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ABSTRACT

Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics,
antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon.
Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the
host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration
between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient
design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative
characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to
experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary
training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling
approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo
bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across
all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding
of bacterial infections and guide the use of existing or new therapies.

Keywords: mathematical biology; within-host dynamics; host–pathogen interactions; mechanistic model; parameter
inference

INTRODUCTION

Bacterial infections have historically been classified amongst
the leading causes of death in humans (World Health Organi-
sation 2019). The discovery and clinical introduction of antibi-
otics during the 20th century significantly reduced the morbidity
and mortality of bacterial diseases (Yoshikawa 2002). However,
the rise of resistance to most first-line antibiotics (reviewed by

Hofer 2018) and antibiotic tolerance (reviewed by Brauner et al.
2016) compounded by inequities in antimicrobial access (Center
for Disease Dynamics, Economics and Policy 2019) persistently
undermine efforts to lower the burden of bacterial diseases.

In light of these challenges, immunization of vulnerable
populations (Breiman et al. 2012) and pathogen-specific opti-
mization of antibiotic regimens (Meylan, Andrews and Collins
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2018) have emerged as promising management strategies. How-
ever, neither novel antibiotic agents (Silver 2011) nor new vac-
cines are being developed fast enough (Pronker et al. 2013)
to keep bacterial diseases in check. Even for most vaccines
currently in use the mode of action at the level of host–
pathogen interactions remains obscure (Oyston and Robinson
2012), while lack of an integrated understanding of the dys-
functional host–pathogen interactions targeted by antimicro-
bial agents leads to the underutilization of their therapeutic
potential (Munguia and Nizet 2017). Concomitant with efforts to
boost the rates of discovery of novel therapeutics, it is imper-
ative to optimize the use of already available agents by dis-
entangling the complex interactions between host immunity
and pathogen behavior (Gjini and Brito 2016) and identify-
ing the determinants of successful disease establishment and
progression (Casadevall and Pirofski 2001; Munguia and Nizet
2017).

From first principles, therapeutic interventions should aim to
reduce or eliminate the pathogenic bacteria from the infected
host. This outcome can be achieved by slowing down bac-
terial replication, accelerating bacterial killing, altering bacte-
rial migration between tissues or any favorable combination
thereof. Although bacterial growth and dissemination have
been extensively studied in terms of molecular and cellu-
lar mechanisms (reviewed by Ribet and Cossart 2015; Endes-
felder 2019), the efforts to quantify these processes and their
change in response to therapeutic interventions remain lim-
ited (Levin and Antia 2001). Quantification of these dynam-
ics requires a detailed observation of within-host bacterial
behavior by means of suitable experimental studies and high-
resolution imaging and tracking technologies. However, despite
the rapidly evolving technological advancements that have
improved the resolution of experimental observations, many
biological phenomena of interest still remain directly unobserv-
able. This observational gap can be partly filled through quanti-
tative inferences about the missing information with the use of
mathematical models applied to relatively coarse experimental
data.

In this review, we categorize mathematical models accord-
ing to their appropriateness for capturing different character-
istics of infection progression, and their degree of dependence
on experimental data. We focus on mechanistic, data-driven
models and explain their contribution to applied microbiolog-
ical research. We outline commonly used experimental tech-
niques in the study of within-host bacterial dynamics and dis-
cuss ways in which their output has been or can be enriched
by suitable mathematical approaches. Finally, we broaden our
scope to models applied to viral and parasitic infections to show-
case a number of biological themes that have been successfully
addressed using such modeling techniques.

EXPERIMENTAL AND MATHEMATICAL
MODELS AS REPRESENTATIONS OF
BIOLOGICAL SYSTEMS

In a biological context, a model is defined as a simplified repre-
sentation of a system or phenomenon summarizing knowledge
of that system in a usable form (Eykhoff 1974). While experimen-
tal models are physical representations of the real-life system
either in vivo or in vitro, mathematical models are conceptual and
usually formulated as systems of mathematical equations pro-
cessed either analytically or numerically (Motta and Pappalardo
2013).

Though microbiologists are familiar with experimental mod-
els, they are less so with the versatility of mathematical model-
ing approaches, largely due to the limited interdisciplinary train-
ing in biological sciences (Levin and Antia 2001). In this section,
we aim to provide a convenient introduction to mathematical
models by classifying modeling techniques according to their
comparative strengths and applications to microbiological ques-
tions.

Mathematical models can be categorized into functional
classes (Fig. 1), according to different criteria such as (i) whether
their parameters represent biological processes, (ii) whether
they are fitted to experimental data, (iii) whether molecular, cel-
lular or other sources of variability affect the output of the model
and (iv) what the purpose of model development is.

