot team is considered
a single object with a designated trajectory. Each robot then
uses this information in addition to local information in
order to plan its own motion. These schemes often involve
consensus algorithms to drive the robots’ states to a common
value [11]. In particular, virtual leader approaches [16]–[18]
have the robots agree on the position of a virtual robot, which
is then treated as a leader in some leader-follower algorithm.

Behavioral formation control schemes assign simple be-
haviors, such as cohesion and collision avoidance, to indi-
vidual robots, with the aim of creating an emergent forma-
tion [12], [19]–[21]. A well-known example of this scheme
is flocking, which is typically deployed in larger robot
teams [22]. The movement of the team can be directed by
a tacit leader [23], which is a robot that does not explicitly
identify itself as a leader to other robots. Instead, it follows
a reference trajectory itself, and thus, due to flock cohesion,
causes the group to move with it in the desired direction.

As evident from the overview above, formation control
schemes are vulnerable when they rely on robots with vary-
ing degrees of responsibility. The most obvious case is found

ar
X

iv
:1

90
9.

10
38

7v
3

 [
cs

.R
O

]
 2

4
Ja

n
20

20
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/288348036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in control schemes that leverage explicit or tacit leadership.
If the leader is compromised, the entire formation can be
led astray or stopped. While virtual structure approaches do
not have designated leaders, it is nevertheless common for
only several robots to directly receive trajectory commands,
distributing this information amongst the others through
local communication. This means that specific robots may
act as gate-way nodes, receiving control information before
other robots do. If these key robots can be identified and
compromised by an adversary, the mission of the robot team
can be easily disrupted.

B. Contributions

There is a dearth of research specifically tackling the
problem of role privacy for individual robots participating in
a formation control scheme. In this work, we address this gap
by introducing the problem of flocking with private leaders.
More specifically, we provide the following contributions:
• We formulate the problem of flocking in homogeneous

mobile robot teams with private leaders.
• We develop an adversarial co-optimization method.
• We provide a study of the relation between flocking and

privacy performance, and analyze the ensuing trade-off.
The following section summarizes related work. Section III
introduces the problem, and Section IV presents our method-
ology. In Section V, we provide simulations to exhibit
the behavior of the proposed co-optimization scheme, and
discuss the impact on the flocking performance. Finally,
Section VI concludes the article and draws directions for
future research.

II. RELATED WORK

Although privacy has not traditionally featured as part of
robotics research, several works have appeared in this domain
in the last few years. In particular, the problem of motion
planning and tracking under privacy has been a subject of
focused study. In [3] and [24], the authors consider the prob-
lem of generating a target tracking policy that simultaneously
preserves the target’s privacy. The work deals with a powerful
adversary, who is interested in computing the location of
the target, and is assumed to have access to the full history
of tracking information. Tsiamis et al. [25], too, consider a
tracking problem. A robot is commanded to track a desired
trajectory, which is transmitted through a communication
channel that can be compromised by eavesdroppers. They
design secure communication codes to encode the trajectory
information and hide it from the eavesdroppers. In [26]
and [27], attackers can spoof the sensor readings and control
inputs of a robot. The authors demonstrate the existence of
undetectable attacks as well as safe trajectories.

Our work differs from the aforementioned works. Com-
pared to [25], we do not focus on the aspect of information
transmission. Our adversarial model is similar to the one
in [3], which assumes an adversary that has access to a
history of trajectory information. Yet, we consider a distinct
problem setting, where multiple robots are involved. In
particular, our goal is to provide role privacy; thus, we tackle
the problem of preventing an adversary from being able to
distinguish the role of one robot from that of another.

The issue of role privacy was explored to some extent in
prior work [28]. That work considers heterogeneous robot
teams, and quantifies how easy it is for an adversary to
identify the type of any robot in the group, based on an
observation of the robot group’s dynamic state. The frame-
work, however, builds on the theory of differential privacy,
and assumes the availability of an output distribution that
describes the robot group’s dynamic state. As previously
mentioned in Section I, such a method is not easily applied
to the case of flocking, where output distributions are hard
to model in analytical form, and where the analytical model
for the dynamical system is unknown.

Our approach towards privacy leverages an adversarial co-
optimization approach [29]. The idea of adversarial privacy
was recently presented by Huang et al. [30], who formulate
it as a constrained minimax game between two players. Their
method learns the parameters of a privatizer, which is a
generative model that creates private data, and an adversarial
model, which tries to infer the private variables from the
output of the privatizer. Although the idea of alternating
the optimization of privatizer and adversary is common in
both our approaches, we apply the method to a completely
different domain.

