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Abstract. We analyse large deviations of the dynamical activity in one-
dimensional systems of diffusing hard particles. Using an optimal-control
representation of the large-deviation problem, we analyse effective interaction
forces which can be added to the system, to aid sampling of biased ensembles of
trajectories. We find several distinct regimes, as a function of the activity and the
system size: we present approximate analytical calculations that characterise the
effective interactions in several of these regimes. For high activity the system
is hyperuniform and the interactions are long-ranged and repulsive. For low
activity, there is a near-equilibrium regime described by macroscopic fluctuation
theory, characterised by long-ranged attractive forces. There is also a far-from-
equilibrium regime in which one of the interparticle gaps becomes macroscopic and
the interactions depend strongly on the size of this gap. We discuss the extent to
which transition path sampling of these ensembles is improved by adding suitable
control forces.

1. Introduction

Large deviations of time-averaged quantities are becoming increasingly useful for
understanding dynamical fluctuations in physical systems [1–13]. For example,
consider an ergodic system in which time-averaged quantities converge almost surely to
ensemble-averaged values. Given some large time scale, the probability of a significant
deviation between the time-average and the ensemble average is small but finite – these
rare events are described by large-deviation theory [14, 15]. Despite their scarcity,
analysis of these events has led to new insight into the behaviour of physical systems,
and their dominant fluctuation mechanisms [9–11,16–18].

Early studies of these events focused on the entropy production in non-equilibrium
systems, which is intrinsically linked to fluctuation theorems [1, 2, 19, 20]. Another
direction has been the analysis of time-averaged currents, aiming towards a general
theory of transport in non-equilibrium systems [3,5,21,22]. Yet another line of enquiry
has focused on glassy systems [8,9,23,24], which have long-lived metastable states that
hinder equilibration.

In studies of large deviations, there are numerous examples of dynamical phase
transitions [8–10, 13, 17, 23–29]. In simple terms, these occur when deviations from
ergodic behaviour occur by mechanisms that differ qualitatively from the typical
behaviour of the model. For example, the rare events may involve spontaneous
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symmetry breaking, as in [10,13,29]. In other cases, one encounters the phenomenology
of first-order phase transitions, including phase coexistence [8, 23].

Here we focus on a simple Brownian hard particle model (BHPM), which has
rich fluctuation behaviour, including dynamical phase transitions [30, 31]. It consists
of many hard particles diffusing in one dimension, and therefore has some similarities
with the simple symmetric exclusion process (SSEP), generalised to continuous space.
Dynamical phase transitions in the SSEP have been analysed in detail [5,13,29,32,33].
In particular, its behaviour on very large (hydrodynamic) length scales is described
by macroscopic fluctuation theory (MFT) [21]. The general applicability of this
theory means that its predictions apply also in the BHPM [30, 31]. A key prediction
is that for large deviations with low values of the dynamical activity, the system
becomes macroscopically inhomogeneous, which was identified in [30] as a form of
phase separation.

This article extends previous work [30,31] on the BHPM in two main directions.
First, we analyse the macroscopically inhomogeneous regime, both numerically and
analytically. We generalise existing MFT predictions [17, 25] to the BHPM and we
show quantitative agreement with numerical results. This theory is accurate for
fluctuations that involve smooth large-scale modulations of the density. We also
analyse fluctuations that are too large to be captured by MFT, where one observes
the formation of an extensive region without any particles at all: a macroscopic gap.
Based on previous results for kinetically constrained spin models [34–36], we propose
a simple interfacial model that captures qualitative features of this regime.

The second direction of this work is to show how the addition of control
forces [37, 38] to the equations of motion of the system can be used to improve
numerical convergence. It is known [38,39] that for any given biased ensemble there is
an optimal set of control forces for which numerical sampling of the rare events becomes
trivial. While these optimal forces cannot usually be computed in complex physical
systems, it is expected that adding non-optimal control forces can also improve the
convergence of numerical calculations, via a form of importance sampling [36, 40–42].
We use theoretical arguments to derive approximations to the optimal control force,
in two regimes that we have identified. We show that these control forces do indeed
improve numerical performance, and this improvement is increasingly strong when we
consider large systems. (This is because our approximations to the optimal control
forces are increasingly accurate for large systems.)

The form of this paper is as follows. Sec. 2 introduces the models that we consider,
and some of the quantities that we will measure. Sec. 3 collects properties of biased
ensembles of trajectories. Sec. 4 gives an overview of the main theoretical results,
before Sec. 5 and Sec. 6 describe the detailed calculations for the two macroscopically
inhomogeneous regimes that we identify. We summarise our conclusions in Sec. 7.

2. Models

Consider N hard particles moving in one dimension with periodic boundaries. Each
particle has size l0 and the position of particle i at time t is xi(t). We write
X = (x1, x2, . . . , xN ) for a configuration of the system and x for a trajectory of the
the system, over a time interval [0, tobs]. The particle motion is stochastic and obeys
detailed balance with respect to an equilibrium distribution

p(X) =
1

Z
exp[−βU(X)] (1)
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where β is the inverse temperature, Z is a normalisation constant, and U is a pairwise
additive potential energy U = 1

2

∑
i6=j v(xi − xj). As in [30, 31], we consider two

variants of the system, which have very similar behaviour.

2.1. Monte Carlo dynamics

The MC variant of the model is a discrete-time Markov process. On each step, a
particle (say i) is chosen at random and we propose to move it to a new position
xi + ∆x where ∆x is uniformly distributed in [−M,M ]. Here, M is a parameter of
the model. We use Glauber dynamics so the move is accepted with probability

pacc =
1

1 + exp(β∆U)
(2)

where ∆U is the difference in energy between the current configuration and the
proposed configuration. If the move is rejected then the configuration remains the
same. After each attempted move, the time is incremented by δt = M2/(12ND0)
where D0 is the single-particle diffusion constant, which is also a parameter of
the model. This ensures that in the dilute limit, particles diffuse independently
between collisions, with diffusion constant D0. We use Glauber dynamics because
this facilitates later analysis, when we add control forces to the system, see Sec. 3.3.

This variant of the model considers hard particles, so the interaction potential is

v(x) =

{
0, x > l0

∞, x < l0
(3)

Suppose that the jth particle is selected to be moved in a given MC step, and suppose
that the neighbouring particles have indices p, q. The probability that the proposed
move does not result in two particles overlapping is

rMj =
1

2M
[min(M, |xj − xp|) + min(M, |xj − xq|)] (4)

The superscript M indicates that this quantity depends on the MC step size, it is a
label (and not any kind of exponent).

2.2. Langevin dynamics

All numerical results in this work use MC dynamics. However, it is convenient for
theoretical analysis to consider a Langevin equation

ẋi = −βD0∇iU +
√

2D0ηi (5)

where ηi is a standard Brownian noise. In this case the pair potential should be
differentiable: we assume a regularised version of (3) such that v(x) =∞ for |x|< l0.
Also there is some l1 such that v(x) = 0 for |x|> l0 + l1, with v(x) a continuous
function for l0 < x ≤ l1, diverging as x→ l0. This choice ensures that the separation
between any pair of particles is always larger than l0.

The similarity between the MC and Langevin models can be justified in the
following way. In the Langevin model, take l1 = l0 + M where M is the step size in
the MC model. The two models behave equivalently in the limit M → 0: this can
be verified by constructing the Fokker-Planck equation for the Langevin model and
the corresponding master equation for the MC model, then taking the relevant limits.
See [43].
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2.3. Rescaled representation

Since we consider hard particles in d = 1, the ordering of particles in the system is
preserved.‡ One may always map such a model to a system of point particles that
move in a spatial domain of size

Lr = L−Nl0 . (6)

We insist that the particle positions are ordered with x1 < x2 < . . . (modulo periodic
boundaries) in which case the position of the jth point particle is x̃j = xj − jl0. For
the MC variant of the model, the equilibrium distribution (1) reduces to an ideal-gas
distribution for the positions x̃. In some cases, this means that the rescaled system is
simpler to analyse. However, we emphasise that the rescaled system and the original
system contain exactly the same information.

In this rescaled representation, it is easy to see that varying l0 in the original
model simply shifts particles’ positions by constants that are independent of time.
It follows that many properties of the system (including trajectories of individual
particles) are independent of l0.

2.4. Dynamical activity

In the following, we focus on ensembles of trajectories that are biased to low (or
high) values of time-averaged measurements of dynamical activity. The definition
of activity used in this work differs from [30, 31] – the choice used here does not
change the qualitative behaviour but it makes it easier to analyse, both numerically
and computationally. Large deviations for a different kind of dynamical activity have
recently been analysed in a similar model [44].

The activity measures motion on a characteristic length scale a. We introduce a
dimensionless parameter

Φa =
Na

Lr
(7)

which is the ratio between a and the average interparticle gap. For a trajectory x, we
define

K[x] =

N∑
i=0

∫ tobs

0

rai (t) dt (8)

where rai is the acceptance probability for an MC move of size a, as defined in (4).
We allow the parameter a that appears in the definition of K to be different from the
parameter M that determines the size of MC moves, although our numerical results
take a = M . Note also that while K is defined in terms of the MC acceptance rate,
it can be evaluated directly from particle trajectories, using (8). Thus, K is a well-
defined quantity in the Langevin variant of the model, as well as in the MC variant.
Also, the value of K only depends on gaps between adjacent particles and is therefore
the same in the rescaled representation, or the original representation.

It is useful to define an intensive (and dimensionless) version of K by dividing by
the number of particles and by tobs:

k[x] =
K[x]

Ntobs
, (9)

‡ The particles exclude a volume l0 which we assume throughout is larger than the MC step M .
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In large systems, the gaps between adjacent particles are exponentially distributed
with mean Lr/N . Hence the mean of rai is the probability that a randomly chosen
gap (y) is larger than the proposed step (z):

〈rai 〉0 =

∫ a

0

(1/a)

∫ ∞
z

(N/Lr)e
−yN/Lr dy dz (10)

(Here and throughout, 〈·〉0 indicates an average in the equilibrium state of the system.)
The integral gives Φ−1

a (1− e−Φa), so one has (for large systems, N →∞)

〈k[x]〉0 =
1

Φa
(1− e−Φa) (11)

At low concentrations (small Φa), particles diffuse almost independently and the
activity k is equal to unity. For high concentrations the mean activity (per particle)
is reduced; it approaches zero as Φa →∞ (in which case particles do not move at all).

3. Biased Ensembles of Trajectories

This work focusses on the distribution of the intensive activity k[x] as tobs →∞. In a
system with N particles, large deviation theory for this time-averaged quantity means
that its probability density scales as

p(k|tobs, N) ∼ e−tobsI(k) (12)

where I is the rate function. This is a large deviation principle, which holds for
tobs →∞ at fixed N .

Evaluation of I(k) gives the probability of rare events where the time-averaged
activity takes a non-typical value. This section outlines several results from large
deviation theory as it applies to ensembles of trajectories [5, 6, 39, 45], including
connections to optimal-control theory [38, 46], and its application for numerical
sampling [40, 47]. Readers familiar with this material may prefer to skip directly
to the summary of main results in Sec. 4.

