
Reply to reviewers PBIOLOGY-D-19-01472R1 "Time of day is associated with 
paradoxical reductions in global signal fluctuation and functional connectivity" 
 
We thank the reviewers for their close read of this manuscript and insightful comments. 
Several important suggestions were made for improvement and we have considered each 
carefully and revised accordingly. Please find below detailed responses (in blue) to the 
reviewer comments (in italics). For convenience, changes to the manuscript are quoted 
verbatim (normal font) when appropriate. We believe the manuscript is much improved and 
hope it is now suitable for publication. 
 
Reviewer #1: 
 
R1Q1 General comments: Matthew Glasser. The authors present an interesting study of the 
effect of time of day scanned on global signal.  I am not sure I understand the mechanism of 
the finding and it is not what I would have expected based on prior literature.  Because the 
authors used HCP data and started from the recommended HCP preprocessing, their 
methods are generally of very high quality.  I have a few minor comments. It will of course be 
important to replicate these findings after appropriate global noise removal, e.g. with 
temporal ICA, when that is available.  I think it also would be interesting to extend the work 
to task fMRI data that has been appropriately cleaned for spatially specific and global noise 
to see if this pattern holds when subjects are performing a task.  Additionally, it would be 
interesting to investigate which temporal ICA components are driving this phenomenon (I 
expect RC1 and/or RC5 from Glasser et al 2018 Neuroimage).  If this is driven mainly by 
RC1, the phenomenon might not be seen in task fMRI data as RC1 is not present (and RC5 is 
much weaker).  None of these data are yet publicly available for the authors to use; however.  
 
We thank the reviewer for the positive comments. We agree with the reviewer that it will be 
interesting to perform a follow up study with temporal ICA components. We now discuss this 
point in the manuscript: 
 
Section 4.11 of Discussion 

There are many avenues to extend the current study. For example, it will be 
interesting to explore whether the same effects can be see during task-fMRI. In 
addition, Glasser and colleagues proposed the use of temporal ICA (Glasser et al., 
2018) to decompose the fMRI data into multiple components, some of which 
appeared to reflect “global” artefacts, which can then be more selectively removed. It 
would be interesting to investigate how these global artifactual components might 
relate to time of day. Furthermore, some “global” components are present only during 
resting-fMRI, but not task-fMRI (Glasser et al., 2018). Thus, some of the effects we 
observe in this study might not appear in task-fMRI. 

 
(R1Q2) It sounds like the authors carried out the laborious task of QC of the HCP’s 
physiological noise measures. Ideally this data would be shared back to the HCP for public 
distribution as recommended in Glasser et al 2019 Neuroimage. 
 
Yes, indeed, the first author manually quality checked the physio data from all four runs of 
the S1200 resting state fMRI dataset in order to select subjects with acceptable quality pulse 
and respiratory data. Alongside this manuscript we will post a list of these subjects on our 
lab's GitHub page, which we will also be happy to share with the HCP for public distribution. 
We are also in the process of producing a separate paper, in collaboration with Jonathan 



Power, that will describe the QC of the HCP's physiological data more extensively, which we 
plan to submit in the near future.  
 
(R1Q3) The use of a stringent FD threshold in HCP data is problematic for reasons 
discussed in Glasser et al 2018 Neuroimage and Power et al 2019 BioRXiv.  A better motion 
measure would be dips and peaks after sICA+FIX cleanup in DVARS.   
 
As per the reviewer's suggestion, we have now added DVARS dips/peaks to Figure 2 
(replicated below for your convenience). Consistent with the other head motion measures, 
DVARS dips/peaks (%) showed a significant correlation across subjects with GS fluctuation, 
but not with time of day. We have updated the manuscript as follows:  
  
Section 5.1.3 of Materials & Methods 

DVARS dips/peaks were defined for each subject as the percentage of frames which 
deviated by at least 75 from the median DVARS value (Glasser et al., 2018). Based 
on prior work we derived DVARS dips/peaks from the unstructured noise timeseries 
(Glasser et al., 2018). Unstructured noise timeseries were computed by regressing 
each ICA-FIX signal component from the ICA-FIX denoised image of each subject. 

 



 

Figure 2. Head motion, respiratory and cardiac measures are strongly correlated with 
global signal (GS) fluctuation, yet only respiratory variation shows association with 
time of day. (A) Between-subject correlations of thirteen run-level summary metrics with GS 
fluctuation. (B) Between-subject correlations of thirteen run-level summary metrics with time 
of day. Due to exclusion of subjects with poor physiological data quality, different subgroups 
of subjects were used for analyses of head motion (Session 1: N = 942, Session 2: N = 869), 
respiratory (Session 1: N = 741, Session 2: N = 668) and cardiac measures (Session 1: N = 
273, Session 2: N = 272). Correlation between GS fluctuation and time of day was repeated 
in each subgroup. Numbers denote z-scored Pearson r correlation coefficients. Stars indicate 
significant correlations following FDR correction (*q < 0.05; ** q < 0.01; *** q < 0.001). 
SD: standard deviation; AD: absolute displacement; FD: framewise displacement; RV: 
respiratory variation. 