Mechanistic and empirical models

Mathematical models can be classified as empirical or mech-
anistic. Empirical models describe relations between the vari-
ables in an experimental data set, without addressing what bio-
logical mechanisms may intrinsically drive the observed pat-
terns in the data. These relations can be quantified by param-
eters, whose values can be estimated using statistical analysis.
Empirical models are also known as extrinsic because they do
not incorporate any knowledge or hypotheses about the inner
structural connectivity of the system; rather they are only based
on its observable, external behavior (Thakur 1991).

By contrast, mechanistic models incorporate the biological
mechanisms by which changes in the system are thought to
occur and require some knowledge or speculation about the
unobserved interactions that determine the observable output
(Thakur 1991; Baker et al. 2018). In the context of mathematical
modeling, a mechanism often does not correspond to the molec-
ular, cellular or genetic hierarchy that collectively constitutes
causality from a microbiologist’s viewpoint. From a modeler’s
point of view, a mechanism is a conceptual representation of
the process acting to change the state of the system in a certain
direction. Structurally, mechanistic models can be represented
with flow diagrams, whereby the state of the biological system,
i.e. an imaginary complete snapshot of that system at a given
point in time, changes through processes measured by parame-
ters in the model (Fig. 2). Examples of biologically relevant quan-
tities encoded as variables in these models (i.e. boxes in the flow
diagram) can include concentrations of cytokines and antibod-
ies, as well as numbers of immune cells and infectious agents
in tissues amongst others. These quantities are at times directly
measurable experimentally and at others only determinable by
proxy.

Data-driven and theoretical models

The second relevant classification of mathematical models is
that into data-driven and theoretical. While empirical mod-
els are, by definition, data-driven, mechanistic models can
be of either class. Mechanistic data-driven models are usu-
ally system-specific and parameterized based on experimen-
tal outputs. For example, in 2014, Coward et al. carried out
an experiment using individually tagged strains of Salmonella
Typhimurium to determine the effects of different vaccines
on the rates of replication and killing of bacteria. The mea-
surements of bacterial numbers in the differentially tagged
subpopulations along the infection timeline were fed into a
population-based mathematical model, which permitted esti-
mation of the rates of replication and killing of bacteria under
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Figure 1. Schematic representation of the relationships between different mathematical modeling techniques. Mathematical models can be divided into mechanistic
and empirical on account of whether their parameters represent biological processes or simply characterize relations between variables in the data. While empirical
models are necessarily data-dependent, mechanistic models can either be system-specific and fitted to data or, generic, explorative and not related to experimental

data (theoretical). Additionally, depending on the biological question addressed, mechanistic models can be deterministic when only the average behavior of the system
is of interest, or stochastic when unexplained variation in the behavior of the system matters too. Mechanistic data-driven models can serve different purposes: they
can either be solved forward in time to make a forecast (prospective analysis) or can be solved backwards in time to perform parameter inference and model selection
(retrospective analysis).

Figure 2. An example of a flow diagram as a schematic representation of mech-
anistic models in microbiology (adapted from Kaiser et al. 2013). Boxes represent

the variables of the system, in this case the number of bacteria in the caecum and
caecal lymph node respectively. Mathematically these variables are shortened
for convenience as NC and NL. The processes that change the state of the system
are represented by arrows and, here, correspond to bacterial migration, replica-

tion and clearance. The rates at which these processes take place are quantified
by parameters, in this case, μL, rL and cL corresponding to the rates of migration,
replication and clearance, respectively.

the two immunization regimens enabling the direct comparison
between them.

On the other hand, theoretical models constitute a spec-
trum depending on the degree to which their parameterization
is empirically informed. At one end of this spectrum, there are
purely theoretical models, which may describe a general pat-
tern of infection without reference to a particular host–pathogen
interaction. For example, Antia, Levin and May (1994) devel-
oped a general, theoretical model to investigate the relation-
ship between the host’s immune system and the virulence of a
generic microparasite. They found that pathogens with interme-
diate replication rates tend to dominate their host and achieve
the highest inter-host transmissibility.

Further along the spectrum, there are theoretical mod-
els referring to a specific host–pathogen system but arbitrar-
ily parameterized with biologically plausible values. Cooper
and Julius (2011) explored a theoretical model of bacterial
persistence with short- and long-term dormancy and used a
simulation-based approach, whereby some parameters were
allowed to vary across a biologically plausible range, to conclude
that the infinite-time-horizon optimal treatment strategy is not
unique.

Finally, at the other end of the spectrum, there are empir-
ically informed theoretical models, which use parameter val-
ues from a range of studies, with the potential caveat that their
variable experimental sources, initial conditions or even host
species may be incongruent. This limitation is counterbalanced
by the benefit of maximizing information through data integra-
tion across studies and scales. For example, a substantial body
of modeling work on the within-host dynamics of Mycobacterium
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tuberculosis has used diverse experimental data sets focusing on
different aspects of the immune response elicited in the lungs
of human, murine and simian hosts (reviewed by Kirschner et al.
2017). Such models have attempted to integrate data at differ-
ent scales (from molecular, cellular to organ- and organism-
level) and simulate the response to different vaccines and antibi-
otic regimes. Pienaar et al. (2015, 2016) used a theoretical model
partly calibrated on data derived from non-human primates and
rabbits to predict the efficacy of rifampin and isoniazid combi-
nation treatment regimens and to show that bacteria residing
within macrophages constitute a reservoir for the development
of resistance against first-line anti-TB antibiotics.

