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Abstract

This thesis is concerned with certain partial differential equations, of kinetic type, that are
involved in the modelling of many-particle systems.

The Vlasov-Poisson system is a model for a dilute plasma in an electrostatic regime. The
classical version describes the electrons in the plasma. The first part of this thesis focuses on a
variant known as the Vlasov-Poisson system with massless electrons (VPME), which instead
describes the ions. Compared to the classical system, VPME includes an additional exponential
nonlinearity, with the consequence that several results known for the classical system were not
previously available for VPME.

In particular, global well-posedness had not been proved. In this thesis, we prove that
VPME has unique global-in-time solutions in two and three dimensions, for a general class of
initial data matching results currently available for the classical system.

The quasi-neutral limit is an important approximation of Vlasov equations in plasma
physics, in which the Debye screening length of the plasma tends to zero; the formal limiting
system is a kinetic Euler equation. For a rigorous passage to the limit, a restriction on the initial
data is required. In this thesis, we prove the quasi-neutral limit from the VPME system to the
kinetic isothermal Euler system, for a certain class of rough data.

We then investigate the rigorous connection between these Vlasov equations and the
associated particle systems. We derive VPME and the two kinetic Euler models associated
respectively to the classical Vlasov-Poisson and VPME systems rigorously from systems of
extended charges.
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1.1 Kinetic Equations in Physics

This thesis provides a contribution to the mathematical theory of kinetic equations. Kinetic
equations are a class of partial differential equations used in the modelling of large many-particle
systems.

A fundamental concrete example of such a system is a gas. The atomic theory of matter
posits that a gas consists of a very large number of particles. However, it is not possible
for humans to observe these particles directly. Instead, we experience a gas through its
macroscopic properties, such as its temperature and pressure. It is a fundamental physical
problem to understand how the observable behaviours of a gas emerge from the underlying
dynamics of its constituent particles. The ‘kinetic theory of gases’ is a physical theory that
aims to explain these behaviours as the consequences of the motion of the gas particles. The
mathematical field of kinetic theory deals with a class of PDEs that arise from this theory.

The different scales of description of a gas can be translated into different types of mathe-
matical models. In a ‘microscopic’ model, one tracks the states of all particles in the system
individually. Typically this results in a classical mechanical N-body problem. Of course, for the
physical applications we have in mind, N will be far too large for such a model to be practical.
For example, for gases at room temperature, N is of order 1023. It is therefore desirable to
replace this model with a coarser description of the system.

A ‘macroscopic’ model describes the evolution of observable quantities associated to the
system, such as the density, velocity and temperature. For gas modelling, equations from fluid
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mechanics are typically used. In this case, the gas is modelled as a continuum with a single
velocity at each point in space.

Kinetic equations offer a ‘mesoscopic’ description of physical systems, at a scale in between
the particle and continuum models. A kinetic model uses a statistical description of the system
under consideration. The state of the system is described using a density function f = f (t,x,v).
The key structural feature is that f is allowed to depend not only on the time t and the spatial
position x of the particles, but also on their velocity v. The model retains the information
that gas particles at a particular spatial position may have different velocities, in contrast to
a continuum model. The function f (t,x,v) is then interpreted as the density of particles with
position x and velocity v at time t.

Large N Hydrodynamic Limit

Fluid MechanicsKinetic ModelParticle Model

Derivation of Fluid Equations

Fig. 1.1 Microscopic to macroscopic hierarchy for kinetic equations

It is a key problem in mathematical kinetic theory to justify the place of a kinetic equation
in this hierarchy of models. On the one hand, we wish to derive kinetic equations from the
underlying models they describe; this validates the use of the equation from a mathematical
perspective. On the other hand, we wish to connect kinetic models to higher level macroscopic
models, through hydrodynamic limits. This provides a possible strategy for deriving macro-
scopic models, such as the equations of fluid dynamics, from particle models - by passing via
an intervening kinetic model.

The origins of modern kinetic theory are usually traced to the work of Maxwell [69] on
the modelling of gases. In this work, Maxwell derived a version of the Boltzmann equation
for dilute gases and identified its equilibrium distribution. Boltzmann [14] generalised this
work and derived the ‘H-theorem’, which says that the (physical) entropy of solutions of the
Boltzmann equation that are not in equilibrium must increase over time. The Boltzmann
equation gives a mesoscopic description of a system of particles that interact with each other
through collisions and otherwise move freely. It takes the form

∂t f + v ·∇x f = Q( f ),

where Q is a nonlinear integral operator, acting in v only, that describes the change in f due to
collisions. Notice that the interaction between particles in this model is localised in x.
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Subsequently, Jeans [58] proposed a kinetic model to describe large systems of stars
interacting through gravity. This model is now referred to as the gravitational Vlasov-Poisson
system. In contrast to the Boltzmann equation, this is a collisionless model. In this thesis,
we will consider the electrostatic Vlasov-Poisson system, which is very closely related to the
equation proposed by Jeans.

The principal focus of this thesis will be on kinetic equations that arise in the modelling
of plasma. A plasma is an ionised gas, which means that it consists of charged particles. The
interaction between these particles is thus electromagnetic in nature. An important difference
between electromagnetic interactions and interaction through collisions is that electromagnetic
forces are long range. Charged particles influence each other even if the spatial separation
between them is large. For this reason, the models typically used for ionised gases have a
different structure from those typically used for electrically neutral gases.

Landau [60] proposed a kinetic model to describe the evolution of a plasma, now known as
the Landau-Coulomb equation. This model is based on adapting the Boltzmann equation to
the case of Coulomb interaction, and thus focuses on describing collisions within a plasma. It
takes the form

∂t f + v ·∇x f = QL( f ), (1.1)

where QL( f ) denotes the nonlinear Landau collision operator.
Vlasov [84, 85] proposed an alternative kinetic model for plasma. This equation takes the

form
∂t f + v ·∇x f +(E + v×B) ·∇v f = 0, (1.2)

where E and B are, respectively, the electric and magnetic fields generated by the plasma
itself. The fields E and B are found using the Maxwell equations. This interaction is therefore
non-local in space, representing the fact that particles feel the influence of other particles
in the system even if their spatial separation is large. The system (1.2) is known as the
(non-relativistic) Vlasov-Maxwell system.

In [84], Vlasov first considers a version of (1.2) that includes a term accounting for collisions.
However, he then argues that on the physical scales relevant to plasma, the collision terms can
be neglected. This illustrates an important principle: the ‘correct’ model to use for a physical
system is not fixed solely based on the type of interactions in the system, but rather depends
also on the physical regime in which the system is considered. For this reason, quantitative
results are important in the study of hierarchies such as Figure 1.1. They allow us to identify,
from a mathematical perspective, the timescales and regimes of physical parameters on which
the models are valid.
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The central equation we consider in this thesis is a kinetic model for the ions in an unmag-
netised plasma. It is known as the Vlasov-Poisson system with massless electrons, or VPME.
This is a non-collisional model, similar in structure to (1.2). It is a variant of the better-known
Vlasov-Poisson system, which models the electrons in an unmagnetised plasma. Our goal is
to consider a hierarchy of models similar to the one shown in Figure 1.1, centred around the
VPME system.

The macroscopic limit considered in this thesis is known as the quasi-neutral limit. This is
not a hydrodynamic limit, because the limiting equation is still a kinetic model. However, our
study is intended to be in a similar spirit to this framework: we will derive the macroscopic
model from an underlying kinetic model, and use this to connect the macroscopic model
to a particle system. The macroscopic limit we consider is motivated by a widely used
approximation in plasma physics, known as quasi-neutrality. In this approximation, a key
characteristic parameter of the plasma, known as the Debye length, is set to zero. Under this
approximation, equations of the form (1.2) are replaced by kinetic equations with a more
singular type of interaction. In this thesis we refer to these equations as ‘kinetic Euler’ systems.
The mathematical study of the quasi-neutral limit is motivated by the need to identify the
physical regime in which this approximation is indeed valid.

Large N

‘Mean field’

Small Debye length

‘Quasi-neutral’

Ion Dynamics VPME Kinetic Euler

Fig. 1.2 Microscopic to macroscopic hierarchy for the VPME system

An important step in this investigation is to study the well-posedness of the VPME system.
Before studying solutions of the VPME system, we wish to prove that such solutions exist and
are unique for a given initial datum. Previously, global-in-time well-posedness results were not
available for the VPME system in any dimension higher than one. In Chapter 2 of this thesis,
we fill this gap by proving global well-posedness for the VPME system in dimension two and
three.

Moreover, we develop a key toolbox of estimates on the electric field for the VPME system,
which allow many results for the Vlasov-Poisson system to be adapted to the VPME case. We
demonstrate this in our study of the hierarchy shown in Figure 1.2, where these estimates are
key element. In Chapter 3, we prove a rigorous limit from the VPME system to a kinetic Euler
model. In Chapter 4, we derive the VPME system from a microscopic system of extended
charges. In Chapter 5, we combine these limits to identify a physical regime in which the
kinetic Euler system can be derived from a system of extended charges.
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1.2 Plasma Models

1.2.1 The Vlasov-Poisson System

In this thesis, we will focus primarily on kinetic equations arising in the modelling of plasma.
Plasma is a state of matter that forms when an electrically neutral gas is subjected to high
temperatures or a strong electromagnetic field. This causes some of the gas particles to
dissociate, splitting apart into charged particles. The resulting system is an ionised gas.

Plasma is abundant in the universe. The study of plasma is important in astrophysics - in
space, plasma is found for example in stars, the solar wind and the interstellar medium. Plasma
is also studied as part of research into nuclear fusion reactors.

The degree of ionisation - that is, the fraction of gas particles that dissociate - varies in
real plasmas. In this thesis, we will concentrate on models that describe only the charged
species in the plasma, neglecting the neutral species that do not dissociate. The interactions
with the neutral species are very weak in comparison to the interactions of the charged species.
There are two types of charged particle in a plasma: negatively charged electrons and positively
charged ions.

The relevant physical situation to keep in mind is therefore a coupled system of ions and
electrons. Since these particles are charged, they will interact with each other principally
through electromagnetic forces. In fact, it is usual to make an assumption which decouples the
dynamics of the two species. This assumption is based on the fact that the mass of an electron
is much smaller than the mass of an ion. Consequently, an electron typically moves much more
quickly than an ion. This results in a separation between the timescales on which each species
evolves.

Consider first the point of view of the electrons. The ions are, relatively speaking, much
more massive and therefore slow moving. For this reason, it is common to assume that the ions
are stationary over the interval of time on which the plasma is observed. It remains to model
the dynamics of the electrons.

The Vlasov-Poisson system is a well-known kinetic equation describing this situation.
The electrons are described by a density function f = f (t,x,v), which is the unknown in the
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following system of equations:

(V P) :=



∂t f + v ·∇x f + qe
me

E ·∇v f = 0,

∇x ×E = 0,

ε0∇x ·E = Qi +qeρ f ,

ρ f (t,x) :=
∫
Rd

f (t,x,v)dv

f |t=0 = f0 ≥ 0.

(1.3)

Here qe is the charge on each electron, me is the mass of an electron and ε0 is the electric
permittivity. Qi : Rd → R+ is the charge density contributed by the ions, which is independent
of time since we assume that the ions are stationary. The electrons experience a force qeE,
where E is the electric field induced by the whole plasma. This is found from the Gauss law

∇x ×E = 0, ε0 ∇x ·E = Qi +qeρ f ,

which arises as an electrostatic approximation of the full Maxwell equations.
The name ‘Poisson’ comes from the following rewriting of the system. Since ∇x×E = 0, it

is possible to write E as a gradient. Thus there exists a function U such that E =−∇xU . Then
U must satisfy the Poisson equation

−ε0∆U = Qi +qeρ f .

The function U is known as the electrostatic potential.
The system (1.3) expresses the fact that each electron in the plasma feels the influence of

the other particles in the plasma in an averaged sense, through the electric field E induced
collectively by the whole plasma. This is a long-range interaction between particles. In
particular, this equation does not account for collisions between particles, which would require
the Landau-Coulomb operator QL mentioned above in equation (1.1).

The system (1.3) needs to be equipped with boundary conditions. For applications to nuclear
fusion, it is typical to consider plasmas confined by a strong magnetic field. For astrophysical
applications, we might consider a condition of decay at infinity. In this thesis, we will focus on
the case of periodic boundary conditions. That is, we assume that the spatial variable x lies in
the d-dimensional flat torus Td , which can be identified with the space [−1

2 ,
1
2 ]

d . The velocity
variable v lies in the whole Euclidean space Rd .

Moreover, we restrict in particular to the case where the background ion density Qi is
spatially uniform. This is considered to be a reasonable approximation under the assumption
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that the scale of fluctuations in the ion density is much larger than the scale of fluctuations in
the electron density. This results in the system

(V P) :=



∂t f + v ·∇x f + qe
me

E ·∇v f = 0,

∇x ×E = 0,

ε0∇x ·E = qe(ρ f −
∫
Td×Rd

f dxdv),

f |t=0 = f0 ≥ 0.

(1.4)

The ion charge density is chosen to be

Qi ≡−qe

∫
Td×Rd

f dxdv

so that the system is globally neutral. This is required by the conservation of charge, since the
plasma forms from an electrically neutral gas. In mathematical treatments, it is common to see
(1.4) written in the rescaled form

(V P) :=



∂t f + v ·∇x f +E ·∇v f = 0,

∇x ×E = 0,

−∇x ·E = ρ f −1,

f |t=0 = f0,
∫
Td×Rd

f0 dxdv = 1.

(1.5)

Another commonly considered form of the system is the case where the spatial variable x
lies in the whole space Rd . In this case the boundary condition is that the electric field should
decay at infinity. The electric field can then be represented as the convolution of ρ f with the
Coulomb kernel

K(x) =Cd
x

|x|d
.

The system then reads as follows:
∂t f + v ·∇x f +E ·∇v f = 0,

E(x) =Cd

∫
y∈Rd

x− y
|x− y|d

ρ f (y)dy,

f |t=0 = f0 ≥ 0,
∫
Rd×Rd

f0 dxdv = 1.

(1.6)
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In this case, if we included a uniformly distributed background of ions this would result in
a system with infinite mass. It is therefore usual to consider a system describing only the
dynamics of electrons, resulting in a uniformly vanishing background.

By changing the sign in the equation for E in (1.6), we obtain a model for a system with
gravitational interaction: 

∂t f + v ·∇x f +E ·∇v f = 0,

E(x) =−Cd

∫
y∈Rd

x− y
|x− y|d

ρ f (y)dy,

f |t=0 = f0 ≥ 0,
∫
Rd×Rd

f0 dxdv = 1.

This model is used to describe, for example, the dynamics of large collections of stars. It was
discovered by Jeans [58]. We do not consider gravitational Vlasov-Poisson systems in this
thesis.

1.2.2 The Massless Electron Model

The classical version of the Vlasov-Poisson system, which was presented above, describes
the electrons in a dilute, unmagnetised plasma. We may instead wish to model the ions in the
plasma. This leads to a variant of the Vlasov-Poisson system that will be the second main
equation considered in this thesis.

From the point of view of the ions, the electrons have a very small mass and so are very fast
moving. It is not possible to assume that they are stationary. Instead, we observe that, since the
electrons move quickly relative to the ions, the frequency of electron-electron collisions will be
high in comparison to other kinds of collisions, and electron-electron collisions are relevant
and frequent on the typical timescale of evolution of the ions. It is therefore common in physics
literature to assume that the electrons are close to thermal equilibrium.

The limit of massless electrons is the limit in which the ratio between the masses of the
electrons and ions, me/mi, tends to zero. Here me is the mass of an electron and mi is the
mass of an ion. This limit is physically relevant due to the large disparity in mass between the
ions and electrons. In this limit, it is assumed that the electrons instantaneously assume the
equilibrium distribution.

The equilibrium distribution can be identified by studying the equation for the evolution of
electrons. Let the ion density ρ[ fi] be fixed, and assume that all ions carry the same charge qi.
We have discussed that the evolution of the electron density can be modelled by the Vlasov-
Poisson system (1.3). As discussed above, in the long time regime we consider we expect the
effect of electron-electron collisions to be significant. We therefore augment the system (1.3)
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with a collision operator. Bellan [11, Chapter 13, Equation (13.46)] suggests the following
rescaling of the Landau-Coulomb operator for modelling collisions in a plasma:

Qelec( f ) =
Ce

m2
e

QL( f ),

where Ce is a constant depending on physical quantities such as the electron charge qe and
number density ne, but not on the electron mass me. The Landau-Coulomb operator QL is
defined as follows: for a given function g = g(v) : Rd → R,

QL(g) := ∇v ·
∫
Rd

a(v− v∗) : [g(v∗)∇vg(v)−g(v)∇vg(v∗)]dv∗.

The tensor a is defined by

a(z) =
|z|2 − z⊗ z

|z|3
.

We thus consider the following model for the electron density fe, here posed on the torus
x ∈ Td: 

∂t fe + v ·∇x fe +
qe

me
E ·∇v fe =

Ce

m2
e

QL( fe),

∇x ×E = 0, ε0∇x ·E = qiρ[ fi]+qeρ[ fe].
(1.7)

Consider the rescaling in velocity

Fe(t,x,v) = m
− d

2
e fe

(
t,x,

v
√

me

)
.

Notice that ρ[Fe] = ρ[ fe]. Then Fe satisfies{ √
me∂tFe + v ·∇xFe +qeE ·∇vFe =CeQL(Fe),

∇×E = 0, ε0∇ ·E = qiρ[ fi]+qeρ[Fe].
(1.8)

We assume that Fe converges to a stationary distribution f̄e = f̄e(x,v) as me tends to zero, and
focus on formally identifying f̄e.

We expect that f̄e should satisfy the equation

v ·∇x f̄e +qeE ·∇v f̄e =CeQL( f̄e).

By considering the following entropy functional

H[ f ] =
∫

f log f dxdv,
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which is non-increasing for solutions of (1.8), it is possible to show that f̄e should be a local
Maxwellian of the form

f̄e(x,v) = ρe(x)(πβe(x))
d/2 exp

[
−βe(x)|v−ue(x)|2

]
, (1.9)

since these are precisely the distributions for which the time derivative of the entropy vanishes.
The electron density ρe, mean velocity ue and inverse temperature βe can then be studied using
an argument similar to the one given in the proof of [7, Theorem 1.1].

Substituting the form (1.9) into equation (1.7), we obtain the following identity for all x
such that ρe(x) ̸= 0 and all v ∈ Rd:

−∇xβe · (v−ue)|v−ue|2 −ue ·∇xβe|v−ue|2 +βe(v−ue)
⊤

∇xue(v−ue)

+(v−ue) ·
[
∇x log(ρeβ

d/2
e )−qeβeE +ue ·∇xue

]
+ue ·∇x log(ρeβ

d/2
e ) = 0.

For each fixed x, the left hand side is a polynomial in v−ue(x), whose coefficients must all
be equal to zero. For example, by looking at the cubic term we see that ∇xβe = 0 and thus βe

must be a constant independent of x.
The quadratic term then gives

v⊤∇xuev = 0 for all v ∈ Rd,

which implies that ∇xue is skew-symmetric. On a spatial domain for which a Korn inequality
holds, it is possible to restrict which ue can occur. For example, in the case of the torus x ∈ Td

considered, the fact that the symmetric part of ∇xue vanishes implies that ue is constant [25,
Proposition 13].

Finally, from the linear term we obtain that

∇x log(ρeβ
d/2
e )−qeβeE = 0.

Since ∇x ×E = 0, E is a gradient - that is, it can be written as E =−∇U for some function U .
Then

∇x log(ρeβ
d/2
e ) =−qeβe∇xU.

From this we deduce that ρe should be of the form

ρe(x) = Aexp(−qeβeU) ,

for some constant A > 0. This is known as a Maxwell-Boltzmann law.
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Since ∇x ×E = 0, we can write E =−∇xU , where U is the electrostatic potential within
the plasma. Then

∇xρe =− qe

kBTe
ρe∇xU.

From this we deduce that ρe should be of the form

ρe(x) = Aexp
(
−qeU(x)

kBTe

)
,

which is known as a Maxwell–Boltzmann law.
See Bardos et al. [7] for rigorous results on identifying the Maxwell-Boltzmann law as

the limiting distribution of the electrons in the massless limit, for Vlasov-Poisson models with
collision operators of Boltzmann or BGK type.

From equation (1.7), we see that the electrostatic potential U should satisfy the following
semilinear elliptic PDE:

−ε0∆U = qiρ[ fi]+Aqe exp
(
− qeU

kBTe

)
. (1.10)

The normalising constant A is chosen so that the system is globally neutral, that is, the total
charge is zero: ∫

Td
qiρ[ fi]+Aqe exp

(
− qeU

kBTe

)
dx = 0.

The equation (1.10) replaces the standard Poisson equation for the electrostatic potential
in the Vlasov-Poisson system (1.3). After a suitable normalisation of physical constants, this
leads to the following system for the ions:

(V PME) :=



∂t f + v ·∇x f +E ·∇v f = 0,

E =−∇xU,

∆U = eU −ρ f ,

f |t=0 = f0,
∫
Td×Rd

f0 dxdv = 1.

(1.11)

This is known as the Vlasov-Poisson system with massless electrons, or VPME.
Note that solutions of the system (1.11) always satisfy global neutrality, since on the torus

the Poisson equation
∆U = h

can only be solved if h has total integral zero.
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The VPME system has been used in the physics literature in, for instance, numerical studies
of the formation of ion-acoustic shocks [68, 77] and the development of phase-space vortices
behind such shocks [15], as well as in studies of the expansion of plasma into vacuum [70]. A
physically oriented introduction to the model (1.11) may be found in [40].

This system is one of the central equations considered in this thesis. We will investigate
several mathematical questions related to this system. Chapter 2 focuses on the problem of
showing global well-posedness for this equation in dimension two and three. We then look
at two limits relating the VPME system to other models for the ions in a plasma. One is the
quasi-neutral limit, which connects the VPME system (1.11) to a macroscopic model for the
plasma. The other is the mean field limit, in which the aim is to derive the VPME system from
an underlying system of interacting particles.

1.2.3 Quasi-Neutrality

Quasi-neutrality is a concept from plasma physics, referring to a situation in which a certain
characteristic scale of the plasma is small. This property occurs frequently in real plasmas. We
will use this idea to motivate a mathematical problem known as the quasi-neutral limit. This is
a limit in which one can derive other plasma models from the Vlasov-Poisson systems, under a
certain rescaling.

1.2.3.1 The Debye Length

Plasmas have several important characteristic scales, one of which is the Debye (screening)
length, λD. The Debye length is important in describing electrostatic phenomena in the plasma.
For example, it characterises charge separation within the plasma, describing the scale at which
it can be observed that the plasma contains areas with a net positive or negative charge, and so
is not microscopically neutral.

In physics textbooks, such as [11, 23, 63], the Debye length is usually motivated by a
description of charge screening within plasmas. Electric fields applied to plasmas are damped,
because the mobile charges within the plasma move to oppose the field. For example, if a
positive test charge is placed into a plasma, the electrons will be attracted to and so move
towards it, consequently neutralising the charge density. The Debye length describes the scale
beyond which such fields are damped.

To see this more explicitly, consider the aforementioned situation of placing a point test
charge into a plasma. Assume that the plasma is in equilibrium before the test charge is placed.
We consider a regime in which the ions can be assumed to be fixed and uniformly distributed,
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and we only take the motion of the electrons into account. We assume that their motion is fast
enough that the electrons are always thermalised.

We consider placing a point test charge of charge β at the origin. When the charge is added,
it induces a potential Φ. In response, the electrons take on a Maxwell-Boltzmann distribution.
Their spatial density is therefore

ρe = ne exp
(

qeΦ

kBTe

)
,

where qe is the charge on an electron, kB is the Boltzmann constant and Te is the electron
temperature and ne is the spatial density of electrons prior to the introduction of the test charge.
The normalisation ne is chosen because the potential Φ should decay in the far field. The
potential Φ should solve the following equation:

ε0∆Φ = neqe

(
exp
(

qeΦ

kBTe

)
−1
)
−β δ0,

where δ0 denotes the Dirac distribution.
By rescaling this equation, we can identify key parameters. Let Φ̃ := qeΦ

kBTe
. Then

ε0kBTe

neq2
e

∆Φ̃ = eΦ̃ −1− β

neqe
δ0. (1.12)

This motivatives defining a scale λD by

λD :=
(

ε0kBTe

neq2
e

)1/2

. (1.13)

This scale is the Debye length associated to the electrons. Equation (1.12) then becomes

λ
2
D ∆Φ̃ = eΦ̃ −1− β

neqe
δ0.

From the structure of this equation we can see that λD is important in determining the shape of
the potential. More explicitly, Φ̃ is then of the form Φ̃(x) = Ψ

(
x

λD

)
, where Ψ is a solution of

the following equation:

∆Ψ = eΨ −1− β

neqeλ d
D

δ0. (1.14)
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To see the screening effect, in standard physics presentations it is common to linearise
equation (1.14) to obtain

∆Ψ = Ψ− β

neqeλ d
D

δ0.

Using the symmetry of the problem, it is possible to derive an explicit formula for Ψ (see for
example [11]). In dimension d = 3 this is

Ψ(x) =
β

4π

1
nqeλ 3

D

e−|x|

|x|
.

Then Φ takes the form

Φ(x) =
β

4π

kBTe

nq2
e

λ
−2
D

e−
|x|
λD

|x|
=

β

4πε0

e−
|x|
λD

|x|
,

which is known as the Yukawa potential. The decay of Φ demonstrates the shielding effect
described earlier: the typical length of spatial decay of Φ is of order λD.

If we consider a timescale on which the ions are significantly mobile, it is possible to
perform a similar analysis in which the motion of ions also plays a role in this screening effect.
The ions will then have an associated Debye length, which may differ from the electron Debye
length. It is defined by the formula (1.13), replacing the the electron density, temperature and
charge with the corresponding values for the ions.

Since the Debye length is related to observable quantities such as the density and tempera-
ture, it can be found for a real plasma. Typically, λD is much smaller than the typical length
scale of observation L. The parameter

ε :=
λD

L

is therefore expected to be small. In this case the plasma is called quasi-neutral - since the
scale of charge separation is small, the plasma appears to be neutral at the scale of observation.

Quasi-neutrality is a very common property of real plasmas, to the point that some references
include quasi-neutrality as part of the definition of a plasma. For example, Chen [23, Section
1.2] includes quasi-neutrality as one of the key properties distinguishing plasmas from ionised
gases more generally. In plasma physics literature, the approximation that ε ≈ 0 is widely used.
For this reason, it is important to understand what happens to the Vlasov-Poisson system in the
limit as ε tends to zero. This is known as the quasi-neutral limit.
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1.2.3.2 The Debye Length in the Vlasov-Poisson System

When written in appropriate dimensionless variables, the classical Vlasov-Poisson system (1.5)
takes the form

(V P)ε :=



∂t f + v ·∇x f +E ·∇v f = 0,

E =−∇xU,

−ε2∆U = ρ f −1,

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1.

(1.15)

In equation (1.15) we can see that the relative Debye length ε indeed appears as a parameter
describing the scale of the electric field E. In physics literature, it is common to work under the
assumption that ε ≈ 0. This leads to another model.

1.2.3.3 Kinetic Euler Systems

Formally setting ε = 0 in the system (1.15) results in the following system:

(KInE) :=


∂t f + v ·∇x f −∇xU ·∇v f = 0,

ρ f = 1,

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1.

(1.16)

This is an example of a kinetic Euler system. In system (1.16) the force −∇xU is now defined
implicitly through the constraint ρ f = 1, rather than explicitly through the Poisson equation, as
in (1.15). It is akin to a pressure term in a fluid equation.

The system (1.16) was discussed by Brenier [19] as a kinetic formulation of the incom-
pressible Euler equations. The correspondence can be seen clearly by considering monokinetic
solutions of (1.16), which are solutions of the form

f (t,x,v) = ρ(t,x)δ0(v−u(t,x)) (1.17)

for some density ρ and velocity field u. If f of the form (1.17) is a solution of (1.16), then u is
in turn a solution of the incompressible Euler equations:

(InE) :=

∂tu+u ·∇xu−∇xU = 0,

∇x ·u = 0.
(1.18)
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This observation illustrates the reason for calling (1.16) an ‘Euler’ equation. We will refer to
(1.16) as the kinetic incompressible Euler system, to distinguish it from other kinetic Euler
systems we will introduce below.

It is also possible to consider the quasi-neutral limit for the VPME system. In this case, the
scaled system is

(V PME)ε :=



∂t f + v ·∇x f +E ·∇v f = 0,

E =−∇xU,

ε2∆U = eU −ρ f ,

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1.

(1.19)

The formal limit is another kinetic Euler system:

(KIsE) :=


∂t f + v ·∇x f −∇xU ·∇v f = 0,

U = logρ f ,

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1.

(1.20)

This system was introduced and studied in a physics context in [38–40]. For monokinetic
solutions of (1.20), the pair (ρ,u) satisfies the following isothermal Euler system:

(IsE) :=

∂tρ +∇x · (ρu) = 0,

∂t (ρu)+∇x : (ρu⊗u)−∇xρ = 0.

We therefore refer to (1.20) as the kinetic isothermal Euler system.
It is worth observing that, although we have introduced both KInE and KIsE under the

umbrella of ‘kinetic Euler systems’, these systems are structurally different. In the KIsE system
(1.20), the force −∇xU depends on ρ f in an explicit, albeit singular, way. In the KInE system,
the force is defined implicitly through the incompressibility constraint. This distinction is
similar to the difference between compressible and incompressible Euler equations, which is
not surprising considering the connection between these systems through the monokinetic case.

To understand the KIsE system, it is often instructive to consider a related system, named
Vlasov–Dirac–Benney by Bardos [4]. This system can also be thought of as a kinetic Euler
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equation. The VDB system reads as follows:

(V DB) :=


∂t f + v ·∇x f −∇xU ·∇v f = 0,

U = ρ f −1

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1.

(1.21)

It can be obtained by linearising the coupling U = logρ f between U and ρ f . As well as being
interesting in its own right, the VDB system provides useful intuition for the KIsE system,
since they have similar structures but the coupling between ∇xU and ρ f is linear for VDB.

1.2.3.4 The Quasi-Neutral Limit

Formal identification of the limiting system does not guarantee that equations (1.16) and
(1.20) are good approximations for (1.15) and (1.19) when ε is small but non-zero. To show
this, it is necessary to study the quasi-neutral limit from each Vlasov-Poisson system to the
corresponding kinetic Euler system. It is not guaranteed that this approximation will always be
valid. Note, for example, that Medvedev [70] describes a situation in which the quasi-neutral
approximation U = logρ is not valid everywhere. This provides a physical motivation for
a study of the transition between (1.19) and (1.20). In particular we would like to identify
conditions on the data and quantitative ranges of the physical parameters for which the limit
holds. Results of this type identify regimes in which the limiting systems (1.16) and (1.20) can
be validated mathematically.

The rigorous mathematical justification of the quasi-neutral limit turns out to be a challeng-
ing problem, requiring quite stringent restrictions on the initial data. The reasons for this are
at least in part of physical origin. This will be discussed further in Section 1.5. In Chapter 3,
we consider the quasi-neutral limit from VPME to the kinetic isothermal Euler system. We
are able to prove a rigorous quasi-neutral limit for a class of rough data, in dimension two and
three.

1.2.4 Derivation from a Particle System

It is a fundamental problem in the theory of kinetic equations to derive the PDE models, in a
rigorous way, from the underlying physical system they are meant to describe. For instance,
consider the classical Vlasov-Poisson system (1.5), which we motivated as a model for the
electrons in a plasma. A lower level description of this system would be to consider a system
of N electrons, each modelled as a point particle with mass me and charge qe. The dynamics of
the electrons can be described using the laws of classical mechanics. In this case, the state of
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the ith electron can be characterised by its position Xi and velocity Vi. For ease of presentation,
here we consider this system evolving in the whole space without a background of ions. The
evolution of (Xi,Vi)

N
i=1 should then be described by the following system of ODEs: Ẋi =Vi

V̇i =
1

me
E
(
Xi;{X j} j ̸=i

)
,

(1.22)

where E
(
Xi;{X j} j ̸=i

)
is the electrostatic force exerted on electron i by the other electrons in the

plasma. The force exerted on electron i by electron j is given by the Coulomb force between
point charges; in three dimensions this is

q2
e

4πε0

Xi −X j

|Xi −X j|3
,

where ε0 denotes the vacuum permittivity. We use the notation K for the function

K(x) =
x

4π|x|3
.

Then the particle system (1.22) becomes
Ẋi =Vi

V̇i =− q2
e

me
∑
j ̸=i

K
(
Xi −X j

)
.

After an appropriate non-dimensionalisation, we reach the system
Ẋi =Vi

V̇i =−α ∑
j ̸=i

K
(
Xi −X j

)
,

(1.23)

where the parameter α is a function of the physical constants of the plasma.
We would like to show that the PDE model (1.6) gives a good description of the limiting

behaviour of the particle system (1.23) as N tends to infinity. To do this it is necessary to rescale
the system, which means choosing α to vary with N. The choice of scaling α = α(N) affects
the kind of limit we can obtain.

In order to derive the Vlasov-Poisson system (1.6), the appropriate choice is the mean field
scaling α(N) = 1/N. With this choice, formally speaking, the Vlasov-Poisson system appears
to describe the limiting behaviour of (1.23). This connection between the particle system (1.23)
and the PDE (1.6) is called the mean field limit. However, whether this limit truly holds is
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an open problem, and it may be false in some regimes. In Section 1.6, we will discuss the
technical obstacles to this limit in greater detail, and give an overview of recent approaches to
this problem.

Similar issues affect the derivation of the VPME model for ions. In this case, for the
microscopic model we consider a system of ions, modelled as point particles, in a background
of thermalised electrons. The assumption of thermalisation is justified by the difference between
the typical timescales of the ions and electrons. This is modelled by an ODE system of the
form 

Ẋi =Vi

V̇i =− 1
N ∑

j ̸=i
K
(
Xi −X j

)
+K ∗ eU , (1.24)

where U is the electrostatic potential induced by the ions and the background of electrons. That
is, U satisfies

∆U = eU − 1
N

N

∑
i=1

δXi. (1.25)

As in the classical case, the rigorous derivation of the VPME system from the particle
system (1.24) remains an open problem. However, in Chapter 4 we will prove a rigorous
derivation of the VPME system from a regularised version of (1.24).

If we consider a different choice of scaling α(N), then it may be possible to obtain different
PDE models in the limit. Recall for example the hierarchy of plasma models that we laid out in
Figure 1.2. By using a different scaling of α than the mean field scaling, it is possible to pass
from the particle model to the kinetic Euler system KIsE (1.20), rather than the VPME system.
We investigate this direction in Chapter 5, where we derive the kinetic Euler systems from
regularised particle systems, under an alternative scaling. For example, for the KInE system
(1.16) we use a scaling of the form

α(N) =C
(logN)κ

N
,

for some exponent κ stated in Theorem 1.26 in Section 1.7. For the KIsE system (1.20) we use
a scaling of the form

α(N) =C
log loglogN

N
.
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1.3 Well-Posedness Theory for Vlasov Equations

The Vlasov-Poisson system is an example of a nonlinear scalar transport equation. In particular
it belongs to a class of PDEs known as Vlasov equations. The aim of this section is to
introduce this class of equations and to review some of the fundamental concepts involved in
their well-posedness theory. For further details, we refer to the notes of Golse [31].

1.3.1 Vlasov Equations

Vlasov equations are used to model large systems of interacting particles. Below is a general
example: 

∂t f + v ·∇x f +F [ f ] ·∇v f = 0,

F [ f ](t,x) =−∇xW ∗ρ f ,

ρ f (t,x) =
∫
Rd

f (t,x,v)dv,

f (0,x,v) = f0(x,v)≥ 0.

(1.26)

The unknown f = f (t,x,v) represents the density of particles at time t which have position
x and velocity v. In this thesis, we will only discuss the problem posed on domains without
boundary, letting (x,v) ∈ X ×Rd , where either X = Rd (the whole space case) or X = Td

(the periodic case).
Equation (1.26) describes a system in which particles influence each other through pairwise

interactions. The interaction between two particles is described by a pair potential W depending
only on the separation between the particles in position space. The force exerted on a particle
at position x by another particle at position y is therefore −∇xW (x− y). For example, the
Vlasov-Poisson case can be obtained by choosing W to be the Green’s function of the Laplacian
on X . In the limit as the number of particles tends to infinity, this results in an effective force
F [ f ] as defined in (1.26). In Section 1.6 we will discuss the connection between the PDE
(1.26) and the underlying particle system in more detail. In this section, we will focus on the
well-posedness theory of the PDE (1.26).

1.3.1.1 Transport Equations

The basic underlying structure of (1.26) is that of a scalar transport equation. Letting z = (x,v),
equation (1.26) is of the form ∂t f +b ·∇z f = 0,

f (0,z) = f0(z).
(1.27)
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where
b(t,z) := (v,F [ f ](t,x)) .

The fact that the force F , and therefore b, depends on f is what creates the nonlinearity in
(1.26).

In this section, we will discuss some aspects of the theory of the linear equation (1.27),
which will be useful for understanding the nonlinear Vlasov equation. The properties of the
transport equation (1.27) clearly depend on the choice of the vector field b. For proving well-
posedness, what is important to understand is the regularity of b. One way to understand this is
through the classical method of characteristics.

The transport equation (1.27) is associated with a family of characteristics. A path (Z(t))t∈R
in phase space is a characteristic trajectory for equation (1.27) if it satisfies the ODE

dZ
dt

= b(t,Z) . (1.28)

The characteristics are a useful tool for understanding the behaviour of equations like (1.27)
- see for example [24] for a more detailed exposition of this theory. We will make use of
characteristics in many places in this thesis. We will use the notation Z(t;s,z) to denote a
solution of (1.28) which has phase space position z at time s; that is, Z(s;s,z) = z = (x,v).

If b is sufficiently regular, then the system (1.28) has a unique global-in-time solution for
any choice of data (s,x,v). For example, this will be the case if b is continuous in all variables
and Lipschitz with respect to z, with less than linear growth:

|b(t,z1)−b(t,z2)| ≤ L|z1 − z2|, |b(t,z)| ≤C(1+ |z|). (1.29)

In this case the characteristic trajectories can be used to construct solutions of the transport
equation (1.27). Suppose for example that f0 is a C1 function with compact support. Then
(1.27) has a unique solution ft which can be represented by the formula

f (t,z) = f0 (Z(0; t,z)) .

This shows that the equation (1.27) indeed models the transport of mass along this family of
curves.

The representation of the solution f in terms of characteristics is useful for understanding
its properties. For example, it immediately implies that the equation preserves sign: if f0 ≥ 0,
then also ft ≥ 0 for all t. Similarly, the L∞(X ×Rd) norm of the solution cannot grow over
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time: if f0 ∈ L∞(X ×Rd), then also ft ∈ L∞(X ×Rd) with

∥ f (t, ·)∥L∞(X ×Rd) ≤ ∥ f0∥L∞(X ×Rd).

If b is less regular than specified in condition (1.29), then for both the ODE (1.28) and the
PDE (1.27) solutions may not exist globally and may not be unique without further assumptions.
The well-posedness theory of the ODE (1.28) under weaker regularity conditions than (1.29)
was considered by DiPerna and Lions [26], by making use of the connection between the ODE
and the corresponding transport equation (1.27). This strategy was then extended in many other
works; for more details on this subject see for example Ambrosio [1].

In the context of Vlasov equations, the lesson is that the well-posedness theory of the
transport equation (1.27) depends crucially on the regularity of the vector field b. Consequently,
for the nonlinear Vlasov equation, it will be important to understand the regularity of the force
F [ f ] and how that regularity depends on properties of f . This depends on the regularity of the
interaction potential W .

1.3.2 Regular Potentials

When W is sufficiently regular, the Vlasov equation (1.26) has a well developed well-posedness
theory. In particular, when ∇xW is a Lipschitz function, it is possible to construct unique global
solutions to the Vlasov equation (1.26), assuming very little regularity on the initial datum
f0. In fact it will be enough to suppose only that f0 is a probability measure with moments of
sufficiently high order.

The case where ∇xW is Lipschitz is thought of as the ‘regular’ case for Vlasov equations of
the form (1.26). We will discuss this case here in some detail, as this will allow us to introduce
several useful ideas in Vlasov equation theory that we will return to in the Vlasov-Poisson case.
In particular, the aim is to understand how the assumption that ∇xW is Lipschitz is used in the
well-posedness results.

The immediate consequence of the Lipschitz assumption is that ∇xW ∗ρ is then a Lipschitz
function, for any finite measure ρ , without further regularity assumptions. This means that
even measure solutions of (1.26) will have an associated classical characteristic flow. We will
see subsequently that this assumption on W also allows the construction of unique solutions for
the nonlinear problem (1.26).

Notation: Spaces of Measures. We are going to look for measure solutions of equation
(1.26). We begin by specifying some notation for the class of solutions we are interested in.
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At each fixed time t, the solution should be measure on the phase space X ×Rd , where
the position space X is either Rd or the torus Td . We denote the space of finite signed Borel
measures on X ×Rd by M , and the space of finite (non-negative) measures by M+. We equip
these spaces with the topology of weak convergence of measures, in which a sequence (µn)n

converges to µ as n tends to infinity if and only if

lim
n→∞

∫
X ×Rd

φ dµn =
∫
X ×Rd

φ dµ, ∀φ ∈Cb(X ×Rd).

Furthermore, M1 denotes the subspace of M consisting of all finite signed measures with a
finite first moment: ∫

X ×Rd
(|x|+ |v|)d|µ|(x,v)<+∞.

Similarly M+,1 = M1 ∩M+.
The space C ([0,∞);M ) consists of paths t 7→ µ(t) ∈ M taking values in the space of

signed measures, where the continuity of the path is defined in terms of the topology of weak
convergence of measures. The spaces C ([0,∞);M+), C ([0,∞);M1) and C ([0,∞);M+,1)

are defined similarly. In the next section we will look for solutions of the Vlasov equation
(1.26) in the space C ([0,∞);M+,1). We refer to such solutions informally as ‘measure-valued
solutions’.

1.3.2.1 Weak Formulation

To make sense of measure solutions for equation (1.26), it is necessary to understand the
equation in a weak sense.

Definition 1 (Weak Solutions). f ∈C ([0,∞);M+) is a weak solution of the Vlasov equation
(1.26) if, for all test functions φ ∈C1

c
(
[0,∞)×X ×Rd),∫

∞

0

∫
X ×Rd

[
∂tφ +v·∇xφ −

(
∇xW ∗x ρ f

)
·∇vφ

]
f (t,dx,dv)dt+

∫
X ×Rd

φ(0,x,v) f0(dx,dv)= 0.

(1.30)

In order for (1.30) to make sense, ∇xW ∗x ρ f must be regular enough that
(
∇xW ∗x ρ f

)
·∇vφ

is integrable with respect to f . This is ensured by the following lemma, which shows that
∇xW ∗x ρ f will be Lipschitz provided that ∇xW is Lipschitz.

Lemma 1.1. Let µ ∈ M (X ), and let ∇W be a Lipschitz function. Assume that either (a)
∇W ∈ L∞(X ) or that (b) µ ∈ M1(X ). Then ∇W ∗µ is a Lipschitz function. Moreover, we
have the quantitative estimate

|∇W ∗µ(x)−∇W ∗µ(y)| ≤ ∥∇W∥Lip |µ|(X ) |x− y|. (1.31)
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Proof. First, we check that the function

∇W ∗µ(x) :=
∫
X

∇W (x− y)dµ(y)

is well-defined. Under condition (a),

|∇W (x− y)| ≤ ∥∇W∥L∞(X ) ∈ L1(µ|).

Under condition (b),

|∇W (x− y)| ≤ |∇W (x)|+∥∇W∥Lip|y| ∈ L1(|µ|).

Next we prove the estimate (1.31). By definition,

∇W ∗µ(x)−∇W ∗µ(y) =
∫
X

[∇W (x− z)−∇W (y− z)]dµ(z).

We estimate this using the fact that ∇W is Lipschitz:

|∇W ∗µ(x)−∇W ∗µ(y)| ≤
∫
X

|∇W (x− z)−∇W (y− z)|d|µ|(z)

≤ ∥∇W∥Lip|x− y|
∫
X

1 d|µ|(z),

which completes the proof.

1.3.2.2 Representation via Characteristics

We will again find it useful to represent solutions of the Vlasov equation (1.26) in terms of their
characteristics. When f0 is a measure we cannot define the composition f0 (Z(0; t,z)). Instead
we look at another representation, which uses duality.

Observe that b(t,z) := (v,F [ f ](t,x)) is divergence free, so that the transport equation can
also be written as a continuity equation:∂t f +divz (b f ) = 0,

f |t=0 = f0.
(1.32)

We have already used this fact when defining weak solutions (Definition 1). Solutions of the
continuity equation (1.32) can be characterised as the pushforward of their initial data along
the characteristic flow induced by b.
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Definition 2 (Pushforward). For i = 1,2, let (Ωi,Fi) be a measurable space. Let µ be a
measure on (Ω1,F1). Let T : Ω1 → Ω2 be a measurable map. The pushforward of µ along
T , denoted by T#µ , is the measure on (Ω2,F2) defined by the relation

T#µ(A) = µ
(
T −1(A)

)
, ∀A ∈ F2.

In particular, for all measurable functions g on Ω2 for which the composition g◦T is integrable
with respect to µ , the following relation holds:∫

Ω2

g dT#µ =
∫

Ω1

g◦T dµ.

To represent solutions of the linear continuity equation (1.32), we will take T to be
the flow map induced by the characteristic system (1.28). The flow is a family of maps
(Φs,t : X ×Rd → X ×Rd)s,t , defined by the property

Φ
s,t(z) = Z(t;s,z).

Then, if b satisfies (1.29), the continuity equation (1.32) has a unique solution f for any initial
datum f0 ∈ M+. Moreover, f has the representation ft = Φ

0,t
# f0. That is, for all φ ∈Cc,∫

X ×Rd
φ(z) f (t,dz) =

∫
X ×Rd

φ
(
Φ

0,t(z)
)

f0(dz) =
∫
X ×Rd

φ (Z(t;0,z)) f0(dz). (1.33)

For proofs and further details, see [1, Proposition 4].

Conservation of Mass From the representation (1.33) it is clear that the equation conserves
mass: for a continuous path f ∈C([0,∞);M+), ft has finite mass for all times t, and therefore
(1.33) can be extended to the function φ ≡ 1. This implies that ft has the same total mass
as f0. The assumptions f0 ≥ 0 and

∫
X ×Rd f0 dz = 1 thus ensure that, for each fixed t, ft is a

probability measure on X ×Rd .
We let P denote the space of probability measures on X ×Rd , and P1 the space of

probability measures with a finite first moment. The discussion above shows that it is enough
to consider measure-valued solutions in the space C ([0,∞);P).

1.3.2.3 Existence of Solutions

We now turn to the existence of solutions for the nonlinear Vlasov equation (1.26). We refer to
the works [18, 27, 72, 31] for the following result.
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Theorem 1.2. Assume that ∇W : X → Rd is a Lipschitz function. Let f0 ∈ P1. Then there
exists a solution f ∈C ([0,∞);P) of the Vlasov equation (1.26), in the sense of Definition 1.

The proof of this result presented here follows the presentation of [31, Theorem 1.3.1].
The proof can be formulated as a fixed point problem: first, we decouple the nonlinearity and
consider the equation ∂tg+ v ·∇xg+F [ f ] ·∇vg = 0,

g|t=0 = f0.
(1.34)

In equation (1.34), g is the unknown and f should be thought of as a fixed ‘input’. We have
discussed above that, for any f0 ∈ P , the solution g of equation (1.34) has the representation
g = Φ0,·[ f ]# f0. A solution of the nonlinear Vlasov equation (1.26) can therefore be constructed
by proving the existence of a fixed point of the map f 7→ Φ0,·[ f ]# f0.

In fact, we will look at the corresponding map on the flow Φ0,·[ f ]. We can think of Φ0,·[ f ]
as an element of the space C

(
R×X ×Rd). This can be made into a Banach space with an

appropriate choice of norm. For flows we want to consider the map T defined by

T [φ ] = Φ
0,·[φ# f0].