 



(R1Q4-Q5) The HCP structural acquisition was described in Glasser et al 2013 Neuroimage. 
The HCP structural preprocessing was a customized pipeline that included FreeSurfer along 
with other things. 
 
We have inserted citations of Glasser et al., 2013 to Sections 5.1.2 and 5.1.3. In addition we 
have rephrased and extended the following paragraph to clarify that the structural 
preprocessing pipeline included more than just Freesurfer with additional citations of relevant 
papers: 
  
Section 5.1.3 of Materials & Methods 

T1 structural images were preprocessed using a custom pipeline that utilised 
Freesurfer (Fischl, 2012) along with other software and algorithms (e.g. Glasser and 
Van Essen, 2011; Rilling et al., 2012; Marcus et al., 2013; Robinson et al., 2014). 
Preprocessing steps included brain extraction, subject-level volumetric segmentation 
of subcortical regions, cortical surface reconstruction and registration of each 
subject’s cortical surface mesh to a common spherical coordinate space (Fischl et al., 
1999a, 1999b). For a more detailed description of the structural preprocessing 
pipeline see Glasser et al., 2013. 

 
(R1Q6) I wouldn’t say “corrected for head-motion via a 24 parameter regression” as we 
know from Power’s work among others that movement regressors hardly correct for subject 
head motion and even doing the 24 parameter movement regression is becoming more 
controversial given its potential to remove neural signal while contributing modest additional 
denoising above sICA+FIX (Glasser et al 2019 Neuroimage).  Better to just say that the 
movement regressors were regressed out. 
 
We thank the reviewer for highlighting this and have edited this part accordingly: 
 
Section 5.1.4 of Materials & Methods 

The data was first de-trended with a temporal high-pass filter, followed by regression 
of head motion parameters, before undergoing denoising via spatial ICA-FIX 
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). 

 
 
  



Reviewer #2: 
 
(R2Q1) General comments: This is study of the time of day on global signal fluctuations as 
well as regional fluctuations and connectivity is carried out on the Human Connectome 
Project dataset. The results are clear even though the authors fail to provide a compelling 
mechanism for this paradoxical effect. Changes in cortical excitability over the course of the 
day, at least to me, seems to be the most interesting explanation. The appropriate controls 
are performed although I believe that the nonlinear and spatially varying effects of 
respiration on GS may not be fully accounted for in their respiration effect normalization. In 
general, it is an interesting finding and a clear paper overall.  
 
We thank the reviewer for the positive comments. 
 
(R2Q2) In the abstract, the reference to a 1% to 3% BOLD signal change does not do much 
in putting a 22% decrease in context since the % BOLD change is of the raw signal and the 
22% decrease is of a standard deviation measure. My guess is that the global standard 
deviation in terms of percent, shifted from 2% to 1.6%.  
 
We thank the reviewer (as well as Reviewer 3) for challenging us on this point. We agree that 
raw signal in task and standard deviation change at rest are not comparable, so we have 
removed it from the abstract. We have also updated a sentence in the results, which now 
describes time of day related change in GS fluctuation in units of BOLD percent change. 
 
Section 3.1 of Results 

 From 9am to 9pm, the magnitude of GS fluctuation decreased from 0.22% of mean 
BOLD signal flucutation to 0.17% (on average) in both Sessions 1 and 2. 

 
We have also added a description of how we computed BOLD percent change in the Methods 
section. 
 
Section 5.2 of Materials & Methods 

Global signal fluctuation was always plotted in units of BOLD percent signal change. 
This was computed by dividing each subject’s global signal fluctuation scores by 
10,000 and multiplied by 100, given that each resting state fMRI run of each subject had 
originally undergone grand-mean scaling to a value of 10,000 during preprocessing. 

 
(R2Q3) Global signal fluctuations also include respiration effects, CSF pulsation, and brain 
pulsation. It may very well be that these could be reduced with dehydration as the day 
progresses. You mention appropriately, the possibility of fluid intake at the end of your 
paper. 
 