Deterministic and stochastic models

Mechanistic models can be further subdivided into determin-
istic and stochastic. Deterministic models follow a predeter-
mined trajectory given a set of starting conditions and rates at
which processes evolve in time. That is, a given parameter set
will always yield the same model output. By contrast, stochas-
tic models yield different results each time when initialized with
the same parameters and initial conditions. While multiple real-
izations of stochastic models recapitulate the range of poten-
tial outcomes and their likelihood of occurrence, the output of a
deterministic model corresponds to the mean outcome of these
realizations. Stochastic models can quickly become too complex
to solve analytically, and their exploration may, thus, be entirely
simulation-based. When stochastic processes are simulated, the
random nature of trajectories generated are due to randomly,
exponentially distributed, picked times until the next process,
with a randomly picked process executed during that time (Gille-
spie 1977). This can become computationally expensive.

Despite the higher computational cost of stochastic models,
they often constitute the only reasonable modeling choice, when
the behavior of the system in question is particularly influenced
by stochasticity. With terminology borrowed from the field of
ecology, the uncertainty in the outcome can be decomposed as a
function of two sources of stochasticity: demographic (e.g. Shaf-
fer 1981; Burgman, Ferson and Akcakaya 1993) and environmen-
tal. Demographic events include births, deaths and migration
of individuals. The rate at which a demographic event occurs
is defined as the inverse of the average time it takes for the
event to take place and can be quantified with mathematical
models. These events are described by binary random variables
with a certain probability of occurring per given unit of time.
As demographic events at the population-level are a function
of the sum of demographic events at the individual level, the
strength of demographic stochasticity is greater for small popu-
lations (Kokko and Ebenhard 1996).

On the other hand, environmental stochasticity is indepen-
dent of the individual; rather, it refers to unpredictable changes
in the environmental conditions that the individuals experi-
ence. As such, its effects do not depend on the population size,
but on the number, heterogeneity and stability of factors influ-
encing individual behaviour (Fujiwara and Takada 2017). In the
context of within-host infectious dynamics, the nature of the
pathogen determines the strength of each source of stochastic-
ity. For infections requiring a small founding population, demo-
graphic stochasticity becomes important as they may either be
successful or become extinct. At the same time, the complex-
ity of the immune response, the microenvironment of the tis-
sue(s) colonized, and the heterogeneity of infectious foci deter-
mines the effect of environmental stochasticity on the popu-
lation. When prior biological knowledge indicates that either

source of stochasticity may be strong, it is advisable to use
stochastic rather than deterministic models.

HIV is a good case in point to illustrate how considerable
these effects can be. The first models of within-host HIV dynam-
ics were deterministic (Nowak and Bangham 1996), but failed to
account for extinction events. Later biological insights about the
low probability of HIV transmission per coital act gave rise to the
hypothesis that upon low level viral transmission, extinction of
the infection may be more probable than take-off. Stochastic HIV
models were then introduced to test this hypothesis (Pearson,
Krapivsky and Perelson 2011) and have now been established as
an important tool in the HIV modeling literature.

Prospective and retrospective analysis

Mathematical models can be used for prospective or retrospec-
tive analysis, according to their intended purpose in a study.
Models can have a forward solution, when the initial conditions
and parameters are known or chosen a priori by the modeller.
They can predict what the state of the system will be at different
timepoints in the future under different conditions. One com-
mon application of prospective modeling is the comparison of
the effect of therapeutic interventions on infectious load reduc-
tion (e.g. Grant et al. 2008; Pienaar et al. 2015).

A model can also be solved backwards when the parame-
ters are unknown but the outputs at different time-points are
known. When analyzed retrospectively, mechanistic models can
be used to infer the unknown parameters. The inference pro-
cess explores the parameter space, which consists of all allowed
parameter combinations. For each parameter combination, the
model is used to predict the state of the system at time points on
interest. The state of the system, as predicted by the model given
a set of parameters, is then compared to the experimental obser-
vations using statistical tools. The parameter set whose corre-
sponding predicted output is the closest to the experimentally
observed data is taken as the best parameter estimate resulting
from the inference process. An example of a mechanistic model
analyzed retrospectively with the purpose of parameter infer-
ence is provided by Dybowski et al. (2015). They infected mice
with a mixture of isogenically tagged bacteria derived either
from liquid culture or recovered from previously infected mice.
They fitted a mechanistic model to experimental measurements
of numbers of bacteria per tagged strain to infer the unobserved
replication and killing rates of bacteria and concluded that in
vivo passage of bacteria affects their within-host dynamics in
subsequent infections.