III. PROBLEM STATEMENT

Our work has two objectives: (i) efficient three-
dimensional flocking of a team of mobile robots that follows
a trajectory only known to a single leader robot; and (ii),
privacy of this leadership—that is, making it challenging
for an artificial or human adversary to correctly identify the
leader of the flock. We choose to tackle this problem using
a co-optimization framework that simultaneously refines the
performance of both the robot team R and an adversarial
discriminator D. In this section, we formalize all the problem
components. In Section IV, we detail their implementation.

a) Robot team and flocking models: We consider a
homogeneous robot team R comprising of N identical
robots. We refer to the position and velocity of each robot
i ∈ [1, .., N] as pi ∈ R3 and vi ∈ R3, respectively. All robots
share the same limited sensing range R and each robot’s
neighborhood NR

i is defined as the set of all robots within
this radius NR

i = {j ∈ R | rij ≤ R}—where rij is the
distance between robot i and j. We assume that each robot
is capable of observing the position and velocity of all its
neighbors. Thus, the observation vector oi of robot i at time
t can be written as:

oi(t) = {(p(t)j ,v(t)j) | j ∈ NR
i (t)}. (1)

Each robot is modelled as a single integrator with velocity
directly set by control ui. In its general formulation, the
flocking control input is a function of the current state of a
robot’s neighborhood and a vector of parameters c ∈ Rk:

ṗi(t) = vi(t) = ui(t) = f(oi(t), c). (2)

The family of the velocity controllers for the robot team
leader l ∈ [1, .., N] is a superset of the flocking controllers
in (2) as it also includes a contribution g(·) based on the
leader’s absolute position pl, its intended trajectory χ, and

a separate set of parameters cl ∈ Rw (with w ≥ k):

vl(t) = ul(t) = f(ol(t), c) + g(pl(t), χ, cl). (3)

To automate the optimization of the flocking with leadership
behavior, we also require a formal measure of its perfor-
mance loss Floss, that is a function in the form:

Floss : RN×6×q −→ R, (4)

where q is the number of time steps produced by sampling
pi and vi over T seconds at a fixed frequency fR.

b) Adversarial discriminator: The discriminator D is
an adversarial agent tasked with unveiling the identity of
the robot leader l of flock R. Our assumption is that D has
access to observations oD: the positions of the entire team R
for time windows of W seconds, that is, oD = {pi(t) | i ∈
[1, .., N] ∧ t ∈ [t0, t0 + W]}, where t0 is an arbitrary
observation start time. Here, we assume no noise and uniform
time sampling. Thus, D’s role is to solve a multi-class
classification problem by attaching to each observation oD
its presumed leader identifier lD. Given discrete sampling,
at fixed frequency fD, a discriminator is any function in the
form:

D(oD) : RN×3×(fD·W) −→ [0, 1]N . (5)

The co-domain [0, 1]N represents the vectors of likelihoods
of each robot being the leader (see Subsection IV-C).

c) Discriminator performance and privacy: To for-
mally define privacy as the ability to reduce the performance
of an adversarial discriminator, we first define a loss function,
returning non-negative penalties for each mislabelled oD:

L(D(oD), y) : RN × [1, .., N] −→ R≥0, (6)

where y is the correct leader identifier. The privacy loss Ploss
can then be defined as a function aggregating the losses of
D̂θ—a discriminator implementation with parameters θ:

Ploss = h(L(D̂θ(·), ·)), (7)

d) Problem (adversarial private flocking): given a
robot team R with sensing capabilities as defined in (1), (i)
implement Floss, L, Ploss, D̂θ, and (ii) design an adversarial
co-optimization framework capable of selecting c, cl and
θ such that Floss and Ploss are simultaneously improved,
through adversarial pressure, by playing the minimax game:
arg minc,cl

Floss + Ploss, arg maxθ Ploss.
IV. METHODS

Our method comprises two components: (i) flocking opti-
mization and (ii) leader discrimination learning. The former
optimizes the controller parameters c, cl for more efficient
and private flocking (i.e., minimizing Floss and Ploss), while
the latter refines D̂θ to achieve higher leader-identification
accuracy (i.e., increasing Ploss). We co-optimize these two
components in an alternating optimization procedure (simi-
larly to [29]), as shown in Figure 1. This approach enables
(i) the successive emergence of behaviors that adapt to
adversarial pressure, and (ii), the avoidance of repetitive ex-
haustive optimization cycles (which can be computationally
prohibitive). The following text details the sub-components
of our co-optimization procedure, which is finally summa-
rized in Subsection IV-D.

Chrom. xp1

Chrom. xp2
...

Chrom. xpM

i-th Population

Chrom. xe1

Chrom. xe2
...

Chrom. xeM

i-th Exp. Batch

Crossover

Mutation

Microsoft
AirSim

Flocking

Parameters

Unreal
Engine

Python
Client

Robot 1

Robot 2
...

Robot N

Traject. Logs

Simulations

Metric φa

Metric φp

...

Metric φv

Flock Metrics

Eval.

(p,v)

Discriminator
CNN D̂θ

Test
(oD, y)

Genetic
Loss Υloss

Floss

Ploss

Train

Elitism &
Survival

Fig. 1. Block diagram of the proposed implementation of the adversarial
co-optimzation approach. From the top left, a complete, clockwise loop
presents all the steps in a single generation of genetic optimization.