3.1. Biased ensembles

We define biased ensembles of trajectories according to standard methods [5,6,45], by
modifying the probabilities of trajectories of the system. We use dP0[x] to indicate
the (infinitesimal) probability that the system follows trajectory x. The meaning of
this notation is that the expectation value of some observable O can be expressed as

〈O〉0 =

∫
O[x] dP0[x] (13)

where the integral runs over all possible trajectories, weighted by their probabilities.
Now consider an ensemble in which the probability of trajectory x is biased according
to its activity:

dPs[x] =
e−sK[x]

Zs
dP0[x] , (14)

with Zs = 〈e−sK[x]〉0 for normalisation. By analogy with (13), averages in the biased
ensemble are given by

〈O〉s =

∫
O[x] dPs[x] . (15)
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Since K is extensive in time, it is useful to invoke an analogy between these
biased ensembles and canonical ensembles in statistical mechanics, see [15, 48] for a
discussion. This motivates us to define the dynamical free energy,

ψ(s) = lim
tobs→∞

1

tobs
log〈e−sK[x]〉0 . (16)

The average of the intensive activity in the biased ensemble is denoted by

k(s) = 〈k[x]〉s (17)

(There should be no confusion between the mean activity k(s) and the activity of
an individual trajectory k[x].) The average is over trajectories of fixed length tobs

so k(s) depends implicitly on tobs, as well as the parameters of the model. Note
also that limtobs→∞ k(s) = −ψ′(s)/N , where the prime indicates a derivative. One
reason that these biased ensembles are useful is that for large tobs, typical trajectories
taken from (14) are representative of the rare events associated with (12), evaluated
at k = k(s) [6, 23,45,48].

In analogy with thermodynamics, this derivative ψ′ corresponds to the average
value of an order parameter. The free energy is related to the rate function I by
Legendre transform I(k) = sup[−sk − ψ(s)]. If results for k(s) and ψ(s) are available
from numerical data then the rate function may be estimated parametrically as

I(k(s)) = −sk(s)− ψ(s) . (18)

3.2. Dependence of averages on time

From the definition of the biased ensemble in (14), it follows that this ensemble has
transient regimes when the time t is close to t = 0 or t = tobs. These transients
can be characterised theoretically following [23,39,45]. To this end, consider a general
observable quantity ẑ that can be measured at some single time t (for example, ẑ might
be the distance between two particles). The probability density for this quantity when
evaluated at time t = tobs is

Ps,end(z) = 〈δ[z − ẑ(tobs)]〉s . (19)

The probability density for ẑ can also be averaged along the whole trajectory, which
gives

Ps,ave(z) =
1

tobs

∫ tobs

0

〈δ[z − ẑ(t)]〉s dt . (20)

This is the probability that ẑ has value z, if we measure at a time t chosen uniformly
at random from [0, tobs]. These distributions depend implicitly on tobs; their limits are
well-defined as tobs →∞. The two distributions Ps,ave, Ps,end are different in general;
in particular, they have different limits as tobs →∞ because Ps,end(z) characterises the
transient regime while Ps,ave(z) characterises typical times, away from the transient
regimes.

3.3. Conditioning of Doob, guiding forces, and optimal control theory

It has been shown in recent years [39, 45] that properties of biased ensembles of the
form (14) can be reproduced by considering the typical (unbiased) dynamics of an
“auxiliary process” that has been modified to include additional “control forces”. For
the Langevin process (5), the auxiliary process is

ẋi = −D0∇i(βU + Vopt) +
√

2D0ηi (21)
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where Vopt is an optimal control potential whose determination is discussed below.
In the following, we make extensive use of (non-optimal) control forces, to improve

convergence of our numerical algorithms, following [36,40,41,47]. We now present the
associated theory. Some details of derivations are given in Appendix A.

The object of primary interest in this study is the biased probability distribution
Ps of (14). It is convenient to define a new biased distribution that is very close to
Ps, but differs in the transient regimes close to t = 0 and t = tobs. Let V be a control
potential, similar to Vopt in (21), but not necessarily optimal. Then define

dP̃Vs [x] ∝ exp

(
1

2

[
V (X(0))− V (X(tobs))

])
dPs[x] . (22)

The constant of proportionality in this equation is fixed by normalisation, we do not
write it explicitly in order to have a compact notation. Since they differ only in
transient regime, the distributions Ps and P̃Vs are equivalent for long trajectories, in
the sense that they yield the same results for k(s) and ψ(s). Marginal distributions
Pave are also identical for Ps and P̃Vs (as tobs →∞), but Pend is different in general.§

The equivalence of Ps and P̃Vs means that we are free to choose V in such a
way that P̃Vs is easy to analyse, either numerically or theoretically. To this end, let
P̃V [x] be the probability of trajectory x under the Langevin dynamics (21), with Vopt

replaced by V . Then, we show in Appendix A that P̃Vs can be interpreted as a biased
ensemble for this controlled process, that is

dP̃Vs [x] ∝ exp (Asym[x]− sK[x]) dP̃V [x] , (23)

with

Asym[x] =
1

4

∑
i

∫ tobs

0

∇iV ·D0(∇iV + 2β∇iU)− 2D0∇2
iV dt . (24)

Similar results have been derived in [36, 38, 40, 41, 49]. Note that (23) applies for the
Langevin model (5), the analogous result for MC dynamics is given in Appendix A.

Comparing (23) with (14), one sees that dP0 has been replaced by dP̃V , which
indicates that the model has been modified by including the control potential V in
the equation of motion. Also the exponential biasing factor in (14) has been modified
to include the action Asym. In numerical work, these modifications are simple to
implement, so algorithms for analysing Ps can also be used to analyse P̃Vs . This
holds for any V which allows an enormous flexibility [36, 40, 41]. In particular, the
optimal control (V = Vopt) is the potential V for which the factor Asym[x]− sK[x] in
(23) evaluates to a constant value ψ(s)tobs, independent of x. This allows Vopt to be
obtained by solving an eigenvalue problem, see Appendix A. If this optimal control
potential is known then sampling from P̃Vs is trivial [47, 50]. More commonly, the
optimal potential is not available, but even non-optimal controls can greatly improve
the performance of numerical schemes [36,40,41]. The nature of optimal control forces
in some physical model systems is discussed in [46].

3.4. Sampling of biased path ensembles

We use transition path sampling (TPS) [51] to generate representative trajectories
from Ps and P̃Vs . Our TPS methodology is the same as [9,31]. To summarise, TPS is

§ One way to characterise the optimal controlled model is that it leads to Pave = Pend [40], so there
is no transient regime in that case.
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Figure 1. Average dynamical activity (per unit time), evaluated at equilibrium
for a = 0.1l0. (a) Mean activity per unit length 〈φk〉0 as a function of volume
fraction φ for a system of size L = 40l0, compared with the theoretical prediction
of (11). (b) Corresponding activity, per particle.

an MC method for sampling trajectories of a fixed length tobs. In each step, one starts
with a trajectory and proposes to change it in some way. This is called a TPS move.
The proposal is generated by direct simulation of the model of interest (see below).
The proposed trajectory is accepted or rejected according to a Metropolis criterion
based on the relevant weighting factor [for example, e−sK in the case of (14)]. This
MC method is designed to obey detailed balance, which ensures that it samples (14)
or (23), as required. This is a key strength of the method; another advantage is that
standard MC tests for numerical convergence can be applied, see for example Sec. 5.3.

There is some flexibility as to the specific choice of TPS moves. In this work, we
use shifting moves [9, 31, 51] and the size of each shift is chosen uniformly from the
range τB ± 0.5τB, except where stated otherwise. As usual in TPS, proposing larger
shifts is desirable for rapid exploration of trajectory space, but tends to lead to more
TPS moves being rejected. The best choice of shift size is a compromise between these
two effects.

We note that population dynamics (cloning) methods [52–54] have also been
widely used for numerical studies of large deviations, and guiding (control) forces have
also been used in that case [36,40,41]. We comment on the strengths and weaknesses
of the two approaches at the end of this work, in Sec. 7.

4. Overview of main results

We consider fluctuations of the dynamical activity K in the BHPM, as defined in
Sec. 2.4. All numerical results are obtained using the MC variant of the model. The
behaviour of the mean activity is illustrated in Fig. 1. We represent the data in two
different ways. Fig. 1(a) shows 〈K/(Ltobs)〉0 = 〈kφ〉0, which is the average activity
per unit length, as a function of the volume fraction φ = Nl0/L. Fig. 1(b) shows
the activity per particle 〈k〉, and its dependence on φ. Note that the activity of a
typical particle 〈k〉 decreases with volume fraction, but the activity per unit length is
non-monotonic. (At small volume fractions, the activity is proportional to the number
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Figure 2. (a) Average activity 〈k[x]〉s in the biased ensemble, obtained by TPS
in a system with N = (28, 42) and tobs = (10τB, 15.6τB). (b) Corresponding
estimate of the rate function, using (18). These results are analysed in more
detail below, including a discussion of numerical uncertainties (error bars), see for
example Fig. 4.

of particles and hence to φ; on the other hand, it decreases for large volume fractions,
because particles start to obstruct each other.)

We now consider large deviations of K. Fig. 2 shows the behaviour of k(s) and
the corresponding estimate of the rate function [obtained by (18)], for a representative
state point φ = 0.7 in systems of N = 28 and N = 42 particles. These results were
obtained by TPS, we note that they depend on the trajectory length tobs which is
quoted in units of the Brownian time,

τB = l20/(2D0) . (25)

This is a natural unit of time in the model, and is comparable to the time required
for a particle to diffuse its own size, l0.

As noted in Section 3, k(s) is analogous to an order parameter in thermodynamics.
This quantity decreases sharply for positive s. As explained in [30, 31], this is a
signature of a dynamical phase transition in the BHPM, which occurs in the limit
N, tobs → ∞. Before embarking on a detailed analysis, we give a brief summary
of the associated phenomena. The qualitative behaviour of k(s) in a system with
finite N is shown in Fig. 3, which also shows typical trajectories of the system,
as one passes through the phase transition. At the phase transition, the system
becomes inhomogeneous [30, 31]. In this work, we emphasise that (for this model)
there are two distinct classes of inhomogeneous state. There are states where the
density is modulated in space, but particle spacings remain of order unity as N →∞.
However, for larger s (smaller k[x]), there are states where a significant fraction of the
available space in system is taken up by a single interparticle gap. The two classes of
inhomogeneous state are discussed in Secs. 5 and 6.