Mechanistic models, analysed retrospectively, can also be
used in the context of model selection to address competing
hypotheses about a biological process and these hypotheses can
be tested by fitting the models to experimental data. Models with
poor fit are unlikely to represent plausible candidates for the
underlying biological mechanism. For instance, Handel, Longini
and Antia (2009) tested different hypotheses about the immune
response to influenza A. Using model selection, they rejected
the hypothesis that regrowth of epithelial cells affects the rate
at which the infection progresses and highlighted the need for
additional experimental data to test more detailed hypotheses
about this immune response.

It is important to note that the prospective and retrospective
features of models are not mutually exclusive. A model can be
used retrospectively and prospectively for both parameter infer-
ence and forecast, respectively. Parameters can be inferred by
solving the model backwards using a fraction of the observed
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measurements. Then, the model, parameterized with the esti-
mated values, can be used to predict future outcomes (forward
solution). If the predicted outcomes match the remaining exper-
imental observations, the model can be validated (Steyerberg
and Harrel Jr 2016).

MATHEMATICAL MODELS INTEGRATED WITH
EXPERIMENTAL TECHNIQUES

Previously, we used examples to illustrate how different forms
of mathematical modeling can be used to understand differ-
ent aspects of host–pathogen interactions. The added value that
a data-based mathematical model brings depends on multiple
factors, including the understanding of the biological processes
driving the system, the fidelity with which the putative biolog-
ical knowledge has been translated to a mathematical model,
and the quality and resolution of the experimental data used
in model calibration. While the former two factors depend on
the knowledge about the biological system of interest, the latter
depends on the availability of relevant technology and know–
how, and on a good understanding of the format and quality of
experimental output required by the model.

This section briefly reviews experimental techniques com-
monly used to observe bacterial growth in vivo and outlines the
scope for their use with mathematical models. Table 1 summa-
rizes the studies that have hitherto attempted to characterize
processes that shape the within-host bacterial dynamics, high-
lighting the nature of the experimental technique used, whether
the setup characterized the process at the level of the single
bacterium or the entire population, and whether an average
or a distribution of the unit (e.g. rate or elapsed generations)
was obtained. This structured framework of pairwise technique-
model combinations aspires to serve as a preliminary template
for lab-based microbiologists to consider ways in which their
experimental outputs could be made amenable to mathemati-
cal analysis.

Marker-based methods

The first marker-based methods used to measure the
population-averaged rate of bacterial replication in vivo
were additive, in the sense that they involved an accessory
genetic element, including superinfecting bacteriophages
(Hormaeche 1980; Meynell 1959; Maw and Meynell 1968),
temperature-sensitive plasmids (Gulig and Doyle 1993) or
plasmids carrying antimicrobial resistance genes (Moxon and
Murphy 1978). In these techniques, genetic elements that
induce phenotypic changes are introduced into bacteria and
upon division segregate to daughter cells, leading to a reduction
in the concentration of the marker, as the bacteria divide. The
growth of the bacterial population can be modeled with the
generation time of the population, signifying the half-life of the
marker. At each bacterial generation, we would expect to find
one-half less of the bacteria in the population harboring the
non-genetic marker.

Additive marker-based methods have fallen out of favor
for higher-resolution experimental techniques, as their output,
which is based on detection of phenotypic differences, limits the
potential for mathematical inference. Because the concentra-
tion of the marker decays with each subsequent bacterial divi-
sion, the technique is limited to a finite number of generations

and is only appropriate for studying the early stages of infec-
tion. Additionally, the possible detectable phenotypes constitute
a limiting factor for the resolution of this technique.

To overcome these limitations, non-phenotypic marker-
based techniques based on modifying the bacterial genome
were developed, offering the added advantages of unrestricted
observational potential in time, tracking of inter-organ bacterial
migration, and increased resolution thanks to a broader range
of possible unique markers. In contrast to their predecessors,
they introduce modifications to the core bacterial genome, in the
form of uniquely identifiable nucleotide sequences inserted in
non-coding regions of bacterial chromosomal DNA to generate
a pool of iso-phenotypic, genetically distinguishable bacteria.
This bacterial pool is then inoculated into experimental mod-
els. Animals are sacrificed at time-points of interest, organs har-
vested, and bacterial composition determined by quantitative
polymerase chain reaction (qPCR) or sequencing. Infection with
signature-tagged strains allows one to follow the course of infec-
tion in the infected animal. Because the bacteria are uniquely
marked, one can essentially take snapshots of the infection and
determine the rates at which bacteria replicate, migrate and die
in tissues at any time during the course of infection.