A. Flocking Implementation
We adopt Reynold’s flocking [12], a decentralized flocking

model consisting of three simple components generating
control ui(t) = αρvρi (t) + ασvσi (t) + ατvτi (t). The first
component vρi ensures collision avoidance and it is computed
as:

vρi = s

 1

|N rρ
i |

∑
j∈N rρi

d(rρ,pi,pj)

 (8)

with the aid of the helper function d(·, ·, ·):

d(rρ,pi,pj) =

{
pi−pj
‖pi−pj‖2 if 0 <‖ pi − pj ‖< rρ

0 otherwise,

where s(·) is a scale function to transform a position vector
into a velocity. The second component vσi is each robot’s
average neighborhood N rσ

i velocity:

vσi =
1

|N rσ
i |

∑
j∈N rσi

vj . (9)

To make the flocking cohesive and avoid splitting, finally,
the third component vτi leads the robots to move towards
the centre of their neighborhood N rτ

i :

vτi = s

 1

|N rτ
i |

∑
j∈N rτi

(pj − pi)

 . (10)

The leader robot’s trajectory tracking is implemented by a
velocity component vχl which is returned from function g(·)
using proportional control in the form:

vχl (t) = ω
(pχl (t)− pl)(t)

‖ pχl (t)− pl(t) ‖
, (11)

where ω is a control gain and pχl is the position on the
trajectory at a fixed look-ahead distance. It is worth noting
that the leader robot l can adopt a complete separate set of
parameters, meaning that αρ, ασ , ατ , rρ, rσ , and rτ are
∈ c, while αρ, ασ , ατ , rρ, rσ , rτ , and ω belong to cl and
can take on different values. The initial position of robot

leader l relative to the rest of the flock R is captured by
two additional parameters ixl , iyl each ∈ [−1, 1] and included
in cl. Note that, while c, cl are optimized in a centralized
fashion, individual robot control (2) is still based on local
information only.

B. Flocking Performance Metrics and Genetic Optimization

The flocking with leadership model described above in-
corporates 15 control parameters. Optimizing such a large
pool of continuous parameters cannot be done by hand or
through parameter sweeping. In our proposal (Figure 1),
we adopt an evolutionary approach based on classical ge-
netic algorithms (GAs) [31], that is, optimization through
a biologically-inspired stochastic search. Having defined the
GA’s chromosome x as the concatenation of c and cl, we are
left with the non-trivial task of capturing its loss Υloss(x).

Let φ∗(t) represent a single performance metric at time t.
We can define the sample average and variance of metrics
φ∗, over simulation time of T samples, as follows:

φ∗ =
1

T

T∑
i=1

φ∗(ti) and σ∗ =
1

T

T∑
i=1

(φ∗(ti)− φ∗)2.

(12)
To achieve good flock alignment, the literature suggests

candidate metrics—velocity correlation [22] or polarization
[32]. We chose velocity correlation as it accounts for not only
the direction alignment but also the magnitude similarity:

φa(t) =
1

N

N∑
i=1

1

N − 1

N∑
j=1,j 6=i

vi(t) · vj(t)
‖ vi(t) ‖ · ‖ vj(t) ‖

. (13)

This metric should be maximised to encourage alignment
within the flock neighborhood (thus, we consider its negation
to compute Υloss). To ensure dense but also collision-free
flocking, we introduce metric φr:

φr(t) =
1

N

N∑
i=1

min(rij) (14)

as well as metric φp:

φp =

{
0 if r− < φr < r+
min(|φr − r−|, |φr − r+|) otherwise,

(15)

where [r−, r+] defines a range of acceptable inter-robot
distances. The spacing within the flock should also be
uniform. Thus, we introduce a metric for the variance of
spacing among robots:

φs(t) =
1

N

N∑
i=1

(min(rij)− φr(t))2. (16)

To minimize the leader’s tracking error to χ, we define:

φχ(t) =‖ pl − pχl ‖ . (17)

Finally, to assess the overall flock tracking efficiency, the
flock’s speed is measured at the centre of mass:

vR =
1

N

∣∣∣∣∣
N∑
i=1

vi(t)

∣∣∣∣∣ (18)

and we defined metric φv as:

φv =

{
0 if vR > v−
|vR − v−| otherwise,

(19)

where v− is the minimum acceptable flock speed.
We can then combine all these metrics in a vector m:

m = [φa, σa, φp, σr, φs, φχ, σχ, φv, σv], (20)

define the hyper-parameter vector b ∈ R9, and write our
proposed overall flocking performance loss as Floss = bTm.
The GA, in turn, favours better fitness by seeking smaller
Υloss values. Thus, in order to purely optimize for Floss
one can set Υloss = Floss.