We thank the reviewer for drawing our attention to dehydration as a possible mechanism. We 
have added this to the discussion: 
 
Section 4.8 of Discussion 

Time of day effects have not only been observed in studies of brain activity but also in 
studies of brain structure (Jiang et al., 2014; Elvsashagen et al., 2015; Nakamura et 
al., 2015; Trefler et al., 2016; Thomas et al., 2018; Karch et al., 2019). Notably, some 
studies have reported morning-to-evening reductions in total brain and/or grey-matter 
volume at rates comparable to age-related annual atrophy (Nakamura et al., 2015; 



Karch et al., 2019). Hydration levels have been mentioned as a possible mechanism, 
given that hydration has been shown to modulate measurements of total brain 
volumes in some studies (Streitbürger et al., 2012; Nakamura et al., 2014), though not 
all (Karch et al., 2019). Dehydration could also potentially impact BOLD signal 
fluctuation by reducing the amplitude of brain (or CSF) pulsation, or the dynamic 
range of cardiac and respiratory activity. Unfortunately, fluid intake of participants 
was not tracked in the HCP protocol. 

 
 
(R2Q4) It is observed that RV standard deviation was also correlated with time of day as 
well. It is mentioned that the correlation to time of day was a bit was weaker than that of GS 
std.  Using linear regression to correct for this, the GS standard deviation effect 
remains.  Linear regression to remove the effect may miss the nonlinear impact that 
respiration may have. It has been shown recently - in a talk at OHBM by Catie Chang -  that 
the “respiration response function” first described by Birn et al actually varies considerably 
throughout the brain, so the respiration effect may still perhaps be having an impact on GS 
that is unable to be regressed out by simple linear modeling. 
 
We thank the reviewer for highlighting this limitation, which we now discuss in more detail: 
 
Section 4.4 of Discussion 

Admittedly linear regression of RV SD from GS fluctuation might miss potential 
non-linear effects of respiration on GS fluctuation. Modelling of respiratory 
influences on BOLD signal fluctuations is non-trivial as respiratory response 
functions often fail to capture the impact of pauses and subtle variations in rate and 
depth of breathing (Birn et al., 2006; Power et al., 2017). Recently it has also been 
shown that resting state BOLD signal fluctuations that track respiratory dynamics 
exhibit spatially heterogeneous time-courses (lags and shape) throughout the brain 
(Chen et al., BioRxiv). Thus we cannot fully rule out respiratory mechanisms 
underpinning our observed time of day effects on BOLD signal fluctuation. 

 
(R2Q5) On page 22 you mentioned: "These latter effects, however, might only become 
apparent once the global signal is removed from the data, for example, as was the case with 
the positive correlations between time of day and Somatomotor – Control network RSFC in 
the current study (Figure S5)” On the contrary, this might also be an artifact induced by GSR 
as Murphy et al argued. They showed that GSR induces artifactual correlations in resting 
state signals that were previously uncorrelated.  
 
We agree with the reviewer's point and have added the following to the discussion: 
 
Section 4.7 of Discussion 

Alternatively, the positive correlations observed between time of day and 
Somatomotor – Control network RSFC might be artefacts introduced by GSR. 
Indeed, several studies have shown using simulations that GSR can introduce 
previously non-existent connectivity, bias short and long distance connectivity, and 
induce spurious group differences (Murphy et al., 2009; Saad et al., 2012; 
Satterthwaite et al., 2012). However, others have cautioned that these simulations 
may not generalise well to empirical data where the number of independent signals 
is substantially larger or where there is a large shared artefactual signal among brain 
regions (Chen et al., 2012; Power et al., 2014). 



 
 
(R2Q6) Finally, in recommendations, I would suggest that you drill down a bit on how much 
these effects may influence other studies that likely have a distribution of time of day or a 
fixed time of day for their studies - evenly distributed across comparison populations. It’s not 
clear to me that it is something we really need to worry about unless we are studying one 
population in the morning and one in the evening. It may have a more significant impact on 
attempts to characterize individuals (i.e. fingerprinting). More discussion on these nuances 
would be appropriate. 
 
We thank the reviewer for pushing us to improve this part of our discussion. We have 
completely re-written the section to provide a more nuanced view of the potential impact of 
time of day on different types of studies in the field.  
 
Section 4.10 of Discussion 

In this paper we have shown systematic time of day effects in the HCP dataset on 
resting state fMRI measures that are greater in magnitude to behavioural associations 
(e.g. fluid intelligence), consistent in both between- and within-subject analyses, 
present following regression of respiratory variation, and replicable across two 
sessions. Leaving aside the important challenge of understanding their underlying 
mechanisms, another important question to address is which studies are most likely to 
be affected by time of day and to what extent. 
 
Large-scale studies such as the HCP are particularly susceptible to time of day effects 
because they are more likely to have subjects scanned over a wide range of times in 
order to facilitate data collection. Although we found time of day effects to be modest 
in absolute terms, explaining less than 4% of the variance in GS fluctuation or RSFC, 
these were still comparable or stronger than most behavioural – RSFC associations 
reported in fMRI studies. Thus, group-level correction for time of day could 
potentially help avoid masking out or introducing spurious behavioural – RSFC 
associations in other similar large-scale studies with varying times of day of scans. 
 