With non-phenotypic marker-based techniques, hosts are
inoculated with a mixture of uniquely tagged bacterial subpop-
ulations, each of which evolves as an independent infection in
vivo. Unlike the few unique phenotypes used as markers in the
additive marker-based methods, the multiplicity of infections
per model animal using this new generation of non-phenotypic
techniques reduces the number of hosts required to yield a suf-
ficient volume of data to decipher the unobserved dynamics and
allow the quantification of replication, killing and migration of
bacteria in vivo (Barnes et al. 2006; Grant et al. 2008; Melton-Witt
et al. 2011; Coward et al. 2014). The recent introduction of next-
generation sequencing in place of qPCR for identification and
quantification of the uniquely tagged strains has led to even
higher-resolution data (Zhang et al. 2017; Abel et al. 2015).

DNA barcoding experiments have served as an archetype
of successfully pairing mathematical with experimental
approaches. On many occasions, genetic barcodes have been
used in the absence of mathematical models to provide a
qualitative assessment of the within-host dynamics of bacterial
infections (Zhang et al. 2017; Walters et al. 2012; Lim et al. 2014;
Abel et al. 2015). In a standard infection, observation of a change
from a dissimilar to a highly similar composition of tagged
populations between two tissue samples would indicate bacte-
rial migration between them, while the sudden loss of tagged
strain diversity would suggest a rapid bottleneck. For instance,
Walters et al. (2012) used isogenic tagging experiments to show
a bottleneck in the uropathogenic Escherichia coli infection
between the kidney and the bloodstream.

However, mathematical models allow for a quantitative
assessment of the dynamics of the bacterial infection, as well
as model selection. For instance, the observed composition of
isogenically tagged populations of bacteria is the result of the
convolved effects of replication, killing and migration. By using
a within-host model which explicitly represents the processes of
replication, killing, and migration, it is possible to precisely esti-
mate these rates by comparing model outputs to experimental
data. The precision of parameter estimation is usually reported
in the form of confidence intervals (Coward et al. 2014; Grant et al.
2008; Kaiser et al. 2013, 2014; Dybowski et al. 2015). Increasing
the precision of inference has been achieved by using a larger
pool of Isogenically tagged strains (STAMP references) or using
inocula with only a small proportion of tagged strains (Kaiser
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Figure 3. Model selection in a virtual study using tagged strains. Mice are infected with an equiproportionate mix of 10 wild-type isogenic strains (WITS) at t0. At t1,
mice are sacrificed and bacterial copies per WITS are enumerated in their blood, liver and spleen. Color-filled circles represent present strains, while unfilled circles

represent absent strains. The joint distribution of bacteria per WITS in the 3 tissues uniquely describes the state of the system at t1. Estimated bacterial distributions
A and B are obtained at t1 for competing models A and B. Each estimated distribution is compared to the observed distribution and their difference summarized by a
divergence measure. Model A yields the smallest difference and, thus, provides a better fit to the data.

et al. 2013, 2014) Apart from quantifying the contribution of dif-
ferent processes in the overall bacterial numbers, it is also pos-
sible to assess the plausibility of different biological hypotheses
by selecting the model with the best fit to the data (Fig. 3).

Two published studies demonstrate the biological insights
offered by complementing the qualitative data interpretation
with the quantitative model output. First, Grant et al. (2008)
demonstrated using the estimates provided by modeling that
in the early stages of infection, replication and killing lead to
unique subpopulations of bacteria in different infection foci.
Estimation of replication and killing rates would not have been
possible without using a mathematical model.

Second, Coward et al. (2014) introduced elements of mathe-
matical modeling at various points along the experimental time-
line. In the early stages of experimental design, simulation-
based experiments were used to determine the inoculum dose
that would yield the most informative experimental output.
Then, mathematical modeling was used to correct the raw
experimental data by accounting for the noise introduced due
to partial sampling and the samples undergoing qPCR. Finally,
mathematical modeling was used to maximize the biological
insight by enabling the comparison between the mechanisms of

action of the live and killed vaccine. Without models, net growth
could be estimated from CFU counts, but distinguishing between
the bactericidal and bacteriostatic effects of the two vaccines
would have been unfeasible.

Even though mathematical modeling applied on experimen-
tal studies using non-phenotypic markers has been widespread
in the field of within-host bacterial dynamics, there are limita-
tions. Non-phenotypic marker-based techniques can only cap-
ture the dynamics at the bacterial population level, treat the
bacterial population in question as having homogenous dynam-
ics and do not provide data in the form of a time series, as dif-
ferent mice are sacrificed at each time point of interest. As a
result, the inferences made regarding the rates at which the
in-host dynamics evolve can only represent the average of the
heterogeneous dynamics at play (Claudi et al. 2014). Meanwhile,
the assumptions that inter-mice immunological responses are
identical and that inter-strain differences remain negligible over
time have not been tested. Finally, even in the presence of suffi-
cient data to infer the parameters governing the in vivo dynami-
cal processes, mathematical models have hitherto been limited
to constant-rate processes, as more complex models become
intractable or computationally too expensive to solve.
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Fluorescence dilution-based techniques

Fluorescence dilution techniques take the observation of the
within-host bacterial dynamics from the population- to the
single-cell level (Claudi et al. 2014; Helaine, Cheverton and Wat-
son 2014; Helaine et al. 2010; Myhrvold et al. 2015). Fluorescence
reporter plasmids, in which dilution of a preformed pool of a
fluorophore (fluorescence dilution) acts as a measure of bacte-
rial replication, are introduced into a bacterial population. Flow
cytometry is used to determine the intensity of the signal and
thus the number of replication events that bacteria have under-
gone.