In Sec. 5 we review and extend some previous work [17, 25, 30, 32, 55, 56], which
shows that inhomogeneous states with spacings of order unity appear on taking
N → ∞ with s = O(N−2). This is the regime described by macroscopic fluctuation
theory (which can also describe the behaviour for small negative values of the bias). In
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MFT regime
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(a)

Figure 3. (a) Sketch of the activity k(s) as a function of the bias. We concentrate
in this work on three physical regimes: (i) homogeneous; (ii) macroscopically
inhomogeneous; and (iii) a system with a single macroscopic gap. See the text for
a discussion. (b,c,d) Representative trajectories of the system at s = 0, 0.18, 0.36
respectively. These trajectories illustrate the characteristics of the three regimes.
We take N = 160 and tobs = 100τB, we show the behaviour for 0 < t < 10τB
which is representative of the whole trajectory in these cases.

this regime, the optimal control forces are long-ranged; they are attractive for s > 0
and repulsive for s < 0. It is the attractive forces that drive the phase separation
transition. We show that using control forces in numerical sampling significantly
improves their efficiency. For s < 0 the system always remains homogeneous; as
explained in [30] it is hyperuniform when s is negative and of order unity, see also
Sec. 5.2.3.

In Sec. 6, we discuss the behaviour on taking N → ∞ with s = O(N−1). We
explain that this is the regime in which we expect a macroscopic gap to take up a
finite fraction of the system. By applying such control forces in numerics, we show
that computational efficiency is significantly improved. In fact, this improvement is
much larger than for the MFT regime. We discuss how parameters of the control force
can be optimised for efficient sampling.

We note that all these results apply in limits where s → 0 as N → ∞. The
tractability of these limits arises because the biases that are applied to these ensembles
of trajectories are weak. For example, a central assumption of MFT [21] is that the
system is in “local equilibrium”, which means that any finite region of the system
can be characterised through its local density and current, and that the bias has a
negligible effect on the short-ranged correlations between microscopic particles. In the
regime with a macroscopic gap, there are deviations from local equilibrium but our
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central assumption is that these are localised near the interfaces, at the edges of the
gap.

5. Diffusion governed (MFT) regime

This section discusses the regime where MFT applies [21]. We work in the rescaled
representation of Sec. 2.3. MFT is valid on large (hydrodynamic) length and time
scales, which are related by a diffusive scaling. That is, we introduce the (average)
density ρ and define

Lr = N/ρ, tobs = γobs
L2

r

2D0
. (26)

The hydrodynamic limit is N → ∞ at fixed ρ, γobs. One then takes a second limit,
γobs → ∞, in order to access the relevant large deviations. To arrive at a consistent
theory, we also rescale the biasing parameter [32] as

λ = sL2
r/D0 (27)

which is held constant as N →∞.

5.1. Theoretical analysis of density fluctuations and optimal control potential, using
MFT

We consider the statistics of the local density and current, which are the relevant
hydrodynamic fields within MFT [21]. We analyse large deviations of the activity
using a physical argument based on fluctuating hydrodynamics – the same conclusions
can also be reached other methods [32], the specific case of the BHPM is discussed
in [30]. The statistics of the density and current may be characterised by writing
Langevin equations:

ρ̇ = − div j

j = −D(ρ)∇ρ+
√

2σ(ρ)η (28)

where D(ρ) and σ(ρ) are a diffusivity and a mobility, and η is a space-time white noise
with mean zero and 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). The specific forms of D and
σ for the BHPM are discussed below. We use Ito calculus.

The usual approach in MFT is to rescale the spatial domain [0, Lr] into the unit
interval [0, 1] and also to rescale time. That is, define dimensionless coordinates on the
hydrodynamic scale as x̂ = x/Lr and t̂ = t/L2

r , the corresponding current is ̂ = jLr

(there is no rescaling of the density). Then (28) becomes

(∂/∂t̂)ρ = − ∇̂ · ̂
̂ = −D(ρ)∇̂ρ+

√
2σ(ρ)/Lr η̂ (29)

where ∇̂ is a gradient with respect to x̂, and η̂ is a noise with zero mean and

〈η̂(x̂, t̂)η̂(x̂′, t̂′)〉 = δ(x̂ − x̂′)δ(t̂ − t̂′). (Hence one sees that η̂ = L
3/2
r η.) It is

apparent from (29) that MFT is a weak-noise theory that is valid on large length
scales. For later comparison with numerics, it is convenient to quote all results in the
original co-ordinates (without hats), but we emphasise that they are valid only on the
hydrodynamic scale (which in this case will mean s = O(N−2), as usual in diffusive
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systems [32]). Within MFT it is consistent (by the local equilibrium assumption [21])
to approximate the activity K from (8) as

K[x] =

∫ tobs

0

∫ Lr

0

κ(ρ(x, t)) dxdt (30)

where κ(ρ) is the average activity (per unit volume) of an equilibrium system with
density ρ. That is, κ(ρ) = 1

Lrtobs
〈K〉0,ρ; for the BHPM then (11) and ρ = N/Lr imply

that

κ(ρ) =
1

a
(1− e−aρ) . (31)

For activity fluctuations in the SSEP, one takes instead κ = 2ρ(1 − ρ) in which
case the following theoretical analysis is similar to [25, 32]. For the purposes of
this discussion, the important feature is that κ′′(ρ) < 0. For positive s, this means
that the system undergoes a continuous phase transition accompanied by spontaneous
symmetry breaking [17,30,32], see also [13,57,58]. For s = 0 the system is homogeneous
but for positive s, it becomes inhomogeneous, see Fig. 3. We now adapt previous MFT
results to this setting before comparing with numerical results in Sec. 5.2.

5.1.1. Homogeneous phase As in [17, 30, 32, 59], we analyse the homogeneous phase
by writing ρ(x, t) = ρ + δρ(x, t), and assuming that δρ is small. From (28) we have
(∂/∂t)δρ = −div j with (at leading order in δρ):

j = −D(ρ)∇(δρ) +
√

2σ(ρ)η . (32)

From (30) then

K[x] = Lrtobsκ(ρ) +
1

2

∫ tobs

0

∫ Lr

0

κ′′(ρ)δρ(x, t)2 dxdt . (33)

Fourier transforming as

ρ̃q(t) = L−1/2
r

∫ Lr

0

ρ(x, t) exp (−iqx) dx (34)

one has (for q > 0)

(∂/∂t)ρ̃q = −D(ρ)q2ρ̃q + q
√

2σ(ρ)η̃q (35)

where η̃q is a complex-valued Brownian noise. [There is one noise for each positive
wavevector, each noise is independent of all the others, and 〈η̃q(t)η̃∗q (t)〉 = δ(t − t′).]
Also,

K[x] = Lrtobsκ(ρ) +
∑
q>0

∫ tobs

0

κ′′(ρ)ρ̃q(t)ρ̃−q(t) dt . (36)

In (35) and (36), the different wavevectors are completely decoupled from each
other. Biased ensembles for these OU processes can be analysed exactly by standard
methods, see Appendix B for details. Using (B.6) with α = κ′′(ρ) and ω = D(ρ)q2

and γ = σ(ρ)q2, the result can be expressed as

ψ(s) = −s 〈K〉0
tobs

−
∑
q>0

(√
D(ρ)2q4 + 2sκ′′(ρ)σ(ρ)q2 −D(ρ)q2 − sκ′′(ρ)σ(ρ)

D(ρ)

)
(37)

which is equivalent to the results obtained in [30, 32]. The sum on the right hand
side runs over q = 2nπ/Lr with 0 < n < ∞, and converges to a finite value. Taylor-
expanding over s, the first term appears at O(s2). The term involving 〈K〉0 includes
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all contributions at O(s): it is written in this form to ensure that ψ′(0) = −〈K〉0/tobs,
consistent with (16). We note that evaluating 〈K〉0 in a finite system requires a high-
q cutoff in the Fourier representation of ρ, as usual in systems defined by stochastic
partial differential equations like (28). Nevertheless, (37) is a universal prediction
within MFT (independent of cutoff), consistent with [32].

From (37), the activity is

k(s)− k(0) = N−1[ψ′(0)− ψ′(s)]

=
κ′′(ρ)

N

∑
q>0

[
qσ(ρ)

[D(ρ)2q2 + 2sκ′′(ρ)σ(ρ)]1/2
− σ(ρ)

D(ρ)

]
(38)

which will be compared in Sec 5.2 with numerical data.
Note however that (37) is valid only if the argument of the square root is

positive which requires 2sκ′′(ρ)σ(ρ)q2 > −(Dq2)2; otherwise the OU process predicts
a divergence in the density fluctuations which signals a breakdown of the quadratic
expansion in δρ. Recalling that κ′′ < 0, this criterion is most stringent for the smallest
wavevector q = q1 = 2π/Lr so one sees that the range of validity is s < sc with

scL
2
r = − 2π2D(ρ)2

κ′′(ρ)σ(ρ)
(39)

as in [30,32]. For s < sc, the sum in (38) converges to a finite value so k(s)→ κ(ρ)/ρ
as N → ∞, while the sum gives a finite-size correction that has a universal form
within MFT [32]. In this regime, the optimal-control potential required to generate
typical trajectories of the biased ensemble is obtained from Equ. (B.8) as

V [ρ] =
∑
q>0

ṽqρ̃
∗
q ρ̃q (40)

with

ṽq =
1

D(ρ)q

(√
D(ρ)2q2 + 2sκ′′(ρ)σ(ρ)−D(ρ)q

)
. (41)

This corresponds to a pairwise-additive interaction whose pair potential v(x) is given
by the inverse Fourier transform of vq. If s 6= 0 then vq diverges as q → 0 indicating
that this interaction is long-ranged. As discussed in [60,61], the pair potential decays
as v(x) ∼ 1/(log x) for separations x that are large compared to the particle spacing
(but small compared to Lr). The potential is attractive if sκ′′ < 0 and repulsive if
sκ′′ > 0. We again emphasise that this analysis requires a weak bias s < sc.

5.1.2. Inhomogeneous phase For s > sc, a slightly different approach is required,
which is related to the Landau-like theory of [13, 62] as well as earlier work [17, 25].
For simplicity, we assume in this calculation that D = D0 is a constant (independent
of ρ): this situation holds for both the BHPM and the SSEP. The generalisation to
density-dependent D is straightforward.

We write the probability distribution (14) for the biased ensemble as

dPs[x] ∝ exp(−S[x]) (42)

where the action S can be obtained from (28) or directly from MFT [21] as

S =

∫ tobs

0

∫ Lr

0

[
(j +D0∇ρ)2

4σ(ρ)
+ sκ(ρ)

]
dx dt (43)
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where the integrand depends on (x, t) through ρ = ρ(x, t). We consider the system
close to the transition and we derive a result analogous to Sec 3.2 of [25]. Our method
is slightly different from that work; note also that [25] considers specifically the case
of the SSEP, where κ = σ is a quadratic function of ρ. The following calculation can
be interpreted as the derivation of a Landau theory for a suitable order parameter:
similar calculations for systems with open boundaries are considered in [13,62,63].

We find the path that minimises the action S. The minimum has j = 0 and
the associated density ρ is independent of time, as one might expect since the biased
ensemble is time-reversal symmetric. Hence

S =
γobs

2

∫ Lr

0

[
D0L

2
r |∇ρ|2

4σ(ρ)
+ λκ(ρ)

]
dx (44)

where now ρ = ρ(x) and we used (26). This action functional can be minimised
numerically over the profile ρ, in this work we make an expansion [17,25] that is valid
close to the critical point and allows an analytic treatment. In this regime one can
capture the behaviour of the inhomogeneous phase by considering a density profile

ρ(x) = ρ+A cos q1x+B cos 2q1x (45)

where A,B are variational parameters. As noted above, the instability of the system
originates in the smallest wavevector q1 but it is necessary [25] to consider also the
second-smallest wavector 2q1 to obtain accurate results for the inhomogeneous phase,
even at leading order. We take A > 0 without loss of generality; the system has
translational symmetry so one may equivalently replace x → x + δ to obtain an
equivalent profile, shifted in space.