In contrast, most small-scale studies will not be affected as these often tend to scan 
subjects in fixed timeslots. Even studies where subjects are scanned several hours 
apart are unlikely to be drastically impacted based on the fact that it takes around 9 
hours for time of day effects to reach a similar magnitude as run-effects on GS 
fluctuation (see Figure 1E). Notable exceptions are longitudinal studies that seek to 
examine neural changes associated with same-day skill acquisition, as recently shown 
by Steel and colleauges (Steel et al., 2019). In general, all studies should avoid a 
situation where there is a non-random assignment of an experimental group or 
condition to a specific time of day. Group-level correction for time of day is unlikely 
to be useful in small-scale studies as they may lack statistical power to reliable 
estimate time of day effects. 
 
We recommend reporting time of day of fMRI scans and other experimental protocols 
and measurements. Even if all subjects are scanned at the same timeslot within a 
particular study, reporting time of day could help account for between-study variation 
in results and potentially even failed replications. Meta-analyses could then be 
leveraged to explore how time of day affects various regions, networks and tasks 
across different domains of the literature. 



Reviewer #3: 
 
(R3Q1) General comments: In this study the authors look at the effect of time of day on the 
magnitude of resting-state fMRI global signal fluctuations and connectivity. They find that 
there is a decrease in both global signal magnitude and resting-state connectivity. While 
somewhat interesting, the effects are rather weak, accounting for less than 4% of the 
variance in the data. The title, abstract, and main text need to be significantly modified to 
acknowledge how weak this effect especially in comparison to the much stronger relations 
with other factors such as arousal that have been shown in prior studies.   
 
We thank the reviewer for the close read of the manuscript. We have made a number changes 
(in our responses to other comments cited below), which remove the suggestion that time of 
day effects might be greater than arousal or respiration and which present the size of the time 
of day effect in a more interpretable fashion.  
 
In response to R3Q7 we have re-written the sentence in the Abstract which previously stated 
that our findings “challenge the prevailing notion that the brain’s global signal mostly reflect 
arousal or physiological artefacts”.  
 
Abstract 

These findings reveal unexpected effects of time of day on global brain activity that 
are not easily explained by arousal or physiological artefacts. 

 
In response to R2Q2 and R3Q8, we now explicitly state the magnitude of the decrease of GS 
fluctuation in terms of BOLD percent change in the Results section.  

Section 3.1 of Results 
On average, the magnitude of GS fluctuation decreased from 0.22% to 0.17% (on 
average) between 9am to 9pm in both Sessions 1 and 2. 
 

In response to R2Q6 and R3Q15 we have completely re-written our recommendations to 
provide a more nuanced discussion of the extent to which time of day confounds should be a 
cause for concern (Section 4.10) 

Section 4.10 of Discussion 
In this paper we have shown systematic time of day effects in the HCP dataset on 
resting state fMRI measures that are greater in magnitude to behavioural associations 
(e.g. fluid intelligence), consistent in both between- and within-subject analyses, 
present following regression of respiratory variation, and replicable across two 
sessions. Leaving aside the important challenge of understanding their underlying 
mechanisms, another important question to address is which studies are most likely to 
be affected by time of day and to what extent. 
 
Large-scale studies such as the HCP are particularly susceptible to time of day effects 
because they are more likely to have subjects scanned over a wide range of times in 
order to facilitate data collection. Although we found time of day effects to be modest 
in absolute terms, explaining less than 4% of the variance in GS fluctuation or RSFC, 
these were still comparable or stronger than most behavioural – RSFC associations 
reported in fMRI studies. Thus, group-level correction for time of day could 



potentially help avoid masking out or introducing spurious behavioural – RSFC 
associations in other similar large-scale studies with varying times of day of scans. 
 
In contrast, most small-scale studies will not be affected as these often tend to scan 
subjects in fixed timeslots. Even studies where subjects are scanned several hours 
apart are unlikely to be drastically impacted based on the fact that it takes around 9 
hours for time of day effects to reach a similar magnitude as run-effects on GS 
fluctuation (see Figure 1E). Notable exceptions are longitudinal studies that seek to 
examine neural changes associated with same-day skill acquisition, as recently shown 
by Steel and colleauges (Steel et al., 2018). In general, all studies should avoid a 
situation where there is a non-random assignment of an experimental group or 
condition to a specific time of day. Group-level correction for time of day is unlikely 
to be useful in small-scale studies as they may lack statistical power to reliable 
estimate time of day effects. 
 