By virtue of its single-cell resolution, fluorescence dilution
techniques are particularly useful to study bacterial heterogene-
ity. To this day, mathematical modeling has typically not been
used for fluorescence-dilution type experiments. Analyzes have
focused on qualitatively characterizing the heterogeneity in a
signal across a bacterial population, e.g. with regards to its spec-
trum of replication rates.

However, mathematical modeling is needed to precisely
quantify the extent of heterogeneity in the biological attribute
of interest and to test hypotheses that may underlie this het-
erogeneity. In theory, because fluorescence halves at each divi-
sion in fluorescence dilution experiments, discrete peaks should
be observed on the histogram of fluorescence corresponding to
bacteria at specific numbers of generations. Nonetheless, the
histogram of fluorescence intensity is continuous. It is likely
that this incongruence reflects some heterogeneity in the exper-
imental process. Mathematical modeling can help distinguish
the heterogeneity from the experimental process from the het-
erogeneity in the biological process. In particular, stochastic
models are well-suited for this purpose, because they can cap-
ture different sources of variation (Fig. 4).

Peak-to-trough ratio

One of the most recently developed technique pertinent to facil-
itating the observation of in vivo bacterial dynamics makes
use of the differential genetic signatures left by replication
cycles (Korem et al. 2015). During DNA replication, regions that
have already been passed by the replication fork will have
two copies while the yet unreplicated regions will have a sin-
gle copy. The ratio between DNA copy number near the repli-
cation origin and that near the terminus, termed peak-to-
trough ratio (PTR) should reflect the growth rate of the bacterial
population.

In 2018, Gao and Li developed an algorithm allowing the
quantitative inference of bacterial growth rates from PTR data,
which include DNA segments from various bacterial genomes
in a faecal sample. This multi-genomic sample comprises sets
of overlapping DNA fragments (contigs), which upon align-
ment can provide information about the pathogen’s identity
and replication history. The first step of the algorithm allows
for correction of sequencing bias (GC content bias is often
reported in next-generation sequencing). This is achieved by
using a linear mixed effect model, which corrects the aver-
age contig coverage according to the average GC content dif-
ference in the set. Quality control and exclusion of contigs is
followed by a principal component analysis of contig cover-
ages in multiple samples leading to more accurate inference
of the distance between the contig and the replication origin
compared to single samples. Quantification of parameter esti-
mate accuracy when using experimental data of variable qual-
ity (e.g. different number of contig sizes, degree of contamina-

tion, contig number) is possible. This feature could be relevant
to experimental design, as it could inform experimental biolo-
gists of the trade-off between data quality and level of inference
accuracy.

BIOLOGICAL THEMES EXPLORED WITH THE
USE OF MODELS

Sections 2 and 3 have introduced necessary conceptual tools
to appreciate the insight that mathematical models can offer
when used in conjunction with experimental data. We hope
that we have also provided a rough guide of how different for-
mats of data can be explored mathematically. The purpose of the
present section is to present biological themes which customar-
ily come up in the study of within-host dynamics of infectious
disease and how they have been addressed through the use of
mathematical models. As modeling examples remain limited in
the area of bacterial dynamics, we include conceptually similar
studies in other pathogenic classes including viruses and par-
asites. These case studies are by no means an exhaustive rep-
resentation of the entirety of the literature body but have been
selected to serve as illustrations of the concepts.

Quantification of the relative contribution of different
immune system components to the progression of
infection

Within-host models of parasitic, viral and bacterial infection
often seek to determine the relative contributions of different
components of the immune system in regulating the dynam-
ics of infection. In the current treatment paradigm, the role of
the host’s immune response is often neglected, and therapeutic
agents are administered for fixed periods of time usually in the
form of monotherapy and regardless of the infectious load. It is
now becoming increasingly recognized that a first step toward
optimization of existing therapies is the induction of synergis-
tic effects between the host immunity and the standalone effect
of the therapy (Gjini and Brito 2016). To thoroughly understand
this interaction, mechanistic mathematical models can be used
in two main ways. First, one can use a series of nested models
prospectively, starting from simpler models and adding features
of the immune response while quantifying the impact of each
new addition in the process. Second, by enabling the segrega-
tion between unobserved processes of replication and killing,
mathematical models begin to shed light on the black-box of
host–pathogen interactions and inform further biological exper-
iments. For example, if rapid killing is identified as the main
driver of an observed decline in bacterial numbers, it is reason-
able to first look in the direction of known cidal branches of the
host immunity.