C. Adversarial Discriminator Design

Given the complexity of flocking dynamics and a lack
of analytical models that can describe observations of tra-
jectories (as defined in Section III), we opt to design the
discriminator implementation D̂θ (Figure 1) using a data-
driven approach. Convolutional Neural Networks (CNNs)
have proven successful in multi-class classification problem
for high-dimensional input with spatial information [33].
Their setup closely resembles the problem at hand of the
discriminator, which is trained to distinguish the leader
robot l from its followers. The discriminator’s input oD ∈
RN×3×(fD·W) can be directly fed into a CNN as a multi-
channel input with shape N × 3 and number of channels
c = fD · W . The CNN output is a 1 × N vector stating
the likelihood of each robot being the leader (see (5)). We
implement (7) by first defining L as the multi-class cross-
entropy loss of the predicted output and y, the identifier of
the actual leader l:

L(D̂θ(oD), y) = −log

(
exp(D̂θ(oD)[y])∑
j exp(D̂θ(oD)[j])

)
, (21)

and, finally, privacy P as:

P =
1∑

O L(D̂θ(·), ·) + γ
(22)

where γ is a hyper-parameter and O a set of (oD, y) pairs.

D. Genetic Optimization with Adversarial Training

The co-optimization of flocking Floss and privacy Ploss is
implemented through a loop that alternates genetic optimiza-
tion generations and training epochs of the CNN, as shown in
Figure 1. As the genetic algorithm repeatedly optimizes the
controller parameters c, cl, our framework also refines the
parameters θ of discriminator D̂θ. The aim is to generate
flocking behaviors that fool the discriminator; meanwhile,
the trajectories oD and the correct label y of these improved
flocking controllers are provided to the discriminator in the
next optimization epoch. Online training is needed to give
the discriminator stronger distinguishing ability while the GA
continuously tries to beat it. We achieve this by updating
the discriminator network using stochastic gradient descent
for one epoch after each GA generation. To inform the GA
about the current performance of D̂θ, the GA’s loss function

0.5

1.0

L
in

e

Floss

0.5

1.0

Si
ne

0 10 20 30 40 50

0.5

1.0

C
he

vr
on

Generation

Fig. 2. Flocking performance loss Floss through the evolution process
for the 3 classes of reference trajectories. The blue box plots represent the
distributions of the scores of the chromosomes in the population of the GA.
The red box plots represent those of the new experiments of each generation.

0.5

1.0

L
in

e
Υloss

0.5

1.0

Si
ne

0 10 20 30 40 50

0.5

1.0

C
he

vr
on

Generation

Fig. 3. Genetic loss Υloss through the evolution process for the 3 classes
of reference trajectories. The blue box plots represent the distributions of
the scores of the chromosomes in the population of the GA. The red box
plots represent those of the new experiments of each generation.

is adapted as follows:

Υloss =

{
Floss if Floss ≥ κ
β · Floss + (1− β) · Ploss otherwise.

(23)

Hyper-parameters κ and β can be used to discard extremely
poor flocking performance and tune the trade-off between
Floss and Ploss, respectively.

V. PERFORMANCE EVALUATION

In the following, we first describe our simulation setup. We
then present the results and discuss our findings. All of our
code is available on GitHub1. Additional results—including
the optimized flocking parameters c and the generalization
ability of D̂θ—are also available as supplementary material2.

1https://github.com/proroklab/private_flocking
2https://arxiv.org/abs/1909.10387

0.5

1.0

L
in

e

Ploss

0.5

1.0

Si
ne

0 10 20 30 40 50

0.5

1.0

C
he

vr
on

Generation

Online Training Accuracy of D̂θ(·)

Fig. 4. Privacy performance loss Ploss through the evolution process
for the 3 classes of reference trajectories. The blue box plots represent the
distribution of Ploss for the solutions retained in the population of the
genetic algorithm. The teal line represents the training accuracy of D̂θ .

A. Simulation Setup

Our simulations were conducted using a 12-core, 3.2Ghz
i7-8700 CPU and an Nvidia GTX 1080Ti GPU with 32
and 11GB of memory, respectively. Physics was provided
by Unreal Engine release 4.18 (UE4). Our flocking control
models (2) and (3) were implemented through the AirSim
plugin [34] and its Python client, which conveniently exposes
asynchronous APIs for the velocity control of multiple agents
in custom UE4 worlds. To formalize and run the genetic
evolution process, we used ESA’s pygmo [35] library for
massively parallel optimization. The discriminator’s CNN
implementation and training used PyTorch [36] v1.2.0, and
were accelerated with Cuda v10.0 APIs.

The population size of the GA was set to M = 10 and
evolved over 50 generations. At every generation, pygmo in-
terfaced with AirSim and UE4 to execute 10 3-minute flock
flights for each of 10 new chromosomes (experiments)—
containing new values for c, cl. Specifically, we used the
SGA algorithm with crossover and mutation probabilities
of 0.9 and 0.02, respectively, a single crossover point, and
elitism set to 3. Our CNN architecture included a feature ex-
tractor Conv2d-BatchNorm2d-ReLU-MaxPool2d followed
by a three-layer Linear-ReLU-Linear classifier. In the
feature extractor, we used kernels of size 3. Stride and zero-
padding were set to 1 for both the Conv2d and MaxPool2d
layers. The intermediate channel number was set to 16. The
overall number of parameters in D̂θ, |θ|, is 0.23M. The
schematic of D̂θ is available in our supplementary material2.