If φ = T [φ ], then φ# f0 is a solution of the Vlasov equation (1.26) with initlal datum f0.
To find such a fixed point, we can use a standard iteration argument. Set φ0 to be the

identity map on X ×Rd for all t, and consider the sequence (φn)n where φn+1 = T [φn]. To
prove that this iteration converges to a limit, it is enough to show that T is a contraction on
C
(
[0,T ];X ×Rd) for some T . We can then conclude that a fixed point exists by the standard

arguments for a Picard iteration.
We equip C

(
[0,T ];X ×Rd) with the norm

∥φ∥YT := sup
t∈[0,T ]

sup
z∈X ×Rd

|φ(t,z)|
1+ |z|

.

This is chosen instead of the usual uniform norm, because the identity map is not bounded.
However, it does have finite ∥ · ∥YT norm. Moreover, any flow induced by a vector field
b satisfying the condition (1.29) can be shown to satisfy a bound of the form |Φ0,t(z)| ≤
C(t)(1+ |z|) for a continuous function C(t). Hence it is reasonable to use the norm ∥ · ∥YT for
such flows.
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Lemma 1.3 (T is a contraction). Let ∇W be a Lipschitz function and assume that f0 ∈ P1.
Then there exists T such that T is a contraction on YT :

∥T [φ1]−T [φ2]∥YT ≤C(T,W, f0)∥φ1 −φ2∥YT ,

where C(T,W, f0) depends only on ∥∇W∥Lip and M1( f0), the first moment of f0.

Proof. We introduce the notation Zi = (Xi,Vi) to denote trajectories of T [φi]:

Zi(t;z) = Φ
0,t [φi# f0](z).

By definition, for each z ∈ X ×Rd , Zi satisfies the ODE

Ẋi =Vi, V̇i = F [φi# f0](Xi), Z(0;z) = z. (1.35)

Then
∥T [φ1]−T [φ2]∥YT = sup

t∈[0,T ]

|Z1(t,z)−Z2(t,z)|
1+ |z|

.

Our strategy will be to control the quantity |Z1(t;z)−Z2(t;z)|, using the fact that Zi solves the
ODE (1.35). For the x coordinate, clearly

|X1(t)−X2(t)| ≤
∫ t

0
|V1(s)−V2(s)|ds.

In the v coordinate, we have

|V1(t)−V2(t)| ≤
∫ t

0
|F [φ1# f0](X1(s))−F [φ2# f0](X2(s))|ds.

We split the integrand into two:∫ t

0
|F [φ1# f0](s,X1(s))−F [φ2# f0](s,X2(s))|ds ≤ I1 + I2,

where
I1 :=

∫ t

0
|F [φ1# f0](s,X1(s))−F [φ1# f0](s,X2(s))|ds

and
I2 :=

∫ t

0
|F [φ1# f0](s,X2(s))−F [φ2# f0](s,X2(s))|ds.

The control of the quantities I1 and I2 depends on two key estimates. For I1 we need to
understand the regularity of F [ f ] for fixed f . For I2 we need to understand the stability of F [ f ]
with respect to f .
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The regularity estimate is provided by Lemma 1.1: since φ1# f0 ∈C ([0,T ];P),

∥F [φ1# f0](t, ·)∥Lip ≤ ∥∇W∥Lip.

Then
I1 ≤ ∥∇W∥Lip

∫ t

0
|X1(s)−X2(s)|ds.

The stability estimate is proved below in Lemma 1.4. It implies that, for all x ∈ X ,

|F [φ1# f0](t,x)−F [φ2# f0](t,x)| ≤ M1( f0)∥∇W∥Lip∥φ1 −φ2∥Yt .

Then
I2 ≤ M1( f0)∥∇W∥Lip

∫ t

0
∥φ1 −φ2∥Ys ds.

Then

|X1(t)−X2(t)|+ |V1(t)−V2(t)| ≤CW

∫ t

0
|X1(s)−X2(s)|+ |V1(s)−V2(s)|ds

+M1( f0)∥∇W∥Lip

∫ t

0
∥φ1 −φ2∥Ys ds,

where
CW := max{∥∇W∥Lip,1}.

This implies that

|Z1(t;z)−Z2(t;z)| ≤ M1( f0)
(

eCW t −1
)
∥φ1 −φ2∥Yt ,

which proves the result.

The proof above relies on Lemma 1.1 and the following stability estimate.

Lemma 1.4 (Stability Estimate for F). Let ∇W be a Lipschitz function, and f0 ∈ M+,1. Then,
for any φ1,φ2 ∈C(X ×Rd;X ×Rd),

sup
x∈X

|F [φ1# f0]−F [φ2# f0]| ≤ M1( f0)∥∇W∥Lip sup
z∈X ×Rd

|φ1(z)−φ2(z)|
1+ |z|

.

Proof. By definition,

|F [φ1# f0](x)−F [φ2# f0](x)|=
∣∣∣∣∫

X ×Rd
∇W (x−PX φ1(z))−∇W (x−PX φ2(z))d f0(z)

∣∣∣∣ ,
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where PX denotes the projection onto the x coordinate. Since ∇W is Lipschitz,

|F [φ1# f0](x)−F [φ2# f0](x)| ≤ ∥∇W∥Lip

∫
X ×Rd

|PX φ1(z)−PX φ2(z)|d f0(z)

≤ ∥∇W∥Lip

(
sup

z∈X ×Rd

|φ1(z)−φ2(z)|
1+ |z|

)∫
X ×Rd

(1+ |z|) f0(dz).

1.3.2.4 Uniqueness

We present a uniqueness argument due to Dobrushin [27].

Theorem 1.5 (Uniqueness of Solutions for Equation (1.26)). Assume that ∇W : X → Rd is a
bounded, Lipschitz function. Let f0 ∈ P1. The solution f constructed in Theorem 1.2 is the
unique solution of (1.26) in the class C ([0,∞);M ).

The idea is to prove a quantitative stability estimate between solutions with respect to their
initial data. To do this, we will make use of a certain distance on probability measures which
metrises the topology of weak convergence of measures. These are known as Wasserstein
distances.

Wasserstein Distances. The Wasserstein distances, also known as Monge–Kantorovich
distances, are a family of distances on probability measures. They are defined in terms of
couplings of measures.

Definition 3 (Coupling). Let (Ω,F ) be a measurable space. Let µ and ν be two probability
measures on Ω. A coupling of µ and ν is a measure π on the product space such that, for all
A ∈ F , the following two equalities hold:

π(A×Ω) = µ(A), π(Ω×A) = ν(A).

The set of couplings of µ and ν is denoted by Π(µ,ν).

Given this definition, it is possible to define the Wasserstein distances (Wp)p∈[1,∞].

Definition 4 (Wasserstein Distances). Let (Ω,d) be a Polish space, equipped with its Borel
σ -algebra F .

Let p ∈ [1,∞). Let µ and ν be probability measures on (Ω,F ) such that, for some x0 ∈ Ω,∫
Ω

d(x,x0)
p dµ(x)< ∞,

∫
Ω

d(x,x0)
p dν(x)< ∞. (1.36)
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Then the pth order Wasserstein distance between µ and ν , Wp(µ,ν), is defined by

Wp(µ,ν) =

(
inf

π∈Π(µ,ν)

∫
(x,y)∈Ω×Ω

d(x,y)p dπ(x,y)
)1/p

, p ∈ [1,+∞). (1.37)

The property (1.36) ensures that the quantity (1.37) is well defined.
In the case p =+∞,

W∞(µ,ν) = inf
π∈Π(µ,ν)

π − esssup
x,y∈Ω×Ω

d(x,y).

Each distance Wp satisfies the triangle inequality, and provides a metric on the space of
probability measures satisfying (1.36) (see for example [83, Theorem 7.3]).

Wp(µ1,µ3)≤Wp(µ1,µ2)+Wp(µ2,µ3).

For p ∈ [1,∞), convergence with respect to Wp is equivalent to weak convergence (of measures)
along with convergence of the pth moment (see e.g. [83, Theorem 7.12]). Wp therefore metrises
the topology of weak convergence of measures.

Wasserstein distances have a monotonicity property: if p ≤ q, then

Wp(µ,ν)≤Wq(µ,ν). (1.38)

This follows from the monotonicity of Lp norms on finite measure spaces.
We also recall an important duality property - see for example [83, Theorem 1.3].

Lemma 1.6 (Kantorovich duality). Let µ,ν ∈ P(Ω) be probability measures satisfying (1.36)
for p ∈ [1,∞). Then

W p
p (µ,ν) = sup

(φ ,ψ)∈F

{∫
Ω

φ dµ −
∫

Ω

ψ dν

}
,

where
F := {(φ ,ψ) ∈ L1(µ)×L1(ν) : ∀x,y ∈ Ω,φ(x)−ψ(y)≤ d(x,y)p}.

An important specific case of this property arises in the case p = 1, where the duality can
be phrased in terms of Lipschitz functions.
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Lemma 1.7 (Kantorovich duality for W1). Let µ,ν ∈P(Ω) be probability measures satisfying
(1.36) for p = 1. Then

W1(µ,ν) = sup
φ ,∥φ∥Lip≤1

{∫
Ω

φ dµ −
∫

Ω

φ dν

}
, where ∥φ∥Lip := sup

x ̸=y

|φ(x)−φ(y)|
|x− y|

.

Stability Estimate. Theorem 1.5 is proved by controlling the Wasserstein distance between
two solutions of the Vlasov equation (1.26), in terms of the Wasserstein distance between their
initial data. This will imply the uniqueness of measure solutions for (1.26) as an immediate
corollary. In the following, we will make use of the first order Wasserstein distance W1 on the
space X ×Rd equipped with the metric

d(z1,z2) = |x1 − x2|+ |v1 − v2|,

where zi = (xi,vi).

Lemma 1.8 (Stability Estimate for (1.26)). Assume that ∇W is a Lipschitz function. For
i = 1,2, let fi ∈C ([0,∞);P1) be a solution of the Vlasov equation (1.26) with initial datum
f0,i ∈ P1. Then

W1 ( f1(t), f2(t))≤ exp(2∥∇W∥Lip t)W1 ( f0,1, f0,2) .

Corollary 1.9. For i = 1,2, let fi ∈C ([0,∞);P1) be a solution of the Vlasov equation (1.26),
with the same initial datum f0 ∈ P1. Then f1 = f2.

Remark 1. The requirement for fi to have a first moment can be removed by considering the
truncated distance

d(z1,z2) = min{|x1 − x2|+ |v1 − v2|,1}.

In order to streamline the arguments, we present the proof without this truncation.

We now discuss the proof of Lemma 1.8. The overall strategy will be used many times
throughout this thesis.

The proof is based on, firstly, the choice of a particular coupling of the solutions. This
coupling is constructed using the characteristic flows Φ0,·[ fi] induced by the solutions. Given
any π0 ∈ Π( f0,1, f0,2), let πt by defined by the relation, for any φ ∈Cb

[
(X ×Rd)2],∫

(X ×Rd)2
φ(z1,z2)dπt :=

∫
(X ×Rd)2

φ
(
Φ

0,t [ f1](z1),Φ
0,t [ f2](z2)

)
dπ0(z1,z2).

That is,
πt :=

(
Φ

0,t [ f1]⊗Φ
0,t [ f2]

)
# π0.
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Using this coupling πt , a functional can be constructed which controls the first order
Wasserstein distance between the solutions:

D :=
∫
(X ×Rd)2

(
|x1 − x2|+ |v1 − v2|

)
dπt .

The control of this functional follows a strategy similar to the one used in the construction of
solutions, in the proof of Lemma 1.3. The aim is to prove a Grönwall estimate on D. This
again relies on two key estimates, one expressing the regularity of the force F [ f ] and the other
its stability with respect to f . The regularity estimate is the same Lipschitz estimate from
Lemma 1.1: for f ∈ P ,

∥F [ f ]∥Lip ≤ ∥∇W∥Lip.

The stability estimate in this case needs to be quantified in the Wasserstein distance W1. It is a
consequence of Kantorovich duality (Lemma 1.7).

Lemma 1.10. Let ∇W be a Lipschitz function on X . For i = 1,2, let ρi ∈ P(X ). Then, for
all X ,

|∇W ∗ [ρ1 −ρ2] (x)| ≤ ∥∇W∥LipW1(ρ1,ρ2).

Using these estimates, we are able to prove Lemma 1.8.

Proof of Lemma 1.8. We introduce the notation Zi(t,z) := Φ0,t [ fi](z) for the characteristics
corresponding to the solution fi. Note that

D(t) =
∫
(X ×Rd)

2 |X1(t,z1)−X2(t,z2)|+ |V1(t,z1)−V2(t,z2)|dπ0(z1,z2).

The aim is to prove a Grönwall-type estimate on D. Using the ODE satisfied by the flow
we obtain

|X1(t,z1)−X2(t,z2)|=
∣∣∣∣x1 − x2 +

∫ t

0
V1(s,z1)−V2(s,z2)ds

∣∣∣∣
≤ |x1 − x2|+

∫ t

0
|V1(s,z1)−V2(s,z2)|ds.

Similarly,

|V1(t,z1)−V2(t,z2)| ≤ |v1 − v2|+
∫ t

0

∣∣∇xW ∗ρ f1 (X1(s,z1))−∇xW ∗ρ f2 (X2(s,z2))
∣∣ds.
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Altogether this implies the inequality

D(t)≤ D(0)+
∫ t

0

∫
(X ×Rd)2

|V1(s,z1)−V2(s,z2)|

+
∣∣∇xW ∗ρ f1 (X1(s,z1))−∇xW ∗ρ f2 (X2(s,z2))

∣∣dπ0(z1,z2)ds.

We can rewrite this as

D(t)≤ D(0)+
∫ t

0

∫
(X ×Rd)2

|v1 − v2|+
∣∣∇xW ∗ρ f1 (x1)−∇xW ∗ρ f2 (x2)

∣∣dπs(z1,z2)ds.

The important quantity to control is∫
(X ×Rd)2

∣∣∇xW ∗ρ f1 (X1(s))−∇xW ∗ρ f2 (X2(s))
∣∣dπs.

We split this into two parts:∫
(X ×Rd)2

∣∣∇xW ∗ρ f1 (x1)−∇xW ∗ρ f2 (x2)
∣∣dπs ≤ I1 + I2,

where
I1 =

∫
(X ×Rd)2

∣∣∇xW ∗ρ f1 (x1)−∇xW ∗ρ f1 (x2)
∣∣dπs

and
I2 =

∫
(X ×Rd)2

∣∣∇xW ∗ρ f1 (x2)−∇xW ∗ρ f2 (x2)
∣∣dπs.

Controlling I1 depends on understanding the regularity of ∇xW ∗ρ f1 . In this case, since
∇xW is Lipschitz, Lemma 1.1 implies that ∇xW ∗ρ f1 is also Lipschitz. We therefore have the
estimate

I1 ≤ ∥∇xW∥Lip

∫
(X ×Rd)2

|x1 − x2|dπs.

For I2, we use the stability estimate from Lemma 1.10:∥∥∇xW ∗ρ f1 −∇xW ∗ρ f2

∥∥
L∞(X )

≤ ∥∇xW∥LipW1(ρ f1 ,ρ f2).

Then
I2 ≤ ∥∇xW∥LipW1(ρ f1 ,ρ f2)

∫
(X ×Rd)2

dπs = ∥∇xW∥LipW1(ρ f1,ρ f2).

Then, since W1(ρ f1 ,ρ f2)≤W1( f1, f2), it follows that

I2 ≤ ∥∇xW∥Lip D.
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We conclude that
D(t)≤ D(0)+2∥∇xW∥Lip

∫ t

0
D(s)ds,

which implies the result.

1.3.2.5 Summary: Role of the Lipschitz Assumption

We collect together the main points where the assumption that ∇W is Lipschitz was used in the
well-posedness theory presented above.

Regularity of the Force. The fact that ∇xW is Lipschitz implies that F [ f ] = ∇xW ∗ ρ is
Lipschitz for any measure ρ , without requiring any additional regularity assumptions: for any
probability measure f ,

∥F [ f ]∥Lip ≤ ∥∇xW∥Lip. (1.39)

This property is used to prove existence of the characteristic trajectories for measure solutions.
It also plays an important role in the construction of solutions (Lemma 1.3) and the stability
estimate in Lemma 1.8.

Existence of the Characteristic Flow. The fact that F [ f ] is Lipschitz was used to show that
the characteristic system for the Vlasov equation (1.26) is well-posed. This ensures that the
characteristic flow exists. This flow was used extensively in the estimates above.

Stability of the Force. Another key ingredient is that difference between the forces induced
by two different solutions f1 and f2 can be controlled in terms of a weak distance between ρ f1

and ρ f2 . We used this in the proof of the stability estimate in Lemma 1.8 in the form

∥F [ f1]−F [ f2]∥L∞(X ) ≤ ∥∇W∥LipW1(ρ f1,ρ f2). (1.40)

This estimate also implies Lemma 1.4, which was used in the construction of solutions. This is
due to the estimate

W1 (φ1# f0(t),φ2# f0(t))≤
∫
X ×Rd

∣∣∣φ 0,t
1 (z)−φ

0,t
2 (z)

∣∣∣ f0(dz)

≤ ∥φ1 −φ2∥Yt

∫
X ×Rd

(1+ |z|) f0(dz).

In conclusion, the well-posedness theory for Vlasov equations with regular interaction
depends on the two key estimates (1.39) and (1.40). When we discuss the well-posedness
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theory of more general equations of Vlasov type, one of the recurring ideas will be to look
for suitable versions of or replacements for these estimates. In the following sections of this
introduction, we will discuss this idea in the case of the Vlasov-Poisson system (1.5). In
Chapter 2, where we prove the well-posedness of the VPME system (1.11), the key step of the
proof will be to prove suitable regularity and stability estimates on the electric field.

1.3.3 Coulomb Interaction

The Vlasov-Poisson system is an example of a Vlasov equation (1.26), for which the interaction
potential W is singular. Consider for example the whole space case X = Rd , where the
Vlasov-Poisson system reads as follows:

∂t f + v ·∇x f +E ·∇v f = 0,

E =−∇xU,

−∆U = ρ f ,

f |t=0 = f0 ≥ 0,
∫
R2d

f0 = 1.

(1.41)

The electrostatic potential U is a solution of the Poisson equation on Rd . It can therefore be
represented using the Green’s function of the Laplacian. Let G denote the fundamental solution
of the Poisson equation on Rd:

−∆G = δ0.

Then U = G∗ρ and E =−∇(G∗ρ). Thus (1.41) formally has the form of a Vlasov equation
(1.26), with the choice W = G. A similar representation is possible in the periodic case
X = Td .

In Section 1.3.2 we discussed the well-posedness theory of Vlasov equations when the
interaction potential W is sufficiently regular. The main difficulty in analysing the Vlasov-
Poisson system comes from the fact that the Coulomb potential G has a singularity, which
means that the theory for regular potentials does not apply. In order to make progress, it is
necessary to understand the properties of G. This will depend on the dimension d of the system.
In this section we will focus on the cases d = 2,3.

In the whole space case X = Rd , explicit formulae for G are available - see for example
Hörmander [50, Theorem 3.3.2]:

G(x) =

− 1
2π

log |x|, d = 2,
1

4π|x| , d = 3.
(1.42)
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Similarly, the force K =−∇G is given by the formulae

K(x) =


x

2π|x|2 , d = 2,
x

4π|x|3 , d = 3.
(1.43)

On the torus X = Td , the fundamental solution has the form Gper = G + G0, where
G0 ∈ C∞(Td) is a smooth function - see for example [37, Lemma 2.1]. Similarly, we write
Kper =−∇xGper in the form

Kper = K +K0. (1.44)

From the formulae (1.43) it is clear that K is not a Lipschitz kernel, due to the point
singularity at x = 0. This means that K ∗ρ will not in general be a Lipschitz force if we only
know that ρ is a measure - consider for example the case where ρ is a Dirac mass. This causes
problems for the theory outlined in Subsection 1.3.2. The way to deal with this is to consider
solutions for which ρ has higher regularity.

In fact ∇K is not integrable near zero, so we cannot even show that K ∗ ρ is Lipschitz
for general ρ ∈ L∞. This is a critical regularity estimate for solutions of Poisson’s equation.
However, it is possible to prove a log-Lipschitz estimate, which is enough to guarantee the
existence of a unique characteristic flow.

This regularity estimate suggests that the class of f for which ρ f lies in L∞ is interesting for
the study of the Vlasov-Poisson system. We will see in Section 1.4 that solutions with ρ ∈ L∞

have a uniqueness property, and that such solutions exist globally in time provided that the
initial datum is compactly supported.

Lemma 1.11 (Log-Lipschitz regularity of the electric field). Let U be a solution of

−∆U = ρ

for ρ ∈ L∞(Td). Then

|∇U(x)−∇U(y)| ≤Cd∥ρ∥L∞(Td)|x− y|

(
1+ log

( √
d

|x− y|

)
1|x−y|≤

√
d

)
.

The proof of this well-known result can be found for instance in [66, Lemma 8.1] for the
case where the spatial domain is R2. It was used by Yudovich [86] in the proof of the existence
and uniqueness of global weak solutions the 2D incompressible Euler equations with bounded
vorticity. For completeness we briefly recall the proof below on the torus Td for general d,
since this case will be used several times in this thesis.
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Proof. We use the representation ∇U = Kper ∗ρ . Since Kper = K +K0, we have

|∇U(x)−∇U(y)|=
∣∣∣∣∫Td

[
Kper(x− z)−Kper(y− z)

]
ρ(z)dz

∣∣∣∣
≤Cd

∣∣∣∣∫Td

[
x− z

|x− z|d
− y− z

|y− z|d

]
ρ(z)dz

∣∣∣∣+ ∣∣∣∣∫Td
[K0(x− z)−K0(y− z)]ρ(z)dz

∣∣∣∣
For the second term, we use the fact that K0 ∈C1(Td) to deduce that∣∣∣∣∫Td

[K0(x− z)−K0(y− z)]ρ(z)dz
∣∣∣∣≤ ∥∇K0∥L∞(Td)|x− y|

∫
Td

|ρ(z)|dz ≤Cd∥ρ∥L∞|x− y|.

For the first term we split the integral by defining the two regions:

A1 = {z ∈ Td : |x− z| ≤ 2|x− y|}, A2 = {z ∈ Td : 2|x− y| ≤ |x− z| ≤ 2
√

d}.

Then let

Ii :=
∫

z∈Ai

[
x− z

|x− z|d
− y− z

|y− z|d

]
ρ(z)dz.

For z ∈ A1,

|x− z| ≤ 2|x− y|, |y− z| ≤ 3|x− y|.

Thus, letting u = x− z,

I1 ≤ ∥ρ∥L∞(Td)

(∫
|u|≤2|x−y|

|u|−(d−1) du+
∫
|u|≤3|x−y|

|u|−(d−1) du
)
≤ 5∥ρ∥L∞(Td)|x− y|.

For I2, we first assume that |x − y| ≤
√

d, since otherwise A2 is empty. For z ∈ A2, set
K(z)(w) := w−z

|w−z|d . Since

|∇K(z)(w)| ≤ Cd

|w− z|d

for some dimension dependent constant Cd > 0, we deduce that∣∣∣∣ x− z
|x− z|d

− y− z
|y− z|d

∣∣∣∣= |K(z)(x)−K(z)(y)| ≤
(

sup
θ∈[0,1]

|∇K(z)((1−θ)x+θy)|
)
|x− y|

≤Cd

(
sup

θ∈[0,1]
|(1−θ)x+θy− z|−d

)
|x− y|

=Cd

(
sup

θ∈[0,1]
|x− z+θ(y− x)|−d

)
|x− y|.



1.3 Well-Posedness Theory for Vlasov Equations 39

Since for z ∈ A2,

|x− y| ≤ 1
2
|x− z|,

it follows that for all θ ∈ [0,1],

|x− z+θ(y− x)| ≥ |x− z|− θ

2
|x− z| ≥ 1

2
|x− z|.

Hence ∣∣∣∣ x− z
|x− z|d

− y− z
|y− z|d

∣∣∣∣≤Cd|x− z|−d|x− y|.

Then

I2 ≤Cd|x− y|
∫

z∈A2

|x− z|−d
ρ(z)dz ≤Cd|x− y|∥ρ∥L∞(Td)

∫
z∈A2

|x− z|−d dz

=Cd|x− y|∥ρ∥L∞(Td)

∫ 2
√

d

2|x−y|

1
r

dr ≤Cd|x− y|∥ρ∥L∞(Td) log

√
d

|x− y|
.

Altogether we obtain

|∇U(x)−∇U(y)| ≤Cd∥ρ∥L∞(Td)|x− y|

(
1+ log

( √
d

|x− y|

)
1|x−y|≤

√
d

)
.



40 Introduction

1.4 Well-Posedness Theory for the Vlasov-Poisson System

The theory of existence and uniqueness of solutions for the Vlasov-Poisson system for electrons
is nowadays well understood. For instance, it is known that solutions exist globally in time,
without a smallness or perturbative condition on the initial data f0. In this section, we review
some of the more recent well-posedness results for the Vlasov-Poisson system for electrons.
We place a particular emphasis on those results upon which our study of the VPME system in
Chapter 2 will be based.

Iordanskii [56] proved that, in dimension d = 1, (1.5) has a unique smooth solution for
initial data f0 decaying sufficiently quickly at infinity. In the three-dimensional case d = 3,
Arsen’ev [2] introduced a notion of weak solution for the Vlasov-Poisson system (1.5) and
proved their existence, globally in time, for initial data f0 belonging to the space L1 ∩L∞(R6).
Horst and Hunze [55] then showed that the boundedness condition f0 ∈ L∞(R6) could be
relaxed to f0 ∈ Lp(R6) for p ≥ (12+3

√
5)/11.

In Vlasov-Poisson theory, the terminology ‘strong’ or ‘classical’ solution usually refers
to a solution for which there is an associated classical characteristic flow, according to the
definitions in Section 1.3.1.1, rather than necessarily to a C1 solution. The techniques involved
in proving the existence of such solutions differ depending on the dimension d considered. The
mathematical reason for this is that the estimates available for the electric field depend on the
dimension d. We will discuss this in greater depth below.

Ukai and Okabe [81] proved the existence of global-in-time strong solutions in the two-
dimensional case d = 2, for initial data f0 ∈C1(R4) decaying sufficiently fast at infinity.

In dimension d = 3, local-in-time existence was established by Kurth [59]. Global-in-time
existence was proved under various symmetry or near-symmetry conditions in [9, 52, 78], and
for small data, with no symmetry condition, by Bardos–Degond [6].

For large data, global-in-time strong solutions in dimension d = 3 were constructed by
Pfaffelmoser [74], for any compactly supported initial datum f0 ∈ L∞(R6). The proof is based
on controlling the rate of growth of the support of the solution, and showing that the solution
remains compactly supported in R6 at all times. Schaeffer gave a streamlined proof of the same
result in [79]. Horst [54] extended these results to include non-compactly supported initial
data with sufficiently fast decay at infinity. These results are valid for the whole space case
(x,v) ∈ R6 and are based on an analysis of the characteristic trajectories of the solution. To
prove a version of this result on the torus (that is, for (x,v) ∈ T3 ×R3), it is necessary to deal
with the fact that characteristic trajectories wrap around the torus. The method was adapted to
the torus by Batt and Rein [10], who proved the existence of global-in-time strong solutions for
(1.5) in the three-dimensional case d = 3, for initial data f0 ∈ L1 ∩L∞(T3 ×R3) with compact
support.



1.4 Well-Posedness Theory for the Vlasov-Poisson System 41

An alternative approach to the construction of global-in-time solutions in 3D was provided
by Lions and Perthame [64]. Their method is based on proving the propagation of moments.
They showed global existence of solutions, provided that the initial datum f0 ∈ L1 ∩L∞(Td ×
Rd) has moments in velocity of sufficiently high order. However, their strategy is for the whole
space case x ∈ Rd , and it is not currently known how to adapt it to the torus.

Pallard [73] combined the two approaches by proving the propagation of moments using
a method reminiscent of [74, 79, 10]. This result extends the range of moments beyond that
covered by the result from Lions–Perthame [64], as well as including a result of propagation of
moments for the equation posed on the torus.

Lions and Perthame [64] also proved a uniqueness criterion for their solutions under an
additional technical condition requiring Lipschitz continuity of the initial datum f0. Robert
[76] then proved uniqueness for solutions that are compactly supported in phase space for
all time. Loeper [65] proved a general uniqueness result which requires only boundedness
of the mass density ρ f , and therefore includes the compactly supported case. Loeper’s result
is similar in style to the Dobrushin result quoted above as Theorem 1.5, in that it relies on
a stability estimate on solutions in a Wasserstein distance, in Loeper’s case W2. In the one
dimensional case, Hauray [47] proved a weak-strong uniqueness principle, showing that if a
bounded density solution exists, then this solution is unique among measure-valued solutions.
This result is also based on a Wasserstein stability result.

In the remainder of this section, we introduce in greater detail two of the more recent
results in the well-posedness theory for the Vlasov-Poisson system for electrons. We begin by
discussing Loeper’s [65] uniqueness result for solutions for which ρ f is bounded in L∞. Then,
in Subsection 1.4.3, we discuss the approach of Pfaffelmoser [74], Schaeffer [79] and Batt and
Rein [10] based on controlling the support. In Chapter 2, we will prove analogues of these
results for the VPME system, which are stated in Section 1.7 below as Theorems 1.21 and 1.22.

1.4.1 Basic Estimates

We begin by recalling some basic properties of solutions of the Vlasov-Poisson system (1.5).
The aim is to understand the basic a priori estimates on solutions that are implied by the
conservation laws of the system. In this case, the conserved quantities are the energy and the
mass.

1.4.1.1 Lp Estimates

In Subsections 1.3.1.1 and 1.3.2.2 above, we discussed the conservation of Lp norms for
solutions of transport and continuity equations.
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Here, we use the fact that the Vlasov-Poisson system is a transport equation to derive
Lp(Td ×Rd) estimates on smooth solutions. Note first that the vector field

b(x,v) = (v,E(x))

is divergence free in Td ×Rd . Thus, if f is a solution of the Vlasov-Poisson system (1.5), then
f satisfies both a transport and a continuity equation.

We assume that f is a smooth solution of (1.5) and therefore induces a classical characteristic
flow. We therefore have the following Lp(Td ×Rd) estimates.

Firstly, for the transport equation (1.27), if the initial data f0 is in the space L∞(Td ×Rd),
the solution f satisfies, for t ≥ 0,

∥ f (t, ·, ·)∥L∞(Td×Rd) = ∥ f0∥L∞(Td×Rd).

This was a consequence of the representation via characteristics.
Secondly, for the continuity equation (1.32) we showed that, if f0 is a finite measure, then

the total mass of the solution ft is non-increasing. In particular, if f0 ∈ L1(Td ×Rd), then

∥ f (t, ·, ·)∥L1(Td×Rd) = ∥ f0∥L1(Td×Rd).

This was a consequence of the pushforward representation (1.33).
For strong solutions of the Vlasov-Poisson system (1.5) with initial data f0 ∈ L1 ∩L∞(Td ×

Rd), we therefore expect to have uniform in time Lp estimates, for any p ∈ [1,+∞]: for any
t ≥ 0 and any p ∈ [1,+∞],

∥ f (t, ·, ·)∥Lp(Td×Rd) ≤ ∥ f0∥
1
p

L1 ∥ f0∥
1− 1

p
L∞ . (1.45)

1.4.1.2 Moments

In the theory of kinetic equations, it is important to understand how to extract information
about the spatial density ρ f from properties of the full phase-space density f . The following
lemma is a well-known useful result showing that control of the moments of f implies Lp(Td)

integrability for ρ f .

Lemma 1.12. Let f ∈ L∞(Td ×Rd) satisfy, for some q > 0,

Mq[ f ] =
∫
Td×Rd

|v|q f (x,v)dxdv < ∞.
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Then, the mass density ρ[ f ], defined by

ρ[ f ](x) :=
∫
Rd

f (x,v)dv

belongs to the space L
q+d

d (Td). Moreover, we have the following estimate on the norm:

∥ρ[ f ]∥
L

q+d
d (Td)

≤Cd,q ∥ f∥
q

q+d

L∞(Td×Rd)
Mq[ f ]

d
q+d .

Proof. The proof uses an interpolation argument. We split the integral defining ρ[ f ] into two
parts - one involving small velocities and another involving large velocities. For some R, to be
fixed later, we have ∫

Rd
f (x,v)dv =

∫
|v|≤R

f (x,v)dv+
∫
|v|>R

f (x,v)dv.

The small velocity term is bounded in terms of the volume of the ball of radius R in Rd , since
f ∈ L∞: ∫

|v|≤R
f (x,v)dv ≤Cd∥ f∥L∞(Td×Rd)R

d.

The large velocity term is bounded using the higher moment:∫
|v|>R

f (x,v)dv ≤ R−q
∫
Rd

|v|q f (x,v)dv.

Thus ∫
Rd

f (x,v)dv ≤Cd∥ f∥L∞(Td×Rd)R
d +R−q

∫
Rd

|v|q f (x,v)dv.

We choose R so as to minimise this bound. The optimal value is

R = R(t,x) =Cd


∫
Rd

|v|q f (x,v)dv

∥ f∥L∞(Td×Rd)


1

q+d

.

This implies that

∫
Rd

f (x,v)dv ≤Cd,q ∥ f∥
q

q+d

L∞(Td×Rd)

(∫
Rd

|v|q f (x,v)dv
) d

q+d

.
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Next, take the L
q+d

d (Td) norm of these quantities:

∥∥∥∥∫Rd
f (x,v)dv

∥∥∥∥
L

q+d
d (Td)

≤Cd,q ∥ f∥
q

q+d

L∞(Td)

(∫
Td×Rd

|v|q f (x,v)dvdx
) d

q+d

.

This completes the proof.

This estimate is used to deduce properties of the electric field E from estimates on the
moments of the solution f . It is particularly useful in conjunction with the conservation of
energy, as we will explain in the next section.

1.4.1.3 The Role of the Energy

The Vlasov-Poisson system has an associated energy functional, which is defined as follows:

E VP[ f ] :=
1
2

∫
Td×Rd

|v|2 f dxdv︸ ︷︷ ︸
=:K

+
1
2

∫
Td

|∇U |2 dx︸ ︷︷ ︸
=:P

. (1.46)

The first term K is the total kinetic energy of f , while the second term P is the electrostatic
potential energy. This functional is formally conserved by the equation.

Lemma 1.13 (Conservation of Energy). Let f be a smooth solution of the Vlasov-Poisson
system (1.5). Then, for all t,

E VP[ f (t, ·, ·)] = E VP[ f0].

Proof. Consider the time derivative of the kinetic energy K . Using the equation (1.5) satisfied
by f , we find that

d
dt

K (t) =
∫
Td×Rd

|v|2 f (t,x,v)dxdv

=
∫
Td×Rd

[−v ·∇x f −E ·∇v f ] |v|2 dxdv.

We apply integration by parts. The term involving ∇x f vanishes because the function v|v|2

does not depend on x. We are left with

d
dt

K (t) = 2
∫
Td×Rd

[v ·E(t,x)] f (t,x,v)dxdv.

We define the current density J f : [0,∞)×Td → Rd by

J f (t,x) :=
∫
Rd

v f (t,x,v)dv.
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Then
d
dt

K (t) = 2
∫
Td

E(t,x) · J f (t,x)dx.

Since E is defined by the relation E =−∇xU , we may write

d
dt

K =−2
∫
Td

∇xU · J f dx.

We integrate by parts one more time to obtain

d
dt

K = 2
∫
Td

U divx J f dx.

We next consider the time derivative of P . We calculate that

d
dt

P =
d
dt

(∫
Td

|∇xU |2 dx
)
= 2

∫
Td

∂t∇xU ·∇xU dx

Integration by parts gives
d
dt

P =−2
∫
Td

U∂t∆xU dx.

We use the Poisson equation to substitute for ∆U :

d
dt

P = 2
∫
Td

U∂tρ f dx. (1.47)

To obtain an expression for ∂tρ f , we use the transport equation:

∂t f + v ·∇x f +E ·∇v f = 0.

Integrating with respect to v gives

∂tρ f +
∫
Rd

v ·∇x f dv+
∫
Rd

E ·∇v f dv = 0.

Since E is independent of v, E ·∇v f is a total derivative in v and the third term vanishes. The
second term may be expressed as∫

Rd
v ·∇x f dv =

∫
Rd

divx (v f )dv

= divx

(∫
Rd

v f dv
)

= divx J f .
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We conclude that ∂tρ f =−divx J. Substituting this into (1.47) gives

d
dt

P =−2
∫
Td

U divx J f dx =− d
dt

K .

Since both K and P are non-negative, control of E VP implies a bound on K , which is
exactly M2[ f ], the second order velocity moment of f . By Lemma 1.12, this implies an Lp

estimate on ρ f .

Lemma 1.14. Let f ∈ L1 ∩L∞(Td ×Rd), such that E VP[ f ] is finite. Then

∥ρ f ∥
L

d+2
d (Td)

≤Cd ∥ f∥
2

d+2
L∞(Td×Rd)

E VP[ f ]
d

d+2 .

It is therefore useful to be able to prove estimates for the Vlasov-Poisson system that involve
the quantity ∥ρ f ∥

L
d+2

d (Td)
. We will use a similar property in the study of the VPME system.

1.4.1.4 Electric Field

An important consequence of these estimates is that solutions of the Vlasov-Poisson system
with bounded energy automatically satisfy certain uniform-in-time integrability bounds on their
electric fields E. This follows from the fact that E =−∇U , where

−∆U = ρ f −1, x ∈ Td.

We then apply standard estimates for the Poisson equation. By Calderón-Zygmund estimates,
if ρ f ∈ Lp(Td) for p ∈ [1,∞), then

∥E∥W 1,p(Td) ≤ ∥U∥W 2,p(Td) ≤Cp∥ρ f ∥Lp(Td).

For the choice p = d+2
d , we therefore have a uniform-in-time estimate on E in W 1,p(Td).

Moreover, Sobolev embedding estimates can be used to deduce uniform-in-time Lq esti-
mates on E for some q = q(p,d). This explains why the theory of the Vlasov-Poisson system
differs depending on the dimension. As d increases, there are two effects. One is that the gain
of integrability on E with respect to ρ f due to Sobolev embedding is smaller. At the same time,
the integrability on ρ f obtained from the conservation of energy is also of lower order. Overall,
the a priori uniform estimate on E is weaker for higher d.
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Explicitly, in dimension d = 2 we have the critical case of Sobolev embedding, where the
Lebesgue exponent is equal to the dimension of the space. We therefore expect a uniform-in-
time Lp estimate on E for any p ∈ [1,∞): for all t ≥ 0,

∥E(t, ·)∥Lp(Td) ≤C(p, f0).

In dimension d = 3, we only have this estimate up to p = 15
4 : for all t ≥ 0,

∥E(t, ·)∥
L

15
4 (Td)

≤C( f0).

This is a key difference between the cases d = 2 and d = 3.

1.4.2 Uniqueness for Solutions with Bounded Density

We discuss a uniqueness result due to Loeper [65], dealing with solutions of the Vlasov-Poisson
system for electrons (1.5) with bounded density - that is, solutions for which the spatial density
ρ f lies in L∞(Td). The following theorem comes from [65, Theorem 1.2].

Theorem 1.15. Let f0 ∈ L1 ∈ L∞(Td ×Rd) and let T > 0. There exists at most one solution f
of (1.5), in the sense of Definition 1, for which ρ f ∈ L∞

(
[0,T ];L∞(Td ×Rd)

)
.

Remark 2. The definition of weak solutions given in Definition 1 makes sense for solutions
of the Vlasov-Poisson system with bounded density, since in this case E is a log-Lipschitz
function by Lemma 1.11.

This result is a based on a version of the Wasserstein stability estimate in the smooth case
that we discussed in Lemma 1.8. In Section 1.3.3 we discussed the fact that Lemma 1.8 does not
hold for Vlasov equations with singular interactions such as the Coulomb force. However, we
can recover a similar estimate by assuming additional regularity on the solutions we consider.
In fact, a version of the stability estimate is possible for solutions with bounded density. The
following theorem is a consequence of the proof of [65, Theorem 1.2].

Theorem 1.16. Let f1(0), f2(0) be probability measures on Td ×Rd . For each i, let fi be a
solution of the Vlasov-Poisson system (1.5). Assume that, for some T > 0, for i = 1,2,

sup
t∈[0,T ]

∥ρ[ fi(t)]∥L∞(Rd) ≤C0.
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Then the second order Wasserstein distance between the two solutions satisfies the following
estimate: for all t ∈ [0,T ]

W2 ( f1(t), f2(t))≤

C exp
[
C
(

1+ log W2( f1(0), f2(0))
4
√

d

)
e−Ct

]
if W2 ( f1(0), f2(0))≤ d

W2 ( f1(0), f2(0))eCt if W2 ( f1(0), f2(0))> d.

The constant C depends on C0.

This result is proved following a similar method to the proof of Lemma 1.8. It requires
suitable replacements for the regularity estimate (1.39) and stability estimate (1.40). For the
regularity estimate we use the log-Lipschitz property from Lemma 1.11. The necessary stability
estimate was proved by Loeper [65]. The following result comes from [65, Theorem 2.9]. It
can also be adapted to the torus.

Theorem 1.17. For each i = 1,2, let ρi ∈ P ∩L∞(Rd) and let Ui satisfy

−∆Ui = ρi, lim
|x|→∞

Ui(x) = 0.

Then
∥∇U1 −∇U2∥L2(Rd) ≤ max

i
∥ρi∥1/2

L∞(Td)
W2(ρ1,ρ2).

In the one-dimensional case d = 1, it is possible to replace Theorem 1.16 with a weak-strong
stability estimate due to Hauray [47, Theorem 1.9], in which only one of the solutions needs to
have bounded density. This results in a weak-strong uniqueness principle. This was extended
to the VPME case in [44].

In Chapter 2, we will prove an analogue of Theorem 1.16 for VPME. This result is stated
below as Theorem 1.21.

1.4.3 Global Existence of Solutions

We have seen above that bounded density solutions of the Vlasov-Poisson system have a
uniqueness property. It is also possible to show that solutions in this class exist globally in
time, for compactly supported initial data. This was proved by Pfaffelmoser [74] and Schaeffer
[79] for the whole space case (1.6), and subsequently for the torus by Batt and Rein [10]. For
example, the following result is a consequence of the estimates of Batt and Rein [10].

Theorem 1.18 (Existence of solutions on the torus). Let d = 3, and suppose that f0 ∈C1
c (Td ×

Rd), with f0 ≥ 0 and ∥ f0∥L1(Td×Rd) = 1. Then there exists a global-in-time solution f ∈
C1 ([0,∞)×Td ×Rd) of the Vlasov-Poisson system (1.5).
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The approach of [74, 79, 10] is based on showing that ft is compactly supported for all t,
with the size of the support controlled by a continuous function:

supp ft ⊂ Td ×BR(t)(0), R ∈C (R+;R+) .

This implies global-in-time existence because the solution can always be continued locally
from a compactly supported initial datum [51, 74].

Moreover, these solutions have bounded density. Indeed, ρ[ ft ] satisfies the estimate

∥ρ[ ft ]∥L∞(Td) ≤Cd∥ ft∥L∞(Td×Rd)R
d
t ,

where Cd is the volume of the unit ball in Rd . Thus the uniform bound on the L∞ norm of ft
(1.45) implies that

∥ρ[ ft ]∥L∞(Td) ≤Cd∥ f0∥L∞(Td×Rd)R
d
t ≤C(d, f0)Rd

t .

The uniqueness result of Loeper (Theorem 1.15) thus applies to these solutions.
In Chapter 2, we will prove an analogous result on the global-in-time existence of solutions

for the VPME system. Our method makes use of the estimates of Batt and Rein [10], which
control the electric field for the classical Vlasov-Poisson system (1.5). We will revisit their
method in detail in Chapter 2, in Section 2.7, where we adapt these estimates to the VPME
case.

1.4.4 The Vlasov-Poisson System with Massless Electrons

In Chapter 2 of this thesis, we investigate the well-posedness theory of the VPME system
(1.11). The main difficulty in analysing the VPME model compared to the classical system is
that the coupling between the density f and the electric field E is nonlinear.

In the one-dimensional case, global existence of solutions was proved in Han-Kwan–
Iacobelli [44, Theorem 1.1]. In dimension d = 3, weak solutions were constructed globally in
time by Bouchut [17].

In this thesis, we extend the main well-posedness results outlined above for the system
(1.5) to the VPME case. We prove a uniqueness result in the style of Loeper [65], which is
stated in Section 1.7 as Theorem 1.21, and proved in Chapter 2, Section 2.6. We also prove the
global existence of solutions following a method in the style of Batt and Rein [10]. This result
is stated in Section 1.7 as Theorem 1.22, and proved in Chapter 2, Sections 2.7–2.9.
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The key step in our analysis is to prove appropriate regularity and stability estimates on the
electric field in the VPME system. These estimates are proved in Chapter 2, Sections 2.4 and
2.5.
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1.5 The Quasi-Neutral Limit

1.5.1 Challenges

In this section we describe some of the challenges involved in proving a rigorous quasi-neutral
limit. These challenges can be related to known phenomena in plasma physics.

To understand the issues, it is useful to observe that the quasi-neutral limit can be related to a
long time limit for the Vlasov-Poisson system. If f is a solution of the unscaled Vlasov-Poisson
system (1.5), then fε = f

( t
ε
, x

ε
,v
)

is a solution of the system with quasi-neutral scaling (1.15).
One source of difficulty therefore arises from dealing with instabilities in the Vlasov-Poisson

system, which are known to exist. An important example is the two-stream instability, which
we describe below. In order to avoid this instability, it is necessary to restrict the class of data
considered.

Another source of difficulty is that solutions of the Vlasov-Poisson system exhibit an
oscillatory behaviour in their electric field. This oscillation is related to the plasma oscillations,
which are a well-known phenomenon in plasma physics. The oscillation does not become small
in the quasi-neutral limit, and must therefore be removed.

1.5.1.1 Two-Stream Instability

The two-stream instability is an instability mechanism for the Vlasov-Poisson system that is
well-known in plasma physics. The model problem is to consider firing two jets of electrons at
each other - these jets are the ‘two streams’. This physical situation is known to be unstable –
see for example [11, Section 5.1].

In a kinetic model, configurations of this type can be represented by choosing an initial
datum f0 whose velocity distribution consists of two bumps. Solutions beginning from such
configurations develop an instability taking the form of vortex-like behaviour in phase space
– see for example [12] for simulations and experimental results on this phenomenon. Such
behaviour prevents the quasi-neutral limit from holding. It is therefore necessary to place some
condition on the initial data for the Vlasov-Poisson system that rules out this instability.

1.5.1.2 Plasma Oscillations

Another key issue in proving the quasi-neutral limit is the presence of a known oscillatory
behaviour that does not vanish in the limit. This is related to the ‘plasma oscillations’ which are
well-known in plasma physics. This behaviour was first described by Tonks and Langmuir [80].
The origin of these oscillations can be understood by considering a plasma in an equilibrium
state, so that both ions and electrons are uniformly distributed. Consider perturbing the electrons
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by a small amount. The ions then exert a restoring force on the perturbed electrons which
pulls them back towards their starting position. The electrons will then overshoot their starting
position, and the continued influence of the restoring force will set up an oscillation.

This behaviour is seen mathematically in solutions of the Vlasov-Poisson system as an
oscillation in the electric field. These oscillations were analysed by Grenier [33] using the fact
that the electric field satisfies the following equation:

ε
2
∂

2
tt divE +divE = div [(1−ρ)E]+∇

2
x :
∫
Rd

v⊗ v fε dv. (1.48)

In physics presentations, one typically considers the situation described above of a system
slightly perturbed out of equilibrium. In this case the spatial density ρ is close to uniform. If we
assume further that the electrons are cold, then the density fε is roughly of the form fε ≈ δu(t,x).
Since the average velocity u should be small, it is possible to make the approximation

ε
2
∂

2
tt E +E ≈ 0.

From this it can be derived that E oscillates with frequency 1
ε
.

Grenier [33] showed that similar oscillations occur for the full equation (1.48) coupled
with the Vlasov-Poisson system. These oscillations do not vanish in the quasi-neutral limit.
However, they can be accounted for by introducing a ‘corrector’ function. This corrector can
be built from the solutions of known equations - see Section 1.5.4.1 below for details.