We recommend reporting time of day of fMRI scans and of other experimental 
protocols and measurements. Even if all subjects are scanned at the same timeslot 
within a particular study, reporting time of day could help account for between-study 
variation in results and potentially even failed replications. Meta-analyses could then 
be leveraged to explore how time of day affects various regions, networks and tasks 
across different domains of the literature. 

 

(R3Q2) The study would also benefit from a consideration of other data that might shed light 
on the state of the subjects that are potentially related to arousal.  For example, in the HCP 
dataset there are also task-based paradigms – an examination of the performance of the 
subjects on these tasks could provide some information on subject state. 
 
We agree with the reviewer that exploring time of day effects on task paradigms would be 
interesting, but we think that this is beyond the scope of the current paper. However, we have 
added this suggestion to the discussion.  
 
Section 4.11 of Discussion 

There are many avenues to extend the current study. For example, it will be 
interesting to explore whether the same effects can be see during task-fMRI. In 
addition, Glasser and colleagues proposed the use of temporal ICA (Glasser et al., 
2018) to decompose the fMRI data into multiple components, some of which 
appeared to reflect “global” artefacts, which can then be more selectively removed. It 
would be interesting to investigate how these global artifactual components might 
relate to time of day. Furthermore, some “global” components are present only during 
resting-fMRI, but not task-fMRI (Glasser et al., 2018). Thus, some of the effects we 
observe in this study might not appear in task-fMRI. 

 
(R3Q3) There should also be some consideration of how the fact that subjects were engaged 
in a lengthy fMRI experiment might have affected the diurnal variations.  An fMRI 
experiment is a rather an unusual activity to partake in and it reasonable to expect that this 
could lead to a deviation from the “usual” variations.   For example, anticipation of the 
exam might grow over the course of the day.  This is an important point to address because 
the authors assume throughout their paper that the subjects are experiencing a “typical” 



decrease in arousal over the course of the day – this assumption gives rise to the 
“paradoxical” observation. However, this assumption is not adequately supported given the 
special circumstances involved in performing an experiment.  
 
The reviewer raises a valid point regarding the potential impact of the study itself on our 
measures of subjects' GS fluctuations, which we now acknowledge in the limitations section 
(as quoted below): 
 
Section 4.9 of Discussion 

Finally, the experience itself of taking part in an extensive study and of being scanned 
could have resulted in deviations in subjects' brain states from typical diurnal 
fluctuations of arousal. For example, participants scanned in the morning versus 
evening could have experienced differential levels of arousal or stress (e.g. due to the 
buildup of anticipation to being scanned) 

 
(R3Q4) The paper would benefit from a more thorough treatment of the considerable amount 
of scatter in the data. This may be partly addressed through better plotting of the data (see 
below). 
 
We thank the reviewer for the many suggestions, which we have tried our best to address. 
Please see our responses to your specific comments below.  
 
(R3Q5) On a related note, there also needs to be a more detailed consideration of how large 
global signal fluctuation values may be driving the least squares fit and the windowed means. 
For example in Figure 1a,b there seem to be both fairly long tails of the GS values at each 
time of day and a great deal of temporal variability in the behavior of the tails.  It would be 
good to verify that the scans with these large GS values exhibit reasonable behavior and to 
also examine the effects using robust estimators. Furthermore,  an examination of the 
residuals is needed to determine the extent to which heteroscedastic effects are affecting the 
fit. 
 
The reviewer raises a valid concern regarding the distribution of the data. Indeed visual 
inspection of the residuals suggested slight heteroscedasticity, driven by a greater variance of 
residuals at earlier than later times of day. We carried out two separate control analyses in 
order to assess the extent to which this could have affected our model fit (Figure S9). 
 
First, we repeated our analysis of the relationship between time of day and GS fluctuation 
using robust regression with a Huber weighting function (Figure S9). In practice, robust 
regression is less affected by heteroscedasticity since it downweighs the influence of outlier 
observations. In our case, we found the fit from robust regression and from OLS to be highly 
consistent, thus suggesting that heteroscedasticity was not introducing substantial bias into 
our least squares fit. Second, we also computed a median quantile regression fit, which does 
not make any assumption of homoscedasticity. This also revealed a highly comparable model 
fit to OLS and to robust regression (Figure S9). 
 