We pre-trained the CNN to give the discriminator rea-
sonable privacy performance at the beginning of the co-
optimization process. We used stochastic gradient descent,
for 150 epochs, and 2000 training samples from hand-tuned
flocking behaviors following 3 types of leader reference
trajectories χ ∈ {line, sine, chevron}. The initial leader
position (ixl , iyl) was uniformly distributed within the flock.
After pre-training, the discriminator achieved 86.9% test
accuracy on hand-tuned flocking.

https://github.com/proroklab/private_flocking
https://arxiv.org/abs/1909.10387

0.5

1.0
P l

o
s
s

L
in

e

0.5

1.0

P l
o
s
s

Si
ne

0 2 4
0.0

0.5

1.0

Floss

P l
o
s
s

0 2 4 6

Floss

0 2 4

Floss

0 2 4 6

Floss

0 2 4

Floss

0 2 4 6

Floss

0 2 4

Floss

0 2 4 6

Floss

C
he

vr
on

5-th Generation 10-th Generation 20-th Generation 50-th Generation

Fig. 5. Trade-off between flocking performance loss Floss and privacy loss Ploss for the three classes of leader trajectories (the rows) at four,
representative generations (5, 10, 20, and 50, i.e. the columns). The plots with the teal markers present the privacy loss Ploss returned by the discriminator
CNN undergoing the online training described in Subsection IV-D. The plots with the orange markers present the privacy loss Ploss returned by the
originally pre-trained network from Subsection V-A. Ideal performance is achieved in the bottom left corner of each plot.

20 40 60 80 100

0

10

z
(m

)

minFloss

20 40 60 80 100

0

10

min Υloss

20 40 60 80 100

0

10

z
(m

)

20 40 60 80 100

0

10

20 40 60 80 100

0

10

x (m)

z
(m

)

20 40 60 80 100

0

10

x (m)

Line

Sine

Chevron

Fig. 6. The genetic champions with respect to (i) pure flocking performance minFloss (left column) and (ii) the joint privacy/flocking fitness min Υloss
(right column) for the three classes of leader trajectories, over 3-minute simulations. The trajectory trace of the leader robot is drawn in red. Note that
amplitude and frequency of the sine and chevron reference trajectory are fixed at design time. Private flocks, on the sine trajectory in particular, are slower.

For the online training of the CNN—i.e., during SGA’s
evolution—we used the 100 most recent chromosomes gen-
erated by the GA having attained a flocking loss Floss ≤ κ.
The learning rate was set to 0.025, and momentum to 0.9.

In the following subsection, we report results for 3 separate
evolution processes, one for each of the trajectory types ∈
{line, sine, chevron}, with 9 robots (quadcopters). These

account for 1500 3-minute experiments, that is, over 3 days
of simulated flight.

B. Results

Figure 2 presents the evolution—over 50 generations—
of the flocking performance loss Floss described in Subsec-
tion IV-B, for the 3 different leader reference trajectories.

0.0

0.5

1.0

Line Sine

M
et

ri
c
φ
a

Chevron

0.0

0.5

1.0

M
et

ri
c
φ
v

1.0

2.5

4.0

M
et

ri
c
φ
p

0 20 40
0.0

0.5

1.0

0 20 40

Generation

0 20 40
M

et
ri

c
φ
χ

Fig. 7. Evolution of four of the individual components in the flocking loss
Floss for the three classes of leader trajectories. Each series of box plots
represent the distributions of scores of the solutions in the population of the
GA. The black dashed line represents the optimization target value.

As each generation refers to a population of M chromo-
somes, as well as M new, experimental chromosomes (see
Figure 1), Floss is presented by two series of 50 box plots:
one (blue) describing the evolution of the distribution of
Floss for the chromosomes in the GA’s population; and
one (red) describing the evolution of the distribution Floss
for the experimental chromosomes. SGA quickly (within 10
generations) and effectively (for all reference trajectories)
reaches good values of Floss.

The results in Figure 3 refer to the GA loss, Υloss (23).
Similarly to Figure 2, Figure 3 presents information about
the evolution of the chromosomes in the GA’s population
(in blue), and the experimental chromosomes (in red) as
series of box plots. As Υloss depends on Floss, we observe
similar trends between Figure 2 and 3. However, in the latter,
the experimental chromosomes’ performance diverges with
respect to that of the GA’s population, in particular for the
sine reference trajectory. At later stages, we confront the
solutions to stronger adversaries, making it more challenging
for new solutions to be added to the population.

Figure 4, displays a series of box plots capturing the
evolution of the distribution of the values of Ploss for the
chromosomes in the population of the genetic algorithm for
the 3 reference trajectories, as well as the training accuracy
of the CNN D̂θ. Notably, improvements in Ploss are slower
than those in Floss. We also note that training accuracy of the
CNN is slower to converge for the sine reference trajectory.