Close to the transition, we anticipate that A is small, and B = O(A2) is even
smaller [25]. Inserting (45) in (44) we expand up to terms of order A4, A2B,B2. We
introduce the short-hand σ0 = σ(ρ) and similarly for derivatives such as σ′0 = σ′(ρ),
and also for κ. The result is

S =
Lγobs

2

[
λκ0 +

κ′′0
4

(λ− λc)A2 +
µ2

2
B2 + µ3A

2B +
µ4

2
A4

]
(46)

with λc = D0(q1L)2

−2κ′′0 σ0
, consistent with (39,27) [recall κ′′ < 0 and q1L = 2π] and

µ2 = − κ′′0(4λc − λ)/2

µ3 = 3λcκ
′′
0σ
′
0/(8σ0) + λκ

(3)
0 /8

µ4 = − λcκ′′0 [2(σ′0/σ0)2 − (σ′′0/σ0)]/16 + λκ
(4)
0 /32 (47)

where κ
(n)
0 is the nth derivative of κ(ρ), evaluated at ρ = ρ. The action is

straightforwardly minimised over B, followed by minimisation over A. We assume
(as usual) that κ′′0 < 0 and that (λ−λc)� λc is small so that µ2 > 0; we also require
that µ4 > µ2

3/µ2, which is true for the BHPM (see below). Then for λ < λc the action
is minimised at A = B = 0 and the system is homogeneous; while for λ > λc the
minimum occurs for

A2 =
−κ′′0(λ− λc)

4(µ4 − µ2
3/µ2)

(48)

This predicts the degree of inhomogeneity for λ > λc. One sees that A = O(λ−λc)1/2

as one should expect, since A is the order parameter for a φ4-like theory and we are
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making a mean-field analysis of the critical point, similar to [13, 62, 63]. Recall, we
assumed in this derivation that D is a constant, independent of ρ.‖

These results closely resemble those of [13,29,62,63] which apply in systems with
open boundaries (not periodic). Those works concentrated on transitions where a Z2

particle-hole symmetry is spontaneously broken. Here we do not assume particle-hole
symmetry, instead the (periodic) system spontaneously breaks translational symmetry,
which corresponds to a U(1) symmetry (see below).

The average activity may then be estimated from (30) by plugging in the most
likely density profile, which yields (for λ > λc):

〈K〉s ≈ Lrtobs

[
κ0 +

1

4
κ′′0A

2 +O(λ− λc)2 +O(L−1)

]
(49)

The two corrections appear because the computation of A,B is only valid when λ−λc
is small, and the restriction to the most likely profile neglects fluctuations which enter
as corrections at O(1/L).

5.2. Application to the BHPM

5.2.1. Connection to MFT: The results of Section 5.1 are general within MFT, in the
sense that we did not specify the functional dependence of σ, κ on ρ (we did assume
κ′′ < 0 but the case κ′′ > 0 is a simple generalisation.) We now consider the specific
case of the BHPM, in the rescaled representation of Sec 2.3. For the Langevin variant
of the model in the limit of a hard-core potential, this means that the statistics of the
density field are identical to an ideal gas. (Particles are indistinguishable so collisions
between hard particles are equivalent to events where the particles pass through each
other.) In this case

D(ρ) = D0, σ(ρ) = ρD0 . (50)

As discussed in Sec. 2, the MC variant of the model is equivalent to the Langevin one
in the limit of small steps M → 0. Since M is non-zero for our numerical work, we
expect corrections to (50), but we neglect these in the following. (We expect them
to affect the quantitative predictions of the theory, but they are unimportant at the
level of accuracy that we consider.) The expression for κ is given in (31) which is
independent of M ; this yields κ′′(ρ) = −ae−ρa.

An interesting feature of the BHPM is that while the functionsD and σ have ideal-
gas behaviour, the nonlinear behaviour of κ is still sufficient to drive the transition to
an inhomogeneous state. However, we emphasise that none of our theoretical analysis
relies on the fact that σ is linear. (Recall from above that the finite step size M in
our numerical work should result in corrections to σ, but this is not expected to affect
the qualitative behaviour.)

The MFT analysis requires that λ is held constant as Lr →∞. Noting from (7)
that ρa = Φa and using (39) one sees that the homogeneous state is stable if

λ < λc =
2π2

Φa
eΦa . (51)

Hence, the calculation of Sec. 5.1.1 is valid in the range 0 < λ < λc, for which the
control potential is attractive (so density fluctuations are enhanced). It is also valid

‖ To make contact with the analogous calculation for the SSEP in [25, Sec 3.2] we take κ = 2ρ(1−ρ),
σ = ρ(1 − ρ), D = 1, noting that the definition of σ in that work differs from ours by a factor of 2.
Hence λc = π2/[2ρ(1− ρ)]. After some algebra one finds µ4 − (µ23/µ2) = λc/[8ρ2(1− ρ)2] and hence
A2 = 8ρ2(1− ρ)2(λ− λc)/λc +O(λ− λc)2, consistent with that work
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Figure 4. (a) Scaling plot of activity K(λ) showing data collapse when plotted
as a function of the rescaled bias λ. The dimensionless (rescaled) density is
Φa ≈ 0.233 and γobs ≈ 0.070 (which corresponds to tobs = 10τB for N = 28). The
scaling function K(λ) depends weakly on λ for λ . 200, after which it decreases
steeply (see discussion in the main text). (b) Dependence of the activity on tobs
for N = 28. As this parameter increases, the decrease in K(λ) occurs at an
increasingly small value of λ, which saturates (for large tobs) at λ ≈ λc ≈ 90. For
tobs & 100 (in units of τB), the data are consistent with convergence to a limiting
form; this corresponds to γobs & 0.7. (c) Comparison between the numerical
results for the activity and the predictions of MFT. The prediction (38) applies
for λ < λc; it includes a finite-size correction term that diverges at λc. For λ > λc
we show a prediction based on (48), see the main text for a discussion.

for negative λ, where the control potential is repulsive and density fluctuations are
suppressed.

For the inhomogeneous phase 0 < (λ − λc) � L2
r the results of Sec. 5.1.2 are

relevant. A suitable (complex-valued) order parameter for the phase transition is

M = ρ̃q1L
−1/2
r . (52)

Recalling (34,45), we identify |M|2 with (A2/4) in Sec. 5.1.2. The normalisation of
(34) means that typical values of ρ̃q are O(1) in the homogeneous phase, so M→ 0
as Lr →∞. For the inhomogeneous phase then M is of order unity – it is a complex
number and its phase indicates the location of high and low-density regions in the
system. The system is invariant under translation so there is a U(1) symmetry for the
phase ofM, which is spontaneously broken when the system becomes inhomogeneous.

5.2.2. Numerical results To characterise the dependence of the mean activity on the
bias λ we define

K(λ) = k(λD0/L
2
r ) , (53)

where the function k(s) was introduced in (17). We use TPS calculations to sample
ensembles Ps and PVs as defined in Sec. 3.3. These computations are performed at
fixed (finite) values of N, tobs. Numerical errors are discussed in Sec. 5.3, below. The
methodology provides accurate results for the given values of N, tobs; we compare these
with the predictions of MFT that are valid in the hydrodynamic limit N, γobs →∞

Numerical results for the BHPM are shown in Fig. 4. In this case, results for
λ < 250 were obtained using TPS without any control forces, effects of control forces
in this regime are discussed in Sec. 5.3. For λ > 250 we used the control force defined
in (80) below, see section 6 for a discussion.
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The results of Fig. 4 are consistent with the asymptotic predictions of MFT. The
state point is Φa = 0.233 so Equ. (51) predicts λc ≈ 107, consistent with the data. On
general grounds one would expect λc to be of order unity; its large numerical value
in this case arises partly from the factor of 2π2 in (51) and partly from the fact that
κ′′(ρ) in (31) is numerically small, for these parameters.

Considering the results in more detail, Fig. 4(a) shows that for fixed γobs, the
function K(λ) shows a scaling collapse as N is varied, consistent with the expected
diffusive scaling. (This scaling was less clear in [31]. We suspect that this difference
arises because the values of tobs used in [31] were not scaled with system size.)

Fig. 4(b) shows data for a single system size, and increasing tobs. Taking
tobs → ∞ at fixed N , one expects convergence of K to a limiting function: that
is K(λ) → K̃N,∞(λ), where the subscripts indicate that N is finite but tobs → ∞.

The system is finite so K̃N,∞(λ) is smooth (analytic) [45]. The data in Fig. 4(b) are
consistent with this theoretical prediction, as tobs → ∞. In principle, convergence of
this limit is expected for γobs � 1; in practice, it is notable that convergence appears
to be already achieved for γobs ≈ 0.7. We expect that this small numerical value occurs
for similar reasons to the large numerical value of λc, particularly fact that the largest
diffusional time scale is τL = 1/(D0q

2
1) = L2

r/(4π
2D0) so that D0τL/L

2
r = 1/(4π2) is

numerically small.
MFT makes predictions about the behaviour of K at largeN . In particular, taking

N → ∞ leads to K̃N,∞(λ) → K̃∞,∞(λ), where the function K̃∞,∞(λ) is predicted to

be singular at λ = λc. For λ < λc, Equ. (38) predicts that K̃∞,∞ is independent of
λ; the same equation also predicts the first correction to the large-N limit, as in [32].
For λ > λc, a simple MFT prediction for K̃ can be read from (49), see also [25]. The
validity of this result is restricted to small (λ−λc), because of the simple ansatz (45).
When comparing with numerics, we obtain a similar prediction by substituting (45)
into (30) and using (48) to fix A. The integral in (30) is performed numerically and
yields a prediction for K̃∞,∞. This is the prediction based on (48) that is shown in
Fig. 4(c); it matches (49) when (λ− λc) is small.

Fig. 4(c) compares a numerical estimate of K̃N,∞(λ) with these MFT predictions.
The finite-size correction term in (38) is negative and diverges at λc, where the
homogeneous theory is breaking down. One sees that (38) gives the correct qualitative
behaviour for small λ, but a quantitative agreement with numerical data would require
consideration of higher-order corrections, see also [58]. The theory behind (48) is
valid as N →∞ and does not include any finite-size corrections; it captures the steep
decrease in K(λ) but is not quantitative. Following [13, 62, 63], one expects a critical
region (λ − λc) = O(N−2/3) where neither of (38,48) is applicable; this is consistent
with the data but a more detailed finite-size scaling analysis would be required to
confirm it.