1.5.2 Known Results

The mathematical study of the quasi-neutral limit from Vlasov-Poisson to kinetic incompress-
ible Euler received significant attention in the 90s. We refer for instance to the papers of
Brenier–Grenier [21] and Grenier [32], using an approach based on defect measures, and the
result of Grenier [34] for the one-dimensional case. Brenier [20] and Masmoudi [67] considered
the ‘cold electrons’ regime, in which fε converges to a Dirac mass in velocity as ε → 0, and
the limit is the incompressible Euler system (1.18).

A general result of interest for our purposes is the work of Grenier [33], who proved the
quasi-neutral limit rigorously under the condition that the initial data for (1.15) are uniformly
analytic, in a sense based on a reformulation of the Vlasov-Poisson and kinetic incompressible
Euler systems as multi-fluid pressureless Euler systems. We will describe this precisely in
Section 1.5.4.1.

In Sobolev regularity, the quasi-neutral limit does not hold in general. This is due to the
possible occurrence of the two-stream instability, which would prevent strong convergence
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to the limit. Counterexamples to the quasi-neutral limit were constructed by Han-Kwan and
Hauray [42], in arbitrarily high Sobolev regularity.

An alternative way of relaxing the regularity constraint was investigated by Han-Kwan and
Iacobelli [43, 44]. These works extended the quasi-neutral limit to a class of rough data. The
data must be a very small perturbation of the uniformly analytic case, but may be as rough
as L∞ (or a measure in the case d = 1). The smallness of the perturbation is measured in a
Wasserstein distance. The papers [43, 44] cover the cases where the dimension d = 1,2,3.

For the massless electrons model, similar results are available. The cold ions case was
considered in [41]. In analytic regularity, it is possible to prove a version of Grenier’s result
[33] - see the discussion in [44] after Proposition 4.1. Han-Kwan and Iacobelli [44] showed a
rigorous limit in dimension one, again for rough perturbations of analytic data. However, in
higher dimensions, a similar result was not previously available. This gap is filled in this thesis
- in Chapter 3, we present a proof of a rigorous quasi-neutral limit for the VPME system for a
class of rough data in dimension d = 2,3.

A positive result is available in Sobolev regularity for the VDB system (1.21) by Han-Kwan
and Rousset [46]. The VDB system can also be derived in a quasi-neutral limit, from the
following linearised version of the VPME system:

(V PME)ε :=



∂t f + v ·∇x f +E ·∇v f = 0,

E =−∇xU,

ε2∆xU = 1+U −ρ f ,

f |t=0 = f0,
∫
Td×Rd

f0(x,v)dxdv = 1

Han-Kwan and Rousset [46] proved this limit rigorously for data with sufficiently high Sobolev
regularity, under an additional stability criterion.

1.5.3 Existence Theory for Kinetic Euler Systems

A proof of the quasi-neutral limit will either require or imply a result of existence of solutions
for the relevant kinetic Euler equation. Local existence of solutions was shown in analytic
regularity in one dimension by Bossy et al. [16] for the kinetic incompressible Euler system,
as part of a study of more general kinetic equations with an incompressibility constraint. The
corresponding result for the Vlasov–Dirac–Benney equation was proved by Jabin and Nouri
[57]; see also Mouhot and Villani [71, Section 9]. Local-in-time existence in analytic regularity
in higher dimensions is a corollary of the quasi-neutral limit results of Grenier [33].
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In Sobolev regularity the systems are in general ill-posed. Instability results were shown
for the VDB system by Bardos and Nouri [8] and by Bardos and Besse [5] – see also the report
of Bardos [4] on this work. These results were later extended by Han-Kwan–Nguyen [45] and
Baradat [3], with results covering both the VDB and kinetic incompressible Euler systems.

In Sobolev regularity, local-in-time existence has been proved under a further stability
criterion in [5, 46] for the VDB system. No global-in-time existence results are available for
any of the kinetic Euler systems we consider.

1.5.4 Rough Data Results

In Chapter 3, we will prove a result on the quasi-neutral limit from the VPME system (1.11)
to the KIsE system (1.20). Our result holds for rough data that are small perturbations of the
analytic case, in dimension d = 2,3. It is analogous to the results of Han-Kwan–Iacobelli [43]
for the classical Vlasov-Poisson system, and an extension of the one dimensional result of
Han-Kwan–Iacobelli [44].

In the following sections, we discuss the results of Grenier [33] for the analytic case and
Han-Kwan–Iacobelli [44, 43] for small rough perturbations of the analytic case.

1.5.4.1 Analytic Case

In this section, we discuss a result by Grenier [33] dealing with the quasi-neutral limit for the
classical Vlasov-Poisson system (1.15), in the case of analytic initial data.

Multi-Fluid Formulation. Grenier’s approach to the quasi-neutral limit is phrased in terms
of a representation of the Vlasov-Poisson system (1.15) as a multi-fluid pressureless Euler-
Poisson system. The idea is to think of the electron density fε as a superposition of layers of
fluid, each described by an associated velocity field. To be more precise, assume that fε may
be represented in the form

fε(t,x,v) =
∫

Θ

ρ
θ
ε (t,x)δvθ

ε (t,x)
(v)µ(dθ), (1.49)

for some probability space (Θ,E ,µ) and a family of functions (ρθ
ε ,v

θ
ε )θ∈Θ.

The representation (1.49) allows a general class of initial data fε(0). For example, any
continuous initial datum fε(0) can be represented in this form. Choose Θ = Rd , and let

µ(dθ) =
1

ck(1+ |θ |k)
dθ ,
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for suitable values of k and ck so that µ is a probability measure. Then let

ρ
θ
ε (0,x) = ck(1+ |θ |k) fε(0,x,θ), vθ

ε (0,x) = θ .

The formula (1.49) is also able to represent distributions with much lower regularity in v, such
as sums of Dirac masses in velocity.

The idea of the multi-fluid representation of the Vlasov-Poisson system is to formulate
a representation (1.49) of fε where the (ρθ

ε ,v
θ
ε )θ∈Θ satisfy fluid equations. The multi-fluid

system for (ρθ
ε ,v

θ
ε )θ∈Θ associated to (1.15) is the following:

(V P−MF)ε :=


∂tρ

θ
ε +divx(ρ

θ
ε vθ

ε ) = 0,
∂tvθ

ε +(vθ
ε ·∇x)vθ

ε = Eε ,

∇x ×Eε = 0,

ε
2
∇x ·Eε =

∫
Θ

ρ
θ
ε µ(dθ)−1.

(1.50)

If the collection (ρθ
ε ,v

θ
ε )θ∈Θ is a solution of system (1.50), then the formula (1.49) defines a

weak solution of the Vlasov-Poisson system (1.15).
We can consider the quasi-neutral limit of the multi-fluid system by formally setting ε = 0

in the system (1.50). This results in the system

(KInE −MF) :=


∂tρ

θ +divx(ρ
θ vθ ) = 0,

∂tvθ +(vθ ·∇x)vθ = E,
∇x ×E = 0,∫

Θ

ρ
θ

µ(dθ) = 1.

(1.51)

If (ρθ ,vθ )θ∈Θ satisfies the system (1.51), then the density g defined by

g(t,x,v) :=
∫

Θ

ρ
θ (t,x)δvθ (t,x)(v)µ(dθ) (1.52)

is a weak solution of the kinetic incompressible Euler system (1.16). The connection between
systems (1.50) and (1.51) is thus a multi-fluid version of the quasi-neutral limit.

Quantifying Analyticity. To measure analyticity the norms ∥·∥Bδ
are used. These are defined

for δ > 1 by
∥g∥Bδ

:= ∑
k∈Zd

|ĝ(k)|δ |k|,
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where ĝ(k) denotes the Fourier coefficient of g of index k. Here δ is a (large) parameter
quantifying the exponential rate of decay of the Fourier coefficients of g - the larger δ is, the
faster ĝ(k) must decay with respect to k in order for the series to converge, and therefore the
smoother g must be in order to have finite norm.

Correctors. To obtain convergence in the quasi-neutral limit, it is necessary to account for
the plasma oscillations described from a physical perspective in Section 1.5.1.2. This is done
by introducing correctors, which describe these oscillations.

The correctors are defined as follows. For a solution (ρθ ,vθ )θ∈Θ of (1.51), we also define
the corresponding current density

J(t,x) :=
∫

Θ

vθ (t,x)ρθ (t,x)µ(dθ).

If g is defined by (1.52), then J satisfies

J(t,x) =
∫
Rd

vg(t,x,v)dv.

Similarly, for a solution fε(0,x,v) for the system (1.15), we define the current density Jε :

Jε(t,x) :=
∫
Rd

v fε(t,x,v)dv =
∫

Θ

vθ
ε (t,x)ρ

θ
ε (t,x)µ(dθ).

Note also that the electric field Eε is defined in (1.50).
The corrector Rε is defined by

Rε(t,x) :=
1
i

(
d+(t,x)e

it
ε −d−(t,x)e−

it
ε

)
, (1.53)

where d± are solutions of the following equations:

∇x ×d± = 0, ∇x · (∂td±+ J ·∇xd±) = 0

∇x ·d±(0) = lim
ε→0

∇x ·
(

εEε(0)± iJε(0)
2

)
.

Note that this system only depends on fe through its initial data fε(0,x,v).
The corrector is used to ‘filter’ the velocity fields, after which convergence can be proved.

Instead of looking at vθ
ε , one shows that vθ

ε −Rε converges to a limit.
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Quasi-Neutral Limit. The main result of Grenier [33] is a quasi-neutral limit from system
(1.50) to (1.51), under the assumption of uniform analyticity of the data with respect to x. The
following result is one case of the main result of [33].

Theorem 1.19 (Quasi-neutral Limit for Analytic Data). For each ε ∈ (0,1), let gε(0) be a
choice of initial datum for the Vlasov-Poisson system (1.15). Assume that the {gε(0)}ε∈(0,1)
are uniformly analytic in x, in the sense that, for some δ0 > 1,

sup
ε∈(0,1),v∈Rd

(1+ |v|d+1)∥gε(0, ·,v)∥Bδ0
≤C.

Suppose further that

sup
ε∈(0,1)

∥∥∥∥∫Rd
gε(0,x,v)dv−1

∥∥∥∥
Bδ0

≤ η ,

where η is sufficiently small.
Let {ρθ

ε (0,x),v
θ
ε (0,x)}θ∈Rd ,ε∈(0,1) be defined by

ρ
θ
ε (0,x) = cd(1+ |θ |d+1)gε(0,x,θ), vθ

ε (0,x) = θ . (1.54)

Assume that, for each θ ∈ Rm, ρθ
ε (0,x) and vθ

ε (0,x) have limits ρθ (0,x) and vθ (0,x) as ε

tends to zero, in the sense of distributions. Assume also that divJε(0) and εEε(0) have limits
in the sense of distributions as ε tends to zero. Let δ1 satisfy δ0 > δ1 > 1. Then there exists
T > 0 such that:

(i) For each ε ∈ (0,1), there exists a solution {ρθ
ε ,v

θ
ε }θ∈Rd of the multi-fluid system (1.50)

with initial data given by (1.54), with each ρθ
ε and vθ

ε bounded in C
(
[0,T ];Bδ1

)
.

(ii) There exists a solution (ρθ ,vθ ,E) to the limiting system (1.51) for t ∈ [0,T ], with initial
data

ρ
θ (0) = lim

ε→0
ρ

θ
ε (0)

vθ (0) = lim
ε→0

[
vθ

ε (0)−∇∆
−1 divJε(0)

]
(iii) Define the corrector function Rε by (1.53), and let

ṽθ
ε := Rε ,
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then as ε tends to zero, for all s ∈ N,

sup
t∈[0,T ]

[
∥ρ

θ
ε −ρθ∥Hs +∥(vθ

ε − ṽθ
ε )− vθ∥Hs

]
→ 0.

In fact, Grenier proves [33, Theorem 1.1.3] that the quasi-neutral limit for the multi-fluid
systems holds for any sufficiently smooth solutions of (1.50), satisfying for some s > d

2 +2 and
some T > 0,

sup
θ∈Θ, t∈[0,T ],ε∈(0,1)

[
∥ρ

θ
ε (t)∥Hs(Td)+∥vθ

ε (t)∥Hs(Td)+∥εEε(t)∥Hs(Td)

]
<+∞. (1.55)

The analyticity is needed to prove that solutions satisfying (1.55) exist. It is used to get a time
interval of existence that is uniform in ε . Grenier proves the existence of such solutions in [33,
Theorem 1.1.2], using a strategy similar to the proof of the Cauchy-Kovalevskaya theorem by
Caflisch [22].

VPME. A similar strategy can be used to prove the quasi-neutral limit for VPME in analytic
regularity. The necessary modifications of the proof are discussed in [44].

The multi-fluid system for VPME is

(V PME −MF)ε :=


∂tρ

θ
ε +divx(ρ

θ
ε vθ

ε ) = 0,
∂tvθ

ε +(vθ
ε ·∇x)vθ

ε =−∇xUε ,

ε2∆xUε = eUε −
∫

Θ

ρ
θ
ε µ(dθ).

In the quasineutral limit, we formally obtain

(KIsE −MF) :=


∂tρ

θ +divx(ρ
θ vθ ) = 0,

∂tvθ +(vθ ·∇x)vθ =−∇xU,

U = log
(∫

Θ

ρ
θ

µ(dθ)

)
.

In analytic regularity, we have the following equivalent of Theorem 1.19. The main
difference between the results is that correctors are not necessary in the VPME case, as
explained in [44, Section 4.1].

Theorem 1.20. For each ε ∈ (0,1), let gε(0) be a choice of initial datum for the VPME (1.19).
Assume that the {gε(0)}ε∈(0,1) are uniformly analytic in x, in the sense that, for some δ0 > 1,

sup
ε∈(0,1),v∈Rd

(1+ |v|d+1)∥gε(0, ·,v)∥Bδ0
≤C.
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Suppose further that

sup
ε∈(0,1)

∥∥∥∥∫Rd
gε(0,x,v)dv−1

∥∥∥∥
Bδ0

≤ η ,

where η is sufficiently small.
Let {ρθ

ε (0,x),v
θ
ε (0,x)}θ∈Rd ,ε∈(0,1) be defined by

ρ
θ
ε (0,x) = cd(1+ |θ |d+1)gε(0,x,θ), vθ

ε (0,x) = θ .

Assume that, for each θ ∈ Rm, ρθ
ε (0,x) has a limit ρθ (0,x) as ε tends to zero, in the sense

of distributions.
Let δ1 satisfy δ0 > δ1 > 1. Then there exists T > 0 such that:

(i) For each ε ∈ (0,1), there exists a solution ((ρθ
ε ,v

θ
ε ,)θ∈Rd ,Eε) of the multi-fluid system

(1.50) with initial data given by (1.54), with each ρθ
ε and vθ

ε bounded in C
(
[0,T ];Bδ1

)
.

(ii) There exists a solution (ρθ ,vθ ,E) to the limiting system (1.51) for t ∈ [0,T ], with initial
data (ρθ (0),vθ (0)) such that, as ε tends to zero, for all s ∈ N,

sup
t∈[0,T ]

[
∥ρ

θ
ε −ρθ∥Hs(Td)+∥vθ

ε − vθ∥Hs(Td)

]
→ 0.

1.5.4.2 Rough Perturbations

The works of Han-Kwan and Iacobelli [44, 43] deal with small, rough perturbations of these
analytic results. The idea is to consider initial data fε(0) for the Vlasov-Poisson system
satisfying

Wp ( fε(0),gε(0))≤ φ(ε).

where the functions gε(0) satisfy the conditions of Theorem 1.19 or Theorem 1.20 as appropri-
ate. The function φ must converge to zero sufficiently quickly as ε tends to zero. If the rate
is too slow, then the Sobolev counterexamples from [42] will not be excluded and the limit is
false in general. Thus fε(0) is a small perturbation of the analytic regime, in the sense of a
Wasserstein distance.

In [44], the authors prove a quasi-neutral limit of this kind in the one-dimensional case
d = 1, for both the classical Vlasov-Poisson and VPME cases. This one-dimensional result
is valid even for measure data. In [43], they prove a result in higher dimensions d = 2,3, for
the limit from the classical Vlasov-Poisson system (1.15) to the KInE system, for a class of
L∞ data. However, previously a result in dimensions d = 2,3 was not available for the VPME
system.
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In both works [44, 43], the method of proof is to consider the solutions fε and gε of the
relevant Vlasov-Poisson system starting respectively from the initial data fε(0) and gε(0).
Stability estimates are used to show that fε and gε are sufficiently close to each other in a
Wasserstein distance, so that the limit that holds for gε can also be extended to fε . The key
ingredient is the stability estimate of Loeper [65], quoted above as Theorem 1.16, or, in one
dimension, a weak-strong estimate in the style of Hauray [47]. The obstacle to proving a rough
data quasi-neutral limit for VPME in dimensions d = 2,3 was the previous absence of suitable
Loeper-style stability estimates in this case.

In this thesis, we are able to fill this gap, proving a quasi-neutral limit for the VPME
system in dimensions d = 2,3 for data that are small perturbations of functions satisfying the
assumptions of Theorem 1.20. This result is stated below in Section 1.7 as Theorem 1.23, and
proved in Chapter 3. The key ingredient is the stability estimates that we develop for the VPME
system in Chapter 2, Sections 2.4-2.5.
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1.6 Mean Field Limits

The problem of deriving a Vlasov equation from its underlying particle system is known as the
mean field limit. In a typical formulation of this problem, one considers a system of N point
particles evolving under the influence of binary interactions between the particles, described
by an interaction force −∇W derived from a potential −W , and possibly an external force
−∇V arising from an external potential −V . The dynamics are modelled by a system of ODEs
describing the phase space position (Xi,Vi)

N
i=1 of each of the N particles:

Ẋi =Vi

V̇i =
1
N ∑

j ̸=i
∇xW (Xi −X j)+∇V (Xi).

(1.56)

The choice of scaling 1/N is designed to be the appropriate one to obtain a Vlasov equation in
the limit. The formal limiting system is

∂t f + v ·∇x f +(∇W ∗x ρ f +∇V ) ·∇v f = 0. (1.57)

The aim of this section is to discuss what is known rigorously about the limit from the ODE
system (1.56) to the Vlasov equation (1.57).

In order to make sense of the limit, we need a way to compare solutions of the ODE system
(1.56), which are trajectories in the space (X ×Rd)N , with solutions of the PDE (1.57), which
are functions or distributions. The connection is formulated by using empirical measures. The
empirical measure µN associated to a configuration (Xi,Vi)

N
i=1 is defined by the formula

µ
N :=

1
N

N

∑
i=1

δ(Xi,Vi). (1.58)

The normalisation 1/N ensures that µN is always a probability measure.
Then, any solution of the ODE system (1.56) can be represented as a path t 7→ µN(t) in the

space of probability measures. µN can then be compared with solutions of the PDE (1.57). As
a mathematical statement, the mean field limit corresponds to showing that,

if lim
N→∞

µ
N
0 = f0, then lim

N→∞
µ

N
t = ft for t > 0.

This convergence should hold in the sense of weak convergence of measures. Whether it
is possible to prove such a statement depends on the choice of the potentials W and V . In
particular, what matters is their regularity.



62 Introduction

1.6.1 Lipschitz Forces

Early works on the mathematical justification of the mean field limit include, among others,
Braun-Hepp [18], Neunzert-Wick [72] and Dobrushin [27]. These results deal with the case of
Lipschitz force fields, that is, under the assumption that

∇W, ∇V ∈W 1,∞, ∇W (0) = 0.

We highlight in particular the method of proof used by Dobrushin [27], which provides a
framework still used in more recent works on the subject. The approach has two key steps:

(i) First, observe that, if (Xi,Vi)
N
i=1 is a solution of of (1.56), then the resulting empirical

measure µN is a weak solution of the Vlasov equation (1.57), in the sense of Definition 1.

Indeed, we have already discussed that Definition 1 makes sense for measure solutions
when the force is Lipschitz. For empirical measures, the weak form requires that, for all
φ ∈C∞

c ([0,T )×X ×Rd),

∫ T

0

1
N

N

∑
i=1

{
∂tφ(t,Zi)+Vi ·∇xφ(t,Zi)+

N

∑
j=1

∇W (Xi −X j) ·∇vφ(t,Zi)

}
dt

+
∫ T

0

1
N

N

∑
i=1

∇V (Xi) ·∇vφ(t,Zi)dt +
1
N

N

∑
i=1

φ(0,Zi(0)) = 0. (1.59)

The ODE (1.56) implies that the left hand side of (1.59) is equal to

1
N

N

∑
i=1

φ(T,Zi(T )),

which is equal to zero since φ is compactly supported in time. Thus µN is a weak solution
of (1.57).

(ii) Then, the mean field limit is proved by showing a stability result for solutions of the
Vlasov equation (1.57). In the case of Lipschitz forces, the necessary result is provided
by Lemma 1.8. Notice in particular that this is a quantitative stability estimate. This fact
will be useful later when we discuss regularised limits.

In plasma models, we consider interactions between charged particles. Electrostatic in-
teractions are described by the Coulomb force K, which we defined in equation (1.43). This
situation is not covered by these results for Lipschitz forces, because K has a strong singularity
at the origin. Next, we discuss what is known in the theory of mean field limits for interactions
with a singularity.
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1.6.2 Singular Forces

In many physical systems, the interaction force follows an inverse power law |∇W | ∼ |x|−α . For
example, in dimension d = 3 the Coulomb force corresponds to the case α = d −1. Because
of the singularity at the origin, these forces are not regular enough to apply Dobrushin’s results.
From now on, we will discuss forces satisfying a growth condition of the following form: for
all x ∈ Rd \{0},

|∇W (x)|
|x|α

≤C,
|∇2W (x)|
|x|α+1 ≤C α ∈ (0,d −1]. (1.60)

1.6.2.1 Typicality

For singular forces, it is not necessarily expected that a mean field limit result should hold for
any choice of initial data for the ODE (1.56). Instead, we seek to prove results that hold for a
‘large’ class of initial data.

In order to discuss the notion of the size of a set of configurations, it is necessary to specify
a measure on the space of configurations. This can be done by considering choosing initial
configurations randomly. Given a fixed probability measure f0 ∈ P(X ×Rd), the initial
data for (1.56) are chosen by drawing independent samples from f0. The (random) empirical
measures µN constructed by this procedure will converge weakly to f0 as N tends to infinity,
for example in probability. This is a consequence of a generalised Glivenko–Cantelli theorem
– see for example Van der Vaart and Wellner [82] for an in depth discussion of results of this
type. We look for mean field limit results that hold with a high probability with this method of
choosing initial data.

1.6.2.2 Regularised Limits

One approach to the mean field limit problem for singular forces is to consider a regularisation
of the limit. The idea is to replace the singular potential W with a regularised function Wr. ∇Wr

should be smooth enough that a mean field limit holds with this interaction for fixed r > 0.
The regularisation parameter r quantifies the degree of approximation; as r tends to zero, Wr

converges to W . The regularised mean limit involves taking simultaneously the limits r → 0
and N → ∞, ultimately deriving the Vlasov equation (1.57) with singular interaction W from a
sequence of regularised particle systems (1.56) with regularised interaction ∇Wr.

The aim in this scheme is to optimise the rate at which r may converge to zero as N tends
to infinity. The faster r converges to zero, the closer the regularised particle systems are to the
original interaction. An important benchmark is to be able to take r . N− 1

d , which is the typical
spatial separation between particles if they are distributed uniformly in the spatial domain.
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There have been several works aimed at deriving Vlasov equations with singular forces
from regularised particle systems. For instance, Hauray and Jabin [49] considered a truncation
method in which the force is cut off below a certain distance from the origin rN , dependent on
the number of particles N. They showed that the mean field limit holds for a large set of initial
configurations, for forces satisfying (1.60) with α < d−1 (in particular not the Vlasov-Poisson
case), from a particle system with force truncated at rN , provided that rN converges to zero
sufficiently slowly as N tends to infinity. In [48, 49], they are also able to prove a mean field
limit without truncation for the case of ‘weakly singular’ forces in which α < 1.

1.6.2.3 Vlasov-Poisson

The Vlasov-Poisson system (1.6) gives a kinetic description of a system of electrons interacting
through electrostatic interaction:

Ẋi =Vi

V̇i =
1
N ∑

j ̸=i
K(Xi −X j).

This system is of the form (1.56) with the choice W =−G, with G defined in (1.42), and V = 0.
A mean field limit for the Vlasov-Poisson system was proved in the one dimensional case

d = 1 by Hauray [47]. In higher dimensions, the true mean field limit for Vlasov-Poisson
remains a major open problem, due to the strong singularity of K.

Instead, one may consider regularised limits. Observe that K is of the form (1.60), with
α = d − 1. This endpoint case was not covered in [49]. We highlight two recent results on
regularised mean field limits for this system, due to Lazarovici [61] and Lazarovici and Pickl
[62]. The two results are of slightly kinds and use different regularisation methods.

Lazarovici and Pickl [62] proved a regularised mean field limit for the Vlasov-Poisson
system, using a regularisation by truncation. The truncation radius can be chosen to satisfy rN ∼
N− 1

d +η for any η > 0. Their results show that there exists a large set of initial configurations for
which the mean field limit holds. However, these configurations are identified in a non-explicit
way which does not rely on the initial condition alone. This is because their argument relies
on a law of large numbers argument throughout the evolution to compare the mean field force
from the particle system to the limiting force.

Lazarovici [61] considered a method of regularisation by convolution. In this approach, the
point particles are replaced by delocalised packets of charge, with some smooth, compactly
supported shape χ , fixed throughout the evolution. For the classical Vlasov-Poisson case, this
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results in the particle system
Ẋi =Vi

V̇i =
1
N ∑

j ̸=i
[χ ∗x K ∗x χ] (Xi −X j).

(1.61)

This is known as a system of ‘extended charges’. The shape is then allowed to depend on a
regularisation parameter r by taking

χr(x) := r−d
χ

(x
r

)
. (1.62)

Lazarovici showed that a mean field limit holds with high probability, provided that rN ≥
CN− 1

d(d+2)+η for some η > 0. The admissible configurations are identified by a condition on
the initial configuration alone.

The double regularisation χr ∗x ∇xG∗x χr is used because it offers several useful technical
features. This type of regularisation was previously considered by Horst [53] in the Vlasov-
Maxwell case and later used by Rein [75]; a version also appears in Bouchut [17]. One
advantage is that the microscopic dynamics correspond to a Hamiltonian system, for which the
corresponding energy converges as r tends to zero to the energy of the true Vlasov-Poisson
system.

1.6.3 Mean Field Limits for VPME

In Chapter 4, we consider the problem of deriving the VPME system (1.11) in the mean field
limit from an underlying particle system. A natural choice for a particle system related to
VPME is to consider the dynamics of N ions, modelled as point charges, in a background of
thermalised electrons. On the torus, this is modelled by an ODE system of the form

Ẋi =Vi

V̇i =
1
N

N

∑
j ̸=i

Kper(Xi −X j)−K ∗ eU ,
(1.63)

where U satisfies

∆U = eU − 1
N

N

∑
i=1

δXi.

We can think of this system as being of the form (1.56) by taking −W = Gper and an ‘external’
potential V = Gper ∗ eU . Of course V is not truly an external potential because U depends
nonlinearly on f .
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The mean field limit for VPME was proved in the one dimensional case d = 1 in [44].
In higher dimensions, once again there are no results available, due to the singularity of the
Coulomb interaction. Instead, we consider a regularised system. We use a regularisation based
on the approach of Lazarovici [61]. We consider a system of ‘extended ions’ represented by
the following system of ODEs: {

Ẋi =Vi

V̇i =−χr ∗∇xUr(Xi),
(1.64)

where Ur satisfies

∆Ur = eUr − 1
N

N

∑
i=1

χr(Xi), x ∈ Td. (1.65)

We are able to derive the VPME system (1.11) from this regularised system, under a

condition on the initial data that is satisfied with high probability for rN ≥CN− 1
d(d+2)+η . This

matches the rate found in Lazarovici’s result for the Vlasov-Poisson system. This result is
stated below as Theorem 1.24. The proof is given in Chapter 4.

1.6.4 Derivation of Kinetic Euler Systems

In Chapter 5, we consider the derivation of the kinetic incompressible Euler and kinetic
isothermal Euler systems introduced in Section 1.2.3.3. Our approach is based on a combined
quasi-neutral and mean field limit. We are able to derive the KInE system from a version of
(1.61) with a modified scaling. Similarly, we derive the KIsE system from a version of (1.64)
with a modified scaling. These results are stated below as Theorems 1.25 and 1.26.

For the KInE system, we obtain a scaling of the form

α(N) =C
(logN)κ

N
,

for some κ specified in the statement of Theorem 1.25. For the KIsE system, we obtain a
scaling of the form

α(N) =C
log loglogN

N
.
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1.7 Summary of Results

In this section, we summarise the main results of this thesis.

1.7.1 Well-Posedness for the VPME System

In Chapter 2, we will study the well-posedness theory of the Vlasov-Poisson system with
massless electrons. We prove the existence and uniqueness of bounded density solutions for
compactly supported initial data.

The key technique is a decomposition of the electrostatic potential U . We write U in the
form U = Ū +Û , where Ū and Û satisfy the following equations:

−∆Ū = ρ f −1, ∆Û = eŪ+Û −1.

Thus Ū is the electrostatic potential used in the classical Vlasov-Poisson system, and can
therefore be handled using known methods. The key step is to study Û , in particular its
regularity and stability with respect to ρ f . This decomposition was previously considered in
the one dimensional case d = 1 in [44].

We are able to show that Û is in general smoother than Ū , including in the higher dimen-
sional cases d = 2,3. This fact allows known methods for the classical Vlasov-Poisson system
to be adapted to the VPME case. In this thesis, we demonstrate this principle in two cases. In
one case, we adapt the proof of uniqueness for bounded density solutions, due to Loeper [65],
to the VPME case. We then prove the existence of bounded density solutions by adapting the
methods of Batt and Rein [10].

1.7.1.1 Uniqueness

We prove a uniqueness result for solutions of the VPME system (1.11) with bounded density.
This is an analogue of Loeper’s result [65, Theorem 1.2] for the Vlasov-Poisson system (1.5).

Theorem 1.21 (Uniqueness of bounded density solutions for VPME). For each i = 1,2, let fi

be a solution of (1.11) in the space C([0,T ];P(Td ×Rd)), with bounded density

sup
t∈[0,T ]

∥ρ[ fi]∥L∞(Td) ≤Ci,

for the same initial datum f (0) ∈ P(Td ×Rd). Then f1 = f2.

The proof of this result is given in Chapter 2, in Section 2.6. As for Loeper’s result, the
proof of Theorem 1.21 is based on a stability estimate for solutions of the VPME system in



68 Introduction

W2. The key step is to prove a stability estimate for Û with respect to ρ f , analogous to the one
proved for Ū by Loeper (Theorem 1.17).

1.7.1.2 Existence of Solutions

We prove the existence of solutions for the VPME system (1.11) with bounded density, for
compactly supported initial data.

Theorem 1.22 (Existence of solutions with bounded density). Let d = 2,3. Consider an initial
datum f0 ∈ L1 ∩L∞(Td ×Rd) with compact support in Td ×Rd . Then there exists a global in
time solution ft ∈C([0,∞);P(Td ×Rd)) of (1.11) with initial data f0, which has conserved
energy and a mass density bounded locally in time:

E ME[ ft ] = E ME[ f0], ρ ft ∈ L∞
loc([0,∞);L∞(Td)).

The proof of this result is given in Chapter 2, Sections 2.7–2.9. The main idea is to control
the size of the support of the solution. This is the method used by Pfaffelmoser [74], Schaeffer
[79] and Batt–Rein [10] for the classical Vlasov-Poisson system. Since we work with the
VPME system posed on the torus, we follow the methods of Batt and Rein [10]. The key step
is to prove suitable bounds on Ê =−∇Û , the smooth part of the electric field.

1.7.2 Quasi-Neutral Limit for VPME With Rough Data

In Chapter 3, we prove the quasi-neutral limit from the VPME system (1.11) to the KIsE
system (1.20), for a class of rough data. The starting point is analogous to the approach of
Han-Kwan and Iacobelli [43] for the classical Vlasov-Poisson system, which we described
in Section 1.5.4.2. The idea is to work with initial data for the VPME system that are small
perturbations of analytic functions satisfying the assumptions of Theorem 1.20.

Iterated Exponentials. In the following statement, we will use the notation expn to denote
the n-fold iteration of the exponential function. For example

exp3(x) := expexpexp(x).

Theorem 1.23 (Quasi-neutral limit). Let d = 2,3. Consider initial data fε(0) satisfying the
following conditions:
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• (Uniform bounds) fε(0) is bounded and has bounded energy, uniformly with respect to ε:
for some constant C0 > 0,

∥ fε(0)∥L∞(Td×Rd) ≤C0 (1.66)

and
1
2

∫
Td×Rd

|v|2 f dxdv+
ε2

2

∫
Td

|∇U |2 dx+
∫
Td

UeU dx ≤C0.

• (Control of support) There exists C1 > 0 such that

fε(0,x,v) = 0 for |v|> exp(C1ε
−2). (1.67)

• (Perturbation of an analytic function) There exist gε(0) satisfying, for some δ > 1, η > 0,
and C > 0,

sup
ε>0

sup
v∈Rd

(1+ |v|d+1)∥gε(0, ·,v)∥Bδ
≤C,

sup
ε>0

∥∥∥∥∫Rd
gε(0, ·,v)dv−1

∥∥∥∥
Bδ

≤ η ,

as well as the support condition (1.67), such that, for all ε > 0,

W2( fε(0),gε(0))≤
[

exp4(Cε
−2)
]−1

for C sufficiently large with respect to C0,C1.

• (Convergence of data) gε(0) has a limit g(0) in the sense of distributions as ε → 0.

Let fε denote the unique solution of (3.1) with bounded density and initial datum fε(0). Then
there exists a time horizon T∗ > 0, independent of ε but depending on the collection {g0,ε}ε ,
and a solution g of (3.2) on the time interval [0,T∗] with initial datum g(0), such that

lim
ε→0

sup
t∈[0,T∗]

W1( fε(t),g(t)) = 0.

The proof of this result is given in Chapter 3. The main idea is to develop a version of the
W2 stability estimate for the VPME system that is quantified with respect to the Debye length ε .
This estimate is proved in Section 3.3. This estimate is used to control the distance between the
solution fε with rough data and the analytic solution with data gε(0), which is already known
to converge in the limit ε → 0 due to Theorem 1.20.
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1.7.3 Derivation of VPME from a System of Extended Ions

In Chapter 4, we consider the derivation of the VPME system from an underlying microscopic
system. We use the ‘extended ions’ system (1.64)-(1.25) introduced in Section 1.6.3. Our main
result is the following theorem.

Theorem 1.24 (Regularised mean field limit). Let d = 2,3, and let f (0) ∈ L1 ∩L∞(Td ×Rd)

be a compactly supported choice of initial datum for (4.2). Let f denote the unique bounded
density solution of the VPME system (1.11) with initial datum f (0).´ Fix T∗ > 0.

Assume that r = r(N) and the initial configurations for (1.64)-(1.65) are chosen such
that the corresponding empirical measures satisfy, for some sufficiently large constant C > 0,
depending on T∗ and the support of f (0),

limsup
N→∞

W 2
2 ( f (0),µN

r (0))

rd+2+C| logr|−1/2 < 1.

Then the empirical measure µN
r associated to the particle system dynamics starting from this

configuration converges to f :

lim
N→∞

sup
t∈[0,T∗]

W2( f (t),µN
r (t)) = 0. (1.68)

In particular, suppose that f0 has a finite kth moment for some k > 4:∫
Td×Rd

(
|x|k + |v|k

)
f0(dxdv)<+∞.

Choose r(N) = N−γ for some γ satisfying

γ <
1

d +2
min

{
1
d
,1− 4

k

}
.

For each N, let the initial configurations for the regularised N-particle system (4.4) be chosen
by taking N independent samples from f0. Then (1.68) holds with probability one.

1.7.4 Derivation of Kinetic Euler Systems from Systems of Extended
Charges

In Chapter 5, we derive the KInE (1.16) and KIsE (1.20) systems from underlying microscopic
systems of extended charges.
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1.7.4.1 Kinetic Isothermal Euler

For the KIsE system, we consider the following system of extended ions, which is a version of
(1.64)-(1.65) with quasi-neutral scaling:{

Ẋi =Vi

V̇i =−χr ∗∇xU(Xi),
(1.69)

where U satisfies

ε
2
∆U = eU − 1

N

N

∑
i=1

χr(x−Xi).

Recall that χr is the scaled mollifier defined in (1.62). For this system, we prove the following
convergence result. We state the result here for the case where the initial data for (1.69) are
chosen randomly, by taking independent samples from a given law fε(0). See Theorem 5.3 in
Chapter 5, Subsection 5.2.2 for a statement dealing with other initial configurations.

Theorem 1.25 (From extended ions to kinetic isothermal Euler). Let d = 2 or 3, and let
fε(0),gε(0) and g(0) satisfy the assumptions of Theorem 1.23. Let T∗ > 0 be the maximal time
of convergence from Theorem 1.23 and let g denote the solution of the KIsE system (5.5) with
initial data g(0) on the time interval [0,T∗] appearing in the conclusion of Theorem 1.23.

Let r = r(N) be of the form

r(N) = cN− 1
d(d+2)+η

, for some η > 0, c > 0.

There exists a constant C, depending on d, η , c and { fε(0)}ε , such that the following holds.
Let ε = ε(N) satisfy

ε(N)≥ C√
log loglogN

, lim
N→∞

ε(N) = 0.

For each N, let the initial conditions for the regularised and scaled N-particle ODE system
(1.69) be chosen randomly with law fε(N)(0)⊗N . Let µN

ε,r(t) denote the empirical measure
associated to the solution of (1.69).

Then, with probability one,

lim
N→∞

sup
t∈[0,T∗]

W1
(
µ

N
ε,r(t),g(t)

)
= 0.
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1.7.4.2 Kinetic Incompressible Euler

We also prove a similar result for the KInE system. For the microscopic model, we consider
the following system of extended electrons:

Ẋi =Vi

V̇i =
ε−2

N ∑
j ̸=i

χr ∗Kper ∗χr(Xi −X j).

In this case, we choose configurations for the particle system that approximate initial data
fε(0) for the Vlasov-Poisson system (1.5) for which the quasi-neutral limit holds. Specifically,
we assume that fε(0) satisfy the assumptions of the rough data result of Han-Kwan–Iacobelli
[43]. These assumptions are stated below.

Assumption 1 (KInE, d = 2,3). The data fε(0) satisfy the following:

(i) There exists C0 independent of ε such that

∥ fε(0)∥L∞ ≤C0, E VP
ε ( fε(0))≤C0.

(ii) (Control of support) For some γ > 0,

fε(0,x,v) = 0 for |v|> ε
−γ . (1.70)

(iii) (Analytic + perturbation) There exist functions gε(0) satisfying (1.70) and

sup
ε∈(0,1)

sup
v∈Rd

(1+ |v|d+1)∥gε(0, ·,v)∥Bδ0
≤C,

such that
W2( fε(0),gε(0))≤

[
exp2

(
Cε

−(2+dζ )
)]−1

,

for C > 0 sufficiently large, where ζ = ζ (γ) is defined as follows:

• For d = 2, we fix any δ > 2 and let

ζ = max{γ,δ}.

• For d = 3 we let

ζ = max
{

γ,
38
3

}
.



1.7 Summary of Results 73

We then have the following result.

Theorem 1.26. Let d = 2 or 3. For each ε > 0, let fε(0) satisfy Assumption 1. Suppose that
gε(0) has a limit g(0) in the sense of distributions as ε tends to zero. There exists T∗ > 0 and a
solution g(t) of (1.16) on the time interval [0,T∗] such that the following holds.

Fix T ≤ T∗ and α > 0. There exist constants AT , CT depending on T , α and { fε(0)}ε such
that the following holds. Let r = r(N), ε = ε(N) satisfy

r = AT N− 1
d(d+2)+α

, ε ≥CT (logN)
− 1

2+dζ

Then, if the initial N-particle configurations [Zε
i (0)]

N
i=1 are chosen by taking N independent

samples from fε(0), with probability one the following limit holds:

lim
N→∞

sup
t∈[0,T ]

W1(µ̃
N
ε,r(t),g(t)) = 0,

where

• µN
ε,r(t) denotes the empirical measure corresponding to the solution of (5.4) with initial

datum [Zε
i (0)]

N
i=1 ;

• µ̃N
ε,r(t) is the measure constructed by filtering µN

ε,r(t) using the corrector Rε defined in
(1.53), according to Definition 5 in Chapter 5, Subsection 5.2.1.1, using the given choice
of fε(0) and g(0).
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2.4.3 Regularity of Û . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Stability of the Electric Field . . . . . . . . . . . . . . . . . . . . . . . . 90

2.6 Wasserstein Stability and Uniqueness . . . . . . . . . . . . . . . . . . . 93

2.7 A Priori Estimates on the Mass Density . . . . . . . . . . . . . . . . . . 101

2.7.1 Two-dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . 101



76 VPME: Global Well-posedness in 2D and 3D

2.7.2 Three-dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 105

2.8 A Regularised System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.9 Construction of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.9.1 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . 131

In this chapter, we prove global-in-time well-posedness results for the Vlasov-Poisson
system with massless electrons (VPME) in dimension d = 2,3. Recall that VPME is a kinetic
model for the ions in a plasma. We introduced this model from a physical perspective in
Section 1.2.2. On the torus, the system reads as follows:

(V PME) :=



∂t f + v ·∇x f +E ·∇v f = 0,
E =−∇xU,

∆xU = eU −
∫
Rd

f dv = eU −ρ f ,

f |t=0 = f (0)≥ 0,
∫
Td×Rd

f (0,x,v)dxdv = 1.

(2.1)

Global well-posedness of the VPME system was shown in the one dimensional case in Han-
Kwan–Iacobelli [43]. In three dimensions, Bouchut [17] proved the global-in-time existence of
weak solutions. However, global existence of strong solutions was not proved in dimensions
higher than one.

In this chapter, we prove global-in-time existence of strong solutions of the VPME system
in dimensions d = 2 and d = 3, for compactly supported data. We also prove the uniqueness of
solutions with bounded density.

These results provide analogues of two important results for the classical Vlasov-Poisson
system (1.5). Our uniqueness result is comparable to the result of Loeper [65] for the classical
system. We also prove a global existence result in the style of Batt and Rein [10] for solutions
on the torus for d = 2,3.

The key step in our analysis is a decomposition of the electric field. We are able to show
that the electric field in the VPME system behaves like a perturbation of the electric field in
the classical Vlasov-Poisson system (1.5). This perturbation is general more regular than the
remainder of the electric field. This key observation allows known methods for the classical
system to be adapted to the VPME case. We demonstrate this in full for the results mentioned
above.
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2.1 Statement of Results

The aim of this chapter is to prove the following results. Together they provide, for d = 2,3,
global existence of solutions of the VPME system (2.1), for a general class of data, as well as
uniqueness for solutions with bounded density.

2.1.1 Uniqueness of Solutions With Bounded Density

Theorem 2.1 (Uniqueness for solutions with bounded density). Let d = 2,3. Let f0 ∈ P(Td ×Rd)

with ρ[ f0]∈L∞(Td). Fix a final time T > 0. Then there exists at most one solution f ∈C([0,T ];P(Td ×Rd))

of the system (2.1), with initial datum f0, such that ρ[ f ] ∈ L∞([0,T ];L∞(Td)).
Moreover, we have a quantitative stability estimate. Let f ,g be solutions of the VPME

system (2.1) such that

sup
t∈[0,T ]

∥ρ[ f (t)]∥L∞(Td), sup
t∈[0,T ]

∥ρ[g(t)]∥L∞(Td) ≤ M

for some constant M > 0. Then there exists C > 0 depending on M such that for all t ∈ [0,T ],

W2( f (t),g(t))≤

exp
[
C
(

1+ log W2( f (0),g(0))
4
√

d

)
e−Ct

]
if W2( f (0),g(0))≤ d

W2( f (0),g(0))eCt if W2( f (0),g(0))> d.

The proof of this theorem is given in Section 2.6.

2.1.2 Global Existence of Solutions

We prove a result of global-in-time existence, analogous to that of Batt and Rein [10] for the
Vlasov-Poisson system (1.5). The following theorem is proved in Sections 2.7 and 2.9.

Theorem 2.2 (Existence of solutions with bounded density). Let d = 2,3. Consider an initial
datum f0 ∈ L1 ∩L∞(Td ×Rd) with compact support in Td ×Rd . Then there exists a global
in time solution f ∈ C([0,∞);P(Td ×Rd)) of (1.11) with initial data f0. This solution has
bounded density, locally in time:

ρ f ∈ L∞
loc([0,∞);L∞(Td)).
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2.2 Strategy

The core of this chapter is an analysis of the electric field E in the VPME system, which is
carried out in Sections 2.4 and 2.5. We prove integrability and regularity estimates on E in
terms of integrability estimates on ρ f , as well as estimates on the stability of E with respect to
ρ f . We have discussed in Sections 1.3 and 1.4 that this is the key information needed when
studying well-posedness for a nonlinear equation of Vlasov type.

The fundamental step in our analysis is a decomposition of E. For example, in the torus
case we write E as Ē + Ê where

Ē =−∇Ū , Ê =−∇Û ,

and Ū and Û solve respectively

∆Ū = 1−ρ f , ∆Û = eŪ+Û −1.

This decomposition was previously used in [44] for the one dimensional case.
The advantage of this decomposition is that it allows us to think of E as a perturbation of

the electric field Ē that we would have in the classical Vlasov-Poisson system (1.5). Moreover,
the perturbation Ê depends on ρ f only through Ū , which will be smoother than ρ f due to the
regularising properties of the Poisson equation. We might therefore expect Û to have higher
order regularity than Ū , and this is indeed what we find (see Proposition 2.4). For this reason we
sometimes refer to Ū as the ‘singular’ part of the potential, and Û as the ‘regular’ or ‘smooth’
part.

The challenging part of the analysis of Û is that it satisfies an equation with an exponential
nonlinearity. It turns out that, even though the nonlinearity is exponential, it has a helpful sign
which allows it to be controlled. We show this using techniques from Calculus of Variations.
This strategy was also used in the one-dimensional case in [44]. Here we are able to extend
these results to higher dimensions.

These regularity estimates allow us to adapt methods developed for the classical Vlasov-
Poisson system to the VPME case. In Section 2.6, we prove Theorem 2.1 on the uniqueness of
bounded density solutions. The strategy is to prove a W2 stability estimate on solutions, with
respect to their initial data. This proof follows the strategy of Loeper [65].

In Section 2.9, we construct global-in-time solutions of the VPME system on the torus
(2.1). Our approach follows the method of Batt and Rein [10] for the classical Vlasov-Poisson
system, which is in itself an adaptation of the methods of Pfaffelmoser [74] and Schaeffer [79]
to the torus. The key step is to control the growth of the size of the support of ft in Td ×Rd .
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In Section 2.8, we prove the existence of unique solutions to a regularised version of
the VPME system. This will allow us to complete the existence proof by an approximation
argument. This result is not quite covered in the existing literature to our knowledge, because
the electric field E in the VPME system cannot be written in the form

E = F ∗ρ

for some F . Instead, the coupling between E and ρ is nonlinear. However, the estimates in
Sections 2.4 and 2.5 allow us to adapt well-known methods for Vlasov equations with smooth
interactions, which we presented in Section 1.3, to our approximating system.

2.3 Basic Estimates

In this section, we summarise some basic estimates for solutions of the VPME system. In
a similar spirit to Section 1.4.1, we look at the a priori estimates we can expect to have on
solutions, based on the conservation laws of the system.

2.3.1 Lp(Td ×Rd) Estimates

Solutions f of the VPME system solve a transport equation with a divergence free vector field.
If f0 ∈ L1 ∩L∞(Td ×Rd), we therefore have uniform in time estimates on the Lp(Td ×Rd)

norms of f .