One such approach was taken by Grant et al. in 2008 where
following the identification of early bactericidal activity in a
Salmonella mouse model, infection progression in wild type mice
was compared to that in NADPH oxidase deficient mice to
unravel an important role of that immunological component
in inducing the inferred bactericidal effect. In other pathogen
classes, mathematical models addressing similar questions
were successfully used much earlier.

With regards to host immune system-bacterial interactions,
mathematical modeling of the Mycoplasma species has been
ongoing. The Kirschner group have developed a series of increas-
ingly complex mathematical models to describe the role of dif-
ferent cell types and chemokines of the immune system in the
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Figure 4. Coupling mathematical modeling with TIMER technique to distinguish between true variation in bacterial division rates and variation due to observational
process (adapted from Claudi et al. 2014). The observed distribution of fluorescence intensity in the bacterial population appears continuous. Using stochastic models
it is possible to quantify the variation expected from different identified sources of noise and compare it to the variation in the experimental data. If the aggregate

variation from all sources of noise can account for the variation in the data, it is not necessary to implicate models of higher complexity, such as multiple bacterial
subpopulations with distinct division rates.
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progression of early tuberculosis (TB) infection. Their compart-
mental model based on ordinary differential equations includ-
ing the lung and the draining lymph node (DNL) has been used
to study the dynamics of early infection, particularly the role
of dendritic cells in T-cell priming (Marino and Kirschner 2004)
and, later, the roles of dendritic cell trafficking to and from the
DNL (Marino et al. 2004), cytotoxic T-cell-mediated Mycobacteria
killing (Sud et al. 2006), TNF-α and anti-inflammatory IL-10 (Cil-
fone et al. 2013) in host defence. Their contributions identified
the macrophage infection rate and T-cell-mediated immunity as
the two key elements in determining the trajectory of an infec-
tion into one of (i) primary TB, (ii) primary TB with clearance, (iii)
latency and (iv) reactivation (Marino and Kirschner 2004).

Comparison of the effect of different strains on
infection dynamics

Fitting within-host models to samples of different strains of
the infectious pathogen can also facilitate our understanding of
how the within-host dynamics of infection vary across differ-
ent strains of the same species. Different strains of pathogens
are responsible for differences in seasonal and local outbreaks
of contagious and deadly infections such as influenza (Du et al.
2017), cholera (Weill et al. 2019), community-acquired pneumo-
nia (Zhang et al. 2019) and others. These pathogens, albeit very
closely related, can show extreme differences in transmission
rates (e.g. in Mycobacterium tuberculosis in Verma et al. 2019),
response to therapeutic agents (e.g. in Vibrio cholerae in Weill
et al. 2019) and virulence (e.g. in swine fever virus in Portugal
et al. 2014). In this context, mathematical models allow for sen-
sitivity analyzes to identify which parameter(s) have the greatest
impact on a given outcome; this can be helpful in highlighting
potential causes that drive inter-strain differences.

For instance, Hur et al. (2013) fit models of influenza infec-
tion to experimental data on seasonal and pandemic strains of
flu. They found that the only parameter that varied between
the pandemic and seasonal strains was the viral replication
rate, indicating that intracellular viral replication may affect
pathogenicity.

Comparison of the effects of different therapeutic
interventions on infection dynamics

Within-host models of infection (both theoretical data-driven)
can also reveal important insights into the effect of different
drugs at the level of the host–pathogen interaction and iden-
tify effective treatment strategies (e.g. decide whether it is more
efficient to prevent replication or increase killing). For exam-
ple, Rong and Perelson (2010) evaluated the effect of different
Hepatitis C (HCV) treatment strategies. Protease inhibitors are
being increasingly used in combination with pegylated inter-
feron and ribavirin to treat HCV-1 infection, but there remain
concerns of relapse after treatment. They developed a deter-
ministic mathematical model to examine viral load dynamics
before and after treatment with a protease inhibitor. Banerjee,
Keval and Gakkhar (2013) considered the effect of ribavirin being
used in combination with interferon therapy for HCV infection.
Although the study was theoretical in nature, it found that – pro-
vided a certain threshold of drug efficacy – a triphasic response
of viral load could be observed, leading to eradication of the
virus.

Comparison of the effects of different inoculum size on
infection dynamics

Infections can take off with inocula of variable sizes. However,
the inoculum size affects the population composition of the
infectious agents and how they respond to therapy. Formulat-
ing a deterministic mechanistic model, Meredith et al. (2015)
reported that inoculum size determines the efficacy of β-lactam
antibiotics when administered to bacterial populations of which
at least some members harbor extended β-lactamase activity. If
β-lactam antibiotics were administered in high-density popu-
lations, then some members would survive and re-establish the
infection. They reported that the population was sensitive when
its initial density was sufficiently low or examined in a short
time window. Given these properties, they reasoned that opti-
mal antibiotic dosing may remain effective in bacterial popula-
tions even when they harbor resistance genes.