Fig. 5(a) shows the behaviour of the order parameter 〈|M|2〉s, which increases
sharply at the transition, and takes a value of order unity in the inhomogeneous phase,
consistent with the theory. Fig. 5(b) shows a smoothed representation of the density
for the trajectory in Fig. 3(c), defined as

ρsmooth(x) = z−1
∑
j

∫ τ

0

exp
(
−[x− x̂j(t)]2/2

)
dt (54)

where the normalisation constant z is chosen such that
∫
ρsmooth(x)dx = 1. This

shows that the density is macroscopically inhomogeneous, but we emphasise that the
density is positive everywhere, which means that there is no macroscopic gap (see
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Figure 5. (a) The modulus of the complex order parameter |M|2, which is
related to the first Fourier component of the density. This increases from zero as
the system becomes macroscopically inhomogeneous. We take Φa = 0.233 and
γobs = 0.070 as in Fig. 4. (b) Smoothed density associated with the representative
trajectory from Fig. 3(c), which has N = 160 and s = 0.18. The system is
macroscopically inhomogeneous but one interparticle gap does not yet dominate
it.

Section 6). We note that this system is quite far from the critical point, so the
analysis of Sec. 5.1.2 is not sufficient to predict the density profile, consistent with the
fact that it does not show a sinusoidal dependence on x. Instead, the behaviour (in this
rescaled representation) is that the density shows a rather narrow peak. This might
be analysed by minimisation of the action in (44) but we postpone such a calculation
to future work.

Appendix D shows similar results to those presented here, using the definition
of the dynamical activity that was used in [30, 31]. The qualitative behaviour is the
same.

5.2.3. Negative s and hyperuniformity: Within MFT, biasing this system towards
higher activity leads to hyperuniformity, as discussed in [30]. This means that density
fluctuations on large length scales are strongly suppressed [64]. To measure this, define
the structure factor

S(q) =
〈
ρ̃qρ̃−q

〉
s
. (55)

Consider the limit L → ∞ so that q can take arbitrarily small values, and write
S∞(q) = limL→∞ S(q). A hyperuniform state is one where limq→0 S∞(q) =
0 [64]. Such states are not expected in finite-temperature equilibrium systems with
short-ranged interactions (they require that the system should have a vanishing
compressibility), but there are many interesting examples that occur in systems away
from equilibrium [65–69]. Within the MFT analysis of Sec. 5.1.1, hyperuniformity
arises because the optimal control potential for λ < 0 includes long-ranged repulsive
forces, as may be deduced from (41). Hyperuniformity is a well-known property of
systems with such long-ranged forces [70, 71], where it is sometimes referred to as
super-homogeneity [68]. Within the framework of Sec. 5.1.1 and using (B.9), one sees
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Figure 6. (a) The structure factor for negative s, compared with the theoretical
prediction (56). We take γobs = 0.070 and Φa = 0.233 as in Fig. 4(a), and
s = −7.2 (measured in units where τB = 1). This S(q) is suppressed at low q,
consistent with hyperuniformity. (b) The corresponding pair correlation functions
for the case N = 28 and different values of s, as indicated. For positive s the
particles tend to cluster and g(x) is enhanced at contact; for negative s the
particles feel effective repulsion and g(x) is suppressed.

that

S(q) =
σ(ρ)q√

D2
0q

2 + 2sσ(ρ)κ′′(ρ)
. (56)

see also [30, 59]. This indicates that the system is hyperuniform for s < 0. Fig. 6(a)
compares this prediction with the results from simulations, the suppression of S(q)
at small q is clearly apparent. The agreement is good – we attribute the differences
between theory and simulation to the fact that MFT requires N, γobs →∞ but these
quantities are both finite in the numerical results. Fig.6(b) shows the pair correlation
function

g(x) =

〈
ρ(x′)ρ(x′ + x)

〉
s

ρ2 (57)

which is proportional to the probability that two particles have separation x (in the
rescaled representation of Sec. 2.3). For the unbiased case (s = 0) then g(x) = 1 for
all x. On biasing to high activity s > 0 one sees a reduction in g(x) for small x, since
particles feel an effective repulsion, which enhances the activity via (8). Similarly, for
a bias to low activity then g(x) is enhanced for small x, consistent with an effective
attraction.

5.3. Improved TPS by adding control forces

5.3.1. Convergence of TPS and error analysis As discussed in Sec. 3.3, we expect
the addition of control forces to improve the efficiency of TPS sampling. Since
TPS is an MC method (which in mathematics would be called a Markov chain
Monte Carlo (MCMC) method), analysis of convergence and numerical errors is
straightforward [72]. To characterise the efficiency of the method, it is useful to
compute how many TPS moves are required for trajectories to decorrelate from each
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Figure 7. Improvement in TPS asymptotic variance by using guiding forces,
in the MFT regime. We take N = 28, Φa = 0.23, and tobs = 100τB (see also
Fig. 4(b)). In this Figure, the mean shift size used in the TPS was ∆t = 5τB :
in this parameter regime, this leads to near-optimal performance for TPS, both
with and without guiding forces. (For other parameter regimes, smaller shifts are
necessary. Hence our use of smaller shifts in other figures.) For these parameters,
the system becomes inhomogeneous for λ & λc ≈ 90 – these data are all within
the homogeneous regime and the guiding force relies on this.

other. Let K̂n be the value of the activity for the nth trajectory generated by TPS.
We define a block-averaged activity

Kn,m =
1

m

n+m∑
i=n

K̂i (58)

As m→∞, this block average converges to 〈K[x]〉s. Its variance behaves as

Var
(
Kn,m

)
=
σ2

TPS

m
+O(1/m)2 (59)

where σ2
TPS is the asymptotic variance [72]. Smaller values of σ2

TPS correspond to more

efficient TPS sampling: in particular σ2
TPS/Var(K̂) can be used as a rough estimate

of the number of TPS moves required to generate an independent sample.
For small m then all trajectories in the block are similar and one expects

Var
(
Kn,m

)
to be close to Var(K̂), independent of m. In our numerical analysis,

we often plot

χTPS
m = mVar

(
Kn,m

)
(60)

as a function of m, for which the expected behaviour is of the qualitative form

χTPS
m ≈ mVar(K̂)σ2

TPS

mVar(K̂) + σ2
TPS

. (61)

This quantity approaches σ2
TPS as m→∞, as it should.

A suitable error bar for a numerical estimate of K is then ∆K = σTPS/N
1/2
TPS

where NTPS is the total number of TPS moves over which the data is averaged. This
error estimate accounts for the correlations between TPS moves. All error bars for
TPS measurements in this work are computed in this way, estimating σTPS by (59).
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5.3.2. Numerical results for accelerated convergence As explained above, the results
for λ < 250 in Fig. 4 were obtained using TPS without any control forces. We now
show how the control forces that can be derived from MFT can lead to a more efficient
estimate of the same result, in the homogeneous regime λ < λc. We have computed the
asymptotic variance for the BHPM in the regime where the system is homogeneous.
As a simple control potential we take the first term in (40), so the control potential
only depends on the first Fourier component of the density:

V = ṽq1ρ
∗
q1ρq1 (62)

where q1 = 2π/Lr is the smallest allowed wavevector. This choice for the control
potential has no free parameters. For these homogeneous states, it successfully
captures the essential physical effect of the long-ranged control potential.

We emphasise once again that the TPS method is valid as a method for sampling
from Ps, independent of whether control forces are used [9,24]. The question that we
address here is the rate of convergence, as characterised by the asymptotic variance.
Fig. 7 shows the improvement in TPS sampling obtained using the control potential
(62), which is significant for positive λ. All these results are in the homogeneous
regime λ < λc, where the simple control potential (62) is applicable. They provide
clear evidence of a significant speedup, and demonstrate proof-of-principle for the
method. However, the small values of s in this regime means that this is a regime
where numerical sampling is relatively easy, and the speedup by the control forces is
relatively modest. Alternative methods for analysing convergence of TPS are discussed
in Appendix C.

We note again that the results of Fig. 7 are restricted to λ < λc. For the
inhomogeneous regime (λ > λc) the next section considers control forces that apply
for s = O(1/N), which corresponds to λ = O(N). We have not attempted to derive
control forces for λ = O(1) > λc, this would be an interesting question within MFT.

6. The regime with a single macroscopic gap

The results of Sec. 5 are based on MFT which is valid for N → ∞ at fixed λ, as
discussed above. We note that minimisation of the MFT action S in (44) always
predicts that the density ρ is finite everywhere, which means in turn that the gaps
between particles almost surely have sizes of order ρ−1, as Lr →∞.

In contrast to this, Fig. 3(c) shows a trajectory in which a single gap takes up
a finite fraction of the system. This section focusses on that regime. As before, we
work in the rescaled representation of Sec. 2.3. At time t, suppose that the largest
gap in the system has size Y(t). We define Y (t) = Y(t)/Lr, which is the fraction of
the system occupied by this gap. If Y (t) is order unity then the gap is macroscopic,
in the sense that Y(t) = O(Lr).

To investigate this regime, define a new rescaled biasing parameter

h =
sLr

ρ̄D0
(63)

This rescaled bias h is analogous to λ of Section 5. We consider the behaviour on
taking Lr →∞ at fixed h = O(1).
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Figure 8. (a) Largest gap size 〈Y 〉s in biased ensembles. The reduced packing
fraction is Φa = 0.6. (b) The activity per particle in the biased ensemble for the
same systems. Around h = 2.5 there is a change in the size of the largest gap and
the derivative of k(s).

6.1. Numerical results

Fig. 8(a) shows that for small h, the gap size Y remains close to zero (in particular, for
small fixed h, the average 〈Y 〉s decreases with Lr). However, for larger h(& 2) there
is a sharp increase in 〈Y 〉s, which we interpret as opening of a single macroscopic gap.
[Recall again Fig. 3(c).]

To understand the behaviour for small h, we use extreme value theory to
estimate the expected size of the largest gap. The distribution of interparticle gaps
is exponential with mean Lr/N = ρ−1. Hence for large N the largest gap Y has
a Gumbel distribution with mean (logN + γE)/ρ where γE ≈ 0.577 is the Euler-
Mascheroni constant [73]. Hence 〈Y 〉0 = (logN + γE)/N which for N = 90 is ≈ 0.06,
consistent with Fig. 8.

Fig. 8(b) shows the behaviour of the activity. As h increases from zero, there is
an initial sharp decrease in activity which corresponds to the MFT transition to an
inhomogeneous state. As Lr →∞, this transition would move towards h = 0, because
the critical point λ = λc discussed in Sec. 5 corresponds to h = O(1/Lr). However,
the systems considered here are only moderately large, and the numerical value of λc

is also quite large – the result is that the MFT transition happens at h ≈ 1 for the
system sizes considered here. In contrast, the largest gap opens at h ≈ 2.5, where an
additional feature in k(s) is also observed (in the larger systems). We now present
a theoretical analysis of this regime, and we compare the resulting theory with these
numerical results.

6.2. Theory – interfacial model

We define a simple model that captures the qualitative behaviour of the system in
the regime with a single large gap, building on recent work on kinetically constrained
models [34–36]. We separate the system into a dense region and a large gap, and we
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focus on the behaviour at the edge of the gap, which is the interface between the two
regions. Hence we refer to this as an interfacial model.