Lemma 2.3. Assume that f0 ∈ L1 ∩L∞(Td ×Rd). Let f be a solution of (2.1). Then, for all
p ∈ [1,∞],

∥ ft∥Lp(Td×Rd) ≤ ∥ f0∥
1
p

L1(Td×Rd)
∥ f0∥

1− 1
p

L∞(Td×Rd)
.

2.3.2 Energy

The system (2.1) has an associated energy functional:

E ME[ f ] :=
1
2

∫
Td×Rd

|v|2 f dxdv+
1
2

∫
Td

|∇U |2 dx+
∫
Td

UeU dx. (2.2)

This functional is conserved by the evolution for smooth solutions.
The conservation of the energy functional provides a uniform estimate on the second

moment of f in velocity, or, in other words, the kinetic energy of f . In Section 1.4.1, we
discussed a similar property for the classical Vlasov-Poisson system. For the classical system
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(1.5) this implication is immediate because both terms in the classical energy (1.46) are non-
negative.

For the VPME energy functional (2.2), we need to deal with the fact that some of the terms
may be negative. In particular, we need to consider possible values of the function x 7→ xex for
x ∈ R. Since

d
dx

(xex) = (x+1)ex,

it follows that, for all x ∈ R,
xex ≥ (xex)|x=−1 =−e−1.

Consequently, bounds on the total energy E ME imply bounds on the kinetic energy:

1
2

∫
Td×Rd

|v|2 f dxdv ≤ E ME[ f ]+ e−1. (2.3)

2.3.3 Estimates on the Mass Density

As discussed in Section 1.4.1, it is possible to deduce Lp(Td) estimates on the mass density
ρ f from estimates on the moments of the full phase-space density f . Using the bound (2.3)
on the kinetic energy, we can therefore obtain the same L

d+2
d (Td) estimate on ρ f as in the

classical case, using the interpolation estimate from Lemma 1.12. Since the energy functionals
are formally conserved by their respective equations, this estimate is uniform in time. That is,
we can expect a uniform bound of the form

∥ρ f (t, ·)∥
L

d+2
d (Td)

≤C(d, f0). (2.4)

The constant C( f0) depends on the initial datum f0 through the relation

C(d, f0) =Cd
(
E ME[ f0]+ e−1) d

d+2 ∥ f0∥
2

d+2
L∞(Td×Rd)

,

where Cd is a dimension dependent constant.
In the next section, we will derive regularity estimates on the electric field in terms of

integrability estimates on ρ f . The crucial point is that we will be able to derive estimates on
the smooth part of the potential Û that depend on the L

d+2
d (Td) norm of ρ f , and are therefore

uniform in time.
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2.4 Regularity of the Electric Field

In this section we prove several key regularity estimates on the electric field in the VPME
system. These estimates will ultimately show that the electric field in the VPME case is a
smooth perturbation of the field in the classical case. This fact will allow us to adapt the existing
techniques for proving well-posedness of the Vlasov-Poisson system to the massless electron
model.

The strategy is based on the following decomposition of the electric field. We let E = Ē+ Ê,
where

Ē =−∇Ū , Ê =−∇Û ,

and Ū and Û solve respectively

∆Ū = 1−ρ f , ∆Û = eŪ+Û −1.

We impose without loss of generality that Ū has zero mean over the torus:∫
Td

Ū dx = 0.

Notice that in this way U := Ū +Û solves

∆U = eU −ρ f .

We consider charge densities ρ f ∈ L∞(Td), since the solutions of VPME we will work with
will have densities in this class. We want to derive integrability and regularity estimates on
E, assuming that ρ f has this degree of integrability. In particular, the aim is to give estimates
in terms of the L

d+2
d (Td) and L∞(Td) norms of ρ f . The L

d+2
d (Td) norm is of interest because

the conservation of energy for the VPME system provides a uniform-in-time bound on this
quantity.

Our aim is to prove the following proposition.

Proposition 2.4 (Regularity estimates on Ū and Û). Let d = 2,3. Let h ∈ L∞(Td). Then there
exist unique Ū ∈W 1,2(Td) with zero mean and Û ∈W 1,2(Td) satisfying

∆Ū = 1−h, ∆Û = eŪ+Û −1.
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Moreover we have the following estimates: for some constant Cα,d > 0,

∥Ū∥C0,α (Td) ≤Cα,d

(
1+∥h∥

L
d+2

d (Td)

)
, α ∈

(0,1) if d = 2

(0, 1
5 ] if d = 3.

∥Ū∥C1,α (Td) ≤Cα,d

(
1+∥h∥L∞(Td)

)
, α ∈ (0,1)

∥Û∥C1,α (Td) ≤Cα,d exp
(

Cα,d

(
1+∥h∥

L
d+2

d (Td)

))
, α ∈ (0,1)

∥Û∥C2,α (Td) ≤Cα,d exp exp
(

Cα,d

(
1+∥h∥

L
d+2

d (Td)

))
, α ∈

(0,1) if d = 2

(0, 1
5 ] if d = 3.

.

The remainder of this section is structured as follows:

(i) In Section 2.4.1, we discuss the existence and regularity of Ū , which is based on standard
theory for the Poisson equation.

(ii) In Section 2.4.2, we prove the existence of Û , given Ū with the regularity derived above.
Our proof uses techniques from the calculus of variations.

(iii) In Section 2.4.3, we prove energy estimates on Û . These estimates imply regularity for Û
using the regularity theory of the Poisson equation.

2.4.1 Regularity of Ū

The regularity estimates on Ū are based on the analysis of the following Poisson equation

∆Ū = 1−h.

The existence of a solution Ū ∈W 1,2(Td), unique up to additive constants, for h ∈ L2(Td)⊃
L∞(Td) is well-known - see for example [28, Chapter 6]. Choosing a solution with zero mean
then specifies Ū uniquely. In the following lemma, we recall some standard elliptic regularity
estimates for this solution, that follow from Calderón-Zygmund estimates for the Laplacian
[30, Section 9.4], and Sobolev inequalities.

Lemma 2.5. Let Ū ∈W 1,2(Td) have zero mean and satisfy

∆Ū = h.
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(i) If h ∈ L
d+2

d (Td), then for all α ∈ (0,1), if d = 2, or α ∈ (0, 1
5 ] if d = 3, there exists a

constant Cα,d > 0 such that

∥Ū∥C0,α (Td) ≤Cα,d

(
1+∥h∥

L
d+2

d (Td)

)
.

(ii) If h ∈ L∞(Td), then for any α ∈ (0,1), there exists a constant Cα,d such that

∥Ū∥C1,α (Td) ≤Cα,d ∥h∥L∞(Td).

In order to prove estimates on the VPME system, we would ideally like to have good
control of the regularity of the electric field, especially the singular part ∇Ū . The estimates in
Lemma 2.5 are not quite strong enough to provide Lipschitz regularity for ∇Ū . However, a
log-Lipschitz estimate is available. We stated this as Lemma 1.11 in the introduction and gave
a proof there. Below, we recall the statement.

Lemma 2.6 (Log-Lipschitz regularity of Ē). Let Ū be a solution of

∆Ū = h

for h ∈ L∞(Td). Then

|∇Ū(x)−∇Ū(y)| ≤Cd∥h∥L∞(Td)|x− y|

(
1+ log

( √
d

|x− y|

)
1|x−y|≤

√
d

)
.

2.4.2 Existence of Û

In this section we prove the existence of a solution Û of the equation

∆Û = eŪ+Û −1, (2.5)

under the condition that Ū ∈ Ẇ 1,2∩L∞(Td). By Lemma 2.5, when we consider solutions of the
VPME system (2.1), we expect Ū to have this regularity. Our strategy is to seek a minimiser of
the functional

h 7→ J [h] :=
∫
Td

1
2
|∇h|2 +

(
eŪ+h −h

)
dx

in the space h ∈ W 1,2(Td). We then use the fact that equation (2.5) is the Euler-Lagrange
equation of this minimisation problem to conclude that the minimiser is a solution of (2.5).

The following lemma holds in any dimension d.
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Lemma 2.7 (Existence of a Unique Minimiser). Let Ū ∈ Ẇ 1,2 ∩L∞(Td). Then there exists a
unique Û ∈W 1,2(Td) such that

J [Û ] = inf
h∈W 1,2(Td)

J [h].

Proof. The uniqueness of minimisers follows from the fact that J is a strictly convex func-
tional.

We prove existence of a minimiser using the direct method of the calculus of variations.
Consider a minimising sequence (hk)k∈N such that, as k tends to infinity,

J [hk]→ inf
h∈W 1,2(Td)

J [h].

We will show that hk is uniformly bounded in W 1,2(Td). This will allow us to extract a
convergent subsequence. Since Ū ∈ Ẇ 1,2 ∩L∞(Td) and the torus has finite measure, in fact
Ū ∈W 1,2(Td) by monotonicity of Lp norms. Therefore, for k sufficiently large,

J [hk]≤ J [−Ū ]

= ∥∇Ū∥2
L2(Td)+

∫
Td
(1+Ū)dx

≤ ∥∇Ū∥2
L2(Td)+1+∥Ū∥L∞(Td) =: C1. (2.6)

The constant C1 is finite since Ū ∈ Ẇ 1,2 ∩L∞(Td).
We observe that

eŪ+s − s = eŪ es − s ≥ e−∥Ū∥L∞(Td )es − s ≥ s2 −C2,

for some constant C2 depending on ∥Ū∥L∞(Td) only. Thus

∫
Td

eŪ+hk −hk dx ≥
∫
Td

h2
k −C2 dx. (2.7)

By equations (2.6) and (2.7),∫
Td

1
2
|∇hk|2 +(h2

k −C2)dx ≤ J [hk]≤C1 +1.

Thus the sequence (hk)k∈N is bounded in W 1,2(Td), uniformly in k:

||∇hk||L2(Td)+ ||hk||L2(Td) ≤C3,
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where the constant C3 is independent of k.
By weak compactness of W 1,2(Td), up to a subsequence hk converges weakly in W 1,2(Td)

to a function Û :
hk⇀Û in W 1,2(Td).

Since W 1,2(Td) is compactly embedded in L2(Td), we also have strong convergence:

hk→Û in L2(Td).

Then, up to a further subsequence, we have

hk → Û a.e.

To show that Û is indeed a minimiser, we prove that J is lower semicontinuous. By the
weak convergence of hk to Û in W 1,2(Td) and by strong convergence in L2(Td),

liminf
k→∞

∫
Td

1
2
|∇hk|2 dx ≥

∫
Td

1
2
|∇Û |2 dx,

since the norm is lower semicontinuous under weak convergence. Strong convergence in
L2(Td) implies strong convergence in L1(Td)), and therefore

lim
k→∞

∫
Td

hk dx =
∫
Td

Û dx.

By Fatou’s Lemma,

liminf
k→∞

∫
Td

eŪ+hk dx ≥
∫
Td

liminf
k→∞

eŪ+hk dx =
∫
Td

eŪ+Û dx.

We conclude that
lim
k→∞

J [hk]≥ J [Û ],

which proves that Û is a minimiser.

Next, we check that the minimiser Û solves the Euler-Lagrange equation (2.5). Again this
holds in any dimension d.

Lemma 2.8 (Euler-Lagrange Equation). Let Ū ∈ Ẇ 1,2 ∩L∞(Td) and let Û ∈W 1,2(Td) be the
unique minimiser of J whose existence was proved in Lemma 2.7. Then Û is a weak solution
of equation (2.5).
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Proof. First observe that, by definition of a minimiser,

J [Û ]≤ J [−Ū ]<+∞.

Explicitly, by definition of J ,∫
Td

1
2
|∇Û |2 +

(
eŪ eÛ −Û

)
dx ≤ J [−Ū ]<+∞.

Since Û ∈W 1,2(Td), by monotonicity of norms on the torus we have Û ∈ L1(Td). From this
we deduce that ∫

Td
eŪ eÛ dx <+∞.

Since ∥Ū∥L∞(Td) is finite, it follows that

∫
Td

eÛ dx <+∞.

Altogether, we have ∇Û ∈ L2(Td), Û ∈ L1(Td), eŪ ∈ L∞(Td), and eÛ ∈ L1(Td).

We now show that Û is a weak solution of (2.5). Let φ ∈C∞
c ,η > 0. By minimality of Û ,

J [Û ]≤ J [Û +ηφ ].

Then,

0 ≤ J [Û +ηφ ]−J [Û ]

η
=

1
η

(∫
Td

1
2
|∇Û +η∇φ |2 − 1

2
|∇Û |2 dx

)
+

1
η

(∫
Td

eŪ eÛ+ηφ − eŪ eÛ dx
)
+

1
η

(∫
Td

−(Û +ηφ)+Û dx
)

=
∫
Td

∇Û ·∇φ +
η |∇φ |2

2
dx+

∫
Td

eŪ+Û eηφ −1
η

dx−
∫
Td

φ dx.

In the limit as η goes to 0 we obtain, for all φ ∈C∞
c (Td),

0 ≤ lim
η→0

J [Û +ηφ ]−J [Û ]

η
=
∫
Td

∇Û ·∇φ dx+
∫
Td

eŪ+Û
φ dx−

∫
Td

φ dx.
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Since the latter inequality is valid both for φ and for −φ , we have that, for all φ ∈C∞
c (Td),

0 =
∫
Td

∇Û ·∇φ +
(

eŪ+Û −1
)

φ dx. (2.8)

This implies that Û is a weak solution of the equation

∆Û = eŪ+Û −1 on Td,

which completes the proof.

2.4.3 Regularity of Û

In this section, we prove regularity estimates on Û .

Lemma 2.9 (Regularity of Û). (i) Let Ū ∈ Ẇ 1,2 ∩L∞(Td), with the estimate

∥Ū∥L∞(Td) ≤ M1.

Let Û ∈W 1,2(Td) be the solution of (2.5) constructed in Section 2.4.2. Then Û ∈C1,α(Td)

for any α ∈ (0,1), with the estimate

∥Û∥C1,α (Td) ≤C
(
1+ e2M1

)
.

(ii) Let Ū ∈ Ẇ 1,2 ∩C0,α(Td) for some α ∈ (0,1), with the estimate

∥Ū∥C0,α (Td) ≤ M2.

Then Û ∈C2,α(Td) with

∥Û∥C2,α (Td) ≤C exp
[
C
(
M1 +(1+ e2M1)

)](
M2 +(1+ e2M1)

)
.

Proof. Our general strategy will be to consider the equation satisfied by Û :

∆Û = eŪ+Û −1, (2.9)

which we think of as a Poisson equation with source eŪ+Û − 1. The aim is to make use of
standard regularity estimates for the Poisson equation in order to deduce the required regularity
for Û . The first part of the statement follows from Calderón-Zygmund estimates and Sobolev
embedding, while the second part makes use of Schauder estimates. However, in order to
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implement this strategy, we must first prove suitable Lp and Hölder estimates on the source
term eŪ+Û −1. We will obtain these using energy estimates on the equation (2.9).

To prove an Lp estimate on eŪ+Û for p > 1, the formal argument is to choose e(p−1)Û as a
test function in the weak form of equation (2.9). Since

∇e(p−1)Û = (p−1)e(p−1)Û
∇Û ,

from (2.9) we obtain

−(p−1)
∫
Td

|∇Û |2e(p−1)Û dx =
∫
Td

(
eŪ epÛ − e(p−1)Û

)
dx.

This implies that ∫
Td

eŪ epÛ dx ≤
∫
Td

e(p−1)Û dx.

Bounding eŪ from below using the L∞ norm of Ū , we obtain

e−M1

∫
Td

epÛ dx ≤
∫
Td

e(p−1)Û dx.

In other words,
∥eÛ∥p

Lp(Td)
≤ eM1∥eÛ∥p−1

Lp−1(Td)
. (2.10)

To this we add an L1(Td) estimate, which follows from the fact that eU −1 must have total
integral zero: since Û is a solution of (2.5), we have

0 =
∫
Td

∆Û dx =
∫
Td

eU −1dx.

Since U = Ū +Û , it follows that

1 =
∫
Td

eŪ+Û dx ≥ e−M1

∫
Td

eÛ dx.

Thus
∥eÛ∥L1(Td) =

∫
Td

eÛ dx ≤ eM1.

Applying (2.10) in the case p = 2, we find that

∥eÛ∥L2(Td) ≤ eM1.

By induction we then obtain
∥eÛ∥Ln(Td) ≤ eM1 (2.11)
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for any integer n.
We now check that (2.10) can be obtained rigorously. The weak form of equation (2.9)

is given in equation (2.8); that is, Û satisfies (2.8) for test functions φ ∈ C∞(Td). Since
eU ∈ L1(Td), this further extends to all φ ∈ L∞∩W 1,2(Td) by a density argument. We therefore
define a test function in L∞ ∩W 1,2(Td) that approximates e(p−1)Û .

Consider the truncated function

Ûk := (Û ∧ k), for allk ∈ N.

Since e(p−1)Ûk ∈ L∞(Td) and ∇Û ∈ L2(Td),

∇e(p−1)Ûk = (p−1)e(p−1)Ûk∇Ûk = (p−1)eÛk∇Ûχ{Û<k} ∈ L2(Td);

thus e(p−1)Ûk ∈ L∞ ∩W 1,2(Td), and we can use it as a test function in equation (2.8):

0 =
∫
Td

∇Û ·∇e(p−1)Ûk dx+
∫
Td

(
eŪ e(Û+(p−1)Ûk)− e(p−1)Ûk

)
dx

= (p−1)
∫
Td

∇Û · e(p−1)Ûk∇Ûχ{Û<k} dx+
∫
Td

(
eŪ e(Û+(p−1)Ûk)− e(p−1)Ûk

)
dx

= (p−1)
∫
Td

|∇Û |2e(p−1)Ûk χ{Û<k} dx+
∫
Td

eŪ e(Û+(p−1)Ûk) dx−
∫
Td

e(p−1)Ûk dx.(2.12)

Since
∫
Td |∇Û |2e(p−1)Ûk χ{Û<k} dx ≥ 0, and e−M1 ≤ eŪ ≤ eM1 , (2.12) implies that

e−M1

∫
Td

eÛ+(p−1)Ûk ≤
∫
Td

e(p−1)Ûk .

By definition of Ûk we have that e(p−1)Ûk is increasing and converges monotonically to e(p−1)Û ,
hence by the Monotone Convergence Theorem

e−M1

∫
Td

eÛ+(p−1)Û = e−M1

∫
Td

epÛ ≤
∫
Td

eÛ .

Thus we obtain (2.10), which implies the Ln estimate (2.11) for any integer n.
We now prove the desired estimates on Û . For part (i) of the statement, we apply (2.11) for

some n > d. Since

∥eU∥Ln(Td) = ∥eŪ+Û∥Ln(Td) ≤ e∥Ū∥L∞(Td )∥eÛ∥Ln(Td) ≤ e2M1,

we have
∆Û = eŪ+Û −1 ∈ Ln(Td),
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with
∥eŪ+Û −1∥Ln(Td) ≤ 1+ e2M1 .

By Calderón-Zygmund estimates for the Poisson equation [30, Section 9.4],

∥Û∥W 2,n(Td) ≤Cn,d
(
1+ e2M1

)
.

Using Sobolev embedding for n sufficiently large, we deduce that for any α ∈ (0,1), Û ∈
C1,α(Td), with

∥Û∥C1,α (Td) ≤Cα,d
(
1+ e2M1

)
.

For part (ii) of the statement, it is enough to prove a bound on the C0,α(Td) norm of Û .
This bound is provided by part (ii). Then, if

∥Ū∥C0,α (Td) ≤ M2,

we have
∥U∥C0,α (Td) ≤ M2 +Cα,d

(
1+ e2M1

)
,

and so
∥eU∥C0,α (Td) ≤C exp

[
C
(
M1 +

(
1+ e2M1

))](
M2 +

(
1+ e2M1

))
.

Thus ∆Û ∈C0,α(Td).
We may then apply Schauder estimates [30, Chapter 4] to obtain Û ∈C2,α with the following

estimate:

∥Û∥C2,α (Td) ≤C
(
∥Û∥L∞(Td)+∥eU −1∥C0,α (Td)

)
≤C exp

[
C
(
M1 +

(
1+ e2M1

))](
M2 +

(
1+ eM1

))
.

This completes the proof of part (ii).

2.5 Stability of the Electric Field

In this section we study the stability of the electric field E =−∇U with respect to the charge
density ρ f . This is one of the key estimates needed to prove the uniqueness of solutions with
bounded density. Our aim is to prove a version of the following estimate for the singular part Ē,
due to Loeper [65].
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Lemma 2.10 (Loeper-type estimate for Poisson’s equation). For each i = 1,2, let hi ∈ L∞(Td)

be a probability density function:

hi ≥ 0,
∫
Td

hi(x)dx = 1.

Let Ūi be a solution of
∆Ūi = hi −1.

Then
∥∇Ū1 −∇Ū2∥2

L2(Td) ≤ max
i

∥hi∥L∞(Td)W
2
2 (h1,h2).

The main result of this section is the following proposition:

Proposition 2.11. For each i = 1,2, let Ūi be a solution of

∆Ūi = hi −1,

where hi ∈ L∞ ∩L(d+2)/d(Td). Then

∥∇Ū1 −∇Ū2∥2
L2(Td) ≤ max

i
∥hi∥L∞(Td)W

2
2 (h1,h2).

Now, in addition, let Ûi be a solution of

∆Ûi = eŪi+Ûi −1. (2.13)

Then

∥∇Û1 −∇Û2∥2
L2(Td) ≤ exp exp

[
Cd

(
1+max

i
∥hi∥L(d+2)/d(Td)

)]
×max

i
∥hi∥L∞(Td)W

2
2 (h1,h2).

Proof. We will show that

∥∇Û1 −∇Û2∥2
L2(Td) ≤C∥Ū1 −Ū2∥2

L2(Td). (2.14)

The proposition then follows from the Poincaré inequality for zero mean functions:

∥Ū1 −Ū2∥2
L2(Td) ≤Cd∥∇Ū1 −∇Ū2∥2

L2(Td).

We then apply the Loeper estimate from Lemma 2.10.
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We now prove (2.14). For convenience, we define the constant

A := exp
[

max
i

∥Ūi∥L∞(Td)+max
i

∥Ûi∥L∞(Td)

]
which will be fixed throughout the proof. Note that A can be controlled using Proposition 2.4,

∥Ūi∥L∞(Td) ≤Cd

(
1+∥hi∥

L
d+2

d (Td)

)
, ∥Ûi∥L∞(Td) ≤ exp

(
Cd

(
1+∥hi∥

L
d+2

d (Td)

))
.

Subtracting the two equations (2.13), we deduce that Û1 −Û2 satisfies

∆(Û1 −Û2) = eŪ1+Û1 − eŪ2+Û2 = eŪ1
(

eÛ1 − eÛ2
)
+ eÛ2

(
eŪ1 − eŪ2

)
. (2.15)

The weak form of (2.15) extends by density to test functions in L∞ ∩W 1,2(Td). Since
Û1 −Û2 has this regularity by assumption, it is an admissible test function. Hence

−
∫
Td
|∇Û1 −∇Û2|2 dx =

∫
Td

eŪ1
(

eÛ1 − eÛ2
)
(Û1 −Û2)dx (2.16)

+
∫
Td

eÛ2
(

eŪ1 − eŪ2
)
(Û1 −Û2)dx =: I1 + I2.

Observe that (ex − ey)(x− y) is always non-negative. Furthermore, by the Mean Value
Theorem applied to the function x 7→ ex we have a lower bound

(ex − ey)(x− y)≥ emin{x,y}(x− y)2.

We use this to bound I1 from below:

I1 ≥ e−∥Ū1∥L∞(Td )−maxi ∥Ûi∥L∞(Td )∥Û1 −Û2∥2
L2(Td) ≥ A−1∥Û1 −Û2∥2

L2(Td). (2.17)

For I2 we use the fact that, again by the Mean Value Theorem,

|ex − ey| ≤ emax{x,y}|x− y|.

Therefore

I2 ≤ e∥Û2∥L∞(Td )+maxi ∥Ūi∥L∞(Td )

∫
Td

|Ū1 −Ū2||Û1 −Û2|dx ≤ A
∫
Td

|Ū1 −Ū2||Û1 −Û2|dx.
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By the Cauchy-Schwarz inequality, for any choice of α > 0

I2 ≤ A
(

α∥Ū1 −Ū2∥2
L2(Td)+

1
4α

∥Û1 −Û2∥2
L2(Td)

)
. (2.18)

Substituting (2.17) and (2.18) into (2.16), we obtain

∫
Td
|∇Û1 −∇Û2|2 dx ≤ A

(
α∥Ū1 −Ū2∥2

L2(Td)+
1

4α
∥Û1 −Û2∥2

L2(Td)

)
−A−1∥Û1 −Û2∥2

L2(Td). (2.19)

We wish to choose α as small as possible such that

A
4α

−A−1 ≤ 0.

Thus the optimal choice is α = A2

4 . Substituting this into (2.19) gives

∫
Td
|∇Û1 −∇Û2|2 dx ≤ 1

4
A3∥Ū1 −Ū2∥2

L2(Td).

This completes the proof of (2.14).

2.6 Wasserstein Stability and Uniqueness

In this section, we prove a quantitative stability estimate between solutions with bounded
density. This is a version of Loeper’s [65] estimate for the classical Vlasov-Poisson system,
which we recalled as Theorem 1.16.

Proposition 2.12 (Stability for solutions with bounded density). For i = 1,2, let fi be solutions
of (2.1) satisfying, for some constant M > 0 and all t ∈ [0,T ],

ρ[ fi(t)]≤ M. (2.20)

Then there exists a constant C > 0, depending on M, such that, for all t ∈ [0,T ],

W2 ( f1(t), f2(t))≤ β (t,W2 ( f1(0), f2(0))) ,
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where β denotes the function

β (t,x) =

16deexp
[(

1+ log x
16d

)
e−Ct] t ≤ T0

(d ∨ x)eC(1+log16)(t−T0) t > T0,

where
T0 = inf

{
t > 0 : 16deexp

[(
1+ log

x
16d

)
e−Ct

]
> d
}
.

This estimate immediately implies a uniqueness result for solutions of VPME with bounded
density.

Corollary 2.13 (Uniqueness of solutions with bounded density). For each i = 1,2, let fi be a
solution of (2.1) in the space C([0,T ];P(Td ×Rd)), with bounded density

sup
t∈[0,T ]

∥ρ[ fi]∥L∞(Td) ≤Ci,

for the same initial datum f (0) ∈ P(Td ×Rd). Then f1 = f2.

Proof. We will prove Proposition 2.12 by means of a Gronwall type estimate. To do this, we
will first consider the evolution of particular specially constructed couplings πt ∈Π( f1(t), f2(t)).
First, observe that fi can be represented as the pushforward of the initial datum fi(0) along
the characteristic flow associated to (2.1). That is, for each i = 1,2, given fi, consider the flow
Zi(t;0,z) = (Xi(t;0,z),Vi(t;0,z)) defined by the system of ODEs

Ẋi =Vi

V̇i = Ei(Xi)

(Xi(0;0,z),Vi(0;0,z)) = z = (x,v),

(2.21)

where Ei is the electric field induced by fi:

Ei =−∇Ui, ∆Ui = eUi −ρ[ fi].

We again use the decomposition Ei = Êi + Ēi. Since ρ[ fi] ∈ L∞(Td) by assumption (2.20),
Lemma 2.6 implies that Ēi has log-Lipschitz regularity. Since L∞(Td)⊂ L

d+2
d (Td), we have

ρ[ fi] ∈ L∞ ∩L
d+2

d (Td). Thus we may apply Proposition 2.4 to deduce Lipschitz regularity of
Êi. Overall this implies that Ei has log-Lipschitz regularity, which is sufficient to guarantee the
existence of a unique solution to the system (2.21). The uniqueness of the flow implies that the
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linear Vlasov equation

∂tg+ v ·∇xg+Ei ·∇vg = 0, g|t=0 = fi(0) (2.22)

has a unique measure-valued solution g (see for instance [1, Theorem 3.1]). This solution can
be represented as the pushforward of the initial data along the characteristic flow, as defined in
Definition 2:

gt = Z(t;0, ·)# fi(0). (2.23)

Since fi is also a solution of (2.22), and the solution is unique, it follows that g = fi. We deduce
that fi has the representation (2.23). Note that here we are not yet asserting any nonlinear
uniqueness, because we already fixed Ei to be the electric field corresponding to fi.

We use the representation above to construct πt . First, fix an arbitrary initial coupling
π0 ∈ Π( f1(0), f2(0)). We then build a coupling πt for which each marginal evolves along the
appropriate characteristic flow. That is, we let

πt = (Z1(t;0, ·)⊗Z2(t;0, ·))# π0. (2.24)

This means that, for all φ ∈Cb((Td ×Rd)2),∫
(Td×Rd)2

φ(z1,z2)dπt(z1,z2) =
∫
Td×Rd

φ (Z1(t;0,z1),Z2(t;0,z2)))dπ0(z1,z2). (2.25)

We now consider the quantity

D(t) :=
∫
(Td×Rd)

2

(
|X1(t;0,z1)−X2(t;0,z2)|2 + |V1(t;0,z2)−V2(t;0,z2)|2

)
dπ0(z1,z2).

(2.26)
By definition (2.24) we have

D(t) =
∫
(Td×Rd)2

|x1 − x2|2 + |v1 − v2|2 dπt(z1,z2).

It then follows from the definition of the Wasserstein distances (Definition 4) that

W 2
2 ( f1(t), f2(t))≤ D(t). (2.27)

Moreover, since π0 was arbitrary, we have

W 2
2 ( f1(0), f2(0)) = inf

π0
D(0). (2.28)
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We will therefore focus next on controlling the growth of D(t). This amounts to performing
a Gronwall estimate along the trajectories of the characteristic flow. We give the details in
Lemma 2.14 below. We obtain a bound

D(t)≤ β (t,D(0)) ,

where the function β is defined by

β (t,x)≤

16deexp
[(

1+ log x
16d

)
e−Ct] t ≤ T0(x)

(d ∨ x)eC(1+log16)(t−T0) t > T0(x),
(2.29)

where
T0(x) = inf

{
t > 0 : C exp

[(
1+ log

x
16d

)
e−Ct

]
> d
}
.

From (2.27) it follows that

W 2
2 ( f1(t), f2(t))≤ β (t,D(0)) .

Finally, taking infimum over π0 and applying (2.28) concludes the proof.

Lemma 2.14 (Control of D). Let D be defined by (2.26). Then

D(t)≤ β (t,D(0)) ,

where β is defined by (2.29) for some C > 0 depending on M.

Proof. Differentiating with respect to t gives

Ḋ = 2
∫
(Td×Rd)2

(X1(t)−X2(t)) · (V1(t)−V2(t))+(V1(t)−V2(t)) · [E1(X1(t))−E2(X2(t))]dπ0.

(2.30)
We split the electric field into four parts:

E1(X1)−E2(X2) = [Ē1(X1)− Ē1(X2)]+ [Ē1(X2)− Ē2(X2)]

+
[
Ê1(X1)− Ê1(X2)

]
+
[
Ê1(X2)− Ê2(X2)

]
.

Applying Hölder’s inequality to (2.30), we obtain

Ḋ ≤ D+2
√

D
4

∑
i=1

I1/2
i ,
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where

I1 :=
∫
(Td×Rd)2

|Ē1(X1)− Ē1(X2)|2 dπ0, I2 :=
∫
(Td×Rd)2

|Ē1(X2)− Ē2(X2)|2 dπ0;

I3 :=
∫
(Td×Rd)2

|Ê1(X1)− Ê1(X2)|2 dπ0, I4 :=
∫
(Td×Rd)2

|Ê1(X2)− Ê2(X2)|2 dπ0.
(2.31)

We estimate the above terms in Lemmas 2.15-2.18 below. Altogether we obtain

Ḋ(t)≤

CD(t)
(

1+ |log D(t)
16d |

)
if D(t)< d

C(1+ log16)D(t) if D(t)≥ d.
(2.32)

We use this to derive a Gronwall type bound on D(t). If D(0) < d then, since D is a
continuous function of t, there is an interval t ∈ [0, t1) on which D(t)< d. On this interval D
satisfies

Ḋ(t)≤CD(t)
(

1+ |log
D(t)
16d

|
)
=CD(t)

(
1− log

D(t)
16d

)
.

We then note that the function ζ : R→ R defined by

ζ (t) = K exp
[
Ae−Ct

]
has the property

ζ̇ =Cζ log
K
ζ
.

Thus for t ∈ [0, t1], D satisfies

D(t)≤ 16deexp
[

log
D(0)
16de

e−Ct
]
. (2.33)

Let

T0 := inf
{

t > 0 : 16deexp
(

log
D(0)
16de

e−Ct
)
> d
}
.

Then t1 ≥ T0 and the bound (2.33) holds for t ∈ [0,T0].
For t > T0, we claim that D satisfies

D(t)≤ deC(1+log16)(t−T0). (2.34)

Indeed, if D(t)> d, we define

τ(t) = sup{s < t : D(s)≤ d}.



98 VPME: Global Well-posedness in 2D and 3D

Then
D(t) = d +

∫ t

τ(t)
Ḋ(s)ds.

Then, by (2.32), we have the bound

D(t)≤ d +C(1+ log16)
∫ t

τ(t)
D(s)ds

≤ d +C(1+ log16)
∫ t

T0

D(s)ds.

This bound clearly also holds for those t > T0 for which D(t)≤ d. Then (2.34) follows from
the integral form of Gronwall’s inequality. If D(0)≥ d then a similar argument shows that

D(t)≤ D(0)eC(1+log16)t .

Note that T0 = 0 in this case. This completes the proof.

Lemma 2.15 (Control of I1). Let I1 be defined as in (2.31). Then

I1 ≤C(M+1)2H(D),

where D is defined as in (2.26) and

H(x) :=

x
(
log x

16d

)2 if x ≤ d

d (log16)2 if x > d.

Proof. First we use the regularity estimate for Ē1 from Lemma 2.6:

I1 ≤ ∥ρ f1 −1∥2
L∞(Td)

∫
(Td×Rd)2

|X1(t)−X2(t)|2
(

log
4
√

d
|X1(t)−X2(t)|

)2

dπ0

=
1
4
∥ρ f1 −1∥2

L∞(Td)

∫
(Td×Rd)2

|X1(t)−X2(t)|2
(

log
|X1(t)−X2(t)|2

16d

)2

dπ0.

The function
a(x) = x

(
log

x
16d

)2

is concave on the set x ∈ [0,16de−1]. Since Xi(t) ∈ Td , we have |X1 −X2|2 ≤ d. Note that

a′(d) =− log16(2− log16)> 0;
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hence the function H(x) defined in the statement is concave on R+, and

I1 ≤
1
4
∥ρ f1 −1∥2

L∞(Td)

∫
(Td×Rd)2

H (|X1(t)−X2(t)|2)dπ0.

Then, since π0 is a probability measure, we may apply Jensen’s inequality to deduce that

I1 ≤
1
4
∥ρ f1 −1∥2

L∞(Td) H
(∫

(Td×Rd)2
|X1(t)−X2(t)|2 dπ0

)
≤ 1

4
∥ρ f1 −1∥2

L∞(Td) H(D).

Lemma 2.16 (Control of I2). Let I2 be defined as in (2.31). Then

I2 ≤ M2D,

where D is defined as in (2.26).

Proof. From (3.16), for all φ ∈C(Td) we have∫
(Td×Rd)2

φ [Xi(t)]dπ0 =
∫
Td×Rd

φ(x) fi(t,x,v)dxdv =
∫
Td

φ(x)ρ fi(t,x)dx. (2.35)

Thus

I2 =
∫
Td

|Ē1(x)− Ē2(x)|2ρ f2(t,x)dx

≤ ∥ρ f2∥L∞(Td)∥Ē1 − Ē2∥2
L2(Td)

= ∥ρ f2∥L∞(Td)∥∇Ū1 −∇Ū2∥2
L2(Td).

We use the Loeper-type stability estimate from Lemma 2.10 to control the difference between
different electric fields. Then

I2 ≤ max
i

∥ρ fi∥
2
L∞(Td)W

2
2 (ρ f1,ρ f2)≤ max

i
∥ρ fi∥

2
L∞(Td)D.

Lemma 2.17 (Control of I3). Let I3 be defined as in (2.31). Then

I3 ≤CM,d D,

where D is defined as in (2.26) and CM,d depends on M and d.
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Proof. Observe that

I3 =
∫
(Td×Rd)2

∣∣∣Ê1 [X1(t)]− Ê1 [X2(t)]
∣∣∣2 dπ0

≤
∫
(Td×Rd)2

∥Ê1∥2
C1(Td)|X1(t)−X2(t)|2 dπ0

≤ ∥Û1∥2
C2,α (Td)D

for any α > 0. To this we apply the regularity estimate on Û1 from Proposition 2.4 with α ∈ Ad:

∥Û1∥C2,α (Td) ≤Cα,d exp exp
(

Cα,d

(
1+∥ρ f1∥L

d+2
d (Td)

))
≤Cα,M,d,

since
∥ρ fi∥L

d+2
d (Td)

≤ ∥ρ fi∥L∞(Td) ≤ M.

Thus we have
I3 ≤CM,d D.

Lemma 2.18 (Control of I4). Let I4 be defined as in (2.31). Then

I4 ≤CM,d M2D,

where D is defined as in (2.26) and CM,d depends on M and d.

Proof. Using (2.35) again, we deduce that

I4 =
∫
Td

|Ê1(x)− Ê2(x)|2ρ f2(t,x)dx

≤ ∥ρ f2∥L∞(Td)∥Ê1 − Ê2∥2
L2(Td)

= ∥ρ f2∥L∞(Td)∥∇Û1 −∇Û2∥2
L2(Td).

To control the L2(Td) distance between the electric fields we use the stability estimate in
Proposition 2.11:

∥∇Û1 −∇Û2∥2
L2(Td) ≤ exp exp

[
Cd

(
1+max

i
∥ρ fi∥L(d+2)/d(Td)

)]
max

i
∥ρ fi∥L∞ W 2

2 (ρ f1,ρ f2).
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Therefore

I4 ≤ exp exp
[
Cd

(
1+max

i
∥ρ fi∥L(d+2)/d(Td)

)]
max

i
∥ρ fi∥

2
L∞ W 2

2 (ρ1,ρ2)

≤ exp exp
[
Cd

(
1+max

i
∥ρ fi∥L(d+2)/d(Td)

)]
max

i
∥ρ fi∥

2
L∞ D ≤CM,d M2D.

2.7 A Priori Estimates on the Mass Density

In this section, we prove a priori L∞(Td) bounds on the mass density ρ f of a solution f of the
VPME system (2.1). The idea is to control the maximum possible growth of a characteristic
trajectory. This gives a bound on how far the support of ft can spread over time. We will need
to use different methods depending on whether d = 2 or d = 3.

2.7.1 Two-dimensional Case

In this section we fix d = 2. Our aim is to prove the following a priori growth estimate on the
charge density of a solution of (2.1) with bounded density.

Proposition 2.19. Let d = 2. Let f be a solution of (2.1) with bounded density ρ f ∈L∞
loc
(
[0,+∞);L∞(T2)

)
,

satisfying for some constant C0 > 0,

∥ f∥L∞([0,T ]×T2×R2) ≤C0, sup
t∈[0,T ]

E ME[ f (t)]≤C0.

Assume that f (0) has compact support contained in T2 ×BR2(0,R0), for some R0. Then

sup
t∈[0,T ]

∥ρ f (t)∥L∞(T2) ≤CT (1+R0)
2 .

The constant CT depends on C0 and T .

2.7.1.1 Control of Ē

Lemma 2.20. Let d = 2. Let f be a solution of (2.1) satisfying for some constant C0,

∥ f∥L∞([0,T ]×T2×R2) ≤C0, sup
t∈[0,T ]

E ME[ f (t)]≤C0,
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and such that the support of f at any time t is contained in T2 ×BR2(0;R(t)) for some function
R : [0,+∞)→ [0,+∞). Then for all x ∈ T2 and all t ∈ [0,T ],

|Ē(t,x)| ≤C
(

1+[log(1+R(t))]1/2
)
.

Proof. We follow the methods of [43, Proposition 3.3]. From the equation we have the
representation

Ē(x) = Kper ∗ [ρ f −1](x) = K ∗ [ρ f −1](x)+K0 ∗ [ρ f −1](x), (2.36)

where K0 =−∇G0 is the smooth function defined in (1.44).
For the second term, since K0 is continuous on T2 and thus bounded, by Young’s inequality

we have
∥K0 ∗ (ρ f −1)∥L∞(T2) ≤ ∥K0∥L∞(T2)∥ρ f −1∥L1(T2) ≤ 2∥K0∥L∞(T2). (2.37)

The second inequality follows because ρ f has unit mass.
We estimate the first term by splitting the integral into a part close to the origin and a part

far from the origin: for any δ ∈ (0,1) and any x ∈ T2, we have

∣∣K ∗ [ρ f −1](x)
∣∣≤C

∣∣∣∣∣
∫
[− 1

2 ,
1
2 ]

2

y
|y|2

(ρ f (x− y)−1)dy

∣∣∣∣∣
≤C

∣∣∣∣∫|y|≤δ

y
|y|2

(ρ f (x− y)−1)dy
∣∣∣∣+C

∣∣∣∣∫2≥|y|>δ

y
|y|2

(ρ f (x− y)−1)dy
∣∣∣∣

≤Cδ∥ρ f −1∥L∞(T2)+C
(∫

2≥|y|>δ

1
|y|2

dy
)1/2

∥ρ f −1∥L2(T2).

≤Cδ∥ρ f −1∥L∞(T2)+C(− log(δ ))1/2∥ρ f −1∥L2(T2).

We note the following estimates on ρ f : firstly, since f is bounded with supp f ⊂ Td ×
BR2(0;R(t)),

∣∣ρ f (t,x)
∣∣= ∣∣∣∣∫v∈R2

f (t,x,v)dv
∣∣∣∣=
∣∣∣∣∣
∫

v∈BR2(0;R(t))
f (t,x,v)dv

∣∣∣∣∣≤C∥ f∥L∞(T2×R2)R(t)
2. (2.38)

Thus
∥ρ f (t, ·)∥L∞(T2) ≤CC0R(t)2. (2.39)

Secondly, by (2.4) we have a uniform L2(T2) bound

∥ρ f (t, ·)∥L2(T2) ≤C, (2.40)
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where C depends on C0 only. Substituting this into (2.38), we find that, for any δ ∈ (0,1),∣∣∣∣∣
∫
[− 1

2 ,
1
2 ]

2

y
|y|2

(ρ f (x− y)−1)dy

∣∣∣∣∣≤C
(

δR(t)2 +(− logδ )1/2
)
.

Choosing δ = (1+R(t))−2, we obtain∣∣∣∣∣
∫
[− 1

2 ,
1
2 ]

2

y
|y|2

(ρ f (x− y)−1)dy

∣∣∣∣∣≤C
(

1+(log(1+R(t)))1/2
)
. (2.41)

Substituting (2.41) and (2.37) into (2.36), we obtain

|Ē(t,x)| ≤C
(

1+(log(1+R(t)))1/2
)
,

for C depending on C0 only.

2.7.1.2 Control of E

Using Lemma 2.20, we obtain an L∞(T2) control on the whole electric field E.

Corollary 2.21. Let d = 2. Let f be a solution of (2.1) satisfying, for some constant C0,

∥ f∥L∞([0,T ]×T2×R2) ≤C0, sup
t∈[0,T ]

E ME[ f (t)]≤C0,

and such that the support of f at any time t is contained in T2 ×BR2(0;Rt) for some function
t 7→ Rt . Then

∥E(t, ·)∥L∞(T2) ≤C
(

1+
(
log(1+Rt)

)1/2
)
,

where C depends on C0 only.

Proof. By the triangle inequality, |E| ≤ |Ē|+ |Ê|. Since Ê =−∇Û , by Proposition 2.4,

∥Ê(t, ·)∥L∞(T2) ≤C exp
(

C
(

1+∥ρ f (t, ·)∥L2(Td)

))
.

By (2.40),
∥Ê(t, ·)∥L∞(T2) ≤C

for some C depending on C0 only. Therefore, by Lemma 2.20,

∥E(t, ·)∥L∞(T2) ≤C
(

1+
(
log(1+Rt)

)1/2
)
.
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This completes the proof.

2.7.1.3 Control of support

Proof of Proposition 2.19. Our goal now is to control the growth of the support of ρ f . If we
know that ρ f ∈ L∞([0,T ];L∞(Td)), then characteristic trajectories of (2.1) exist uniquely by the
log-Lipschitz regularity of E. We may then control the growth of the support of f by studying
the maximal possible growth of these characteristic trajectories. Let V (t;0,x,v) denote the v
coordinate at time t of the characteristic trajectory that starts from phase space position (x,v) at
time 0. We choose

Rt := sup
s∈[0,t],(x,v)∈supp f0

|V (s;0,x,v)|;

then the support of f at time t is contained in T2 ×BR2(0;Rt) for this choice of Rt . Next we
use the previous estimates to perform a Gronwall type estimate on this quantity.

For any fixed trajectory V (t) =V (t;x,v), observe that

|V (t)| ≤ |V (0)|+
∫ t

0
∥E(s)∥L∞(T2) ds.

Thus, by the uniform bound on E from Lemma 2.21,

Rt ≤ R0 +
∫ t

0
C
(

1+(log(1+Rs))
1/2
)

ds.

By comparison with the function

z(t) = (1+2Ct) [R0 + log(1+2Ct)] ,

which satisfies the differential inequality

ż ≥C(1+ log(1+ z))

(see Lemma A.1), we deduce that

Rt ≤ (1+2Ct) [R0 + log(1+2Ct)] .

Recalling (2.39), we conclude that

sup
t∈[0,T ]

∥ρ f (t)∥L∞(T2) ≤CT (1+R0)
2,
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which completes the proof.

2.7.2 Three-dimensional Case

In this section, we consider the case d = 3. We adapt estimates by Batt and Rein [10] in order
to prove a growth estimate on the mass density ρ f .

Proposition 2.22. Let f be a solution of (2.1) in dimension d = 3. Assume that there exists C0

such that
∥ f∥L∞([0,T ]×T3×R3) ≤C0, sup

t∈[0,T ]
E ME[ f (t)]≤C0,

and that f is a solution with bounded density ρ f , such that f (0) has compact support contained
in T3 ×BR3(0,R0). Then

sup
t∈[0,T ]

∥ρ f (t)∥L∞(T3) ≤ max{T−81/8,C(R3
0 +T 6)}.

The arguments of Batt and Rein [10] relate the growth of the mass density to the maximal
possible growth of the characteristics corresponding to the equation, for the case of the classical
Vlasov-Poisson equation. Our aim is to adapt these arguments to the massless electrons case.

Let (X(t,τ,x,v),V (t,τ,x,v)) denote the phase space position at time t of the characteristic
trajectory that starts from phase space position (x,v) at time τ . The existence of these char-
acteristics follows from the assumption that the solution f we consider has bounded density.
The electric field E therefore has log-Lipschitz regularity, and the existence of characteristic
trajectories then follows. The idea is to control how large |V (t,0,x,v)| may become as t grows,
for all x,v contained in the support of the initial datum f (0). The supremal value of |V (t,0,x,v)|
gives the extent of the support of the solution f at time t: if

Rt := sup{|V (s,0,x,v)| : s ∈ [0, t],x ∈ Td,v ∈ BRd(0;R0)},

then
supp f (t, ·, ·)⊂ Td ×BRd(0;Rt).

In particular this is useful because, since the L∞(Td ×Rd) norm of f is conserved by the VPME
system, we may deduce the following bound on the mass density ρ f :

∥ρ f (t, ·)∥L∞(Td) ≤ ∥ f (t, ·, ·)∥L∞(Td×Rd)Rd
t ≤C0Rd

t , (2.42)

where C0 depends on f (0) only.
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The growth of V (t,τ,x,v) can be estimated using bounds on the electric field E, since

V (t,τ,x,v) = v+
∫ t

τ

E (X(s,τ,x,v))ds. (2.43)

As a first estimate, we may write

|V (t,τ,x,v)| ≤ |v|+
∫ t

τ

∥E(s, ·)∥L∞(Td) ds (2.44)

≤ |v|+
∫ t

τ

∥Ē(s, ·)∥L∞(Td)+∥Ê(s, ·)∥L∞(Td) ds,

which remains true in any dimension d. The term involving Ê can be estimated using Proposi-
tion 2.4:

∥Ê(s, ·)∥L∞(Td) ≤ ∥Û(s, ·)∥C1(Td) ≤Cd exp
(

Cd

(
1+∥ρ f (s, ·)∥

L
d+2

d (Td)

))
.