Figure 5 shows the trade-off between flocking and privacy
performance. The panels in teal show how the genetic
evolution successively increases the number of solutions
that provide interesting trade-offs between Floss and Ploss
(bottom-left is best). The pair-wise comparison in each of

0 0.5 1

0

50

100

Line

0 0.5 1

Sine

0 0.5 1

M
et

ri
c
φ
a

Chevron

0 0.5 1

0

50

100

0 0.5 1 0 0.5 1

M
et

ri
c
φ
v

1 2.5 4

0

50

100

1 2.5 4 1 2.5 4

M
et

ri
c
φ
p

0 0.5 1

0

50

100

0 0.5 1 0 0.5 1

M
et

ri
c
φ
χ

Fig. 8. Distributions over 500 experiments of the same four components
of Floss from Figure 7, for the three classes of leader trajectories.

the four columns of the plot also shows that the Ploss scores
provided by the pre-trained CNN (orange) are more highly
polarized towards non-private, good flocking (top-left) or
private, poor flocking (bottom-right).

In the left and right columns of Figure 6, we compare the
trajectories generated by the champion chromosomes with
respect to Floss and Υloss, respectively, for each of the 3
reference trajectories. The private trajectories (on the right)
tend to be slightly slower and less smooth.

Finally, Figures 7 and 8 present the evolution (over 50
genetic generations) and the overall distributions (over the
500 experiments in the 50 generations) of four of the flocking
performance metrics presented in Subsection IV-B: (i) φa,
quantifying the flock’s alignment (1 is best); (ii) φv , quanti-
fying the flock velocity (1 is best); (iii) φp, quantifying the
flock inter-robot spacing (2 is best); and (iv) φχ, quantifying
the leader trajectory tracking error (0 is best). We see that:
alignment (row 1) does well for all trajectory classes; flock
velocity (row 2) is smaller for the sine, and varies more for
chevron; spacing (row 3) also varies more for chevron; and
tracking error (row 4) is smallest for sine.

C. Discussion

Overall, the results demonstrate that the GA is able to
find very good flocking solutions, despite the large parameter
space, and despite the increasing strength of the adversarial
discriminator. The inclusion of privacy does not appear to
harm flocking convergence, yet it is a slower process.

The final performance across the different trajectory
classes is comparable, however, Υloss converges quicker
for the sine reference than for the other two. This is
corroborated by the discriminator performance, which shows
a slower learning curve for the sine. The common denomina-
tor among chevron and line is that they are both composed
of straight lines. These insights indicate increased difficulty

of hiding a leader along linear trajectories.
Although we purposefully constructed a very powerful

adversary, it is not a very realistic one. Observations made
from a fixed vantage point, or observations that only capture
trajectories on a plane, for example, may cause the flock to
move in different ways. These avenues remain to be explored
in future work.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced the problem of private flocking
and presented a method to generate robot controllers which
achieve that feat. We employed a co-optimization procedure
that uses a data-driven adversarial discriminator and a ge-
netic algorithm that optimizes flocking control parameters.
Although we expected an inherent trade-off between flocking
performance and privacy, our results demonstrated that we
are able to achieve both efficient and private flocking, across
different classes of reference trajectories. In this work, we
considered a worst-case powerful adversary that has access
to the complete, non-noisy data. Future work will consider
a physical setup with real robots and a realistic adversary,
who observes the robot team from specified vantage points,
and through potentially noisy sensors.

ACKNOWLEDGEMENTS

Hehui Zheng and Amanda Prorok were supported by the Centre
for Digital Built Britain, under InnovateUK grant number RG96233,
and by the Engineering and Physical Sciences Research Council
(grant EP/S015493/1). Their support is gratefully acknowledged.
Jacopo Panerati was supported by a Mitacs Globalink research
award and the Natural Sciences and Engineering Council of Canada
(NSERC) Strategic Partnership Grant. The support of Arm is
gratefully acknowledged. This article solely reflects the opinions
and conclusions of its authors and not Arm or any other Arm entity.

REFERENCES

[1] A. Prorok and V. Kumar, “Privacy-preserving vehicle assignment for
mobility-on-demand systems,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1869–
1876.

[2] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coor-
dinated multi-robot planning while preserving individual privacy,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2188–2194.

[3] Y. Zhang and D. A. Shell, “Complete characterization of a class of
privacy-preserving tracking problems,” The International Journal of
Robotics Research (IJRR), vol. 38, no. 2-3, pp. 299–315, 2019.

[4] S. Han and G. J. Pappas, “Privacy in control and dynamical systems,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 1,
pp. 309–332, 2018.

[5] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, March 2006.

[6] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[7] D. Van der Walle, B. Fidan, A. Sutton, C. Yu, and B. D. Anderson,
“Non-hierarchical uav formation control for surveillance tasks,” in
American Control Conference (ACC). IEEE, 2008, pp. 777–782.

[8] J. Bom, B. Thuilot, F. Marmoiton, and P. Martinet, “A global control
strategy for urban vehicles platooning relying on nonlinear decoupling
laws,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2005, pp. 2875–2880.

[9] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architec-
ture for spacecraft formation control,” IEEE Transactions on Control
Systems Technology, vol. 9, no. 6, pp. 777–790, 2001.