6.2.1. Derivation of interfacial model: To motivate the model, assume that
configurations containing a large gap have all the particles distributed in some (dense)
region of size Lr[1 − Y (t)], and that they are distributed at random throughout this
region. The mean distance between particles within the dense region is

`Y =
1− Y
ρ

(64)

with ρ = N/Lr as above. We model the dynamics of Y by a Langevin equation where
both the bias and the diffusion constant depend on Y :

Ẏ =
b(Y )

Lr
+

√
2Dy(Y )

L2
r

η (65)

Here η is a standard Brownian noise. To fix the functions b and Dy we use the MC
variant of the BHPM to estimate the first and second moments of the change in the
gap size Y , in a single MC move.

The gap size changes only when one of the particles on the edge of the gap
has an accepted move. Proposed MC moves that reduce Y involve particles moving
into the largest gap: these are accepted with probability (1/2), by (2). Proposed
MC moves that increase Y involve particles moving towards the dense region of the
system: some of these moves will be rejected due to collisions between particles. Since
we assumed that particles are distributed at random in the dense region, the distance
between neighbouring particles in this region is exponentially distributed with mean
`Y . Hence, for MC moves that act to increase Y , the fraction that is accepted is

1

2A

∫ M

0

e−x/`Y dx =
`Y
2M

(
1− e−M/`Y

)
(66)

where the factor of 2 again comes from (2). Hence, for MC moves in which the
proposed particle is on the edge of the macroscopic gap, the mean change in the gap
size is

∆x =
1

4M

∫ 0

−M
xdx+

1

4M

∫ M

0

xe−x/`Y dx (67)

where we consider separately the situations where the gap size decreases (first term)
or increases (second term). The integrals can be computed exactly but we focus on
the limit where M/`Y is small (small MC moves). This limit is sufficient to explain
the main features of the model. It yields

∆x = − M2

12`Y
+O(M3) . (68)

Similarly the mean square displacement is

(∆x)2 =
M2

6
+O(M3) . (69)

The relevant MC moves happen with rate wy = 2/τ0 where the factor of 2 arises
because particles on either side of the macroscopic gap can both affect its size, and
τ0 = M2/(12D0) is the time increment associated with one attempted MC move per
particle (see also Sec. 2.1).
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Using that the macroscopic gap is of size Y = Y Lr and taking Lr →∞ one arrives
at the Langevin equation (65) with b(Y ) = ∆xwy and D(Y ) = (∆x)2wy/2. Hence
(assuming as above that M/`Y � 1):

b(Y ) = − 2ρD0

1− Y , Dy(Y ) = 2D0 . (70)

Since we assume that the particles are distributed at random in the dense region, the
activity of a trajectory is [by analogy with (30)]

K[x] = Lr

∫ tobs

0

κy(Y (t))dt (71)

with κy(Y ) = (1− Y )κ(ρ/(1− Y )). [To derive this, recall that κ(ρ) is the activity per
unit length for a system with density ρ. Here, the dense region of the system has size
Lr(1− Y ) and density ρ/(1− Y ).] Hence from (31)

κy(Y ) =
1− Y
a

(
1− e−Φa/(1−Y )

)
. (72)

The Fokker-Planck equation corresponding to (65) is

∂P
∂t

= − 1

Lr

∂

∂Y
(bP) +

1

L2
r

∂2

∂Y 2
(DyP) (73)

where P = P(Y ) is the probability density for Y .
In kinetically constrained models [34–36], a similar interfacial model was derived,

which gives semi-quantitative predictions for the system behaviour if b and Dy are
taken as constants. The system considered here is different in that b(Y ) has a diverging
negative value as Y → 1 – this reflects the fact that as the largest gap approaches the
size of the system, all the particles end up confined in a very small region.

6.2.2. Biased ensembles for the interfacial problem: We now analyse the effects of
biasing to low dynamical activity in the interfacial model. The dynamical free energy
ψ(s) of the interfacial model is obtained by finding the largest ψ that solves the
following eigenproblem

ψP = − 1

Lr

∂

∂Y
(bP) +

2D0

L2
r

∂2P
∂Y 2

− sLrκyP . (74)

The diffusive term is suppressed by a factor of 1/Lr so we identify this as a small-noise
problem that may be solved by saddle point methods. It is convenient to transform

to a self-adjoint (Hermitian) form by U(Y ) =
∫ Y
Y0
b(Y ′)Lr/(2D0)dY ′ and defining

Q(Y ) = P(Y )e−U(Y ). (The reference point Y0 can be chosen arbitrarily, so U is fixed
only up to an additive constant.) The eigenproblem (74) becomes

ψQ =
2D0

L2
r

∂2Q
∂Y 2

− ρ2D0VQ −
1

2Lr

∂b

∂Y
Q (75)

with a dimensionless potential

V(Y ) =
h

ρ
κy(Y ) +

1

8ρ2D2
0

b(Y )2 . (76)

The final step of the derivation used (63).
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For large Lr, this eigenproblem can be solved by saddle-point methods. The last
term in (75) is negligible when Lr is large. Also, the dominant eigenfunction Q is
sharply-peaked at the minimum of V, which we denote by

Y ∗ = argmin V(Y ) . (77)

Also ψ = −V(Y ∗)ρ2D0. Using (70,72) we obtain

V(Y ) = h
1− Y

Φa

(
1− e−Φa/(1−Y )

)
+

1

2(1− Y )2
(78)

Minimising this potential we find that Y ∗ = 0 for small h, but there is a threshold
hc above which Y ∗ becomes non-zero. At the threshold, Y ∗ increases continuously
which means that V ′(0) = 0 for h = hc. The existence of a threshold is consistent
with Fig. 8, the accuracy of the detailed predictions will be discussed below. Before
that, we derive the effective potential that describes the state with Y ∗ > 0.

6.2.3. Optimal control potential: We present two possible methods for estimating
the optimal control potential introduced in Sec. 3.3. The first is based on a physical
argument: observe that the dense region of the system contains particles that are
distributed as an ideal gas, so their pressure is

Pmech =
ρ

β(1− Y )
(79)

Maintaining a gap of size Y ∗ requires a control force that balances the pressure. Since
the eigenvector Q is sharply-peaked at Y ∗, the fluctuations of Y are small in the
biased ensemble, so the behaviour is relatively insensitive to the form of the control
potential, as long as it produces the correct force in the typical states (which have
Y = Y ∗). Hence, a control potential that reproduces the correct statistics for Y is

V (Y ) = −LrY c (80)

where c > 0 is a constant with units of inverse length – its interpretation is that there
is a constant force c/β that acts to increase the gap size. To determine c we equate
the force to the pressure required to stabilise a gap of size Y ∗:

c =
ρ

1− Y ∗ . (81)

In order to use (80) with (21), the potential V must be expressed as a function of
the particle positions: this is straightforward because Y is the size of the largest
interparticle gap, which is a simple function of the the particle positions.

The second method for deriving a suitable control potential is the standard
mathematical approach: consider the adjoint (Hermitian conjugate) of the
eigenproblem (74) which is

ψF =
b

Lr

∂F
∂Y

+
Dy

L2
r

∂2F
∂Y 2

− sLrκyF (82)

Since the noise is weak, the expected solution is of the form F(Y ) = e−Lrg(Y ) and
the optimal control potential may be identified from (A.4) as Vopt(Y ) = 2Lrg(Y ).
Inserting the expected form for F , retaining terms at leading order in L−1

r , and using
ψ = −V(Y ∗)ρ2D0 from above, one recovers V ′opt(Y

∗) = −ρLr/(1 − Y ∗). This is
consistent with (80,81) which together imply Vopt(Y ) = −ρLrY/(1− Y ∗) for Y ≈ Y ∗.
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Figure 9. (a) Asymptotic variance of the TPS method, as a function of the
parameter c used in the definition of the control force. We take tobs = 10τB and
tobs = 5.6τB for N = 28 and N = 21 respectively and in both Φa = 0.233, same
as in 4. The control forces lead to a clear reduction in the variance, across a range
of c. We show results for two system sizes, at representative values of h (always
within the macroscopic-gap regime). (b) For N = 21 we show the scaled variance
χTPS
m as a function of the block size m. The behaviour is consistent with (61).

6.2.4. Comparison with numerical results For the parameters shown in Fig. 8, Equ.
(78) predicts hc = Φa/(1 − e−Φa − Φae

−Φa) ≈ 4.9. This overestimates the value of
the bias at which a macroscopic gap appears. The reason is clear if one considers the
behaviour close to the threshold. In the interfacial model, the state with Y ∗ = 0 has
the particles distributed homogeneously but the MFT analysis of Sec. 5 has already
established that the system is not homogeneous for these values of the bias.

If the state with Y ∗ = 0 is already inhomogeneous, one sees that the probability of
opening up a macroscopic gap will be enhanced, because the gap will likely appear at a
location where the density is already low. Our conclusion is that the interfacial model
predicts the existence of a threshold hc at which a macroscopic gap appears, which is
consistent with the numerical data. However, the assumption within the model that
the dense region of the system is homogeneous is not accurate enough for the model
to deliver quantitative predictions. In the following subsection, we show that despite
these shortcomings, the optimal control potential predicted by the interfacial model
is sufficiently accurate to significantly improve numerical sampling. In this sense, the
interfacial model does capture the essential physical features of the regime with a
macroscopic gap.

6.3. Improvement in sampling by control forces

We have performed TPS sampling using the control potential (80). The relation (81)
is confirmed by our numerical results, in that a control potential with this value of
c leads to a typical largest gap of size Y ∗. Fig. 9 shows the improvement in TPS
sampling that is obtained with this control potential, which is more than an order
of magnitude, even for small systems. The parameter c in (80) is varied, in order to
obtain the maximal speedup. For larger systems, the improvement increases rapidly
– we are not able to quantify the speedup because (for example) the results shown in
Fig. 8 would require a prohibitively large computational effort, if control forces were
not used. The reason is that the macroscopic gaps that appear in those systems are
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Figure 10. Distributions Pave and P̃end for two observable quantities.
Parameters are the same as Fig. 9(b). (a) Distributions of the size Y of the
largest interparticle gap, for different strengths c of the control force in (80).
Vertical arrows indicate the means of the various distributions. (b) Corresponding
distributions for the size of the second-largest interparticle gap, Y2.

extremely rare under the natural dynamics, so that TPS moves tend to be rejected if
one uses a system without a control potential. We also note from Fig. 9 that significant
speedup is possible for control forces that are not optimal, as emphasised in [40].

This improvement that is available from control forces also enables us to
investigate what value of c is most effective for improved sampling. As noted in
Sec. 3.3, if one uses the optimal guiding force, the distributions Pave and P̃end of
(19,20) coincide with each other, for all observable quantities. Recall that Pave is
independent of the guiding force but P̃end is evaluated in a system with control forces,
which does depend on the choice of these forces. It was suggested in [36, 40] that a
suitable method for choosing approximate (non-optimal) control forces is to adjust
their parameters to make the distributions Pave and P̃end as similar as possible.