The conservation of energy implies that this estimate is in fact uniform in s. The remaining
task is to estimate

Ē(s,x) = K ∗x ρ f (s,x).

In the two-dimensional case, we accomplished this by using an interpolation argument to
estimate Ē in terms of the L∞(Td) and L

d+2
d (Td) norms on ρ f (s, ·) - see Lemma 2.20. In the

two-dimensional case, the dependence on ∥ρ f ∥L∞(Td) was logarithmic, resulting in a differential
inequality that could be closed. In the three-dimensional case, the corresponding interpolation
results in the following estimate:

∥Ē(s,x)∥L∞(T3) ≤C∥ρ f ∥
5
9

L
5
3 (T3)

∥ρ f ∥
4
9
L∞(T3)

≤C0∥ρ f ∥
4
9
L∞(T3)

. (2.45)

The estimate (2.42) then implies that

∥Ē(s,x)∥L∞(T3) ≤C0R
4
3
t ,

where C0 depends on f (0) only. Substituting this into (2.44) results in the estimate

Rt ≤ R0 +C0

∫ t

0
(1+R

4
3
s )ds. (2.46)
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Since the exponent 4/3 is greater than one, the integral inequality (2.46) cannot be used to
obtain an estimate on Rt for large t.

The strategy of Batt and Rein [10] works by improving the exponent in the estimate (2.45)
using a bootstrap argument. As in [10], we introduce the quantities

hρ(t) := sup{∥ρ f (s, ·)∥L∞(T3); 0 ≤ s ≤ t} (2.47)

hη(t,∆) := sup{|V (t1,τ,x,v)−V (t2,τ,x,v)|; 0 ≤ t1, t2,τ ≤ t, |t1 − t2| ≤ ∆, (x,v) ∈ T3 ×R3}.

In [10], Batt and Rein prove a technical lemma, which we state below as Lemma 2.23. Roughly
speaking, this shows that, if an inequality of the form

hη(t,∆)≤C∗hρ(t)β
∆ (2.48)

holds for some exponent β > 1
6 , then, along any characteristic trajectory, an improved estimate

holds on Ē:
|Ē (X(t,τ,x,v))| ≤Chρ(t)β ′

, (2.49)

for a new exponent β ′ satisfying 1
6 ≤ β ′ < β . Notice for instance that (2.45) implies that (2.48)

holds for the choice β = 4
9 . This can then be used in a bootstrap argument, because (2.43) and

(2.49) together imply that an estimate of the form (2.48) holds for a smaller value of β . Once
β is sufficiently small, then it is possible to prove a version of (2.46) which can be closed to
deduce an estimate on Rt .

Lemma 2.23. Let (X(t;s,x,v),V (t;s,x,v)) denote the solution at time t of an ODE(
Ẋ(t)
V̇ (t)

)
= a(t,X(t),V (t)),

(
X(s)
V (s)

)
=

(
x
v

)
,

where a is of the form

a(t,X ,V ) =

(
V

a2(t,X ,V )

)
,

for some vector-field a2 : [0,T ]×T3 ×R3 → R3.
Assume that, for t ∈ [0,T ], f = f (t,x,v) is the pushforward of f0 along the associated

characteristic flow; that is, for all φ ∈Cb(T3 ×R3),∫
T3×R3

f (t,x,v)φ(x,v)dxdv =
∫
T3×R3

f (s,x,v)φ(X(t;s,x,v),V (t;s,x,v))dxdv.
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Assume that there exists C∗ > 1 such that

∥ f∥L∞([0,T ]×T3×R3) ≤C∗, sup
t∈[0,T ]

∥ ft |v|2∥L1(T3×R3) ≤C∗.

Also, suppose that

hη(t,∆)≤C∗hρ(t)β
∆ for all hρ(t)−β ≤ ∆ ≤ t, (2.50)

where hρ ,hη are defined as in (2.47). Then for all 0 ≤ t1 < t2 ≤ t with t2 − t1 ≤ ∆, if

hρ(t)−β/2 ≤ ∆ ≤ t

then ∫ t2

t1

∫
T3
|X(s)− y|−2

ρ f (s,y)dyds ≤C
(

hρ(t)2β/3 +hρ(t)1/6
)

∆,

where C depends only on C∗.

Using this technical lemma, we now carry out the bootstrap strategy outlined above.

Proof of Proposition 2.22. Using the representation of the Coulomb kernel on the torus Kper

discussed in Section 1.3.3, the total force E has the representation

E(t,x) =C
∫
T3

x− y
|x− y|3

ρ f (t,y)dy+[K0 ∗ (ρ f −1)](t,x)+ Ê(t,x),

where K0 is a smooth function. Fix a characteristic trajectory (X(t),V (t)). Along the trajectory
we have an estimate

|V (t2)−V (t1)| ≤C
∫ t2

t1

∫
T3
|X(s)− y|−2

ρ f (s,y)dyds (2.51)

+C
∫ t2

t1
|K0 ∗x [ρ f (s,X(s))−1]|ds+

∫ t2

t1
|Ê(s,X(s))|ds.

Since K0 is a C1(T3) function, we have

|K0 ∗x [ρ f (s, ·)−1]| ≤ ∥K0∥L∞(T3)∥ρ f (s, ·)−1∥L1(T3) ≤ ∥K0∥L∞(T3) , (2.52)

where the last inequality follows from conservation of mass.
For the smooth part of the field, we use Proposition 2.4 and Lemma 1.12 to get

∥Ê(s, ·)∥L∞(T3) ≤ ∥Û(s, ·)∥C1,α (T3) ≤Cd exp
(

Cd

(
1+∥ρ f (s, ·)∥

L
5
3 (T3)

))
≤C, (2.53)
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for some C depending on C0.
Now, in order to apply Lemma 2.23, we need to ensure that (2.50) holds for some β > 0.

To do that, we rely on the following estimate from [50, Lemma 4.5.4]:∫
T3
|x− y|−2

ρ f (s,y)dy ≤C∥ρ f (s, ·)∥
5/9
L5/3∥ρ f (s, ·)∥

4/9
L∞(T3)

≤C∥ρ f (s, ·)∥
4/9
L∞(T3)

, (2.54)

where the second inequality follows from (2.4). Recalling the definition of hη and hρ , we may
combine (2.54), (2.52) and (2.53) with (2.51), to deduce that (2.50) holds with β = 4

9 , provided
that hρ(t)−2/9 ≤ ∆ ≤ t. This allows us to apply Lemma 2.23 to obtain a better control on the
term

∫
T3 |X(s)− y|−2ρ f (s,y)dyds. Using (2.51) again we get

hη(t,∆)≤C
(

hρ(t)
2
3 ·

4
9 +hρ(t)1/6

)
∆+C∆ ≤Chρ(t)

8
27 ∆, if hρ(t)−2/9 ≤ ∆ ≤ t,

where we used that hρ ≥ 1 (since ∥ρ f ∥L1(Td) = 1).
This implies that (2.50) holds with β = 8

27 , so we may reapply Lemma 2.23 to obtain a
even better control on the term

∫
T3 |X(s)− y|−2ρ f (s,y)dyds. Using (2.51) again we get

hη(t,∆)≤C
(

hρ(t)
2
3 ·

8
27 +hρ(t)1/6

)
∆+C∆ ≤Chρ(t)

16
81 ∆ if hρ(t)−4/27 ≤ ∆ ≤ t.

After one more iteration, we get

hη(t,∆)≤C
(

hρ(t)
2
3 ·

16
81 +hρ(t)1/6

)
∆+C∆ ≤C

(
hρ(t)

32
243 +hρ(t)1/6

)
∆ ≤Chρ(t)1/6

∆,

(2.55)
provided that hρ(t)−8/81 ≤ ∆ ≤ t.

Thus if the support of f (0) is contained in T3 ×BR3(0,R0), then arguing as in (2.38) for
d = 3 we have

hρ(t)≤C∥ f (0)∥L∞(T3×R3) (R0 +hη(t))
3 .

If t ≥ hρ(t)−8/81, it follows by (2.55) and the Cauchy-Schwarz inequality that

hρ(t)≤C
(

R0 +hρ(t)1/6t
)3

≤CR3
0 +Chρ(t)1/2t3 ≤CR3

0 +C
t6 +hρ(t)

2

and therefore
hρ(t)≤C(R3

0 + t6).

On the other hand, for t ≤ hρ(t)−8/81 we trivially have

hρ(t)≤ t−81/8.
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Combining these two bounds together we obtain, as desired,

hρ(t)≤ max{t−81/8,C(R3
0 + t6)}.

2.8 A Regularised System

Next, we turn to the construction of solutions for the VPME system. We begin by considering
a regularised system. We will be able to prove the existence of solutions for this system using
a variation on the theory for Vlasov equations with smooth interaction that we discussed in
Section 1.3.2.

In Section 2.9, we will then construct solutions of the VPME system by proving compactness
of the solutions of the regularised system, using the mass density estimates from Section 2.7.
After extracting a convergent subsequence, we will prove that the limit is a solution of VPME.

To introduce our regularisation, we define a scaled mollifier χr by letting

χr(x) = r−d
χ

(x
r

)
. (2.56)

Here χ : Rd → R is a fixed smooth, compactly supported and (therefore) bounded function.
We assume further that χ is radially symmetric, non-negative and has total mass 1. We then
consider the following regularised system:

∂t fr + v ·∇x fr +Er[ fr] ·∇v fr = 0,
Er =−χr ∗∇Ur,

∆Ur = eUr −χr ∗ρ[ fr],

fr|t=0 = f (0)≥ 0,
∫
Td×Rd f (0)dxdv = 1.

(2.57)

We regularise the ion density but not the electron density. This is a slightly different
approach from that of Bouchut [17], where both densities are regularised. The idea is that the
thermalisation assumption should lead to a regularising effect. This choice is further motivated
in part by our later study of the mean field limit in Chapter 4, where we will use a microscopic
system of this form.

We introduce the decomposition

Er = Ēr + Êr,
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where
Ēr =−χr ∗∇Ūr, Êr =−χr ∗∇Ûr,

with Ūr, Ûr satisfying

∆Ūr = 1−χr ∗ρ[ fr], ∆Ûr = eŪr+Ûr −1.

Notice that we are using a technique of ‘double regularisation’; for instance, if we define
the ‘singular’ part of the electric field to be Ēr =−χr ∗∇Ūr, where

∆Ūr = 1−χr ∗ρ[ fr],

then Ēr can be represented in the form

Ēr = χr ∗χr ∗Kper ∗ρ[ fr].

This type of regularisation appeared in the work of Horst [53], and has subsequently been
used in many other contexts. An advantage of this approach is that the system (2.57) has an
associated conserved energy, defined by

E ME
r [ f ] :=

1
2

∫
Td×Rd

|v|2 f dxdv+
1
2

∫
Td
|∇Ur|2 dx+

∫
Td

UreUr dx. (2.58)

If fr converges to some f sufficiently strongly as r tends to zero, then we would expect E ME
r [ fr]

to converge to E ME[ f ], where E ME is the energy of the original VPME system, defined in (2.2).
In the regularised system, the force Er will be smooth. It is therefore possible to construct

solutions for this system using standard methods for Vlasov equations with smooth interactions,
following for example [18, 27, 31, 72]. The standard results cannot be applied directly since
the force is not of convolution type, but the method can be adapted to our case.

Lemma 2.24 (Existence of regularised solutions). For every f (0) ∈ P(Td ×Rd), there exists
a unique solution fr ∈ C([0,∞);P(Td ×Rd)) of (2.57). If f (0) ∈ Lp(Td ×Rd) for some
p ∈ [1,∞], then for all t ∈ [0,∞),

∥ fr(t)∥Lp(Td×Rd) ≤ ∥ f (0)∥Lp(Td×Rd).

Proof. We sketch the proof, which is a modification of the methods described in Section 1.3.2
in order to handle the extra term in the electric field. First consider the linear problem for fixed
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µ ∈C([0,∞);P(Td ×Rd)):

∂tg
(µ)
r + v ·∇xg(µ)r +Er[µ] ·∇vg(µ)r = 0,

E(µ)
r =−χr ∗∇U (µ)

r ,

∆U (µ)
r = eU (µ)

r −χr ∗ρ[µ],

g(µ)r |t=0 = f (0)≥ 0,
∫
Td×Rd

f (0)(dxdv) = 1,

(2.59)

for f (0) ∈ P(Td ×Rd).
Observe that, for any probability measure µ , χr ∗ρ[µ] is a function satisfying

|χr ∗ρ[µ]| ≤ ∥χr∥L∞(Td).

This is shown in the proof of Lemma 1.1. Then by Proposition 2.4,

∥U (µ)
r ∥C1(Td) ≤ exp

[
Cd

(
1+∥χr∥L∞(Td)

)]
,

and hence E(µ)
r = χr ∗∇U (µ)

r is of class C1(Td), with the uniform-in-time estimate

∥E(µ)
r ∥C1(Td) ≤ ∥χr∥C1(Td)∥∇U (µ)

r ∥C(Td) ≤ ∥χr∥C1(Td) exp
[
Cd

(
1+∥χr∥L∞(Td)

)]
≤Cr,d .

(2.60)
This implies the existence of a unique global-in-time C1 characteristic flow. Using this flow
we may construct a unique solution g(µ)r ∈C([0,∞);P(Td ×Rd)) to the linear problem (2.59)
by the method of characteristics. Since the vector field (v,Er) is divergence free, this solution
conserves Lp(Td ×Rd) norms for p ∈ [1,+∞].

To prove that the nonlinear equation has a unique solution in C
(
[0,∞);P(Td ×Rd)

)
, we

adapt the methods presented for smooth Vlasov equations in Section 1.3. We have discussed in
Subsection 1.3.2.5 that it is enough to show that the electric field E(µ)

r is Lipschitz and has a
stability property in W1 with respect to µ:

∥E(µ)
r ∥Lip ≤Cr (2.61)

∥E(µ)
r −E(ν)

r ∥L∞(Td) ≤CrW1(µ,ν). (2.62)

The Lipschitz regularity (2.61) holds by (2.60). For the stability (2.62), once again we use the
decomposition E(µ)

r = Ē(µ)
r + Ê(µ)

r . First,

Ē(µ)
r =−χr ∗∇Ū (µ)

r = χr ∗Kper ∗χr ∗ρ[µ],
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where Kper is the Coulomb kernel on the torus (recall the definitions in Subsection 1.3.3). This
is a force of convolution type. The kernel is Lipschitz since Kper ∈ L1(Td) and χr is smooth.
We can therefore use the stability estimate of Lemma 1.10. It remains to verify stability of Êr

with respect to µ .
Consider two continuous paths of probability measures µ,ν ∈C([0,∞);P(Td ×Rd)). First

note that by Young’s inequality,

∥Ê(µ)
r − Ê(ν)

r ∥L∞(Td) = ∥χr ∗ (∇Û (µ)
r −∇Û (ν)

r )∥L∞(Td) ≤ ∥χr∥L2(Td)∥∇Û (µ)
r −∇Û (ν)

r ∥L2(Td).

By the L2 stability estimate from Proposition 2.11,

∥∇Û (µ)
r −∇Û (ν)

r ∥L2(Td) ≤ exp
[
C
(

max
γ∈{µ,ν}

∥Ū (γ)
r ∥L∞(Td)+ max

γ∈{µ,ν}
∥Û (γ)

r ∥L∞(Td)

)]
× ∥Ū (µ)

r −Ū (ν)
r ∥L2(Td).

By Proposition 2.4,

max
γ∈{µ,ν}

∥Ū (γ)
r ∥L∞(Td)+ max

γ∈{µ,ν}
∥Û (γ)

r ∥L∞(Td) ≤ exp
[
Cd

(
1+∥χr∥L∞(Td)

)]
.

Hence

∥∇Û (µ)
r −∇Û (ν)

r ∥L2(Td) ≤Cr,d ∥Ū (µ)
r −Ū (ν)

r ∥L2(Td)

≤Cr,d ∥Ū (µ)
r −Ū (ν)

r ∥L∞(Td) =Cr,d ∥χr ∗x G∗x (ρ[µ]−ρ[ν ])∥L∞(Td).

Note that χr∗x G is smooth and hence Lipschitz. We can therefore apply Lemma 1.10. Explicitly,
by Kantorovich duality for the W1 distance we have

W1(ρµ ,ρν) = sup
∥φ∥Lip≤1

{∫
Td

φ dρµ −
∫
Td

φ dρν

}
.

Thus for any x ∈ Td

χr ∗x G∗x (ρµ −ρν)(x) =
∫
Td
[χr ∗x G](x− y)d(ρµ −ρν)(y)

≤ ∥χr ∗x G(x−·)∥LipW1(ρµ ,ρν)≤Cr,d W1(ρµ ,ρν),
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where Cr,d is independent of x. Hence

∥χr ∗x G∗x (ρµ −ρν)∥L∞(Td) ≤Cr,d W1(ρµ ,ρν).

We conclude that

∥χr ∗ (∇Û (µ)
r −∇Û (ν)

r )∥L∞(Td) ≤Cr,d W1(ρµ ,ρν)≤Cr,d W1(µ,ν),

which shows that (2.62) holds.
The methods of proof of Theorem 1.2 (existence of solutions) and Theorem 1.5 (uniqueness

of solutions) can therefore be adapted to this case. This proves the existence of a unique
solution fr ∈C([0,∞);P(Td ×Rd)) for the nonlinear regularised equation (2.57).

This solution also preserves all Lp(Td ×Rd) norms, since it is the solution of the linear
transport equation  ∂tg+ v ·∇xg+Er[ fr] ·∇vg = 0,

g|t=0 = f (0)≥ 0,
∫
Td×Rd

f (0)dxdv = 1,

and (v,Er[ fr]) is a divergence-free C1 vector field.

2.9 Construction of Solutions

In this section, we show that the approximate solutions fr converge to a limit as r tends to
zero, and that this limit may be identified as the unique bounded density solution of (2.1) with
data f (0). In the following lemma, we collect together some useful uniform estimates for the
approximate solutions fr.

Lemma 2.25. Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported. For each r > 0, let fr

denote the solution of (2.57) with initial datum f (0). Then fr have the following properties:

(i) Lp bounds: for all p ∈ [1,+∞],

sup
r>0

sup
t∈[0,T ]

∥ fr(t)∥Lp(Td×Rd) ≤ ∥ f (0)∥Lp(Td×Rd). (2.63)

(ii) Moment bounds:

sup
r>0

sup
t∈[0,T ]

∫
Td×Rd

|v|2 fr(t,x,v)dxdv ≤C[ f (0)].
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Proof. Property (i) was proved in Lemma 2.24. Property (ii) is a consequence of the con-
servation of the energy functional E ME

r [ fr] defined by (2.58). First we must check that
E ME

r [ f (0)] is bounded uniformly in r. Since f (0) ∈ L∞(Td ×Rd) with compact support,
we have ρ0 := ρ[ f (0)] ∈ L∞(Td). Since ∥χr ∗ρ0∥L∞(Td) ≤ ∥ρ0∥L∞(Td), by Proposition 2.4 we
have for any α ∈ (0,1)

∥Ur(0)∥C1,α (Td) ≤C
(

α,∥ρ0∥L∞(Td)

)
.

Moreover
∫
Td×Rd |v|2 f (0,x,v)dxdv is finite since f (0) is compactly supported. Therefore there

exists C0 depending on f (0) such that

sup
r>0

sup
t∈[0,T ]

E ME
r [ fr(t)]≤C0. (2.64)

Note that xex ≥−e−1. This implies that for all r and all t ∈ [0,T ],∫
Td×Rd

|v|2 fr(t,x,v)dxdv ≤C, (2.65)

which completes the proof of Property (ii).

Proposition 2.26 (Density bounds). Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported.
For each r > 0, let fr denote the solution of (2.57) with initial datum f (0). Fix T > 0. Then,
for all r ∈ [0,1] the mass density ρ[ fr] satisfies the following bounds, which are uniform with
respect to r:

sup
r>0

∥ρ[ fr(t)]∥
L

d+2
d (Td)

≤C[ f (0)], (2.66)

sup
r>0

∥ρ[ fr(t)]∥L∞(Td) ≤C[T, f (0)]. (2.67)

Proof. The L
d+2

d (Td) bound follows from the moment bound (2.65) and the uniform L∞(Td ×
Rd) bound (2.63), after applying the interpolation estimate Lemma 1.12. For the L∞(Td) bound
we use the estimates on the growth of the support from Propositions 2.19 and 2.22, which are
valid for solutions of the regularised equation, with the same constants. We give the details in
Lemmas 2.27, 2.28 and 2.29 below.

To prove L∞ bounds on the mass densities ρ[ fr] that are uniform in r, we revisit the
calculations in Section 2.7, and show that they can be adapted to the regularised system. We
recall that we used different methods in the two cases d = 2 and d = 3. In both cases, we make
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use of the decomposition
Er = Ēr + Êr.

This results in the estimate

|Er(x)| ≤Cd

∣∣∣∣( 1
| · |d−1

)
∗χr ∗χr ∗ρ[ fr](x)

∣∣∣∣+ |K0 ∗χr ∗χr ∗ρ[ fr](x)|+ |Êr(x)|. (2.68)

Note firstly that, since K0 ∈C∞(Td), by Young’s inequality,

∥K0 ∗χr ∗χr ∗ρ[ fr]∥L∞(Td) ≤ ∥K0∥L∞(Td)∥χr ∗χr ∗ρ[ fr]∥L1(Td)

≤ ∥K0∥L∞(Td),

using the fact that ρ[ fr] and χr have total mass one.
Secondly, by Proposition 2.4, for α ∈ (0,1), for all r > 0,

∥Ûr∥C1,α (Td) ≤Cα,d exp
(

Cα,d

(
1+∥χr ∗ρ[ fr]∥

L
d+2

d (Td)

))
.

Thus

∥Êr∥L∞(Td) = ∥χr ∗∇Ûr∥L∞(Td) ≤ ∥∇Ûr∥L∞(Td)

≤Cd exp
(

Cd

(
1+∥χr ∗ρ[ fr]∥

L
d+2

d (Td)

))
≤Cd exp

(
Cd

(
1+∥ρ[ fr]∥

L
d+2

d (Td)

))
≤C(d, f (0)),

where the final inequality uses the bound from (2.66):

sup
r>0

∥ρ[ fr(t)]∥
L

d+2
d (Td)

≤C[ f (0)].

It remains to estimate the term∣∣∣∣( 1
| · |d−1

)
∗χr ∗χr ∗ρ[ fr](x)

∣∣∣∣ .
To do this, we revisit the estimates of Section 2.7 and show that they apply when the regularisa-
tion by convolution is included. Since fr satisfies the regularised system (2.57), we will be able
to show that these bounds hold rigorously rather than being a priori estimates. We begin by
showing that the regularised kernel is comparable to the non-regularised one.
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Lemma 2.27 (Bounds on the regularised kernel). Let d > 1 and let χr be defined by (2.56) for
some fixed χ ∈Cc(Rd). Then there exists a constant C(d,χ)> 0, independent of r, such that,
for all x ∈

[
−1

2 ,
1
2

]d
, ∫

[− 1
2 ,

1
2 ]

d

χr(x− y)
|y|d−1 dy ≤ C(d,χ)

|x|d−1 .

Proof. For each x ∈
[
−1

2 ,
1
2

]d
, consider the function

|x|d−1
∫
[− 1

2 ,
1
2 ]

d

χr(x− y)
|y|d−1 dy.

There exists a constant Cd > 0 such that, for all x,y ∈ Rd ,

|x|d−1 ≤Cd

(
|y|d−1 + |x− y|d−1

)
.

Thus

|x|d−1
∫
[− 1

2 ,
1
2 ]

d

χr(x− y)
|y|d−1 dy ≤

∫
[− 1

2 ,
1
2 ]

d |χr(x− y)|dy+
∫
[− 1

2 ,
1
2 ]

d

|x− y|d−1

|y|d−1 |χr(x− y)|dy.

(2.69)
Note that∫

x+[− 1
2 ,

1
2 ]

d |χr(y)|dy = r−d
∫

x+[− 1
2 ,

1
2 ]

d

∣∣∣χ (y
r

)∣∣∣dy ≤
∫
Rd

|χ(y)|dy =C(χ).

Split the second term of (2.69) as follows: for any L > 0,

∫
[− 1

2 ,
1
2 ]

d

|x− y|d−1

|y|d−1 |χr(x−y)|dy≤
∫
|y|≤L

|x− y|d−1

|y|d−1 |χr(x−y)|dy+
∫

2≥|y|>L

|x− y|d−1

|y|d−1 |χr(x−y)|dy.

The first term is estimated by

∫
|y|≤L

|x− y|d−1

|y|d−1 |χr(y)|dy ≤ ∥| · |d−1
χr∥L∞(Rd)

∫
y≤L

1
|y|d−1 dy ≤CdL∥| · |d−1

χr∥L∞(Rd).

Observe that

|x|d−1|χr(x)|= r−1
∣∣∣x
r

∣∣∣d−1
χ

(x
r

)
≤ r−1∥| · |d−1

χ∥L∞(Rd) ≤C(χ)r−1.

The second term is estimated by

∫
2≥|y|>L

|x− y|d−1

|y|d−1 |χr(x− y)|dy ≤ L1−d∥| · |d−1
χr∥L1(Rd).
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For the constant, we find that

∥| · |d−1
χr∥L1(Rd) = r−d

∫
Rd

|x|d−1
∣∣∣χ (x

r

)∣∣∣dx

= rd−1
∫
Rd

|x|d−1
χ(x)dx

≤C(χ)rd−1.

Altogether this gives

|x|d−1
∫
[− 1

2 ,
1
2 ]

d

χr(x− y)
|y|d−1 dy ≤C(χ)

[
1+ r−1

(
CdL+L1−drd

)]
.

Minimising over L, the optimal value is L =Cdr. Then

|x|d−1
∫
[− 1

2 ,
1
2 ]

d

χr(x− y)
|y|d−1 dy ≤C(d,χ).

This completes the proof.

Remark 3. Lemma 2.27 also applies in the case of the double regularisation χr ∗χr, since

χr ∗χr(rx) = r−2d
∫
Rd

χ

(
x− y

r

)
χ

(y
r

)
dy = r−d

∫
Rd

χ (x− y)χ (y)dy = r−d
χ ∗χ(x).

Lemma 2.28 (Mass bounds, d = 2). Let d = 2. Let f (0) ∈ L1 ∩L∞(T2 ×R2) have compact
support contained in T2 ×BR2(0,R0). For each r > 0, let fr denote the unique solution of
(2.57) in the space C

(
[0,+∞);P(T2 ×R2)

)
with initial datum f (0).

Then fr(t) is compactly supported in T2 ×R2 for all t ∈ [0,∞). Moreover, the mass density
ρ[ fr](t) lies in the space L∞(T2), with the bound

sup
r∈[0.1]

sup
t∈[0,T ]

∥ρ[ fr](t)∥L∞(T2) ≤CT (1+R0)
2 .

Proof. We discussed in the proof of Lemma 4.7 that Er = Er[ fr] is a C1(T2) function for all t,
with the estimate (2.60), which is uniform in t ≥ 0 but not in r.
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The characteristic system of system (2.57) is the following ODE for paths t 7→ Zr(t;s,z),
where Zr(t;s,z) = (Xr(t;τ,z),Vr(t;τ,z)):

Ẋr(t;τ,z) =Vr(t;τ,z)

V̇r(t;τ,z) = Er [t,Xr(t;τ,z)]

Zr(τ;τ,z) = z = (x,v).

(2.70)

This system therefore has a unique global-in-time solution for all s ∈ R, z ∈ T2 ×R2.
For any characteristic trajectory Zr(t;0,z), the velocity component satisfies

|Vr(t;0,z)| ≤ |v|+
∫ t

0
∥Er(s)∥L∞(T2) ds.

By estimate (2.60) and the fact that f (0) is compactly supported,

|Vr(t;0,z)| ≤ R0 +Cr t.

Thus fr(t) is compactly supported for all t ≥ 0, with the following preliminary bound on Rt :

Rt ≤ R0 +Crt.

Then the mass density satisfies

∥ρ[ fr](t)∥L∞(T2) ≤C(R0 +Crt)2.

We now seek a bound that is uniform in r. By (2.71) and the decomposition (2.68) of Er,

|Vr(t;0,z)| ≤ |v|+C( f0)t +
∫ t

0

∣∣∣∣( 1
| · |

)
∗χr ∗χr ∗ρ[ fr] (s,Xr(s;0,z))

∣∣∣∣ds.

By Lemma 2.27,

|Vr(t;0,z)| ≤ |v|+C( f0)t +
∫ t

0

∥∥∥∥∫T2

ρ[ fr] (s, ·− y)
|y|

dy
∥∥∥∥

L∞(T2)

ds.

By Lemma 2.20,

|Vr(t;0,z)| ≤ |v|+Ct +C
∫ t

0

(
1+(log(1+Rs))

1/2
)

ds,

where the constant C depends only on f (0) and is independent of r.
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As in Proposition 2.19, we deduce that

Rt ≤ (1+2Ct) [R0 + log(1+2Ct)] ,

and conclude that
sup

t∈[0,T ]
∥ρ[ fr](t)∥L∞(T2) ≤CT (1+R0)

2.

Lemma 2.29 (Mass bounds, d = 3). Let d = 3. Let f (0) ∈ L1 ∩L∞(T3 ×R3) have compact
support contained in T3 ×BR3(0,R0). For each r > 0, let fr denote the unique solution of
(2.57) in the space C

(
[0,+∞);P(T3 ×R3)

)
with initial datum f (0).

Then fr(t) is compactly supported in T3 ×R3 for all t ∈ [0,+∞). Moreover, the mass
density ρ[ fr](t) lies in the space L∞(T3), with the bound

sup
r>0

sup
t∈[0,T ]

∥ρ[ fr](t)∥L∞(T3) ≤ max{T−81/8,C(R3
0 +T 6)}.

Proof. By (2.60), the characteristic system (2.70) is well-posed for all s ∈ R, z ∈ T3 ×R3. We
define the quantities

h(r)ρ (t) := sup{∥ρ[ fr](s)∥L∞(T3);0 ≤ s ≤ t}

h(r)η (t,∆) := sup{|Vr(t1,τ,z)−Vr(t2,τ,z)|; 0 ≤ t1, t2,τ ≤ t, |t1 − t2| ≤ ∆, z ∈ T3 ×R3}.

We check that these quantities are well defined. By the uniform C1 estimate (2.60) on Er,

|Vr(t1;τ,z)−Vr(t2;τ,z)| ≤
∫ t2

t1
|Er [s,X(s, ;τ,z)]| (2.71)

≤ |t2 − t1|∥Er∥L∞(T3) ≤Cr|t2 − t1|. (2.72)

Thus h(r)η (t,∆)≤Cr∆. Moreover

|ρ[ fr](t,x)| ≤
∫

supp fr(t)
fr(t,x,v)dv,

≤ ∥ fr(t)∥L∞(T3×R3) (R0 +Crt)
3 .

By the uniform L∞(T3 ×R3) bounds (2.63),

sup
t∈[0,T ]

∥ρ[ fr](t)∥L∞(T3) ≤ ∥ f (0)∥L∞(T3×R3) (R0 +Crt)
3 . (2.73)
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By estimates (2.72) and (2.73), both h(r)ρ (t) and h(r)η (t,∆) are finite for all t ≥ 0 and ∆ ∈ [0, t].
We now apply the bootstrap scheme from the proof of Proposition 2.22, using the estimates

of Batt and Rein (Lemma 3.13). We use this to obtain an estimate on h(r)ρ that is independent of
r.

By (2.71) and the decomposition (2.68) of Er,

|Vr(t1;τ,z)−Vr(t2;τ,z)| ≤C( f0)|t2 − t1|+
∫ t2

t1

∣∣∣∣( 1
| · |2

)
∗χr ∗χr ∗ρ[ fr] (s,Xr(s;τ,z))

∣∣∣∣ds.

By Lemma 2.27,

|Vr(t1;τ,z)−Vr(t2;τ,z)| ≤C( f0) |t2 − t1|+C(χ)
∫ t2

t1

∫
T3

ρ[ fr](s,y)

|Xr(s;τ,z)− y|2
dyds. (2.74)

We then apply the bootstrap argument from Proposition 2.22. The estimate (2.74) plays the
role of estimate (2.51). Since∫

T3

ρ[ fr](s,y)

|x− y|2
dy ≤C∥ρ[ fr]∥

5
9

L
5
3 (T3)

∥ρ[ fr]∥
4
9
L∞(T3)

,

by (2.66) we have

h(r)η (t,∆)≤C∆

[
h(r)ρ

] 4
9
,

where C depends on f (0) only. By Lemma 3.13 and (2.74), we obtain

h(r)η (t,∆)≤C
[
h(r)ρ (t)

] 8
27

∆, if
[
h(r)ρ (t)

]−2/9
≤ ∆ ≤ t.

Iterating this scheme as described in the proof of Proposition 2.22, we obtain

h(r)η (t,∆)≤C
[
h(r)ρ (t)

]1/6
∆,

provided that
[
h(r)ρ (t)

]−8/81
≤ ∆ ≤ t. The constant C is independent of r. As in the proof of

Proposition 2.22, we conclude that

hρ(t)≤ max{t−81/8,C(R3
0 + t6)}.

This completes the proof.

From Proposition 2.26, we deduce the folllowing regularity bounds on the regularised
potential Ur. These estimates are uniform in r > 0.
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Lemma 2.30 (Uniform regularity of the electric field). Let f (0) ∈ L1 ∩L∞(Td ×Rd) be com-
pactly supported. For each r > 0, let fr denote the solution of (2.57) with initial datum f (0).
Then, for any α ∈ (0,1), there exist constants C[α, f (0)],C[α,T, f (0)] such that

sup
r>0

sup
t∈[0,T ]

∥Ûr(t)∥C1,α (Td) ≤C[α, f (0)], sup
r>0

sup
t∈[0,T ]

∥Ūr(t)∥C1,α (Td) ≤C[α,T, f (0)]. (2.75)

Proof. These estimates follow from Proposition 2.4, using the density bounds from Proposi-
tion 2.26 and the fact that ∥χr ∗ρ[ fr(t)]∥Lp(Td) ≤ ∥ρ[ fr(t)]∥Lp(Td).

The final ingredient is a compactness property of the solutions fr of the regularised system.
We show that the solutions fr are equicontinuous in time into the space W−1,2(Td). We will
use this property to extract a limit point from { fr}r.

Lemma 2.31 (Equicontinuity in time). Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported.
For each r > 0, let fr denote the solution of (2.57) with initial datum f (0). For any t1 < t2,

∥ fr(t2)− fr(t1)∥W−1,2(Td×Rd) ≤C[ f (0)] |t2 − t1|,

where W−1,2(Td ×Rd) denotes the dual of W 1,2(Td ×Rd).

Proof. We use the fact that fr satisfies the transport equation

∂t fr =−divx,v
((

v,Er[ fr(t)]
)

fr
)
.

From the weak form of this equation we have, for any function φ ∈W 1,2(Td ×Rd),∣∣∣∣ d
dt

∫
Td×Rd

φ fr(t)dxdv
∣∣∣∣= ∣∣∣∣∫Td×Rd

∇x,vφ ·
(
v,Er[ fr(t)]

)
fr(t)dxdv

∣∣∣∣
≤
(∫

Td×Rd
|∇x,vφ |2 fr(t)dxdv

)1/2

×
(∫

Td×Rd
(|v|2 + |Er[ fr(t)]|2) fr(t)dxdv

)1/2

.
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Using the uniform L∞(Td ×Rd) bound on fr (2.63), we can control this quantity by∣∣∣∣ d
dt

∫
Td×Rd

φ fr(t)dxdv
∣∣∣∣≤ (∫Td×Rd

|∇x,vφ |2 dxdv
)1/2

∥ fr(t)∥1/2
L∞(Td×Rd)

×
(∫

Td×Rd
|v|2 fr(t)dxdv+∥ fr(t)∥L∞(Td×Rd)

∫
Td×Rd

|Er[ fr(t)]|2 dxdv
)1/2

≤
(∫

Td×Rd
|∇x,vφ |2 dxdv

)1/2

∥ fr(t)∥L∞(Td×Rd)

×
(∫

Td×Rd
|v|2 fr(t)dxdv+

∫
Td×Rd

|∇Ur|2 dxdv
)1/2

.

We control the last factor using the regularised energy E ME
r [ fr]. From the definition of E ME

r

(2.58), we have ∫
Td×Rd

|v|2 fr(t)dxdv+
∫
Td×Rd

|∇Ur|2 dxdv ≤ E ME[ fr]+ e−1.

Thus ∣∣∣∣ d
dt

∫
Td×Rd

φ fr(t)dxdv
∣∣∣∣≤C∥ f (0)∥L∞(Td×Rd)

(
C+E ME

r [ fr(t)]
)
∥∇φ∥L2(Td×Rd).

By the conservation of the regularised energy (2.64), we conclude that∣∣∣∣ d
dt

∫
Td×Rd

φ fr(t)dxdv
∣∣∣∣≤C[ f (0)]∥∇φ∥L2(Td×Rd).

This estimate means that

∥∂t fr(t)∥W−1,2(Td×Rd) = sup
∥φ∥W1,2(Td×Rd )≤1

∫
Td×Rd

φ ∂t fr(t)dxdv ≤C,

thus ∂t fr ∈ L∞((0,T );W−1,2(Td ×Rd)). Thus, for any t1 < t2,

∥ fr(t2)− fr(t1)∥W−1,2(Td×Rd) ≤
∫ t2

t1
∥∂t fr(t)∥W−1,2(Td×Rd) dt ≤C|t2 − t1|.
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In the next lemma, we use the above bounds to extract a convergent subsequence of approximate
solutions, and show that the limit is a weak solution of (2.1). This completes the proof of
Theorem 2.2.

Lemma 2.32. Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported. For each r > 0, let fr

denote the solution of (2.57) with initial datum f (0). Then there exists a subsequence frn

converging in L∞
loc([0,+∞);W−1,2(Td ×Rd)) to a limit f ∈C([0,+∞);W−1,2(Td ×Rd)); that

is, for each time horizon T > 0 and for all φ ∈W 1,2(Td ×Rd),

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫Td×Rd
φ ( frn(t)− f (t))dxdv

∣∣∣∣= 0.

Moreover, for each t ∈ [0,+∞), for any p ∈ [1,∞] and all φ ∈ Lp(Td ×Rd),

lim
n→∞

∣∣∣∣∫Td×Rd
φ ( frn(t)− f (t))dxdv

∣∣∣∣= 0.

Furthermore, f belongs to the space C
(
[0,+∞);M+(Td ×Rd)

)
and is a weak solution of (2.1)

with initial datum f (0), for which ρ f ∈ L∞
loc([0,+∞);L∞(Td)) and

sup
t∈[0,∞)

E ME[ f (t)]≤C.

Proof. To extract the convergent subsequence, we need to make careful use of the equicontinuity
in time. The curves

t 7→ fr(t) ∈W−1,2(Td ×Rd)

are equicontinuous in the norm topology on W−1,2(Td ×Rd) by Lemma 2.31. They are also
uniformly bounded in W−1,2(Td ×Rd) since fr ∈ L∞([0,+∞); L2(Td ×Rd)) by (2.63). We
now fix a compact time interval [0,T ]. By an Arzelà-Ascoli type argument we may extract a
subsequence rn such that for all φ ∈W 1,2(Td ×Rd),

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫Td×Rd
( frn(t)− f (t))φ dxdv

∣∣∣∣= 0, (2.76)

for some f ∈C([0,T ];W−1,2(Td ×Rd)). In particular, since C∞
c (Td ×Rd)⊂W 1,2(Td ×Rd),

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫Td×Rd
( frn(t)− f (t))φ dxdv

∣∣∣∣= 0, for all φ ∈C∞
c (Td ×Rd). (2.77)
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We now want to prove that the convergence holds also in Lp(Td ×Rd)−w, for p ∈ [1,+∞),
and L∞(Td ×Rd)−w∗. For fixed t ∈ [0,T ], we have the uniform bounds

sup
r>0

∥ fr(t)∥Lp(Td×Rd) ≤ ∥ f (0)∥Lp(Td×Rd), sup
r>0

∫
Td×Rd

|v|2 fr(t,x,v)dxdv ≤C[ f (0)].(2.78)

This implies that { fr(t)}r>0 is relatively compact in Lp(Td ×Rd)−w for p ∈ [1,+∞) and
L∞(Td ×Rd)−w∗. For each p ∈ [1,+∞] and t ∈ [0,T ] there is a further subsequence rnk and
a limit g ∈ Lp(Td ×Rd), both depending on t and p, such that for all φ ∈ Lp∗(Td ×Rd) (p∗

being the Hölder conjugate of p),

lim
k→∞

∣∣∣∣∫Td×Rd
φ( frnk

(t)−g)dxdv
∣∣∣∣= 0.

In particular, this holds for φ ∈C∞
c (Td ×Rd)⊂ Lp∗(Td ×Rd). By (2.77), we deduce that∫

Td×Rd
f (t)φ dxdv =

∫
Td×Rd

gφ dxdv for all φ ∈C∞
c (Td ×Rd).

Thus f (t) = g. The uniqueness of the limit implies that in fact the whole original subsequence
frn(t) converges to f (t) in Lp(Td ×Rd)−w for p ∈ [1,+∞) and L∞(Td ×Rd)−w∗.

Note that the weak (or weak∗) convergence of frn to f implies that the bounds (2.78) pass
to the limit: for all t ∈ [0,T ] and p ∈ [1,+∞],

∥ f (t)∥Lp(Td×Rd) ≤ ∥ f (0)∥Lp(Td×Rd),
∫
Td×Rd

|v|2 f (t,x,v)dxdv ≤C[ f (0)]. (2.79)

Since frn(t) is non-negative for all n and t ∈ [0,T ], this property also holds for the limit f : note
that, for fixed t, the function 1{ f (t)<0} ∈ L∞(Td ×Rd) is non-negative. Since frn(t) converges
to f (t) weakly in L1(Td ×Rd),

0 ≥
∫
Td×Rd

f (t)1{ f (t)<0} dxdv = lim
n→∞

∫
Td×Rd

frn(t)1{ f (t)<0} dxdv ≥ 0.

Thus ∫
Td×Rd

f (t)1{ f (t)<0} dxdv = 0,

which implies that f (t)≥ 0 almost everywhere.
We will now show that the path t 7→ f (t) is in fact continuous with respect to convergence

of measures. This is equivalent to showing that the function

t 7→ ⟨ f (t),φ⟩ :=
∫
Td×Rd

φ(x,v) f (t,x,v)dxdv (2.80)



126 VPME: Global Well-posedness in 2D and 3D

is continuous with respect to t, for all φ ∈Cb(Td ×Rd). Since f ∈C([0,T ];W−1,2(Td ×Rd)),
we already know that this holds for all φ ∈ W 1,2(Td ×Rd), and therefore certainly for φ ∈
C1

c (Td ×Rd). We will enlarge the space of admissible test functions φ , first to Cc(Td ×Rd),
and then to Cb(Td ×Rd).

Let φ ∈ Cc(Td ×Rd), and fix t ∈ [0,T ]. We will show that the path (2.80) is continuous
at t. Given ε > 0, there exists a function ψε ∈C1

c (Td ×Rd) such that ∥φ −ψε∥L∞(Td×Rd) ≤ ε .
Then, for s ∈ [0,T ],

|⟨ f (s),φ⟩−⟨ f (t),φ⟩| ≤ |⟨ f (s),φ −ψε⟩|+ |⟨ f (s),ψε⟩−⟨ f (t),ψε⟩|+ |⟨ f (t),ψε −φ⟩| .

By (2.79), for all s ∈ [0,T ] we have the estimate

|⟨ f (s),φ −ψε⟩| ≤ ∥ f (s)∥L1(Td×Rd) ∥φ −ψε∥L∞(Td×Rd)

≤C ( f (0))ε.

Thus
|⟨ f (s),φ⟩−⟨ f (t),φ⟩| ≤Cε + |⟨ f (s),ψε⟩−⟨ f (t),ψε⟩| ,

where C > 0 depends on f (0) only. Since t 7→ ⟨ f (t),ψε⟩ is continuous in t, there exists δ > 0
such that, if |s− t|< δ , then

|⟨ f (s),φ⟩−⟨ f (t),φ⟩| ≤ 2Cε.

Therefore the function (2.80) is continuous for all φ ∈Cc(Td ×Rd).
Now let φ ∈ Cb(Td ×Rd). For each R > 0, let ηR ∈ C∞

c (Td ×Rd) be a cut-off function
taking values in [0,1] and such that

ηR(x) = 1 for |x| ≤ R, ηR(x) = 0 for |x|> 2R.

Let φR := φηR. Then φR ∈Cc(Td ×Rd). By (2.79), for all t ∈ [0,T ],

|⟨ f (t),φ −φR⟩| ≤ ∥φ∥L∞(Td×Rd)

∫
x∈Td , |v|>R

f (t,x,v)dxdv

≤ ∥φ∥L∞(Td×Rd)R−2
∫

x∈Td , |v|>R
|v|2 f (t,x,v)dxdv

≤C∥φ∥L∞(Td×Rd)R−2,
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where C > 0 depends only on f (0). Thus

|⟨ f (s),φ⟩−⟨ f (t),φ⟩| ≤ |⟨ f (s),φ −φR⟩⟩|+ |⟨ f (s),φR⟩−⟨ f (t),φR⟩|+ |⟨ f (t),φ −φR⟩|
≤C∥φ∥L∞(Td×Rd)R−2 + |⟨ f (s),φR⟩−⟨ f (t),φR⟩|.

Given ε > 0, first choose R sufficiently large so that the first term is smaller than ε . Then, since
φR ∈ Cc(Td ×Rd), ⟨ f (t),φR⟩ is continuous with respect to t. Thus there exists δ > 0 such
that, for all s ∈ [0,T ] such that |s− t|< δ , the second term is smaller than ε . Thus ⟨ f (t),φ⟩ is
continuous with respect to t. We deduce that f ∈C

(
[0,T ];M+(Td ×Rd)

)
.

Next we show that the convergence also holds for the mass density. Since frn(t) converges
in L1(Td ×Rd)−w, for all φ ∈ L∞(Td) we have

lim
n→∞

∫
Td

ρ[ frn(t)]φ(x)dx = lim
n→∞

∫
Td×Rd

frn(t,x,v)φ(x)dxdv

=
∫
Td×Rd

f (t,x,v)φ(x)dxdv =
∫
Td

ρ f (t,x,v)φ(x)dx.

In other words ρrn(t)⇀ ρ f (t) in L1(Td)−w. Since, by (2.66) and (2.67), ρ[ frn(t)] are uni-
formly bounded in Lp(Td) for all p ∈ [1,+∞], the convergence also holds in Lp(Td)−w for
p ∈ [1,+∞) and in L∞(Td)−w∗. In particular,

sup
t∈[0,T ]

∥ρ f (t)∥Lp(Td) ≤ liminf
n

∥ρ[ frn(t)]∥Lp(Td).

We deduce that, by Lemma 2.25,

sup
t∈[0,T ]

∥ρ f (t)∥
L

d+2
d (Td)

≤C, sup
t∈[0,T ]

∥ρ f (t)∥L∞(Td) ≤CT . (2.81)

Next, we prove convergence of the electric field. By Lemma 2.30, for any α ∈ (0,1),

sup
r

sup
t∈[0,T ]

∥Ur(t)∥C1,α (Td) ≤C[α,T, f (0)],

which implies that Ur(t),∇Ur(t) are equicontinuous on Td . Hence there exists a further
subsequence for which Urnk

(t),∇Urnk
(t) converge in C(Td) to some U(t),∇U(t).

We identify the limit U(t), by showing that it is a solution of

∆U(t) = eU(t)−ρ f (t). (2.82)
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The elliptic equation for Ur(t) in (2.57) in weak form tells us that for all r and all φ ∈
W 1,2 ∩L1(Td), ∫

Td
∇Ur(t) ·∇φ +

(
eUr(t)−χr ∗ρ[ fr(t)]

)
φ dx = 0.