We also note that the range of GS fluctuation values reported in our analyses (including the 
high values GS fluctuation) are comparable to another paper which reported GS fluctuation 
values in terms of percent change (Liu et al,. 2017). Furthermore, the resting state scans 
included in this analysis have passed through the HCP's quality checking and preprocessing 
pipelines. In addition we have excluded runs with excessive levels of head motion (> 50% of 



outlier frames), while we also show that time of day effects remain present after regressing 
out effects of respiration (Figure 3; Figure S4). As we discuss in the manuscript, high levels 
of GS fluctuation values could be driven by a range of physiological (heart rate, respiration) 
and neural factors (arousal, sleep), in addition to head motion and hardware artifacts. 
However, without a clear rationale, we do not feel confident assuming that high GS values 
should necessarily be excluded or down-weighted. However, our control analyses above 
(Figure S9) suggest that even if we did remove or down-weight outliers, our model fit would 
remain largely unchanged. 

 
We have updated the paper as follows: 
 
Section 3.8 of Results 

We also considered the possibility that the observed linear fit between GS fluctuation 
and time of day could have been influenced by heteroscedasticity of the data. 
Therefore we carried out two additional types of regression in addition to OLS, which 
do not assume homoscedasticity: robust-regression and quantile regression. We found 
the line of best fit to be highly similar accross all three types of regression a shown in 
Figure S9. 

 
Section 5.7 of Materials & Methods 

We compared the line of best fit for the effect of time of day on GS fluctuation using 
three types of regression analyses: OLS, robust regression and quantile regression. The 
rationale was to observe the potential effect of heteroscedasticty, which should only 
influence OLS fit but not the other two approaches. We repeated this for both between-
subject and within-subject analyses. OLS and robust-regression were computed using 
Scipy in Python, while robust-regression was run in MATLAB (robustfit) with Huber-
weighting using the default tuning constant.   

 



 
Figure S9. Scatterplots showing (A-C) effects of time of day on GS fluctuation, (D-E) 
effects of time of day on GS fluctuation on respiratory variation and (G-I) effects of 
time of day on GS fluctuation on GS fluctuation after controlling for respiratory 
variation. Lines of best fit were computed using three different methods: ordinary least 
squares regression (red), robust regression (blue) and quantile regression (green).  Robust-
regression and quantile regression were chosen because these two approaches are less 
susceptible to heteroscedasticity than OLS. The r and p-values shown are from the OLS 
regression. The same scatterplots are also presented in Figures 1, 3, S2, S3, S4 and S5.  
 



(R3Q6) Overall, a better analysis of outlier, leverage, and influence effects is needed. For 
example, in Figure 1C. most of the data appears to be centered about 0h, but the line is 
probably overly influenced by the relatively fewer observations at the extreme ends.  Indeed if 
one to provide standard error estimates of the windowed values, then the standard error 
would be quite small around 0h and increase greatly as one goes to the extremes. 
 
As suggested by the reviewer, we have computed the standard error of the mean for the 
windowed values. We report these in Figure S8 as the standard error values were generally 
small and hard to see in the scatterplots.  
 
The reviewer’s observation is correct that the standard error is greater for the within-subject 
analyses at the tail ends, i.e. there were relatively fewer subjects with say a 9 hour difference 
between their scans on the two days than subjects that were scanned at around the same time 
of day. We already partially mitigate this concern in Figure 1 by computing windows over 3-
hour periods for the within subject-analyses rather than 1-hour periods that are used for the 
between-subject analyses. Furthermore, the robust regression and quantile regression 
analyses presented in Figure S9 suggest that the model-fit was not substantially affected by 
greater variance at the tail-ends. 
 
Finally, we note that the model fit for the within-subject analysis is corroborated by the 
model fit in the between-subject analyses for both Session 1 and for Session 2, where 
standard error was fairly stable across different times of day. The consistency across these 
different analyses should alleviate some of the concern stemming from the unequal number 
of observations at the tail-ends of the within-subject analysis.  
 
We have updated the manuscript as follows: 
 
Section 3.8 of Results 

We first visualised the standard error of the windowed means, which suggested 
similar spread of GS fluctuation across different times of day in between-subject 
analyses (Figure S8). In within-subject analyses, the distribution was more dissimilar 
across times of day, with early and later times exhibiting greater standard error due to 
presence of fewer data points than times around midday (Figure S8).  



 

 
Figure S8. Scatterplots showing (A-C) effects of time of day on GS fluctuation, (D-E) 
effects of time of day on respiratory variation and (G-I) effects of time of day on GS 
fluctuation after controlling for respiratory variation. Error bars show standard error of 
hourly windowed means. These scatterplots are presented and described in more detail in 
Figures 1, 3, S2, S3 and S4, without the windowed standard error bars.  

 
 
(R3Q7) Additional comments. It is misleading to say these results “challenge the prevailing 



notion that the brain’s global signal reflect mostly arousal and physiological artifacts” – 
while the authors show a rather weak effect, other studies show a very strong and robust 
relation between global signal and arousal and physiological artifacts.  For example, the 
effects are particularly strong  and repeatable as the subjects go from wakefulnesss to sleep.  
 