This hypothesis is tested in Fig. 10. We first consider the distribution of Y , the
largest interparticle gap. In this case one sees that the control force that gives the
best overlap of Pave and P̃end is c = 5, which is larger than the force which gives the
most efficient sampling (this is c = 3, from Fig. 9). We also consider the distribution
of Y2, which is the second largest interparticle gap, measured relative to the system
size Lr. For this quantity, the distributions overlap best at c = 3, where the sampling
is most efficient.

The conclusion of this analysis is that maximising the overlap of Pave and P̃end for
any single observable does not guarantee that the distributions for other observables
should overlap. This cautions against placing too much faith in the overlap of any
single distribution, as an indicator of where sampling is most efficient.

As an alternative method for estimating which control force is optimal, one may
consider the statistics of the action, as suggested in [10]. Let 〈B〉s,V =

∫
B[x]dP̃Vs [x]

be the average of the observable B with respect to the distribution P̃Vs of (22). If V
is the optimal control then

lim
tobs→∞

1

tobs
〈−sK +Asym〉s,V = ψ(s), (83)

The suggestion of [10] is that optimising V to achieve equality in (83) can be used
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Figure 11. (a) The average of the action 1
tobs
〈−sK + Asym〉s,V that appears

in (83), for different biasing forces. All parameters are the same as in Fig. 9, for
which we estimate ψ(s = 1.9) ≈ −32. (b) The (unbiased) average of the action
in the controlled system that appears in (84).

to obtain good sampling. Note that there are many control forces that can achieve
equality in (83). This situation is to be contrasted with the general inequality [38,42]

ψ(s) ≥ lim
tobs→∞

1

tobs
〈−sK +Asym〉V , (84)

where the average is with respect to the controlled dynamics, without any
biasing: 〈B〉V =

∫
B[x]dP̃V [x]. In (84), equality can only be achieved if V

is the optimal control potential, this can be checked by noting that ψ(s) =
limtobs→∞ t−1

obs log〈e−sK+Asym〉V and using Jensen’s inequality. On this basis one might
expect that maximising the right hand side of (84) would give the best sampling.
Results for the averages in (83,84) are shown in Fig. 11. Contrary to the situation
in [10], there is no value of c for which equality is achieved in (83). However, we
note that the most efficient sampling takes place for c = 3, which is the value where
the average on the right hand side of (83) is closest to ψ(s), consistent with the
proposal [10] that equality in (83) is a desirable feature. One also sees that the right
hand side of (84) is decreasing in ψ for all c > 1. Thus, c = 1 gives the best bound
on ψ but it does not achieve the best sampling, contrary to the intuitive expectation
stated above.

Based on Figs. 9,10,11, our conclusion in this Section is that no single prescription
seems satisfactory for determining the best choice of control force V in practical
situations such as this one, and some trial-and-error is still necessary in this process.

7. Conclusions

We have given a detailed analysis of the behaviour that was summarised in Fig. 3,
including discussion of hyperuniform states that appear when states are biased to high
activity, and inhomogeneous states with low activity. We have discussed the existence
of two inhomogeneous regimes, with s = O(N−2) (MFT regime) and s = O(N−1)
(macroscopic interparticle gap).

We have shown that control forces can be used to improve numerical sampling of
these ensembles [36,40,41,44]. In the MFT regime where the system is homogeneous,
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these optimal control forces are long-ranged. On biasing to low activity, these forces
are attractive and drive the formation of inhomogeneous states. Using these guiding
forces (in the homogeneous state) leads to an improvement in sampling efficiency.
However, for these small values of s, the effect of the bias is weak, so sampling is
already possible without these forces.

In the regime with a macroscopic interparticle gap, we have argued that a form of
interfacial model can capture some features of the system, similar to [36]. Using this
model to infer a suitable control force leads to an improvement in sampling efficiency
that is more than a factor of 10 in small systems. For large systems, the computations
that we present would be prohibitively expensive without these control forces. We have
discussed how the parameters of the control force might be optimised. In particular,
we find that the simple criterion of [36, 40], to match the distributions Pave and Pend

is not optimal for the cases considered here: since the control force is very simple we
have instead optimised its free parameter by hand. Further work would be valuable, to
understand how to infer control forces that improve sampling efficiency. Some generic
aspects of optimally-controlled models are discussed in [46], where they are referred
to as auxiliary models.

Comparing the TPS method with cloning methods [36, 40, 41, 52–54], we note
that while TPS gives results for finite tobs, cloning provides direct access to the limit
tobs → ∞, which is the limit where large-deviation theory applies. On the other
hand, the detailed-balance property of TPS [51] means that it samples directly from
Ps or P̃Vs as defined in (14,22). By contrast, cloning methods do not sample directly
from a target distribution; they do allow estimation of averages with respect to these
distributions but the associated statistical estimators have systematic errors (bias)
which only disappear as the population size tends to infinity [33, 74]. Estimation
of statistical uncertainties is also simpler for TPS, see Sec. 5.3. There are also other
methods for sampling large deviations, some of which require accurate representations
of an optimally-controlled dynamics in order to achieve accurate results [42, 47, 75],
see also [44]. Such methods are attractively simple, but accurate representations of
optimally-controlled dynamics may be challenging in complex systems. We emphasise
once more that the role of control forces in TPS and cloning is to improve convergence,
but accurate results are still available without obtaining the optimal control force.

On physical grounds, it is notable that the rich physics of inhomogeneous and
hyperuniform states in the BHPM occurs for very small values of the bias parameter
s, which are at either O(N−2) or O(N−1). The strong response of the system to
these biasing fields has its origin in hydrodynamic modes. Many theories of biased
ensembles assume the existence of a gap in the spectrum of the generator of the
relevant stochastic process. Here the gap size is vanishing as N →∞, because of slow
(diffusive) hydrodynamic modes. The MFT approach is to rescale (speed up) time so
that one is restricted to hydrodynamic time scales, but the gap for the generator is
restored.

The fact that the behaviour originates on the hydrodynamic scale also explains
why MFT predictions are universal, in that they depend on diffusive scalings but not
on microscopic details of the model. The predictions for the behaviour for s = O(N−1)
are not universal in the same sense, but the simplicity of the interfacial model indicates
that they may arise generically in systems with sharp interfaces between coexisting
phases (see also [36]).
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Appendix A. Biased path ensembles

This appendix includes a derivation of (23) and its analogue for MC dynamics.

Appendix A.1. Langevin dynamics

As in the main text, let dP̃V [x] be the probability for trajectory x under the controlled
process (21), but with Vopt replaced by some general (possibly non-optimal) potential
V . Then standard path-integral arguments (see eg [40]) show that

dP̃V [x] ∝ exp (−A[x]) dP0[x] , (A.1)

where the normalisation constant has been omitted for ease of writing and

A[x] =
1

4

∑
i

∫ tobs

0

2ẋi · ∇iV +∇iV ·D0(∇iV + 2β∇iU)dt . (A.2)

Combining (14) with (A.1) yields

dPs[x] ∝ exp (A[x]− sK[x]) dP̃V [x] , (A.3)

which means that the ensemble (14) which was obtained from P0 by biasing K can
also be obtained (exactly) by a suitable biasing of P̃V . Recalling that the product of
ẋ and ∇V in (A.2) is to be interpreted in the Ito sense and using Ito’s formula for
dV/dt, we obtain A[x] = 1

2 [V (tobs) − V (0)] + Asym[x] where Asym is given by (24).
Using this with (A.3) and (22) yields (23).

Finally, using (24) with the observation that Asym[x] − sK[x] is constant and
equal to ψ(s)tobs for V = Vopt, one sees that

V (X) = −2 log u(X) (A.4)

where u is the solution with largest eigenvalue ψ of the eigenproblem∑
i

[
D0∇2

iu− (βD0∇iU) · ∇iu− srai u
]

= ψu . (A.5)

This is a tilted Fokker-Planck equation in its adjoint form, see for example [45].

Appendix A.2. MC dynamics

Analogous formulae hold for the (discrete-time) MC variant of the model. Let
p(Xk|Xk−1, ik) be the probability that the system is in state Xk at step k, given
that it was in state Xk−1 at step k − 1, and that the particle proposed to be moved
on step k was ik. Note that this p is a normalised probability for Xk and p(Xk|Xk, ik)
is generically finite. Also let pV (Xk|Xk−1, ik) be the analogous quantity for the
controlled model. Then the analogue of Asym is

Asym
MC [x] = −

∑
k

log
pV (Xk+1|Xk, ik)

p(Xk+1|Xk, ik)
− 1

2
[V (Xk+1)− V (Xk)] (A.6)
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For the logarithm to be finite, it is important that p(Xk+1|Xk, ik) should not be zero
(except if pV (Xk+1|Xk, ik) = 0 also). This is the reason to use the Glauber criterion
in (2) instead of the Metropolis condition (because using Metropolis may result in
p(X|X, i) = 0 for some choices of X, i but pV (X|X, i) 6= 0).

Note also that Asym
MC depends on which moves were proposed, as well as the actual

sequence of states in the trajectory. If the control force V has a very simple form then
it is possible to write an equation similar to (A.6), in which the action depends only
on the actual sequence of states. This gives some improvement in numerical sampling
but is restricted to simple cases, for example where V is a linear potential.

For the numerical results for the MC variant of the BHPM, we use control forces
that are introduced by replacing β∆U in (2) by β∆U + ∆V where ∆V is the change
in the control potential, for the proposed move. We note that the optimal auxiliary
model for such a system would require that we take instead

pacc =
exp[−ψδt− s(ra(t+) + ra(t−))δt/2−∆Vopt/2]

1 + exp(β∆U)
(A.7)

where ra(t±) are the values of ra just before and after the proposed move. For small
∆V and small δt, this is equivalent to replacing βU → (βU + V ) in (2) and it is also
equivalent to the Langevin case. [43].

We emphasise that for any V , the TPS method targets the distribution P̃Vs and
provides accurate results (as long as sufficiently many TPS moves are performed).
However, it is possible that we might have observed faster convergence if we had
used (A.7) instead of simply including the control potential in (2). To check this, we
tested an algorithm based on (A.7) for several representative cases; the differences in
performance were within the statistical uncertainty of our estimates of the asymptotic
variance.