The first two terms converge by dominated convergence, since Ur(t) are uniformly bounded in
C1(Td). For the term involving χr ∗ρ[ fr(t)], we split∫
Td

(
χr ∗ρ[ fr(t)]−ρ f (t)

)
φ dx=

∫
Td

(χr ∗ρ[ fr(t)]−ρ[ fr(t)])φ dx+
∫
Td

(
ρ[ fr(t)]−ρ f (t)

)
φ dx.

(2.83)
For any φ ∈ L

d+2
2 (Td), we have∣∣∣∣∫Td

(χr ∗ρ[ fr(t)]−ρ[ fr(t)])φ dx
∣∣∣∣= ∣∣∣∣∫Td

(χr ∗φ −φ)ρ[ fr(t)]dx
∣∣∣∣

≤ ∥χr ∗φ −φ∥
L

d+2
2 (Td)

∥ρ[ fr(t)]∥
L

d+2
d (Td)

≤C∥χr ∗φ −φ∥
L

d+2
2 (Td)

.

The right hand side converges to zero as r tends to zero by standard results on continuity
in Lp spaces. For r = rnk , the second term of (2.83) converges to zero as k tends to infinity,
for all φ ∈ L

d+2
2 (Td), since ρ[ fr(t)] converges to ρ f (t) weakly in L

d+2
d (Td). Hence, for all

φ ∈W 1,2 ∩L
d+2

2 (Td), ∫
Td

∇U(t) ·∇φ +(eU(t)−ρ f (t))φ dx = 0.

Since U(t) ∈ C1(Td) and ρ f (t) ∈ L2(Td), this extends to all φ ∈ W 1,2(Td) by density of
L

d+2
2 (Td) in L2(Td) . In other words U(t) is indeed a weak solution of (2.82).
Our earlier stability estimates (Proposition 2.11) imply that (2.82) has at most one solution

in L∞ ∩W 1,2(Td). Since U(t),∇U(t) ∈ C(Td) we do have U(t) ∈ L∞ ∩W 1,2(Td). Since the
limit of any convergent subsequence is uniquely identified, it follows that for all t we have
Urn(t)→U(t) in C1(Td), where U(t) is the unique L∞ ∩W 1,2(Td) solution of (2.82) (that is,
without passing to further subsequences).

Next we consider the convergence of the regularised electric field

Ern[ frn(t)] =−χr ∗∇Urn(t).
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This converges to −∇U(t) uniformly since, for some fixed α ∈ (0,1),

|χr ∗∇Ur(t)(x)−∇Ur(t)(x)|=
∣∣∣∣∫y∈Td :|x−y|≤Cr

χr(x− y) [∇Ur(t)(y)−∇Ur(t)(x)]dy
∣∣∣∣

≤ ∥Ur(t)∥C1,α (Td)

∫
y∈Td :|x−y|≤Cr

χr(x− y)|x− y|α dy

≤Cα,d,T rα

∫
Rd

χ1(y)|y|α dy ≤Cα,d,T rα .

The right hand side converges to zero as r tends to zero, which proves the assertion.
Finally, we show that f is a weak solution of (2.1) on the time interval [0,T ]. Since fr is a
solution of (2.57), for any φ ∈C∞

c ([0,∞)×Td ×Rd) we have∫
Td×Rd

f (0,x,v)φ(0,x,v)dxdv+
∫

∞

0

∫
Td×Rd

(∂tφ + v ·∇xφ +Er(x) ·∇vφ) fr dxdvdt = 0.

Since ∂tφ + v ·∇xφ ∈ C∞
c ([0,∞)×Td ×Rd), (2.76) implies that for all fixed t, as n tends to

infinity, ∫
Td×Rd

(∂tφ + v ·∇xφ) frn dxdv →
∫
Td×Rd

(∂tφ + v ·∇xφ) f dxdv.

Since∣∣∣∣∫Td×Rd
(∂tφ + v ·∇xφ) frn dxdv

∣∣∣∣≤ ∥ f (0)∥L∞(Td×Rd)

∫
Td×Rd

|∂tφ + v ·∇xφ |dxdv ∈ L1([0,∞)),

we deduce from the dominated convergence theorem that for all φ ∈C∞
c ([0,∞)×Td ×Rd), as

n tends to infinity,∫
∞

0

∫
Td×Rd

(∂tφ + v ·∇xφ) frn dxdv →
∫

∞

0

∫
Td×Rd

(∂tφ + v ·∇xφ) f dxdv.

For the nonlinear term we have the estimate∣∣∣∣∫ ∞

0

∫
Td×Rd

∇vφ · (Er fr +∇xU f )dxdvdt
∣∣∣∣≤ ∣∣∣∣∫ ∞

0

∫
Td×Rd

(Er +∇xU) ·∇vφ fr dxdvdt
∣∣∣∣

+

∣∣∣∣∫ ∞

0

∫
Td×Rd

−∇xU ·∇vφ ( fr − f )dxdvdt
∣∣∣∣ .
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Now assume that suppφ ⊂ [0,T ]×Td ×Rd . We estimate the first term using the uniform
L∞(Td ×Rd) estimate (2.63):∣∣∣∣∫ ∞

0

∫
Td×Rd

(Ern +∇U) ·∇vφ fr dxdvdt
∣∣∣∣≤C[ f (0)]

∫
∞

0

∫
Td×Rd

|(Ern +∇U) ·∇vφ |dxdvdt.

Since Ern(t)+∇U(t) tends to zero as n tends to infinity for each t, the function ∇vφ belongs to
L1([0,∞)×Td ×Rd), and the uniform bound

sup
t∈[0,T ]

∥Ern(t)+∇U(t)∥L∞(Td) ≤CT

holds (by (2.75)), it follows by the dominated convergence theorem that the right hand side
converges to zero as n tends to infinity. Similarly, for the second term we use that, for each t,
since ∇U(t) ·∇vφ ∈ L1(Td ×Rd),∣∣∣∣∫Td×Rd

∇U ·∇vφ ( frn − f )dxdv
∣∣∣∣→ 0.

Combining this with the bound

|∇U ·∇vφ ( fr − f )| ≤C[T, f (0)] |∇vφ | ∈ L1([0,∞)×Td ×Rd),

which follows from (2.63) and (2.75), we conclude that, as n tends to infinity,∫
∞

0

∫
Td×Rd

(∇vφ ·Ern) frn dxdvdt →−
∫

∞

0

∫
Td×Rd

(∇vφ ·∇U) f dxdvdt.

Hence, for all φ ∈C∞
c ([0,T ]×Td ×Rd) with φ(T, ·, ·) = 0,

∫
Td×Rd

f (0,x,v)φ(0,x,v)dxdv+
∫ T

0

∫
Td×Rd)

(∂tφ + v ·∇xφ −∇U(x) ·∇vφ) f dxdvdt = 0.

Thus f is a weak solution of the VPME system (2.1).
By (2.81), f has bounded density on [0,T ]. Thus Theorem 2.1 implies that f is the

unique bounded density solution of (2.1). Therefore the limit of any C([0,T ];W−1,2(Td ×
Rd)) convergent subsequence frn must be f . This implies that in fact fr converges to f in
C([0,T ];W−1,2(Td ×Rd)) as r tends to zero, without passing to a subsequence. Since T was ar-
bitrary and the limit f is unique for each T , by extension a single path f ∈C([0,∞);W−1,2(Td ×
Rd)) may be defined that coincides on each [0,T ] with the limit of fr. This completes the
proof.
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2.9.1 Energy conservation

The solutions we have constructed have finite energy. Indeed, since each fr satisfies a conserva-
tion of the energy E ME

r defined in (2.58), for some constant C[ f (0)]> 0 independent of t and r
we have for all t ∈ [0,+∞),

E ME
r [ fr(t)] = E ME

r [ f (0)]≤C[ f (0)].

Since Ur(t) converges to U(t) in C1(Td) and fr(t) converges to f (t) weakly in L1(Td ×Rd), it
follows that ∫

Td×Rd
|v|2 f (t)dxdv ≤ liminf

r→0

∫
Td×Rd

|v|2 fr(t)dxdv∫
Td
|∇U(t)|2 dx = lim

r→0

∫
Td
|∇Ur(t)|2 dx∫

Td
U(t)eU(t) dx = lim

r→0

∫
Td

Ur(t)eUr(t) dx.

In particular,
lim
r→0

E ME
r [ f (0)] = E ME[ f (0)].

Moreover,
E ME[ f (t)]≤ liminf

r→0
E ME

r [ fr(t)]≤ E ME[ f (0)].

In other words f has uniformly bounded energy. Next we want to show that the energy is in
fact conserved for solutions with compactly supported data. We will do this by controlling a
moment of order strictly greater than two.

Lemma 2.33. Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported, and let f be the unique
solution of the VPME system (2.1) with initial datum f (0) and locally bounded density. Then,
for all p ∈ [1,+∞) and all T ≥ 0,

sup
t∈[0,T ]

∫
Td×Rd

|v|p f (t,x,v)dxdv ≤Cp,T, f0,M,

where Cp,T, f0,M depends on p, T , f0 and a bound on the mass.

Proof. By assumption, there exists M such that

sup
t∈[0,T ]

∥ρ f (t)∥L∞(Td) ≤ M.

Then, by Proposition 2.4,
∥E∥L∞(Td) ≤CM+ eCM.
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Let V (t;x,v) be the characteristic trajectory beginning at (x,v) at time t = 0. Then

|V (t;x,v)| ≤ |v|+
∫ t

0
∥E∥L∞(Td) ds ≤ |v|+

(
CM+ eCM

)
t. (2.84)

Let Rt be a function such that ft is supported in Td ×BRd(0;Rt). Then (2.84) implies that

Rt ≤ R0 +CM,t .

Let ψN ∈Cb(Rd) be a sequence of non-negative test functions satisfying

ψN(v) = |v|p, |v| ≤ N,

ψN(v) ↑ |v|p, N → ∞.

We take the representation of f as the pushforward of f0 along the characteristic flow induced
by f . Then∫

Td×Rd
ψN(v) ft dxdv =

∫
Td×Rd

ψN(V (t;x,v)) f0 dxdv ≤
∫
Td×Rd

|V (t;x,v)|p f0 dxdv

≤
∫
Td×Rd

|R0 +CM,t |p f0 dxdv ≤C |R0 +CM,t |p Rd
0 ∥ f0∥L∞(Td×Rd)

≤Cp,t,M, f0.

By monotone convergence, we have∫
Td×Rd

|v|p ft dxdv = lim
N→∞

∫
Td×Rd

ψN(v) ft dxdv ≤Cp,M,t, f0,

as required.

We complete the proof of the conservation of energy by showing that instead of the bound∫
Td×Rd

|v|2 f (t)dxdv ≤ liminf
r→0

∫
Td×Rd

|v|2 fr(t)dxdv

we in fact have the equality∫
Td×Rd

|v|2 f (t)dxdv = lim
r→0

∫
Td×Rd

|v|2 fr(t)dxdv.

Lemma 2.34. Let f (0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported, and let f be the unique
solution of the VPME system (2.1) with initial datum f (0) and locally bounded density. Let fr
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be the solution of the regularised equation (2.57) with initial datum f (0). Then, for all t,∫
Td×Rd

|v|2 f (t)dxdv = lim
r→0

∫
Td×Rd

|v|2 fr(t)dxdv.

Proof. Let ψN ∈Cb(Rd) be a sequence of non-negative test functions satisfying

ψN(v) = |v|2, |v| ≤ N,

ψN(v) ↑ |v|2, N → ∞.

By Lemma 2.33, for any α > 0,∫
Td×Rd

|v|2+α f (t)dxdv ≤Cα .

In fact, the same estimate holds for fr with the same constant Cα for all r, since we showed in
Lemma 2.25 that for any T ≥ 0,

sup
t∈[0,T ]

∥ρ[ fr(t)]∥L∞(Td) ≤ M,

where M is uniform in r. Hence we have the estimate∣∣∣∣∫Td×Rd
|v|2 f (t)dxdv−

∫
Td×Rd

ψN(v) f (t)dxdv
∣∣∣∣≤ ∣∣∣∣∫

(x,v):|v|≥N
|v|2 f (t)dxdv

∣∣∣∣
≤ N−α

∫
Td×Rd

|v|2+α f (t)dxdv ≤CαN−α ,

along with the analogous one for fr. Then∣∣∣∣∫Td×Rd
|v|2 [ f (t)− fr(t)]dxdv

∣∣∣∣≤ 2CαN−α +

∣∣∣∣∫Td×Rd
ψN(v) [ f (t)− fr(t)]dxdv

∣∣∣∣ .
The second term converges to zero as r tends to zero, since fr converges to f weakly in
L1(Td ×Rd). This completes the proof.





Chapter 3

The Quasi-Neutral Limit for the VPME
System With Rough Data

Contents
3.1 Statement of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.1.1 Strategy of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.2 Estimates on the Electric Field . . . . . . . . . . . . . . . . . . . . . . . 139

3.2.1 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.3 Wasserstein Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.4 Growth Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.4.1 Proof of Proposition 3.10 in the two dimensional case . . . . . . . 152

3.4.2 Proof of Proposition 3.10 in the three dimensional case . . . . . . . 156

3.5 Quasi-Neutral Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

In this chapter, we prove a quasi-neutral limit for the VPME system. In quasi-neutral
scaling, the system reads as follows:

(V PME)ε :=



∂t fε + v ·∇x fε +Eε ·∇v fε = 0,

Eε =−∇Uε ,

ε2∆Uε = eUε −
∫
Rd fε dv = eUε −ρε ,

fε |t=0 = fε(0)≥ 0,
∫
Td×Rd

fε(0,x,v) dx dv = 1.

(3.1)
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The quasi-neutral limit is the limit in which the Debye length ε tends to zero. We introduced
the Debye length and the physical motivation for this limit in Subsection 1.2.3, and discussed
its mathematical background in Section 1.5. The main result of this chapter is a rigorous
quasi-neutral limit for the VPME system for a class of rough data.

The formal limiting system is the kinetic isothermal Euler system:

(KIsE) :=


∂tg+ v ·∇xg+E ·∇vg = 0,

E =−∇U,

U = logρ,

g(0)≥ 0,
∫
Td×Rd g(0,x,v)dxdv = 1.

(3.2)

The aim is to prove that, if fε(0) converges to g(0) as ε tends to zero, then the solutions fε of
(3.1) converge to a solution g of (3.2).

Rigorous results on the quasi-neutral limit go back to the works of Brenier and Grenier
[21] and Grenier [32] for the Vlasov-Poisson system for electrons (1.5). A result of particular
relevance to the contents of this chapter is the work of Grenier [33], proving the limit for the
classical system assuming uniformly analytic data. The works of Han-Kwan and Iacobelli
[43, 44] extended this result to data that are very small, but possibly rough, perturbations of the
uniformly analytic case, in dimension 1, 2 and 3.

In the massless electrons case considered here, Han-Kwan and Iacobelli [44] showed a
rigorous limit in dimension one, again for rough perturbations of analytic data. The main
result of this chapter extends the results of [44] to higher dimensions by showing a rigorous
quasi-neutral limit for the VPME system (3.1) in dimension 2 and 3, for data that are very
small, but possibly rough, perturbations of some uniformly analytic functions.

3.1 Statement of Results

We state the main result of this chapter, which is a quasi-neutral limit for rough data that are
small perturbations of analytic functions. We begin by introducing some concepts and notation
needed to state our results.

Energy We recall that we defined the energy associated with the VPME system in (2.2). For
the quasi-neutral limit, we need to write the energy with a quasi-neutral scaling. This results in
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the following functional:

E ME
ε [ f ] :=

1
2

∫
Td×Rd

|v|2 f dxdv+
ε2

2

∫
Td

|∇U |2 dx+
∫
Td

UeU dx,

where U is the potential defined in (3.1).

Analytic Norms We introduced the family of analytic norms ∥ · ∥Bδ
in Section 1.5.4.1.

Explicitly, for δ > 1 the norm ∥ · ∥Bδ
is defined by

∥g∥Bδ
:= ∑

k∈Zd

|ĝ(k)|δ |k|,

where ĝ(k) denotes the Fourier coefficient of g of index k.

Iterated Exponentials We will use the notation expn to denote the n-fold iteration of the
exponential function. For example

exp3(x) := expexpexp(x).

Our main result is the following theorem.

Theorem 3.1 (Quasi-neutral limit). Let d = 2,3. Consider initial data fε(0) satisfying the
following conditions:

• (Uniform bounds) fε(0) is bounded and has bounded energy, uniformly with respect to
ε:

∥ fε(0)∥L∞(Td×Rd) ≤C0, E ME
ε [ fε(0)]≤C0,

for some constant C0 > 0.

• (Control of support) There exists C1 > 0 such that

fε(0,x,v) = 0 for |v|> exp(C1ε
−2). (3.3)



138 The Quasi-Neutral Limit for the VPME System With Rough Data

• (Perturbation of an analytic function) There exist gε(0) satisfying, for some δ > 1, η > 0,
and C > 0,

sup
ε

sup
v∈Rd

(1+ |v|d+1)∥gε(0, ·,v)∥Bδ
≤C,

sup
ε

∥∥∥∥∫Rd
gε(0, ·,v)dv−1

∥∥∥∥
Bδ

≤ η ,

as well as the support condition (3.3), such that

W2( fε(0),gε(0))≤
[

exp4(Cε
−2)
]−1

(3.4)

for C sufficiently large with respect to C0,C1.

• (Convergence of data) gε(0) has a limit g(0) in the sense of distributions as ε → 0.

Let fε denote the unique solution of (3.1) with bounded density and initial datum fε(0). Then
there exists a time horizon T∗ > 0, independent of ε but depending on the collection {gε(0)}ε ,
and a solution g of (3.2) on the time interval [0,T∗] with initial datum g(0), such that

lim
ε→0

sup
t∈[0,T∗]

W1( fε(t),g(t)) = 0.

Remark 4. The condition (3.3) should be understood as giving the fastest growth rate on the
support for which the inverse quadruple exponential is an admissible rate in (3.4). In particular,
this would still be the rate achievable by our methods even if the support of the data was
uniform in ε .

3.1.1 Strategy of Proof

The main idea of the proof is to consider the unique bounded density solution gε of the VPME
system (3.1) with initial datum gε(0). Since each gε(0) is compactly supported, the fact that a
unique gε exists is a consequence of the results of Chapter 2. We will use gε as an intermediate
step between fε and a solution g of the KIsE system (3.2).

The quasi-neutral limit for the VPME system (3.1) with uniformly analytic data can be
proved using the methods of Grenier [33], with the modifications for the massless electrons
case described in [44, Proposition 4.1]. We stated this result above as Theorem 1.20. Grenier’s
result gives an Hs convergence of a representation of the VP system as a multi-fluid pressureless
Euler system. In [44, Corollary 4.2], it is shown that this implies convergence in W1. We can
therefore make use of the following result.
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fε gε

g

W2 stability

ε → 0

Fig. 3.1 Strategy for the proof of Theorem 3.1.

Theorem 3.2. Let gε(0) satisfy the technical conditions stated in Theorem 3.1, and let gε

denote the solution of (3.1) with initial datum gε(0). Assume that gε(0) has a limit g(0) in the
sense of distributions as ε tends to zero. Then there exists a time T∗ > 0 and a solution of (3.2)
on the time interval [0,T∗] such that

lim
ε→0

sup
t∈[0,T∗]

W1 (gε(t),g(t)) = 0.

To show the convergence from fε to gε , we use a stability estimate in W2 for solutions
of the VPME system. We proved an estimate of this type in Proposition 2.12 of Chapter 2.
In the setting of the quasi-neutral limit, what is important is to quantify the dependence of
the constants in the estimate on ε . The quantified estimate is Proposition 3.9 stated below in
Section 3.3. We use this to show that, under our assumptions on the initial data,

lim
ε→0

sup
t∈[0,T∗]

W2 ( fε(t),gε(t)) = 0.

The combination of these two results will complete the proof.
This chapter is structured as follows. The W2 stability estimate is proved in Section 3.3.

The proof relies on regularity estimates for the electric field, which are proved in Section 3.2.
The stability estimate also relies on bounds on the mass density of the solutions. We quantify
the dependence of these bounds on ε in Section 3.4. The proof of Theorem 3.1 is completed in
Section 3.5.

3.2 Estimates on the Electric Field

In this section we revisit the regularity estimates on the electric field that we proved in Sec-
tion 2.4, with the aim of quantifying their dependence with respect to ε . Once again, we use
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the decomposition of the electrostatic potential into two parts:

Uε = Ūε +Ûε ,

where Ūε and Ûε are solutions of the equations

ε
2
∆Ūε = 1−ρ[ fε ], ε

2
∆Ûε = eŪε+Ûε −1.

We will use the notation Ēε =−∇Ūε and Êε =−∇Ûε .

3.2.1 Regularity

The following is a version of Proposition 2.4 with quasi-neutral scaling. We will give the proof
of these estimates below.

Proposition 3.3 (Regularity estimates on Ūε and Ûε ). Let d = 2,3. Let h ∈ L∞ ∩L
d+2

d (Td).
Then there exist unique Ūε ∈W 1,2(Td) with zero mean and Ûε ∈W 1,2 ∩L∞(Td) satisfying

ε
2
∆Ūε = 1−h, ε

2
∆Ûε = eŪε+Ûε −1.

Moreover we have the following estimates for some constant Cα,d > 0:

∥Ūε∥C0,α (Td) ≤Cα,d ε
−2
(

1+∥h∥
L

d+2
d (Td)

)
, α ∈

(0,1) if d = 2

(0, 1
5 ] if d = 3

∥Ūε∥C1,α (Td) ≤Cα,d ε
−2
(

1+∥h∥L∞(Td)

)
, α ∈ (0,1)

∥Ûε∥C1,α (Td) ≤Cα,d exp
(

Cα,dε
−2
(

1+∥h∥
L

d+2
d (Td)

))
α ∈ (0,1)

∥Ûε∥C2,α (Td) ≤Cα,d exp2

(
Cα,dε

−2
(

1+∥h∥
L

d+2
d (Td)

))
α ∈

(0,1) if d = 2

(0, 1
5 ] if d = 3.

3.2.1.1 Regularity of Ūε

For the singular part of the potential Ūε , the dependence on ε can be deduced using the fact
that the Poisson equation is linear, that is, that

∆
(
ε

2Ūε

)
= 1−h.

By applying Lemma 2.5 from Chapter 2 to ε2Ūε , we deduce the following estimates:
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(i) If h ∈ L
d+2

d (Td), then for all α ∈ (0,1), if d = 2, or α ∈ (0, 1
5 ] if d = 3, there exists a

constant Cα,d > 0 such that

∥Ūε∥C0,α ≤Cα,dε
−2
(

1+∥h∥
L

d+2
d (Td)

)

(ii) If h ∈ L∞(Td), then for any α ∈ (0,1), there exists a constant Cα,d such that

∥Ūε∥C1,α (Td) ≤Cα,d ε
−2
(

1+∥h∥L∞(Td)

)
We can also deduce the following quantified version of Lemma 2.6.

Lemma 3.4 (Log-Lipschitz regularity of Ēε ). Let Ūε be a solution of

ε
2
∆Ūε = h

for h ∈ L∞(Td). Then

|∇Ūε(x)−∇Ūε(y)| ≤ ε
−2C∥h∥L∞ |x− y|

(
1+ log

( √
d

|x− y|

)
1|x−y|≤

√
d

)
.

3.2.1.2 Regularity of Ûε

In Section 2.4.2, we proved the existence of a unique W 1,2(Td) solution Û of the equation

∆Û = eŪ+Û −1,

under the assumption that Ū ∈ L∞(Td)∩W 1,2(Td). We showed that this solution in fact belongs
to the Hölder space C1,α(Td) for α ∈ (0,1). Furthermore, if Ū ∈C0,α(Td), then Û ∈C2,α(Td).
The method of proof also applies for general ε . We will revisit part of the proof here in order to
quantify how the constants depend on ε .

Lemma 3.5. Consider the nonlinear Poisson equation

ε
2
∆Ûε = eŪε+Ûε −1. (3.5)

Assume that Ūε ∈ L∞(Td)∩W 1,2(Td) with

∥Ūε∥L∞(Td) ≤ M1. (3.6)
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Then the unique W 1,2(Td) solution Ûε of (3.5) belongs to C1,α(Td) for all α ∈ (0,1), with the
estimate

∥Ûε∥C1,α (Td) ≤Cε
−2 (e2M1 +1

)
.

If, in addition, Ūε is Hölder regular with the estimate

∥Ūε∥C0,α (Td) ≤ M2

for some α ∈ (0,1), then Ûε ∈C2,α(Td) with the estimate

∥Ûε∥C1,α (Td) ≤
[
M2 +Cε

−2 (e2M1 +1
)]

exp
[
Cε

−2 (e2M1 +1
)]
.

Proof. The idea is to prove Lp(Td) estimates on the right hand side of (3.5), in particular on
eUε . The estimates on Ûε are then deduced using standard regularity estimates for the Poisson
equation.

Since Ūε is already controlled in L∞ by assumption (3.6), it is enough to estimate eÛε . We
prove an a priori estimate using the equation satisfied by Ûε :

ε
2
∆Ûε = eŪε+Ûε −1.

We use the function e(p−1)Ûε as a test function in the weak form of this equation. Then∫
Td

e(p−1)Ûε dx = ε
2(p−1)

∫
Td

|∇Ûε |2eÛε dx+
∫
Td

eŪε · epÛε dx,

and so ∫
Td

eŪε · epÛε dx ≤
∫
Td

e(p−1)Ûε dx,

We can make this estimate rigorous by using a truncation argument, as described in the proof
of Lemma 2.9. Since

∥Ūε∥L∞(Td) ≤ M1,

we have
∥eÛε∥p

Lp(Td)
≤ eM1∥eÛε∥p−1

Lp−1(Td)
. (3.7)

Note that the constants in this estimate do not depend on ε . We therefore deduce an estimate
for all p < ∞ by induction, in the same way as we did in Lemma 2.9.

First, since
0 = ε

2
∫
Td

∆Ûε dx =
∫
Td

(
eUε −1

)
dx,
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for any ε we still have
∥eUε∥L1(Td) = 1.

Then
∥eÛε∥L1(Td) ≤ e∥Ūε∥L∞(Td ) ≤ eM1 .

By induction, using (3.7), we conclude that for all integer p,

∥eÛε∥Lp(Td) ≤ eM1. (3.8)

By interpolation, this extends to any p < ∞.
Next, we use these estimates to deduce regularity for Ûε . By Calderón-Zygmund estimates

for the Poisson equation,

∥Ûε∥W 2,n(Td) ≤Cn,dε
−2∥eŪε+Ûε∥Ln(Td) ≤Cn,dε

−2 (e2M1 +1
)
.

By Sobolev embedding with n sufficiently large, for any α ∈ (0,1),

∥Ûε∥C1,α (Td) ≤Cα,dε
−2 (e2M1 +1

)
.

Now assume that for some α ∈ (0,1),

∥Ūε∥C0,α (Td) ≤ M2.

Then Uε ∈C0,α(Td), with

∥Uε∥C0,α (Td) ≤ ∥Ūε∥C0,α (Td)+∥Ûε∥C0,α (Td) ≤ M2 +Cε
−2 (e2M1 +1

)
.

Since ∣∣∣eUε (x)− eUε (y)
∣∣∣≤ emax{Uε (x),Uε (y)} |Uε(x)−Uε(y)| ,

it follows that

∥eUε∥C0,α (Td) ≤ ∥Uε∥C0,α (Td) exp
[
Cε

−2 (1+ e2M1
)]
.

By Schauder estimates [30, Chapter 4],

∥Ûε∥C2,α (Td) ≤C
(
∥Ûε∥L∞(Td)+ ε

−2∥eUε −1∥C0,α (Td)

)
≤
[
M2 +Cε

−2 (1+ e2M1
)]

exp
[
Cε

−2 (1+ e2M1
)]
,
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as required.

3.2.2 Stability

We are also interested in the stability of Uε with respect to the charge density. The proposition
below is a quantitative version of Proposition 2.11.

Proposition 3.6. For each i = 1,2, let Ū (i)
ε be a zero-mean solution of

ε
2
∆Ū (i)

ε = hi −1,

where hi ∈ L∞ ∩L
d+2

d (Td). Then

∥∇Ū (1)
ε −∇Ū (2)

ε ∥2
L2(Td) ≤ ε

−4 max
i

∥hi∥L∞(Td)W
2
2 (h1,h2). (3.9)

Now, in addition, let Û (i)
ε be a solution of

ε
2
∆Û (i)

ε = eŪ (i)
ε +Û (i)

ε −1.

Then

∥∇Û (1)
ε −∇Û (2)

ε ∥2
L2(Td) ≤ exp2

[
Cdε

−2
(

1+max
i

∥hi∥L(d+2)/d(Td)

)]
(3.10)

×max
i

∥hi∥L∞(Td)W
2
2 (h1,h2).

For the stability of ∇Ūε , we use a result proved originally by Loeper [65] in the whole
space Rd , and adapted to the torus Td in [43].

Lemma 3.7 (Loeper-type estimate for Poisson’s equation). For each i = 1,2, let Ū (i)
ε be a

solution of

ε
2
∆Ū (i)

ε = hi −1,

where hi ∈ L∞(Td). Then

∥∇Ū (1)
ε −∇Ū (2)

ε ∥2
L2(Td) ≤ ε

−4 max
i

∥hi∥L∞(Td)W
2
2 (h1,h2).

For Ûε we use a version of Proposition 2.11 in which we quantify the dependence of the
constants on ε .
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Lemma 3.8. For each i = 1,2, let Û (i)
ε ∈W 1,2 ∩L∞(Td) be a solution of

ε
2
∆Û (i)

ε = eŪ (i)
ε +Û (i)

ε −1, (3.11)

for some given potentials Ū (i)
ε ∈ L∞(Td) . Then

ε
2∥∇Û (1)

ε −∇Û (2)
ε ∥2

L2(Td) ≤Cε∥Ū (1)
ε −Ū (2)

ε ∥2
L2(Td),

where C depends on the L∞ norms of Û (i)
ε and Ū (i)

ε . More precisely, Cε can be chosen such that

Cε ≤ exp
[
C
(

max
i

∥Ū (i)
ε ∥L∞(Td)+max

i
∥Û (i)

ε ∥L∞(Td)

)]
,

for some sufficiently large constant C, independent of ε .

Proof. We look at the equation solved by the difference Û (1)
ε −Û (2)

ε . By subtracting the two
equations (3.11), we find that

ε
2
∆(Û (1)

ε −Û (2)
ε ) = eŪ (1)

ε +Û (1)
ε − eŪ (2)

ε +Û (2)
ε .

By taking Û (1)
ε −Û (2)

ε as a test function, we find that

−ε
2
∫
Td
|∇Û (1)

ε −∇Û (2)
ε |2 dx =

∫
Td

(
eŪ (1)

ε +Û (1)
ε − eŪ (2)

ε +Û (2)
ε

)
(Û (1)

ε −Û (2)
ε )dx.

In the proof of Proposition 2.11, we showed that for any Ū ,Û ,V̄ ,V̂ ∈ L∞(Td),

−
∫
Td

(
eŪ+Û − eV̄+V̂

)
(Û −V̂ )dx ≤CU,V∥Ū −V̄∥2

L2(Td),

where
CU,V ≤ exp

{
C
[
∥Ū∥L∞(Td)+∥Û∥L∞(Td)+∥V̄∥L∞(Td)+∥V̂∥L∞(Td)

]}
.

Thus
∥∇Û (1)

ε −∇Û (2)
ε ∥2

L2(Td) ≤Cε ε
−2∥Ū (1)

ε −Ū (2)
ε ∥2

L2(Td),

where

Cε ≤ exp
[
C
(

max
i

∥Ū (i)
ε ∥L∞(Td)+max

i
∥Û (i)

ε ∥L∞(Td)

)]
.
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Proof of Proposition 3.6. It suffices to prove (3.10), since (3.9) follows immediately from
Lemma 3.7. By the Poincaré inequality for zero-mean functions,

∥Ū (1)
ε −Ū (2)

ε ∥2
L2(Td) ≤C∥∇Ū (1)

ε −∇Ū (2)
ε ∥2

L2(Td).

By Lemma 3.7,

∥∇Ū (1)
ε −∇Ū (2)

ε ∥2
L2(Td) ≤ ε

−4 max
i

∥hi∥L∞(Td)W
2
2 (h1,h2).

Then, by Lemma 3.8,

∥∇Û (1)
ε −∇Û (2)

ε ∥2
L2(Td) ≤Cε ε

−6 max
i

∥hi∥L∞(Td)W
2
2 (h1,h2),

for

Cε ≤ exp
[
C
(

max
i

∥Ū (i)
ε ∥L∞(Td)+max

i
∥Û (i)

ε ∥L∞(Td)

)]
.

For the L∞(Td) estimates, we use Proposition 3.3:

∥Ū (i)
ε ∥L∞(Td) ≤Cd ε

−2
(

1+∥hi∥
L

d+2
d

)
∥Û (i)

ε ∥L∞(Td) ≤Cd exp
[
Cdε

−2
(

1+∥hi∥
L

d+2
d

)]
.

Hence

Cε ≤ exp2

[
Cdε

−2
(

1+max
i

∥hi∥
L

d+2
d

)]
,

which implies (3.10).

3.3 Wasserstein Stability

To prove the quasi-neutral limit, we will need a quantified stability estimate between solu-
tions of the VPME system (3.1). The following proposition is an ε-dependent version of
Proposition 2.12. We revisit the proof here, keeping track of how all the constants depend on ε .

Proposition 3.9 (Stability for solutions with bounded density). For i = 1,2, let f (i)ε be solutions
of (3.1) satisfying for some constant M and all t ∈ [0,T ],

ρ[ f (i)ε (t)]≤ M.
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Then there exists a constant Cε such that, for all t ∈ [0,T ],

W2

(
f (1)ε (t), f (2)ε (t)

)
≤ β

(
t,W2

(
f (1)ε (0), f (2)ε (0)

))
,

where β denotes the function

β (t,x) =

16deexp
[(

1+ log x
16d

)
e−Cε t] t ≤ T0

(d ∨ x)eCε (1+log16)(t−T0) t > T0,

where
T0 = inf

{
t > 0 : 16deexp

[(
1+ log

x
16d

)
e−Cε t

]
> d
}
.

If in addition, for some constant C0,

sup
t∈[0,T ]

∥ f (i)ε (t, ·, ·)∥L∞
x,v ≤C0, sup

t∈[0,T ]
E ME

ε [ f (i)ε ](t)≤C0, (3.12)

then Cε may be chosen to satisfy

Cε ≤ exp2(Cε
−2)(M+1).

Proof. The W2 distance is defined as an infimum over couplings (Definition 4). Thus it suffices
to estimate the L2 distance corresponding to a particular coupling of f (1)ε and f (2)ε . To do this
we will first represent f (i)ε as the pushforward of f (i)ε (0) along the characteristic flow induced
by f (i)ε . That is, consider the following system of ODEs for Z(i)

z =
(

X (i)
z ,V (i)

z

)
∈ Td ×Rd:


Ẋ (i)

z =V (i)
z ,

V̇ (i)
z = E(i)

ε

(
X (i)

z
)
,(

X (i)
z (0),V (i)

z (0)
)
= (x,v) = z,

(3.13)

where the electric field E(i)
ε is given by

E(i)
ε =−∇U (i)

ε ,

ε
2
∆U (i)

ε = eU (i)
ε −ρ

(i)
ε := eU (i)

ε −ρ[ f (i)ε ].

Since f (i)ε has bounded mass density, Proposition 3.3 and Lemma 3.4 imply that E(i)
ε is a

log-Lipschitz vector field, with a constant uniform on [0,T ]. This regularity is enough to
imply that there exists a unique solution of (3.13) for every initial condition z, resulting in a
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well-defined characteristic flow. Since the characteristic flow is unique, by [1, Theorem 3.1]
the linear Vlasov equation {

∂tg+ v ·∇xg+E(i)
ε (x) ·∇vg = 0,

g|t=0 = f (i)ε (0)≥ 0
(3.14)

has a unique solution. Moreover, this solution can be represented, in weak form, by the relation∫
Td×Rd

φ gt(dz) =
∫
Td×Rd

φ

(
Z(i)

z

)
f (i)ε (0)(dz), (3.15)

for all φ ∈Cb(Td ×Rd). Since f (i)ε is certainly a solution of (3.14), we deduce that g = f (i)ε

and so f (i)ε has the representation (3.15). We will use this representation to define a coupling
between f (1)ε and f (2)ε .

Fix an arbitrary initial coupling π0 ∈ Π

[
f (1)ε (0), f (2)ε (0)

]
. We define πt to follow the

corresponding characteristic flows: for φ ∈Cb((Td ×Rd)2), let∫
(Td×Rd)2

φ(z1,z2)dπt(z1,z2) =
∫
Td×Rd

φ

(
Z(1)

z ,Z(2)
z

)
dπ0(z1,z2).

We can verify that πt is indeed a coupling of f (1)ε and f (2)ε by checking the marginals:∫
(Td×Rd)2

φ(zi)dπt(z1,z2) =
∫
(Td×Rd)2

φ

(
Z(i)

zi (t)
)

dπ0(z1,z2) (3.16)

=
∫
Td×Rd

φ

(
Z(i)

z (t)
)

f (i)ε (0)(dz)

=
∫
Td×Rd

φ(z) f (i)ε (t)(dz).

Next, we define a functional which is greater than (or equal to) the squared Wasserstein
distance between f (1)ε and f (2)ε . Let

D(t) =
∫
(Td×Rd)2

|x1 − x2|2 + |v1 − v2|2 dπt(z1,z2).

Since the Wasserstein distance is an infimum over couplings, while πt is a particular coupling,
D must control the squared Wasserstein distance:

W 2
2 ( f (1)ε , f (2)ε )≤ D.
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To prove our stability estimate, it therefore suffices to estimate D. We will do this using a
Grönwall estimate. Taking a time derivative, we find

Ḋ = 2
∫
(Td×Rd)2

(
X (1)

z1 (t)−X (2)
z2 (t)

)
·
(

V (1)
z1 (t)−V (2)

z2 (t)
)

+
(

V (1)
z1 (t)−V (2)

z2 (t)
)
·
(

E(1)
ε (t,X (1)

z1 (t))−E(2)
ε (t,X (2)

z2 (t))
)

dπ0(z1,z2).

Using the Cauchy-Schwarz inequality, we obtain

Ḋ ≤ D+
√

D
(∫

(Td×Rd)2

∣∣∣E(1)
ε (t,X (1)

z1 (t))−E(2)
ε (t,X (2)

z2 (t))
∣∣∣2 dπ0(z1,z2)

)1/2

.

In other words,

Ḋ ≤ D+
√

D
(∫

(Td×Rd)2

∣∣∣E(1)
ε (t,x1)−E(2)

ε (t,x2)
∣∣∣2 dπt(z1,z2)

)1/2

.

We split the electric field term into the form

∫
(Td×Rd)2

∣∣∣E(1)
ε (t,x1)−E(2)

ε (t,x2)
∣∣∣2 dπt(z1,z2)≤C

4

∑
i=1

Ii,

where

I1 :=
∫
(Td×Rd)2

|Ē(1)
ε (t,x1)− Ē(1)

ε (t,x2)|2 dπt , I2 :=
∫
(Td×Rd)2

|Ē(1)
ε (t,x2)− Ē(2)

ε (t,x2)|2 dπt ,

I3 :=
∫
(Td×Rd)2

|Ê(1)
ε (t,x1)− Ê(1)

ε (t,x2)|2 dπt , I4 :=
∫
(Td×Rd)2

|Ê(1)
ε (t,x2)− Ê(2)

ε (t,x2)|2 dπt .

Control of I1: To estimate I1, observe that by Lemma 3.4,

I1 ≤Cε
−4∥ρ

(1)
ε ∥2

L∞(Td)

∫
(Td×Rd)2

|x1 − x2|2
(

1+ log

( √
d

|x1 − x2|

)
1|x1−x2|≤

√
d

)2

dπt .

As in Lemma 2.15, we use the function

H(x) :=

x
(
log x

16d

)2 if x ≤ d

d (log16)2 if x > d,
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which is concave on R+. Then

I1 ≤Cε
−4∥ρ

(1)
ε ∥2

L∞(Td)

∫
(Td×Rd)2

H
(
|x1 − x2|2

)
dπt .

By Jensen’s inequality,

I1 ≤Cε
−4∥ρ

(1)
ε ∥2

L∞(Td)H
(∫

(Td×Rd)2
|x1 − x2|2 dπt

)
≤Cε

−4M2H(D).

Control of I2: For I2, observe that

I2 ≤
∫
Td

|Ē(1)
ε (x)− Ē(2)

ε (x)|2ρ
(2)
ε (dx)

≤ ∥ρ
(2)
ε ∥L∞(Td)∥Ē(1)

ε − Ē(2)
ε ∥2

L2(Td).

We apply the Loeper stability estimate (Lemma 3.7) to obtain

I2 ≤ ε
−4 max

i
∥ρ

(i)
ε ∥2

L∞(Td)W
2
2 (ρ

(1)
ε ,ρ

(2)
ε )≤Cε

−4M2D.

Control of I3: To estimate I3, we recall a regularity estimate on Û (1)
ε from Proposition 3.3:

∥Ê(1)
ε ∥C1(Td) ≤ ∥Û (1)

ε ∥C2(Td) ≤Cd exp2

(
Cdε

−2
(

1+∥ρ
(1)
ε ∥

L
d+2

d (Td)

))
.

Under conditon (3.12), by Lemma 1.12,

∥ρ
(1)
ε ∥

L
d+2

d (Td)
≤C

for some C depending on C0 only. Therefore

I3 ≤ ∥Ê(1)
ε ∥2

C1(Td)

∫
(Td×Rd)2

|x1 − x2|2 dπt ≤ exp2(Cε
−2)D,

for some C depending on C0 and d only. If (3.12) does not hold, we can use the fact that

∥ρ
(1)
ε ∥

L
d+2

d (Td)
≤ ∥ρ

(1)
ε ∥L∞(Td) ≤ M

and complete the proof in the same way, to find a constant depending on M.
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Control of I4: First, note that

I4 =
∫
Td

|Ê(1)
ε (x)− Ê(2)

ε (x)|2ρ
(2)
ε (dx)≤ ∥ρ

(2)
ε ∥L∞(Td)∥Ê(1)

ε − Ê(2)
ε ∥2

L2(Td).

We apply the stability estimate on Û (1)
ε from Proposition 3.6 to find

∥Ê(1)
ε − Ê(2)

ε ∥2
L2(Td) ≤ exp2

[
Cdε

−2
(

1+max
i

∥ρ
(i)
ε ∥L(d+2)/d(Td)

)]
×max

i
∥ρ

(i)
ε ∥L∞(Td)W

2
2 (ρ

(1)
ε ,ρ

(2)
ε ).

Once again, if conditon (3.12) holds then

∥Ê(1)
ε − Ê(2)

ε ∥2
L2(Td) ≤ exp2

(
Cε

−2)max
i

∥ρ
(i)
ε ∥L∞(Td)W

2
2 (ρ

(1)
ε ,ρ

(2)
ε ),

for some C depending on C0 and d only. Thus

I4 ≤ exp2
(
Cε

−2)M2D.

Altogether we find that

Ḋ ≤

CεD
(
1+ |log D

16d |
)

if D < d

Cε(1+ log16)D if D ≥ d.

If (3.12) holds, then Cε may be chosen to satisfy

Cε ≤Cε
−2M+ exp2(Cε

−2)+ exp2(Cε
−2)M

≤ exp2(Cε
−2)(M+1).

We conclude that
D(t)≤ β (t,D(0)) ,

following the argument used in the proof of Lemma 2.14.
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3.4 Growth Estimates

In this section we will study how the support of a solution of the VPME system grows in time.
We present two different proofs for the two and three dimensional case, respectively in Sections
3.4.1 and 3.4.2. The result we obtain is the following:

Proposition 3.10 (Mass bounds). Let fε be a solution of (3.1) satisfying for some constant C0,

∥ fε∥L∞([0,T ]×Td×Rd) ≤C0, sup
t∈[0,T ]

E ME
ε [ fε(t)]≤C0.

Assume that ρ fε ∈ L∞([0,T ];L∞(Td)). Let R0 be any constant such that the support of fε(0, ·, ·)
is contained in Td ×BRd(0,R0).

(i) If d = 2, then:
sup

t∈[0,T ]
∥ρ fε (t)∥L∞(T2) ≤CT eCε−2 [

R0 + ε
−2]2 .

The constant C depends on C0 only, while CT depends on C0 and T .

(ii) If d = 3, then:

sup
t∈[0,T ]

∥ρε(t)∥L∞(T3) ≤ max{T−81/8,C(R3
0 + eCε−2

T 6)}.

The constant C depends on C0 only.

3.4.1 Proof of Proposition 3.10 in the two dimensional case

In this section, we prove an estimate on the mass density ρε in the case d = 2. Observe first
that if the support of fε is contained in the set T2 ×BR2(0;Rt), then

∥ρε(t)∥L∞(Td) ≤CR2
t , (3.17)

where C is a constant depending on ∥ fε(0)∥L∞(T2×R2). Our argument will rely on controlling
the growth of the support of fε . To do this we will find a bound on the growth rate of the
velocity component of the characteristic trajectories. Since any characteristic trajectory (Xt ,Vt)

satisfies
V̇t = Eε(Xt),

we look for a uniform estimate on the electric field Eε .
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By Proposition 3.3, for the smooth part Êε we have the estimate

∥Êε∥L∞(T2) ≤ exp
{

Cε
−2
(

1+∥ρε∥L2(T2)

)}
≤ exp

(
Cε

−2),
where the constant C depends only on a bound on the initial energy. However, for the singular
part Ēε , Proposition 3.3 only gives us the estimate

∥Ēε∥L∞(T2) ≤Cε
−2
(

1+∥ρε∥L∞(Td)

)
,

which depends on an L∞ bound on the mass density. If we use this estimate in combination
with (3.17), this results in a bound on the size of the support of the form

Rt ≤ R0 + exp
(
Cε

−2)t +Cε
−2
∫ t

0
R2

s ds. (3.18)

The solution of the ODE
ẏ =C(1+ y2)

blows up in finite time and so the differential inequality (3.18) is not enough to imply a bound
on Rt . We need to use a more careful estimate on Ēε . In dimension two, we can make use of the
fact that the conservation of energy gives us a uniform bound on ∥ρε∥L2(T2), by Lemma 1.12,
and use an interpolation argument.

Lemma 3.11. Let ρ ∈ L1 ∩L∞(T2) satisfy the bounds

∥ρ∥L1(T2) = 1, ∥ρ∥L2(T2) ≤C0, ∥ρ∥L∞(T2) ≤ M.

Let Ēε =−∇Ūε , where Ūε is the unique W 1,2(T2) solution of the Poisson equation

ε
2
∆Ūε = 1−ρ.

Then there exists a constant C depending only on C0 such that

∥Ēε∥L∞(T2) ≤Cε
−2
(

1+ | logM|1/2
)
.

Proof. We use the representation

Ēε = ε
−2Kper ∗ (ρ −1) =Cε

−2
∫
[− 1

2 ,
1
2 ]

2

y
|y|2

(ρ(x− y)−1)dy+ ε
−2K0 ∗ (ρ −1),
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where K0 is a C1(T2) function. By Young’s inequality,

∥K0 ∗ (ρ −1)∥L∞(T2) ≤ ∥K0∥L∞(T2)∥ρ −1∥L1(T2) ≤C.

We split the integral term into a part where |y| is small and a part where |y| is large:∫
[− 1

2 ,
1
2 ]

2

y
|y|2

(ρ(x− y)−1)dy =
∫
|y|≤l

y
|y|2

(ρ(x− y)−1)dy+
∫

2≥|y|≥l

y
|y|2

(ρ(x− y)−1)dy.

For the part where |y| is large, we use Young’s inequality with the L2 control on ρ:∣∣∣∣∫2≥|y|≥l

y
|y|2

(ρ(x− y)−1)dy
∣∣∣∣≤ ∫2≥|y|≥l

1
|y|

|ρ(x− y)−1|dy

≤
∥∥∥∥ 1
|y|
12≥|y|≥l ∗ |ρ −1|

∥∥∥∥
L∞(T2)

≤
(∫

2≥|y|≥l

1
|y|2

dy
)1/2

∥ρ −1∥L2(T2)

≤C(C0 +1) | log l|1/2.