We agree with the reviewer and have rephrased the sentence (see below). 
 
Abstract 

These findings reveal unexpected effects of time of day on global brain activity that 
are not easily explained by arousal or physiological artefacts. 

 
 
(R3Q8) It is also misleading in the abstract to contrast the 22% decrease in the global signal 
with a 1 to 3% evoked BOLD responses, especially given the weak nature of the effect.  There 
is enough sensitivity to detect the task-related response in a single scan and voxel, whereas 
the observed GS effect is only weakly seen even given a very large sample size.  Also, the GS 
magnitude is on the order 0.2% so a 22% change corresponds to a change of only 0.04% in 
BOLD percent change units.  This gives a more meaningful sense of the change. 
 
We thank the reviewer (as well as Reviewer 1) for challenging us on this point. We agree and 
therefore have removed this sentence from the abstract.  
 
In addition we have also rephrased a sentence in the Results to express GS fluctuation in 
units of BOLD percent change as per the reviewer’s advice: 
 
Section 3.1 of Results 

From 9am to 9pm, the magnitude of GS fluctuation decreased from 0.22% of mean 
BOLD signal fluctuation to 0.17% (on average) in both Sessions 1 and 2. 

 
Section 5.2 of Materials & Methods 

Global signal fluctuation was always plotted in units of BOLD percent signal change. 
This was calculated by dividing each subject’s global signal fluctuation scores by 
10,000 and multiplied by 100, given that each resting state fMRI run of each subject 
had originally undergone grand-mean scaling to a value of 10,000 during 
preprocessing. 

 
 
(R3Q9) For the scatter plots, it would be useful to provide some indication of the density of 
the points – for example, using something like scatplot or dscatter in MATLAB.  
 
As requested we have produced visualisations of the density of the scatterplots. We present 
these in Figure S1 for the sake of maintaining the simplicity of Figures 1 and 3 in the main 
text. 
 
Section 3.1 of Results 

Subjects exhibited substantial between-subject variation in GS fluctuation at each 
time of day (see Figure S1 for a visualisation of scatterpoint density). 

 



 

Figure S1. Scatterplots showing (A-C) effects of time of day on GS fluctuation, (D-E) 
effects of time of day on respiratory variation and (G-I) effects of time of day on GS 
fluctuation after controlling for respiratory variation with colour-coding of data point 
density. High density of data points around 12:30 pm is consistent with the planned timing of 
resting state scans based on the HCP study protocol (HCP Reference Manual  - 1200 Subjects 
Release; Page 33). These same results are presented and described in more detail in Figures 1, 
3, S3, S4, S8 and S9 without colour-coding of data point density. 

 
(R3Q10) Confidence intervals for the regression plots should also be provided.  



 
We have added confidence intervals for our plots (see Figure 1, Figure 3, Figure S2 and 
Figure S3).  
 
 

 

Figure 1. The brain’s global signal (GS) fluctuation (i.e., standard deviation of global 
signal) decreases with time of day. (A) Between-subject variation in GS fluctuation as a 
function of time of day in Session 1. (B) Between-subject variation in GS fluctuation as a 
function of time of day in Session 2. (C) Within-subject variation in GS fluctuation Δ as a 
function of time of day Δ, where Δ denotes difference between Session 2 and Session 1. Grey 
dots denote individual subjects. Black dots show mean of GS fluctuation in (A, B) hourly, or 
(C) 3-hourly time windows. Line of best fit (red) was calculated based on data from all 
subjects in each plot. Confidence interval is shown in light red. R values denote Pearson r 
correlation coefficient. P values were derived from 100,000 permutations, while keeping 
family structure intact (Winkler et al., 2015). (D) GS fluctuation is elevated in Run 2 
compared with Run 1 despite downward shift in GS fluctuation as a function of time of day. 



Bar plots denote mean GS fluctuation across subjects within 3-hourly time windows for each 
run. Error bars denote standard error of the mean. Two opposing effects are observable: a fast 
increase in GS fluctuation on the scale of minutes, i.e. run effect, (green arrows), 
superimposed on a downward drift of GS fluctuation occurring on the scale of hours, i.e. time 
of day effect (violet arrow). 

 

 

Figure 3. Negative association between time of day and GS fluctuation remains 
significant after controlling for respiratory variation. (A) Between-subject variation, (B) 
within-subject variation, and (C) run-effects of respiratory variation standard deviation (RV 
SD) as a function of time of day. (D) Between-subject variation, (E) within-subject variation 
and (F) run-effects of GS fluctuation residual (after regressing RV SD) as a function of time 
of day. Same as in Figure 1, within-subject effects were computed by taking the difference 
(Δ) for each variable between Session 2 and Session 1. Grey dots denote individual subjects. 
Black dots denote mean of GS fluctuation in hourly (A, D), or 3-hourly (B, E) time windows. 
Confidence interval is shown in light blue or light violet. r values denote Pearson r 
correlation coefficients. P values were derived from 100,000 permutations while keeping 
family structure intact (Winkler et al., 2015). SD refers to standard deviation. This figure 
shows the results for Session 1 (see Figure S3 for Session 2).  