Appendix B. Complex Ornstein-Uhlenbeck processes

We collect some results for biased ensembles constructed from Ornstein-Uhlenbeck
(OU) processes, see for example [45, Sec. 6.2]. Suppose that z is a complex number
which evolves by the complex OU process

ż = −ωz + η
√

2γ (B.1)

where ω, γ are real positive constants and η is a complex-valued white noise. That
is, η = ηr + iηi with real-valued noises ηr, ηi that satisfy 〈ηr(t)ηr(t′)〉 = 1

2δ(t − t′) =
〈ηi(t)ηi(t′)〉 and 〈ηi(t′)ηr(t)〉 = 0. Then also 〈η(t)η∗(t′)〉 = δ(t−t′). Writing z = x+iy
one has independent equations of motion for x and y. The corresponding Fokker-
Planck equation for the probability density P = P (x, y) is

Ṗ = ∂x(ωxP ) + ∂y(ωyP ) +
γ

2
(∂2
x + ∂2

y)P (B.2)

whose stationary distribution is P0 ∝ exp(−ω(x2 + y2)/γ). Alternatively one may
use the calculus of complex variables and consider a probability density defined as
Q = Q(z, z∗) which obeys

Q̇ = ∂z(ωzQ) + ∂z∗(ωz
∗Q) + 2γ∂z∂z∗Q (B.3)

The stationary solution is Q0 ∝ exp(−ωz∗z/γ) which is (of course) equivalent to P0

as given above. The following results can be derived by considering separately the
real and imaginary parts of z but we use the complex variable representation, which
simplifies the analysis.
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For biased ensembles of the form (14) with K = α
∫ tobs

0
z∗(t)z(t)dt, the dynamical

free energy can be obtained by solving the eigenproblem

ψQ = ∂z(ωzQ) + ∂z∗(ωz
∗Q) + 2γ∂z∂z∗Q− sαz∗zQ (B.4)

It is easily verified that the eigenfunction with maximal eigenvalue is

Q ∝ exp

[
−z
∗z

2γ

(√
ω2 + 2sαγ + ω

)]
(B.5)

which is valid for 2sαγ > −ω2 (otherwise the eigenvalues are not bounded above and
the dynamical free energy does not exist). The corresponding eigenvalue is

ψ(s) = ω −
√
ω2 + 2αsγ (B.6)

To obtain the optimal control force one should solve the adjoint eigenproblem

ψF = −ωz∂zF − ωz∗∂z∗F +
γ

2
∂z∂z∗F − sαz∗zF (B.7)

whose solution is F ∝ exp
[
− z∗z2γ

(√
ω2 + 2sαγ − ω

)]
. Note that F ∝ Q/Q0 which

follows because the underlying equation is reversible (obeys detailed balance). The
optimal control potential is Vopt = −2 logF (up to an arbitrary additive constant)
which yields

Vopt =
z∗z

γ

(√
ω2 + 2sαγ − ω

)
. (B.8)

Away from transient regions, the distribution of z in the biased ensemble is
Pave(z, z∗) ∝ FQ so

Pave(z, z∗) ∝ exp

(
−z
∗z

2γ

√
ω2 + 2sαγ

)
(B.9)

For the discussion here, the case of primary interest is when sα < 0, in which case
the control potential Vopt has negative curvature and guides the system towards
increasingly large values of z. As sα tends to −ω2/(2γ) one sees that the variance of
Pave diverges. If the original equation (B.1) was derived by linearisation at small z,
then this divergence indicates the breakdown of the linear approximation, within the
biased ensemble. This is the situation discussed in Sec. 5.1.

Appendix C. Convergence of TPS

In order to measure the improvement in sampling that is achieved by guiding (control)
forces, we discuss in the main text the asymptotic variance σ2

TPS, see (59). This
quantity requires a large amount of TPS data to evaluate it, but does give a reliable
estimate of the effort required to obtain an independent sampling from a biased
trajectory ensemble. As an alternative, we also consider the autocorrelation function.
In the notation of (58) let

C(m) = 〈K̂iK̂i+m〉 − 〈K̂i〉〈K̂i+m〉 (C.1)

where the average is over many realisations of the TPS algorithm. One sees that
χTPS
m =

∑m
i,j=1〈K̂iK̂j〉 − 〈K̂i〉〈K̂j〉 is related to a sum of C(n) over the lag time n.

Fig. C1 shows results for this correlation function. As in figure 9, one concludes that
the sampling is most effective for c = 3, since the correlations decay most quickly when
the control force has this strength. Compared with the asymptotic variance σ2

TPS,
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Figure C1. Autocorrelation C(mTPS) of the TPS sampling method for different
biasing forces. The state points are those of Fig. 9, for N = 21. The
autocorrelation function decays faster for c = 3, 5, indicating that sampling is
more effective when these control forces are included, consistent with Fig. 9

results for the autocorrelation function are somewhat easier to obtain in practice.
The difficulty is that σ2

TPS =
∑∞
m=−∞ C(m) has contributions from weak correlations

at large m: accurate estimation of these (weak) correlations requires very long TPS
runs.

Another approach is to consider what fraction of TPS moves are accepted, and
how this is affected by the guiding forces. In general, TPS acceptance rates are
not reliable as indicators of convergence. For example short shifting moves lead to
slow decorrelation of the trajectories, while longer trajectories may decorrelate the
trajectory more quickly, even if the acceptance probability is somewhat lower. Hence,
if a control force leads to acceptance of longer shifting moves then this can still improve
sampling, even at the cost of a lower overall acceptance rate.

Despite these limitations, there is useful information available by monitoring TPS
acceptance rates. For TPS with control forces in place, it follows from (23) that a
proposed trajectory is accepted with probability

min
(

1, e∆Asym
MC−s∆K

)
(C.2)

where ∆K is the change in activity between the original and proposed trajectory, and
similarly ∆Asym is the change in Asym. For TPS with the optimal control potential
then Asym

MC − s∆K = ψ(s) for every trajectory so the acceptance probability is unity.
That is

∆Asym − s∆K = 0 . (C.3)

Joint probability density functions for accepted values of ∆Asym
MC and s∆K are

shown in Fig. C2. The relationship (C.3) is indicated. There are two effects at
play here. For control forces that are close to optimal, the distribution concentrates
close to (C.3). On the other hand, larger control forces tend to suppress the total
acceptance, because the forces are not optimal. The most efficient sampling occurs in
an intermediate regime. In this case, we find that the the optimal regime is when the
typical values of s∆K and ∆Asym are of similar sizes.



Large deviations and optimal control forces for hard particles in one dimension 34

−3 −2 −1 0 1 2
∆Asym

MC

−4

−3

−2

−1

0

1

2

3
−
s∆
K

(a) c = 1

−3 −2 −1 0 1 2
∆Asym

MC

−4

−3

−2

−1

0

1

2

3

−
s∆
K

(b) c = 3

−3 −2 −1 0 1 2
∆Asym

MC

−4

−3

−2

−1

0

1

2

3

−
s∆
K

(c) c = 5

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

Figure C2. The probability density of −s∆K and ∆Asym
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moves, with the control force (80) in place. (a) c = 1; (b) c = 3, which leads to
the most efficient sampling; (c) c = 5. Other parameters are Φa = 0.233, N = 21,
tobs = 5.6τB, and h = 11 as in Fig. 9(b).
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Figure D1. (a) Activity per particle per unit time kmsd for diffusively rescaled
systems. (b) Modulus of the complex order parameter which is related to the first
Fourier component of density. Both figures come from systems with γobs ≈ 0.0128
and Φa = 0.233.

Appendix D. An alternative measure of dynamical activity

Previous work has considered large deviations of the dynamical activity in this
system [30, 31], but using a different measure of activity, which is defined in terms
of squared particle displacements. One separates the time interval [0, tobs] into S
segments, each of length ∆t = tobs/S. Then define

Kmsd[x] =
1

2D0

S∑
j=1

N∑
i=1

|xi(tj)− xi(tj−1)−∆x̄j |2, (D.1)

where tj = j∆t and ∆x̄j is the displacement of the centre of mass of all particles,
between times tj−1 and tj . The activity K of (11) depends on the characteristic
length a, while Kmsd depends on the parameter ∆t. To obtain a corresponding length
one may define amsd =

√
2D0∆t where D0 is the single-particle diffusion constant.
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For a direct comparison between K and Kmsd it is natural to take amsd ≈ a since this
means that both activity measures are sensitive to motion on the same length scales.

Analogous to (14) we define a biased ensemble with a bias parameter s2, as

dPs2 [x] =
e−s2Kmsd[x]

Z(s2)
dP0[x] . (D.2)

Also define λ2 = s2L
2
r/D0, analogous to (27), and kmsd = Kmsd/(Ntobs). With

these definitions, Fig. D1 shows that the ensemble of (D.2) has the same qualitative
features as biasing by K. Specifically, Fig. D1(a) is analogous to Fig. 4(a) and
Fig. D1(b) is analogous to Fig. 5(a). The data collapses when plotting these results
as a function of λ2, consistent with the MFT predictions.
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[60] Vladislav Popkov, Gunter M. Schütz, and Damien Simon. Asep on a ring conditioned on
enhanced flux. J. Stat. Mech., 2010(10):P10007, 2010.

[61] Alexandre Lazarescu. The physicist’s companion to current fluctuations: one-dimensional bulk-
driven lattice gases. J. Phys. A, 48(50):503001, 2015.

[62] Yongjoo Baek, Yariv Kafri, and Vivien Lecomte. Dynamical phase transitions in the current
distribution of driven diffusive channels. J. Phys. A, 51(10):105001, 2018.

[63] Yongjoo Baek, Yariv Kafri, and Vivien Lecomte. Finite-size and finite-time effects in large
deviation functions near dynamical symmetry breaking transitions. arXiv:1905.05486.

[64] Salvatore Torquato and Frank H. Stillinger. Local density fluctuations, hyperuniformity, and
order metrics. Phys. Rev. E, 68:041113, 2003.

[65] R. Garcia-Millan, G. Pruessner, L. Pickering, and K. Christensen. Correlations and
hyperuniformity in the avalanche size of the oslo model. EPL (Europhysics Letters),
122(5):50003, 2018.

[66] Chase E. Zachary, Yang Jiao, and Salvatore Torquato. Hyperuniform long-range correlations
are a signature of disordered jammed hard-particle packings. Phys. Rev. Lett., 106:178001,
2011.

[67] Yang Jiao, Timothy Lau, Haralampos Hatzikirou, Michael Meyer-Hermann, Joseph C. Corbo,
and Salvatore Torquato. Avian photoreceptor patterns represent a disordered hyperuniform
solution to a multiscale packing problem. Phys. Rev. E, 89:022721, 2014.

[68] A. Gabrielli, B. Jancovici, M. Joyce, J. L. Lebowitz, L. Pietronero, and F. Sylos Labini.
Generation of primordial cosmological perturbations from statistical mechanical models.
Phys. Rev. D, 67:043506, Feb 2003.

[69] Marian Florescu, Salvatore Torquato, and Paul J. Steinhardt. Designer disordered materials
with large, complete photonic band gaps. Proc. Natl. Acad. Sci. USA, 106(49):20658–20663,
2009.

[70] Joel L. Lebowitz. Charge fluctuations in coulomb systems. Phys. Rev. A, 27:1491–1494, Mar
1983.

[71] D. Levesque, J. J. Weis, and J. L. Lebowitz. Charge fluctuations in the two-dimensional one-
component plasma. Journal of Statistical Physics, 100(1):209–222, 2000.

[72] S. Asmussen and Peter W. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer,
New York, 2007.

[73] Laurens de Haan and Ana Ferreira. Extreme Value Theory: An Introduction (Springer Series
in Operations Research and Financial Engineering). Springer, 2010.

[74] Esteban Guevara Hidalgo, Takahiro Nemoto, and Vivien Lecomte. Finite-time and finite-size
scalings in the evaluation of large-deviation functions: Numerical approach in continuous



Large deviations and optimal control forces for hard particles in one dimension 38

time. Phys. Rev. E, 95:062134, Jun 2017.
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