Where |y| is small, we use Young’s inequality with the L∞ control on ρ:∣∣∣∣∫|y|≤l

y
|y|2

(ρ(x− y)−1)dy
∣∣∣∣≤ ∫|y|≤l

1
|y|

|ρ(x− y)−1|dy

≤
∥∥∥∥ 1
|y|
1|y|≤l ∗ |ρ −1|

∥∥∥∥
L∞(T2)

≤ ∥ρ −1∥L∞(T2)

∫
|y|≤l

1
|y|

dy

≤CM l.

Altogether we obtain

∥Ēε∥L∞(T2) ≤Cε
−2
[
1+C0| log l|1/2 +Ml

]
.

We choose l = M−1 and conclude that

∥Ēε∥L∞(T2) ≤Cε
−2
(

1+ | logM|1/2
)
,

where C depends on C0 only.
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By using this estimate, we can deduce a differential inequality on Rt that can be closed.

Lemma 3.12. Let fε be a solution of (3.1) with bounded energy and compact support contained
in T2 ×BR2(0;Rt) at time t. Then R satisfies the estimate

Rt ≤ eCε−2
t (1+R0 +(log t ∨0)) .

Proof. We consider the velocity coordinate Vt(x,v) of an arbitrary characteristic trajectory
starting from (x,v) at time t = 0. We have

|Vt(x,v)| ≤ |v|+
∫ t

0
∥Eε∥L∞(T2) ds

≤ |v|+
∫ t

0
∥Êε∥L∞(T2)+∥Ēε∥L∞(T2) ds

≤ |v|+
∫ t

0
exp(Cε

−2)+Cε
−2
(

1+ | logRs|1/2
)

ds

The size of the support is controlled by the modulus of the furthest-reaching characteristic
trajectory that starts within the support of fε(0):

Rt ≤ sup
(x,v)∈T2×BR2(0;R0)

|Vt(x,v)|

≤ sup
(x,v)∈T2×BR2(0;R0)

{
|v|+

∫ t

0
exp(Cε

−2)+Cε
−2
(

1+ | logRs|1/2
)

ds
}

≤ R0 +
∫ t

0
exp(Cε

−2)+Cε
−2| logRs|1/2 ds.

We compare this with the function

z(t) = (1+2Ct) [R0 + log(1+2Ct)] .

By Lemma A.1, this satisfies
ż ≥C(1+ log(1+ z)).

We deduce that
Rt ≤ eCε−2

t
(
ε
−2 +R0 +(log t ∨0)

)
.
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Proof of Proposition 3.10, case d = 2. We combine Lemma 3.12 with the elementary estimate
(3.17): for all t ∈ [0,T ],

∥ρε(t)∥L∞(Td) ≤CR2
t

≤ eCε−2
t
(
ε
−2 +R0 +(log t ∨0)

)2

≤CT eCε−2 (
R0 + ε

−2)2
.

3.4.2 Proof of Proposition 3.10 in the three dimensional case

In this section, we prove a mass bound in the case d = 3. In this case, the conservation of
energy gives us a uniform bound on ∥ρε∥L5/3(T3). This integrability is not enough to allow us
to use the elementary interpolation approach that we used in the the two dimensional case.
Instead, we will adapt estimates devised by Batt and Rein [10] for the classical Vlasov-Poisson
equation on T3 ×R3. We used this approach in Chapter 2 to prove the existence of solutions
of the VPME system with bounded density. Here we focus on identifying how the bounds on
∥ρε∥L∞(T3) depend on ε .

As in the two dimensional case, Batt and Rein’s argument relies on controlling the mass
density using the characteristic trajectory with velocity component of greatest Euclidean norm
starting within the support of fε(0) at time zero. They prove a bootstrap estimate on the
convolution integral defining the singular part of the electric field. We recall this estimate in the
following technical lemma.

Lemma 3.13. Let (X(t;s,x,v),V (t;s,x,v)) denote the solution at time t of an ODE(
Ẋ(t)
V̇ (t)

)
= a(t,X(t),V (t)),

(
X(s)
V (s)

)
=

(
x
v

)
,

where a is of the form

a(t,X ,V ) =

(
V

a2(t,X ,V )

)
,

for some vector-field a2 : [0,T ]×T3 ×R3 → R3.
Assume that, for t ∈ [0,T ], f = f (t,x,v) is the pushforward of f0 along the associated

characteristic flow; that is, for all φ ∈Cb(T3 ×R3),∫
T3×R3

f (t,x,v)φ(x,v)dxdv =
∫
T3×R3

f (s,x,v)φ(X(t;s,x,v),V (t;s,x,v))dxdv.
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Assume that there exists C∗ > 1 such that

∥ f∥L∞([0,T ]×T3×R3) ≤C∗, sup
t∈[0,T ]

∥ ft |v|2∥L1(T3×R3) ≤C∗.

Also, suppose that, for some β ∈ (0,1),

hη(t,∆)≤C∗hρ(t)β
∆ for all hρ(t)−β ≤ ∆ ≤ t, (3.19)

where hρ ,hη are defined as in (2.47). Then for all 0 ≤ t1 < t2 ≤ t with t2 − t1 ≤ ∆, if

hρ(t)−β/2 ≤ ∆ ≤ t

then ∫ t2

t1

∫
T3
|X(s)− y|−2

ρ f (s,y)dyds ≤C
(

hρ(t)2β/3 +hρ(t)1/6
)

∆,

where C depends only on C∗.

We complete the proof of Proposition 3.10 by combining Lemma 3.13 with the estimates
on Êε from Proposition 3.3.

Proof of Proposition 3.10, case d = 3. For any characteristic trajectory (Xt ,Vt), we have for
any 0 ≤ t1 < t2 ≤ T ,

|Vt1 −Vt2| ≤
∫ t1

t2
|Eε(Xs)|ds.

We can write the total force Eε in the form

Eε(x) = ε
−2[K0 ∗ (ρε −1)](x)+Cε

−2
∫
T3

x− y
|x− y|3

ρε(y)dy+ Êε .

Since K0 is a C1(T3) function and ρε has unit mass, the first term satisfies the bound

|ε−2[K0 ∗ (ρε −1)](x)| ≤ ε
−2∥K0∥L∞(T3)∥ρε −1∥L1(T3)

≤Cε
−2.

For the last term, we use Proposition 3.3:

|Êε | ≤ exp
[
C
(

1+∥ρε∥L5/3(T3)

)]
≤ exp(Cε

−2).
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Therefore,

|Vt1 −Vt2| ≤
∫ t1

t2

[
exp(Cε

−2)+Cε
−2
∫
T3
|X(s)− y|−2

ρε(y)dy
]

ds. (3.20)

From [50, Lemma 4.5.4] we have the estimate∫
T3
|x− y|−2

ρε(s,y)dy ≤C∥ρε(s, ·)∥5/9
L5/3∥ρε(s, ·)∥4/9

L∞(T3)
≤C∥ρε(s, ·)∥4/9

L∞(T3)
,

where C depends only on ∥ fε(0)∥L∞(T3×R3) and the initial energy.
By (3.20), we have

hη(t,∆)≤
(

Cε
−2hρ(t)

4
9 + eCε−2

)
∆.

Since ρε has total mass 1, hρ ≥ 1. Thus

hη(t,∆)≤ eCε−2
∆hρ(t)

4
9 .

This means that condition (3.19) is satisfied with C∗ = eCε−2
. We apply Lemma 3.13 to improve

our bound on ∫
T3
|X(s)− y|−2

ρε(y)dy ≤CC4/3
∗
(

hρ(t)
2
3 ·

4
9 +hρ(t)1/6

)
∆.

Feeding this new estimate into (3.20), we obtain

hη(t,∆)≤Cε
−2C4/3

∗
(

hρ(t)
2
3 ·

4
9 +hρ(t)1/6

)
∆+(Cε

−2 +CeCε−2
)∆ ≤ eCε−2

hρ(t)
8

27 ∆,

as long as
hρ(t)−2/9 ≤ ∆ ≤ t.

We will iterate this process until we achieve the lowest possible exponent for hρ , i.e. 1
6 .

Applying Lemma 3.13 a second time, we obtain∫
T3
|X(s)− y|−2

ρε(y)dy ≤CC4/3
∗
(

hρ(t)
2
3 ·

8
27 +hρ(t)1/6

)
∆,

with C∗ = eCε−2
, provided that

hρ(t)−4/27 ≤ ∆ ≤ t,
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and therefore

hη(t,∆)≤Cε
−2C4/3

∗
(

hρ(t)
2
3 ·

8
27 +hρ(t)1/6

)
∆+(Cε

−2 +CeCε−2
)∆ ≤ eCε−2

hρ(t)
16
81 ∆.

Applying Lemma 3.13 once more, we obtain∫
T3
|X(s)− y|−2

ρε(y)dy ≤CC4/3
∗
(

hρ(t)
2
3 ·

16
81 +hρ(t)1/6

)
∆,

with C∗ = eCε−2
, provided that

hρ(t)−8/81 ≤ ∆ ≤ t,

and therefore

hη(t,∆)≤Cε
−2C4/3

∗
(

hρ(t)
2
3 ·

16
81 +hρ(t)1/6

)
∆+(Cε

−2 +CeCε−2
)∆ ≤ eCε−2

hρ(t)
1
6 ∆, (3.21)

since 32
243 < 1

6 and hρ ≥ 1.
Finally, we use this new growth estimate on characteristic trajectories to control the mass

density. Assuming that fε(0) is supported in T3 ×BR3(0;Rt), we have

hρ ≤C∥ fε∥L∞(Td×Rd) (R0 +hη(t, t))
3

Since we work with L∞(Td ×Rd) solutions, we have a uniform bound on ∥ fε∥L∞(Td×Rd)

depending only on the initial data. Therefore, using (3.21), we find that if hρ(t)−8/81 ≤ t,

hρ ≤C (R0 +hη(t, t))
3 ≤C

(
R0 + eCε−2

hρ(t)
1
6 t
)3

≤CR3
0 + eCε−2

hρ(t)1/2t3 ≤CR3
0 +

(
eCε−2

t3)2
+hρ(t)

2
.

Hence
hρ ≤C

(
R3

0 + eCε−2
t6
)
.

If instead hρ(t)−8/81 ≥ t, then
hρ(t)≤ t−

81
8 .

Therefore, we may conclude that

hρ(t)≤ max{t−81/8,C(R3
0 + eCε−2

t6)}.
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3.5 Quasi-Neutral Limit

In this section, we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let gε denote the solution of (3.1) with data gε(0). We will use gε

to interpolate between the solution fε of (3.1) starting from fε(0) and the solution g of (3.2)
starting from g(0). By the triangle inequality,

W1( fε(t),g(t))≤W1( fε(t),gε(t))+W1(gε(t),g(t)). (3.22)

By Theorem 3.2, there exists a solution g of (3.2) such that

lim
ε→0

sup
t∈[0,T∗]

W1(gε(t),g(t)) = 0. (3.23)

To deal with the first term of (3.22), we use a stability estimate around gε for the VPME
system. By the monotonicity property of Wasserstein distances (1.38) and Proposition 3.9,

W1( fε(t),gε(t))≤W2( fε(t),gε(t)) (3.24)

≤

C exp
[
C
(

1+ log W2( fε (0),gε (0))
4
√

d

)
e−Cε t

]
if W2( fε(0),gε(0))≤ d

W2( fε(0),gε(0))eCε t if W2( fε(0),gε(0))> d.

where Cε may be chosen to satisfy

Cε ≤ exp2(Cε
−2)(M+1).

for any M satisfying
sup
[0,T∗]

∥ρ fε (t)∥L∞
x , sup

[0,T∗]
∥ρgε

(t)∥L∞
x ≤ M.

By Proposition 3.10, we may take M such that

M ≤C eCε−2
.

The constant C depends on T∗, C0, the dimension d, and C1, the rate of growth of the initial
support. We emphasise again that the appearance of an exponential rate here is a consequence
of the form of the equation rather than because condition (3.3) allows fast growth of the initial
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support. It follows that we may estimate

Cε t ≤C exp2(Cε
−2)

for all t ∈ [0,T∗]. Hence we have convergence if∣∣∣log W2( fε (0),gε (0))
4
√

d

∣∣∣
exp3(Cε−2)

→ ∞

as ε tends to zero. This holds if

W2( fε(0),gε(0))≤ (exp4(Cε
−2))−1

for sufficiently large C. In this case, it follows by (3.24) that

lim
ε→0

sup
t∈[0,T∗]

W1( fε(t),gε(t)) = 0.

Combined with (3.23) and (3.22), this completes the proof.





Chapter 4

Derivation of the VPME System from a
System of Extended Ions

4.1 Introduction

In this chapter, we derive the VPME system (2.1) from a microscopic particle system. The
VPME system is a model for the ions in a plasma, assuming that the electrons are instanta-
neously thermalised. A possible choice of microscopic system would therefore be a system of
N ions, modelled as point charges, in a background of thermalised electrons. On the torus, this
is described by the following system of ODEs:

Ẋi =Vi

V̇i =
1
N

N

∑
j ̸=i

Kper(Xi −X j)−Kper ∗ eU ,
(4.1)

where U satisfies

∆U = eU − 1
N

N

∑
i=1

δXi.

The formal limit of this particle system, as N tends to infinity, is the VPME system, which
reads as follows on the torus:

(V PME) :=



∂t f + v ·∇x f +E ·∇v f = 0,
E =−∇xU,

∆xU = eU −
∫
Rd

f dv = eU −ρ,

f |t=0 = f0 ≥ 0,
∫
Td×Rd

f0 dxdv = 1.

(4.2)
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In fact, we will not be able to derive VPME from the point charge system (4.1). This is
due to the singularity of the Coulomb interaction, as discussed in Section 1.6. Instead, we will
consider a limit from a regularised system. We use a regularisation method inspired by the
work of Lazarovici [61] for the classical VPME system. The idea of the proof is to use a model
consisting of ‘extended charges’. Instead of modelling the ions as point charges, we replace
these with delocalised packets of charge. We define this system in detail in Subsection 4.1.1
below.

4.1.1 The Extended Ions Model

In this section, we introduce the extended ions model. We fix a smooth, radially symmetric
function χ : Rd → [0,+∞) with unit mass and compact support contained within the unit ball
in Rd . Define

χr(x) = r−d
χ

(x
r

)
. (4.3)

We then consider a microscopic system describing the dynamics of a system of ‘delocalised
ions’ of shape χr. For 1 ≤ i ≤ N, let (Xi,Vi) denote the position and velocity of the centre of
the ith delocalised ion. The system is described by the following system of ODEs:Ẋi =Vi

V̇i =
1
N ∑ j ̸=i χr ∗Kper ∗χr(Xi −X j)−χr ∗Kper ∗ eU ,

(4.4)

where U satisfies

∆U(x) = eU(x)− 1
N

N

∑
i=1

χr(x−Xi)

and Kper denotes the Coulomb kernel on Td , defined in (1.44). That is, Kper =−∇Gper, where
Gper = G+G0 for G0 a smooth function and G the Coulomb potential on Rd , defined by (1.42).

Note that we can rewrite the velocity equation as

V̇i =−χr ∗∇U(t,Xi),

and the equation for U as
∆U = eU −χr ∗ρµN

r
,
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where µN
r denotes the empirical measure as defined in (1.58). This is valid because χr ∗Kper ∗

χr(0) = 0, and so

1
N ∑

j ̸=i
χr ∗Kper ∗χr(Xi −X j) =

1
N

N

∑
j=1

χr ∗Kper ∗χr(Xi −X j) = χr ∗Kper ∗χr ∗ρµN
r
(Xi).

Indeed, since Kper is odd and χr is even, we have

χr ∗Kper ∗χr(0) =
∫
Td×Td

χr(−x)Kper(x− y)χr(y)dxdy

=
∫
Td×Td

χr(−y)Kper(y− x)χr(x)dxdy

=−
∫
Td×Td

χr(y)Kper(x− y)χr(−x)dxdy

=−χr ∗Kper ∗χr(0).

4.2 Statement of Results

The main result of this chapter is the following theorem.

Theorem 4.1 (Regularised mean field limit). Let d = 2,3, and let f (0) ∈ L1 ∩L∞(Td ×Rd)

be a compactly supported choice of initial datum for (4.2). Then, for all T∗ > 0, there exists
a constant C = C( f0,T∗) such that the following holds. Assume that r = rN and the initial
configurations for (4.4) are chosen such that the corresponding empirical measures satisfy,

limsup
r→0

W 2
2 ( f (0),µN

r (0))

rd+2+C| logr|−1/2 < 1. (4.5)

Then the empirical measure associated to the particle system dynamics starting from this
configuration converges to f :

lim
r→0

sup
t∈[0,T∗]

W2( f (t),µN
r (t)) = 0.

Remark 5. This result in fact holds for any choice of initial data for which there exists a constant
M > 0 such that for all r > 0,

∥ρ f ∥L∞([0,T∗]×Td), sup
r>0

∥ρ fr∥L∞([0,T∗]×Td) ≤ M.

In this case, the constant C( f0,T∗) =CM,T∗ in fact depends only on M and T∗.
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For Theorem 4.1 to be useful, we need to check whether the condition (4.5) is reasonable.
This is dealt with in the following result. We consider data chosen randomly, by drawing
independent samples from f0. A generalised Glivenko–Cantelli theorem - a law of large
numbers result for measures - implies that µN(0) chosen in this way will converge to f0 almost
surely as N tends to infinity. With a suitable choice of parameters, the rate of this convergence
will be fast enough to satisfy (4.5).

Theorem 4.2 (Typicality). Let d = 2 or 3, and let f0 be a choice of initial datum for (4.2)
satisfying the assumptions of Theorem 4.1 and having a finite kth moment for some k > 4:∫

Td×Rd

(
|x|k + |v|k

)
f0(dxdv)<+∞.

Let r = cN−γ for some γ satisfying

γ <
1

d +2
min

{
1
d
,1− 4

k

}
. (4.6)

For each N, select initial configurations for the regularised N-particle system (4.4) by taking
N independent samples from f0. Then with probability 1, this gives an admissible set of
configurations for Theorem 4.1, i.e. the regularised mean field limit holds:

lim
N→∞

sup
t∈[0,T∗]

W2(µ
N
r (t), f (t)) = 0.

Remark 6. It is worth noticing that our assumptions on r are the same as the ones found by
Lazarovici for the classical Vlasov–Poisson system in [61].

4.2.1 Strategy

The overall strategy is to apply the approach of Lazarovici [61] for the Vlasov–Poisson system,
with appropriate modifications to adapt it to the VPME case. In this section, we briefly outline
this approach.

The regularised mean field limit is proved in two stages. As an intermediate step between
the particle system (1.63) and VPME, we introduce the following regularised version of the
VPME system (4.2): 

∂t fr + v ·∇x fr +Er ·∇v fr = 0,
Er =−χr ∗∇Ur,

∆Ur = eUr −χr ∗ρ[ fr],

fr|t=0 = f (0)≥ 0,
∫
Td×Rd f (0)dxdv = 1.

(4.7)
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We studied this equation in Section 2.8 and proved that it has a unique solution fr for any
f (0) ∈ L1 ∩L∞(Td ×Rd). The convergence of µN

r to f will be proved as a two-stage limit,
passing via fr.

µN
r fr

f

N → ∞

r → 0

Fig. 4.1 Strategy for the proof of Theorem 4.1.

First, as N tends to infinity with r fixed, µN
r converges to fr, the solution of (2.57) with

initial datum f (0). This holds because the force in (2.57) is regular enough that the equation
has a stability property even in the class of measures, as investigated for example by Dobrushin
[27]. However, the rate of this convergence will degenerate in the limit as r tends to zero,
because the regularised force will converge to a singular force in this limit. The goal is therefore
to quantify this convergence in W2, optimising the constants so as to minimise the rate of
blow-up as r tends to zero. This step will be carried out in Section 4.4.

As in the article of Lazarovici [61], the technique we use to do this is to consider an
anisotropic version of the W2 distance. For some parameter λ > 0, we consider

W (λ )
2 (µ,ν) =

(
inf

π∈Π(µ,ν)

∫
(Td×Rd)2

λ
2|x1 − x2|2 + |v1 − v2|2 dπ(x1,v1,x2,v2)

) 1
2

.

For this anisotropic distance, we will prove a differential inequality of Grönwall type, with
a growth constant Cλ depending on λ . We then allow λ to depend on r, and optimise with
respect to r in order to achieve the smallest Cλ possible. The optimal value of λ will lead to a
rate of convergence as r tends to zero that will allow us to close the estimate.

In the second step, we must show that fr converges to f as r tends to zero. We already
showed that this holds if f (0) ∈ L1 ∩L∞(Td ×Rd) with compact support, in Section 2.9 when
we constructed global solutions of the VPME system. In this chapter we will show that this
convergence can be quantified, in the second order Wasserstein distance W2, again aiming to
optimise the rate in r.

By combining these two limits, we will identify a regime for the initial data in which µN
r

converges to f .
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The main difference in adapting the proof to the VPME case is to include the additional
part of the electric field Ê =−∇Û , where

∆Û = eŪ+Û −1, −∆Ū = ρ[ f ]−1,

and the analogous part of the electric field for the regularised equation (4.7). This is ac-
complished by making use of the regularity and stability estimates on the electric field from
Sections 2.4 and 2.5.

4.3 Preliminary Estimates

4.3.1 Behaviour of the Wasserstein distance under regularisation

We recall some useful results on the behaviour of Wasserstein distances under regularisation by
convolution. See [83, Proposition 7.16] for proofs. The first observation is that regularising
two measures cannot increase the Wasserstein distance between them.

Lemma 4.3. Let µ , ν be probability measures, r > 0 any positive constant and χr a mollifier
as defined in (4.3), where χ ∈C∞

c (Rd; [0,+∞)) has total mass one. Then

Wp(χr ∗µ,χr ∗ν)≤Wp(µ,ν).

We also have an explicit control on the Wasserstein distance between a measure and its
regularisation:

Lemma 4.4. Let µ be a probability measure and r > 0. Let χr be a mollifier as defined in (4.3),
where χ ∈C∞

c (Rd; [0,+∞)) has support contained in the unit ball and total mass one. Then

Wp(χr ∗µ,µ)≤ r.

If a measure ν is close to an Lp-function in Wasserstein sense, then it is possible to estimate
the Lp-norm of the regularised measure χr ∗ ν in a way that exploits this fact. We will use
this in our estimates to control the regularised mass density χr ∗ρµ . The following estimate is
shown in the whole space for p = ∞ in [61, Lemma 4.3] (see also [13] for similar estimates),
but it is straightforward to adapt it to the case of the torus with general p. We revisit the proof
here for completeness.
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Lemma 4.5. Let ν be a probability measure on Td and h ∈ Lp(Td) a probability density
function, for some p ∈ [1,+∞]. Then then exists a constant Cd,χ,p, depending on the dimension
d, the integrability exponent p and ∥χ∥L∞(Td), such that for all r ∈ (0, 1

2 ], q ∈ [1,+∞),

∥χr ∗ν∥Lp(Td) ≤Cd,χ

(
∥h∥Lp(Td)+r−(q+d)W q

q (h,ν)
)
.

Proof. Throughout the proof, we identify functions and measures defined over the flat torus Td

with Zd-periodic functions and measures defined on Rd .
We give the proof in the case where the Wasserstein distance Wp is defined using the toroidal

distance
dTd(x,y) := inf

k∈Zd
|x− y+ k|.

Note that dTd is less than or equal to the distance dQd induced by the identification of the

torus Td with the unit cube Qd =
[
−1

2 ,
1
2

] 1
2 . The same result will therefore then also apply to

Wasserstein distances defined using dQd .
Step 1: Kantorovich Duality. The proof is based on the characterisation of Wasserstein
distances in terms of Kantorovich duality, which was stated in Lemma 1.6. In particular this
means that for all pairs of functions (φ ,ψ) ∈ L1(Td,ν)×L1(Td,h) such that

φ(x)−ψ(y)≤ dTd(x,y)q

the following inequality holds:

W q
q (h,ν)≥

∫
Td

φ(x)ν(dx)−
∫
Td

ψ(y)h(y)dy.

In particular this holds if we choose ψ = φ∗, where φ∗ is the conjugate function of φ with
respect to the cost function dTd(x,y)q:

φ
∗(x) := sup

y∈Td
{φ(y)−dTd(x,y)q}.

Now consider the mollification χr ∗ν . We make use of the identification of the torus Td

with the unit cube Qd . For a fixed x ∈ Qd , we may write

χr ∗ν(x) :=
∫

x−Qd

r−d
χ

(
x− y

r

)
ν(dy).
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In the expression above, the measure ν on Qd is identified with its periodic extension to Rd .
The function χ is only evaluated over the principal domain Qd; note that the restriction r ≤ 1

2
is imposed so that the support of χr is entirely contained within Qd . Then

χr ∗ν(x) = r−(d+q)
∫

x−Qd

rq
χ

(
x− y

r

)
ν(dy).

Define a function φx : x−Qd → R by

φx(y) := rq
χ

(
x− y

r

)
.

Note that, for r ≤ 1/2, φx = 0 on the boundary of x−Qd , and so φx can be extended periodically
to the whole of Rd , thus inducing a well-defined function on Td .

Then we may write χr ∗ν(x) in terms of φx and its conjugate:

χr ∗ν(x) = r−(d+q)
∫

x−Qd

φx(y)ν(dy)

= r−(d+q)
[∫

x−Qd

φx(y)ν(dy)−
∫

x−Qd

φ
∗
x (y)h(y)dy

]
+ r−(d+q)

∫
x−Qd

φ
∗
x (y)h(y)dy.

The conjugate function φ∗
x : Td → R is defined by

φ
∗
x (y) := sup

z∈x−Qd

{φx(z)−dTd(y,z)q}.

We wish to use the bound

χr ∗ν(x)≤ r−(d+q)W q
q (h,ν)+ r−(d+q)

∫
x−Qd

|φ∗
x (y)|h(y)dy. (4.8)

To make this rigorous, we must check that φx ∈ L1(ν) and φ∗
x ∈ L1(h). For φx, we use the fact

that
∥φx∥L∞ ≤ rq∥χ∥L∞ .

Thus, since ν is a finite measure, φx ∈ L1(ν). The relevant estimates on φ∗
x will be proved in

Step 2 below.
It then remains to to control the term

r−(d+q)
∫

x−Qd

|φ∗
x (y)|h(y)dy.

This is done by studying the support of φ∗
x .
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Step 2: Support of φ∗
x . By definition,

φ
∗
x (y) = sup

z∈x−Qd

α(z;x,y),

where

α(z;x,y) = rq
χ

(
x− z

r

)
−dTd(y,z)q.

First, we note some global lower and upper bounds. For the lower bound, let k ∈ Zd be such
that y+ k ∈ x−Qd (such a k always exists), and consider the choice z = y+ k. We find that

α(y;x,y) = rq
χ

(
x− (y+ k)

r

)
≥ 0,

since the function χ is non-negative. Thus φ∗
x (y)≥ 0 for all y ∈ Td .

For the upper bound, since χ is a bounded function, we have the estimate

α(z;x,y)≤ rq ∥χ∥L∞(Td)−dTd(y,z)q ≤ rq ∥χ∥L∞(Td).

Thus
∥φ

∗
x ∥L∞(Td) ≤ rq ∥χ∥L∞(Td). (4.9)

Note that in particular this implies that φ∗
x ∈ Lp′(Td), where p′ is the Hölder conjugate of p,

and so φ∗
x belongs to L1(h). Thus the estimate (4.8) is rigorous.

Next we will control the support of φ∗
x . Firstly, since the support of χ is contained in the

unit ball, if dTd(x,z)> r then

α(z;x,y) =−dTd(y,z)q ≤ 0.

Secondly, if dTd(y,z)> ηr for some η > 0, then

α(z;x,y)≤ rq
[
∥χ∥L∞(Td)−η

q
]
.

If we choose η = ∥χ∥
1
q

L∞(Td)
, then

α(z;x,y)≤ 0.

It follows that, if φ∗
x (y)> 0, then the intersection

BTd(x;r)∩BTd(y;∥χ∥
1
q

L∞(Td)
r) (4.10)
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must be non-empty. Here BTd(z;r) denotes the ball with radius r and centre z on Td with
respect to dTd . The set (4.10) is non-empty if and only if

dTd(x,y)≤ r
(

1+∥χ∥L∞(Td)

)
.

We deduce that
suppφ

∗
x ⊂ BTd

(
x;r
(

1+∥χ∥L∞(Td)

))
.

Step 3: Lp estimate. Using the upper bound (4.9), it then follows that, for all y ∈ x−Qd ,

φ
∗
x (y)≤ rq ∥χ∥L∞(Td)1BRd (0; 1

4 )

(
4(x− y)

r(1+∥χ∥L∞(Td))

)
,

where BRd(0;δ ) denotes the open ball in Rd of radius δ with respect to the Euclidean metric.
Define the function Ψd,χ : Qd → R by

Ψd,χ(z) := rq ∥χ∥L∞(Td)1BRd (0; 1
4 )

(
4z

r(1+∥χ∥L∞(Td))

)
.

This can be extended periodically to the whole of Rd and thus induces a well-defined function
on Td .

We may then write∫
x−Qd

|φ c
x (y)|h(y)dy =

∫
x−Qd

φ
c
x (y)h(y)dy ≤

∫
x−Qd

Ψd,χ(x− y)h(y)dy = Ψd,χ ∗h(x).

Thus
χr ∗ν(x)≤ r−(d+q)W q

q (h,ν)+ r−(d+q)
Ψd,χ ∗h(x).

Since the torus has finite volume, we then deduce that, for all p ∈ [1,+∞],

∥χr ∗ν∥Lp(Td) ≤Cd r−(d+q)W q
q (h,ν)+ r−(d+q)∥Ψd,χ ∗h∥Lp(Td).

The next step is to apply Young’s inequality to the second term:

r−(d+q)∥Ψd,χ ∗h∥Lp(Td) ≤ r−(d+q)∥Ψd,χ∥L1(Td)∥h∥Lp(Td).
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The final step is to evaluate ∥Ψd,χ∥L1(Td):

∥Ψd,χ∥L1(Td) = rq ∥χ∥L∞(Td)

∫
Qd

1BRd (0; 1
4 )

(
4z

r(1+∥χ∥L∞(Td))

)
dz

≤ rd+q ∥χ∥L∞(Td)(1+∥χ∥L∞(Td))
d|BRd(0;1)|

≤Cd,χrd+q.

We conclude that

∥χr ∗ν∥Lp(Td) ≤Cd r−(d+q)W q
q (h,ν)+Cd,χ∥h∥Lp(Td),

which completes the proof.

4.3.2 Regularised Kernel

We will need a Lipschitz estimate for the regularised kernel χr ∗K. A suitable estimate is proved
in [61, Lemma 4.2(ii)] for the whole space case. The adaptation to the torus is straightforward,
since Kper = K +K0, where K0 is smooth. The remainder can therefore be controlled using
Lemma 1.1.

Lemma 4.6. (i) Let h ∈ L1 ∩L∞(Rd). There exists C > 0 such that

∥χr ∗K ∗h∥Lip ≤C| logr|(1+∥h∥L∞).

(ii) Let h ∈ L∞(Td). There exists C > 0 such that

∥χr ∗Kper ∗h∥Lip ≤C| logr|(1+∥h∥L∞). (4.11)

4.3.3 Estimates for the Regularised System

We make use of the existence result for the regularised system, which we proved in Section 2.8.

Lemma 4.7 (Existence of regularised solutions). For every f (0) ∈ P(Td ×Rd), there exists a
unique solution fr ∈C([0,∞);P(Td ×Rd)) of (2.57).

We recall some basic estimates on these solutions, which are independent of r > 0. We
have uniform-in-time Lp(Td ×Rd) estimates on ft . If f (0) ∈ Lp(Td ×Rd) for some p ∈ [1,∞],
then for all t

∥ fr(t)∥Lp(Td×Rd) ≤ ∥ f (0)∥Lp(Td×Rd).
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We also recall the definition of the regularised energy, which is conserved by the regularised
VPME system:

Er[ f ] :=
1
2

∫
Td×Rd

|v|2 f dxdv+
1
2

∫
Td
|∇Ur|2 dx+

∫
Td

UreUr dx. (4.12)

By the same interpolation argument as used for VPME, we can deduce the following uniform-
in-time estimate on ρ[ fr]:

sup
t∈[0,∞)

∥ρ[ fr(t)]∥
L

d+2
d (Td)

≤C (Er[ f (0)]+1) . (4.13)

In Theorem 4.1, we assume that the initial datum f (0) is compactly supported. Using the
growth estimates in Section 2.7, we can therefore deduce a L∞(Td) estimate on ρ[ fr]. That is,
for any T > 0 there exists M > 0 such that

sup
r>0

sup
t∈[0,T ]

∥ρ[ fr(t)]∥L∞(Td) ≤ M.

4.4 W2 stability for the regularised VPME system

In this section we perform the first step of the strategy outlined in Figure 4.1, showing that
µN

r → fr as N tends to ∞. To do this, we a weak-strong stability estimate for the regularised
VPME system introduced in (2.57), in the Wasserstein distance W2. This can be applied to
µN

r and fr as both are weak solutions of this system. The estimate is optimised to degenerate
slowly as r tends to zero. This will allow us to use solutions of (2.57) as a bridge between the
particle system (4.4) and the VPME system (4.2).

Lemma 4.8 (Weak-strong stability for the regularised equation). For each r > 0, let fr,µr be
solutions of (2.57), where the fr have uniformly bounded density and initial energy:

sup
r>0

sup
t∈[0,T ]

∥ρ fr∥L∞(Td) ≤ M, (4.14)

sup
r>0

E ME
r [ fr(0)]≤C0, (4.15)

for some C0, M > 0. Assume that the initial data satisfy, for some sufficiently large constant
C > 0 depending on T , C0, M and d,

limsup
r→0

W 2
2 ( fr(0),µr(0))

r(d+2+C| logr|−1/2)
< 1.



4.4 W2 stability for the regularised VPME system 175

Then
lim
r→0

sup
t∈[0,T ]

W 2
2 ( fr(t),µr(t)) = 0.

Proof. To lighten the notation, we drop the subscript r from fr and µr. Fix an arbitrary coupling
of the initial data π0 ∈ Π(µ0, f0). As in the proof of Lemma 1.8, we define a coupling πt that
follows the characteristic flow of (2.57). We use the notation Z(i) for the characteristic flows,
with i = 1,2. They are defined by the following ODE systems:

Ẋ (1)
x,v =V (1)

x,v

V̇ (1)
x,v = E(µ)

r (X (1)
x,v )

(X (1)
x,v (0),V

(1)
x,v (0)) = (x,v)

E(µ)
r =−χr ∗∇U (µ)

r

∆U (µ)
r = eU (µ)

r −χr ∗ρµ



Ẋ (2)
x,v =V (2)

x,v

V̇ (2)
x,v = E( f )

r (X (2)
x,v )

(X (2)
x,v (0),V

(2)
x,v (0)) = (x,v)

E( f )
r =−χr ∗∇U ( f )

r

∆U ( f )
r = eU ( f )

r −χr ∗ρ f .

(4.16)

First, we check that unique global solutions exist for both systems. The same argument
applies to both µ and f , so we will write it for µ only. Observe that since µ is a probability
measure and χr is smooth, χr ∗ρµ is a function with

∥χr ∗ρµ∥L∞(Td) ≤ ∥χr∥L∞(Td).

Hence by the regularity estimates in Proposition 2.4, U (µ)
r is a C1 function with

∥U (µ)
r ∥C1(Td) ≤ exp

[
C
(

1+∥χr∥L∞(Td)

)]
. (4.17)

Then E(µ)
r =−χr ∗∇U (µ)

r is a smooth function with bounded derivative

∥E(µ)
r ∥C1(Td) ≤ ∥χr∥C1(Td) exp

[
C
(

1+∥χr∥L∞(Td)

)]
.

Therefore there is a unique C1 flow corresponding to (4.16).
We then define

πt =
(

Z(1)(t;0, ·)⊗Z(2)(t;0, ·)
)

#
π0, (4.18)

recalling that # denotes a pushforward (Definition 2). It follows from the discussion in
Subsection 1.3.2.2 that πt is a coupling of µ(t) and f (t).
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Using πt , we define an anisotropic functional D which controls the squared Wasserstein
distance W 2

2 ( ft ,µt). For λ > 0, let

D(t) =
∫
(Td×Rd)2

λ
2|x1 − x2|2 + |v1 − v2|2 dπt(x1,v1,x2,v2). (4.19)

We will choose λ later in order to optimise the rate obtained in our eventual estimate on D. We
note some relationships between D and the Wasserstein distance. By Definition 4, since πt is a
particular coupling of µt and ft , as long as we choose λ 2 > 1, we have

W 2
2 (µt , ft)≤ D(t). (4.20)

If we only look at the spatial variables, we can get a sharper estimate:

W 2
2 (ρµ(t),ρ f (t))≤ λ

−2D(t). (4.21)

Since π0 ∈ Π(µ0, f0) was arbitrary we may take the infimum to obtain

inf
π0

D(0)≤ λ
2W 2

2 (µ0, f0). (4.22)

We now perform a Grönwall estimate on D. D is differentiable with respect to time, since
Er is uniformly bounded (4.17) and µ(0) and f (0) have finite second moments. Taking a time
derivative, we obtain

Ḋ = 2
∫
(Td×Rd)2

λ
2(x1 − x2) · (v1 − v2)+(v1 − v2) ·

(
E(µ)

r (t,x1)−E( f )
r (t,x2)

)
dπt .

Using a weighted Cauchy inequality, we find that for any α > 0,

Ḋ = λ

∫
(Td×Rd)2

λ
2|x1 − x2|2 + |v1 − v2|2 dπt

+α

∫
(Td×Rd)2

|v1 − v2|2 dπt +
1
α

∫
(Td×Rd)2

∣∣∣E(µ)
r (t,x1)−E( f )

r (t,x2)
∣∣∣2 dπt .

Therefore

Ḋ ≤ (α +λ )D+
C
α

4

∑
i=1

Ii,
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where

I1 :=
∫

|Ē(µ)
r (t,X (1)

t )− Ē(µ)
r (t,X (2)

t )|2 dπ0, I2 :=
∫

|Ē( f )
r (t,X (2)

t )− Ē(µ)
r (t,X (2)

t )|2 dπ0,

I3 :=
∫

|Ê(µ)
r (t,X (1)

t )− Ê(µ)
r (t,X (2)

t )|2 dπ0, I4 :=
∫

|Ê( f )
r (t,X (2)

t )− Ê(µ)
r (t,X (2)

t )|2 dπ0.

We have again used the decomposition E( f )
r = Ē( f )

r + Ê( f )
r , and the analogous form for E(µ)

r .
To estimate these quantities, we first note some basic regularity properties, which follow

from Proposition 2.4. First, we wish to control the regularised mass density χr ∗ρµ with an
estimate that behaves well as r tends to zero. For this we use Lemma 4.5 with q = 2 and (4.21):

∥χr ∗ρµ∥Lp(Td) ≤Cd

(
∥ρ f ∥Lp(Td)+r−(d+2)W 2

2 (ρµ ,ρ f )
)

(4.23)

≤Cd

(
∥ρ f ∥Lp(Td)+r−(d+2)

λ
−2D

)
.

We will use this estimate in the cases p = d+2
d and p = ∞. For p = ∞, by assumption (4.14) we

obtain
∥χr ∗ρµ∥L∞(Td) ≤Cd

(
M+ r−(d+2)

λ
−2D

)
. (4.24)

For p = d+2
d , by the initial energy assumption (4.15) and (4.13) we have

∥ρ f ∥
L

d+2
d (Td)

≤Cd,

where Cd depends on C0 and d. Thus

∥χr ∗ρµ∥
L

d+2
d (Td)

≤Cd

(
1+ r−(d+2)

λ
−2D

)
(4.25)

for Cd depending on C0 and d.
We also wish to control the regularity of Û (µ)

r . Using (4.25) and Proposition 2.4, we obtain

∥Û (µ)
r ∥C2(Td) ≤Cd exp2

(
Cd

(
1+ r−(d+2)

λ
−2D

))
. (4.26)

We estimate I1 and I2 in the same way as in [61]. For I1 we use Lemma 4.6:

∥χr ∗Kper ∗h∥Lip ≤C| logr|(1+∥h∥L∞).

We combine this with the mass density estimate (4.24) to obtain

I1 ≤C(logr)2
(

M+ r−(d+2)
λ
−2D

)2
λ
−2D. (4.27)
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For I2, we use Proposition 2.11 and (4.24) to obtain

I2 ≤CM(M+ r−(d+2)
λ
−2D)λ−2D. (4.28)

For I3 we compute:

I3 =
∫
(Td×Rd)2

|Ê(µ)
r (t,X (1)

t )− Ê(µ)
r (t,X (2)

t )|2 dπ0 (4.29)

=
∫
(Td×Rd)2

|χr ∗ (∇Û (µ)
r (t,x)−∇Û (µ)

r (t,y))|2 dπt

≤
∫
(Td×Rd)2

∥χr ∗∇Û (µ)
r ∥2

Lip|x− y|2 dπt

≤
∫
(Td×Rd)2

∥Û (µ)
r ∥2

C2(Td)|x− y|2 dπt .

We apply the regularity estimate (4.26) to obtain

I3 ≤C exp2

[
Cd(1+ r−(d+2)

λ
−2D)

]∫
(Td×Rd)2

|x− y|2 dπt

≤C exp2

[
Cd(1+ r−(d+2)

λ
−2D)

]
λ
−2D.

For I4 we compute

I4 =
∫
(Td×Rd)2

|Ê( f )
r (t,X (2)

t )− Ê(µ)
r (t,X (2)

t )|2 dπ0

=
∫
(Td×Rd)2

|χr ∗ (∇Û ( f )
r (t,X (2)

t )−∇Û (µ)
r (t,X (2)

t ))|2 dπ0

=
∫
Td
|χr ∗ (∇Û ( f )

r (t,x)−∇Û (µ)
r (t,x))|2ρ f (t,x)dx

≤ ∥ρ f ∥L∞(Td)∥∇Û ( f )
r −∇Û (µ)

r ∥2
L2(Td). (4.30)

By Proposition 2.11,

∥∇Û ( f )
r −∇Û (µ)

r ∥2
L2(Td) ≤C exp2

[
Cd(1+ r−(d+2)

λ
−2D)

]
∥Ū ( f )

r −Ū (µ)
r ∥2

L2(Td)

≤C exp2

[
Cd(1+ r−(d+2)

λ
−2D)

]
(M+ r−(d+2)

λ
−2D)λ−2D,

thus
I4 ≤CM exp2

[
Cd(1+ r−(d+2)

λ
−2D)

]
(M+ r−(d+2)

λ
−2D)λ−2D.
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We summarise all these bounds as

Ḋ ≤ (λ +α)D+
1

4α
C(1+ | logr|)2

(
M+ r−(d+2)

λ
−2D

)2
λ
−2D (4.31)

+C exp2

[
Cd(1+ r−(d+2)

λ
−2D)

](
1+M(M+ r−(d+2)

λ
−2D)

)
λ
−2D.

This differential inequality is nonlinear and so the estimate cannot be closed in its current
form. To deal with this, we introduce a truncated functional, rescaled to be of order 1:

D̂ = 1∧
(

r−(d+2)
λ
−2D

)
Since D is differentiable, D̂ is at least Lipschitz. In particular, at almost all times t, D̂ is
differentiable, with either

d
dt

D̂(t) = 0 or
d
dt

D̂(t) = r−(d+2)
λ
−2 d

dt
D(t).

Thus (4.31) implies that, for almost all t,

d
dt

D̂ ≤ (λ +α)D̂+
1
α

Cd
[
1+ | logr|2

]
M2

λ
−2D̂.

We then optimise the exponent by choosing

α∗ =Cd(1+ | logr|)Mλ
−1
∗ , λ∗ =Cd(1+ | logr|)1/2

√
M. (4.32)

Then
d
dt

D̂ ≤Cdλ∗D̂.

Since D̂ is absolutely continuous,

D̂(t) = D̂(0)+
∫ t

0
g(s)ds,

where the function g(t) = d
dt D̂(t) wherever this derivative exists, and g(t) = 0 otherwise. Thus

D̂(t)≤ D̂(0)+Cdλ∗

∫ t

0
D̂(s)ds.
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Then by Grönwall’s inequality we deduce

sup
[0,T ]

D̂(t)≤ exp(Cdλ∗T )D̂(0)≤ r−(d+2)
λ
−2
∗ exp(Cdλ∗T )D(0)

≤Cd exp
[
| logr|

(
(d +2)+CdT

√
M| logr|−1/2

)]
λ
−2
∗ D(0).

In order to use this estimate to control the Wasserstein distance, we need to ensure that for
r sufficiently small,

inf
π0

sup
t∈[0,T ]

D̂(t)< 1. (4.33)

If (4.33) holds, then by (4.20), for all t ∈ [0,T ],

W 2
2 (µt , ft)≤ rd+2

λ
2
∗ inf

π0
sup

t∈[0,T ]
D̂(t)≤ rd+2

λ
2
∗ → 0

as r tends to zero, since λ 2
∗ only grows like | logr| by definition (4.32). Using (4.22), we obtain

for any π0,

sup
[0,T ]

D̂(t)≤Cd exp
[
| logr|

(
(d +2)+CdT

√
M| logr|−1/2

)]
λ
−2
∗ inf

π0
D(0)

≤Cd exp
[
| logr|

(
(d +2)+CdT

√
M| logr|−1/2

)]
W 2

2 (µ0, f0).

Since we assumed that the initial data satisfy

limsup
r→0

W 2
2 (µ0, f0)

rd+2+Cd,M,T | logr|−1/2 < 1,

for large Cd,M,T , (4.33) holds for sufficiently small r. This completes the proof.

4.5 Convergence from the Regularised System to VPME

Lemma 4.9 (Approximation of (VPME)). Fix f (0) ∈ L1 ∩L∞(Td ×Rd) satisfying a uniform
bound on the energy as defined in (4.12):

sup
r>0

E ME
r [ f (0)]≤C0, (4.34)

for some C0 > 0.
For each r > 0, let fr be a solution of (2.57) with initial datum f (0). Let f be a solution

of (4.2) with the same initial datum f (0). Assume that { fr}r>0, f have uniformly bounded
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density:
sup
r>0

sup
t∈[0,T ]

∥ρ fr∥L∞(Td) ≤ M, sup
t∈[0,T ]

∥ρ f ∥L∞(Td) ≤ M

for some M > 0. Then
lim
r→0

sup
t∈[0,T ]

W 2
2 ( f (t), fr(t)) = 0.

Proof. We fix an initial coupling π0 ∈ Π( f (0), f (0)) and construct πt ∈ Π( f (t), fr(t)) as in
(4.18), using the characteristic flows

Ẋ (1)
x,v =V (1)

x,v

V̇ (1)
x,v = E(X (1)

x,v )

(X (1)
x,v (0),V

(1)
x,v (0)) = (x,v)

E =−∇U

∆U = eU −ρ f



Ẋ (2)
x,v =V (2)

x,v

V̇ (2)
x,v = Er(X

(2)
x,v )

(X (2)
x,v (0),V

(2)
x,v (0)) = (x,v)

Er =−χr ∗∇Ur

∆Ur = eUr −χr ∗ρ fr .

(4.35)

We define D as in (4.19). As in Lemma 4.8, we obtain for any α > 0,

Ḋ ≤ (α +λ )D+
C
α

4

∑
i=1

Ii,

where

I1 :=
∫

|Ēr(t,X
(1)
t )− Ēr(t,X

(2)
t )|2 dπ0, I2 :=

∫
|Ēr(t,X

(1)
t )− Ē(t,X (1)

t )|2 dπ0,

I3 :=
∫

|Êr(t,X
(1)
t )− Êr(t,X

(2)
t )|2 dπ0, I4 :=

∫
|Ê(t,X (1)

t )− Êr(t,X
(1)
t )|2 dπ0.