[10] S. Li, Y. Guo, and B. Bingham, “Multi-robot cooperative control
for monitoring and tracking dynamic plumes,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
67–73.

[11] W. Ren and N. Sorensen, “Distributed coordination architecture for
multi-robot formation control,” Robotics and Autonomous Systems,
vol. 56, no. 4, pp. 324 – 333, 2008.

[12] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’87. New
York, NY, USA: ACM, 1987, pp. 25–34.

[13] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001.

[14] B. T. Fine and D. A. Shell, “Unifying microscopic flocking mo-
tion models for virtual, robotic, and biological flock members,”
Autonomous Robots, vol. 35, no. 2, pp. 195–219, Oct 2013.

[15] D. Gu and Z. Wang, “Leader?follower flocking: Algorithms and
experiments,” IEEE Transactions on Control Systems Technology,
vol. 17, no. 5, pp. 1211–1219, Sep. 2009.

[16] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” in IEEE Conference on Decision and
Control, vol. 3. IEEE, 2001, pp. 2968–2973.

[17] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile platforms
using a virtual vehicle approach,” IEEE Transactions on Automatic
Control, vol. 46, no. 11, pp. 1777–1782, Nov 2001.

[18] H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a virtual
leader,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp.
293–307, Feb 2009.

[19] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 5, pp. 852–862, May 2007.

[20] A. E. Turgut, H. Çelikkanat, F. Gökçe, and E. Şahin, “Self-organized
flocking in mobile robot swarms,” Swarm Intelligence, vol. 2, no. 2,
pp. 97–120, Dec 2008.

[21] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Transactions on Tobotics and Automation,
vol. 14, no. 6, pp. 926–939, 1998.

[22] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, 2018.

[23] S. A. Amraii, P. Walker, M. Lewis, N. Chakraborty, and K. Sycara,
“Explicit vs. tacit leadership in influencing the behavior of swarms,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 2209–2214.

[24] J. M. O?kane, “On the value of ignorance: Balancing tracking and
privacy using a two-bit sensor,” in Algorithmic Foundations of Robotics
VIII. Springer, 2009, pp. 235–249.

[25] A. Tsiamis, A. B. Alexandru, and G. J. Pappas, “Motion planning with
secrecy,” in 2019 American Control Conference (ACC), July 2019.

[26] G. Bianchin, Y. Liu, and F. Pasqualetti, “Secure navigation of robots
in adversarial environments,” IEEE Control Systems Letters, vol. 4,
no. 1, pp. 1–6, Jan 2020.

[27] Y.-C. Liu, G. Bianchin, and F. Pasqualetti, “Secure trajectory plan-
ning against undetectable spoofing attacks,” Automatica, vol. 112, p.
108655, 2020.

[28] A. Prorok and V. Kumar, “A macroscopic privacy model for heteroge-
neous robot swarms,” in Swarm Intelligence, M. Dorigo, M. Birattari,
X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, and T. Stützle, Eds.
Cham: Springer International Publishing, 2016, pp. 15–27.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27, 2014, pp.
2672–2680.

[30] C. Huang, P. Kairouz, X. Chen, L. Sankar, and R. Rajagopal, “Context-
aware generative adversarial privacy,” CoRR, vol. abs/1710.09549,
2017.

[31] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, Oct 1988.

[32] C. Gershenson, A. Muoz-Melndez, and J. L. Zapotecatl, “Performance
metrics of collective coordinated motion in flocks,” in Artificial Life
Conference Proceedings 13. MIT Press, 2016, pp. 322–329.

[33] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, May 2010, pp. 253–256.

[34] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics, 2017.

[35] “esa/pagmo2: pagmo 2.11.1,” Aug. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3364433

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” in NIPS-W, 2017.

https://doi.org/10.5281/zenodo.3364433

SUPPLEMENTARY MATERIAL

This section contains the supplementary material mentioned in
Section V and presented through Figures 9, 10, 11, 12, and 13.

0.5 1

0
50

Line

0.5 1

Sine

0.5 1 1.5

αρ

Chevron

0.5 1

0
50

0.5 1 0.5 1 1.5

ασ

0.5 1

0
50

0.5 1 1 1.5

ατ

2 3 4 5

0
50

2 3 4 5 2 3 4 5

rρ

5 10 15 20

0
50

5 10 15 5 10 15 20

rσ

0 5 10 15 20

0
50

0 5 10 15 0 5 10 15 20

rτ

−1 0 1

0
50

−1 0 1−1 0 1

ixl

−1 0 1

0
50

−1 0 1 −1 0 1

iyl

0.5 1

0
50

0.5 1 0.5 1 1.5

vl

Fig. 9. Density distributions of the flocking parameters in c, cl (see
Subsection IV-A). The distributions’ peaks indicate the most common
choices made by the GA throughout the co-optimization process. The
optimal flocking parameters in c—top six rows—are relatively consistent
across trajectories; the optimal relative initial position and velocity of the
leader—bottom three rows—vary with the choice of reference trajectory.
The preferred leader starting position has a lateral offset (iyl close to 1
or -1), especially for line and chevron trajectories. On the other hand, the
co-optimized leader’s velocity vl for the sine trajectory is the slowest.