 
 



 
(R3Q11) Standard errors should be displayed for the windowed estimates. 
 
Due to the small size of the standard error across different times of day, it was difficult to 
visualise these effectively within our scatterplots. However, given the reviewer's request, we 
show these in supplementary Figure S8 (as also mentioned in our response to R3Q6). 
 
In addition, we note that standard error for 3-hour windowed estimates is already present in 
the main text in Figure 1D, Figure 3C and Figure 3F of our original (and revised) submission. 
 
(R3Q12) It would be useful to demonstrate the combined dependence of GS magnitude on 
both time of day and RV SD. For example a 3D scatter plot of the data with time of day and 
RV as x and y axes and GS magnitude as z-axis may be interesting. 
 
In response to the reviewer's suggestion we have produced colour-coded scatterplots of the 
GS fluctuation - time of day association, where colours denote the magnitude of RV SD 
(Figure S4). Not surprisingly, the colours reveal a visual gradient where subjects who have 
greater RV SD tend to exhibit greater GS fluctuation (brighter colours; Figure S4A-B). Or in 
the case of within-subject analyses, those with a greater within-subject difference in RV SD, 
exhibit a greater within-subject difference in GS fluctuation (fuller colours; Figure S4C). As 
one would expect, these apparent gradients vanish following group-level regression of RV 
SD from the GS fluctuation (Figure S4D-F).  
 
Section 3.4 of Results 

The negative correlation between time of day and GS fluctuation residual remained 
significant, and only slightly attenuated in magnitude (Figure 3D-F and Figure S3; 
Figure S4). 

 



 

Figure S4. Effects of time of day and of respiratory variation (RV SD) on global signal 
fluctuation (GS fluctuation). (A, B) Subjects with greater RV SD (brighter dots) and 
scanned earlier in the day are more likely to exhibit greater GS fluctuation than those with 
lower RV SD (darker dots) and those scanned later in the day (C) Subjects scanned a longer 
duration apart on the two sessions (greater time of day Δ) are more likely to exhibit a greater 
between-session difference in GS fluctuation (greater GS fluctuation Δ) and in RV SD 
(greater RV SD Δ). Subjects with greater RV SD on Session 2 are denoted in red, while those 
with higher RVSD on Session 1 are denoted in blue. (D-F) As expected, statistically 
controlling for the effects of RV SD on GS fluctuation via group-level regression eliminates 
the apparent visual gradient pattern along the y-axis reflecting the systematic contribution of 
RV SD to GS fluctuation. These results are also presented in Figures 3 and S2 without colour 
coding of RV SD.   

  



 
(R3Q13) It would be more meaningful to report the GS magnitude in terms of percent change 
BOLD signal. Presumably, the preprocessed data has used the HCP preprocessing that 
scales each 4D volume to a grand mean value of 10,000.  If this is the case, then the global 
signal fluctuation magnitudes reported in Figure 1 are on the order of 0.2% which is 
consistent with prior work.  
 
We agree and have done so in the revised manuscript. See our response to R3Q8.  
 
(R3Q14) P. 8 – it is stated that the correction for multiple comparisons (when considering 
different measures) is explained in the Methods, but this does not appear to be the case.  The 
multiple comparisons explanation in Methods appears to be for the regional maps.  
 
We thank the reviewer for spotting this omission. We have now added the description of our 
multiple comparisons controls in two sections where it was missing in our initial submission. 
 
Section 5.1.5 of Materials & Methods 

False discovery rate (FDR) correction was applied at q < 0.05 to all 1815 statistical 
tests conducted in this manuscript. These 1815 statistical tests include analyses 
presented across Sections 3.1 to 3.7. 

 
Section 5.3.1 of Materials & Methods 

We repeated the FDR-correction at two additional thresholds, thus allowing us to 
denote the level of significance for each correlation in Figure 2 (* q < 0.05; ** q < 
0.01; *** q < 0.001). 

 
 
(R3Q15) Given the weak observed effects, the recommendations in section 4.9 seem a bit of 
an overreach – if the authors are to make such recommendations, it would be useful for them 
to provide an estimate of how much time of day would affect the conclusions of a typical 
fMRI study, which in general have much smaller sample sizes. 
 
We have now entirely re-written our recommendations to provide a more balanced view on 
how it would impact various types of studies in the field. Please see our response to R3Q1.  