Studying the dynamics of infection across different
scales

Mathematical models can be employed to study host–pathogen
interactions at multiple levels, from cellular to whole-organism
and even population level. A solid knowledge of the versatility
of mathematical techniques allows the use of the same tools to
study questions on different scales. With judicious use, math-
ematical models can also combine insight acquired at differ-
ent levels e.g. the single cell and organ levels and use this to
gain novel insights about disease progression (Gog et al. 2015).
For example, a stochastic mathematical model generated by the
Perelson lab showed that early HIV dynamics differ depending
on whether infected target cells produce virions continuously
or do so in a single burst (Pearson, Krapivsky and Perelson 2011).
This study shows how events at the single-cell level can have a
profound impact on infection dynamics at the whole-organism
level ultimately affecting clinically important quantities used for
diagnosis and as guides for therapeutic intervention.

Furthermore, it is possible to use the predictions from mod-
eling the host–pathogen interactions to inform models at higher
scales. In 2009, Heffernan and Keeling (2009) took advantage of
well-founded predictions about immunity in a measles-infected
host (Heffernan and Keeling 2008) to predict the effect of vacci-
nation at the population level.

Investigating the evolutionary dynamics of infectious
disease within the host

Finally, mathematical models have been used to characterize
and quantify the evolutionary dynamics of infectious agents
within a host. For instance, Chisholm and Tanaka (2016) devel-
oped a mechanistic mathematical model to examine the evolu-
tion of M. tuberculosis within its host. M. tuberculosis is observed
to enter a latent, dormant state, but, at first glance, a state of dor-
mancy is not advantageous for the pathogen as it does not per-
mit replication. However, the study demonstrated that latency
can be an evolutionarily desirable state.

Furthermore, Fabre et al. (2012) formulated a deterministic
mechanistic model of competing viral populations within host
plants. They parameterized it according to the carrying capacity
of the plant, the intrinsic rate of increase of each variant and the
competition strength each genotype exerts on the others. They
determined the forms of selection processes occurring between
competing viruses within a host plant, and the intensity and
temporal variation of genetic drift experienced by viruses during
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host plant colonization. Parameters were statistically inferred
by model fitting to high-throughput sequence data of the viral
counts obtained from the plants over time, and model selection
was performed (after testing several models reflecting different
mechanisms of competition).

CONCLUSION

This review attempted to bridge the gap between our increas-
ing observational capacity in the lab on one hand, and the
mathematical modeling approaches whose computational effi-
ciency is improving on the other. Experimental techniques aim-
ing to observe bacterial replication, killing and migration are
capable of higher and higher resolution. They yield rich exper-
imental outputs, which per se suffice to gain meaningful qual-
itative insights on the dynamics of infection. Nevertheless,
sole qualitative assessment of the experimental output consti-
tutes a significant underuse of resources. When in conjunction
with bespoke mathematical models, the same raw data can be
used to segregate between unobserved processes when solely
their convolved effects are observed, to quantify the rates at
which these processes occur, and to test competing hypotheses
regarding the underlying biological mechanisms. Ultimately, a
quantitative measure of the likelihood of a biological hypoth-
esis can inform resource allocation in further experimental
studies.

Furthermore, the role of mathematical modeling in optimiz-
ing experimental conditions should not be overlooked, as an
experimental protocol design that ignores the modeling aspect
is set up to obtain data that would most likely be subopti-
mal for modeling (Succurro, Moejes and Ebenhöh 2017). As a
result, it is crucial that modelers and experimentalists come
together at the conceptual stages of a project to jointly plan
experiments, measurement frequency and time-points and data
management.

Due to limited cross-disciplinary training, this dialogue
has not been extensive so far. Nevertheless, attempts to pair
certain forms of experimental output to certain mathemati-
cal modeling techniques have begun to emerge recently, as
shown conceptually in Section 2. This creates a standard-
ized platform that makes modeling more accessible to those
with less expertise and highlights the recognition of the added
value of bringing mathematical models and experimental data
together.

In recent years, decisive steps have been taken in the direc-
tion of establishing customizable modeling platforms corre-
sponding to specific data formats. First, Price et al. (2017) devel-
oped a freely available package in the R-programming lan-
guage facilitating the implementation of mathematical mod-
els on DNA barcoding data. Second, Gao and Li (2018) devel-
oped an algorithm allowing the quantification of bacterial repli-
cation rates from PTR data. In recognition of the added value
that mathematical models can provide when combined with
experimental data, these efforts highlight the recently increas-
ing interest in expanding the dialogue between experimen-
talists and modelers using tools that can be understood and
used by both parties. We hope that by presenting a pairwise
overview between experimental techniques and mathematical
modeling approaches, we have not only illustrated the versa-
tility of models in addressing a wide range of biological ques-
tions but also provided the impetus for microbiologists to recon-
sider the role of modeling at all stages of the experimental
procedure.
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