0 0.2 0.4 0.6 0.8 1
0

2

4

Velocity (m/s)

Density Distr. in Line Exp. (Ploss = 0.2, Floss = 0.6)

Robot 1 Robot 2 Ro. 3 (L)
Robot 4 Robot 5 Robot 6
Robot 7 Robot 8 Robot 9

0

2

4

Robot 1 Robot 2 Robot 3 (L)

0

2

4

Robot 4 Robot 5 Robot 6

0 0.5 1
0

2

4

Robot 7

0 0.5 1
Velocity (m/s)

Robot 8

0 0.5 1

Robot 9

Fig. 10. Density distributions of the velocities of all robots (followers
and leader) in the flock, for a 3’ co-optimized line trajectory. We note
from the histogram with superimposed distributions (top chart) that the
individual distributions are indistinguishable. Thus, a first-principles-based
discriminator would be unable to identify the leader—this difficulty being
exacerbated by the fact that only ∼3% of the data shown in the histogram
actually goes into each input vector oD of D̂θ (i.e., to the observer).
Even if one could generate trajectories that elicit clear differences between
these distributions, the controller’s ability to evolve could then learn how
to invalidate a fixed, model-based discriminator.

MaxPool2d (kernel=3)

ReLU

BatchNorm2d

Conv2d (kernel=3)

!" Discriminator observation

Linear

ReLU

Linear

Dropout

Feature extractor

Classifier

For training only

Discriminator output#$(!")
Fig. 11. This figure presents the schematic of D̂θ’s CNN architecture—as
described in Subsection V-A. The third dimension of input oD (see (5)) is
a finite number of channels fD ·W . In our implementation, we considered
fD of ∼2Hz and experimented with W between 1 and 15 seconds, before
fixing it to 5”—a value that offered an appropriate trade-off between training
accuracy and generalization. While oD only contains the robots’ positions
over time window W , we reckon that—in case the robots’ velocities
were relevant to the discriminator’s task—D̂θ would infer them by simple
derivation.

Line Sine Chevron
0

50

100

A
cc

ur
ac

y
(%

)

Generalization Ability

D̂pre D̂line D̂sine D̂chev.

Fig. 12. We performed additional experiments to evaluate the ability
of a CNN trained on specific trajectories to generalize towards others.
D̂pre is pre-trained on a combination of the three trajectories while D̂line,
D̂sine, and D̂chev are trained during co-optimization—each on a specific
trajectory. We test these four discriminators against optimized, but newly
generated, trajectories of all three types. We observe that the optimized
discriminators can achieve on-par or better performance when tested against
the specific trajectory they were trained on. While D̂line generalizes well
(better than D̂pre) to the chevron trajectory and vice versa, D̂sine achieves
worse performance than D̂pre against the other two trajectories. The good
generalization between line and chevron trajectories is likely explained
by the fact that the typical distance travelled by the flock within the
discriminator observation window W is about 3 m. Thus, for chevron
trajectories composed of ∼30-meter segments, the observed data is still
mostly straight line-like. Nonetheless, we note that, since the classification
problem is not binary, D̂sine still performs much better than random
guessing, even on line and chevron trajectories.

Line Sine Chevron
0

50

100

A
cc

ur
ac

y
(%

)

N (µ = 0, σ2 = 0.25) Disturbances in (x, y, z)

Line Sine Chevron
0

50

100

A
cc

ur
ac

y
(%

)

N (µ = 0, σ2 = 1) Disturbances in (x, y, z)

Line Sine Chevron
0

50

100

A
cc

ur
ac

y
(%

)

N (µ = 0, σ2 = 4) Disturbances in (x, y, z)

D̂pre D̂line D̂sine D̂chev.

Fig. 13. We expanded the set of experiments from Figure 12 to
feed our CNNs with test inputs including artificial disturbances. Normally
distributed, zero-mean, fixed-variance disturbances were added in the (x, y,
z) observations of the discriminators. The disturbance variances [0.25, 1, 4]
were chosen to resemble the typical travel distance within one observation
time window W (3 m) and the average flocking spacing (1 to 5 m). For
σ2 = 0.25 and σ2 = 1, performance only slightly degrades, suggesting
that the discriminators are, in fact, moderately robust to noise. Even though
the discriminators’ accuracy decrease for σ2 = 4, when compared to D̂pre,
we observe that the co-optimized discriminators fare much better. In fact,
the effect of bounded disturbances on the difficulty of leader identification
appears to be limited and partially mitigated by the additional training.

	I Introduction
	I-A Background
	I-B Contributions

	II Related Work
	III Problem Statement
	IV Methods
	IV-A Flocking Implementation
	IV-B Flocking Performance Metrics and Genetic Optimization
	IV-C Adversarial Discriminator Design
	IV-D Genetic Optimization with Adversarial Training

	V Performance Evaluation
	V-A Simulation Setup
	V-B Results
	V-C Discussion

	VI Conclusions and Future Work
	References