For I1 we use the regularity estimate (4.11) to deduce

I1 ≤ | logr|2M2
∫

|X (1)
t −X (2)

t |2 dπ0 ≤ | logr|2M2
λ
−2D. (4.36)

For I2 we use the stability estimate from Lemma 2.10:

∥∇Ū −∇Ūr∥L2(Td) ≤
√

MW2(χr ∗ρ fr ,ρ f ).

By Lemma 4.4,
W2(χr ∗ρ fr ,ρ f )≤ r+W2(ρ fr ,ρ f ).

Hence
∥∇Ū −∇Ūr∥L2(Td) ≤

√
M(r+λ

−1
√

D). (4.37)
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We account for the extra regularisation by elementary methods: first, for g ∈C1(Td),

∥g−χr ∗g∥2
L2(Td) =

∫
Td

∣∣∣∣∫Td
χr(y) [g(x)−g(x− y)]dy

∣∣∣∣2 dx

≤
∫
Td

∣∣∣∣∫Td

∫ 1

0
−yχr(y)∇g(x−hy)dhdy

∣∣∣∣2 dx.

Hence, by Jensen’s inequality applied to the probability measure χr(y)dydh on Td × [0,1],

∥g−χr ∗g∥2
L2(Td) ≤

∫ 1

0

∫
Td

|y|2χr(y)
∫
Td

|∇g(x−hy)|2 dxdydh

≤ r2∥∇g∥2
L2(Td)

∫
Td

|y|2χ1(y)dy ≤Cr2∥∇g∥2
L2(Td). (4.38)

This estimate extends by density to g ∈W 1,2(Td).
Next, standard estimates for the Poisson equation and Lp interpolation inequalities imply

that
∥∇

2Ūr∥L2(Td) ≤C∥ρ fr∥L2(Td) ≤C∥ρ fr∥
d−2
2d

L∞(Td)
∥ρ fr∥

d+2
2d

L
d+2

d (Td)
≤CM

d−2
2d , (4.39)

since by (4.34) and (4.13) we have

∥ρ fr∥L
d+2

d (Td)
≤C (4.40)

for some C depending on d and C0 only.
Therefore, using (4.38),

∥∇Ūr −χr ∗∇Ūr∥L2(Td) ≤C∥∇
2Ūr∥L2(Td)r ≤CM

d−2
2d r,

and we conclude that
I2 ≤CM2(r+λ

−1
√

D)2.

The term I3 is estimated like I1, using the regularity estimate from Proposition 2.4 and (4.40):

∥Ûr∥C2,α (Td) ≤C,

where C depends only on the constant C0 controlling the initial energy in (4.34). We obtain

I3 ≤C
∫

|X (1)
t −X (2)

t |2 dπ0 ≤C λ
−2D.
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Finally, I4 is estimated in the same way as I2, using the stability estimate Proposition 2.11,
Proposition 2.4 and (4.40):

∥∇Û −∇Ûr∥L2(Td) ≤C∥∇Ū −∇Ūr∥L2(Td) ≤C
√

M(r+λ
−1
√

D).

By Proposition 2.4 and (4.40), we have

∥Ur∥L∞ ≤ ∥Ūr∥C0,α (Td)+∥Ûr∥C1,α (Td) ≤ exp
(

C
(

1+∥χr ∗ρ fr∥L
d+2

d (Td)

))
≤C,

where C depends on C0 and d only. Hence

∥eUr∥L2(Td) ≤C.

Since ∆Ûr = eUr −1, by standard regularity results for the Poisson equation this implies that

∥D2Ûr∥L2(Td) ≤C.

Therefore, using (4.38) again,

∥∇Ûr −χr ∗∇Ûr∥L2(Td) ≤C∥D2Ûr∥L2(Td) r ≤Cr,

and we conclude that
I4 ≤CM2(r+λ

−1
√

D)2.

Altogether we have

Ḋ ≤ (α +λ )D+
C

αλ 2

(
| logr|2 +1

)
M2D+CM2r2.

Optimising the exponent, we deduce that

Ḋ ≤Cλ∗D+CM2r2,

where
λ∗ =

√
M(1+ | logr|)1/4.

Hence

D(t)≤
(
D(0)+CM2r2)exp

[
C
√

M(1+ | logr|)1/4t
]

≤ (D(0)+CM2r2)eC
√

M| logr| t .
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Since D controls the squared Wasserstein distance (4.20),

W 2
2 ( fr(t), f (t))≤ (D(0)+CM2r2)eC

√
M| logr| t .

Then, by (4.22), and since f and fr share the same initial datum,

W 2
2 ( fr(t), f (t))≤ (inf

π0
D(0)+CM2r2)eC

√
M| logr| t

≤
(
λ

2
∗W 2

2 ( f (0), f (0))+CM2r2)eC
√

M| logr| t

≤CM2r2eC
√

M| logr| t .

Since

r2eC
√

M| logr| t = r
2−C

√
Mt2
| logr| ,

we conclude that for any compact time interval [0,T ],

lim
r→0

sup
t∈[0,T ]

W 2
2 ( fr(t), f (t)) = 0.

Finally, we combine these estimates to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let fr be the unique solution of (2.57) with initial datum f0. By the
triangle inequality for W2, we have

sup
t∈[0,T ]

W 2
2 (µ

N
r (t), f (t))≤ sup

t∈[0,T ]
W 2

2 (µ
N
r (t), fr(t))+ sup

t∈[0,T ]
W 2

2 ( fr(t), f (t)).

We apply Lemma 4.8 to the first term using the assumption on the initial configurations and
deduce that it converges to zero as r tends to zero. For the second term we apply Lemma 4.9,
since f and fr have the same initial datum. This completes the proof.

4.6 Typicality

In this last section of the chapter, we prove Theorem 4.2 concerning the relation between the
choice of parameters in the mean field limit and the initial configurations. Our method follows
the approach of Lazarovici [61] for the mean field case.
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The idea is based on the following observation. If one constructs a collection of empirical
measures (νN)N by drawing N independent samples from a reference measure ν , then, by the
Glivenko-Cantelli theorem, almost surely νN will converge to ν as N tends to infinity, in the
sense of weak convergence of measures. The idea is to use a quantitative version of this result
to find configurations for which the associated empirical measures converge to our reference
data f0 sufficiently quickly to satisfy the assumption (4.5) of Theorem 4.2. A suitable result
of this type was proved by Fournier and Guillin in [29], with the distance between νN and ν

measured in Wasserstein sense. The following result is from [29, Theorem 2].

Theorem 4.10. Let ν be a probability measure on Rm and let νN denote the empirical measure
of N independent samples from ν . Assume that ν has a finite kth moment for some k > 2p:

Mk(ν) :=
∫
Rm

|x|k dν(x)<+∞.

Then there exist constants c,C depending on p,m and Mk(ν) such that for any x > 0,

P
(
W p

p (ν
N ,ν)≥ x

)
≤ a(N,x)1{x≤1}+b(N,x),

where

a(N,x) =C


exp(−cNx2) p > m

2

exp

(
−cN

[
x

log(2+ 1
x )

]2
)

p = m
2

exp
(
−cNxm/p

)
p < m

2

(4.41)

and
b(N,x) =CN(Nx)−(k−α)/p

for any α ∈ (0,k).

Proof of Theorem 4.2. We follow the approach of [61, Theorem 3.3]. The idea of the proof is
to show that, for the choice r = cN−γ ,

P
(

limsup
N→∞

W 2
2 (µ

N
0 , f0)

rd+2+CT∗,M | logr|−1/2 < 1
)
= 1. (4.42)

Then we may apply Theorem 4.1 to conclude that the mean field limit holds on this full
probability event. To prove (4.42), observe that

⋃
n

⋂
N≥n

Ac
N ⊂

{
limsup

N→∞

W 2
2 (µ

N
0 , f0)

rd+2+CT∗,M | logr|−1/2 < 1
}
,
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where AN is the event

AN :=
{

W 2
2 (µ

N
0 , f0)>

1
2

rd+2+CT∗,M | logr|−1/2
}
.

Since
(⋃

n
⋂

N≥n Ac
N
)c

=
⋂

n
⋃

N≥n AN , by the Borel-Cantelli lemma it suffices to show that

∑
N
P(AN)< ∞. (4.43)

We estimate P(AN) using Theorem 4.10, with

xN =
1
2

rd+2+CT∗,M | logr|−1/2
= cN−γ(d+2)−CT∗,M,γ | logN|−1/2

.

Note that p = 2 and m = 2d. The assumptions on γ in (4.6) are chosen such that

∑
N

a(N,xN)+b(N,xN)< ∞.

In this way (4.43) holds and the result follows.
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5.1 Introduction

This chapter focuses on the derivation of kinetic Euler systems from underlying particle systems.
We consider the kinetic incompressible Euler (KInE) (1.16) and kinetic isothermal Euler (KIsE)
systems (1.20) introduced in Section 1.2.3.3.

We recall that the KInE system reads as follows:

(KInE) :=


∂tg+ v ·∇xg−∇xU ·∇vg = 0,

ρg = 1,
g|t=0 = g0,

∫
Td×Rd g0(x,v)dxdv = 1,

(5.1)

The KInE system formally describes the dynamics of the electrons in a plasma in the quasi-
neutral regime. The physical situation therefore suggests that an appropriate microscopic model
would be a system of interacting electrons. In this chapter, we consider this problem on the
torus. Due to the confinement, we may also include a uniform background of ions. This leads
to the following model: 

Ẋi =Vi

V̇i = α(N)∑
j ̸=i

Kper(Xi −X j).
(5.2)

Recall that Kper was defined to be the Coulomb kernel on the torus Td .
In order to derive the KInE system from the particle system (5.2), it is necessary to identify

an appropriate choice of the scaling α(N) that connects the two systems. With the choice
α(N) = ε−2

N , for a fixed value of ε , the formal limit as N tends to infinity is the Vlasov–Poisson
system

(V P)ε :=


∂t fε + v ·∇x fε +Eε ·∇v fε = 0,

Eε =−∇xUε ,

−ε2∆xUε = ρ fε −1,

fε |t=0 = fε(0)≥ 0,
∫
Td×Rd

fε(0)dxdv = 1.

(5.3)

The quasi-neutral limit ε → 0 then connects the Vlasov–Poisson system to the KInE system.
To obtain the KInE system from the particle system (5.2), a possible strategy to identify the

correct scaling is to consider a two-stage limit, combining the mean field and and quasi-neutral
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limits. This amounts to choosing a scaling of the form

α(N) =
ε(N)−2

N
,

where ε is now allowed to depend on N. We look for for a choice of ε = ε(N) such that both
limits can be taken simultaneously. The limit should hold in the sense of convergence of the
empirical measure, as outlined in Section 1.6. In this chapter, we follow a strategy along these
lines.

We have discussed in previous chapters that the mean field limit from the particle system
(5.2) to the Vlasov–Poisson system remains an open problem in any dimension d > 1. We will
therefore not consider limits from the system (5.2) in our derivation of KInE. Instead, we use a
regularised system.

We use the same regularisation as was discussed for the mean field limit for VPME in
Chapter 4. This represents a system of ‘extended charges’; for KInE, these represent extended
electrons. Fixing a smooth non-negative mollifier χ ∈C∞

c (Td) with mass one, we define the
scaled mollifier

χr(x) = r−d
χ

(x
r

)
, r > 0.

We then consider the regularised system
Ẋi =Vi

V̇i =
ε−2

N ∑
j ̸=i

χr ∗χr ∗Kper(Xi −X j).
(5.4)

For this system, the aim is to find a choice r = r(N), ε = ε(N) such that the limit from (5.4) to
KInE holds.

We also consider the corresponding problem for the KIsE system, which reads as follows:

(KIsE) :=


∂tg+ v ·∇xg−∇xU ·∇vg = 0,

U = logρg,

g|t=0 = g0,
∫
Td×Rd g0(x,v)dxdv = 1.

(5.5)

This is a model for the ions in a plasma, under the assumption of quasi-neutrality.
For KIsE, the natural microscopic model is a system of N ions, interacting with each other

and with a background of thermalised electrons. This is represented by the following system of



190 Particle Derivations for Kinetic Euler Systems

ODEs: 
Ẋi =Vi

V̇i =
ε−2

N

N

∑
j ̸=i

Kper(Xi −X j)− ε
−2Kper ∗ eU ,

(5.6)

where U satisfies

ε
2
∆U = eU − 1

N

N

∑
i=1

δXi.

An intermediate step between these systems is the VPME system

(V PME)ε :=


∂t fε + v ·∇x fε +E ·∇v fε = 0,

E =−∇xU,

ε2∆U = eU −ρ[ fε ],

fε |t=0 = fε(0).

(5.7)

We also replace the point charges in (5.6) by ‘extended ions’ in this case. This results in the
system {

Ẋi =Vi

V̇i =−χr ∗∇xU(Xi),
(5.8)

where U satisfies

ε
2
∆U = eU − 1

N

N

∑
i=1

χr(x−Xi).

As for KInE, the goal is to find a relationship ε = ε(N),r = r(N) between the parameters such
that the KIsE system (5.5) is obtained from (5.8) in the limit as N tends to infinity.

Choice of Initial Configurations. To prove these limits, it will be necessary to make restric-
tions on the initial configurations that we specify for the particle systems (5.4) and (5.8). These
constraints arise due to the issues that we have discussed regarding the choice of initial data
in the mean field and quasi-neutral limits. We need to avoid pathological configurations in
the mean field limit as well as avoiding triggering unstable behaviour, such as the two-stream
instability, that would obstruct the quasi-neutral limit.

Our strategy will be to choose initial data for the particle systems whose empirical measures
approximate, as N tends to infinity, distributions fε(0) for which the quasi-neutral limit holds.
We will work in the close-to-analytic regime of the quasi-neutral limit, using the results of
Han-Kwan–Iacobelli [43] for the electron models, and the results of Chapter 3 for the ion
models.
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5.2 Statement of Results

5.2.1 From Extended Electrons to Kinetic Incompressible Euler

5.2.1.1 General Configurations

In this section, we state a result concerning the derivation of the KInE system from the extended
electrons system (5.4). First, we must make some preliminary definitions.

Empirical Measure. Throughout this chapter, we use the notation µN
ε,r to denote the empirical

measure associated to the solution of the relevant particle system, either (5.4) or (5.8). It is
defined by the formula

µ
N
ε,r(t) =

1
N

N

∑
i=1

δ(Xi(t),Vi(t)). (5.9)

Correctors. In the quasi-neutral limit for the classical Vlasov–Poisson system, we need to
account for the effect of plasma oscillations, as explained in Section 1.5.1.2. The method for
dealing with this is to introduce a corrector function Rε that describes the oscillations. The
corrector Rε is defined in (1.53). The oscillations can then be removed from µN

ε,r by a ‘filtering’
process, which we define below.

Definition 5. Let µ be a probability measure on Td ×Rd . Let R : Td → Rd be given. The
corresponding filtered measure µ̃ is defined to be the measure such that

⟨µ̃,φ⟩=
∫
Td×Rd

φ(x,v+R(x))µ(dxdv)

for all test functions φ .

We will apply this definition with the choice R = Rε .

Energy. We define the energy associated to the classical Vlasov–Poisson system (5.3) on the
torus, with quasi-neutral scaling. This functional is defined as follows:

E VP
ε [ f ] :=

∫
Td×Rd

|v|2 f dxdv+
ε2

2

∫
Td

|∇xUε |2 dx, (5.10)

where Uε = ε−2Gper ∗ (ρ[ f ]−1). This energy functional is conserved by strong solutions of
(5.3).
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Reference Data. We will choose the initial data for the particle system (5.4) to approximate
given functions fε(0) ∈ L1 ∩L∞(Td ×Rd), which we interpret as possible choices of initial
data for the Vlasov–Poisson system (5.3). We assume that fε(0) satisfy the following set of
assumptions. These are precisely the assumptions of the quasi-neutral limit for rough data
proved in [43].

Assumption 2 (KInE, d = 2,3). The data fε(0) satisfy the following:

(i) There exists C0 independent of ε such that

∥ fε(0)∥L∞ ≤C0, E VP
ε ( fε(0))≤C0.

(ii) (Control of support) For some γ > 0,

fε(0,x,v) = 0 for |v|> ε
−γ . (5.11)

(iii) (Perturbation of analytic functions) There exist functions gε(0), satisfying (5.11) and

sup
ε∈(0,1)

sup
v∈Rd

(1+ |v|d+1)∥gε(0)(·,v)∥Bδ0
≤C,

such that
W2( fε(0),g0,ε)≤

[
exp2

(
Cε

−(2+dζ )
)]−1

,

for C > 0 sufficiently large. The exponent ζ = ζ (γ) is defined as follows:

• For d = 2, we fix any δ > 2 and let

ζ = max{γ,δ}. (5.12)

• For d = 3 we let

ζ = max
{

γ,
38
3

}
. (5.13)

Main Result. Under these assumptions, we have the following theorem, in which the KInE
system is derived from the system of extended electrons.

Theorem 5.1. Let d = 2 or 3. For each ε > 0, let fε(0) satisfy Assumption 2. Suppose that
gε(0) has a limit g(0) in the sense of distributions.

Fix T > 0 and η > 0. Then there exists a constant CT and a weak solution g(t) of (5.1)
with initial datum g0 such that the following holds:
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Recall the exponent ζ depending on fε(0) and defined in (5.12)-(5.13) and let ε = εN ,
r = rN be chosen such that

r < e−CT ε−2−dζ

.

Let the initial configurations [Zε
i (0)]

N
i=1 for the N-particle system (5.4) be chosen such that

the corresponding empirical measures satisfy, for some η > 0,

limsup
N→∞

W2(µ
N
ε (0), fε(0))

ε−γr1+d/2+η/2 < ∞. (5.14)

Let [Zε,r
i (t)]Ni=1 denote the solution of (5.4) with initial datum [Zε

i (0)]
N
i=1. Let µN

ε,r(t) denote
the corresponding empirical measure. Let µ̃N

ε,r(t) denote the measures constructed by filtering
µN

εr(t) using the corrector Rε defined from g in (1.53), according to Definition 5. Then

lim
N→∞

sup
t∈[0,T ]

W1(µ̃
N
ε,r(t),g(t)) = 0.

5.2.1.2 Typicality

Theorem 5.2 (KInE, typicality). Let d = 2 or 3. For each ε > 0, let fε(0) satisfy Assumption
2. Suppose that gε(0) has a limit g(0) in the sense of distributions. For fixed T , there exists a
constants CT ,AT > 0 such that the following holds:

Recall the exponent ζ defined in (5.12)-(5.13) and let ε = εN , r = rN be chosen such that

r ≥ AT N− 1
d(d+2)+α

r < e−CT ε−2−dζ

for some α > 0. Then, if the initial N-particle configurations [Zε
i (0)]

N
i=1 are chosen by taking

N independent samples from fε(0), with probability one the following limit holds:

lim
N→∞

sup
t∈[0,T ]

W1(µ̃
N
ε,r(t),g(t)) = 0,

where

• g(t) is a weak solution of (5.1) with initial datum g0 ;

• µN
ε,r(t) denotes the empirical measure corresponding to the solution of (5.4) with initial

datum [Zε
i (0)]

N
i=1 ;
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• µ̃N
ε,r(t) is the measure constructed by filtering µN

ε,r(t) using the corrector Rε defined in
(1.53), according to Definition 5, using the given choice of fε(0) and g(0).

5.2.2 From Extended Ions to Kinetic Isothermal Euler

5.2.2.1 General Configurations

For the KIsE system, we can prove the following limit.

Theorem 5.3 (From ions to kinetic isothermal Euler). Let d = 2 or 3, and let fε(0),gε(0) and
g(0) satisfy the assumptions of Theorem 3.1. Given ε,r,N, let (Z(ε,r)

0,i )N
i=1 ∈ (Td ×Rd)N be a

choice of initial data for the regularised and scaled N-particle ODE system (5.8). Let µN
ε,r

denote the empirical measure associated to the solution of (5.8) with this initial data as defined
in (5.9).

Let T∗ be the maximal time of convergence from Theorem 3.1. There exists a constant C > 0
depending on { fε(0)}ε such that if the parameters (r,ε) = (r(N),ε(N)) and the initial data
µN

ε,r(0) satisfy

r ≤
[

exp3(Cε
−2)
]−1

, lim
N→∞

W2
(
µN

ε,r(0), fε(0)
)

r(d+2+η)/2
= 0, (5.15)

for some η > 0, then
lim

N→∞
sup

t∈[0,T∗]
W1
(
µ

N
ε,r(t),g(t)

)
= 0,

where g is a solution of the KIE system (5.5) with initial data g(0) on the time interval [0,T∗].

5.2.2.2 Typicality

Theorem 5.4. Let d = 2 or 3, and fε(0),gε(0) and g(0) satisfy the assumptions of Theorem 3.1.
Let (r,ε) = (r(N),ε(N)) be chosen to satisfy

r ≤
[

exp3(Cε
−2)
]−1

where C > 0 is the constant from Theorem 5.3. Assume that r = r(N) are chosen such that
r = cN−γ , where c > 0 is an arbitrary constant and γ satisfies

0 ≤ γ <
1

d(d +2)
. (5.16)

For each N, let the initial configurations for the particle system (5.8) be chosen by taking N
independent samples from fε(0). Then, with probability one, this procedure selects a set of
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configurations for which Theorem 5.3 holds, that is,

lim
N→∞

sup
t∈[0,T∗]

W1(µ
N
ε,r(t),g(t)) = 0,

where g is the solution of (5.5) with initial datum g(0) on the time interval [0,T∗] provided by
Theorem 3.1.

5.3 Strategy

5.3.1 General Configurations

µN
ε,r fε,r fε

g

N → ∞ r → 0

ε → 0

Fig. 5.1 Strategy of proof for Theorems 5.1 and 5.3.

For the derivation of the KInE system (Theorem 5.1), the overall strategy of the proof is to
combine the regularised mean field limit for Vlasov–Poisson, due to Lazarovici [61], with the
quasi-neutral limit from Han-Kwan–Iacobelli [43]. For the KIsE system (Theorem 5.3), the
strategy is the same, using the VPME variants of these results, which are Theorems 4.1 and 3.1
of this thesis respectively.

Since we work with a regularised microscopic system, it will be convenient to introduce a
regularised version of each Vlasov–Poisson with quasi-neutral scaling. For the electron models,
we use the following system:

(V P)ε,r =


∂t fε,r + v ·∇x fε,r +Eε,r[ fε,r] ·∇v fε,r = 0,

Eε,r[ fε,r] = ε
−2

χr ∗x χr ∗x Kper ∗x ρ f ,

fε,r(0) = fε(0)≥ 0,
∫
Td×Rd

fε(0,x,v)dxdv = 1.
(5.17)
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For the ion models, we use the following system:

(V PME)ε,r :=


∂t fε,r + v ·∇x fε,r +Eε,r[ fε,r] ·∇v fε,r = 0,

Eε,r =−χr ∗∇Uε,r,

ε2∆Uε,r = eUε,r −χr ∗ρ[ fε,r],

fε,r(0) = fε(0)≥ 0,
∫
Td×Rd

fε(0,x,v)dxdv = 1.

(5.18)

The strategy is illustrated in Figure 5.1. The steps of the proof are as follows:

(i) With ε and r fixed, we prove the mean field limit for the regularised system. We show
that the empirical measure µN

ε,r coming from the regularised particle system (5.4) or (5.8)
converges to the solution fε,r of the regularised Vlasov–Poisson system. The key point is
to quantify this convergence in the Wasserstein distance W2.

(ii) With ε fixed, we remove the regularisation from the Vlasov–Poisson system. We show
that the solution fε,r of the regularised system converges, as r tends to zero, to the solution
fε of the Vlasov–Poisson system (5.3) or (1.19). Again we quantify the convergence in
W2.

(iii) Finally, we use the known results on the quasi-neutral limit ([43] or Theorem 3.1) to
conclude that fε converges to a solution g of the relevant kinetic Euler system, as ε tends
to zero.

The main goal of our estimates is to quantify the rates of convergence in steps (i) and (ii).
To do this, we again use an anisotropic distance, as we did in Chapter 4. For some parameter λ ,
we consider

W (λ )
2 (µ,ν) =

(
inf

π∈Π(µ,ν)

∫
(Td×Rd)2

λ
2|x1 − x2|2 + |v1 − v2|2 dπ(x1,v1,x2,v2)

) 1
2

.

We then choose λ in order to optimise the rate of convergence we obtain. In this chapter, λ

will be allowed to depend on both ε and r.
The estimates for steps (i) and (ii) are performed using similar methods to those used in

Chapter 4. The constants in those estimates depend on L∞(Td) bounds on the mass densities
ρ[ fε,r] and ρ[ fε ]. The main difference for the estimates in this chapter is that we have to keep
track of how this bound depends on ε . To do this, in the KInE case we use mass density
estimates from [43]. For the KIsE case we proved the necessary estimates in Chapter 3. We
recall these estimates below in Section 5.4.1.3.
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5.3.2 Typicality

Our strategy for the proof of Theorems 5.2 and 5.4 is the same as used in the proof of
Theorem 4.2. We check that, if we choose the initial configurations for the particle system
by drawing independent samples from the reference data fε(0), then the necessary rate of
convergence (5.14) or (5.15) occurs with high probability.

To prove this, we use the concentration estimates from Fournier–Guillin [29] on the rate of
convergence of the empirical measures in Wasserstein sense. In comparison to the mean field
limit, in this chapter we need to deal with the fact that the reference data fε(0) depend on ε . It
is therefore necessary to keep track of how the constants in the concentration estimate depend
on ε . Our strategy is to use the fact that the reference data fε(0) are compactly supported, and
to use a scaling argument.

5.4 Preliminaries

5.4.1 Regularised Vlasov–Poisson Systems

5.4.1.1 Existence of Solutions

We need to check that solutions of the regularised Vlasov–Poisson systems exist globally
in time for our choice of initial data fε(0). This follows from the fact that each fε(0) ∈
L1∩L∞(Td ×Rd) is compactly supported. For the ion model (5.18), this is proved in Section 2.8
of this thesis. For the electron model, we can use the general result for Vlasov equations with
Lipschitz kernels (Theorem 1.2), since the function χr ∗χr ∗Kper is Lipschitz.

In both cases, since fε,r solves a transport equation with a divergence free field vector field,
we have the a priori estimate

sup
t∈[0,∞)

∥ fε,r(t)∥Lp(Td×Rd) = ∥ fε,r(0)∥Lp(Td×Rd). (5.19)

5.4.1.2 Energy

Each of the regularised systems (5.17) and (5.18) has an associated energy functional. For the
electron model, it is a regularisation of (5.10):

E VP
ε,r [ f ] :=

∫
Td×Rd

|v|2 f dxdv+
ε2

2

∫
Td

|Eε,r[ f ]|2 dx. (5.20)
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This functional is conserved by solutions fε,r of (5.17):

E VP
ε,r [ fε,r(t)] = E VP

ε,r [ fε(0)].

For the ion model, we have the following rescaling of (2.58):

E ME
ε,r [ f ] :=

1
2

∫
Td×Rd

|v|2 f dxdv+
ε2

2

∫
Td
|∇Uε,r|2 dx+

∫
Td

Uε,r eUε,r dx.

This functional is conserved by solutions fε,r of (5.18):

E ME
ε,r [ fε,r(t)] = E ME

ε,r [ fε(0)].

The conservation of these functionals implies a uniform-in-time a priori bound on ∥ρ[ f ]∥
L

d+2
d (Td)

for a solution f of one of the regularised Vlasov–Poisson systems. For the electron model, this
follows from the fact that both terms in (5.20) are non-negative. Thus if E VP

ε,r [ f ]≤C0, then we
have an upper bound on the second moment∫

Td×Rd
|v|2 f dxdv ≤C0.

For the ion model, since xex ≥−e−1, we have a similar estimate: if E ME
ε,r [ f ]≤C0, then∫

Td×Rd
|v|2 f dxdv ≤C0 + e−1.

It then follows from the interpolation estimate in Lemma 1.12 that

∥ρ[ f ]∥
L

d+2
d (Td)

≤C1, (5.21)

where C1 depends on C0 and ∥ f∥L∞(Td×Rd).
For solutions fε,r of the regularised Vlasov–Poisson systems, the uniform Lp(Td ×Rd)

estimate (5.19) on fε,r then implies that ∥ρ[ fε,r]∥
L

d+2
d (Td)

is bounded uniformly in time for

solutions of the regularised Vlasov–Poisson systems.
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5.4.1.3 Mass Bounds

In our proofs, we will need uniform estimates on the mass density. That is, we use a bound of
the form

sup
t∈[0,T ]

∥ρ[ fε(t)]∥L∞(Td) ≤ Mε,T , sup
r

sup
t∈[0,T ]

∥ρ[ fε(t)]∥L∞(Td) ≤ Mε,T . (5.22)

For the classical Vlasov–Poisson system, we can obtain these estimates from [43]. These
results are based on controlling the growth of the size of the support of fε(t) over time, in the
style of Batt and Rein [10], quantifying the dependence on ε . We use the following result.

Proposition 5.5. Let d = 2,3. Let fε be a solution of the Vlasov–Poisson system (5.3), for
initial data satisfying Assumption 2. Fix T > 0. Then there exists Cd,T such that for all t ∈ [0,T ],

∥ρ[ fε ]∥L∞(Td) ≤Cd,T ε
−dζ .

where ζ is defined in (5.12)-(5.13).

The same estimate applies to the density ρ[ fε,r] for solutions of the regularised system
(5.17).

For the VPME system, we use estimates from Chapter 3, in particular Proposition 3.10.
Again the same estimates apply to the solution of the regularised system (5.18).

Proposition 5.6. Let d = 2,3. Let fε(0) ∈ L1 ∩L∞(Td ×Rd) be compactly supported, with
support contained in Td ×BR(0), where R ≤ eAε−2

for some constant A. Then there exists
C =C(A,d) depending on A and d and CT depending on T such that

sup
t∈[0,T ]

∥ρ fε (t)∥L∞(Td) ≤CT eCε−2
.

5.4.1.4 Empirical measures

Note that, if (Xi(t),Vi(t))N
i=1 is a solution of the extended electrons systems (5.4), then the

resulting empirical measure µN
ε,r, defined by (5.9), is a weak solution of the regularised Vlasov–

Poisson system (5.17). A similar property holds for (5.8) and the regularised VPME system
(5.18).
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5.4.2 Filtering

In the derivation of KInE, convergence holds for a version of the empirical measure filtered
using the corrector function Rε . In our estimates, we will need to account for the effect of the
filtering on the Wasserstein distance. For this we quote the following lemma from [43]:

Lemma 5.7. Let ν1,ν2 be probability measures on Td ×Rd , and let ν̃i denote a measure
obtained by filtering νi using a given vector field R : Td → Rd (see Definition 5). Then

W1(ν̃1, ν̃2)≤ (1+∥∇xR∥L∞)W1(ν1,ν2).

In this chapter we will always use the corrector Rε defined by (1.53). In this case

|∇xRε | ≤ |∇xd+|+ |∇xd−|.

Thus there exists CT independent of ε such that for t ∈ [0,T ],

∥∇xRε∥L∞(Td) ≤CT .

Thus
W1(ν̃1, ν̃2)≤CTW1(ν1,ν2).

5.4.3 Quasi-neutral Limit for Classical Vlasov–Poisson

We recall the quasi-neutral limit for the classical Vlasov–Poisson system proved in [43, Theorem
1].

Theorem 5.8. Let γ , δ0, and C0 be positive constants, with δ0 > 1. Consider a choice { fε(0)}
of non-negative initial data in L1 satisfying Assumption 2. For all ε ∈ (0,1), consider fε(t)
a global weak solution of (V P)ε with initial condition fε(0). Define the filtered distribution
function

f̃ε(t,x,v) := fε

(
t,x,v−Rε)

)
where Rε is the corrector defined in (1.53).

There exist T > 0 and g(t) a weak solution on [0,T ] of (KIE) with initial condition g0 such
that

lim
ε→0

sup
t∈[0,T ]

W1( f̃ε(t),g(t)) = 0.
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5.5 Proof for General Configurations

5.5.1 Stability for the Regularised Vlasov–Poisson Systems

In this section we prove a quantitative estimate of the rate of convergence of the empirical
measure of the solution µN

ε,r of the scaled and regularised N-particle system (5.4), to the solution
fε,r of the mean-field regularised equation (5.17). Our approach is similar to the methods of
[61].

Proposition 5.9. Fix T > 0. For any small β > 0, there exists Cβ ,T such that the following
holds: Let fε,r be a solution of (5.17) and µN

ε,r be defined as in (1.58). Let ε = εN , r = rN be
chosen such that

r < e−Cβ ,T ε−2−dζ

(5.23)

Assume that the initial condition for (5.4) is ‘well-placed’ in the sense that there exists η > β

such that

lim
N→∞

W2(µ
N
ε,r(0), fε(0))

ε−γr1+d/2+η/2 = 0. (5.24)

Then for any η ′ ∈ (β ,η), there exists a constant C = C(β ,T,η ,η ′,γ,ζ ) such that for all N
sufficiently large, for all t ≤ T we have

W 2
2 (µ

N
ε,r(t), fε,r(t))≤Crd+2+η ′−β .

Proof. We follow the proof of Lemma 4.8, with a quasi-neutral scaling. To lighten the notation,
we drop the sub- and superscripts r,ε,N from fε,r and µN

ε,r. We define a coupling πt that follows
the characteristic flows associated to f and µ:

Ẋ1 =V1

V̇1 = E(µ)
ε,r (X1)

(Z1(0;0,z)) = z = (x,v)

E(µ)
ε,r =−χr ∗∇U (µ)

ε,r

ε2∆U (µ)
ε,r = eU (µ)

ε,r −χr ∗ρµ



Ẋ2 =V2

V̇2 = E( f )
ε,r (X2)

(Z2(0;0,z)) = z = (x,v)

E( f )
ε,r =−χr ∗∇U ( f )

ε,r

ε2∆U ( f )
ε,r = eU ( f )

ε,r −χr ∗ρ f .

These systems have unique classical solutions by the same arguments as in the proof of
Lemma 4.8.

Fixing an arbitrary coupling of the initial data π0 ∈ Π(µ0, f0), we define a coupling πt ∈
Π(µ(t), f (t)) by

πt = (Z1(t;0, ·)⊗Z2(t;0, ·))# π0. (5.25)
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Using πt , we define an anisotropic functional D. For λ > 0, let

D(t) =
∫
(Td×Rd)2

λ
2|x1 − x2|2 + |v1 − v2|2 dπt(x1,v1,x2,v2). (5.26)

We perform a Grönwall estimate on D. Following the same steps as in the proof of
Lemma 4.8, we obtain

Ḋ ≤ (α +λ )D+
C
α

2

∑
i=1

Ii,

where

I1 :=
∫

|E(µ)
ε,r (X

(1)
t )−E(µ)

ε,r (X
(2)
t )|2 dπ0, I2 :=

∫
|E( f )

ε,r (X
(2)
t )−E(µ)

ε,r (X
(2)
t )|2 dπ0.

I1 and I2 are estimated in the same way as in the proof of Lemma 4.8, which follows the
argument of [61]. Compared to the case ε = 1, here we gain an extra factor of ε−4 due to the
quasi-neutral scaling. The estimates are otherwise the same. We obtain

Ḋ ≤ (λ +α)D+
ε−4

4α
C(1+ | logr|)2

(
M+ r−(d+2)

λ
−2D

)2
λ
−2D. (5.27)

We introduce the truncated functional

D̂ = 1∧
(

r−(d+2)
λ
−2D

)
.

By the same argument as in the proof of Lemma 4.8, D̂ is Lipschitz and therefore differentiable
almost everywhere and absolutely continuous, with either

d
dt

D̂(t) = 0 or
d
dt

D̂(t) = r−(d+2)
λ
−2 d

dt
D(t).

Thus (5.27) implies that, for almost all t,

d
dt

D̂ ≤ (λ +α)D+
Cε−4

α
M2| logr|2λ

−2D.

We then optimise the exponent by choosing

α∗ =Cdε
−2(1+ | logr|)Mλ

−1
∗ , λ∗ =Cdε

−1(1+ | logr|)1/2
√

M.

Then
d
dt

D̂ ≤Cdλ∗D̂.
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Since D̂ is absolutely continuous, the integrated form of this inequality also holds. Then by
Grönwall’s inequality we deduce the following estimate:

sup
[0,T ]

D̂(t)≤ exp(Cdλ∗T )D̂(0). (5.28)

Now we must choose r and ε in such a way as to prevent the factor exp(Cdλ∗T ) from
exploding too quickly.

First we check that infπ0 D̂(0)→ 0. For convenience we will define a function ω by

ω(N) =
W2(µ

N
ε (0), fε(0))

ε−γr1+d/2+η/2 ;

thus (5.24) implies that ω is bounded. Recalling (4.22),

inf
π0

D(0)≤ 1
2

λ
2W 2

2 (µ
N
ε (0), fε(0)).

Thus, since by definition D̂(0)≤ λ−2r−(d+2)D(0), it follows that

inf
π0

D̂(0)≤ 1
2

r−(d+2)W 2
2 (µ

N
ε (0), fε(0)).

By definition of ω we have

inf
π0

D̂(0)≤ 1
2

rη
ε
−2γ

ω(N)2.

If (5.23) holds, then ε−1 ≤Cβ ,T | logr|
1

2+dζ and thus

inf
π0

D̂(0)≤Crη | logr|
2γ

2+dζ ω(N)2.

Then for any η ′ < η there exists C =Cβ ,T,η ′,γ,ζ such that

inf
π0

D̂(0)≤Crη ′
.

Next, we use the Gronwall estimate to get convergence at later times. We can do this by
controlling the exponential growth factor in (5.28). Observe that for r < 1 this factor satisfies

eCM1/2ε−1| logr|1/2T = r−CM1/2ε−1| logr|−1/2T . (5.29)



204 Particle Derivations for Kinetic Euler Systems

If ε,r satisfy (5.23), then by Proposition 5.5,

CM1/2
ε
−1| logr|−1/2T ≤CT ε

−1− dζ

2 | logr|−1/2 ≤ β (5.30)

and hence
r−CM1/2ε−1| logr|−1/2T ≤ r−β . (5.31)

This implies that for all t ∈ [0,T ]

inf
π0

D̂(t)≤ inf
π0

D̂(0)r−β

≤Crη ′−β . (5.32)

Upon choosing η ′ > β , we find that infπ0 D̂(T )→ 0 as N → ∞.
For N sufficiently large, we have infπ0 D̂(T )< 1. Then

sup
[0,T ]

W 2
2 ( fε,r,µ

N
ε,r)≤ λ

2rd+2 inf
π0

D̂(T ). (5.33)

Recall that we chose λ =CM1/2ε−1| logr|1/2. Thus by (5.30) we have λ ≤CβT−1| logr|.
Hence

λ
2rd+2 ≤Cβ ,T | logr|2rd+2.

Then by combining (5.33) with (5.32) and (5.33) we obtain

sup
[0,T ]

W 2
2 ( fε,r,µ

N
ε,r)≤C| logr|2rd+2+η ′−β .

By adjusting η ′ and C so as to absorb the logarithmic factor, we may conclude that for N
sufficiently large,

sup
[0,T ]

W 2
2 ( fε,r,µ

N
ε,r)≤Crd+2+η ′−β .

5.5.2 Stability for Regularised VPME

The following lemma is a quantified version of Lemma 4.8.

Lemma 5.10 (Weak-strong stability for the regularised equation, with quasineutral scaling).
Let fε(0) satisfy the assumptions of Theorem 3.1. Let fε,r be the solution of (5.18) with data
fε(0). Fix any T > 0. Then there exists a constant A depending on T and { fε(0)} such that the
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following holds. For each (ε,r), let µε,r be a measure solution of (5.18). Assume that for some
η > 0, r = r(ε) satisfies

r ≤
[
exp3(Aε

−2)
]−1

and lim
r→0

W2 (µε,r(0), fε(0))
r(d+2+η)/2

= 0. (5.34)

Then
lim
r→0

sup
t∈[0,T ]

W2 (µε,r(t), fε,r(t)) = 0.

Proof. We follow the proof of Lemma 4.8, tracking the dependence of the constants on ε . For
ease of notation we drop the subscripts on fε,r and µε,r. Let πt be defined as in (5.25), and let
D be defined as in (5.26). Following the same steps as for Lemma 4.8, we obtain

Ḋ ≤ (α +λ )D+
C
α

4

∑
i=1

Ii,

where

I1 :=
∫

|Ē(µ)
ε,r (X

(1)
t )− Ē(µ)

ε,r (X
(2)
t )|2 dπ0, I2 :=

∫
|Ē( f )

ε,r (X
(2)
t )− Ē(µ)

ε,r (X
(2)
t )|2 dπ0,

I3 :=
∫

|Ê(µ)
ε,r (X

(1)
t )− Ê(µ)

ε,r (X
(2)
t )|2 dπ0, I4 :=

∫
|Ê( f )

ε,r (X
(2)
t )− Ê(µ)

ε,r (X
(2)
t )|2 dπ0.

To estimate these quantities, we first note some basic Lp(Td) estimates on the regularised
mass density χr ∗ρµ , using (4.23). For p = d+2

d , since fε(0) has uniformly bounded energy
(1.66), by (5.21) we obtain

∥ρ f ∥
L

d+2
d (Td)

≤C,

where C depends on C0 and d only. Thus

∥χr ∗ρµ∥
L

d+2
d (Td)

≤Cd

(
1+ r−(d+2)

λ
−2D

)
, (5.35)

for Cd depending on C0 and d.
For p = ∞ we obtain

∥χr ∗ρµ∥L∞(Td) ≤Cd

(
Mε,T + r−(d+2)

λ
−2D

)
. (5.36)

where Mε,T is a constant such that

sup
t∈[0,T ]

∥ρ ft∥L∞(Td) ≤ Mε,T .
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By Proposition 5.6, there exists a constant C depending on T such that

sup
t∈[0,T ]

∥ρ ft∥L∞(Td) ≤ exp(Cε
−2).

Therefore Mε,T may be chosen to satisfy

Mε,T ≤ exp(Cε
−2). (5.37)

We estimate I1 as in (4.27). An extra factor of ε−4 appears due to the quasineutral scaling
on the force:

I1 ≤Cε
−4(logr)2

(
Mε,T + r−(d+2)

λ
−2D

)2
λ
−2D.

Similarly, I2 is estimated as in (4.28) using Lemma 2.10 and (5.36) to obtain

I2 ≤Cε
−4Mε,T (Mε,T + r−(d+2)

λ
−2D)λ−2D.

For I3 the same computation as in (4.29) implies that

I3 ≤
∫
(Td×Rd)2

∥Û (µ)
ε,r ∥2

C2(Td)|x− y|2 dπt .

Using (5.35) we apply Proposition 3.3, which is a regularity estimate on Û (µ)
ε,r , taking account

of the quasi-neutral scaling, to obtain

∥Û (µ)
ε,r ∥C2(Td) ≤Cd exp2

(
Cdε

−2
(

1+ r−(d+2)
λ
−2D

))
.

Thus

I3 ≤C exp2

[
Cdε

−2(1+ r−(d+2)
λ
−2D)

]∫
(Td×Rd)2

|x− y|2 dπt

≤C exp2

[
Cdε

−2(1+ r−(d+2)
λ
−2D)

]
λ
−2D.

For I4, as in (4.30) we obtain

I4 ≤ ∥ρ f ∥L∞(Td)∥∇Û ( f )
ε,r −∇Û (µ)

ε,r ∥2
L2(Td).
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By the stability estimate from Lemma 3.8 and the density bound (5.36),

∥∇Û ( f )
ε,r −∇Û (µ)

ε,r ∥2
L2(Td) ≤Cε

−2 exp2

[
Cd ε

−2(1+ r−(d+2)
λ
−2D)

]
∥Ū ( f )

ε,r −Ū (µ)
ε,r ∥2

L2(Td)

≤Cε
−6 exp2

[
Cd ε

−2(1+ r−(d+2)
λ
−2D)

]
(Mε,T + r−(d+2)

λ
−2D)λ−2D.

Thus

I4 ≤Cε
−6Mε,T exp2

[
Cdε

−2(1+ r−(d+2)
λ
−2D)

]
(Mε,T + r−(d+2)

λ
−2D)λ−2D.

We summarise this as

Ḋ ≤ (λ +α)D+
1
α

Cε
−4(1+ | logr|)2

(
Mε,T + r−(d+2)

λ
−2D

)2
λ
−2D (5.38)

+Cexp2

[
Cdε

−2(1+ r−(d+2)
λ
−2D)

](
1+Mε,T (Mε,T + r−(d+2)

λ
−2D)

)
λ
−2D.

We introduce the truncated functional

D̂ = 1∧
(

r−(d+2)
λ
−2D

)
,

which is Lipschitz and so differentiable almost everywhere. Where the derivative exists, (5.38)
implies that

d
dt

D̂ ≤ (λ +α)D̂+
1

4α
Cd

[
ε
−4 (1+ | logr|)2 + exp2(Cε

−2)
]

M2
ε,T λ

−2D̂.

We optimise the exponent by choosing

α∗ =Cd

[
ε
−4 (1+ | logr|)2 + exp2(Cε

−2)
]1/2

Mε,T λ
−1
∗

λ∗ =Cd

[
ε
−4 (1+ | logr|)2 + exp2(Cε

−2)
]1/4√

Mε,T . (5.39)

Then
d
dt

D̂ ≤Cdλ∗D̂.

By absolute continuity of D̂, it follows that

D̂(t)≤ D̂(0)+Cdλ∗

∫ t

0
D̂(s)ds.
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From this we deduce that

sup
[0,T ]

D̂(t)≤ exp(Cdλ∗T )D̂(0)

≤ r−(d+2)
λ
−2
∗ exp(Cdλ∗T )D(0)

≤ r−(d+2) exp(Cdλ∗T )D(0)

≤Cd exp
[
| logr|

(
(d +2)+CdT

√
Mε,T ε

−1| logr|−1/2
)
+
√

Mε,T exp2(Cε
−2)
]
D(0).

By the estimate (5.37) on Mε,T , we obtain

sup
[0,T ]

D̂(t)≤Cd exp
[
| logr|

(
(d +2)+CdT exp(Cε

−2)| logr|−1/2
)]

exp3(Cε
−2)D(0).

By assumption (5.34) on the relationship between ε and r,

| logr|−1/2 ≤ exp
[
−1

2
exp(Aε

−2)

]
.

Thus we have

sup
[0,T ]

D̂(t)≤Cd exp
[
| logr|

(
(d +2)+ exp(Cε

−2 − 1
2

exp(Aε
−2))

)]
exp3(Cε

−2)D(0).

By assumption on W2(µ
N
ε,r(0), fε,r(0)), for all sufficiently small r there exists a choice of initial

coupling π
(r)
0 such that

D(0)< rd+2+η .

Then

sup
[0,T ]

D̂(t)≤Cd exp
[
| logr|

(
exp(Cε

−2 − 1
2

exp(Aε
−2))−η

)
+ exp2(Cε

−2)

]
.

For sufficiently small ε ,

sup
[0,T ]

D̂(t)≤Cd exp
[
−1

2
η | logr|+ exp2(Cε

−2)

]
≤Cd exp

[
−1

2
η exp2(Aε

−2)+ exp2(Cε
−2)

]
.
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Thus if A >C, then
sup
[0,T ]

D̂(t)→ 0

as ε tends to zero. In particular, for ε sufficiently small,

inf
π0

sup
t∈[0,T ]

D̂(t)< 1.

Hence, for ε sufficiently small,

inf
π0

sup
t∈[0,T ]

D̂(t) = inf
π0

sup
t∈[0,T ]

r−(d+2)
λ
−2
∗ D(t).

Thus

sup
t∈[0,T ]

W 2
2 (µ

N
ε,r(t), fε,r(t))≤ inf

π0
sup

t∈[0,T ]
D(t) = rd+2

λ
2
∗ inf

π0
sup

t∈[0,T ]
D̂(t)≤ rd+2

λ
2
∗ .

By (5.39),

λ
2
∗ =Cd

[
ε
−4 (1+ | logr|)2 + exp2(Cε

−2)
]1/2

exp(Cε
−2).

Hence, for any α > 0,

rd+2
λ

2
∗ ≤Crd+2−α exp2(Cε

−2)≤C exp
{

exp(Cε
−2)− (d +2−α)exp2(Aε

−2)
}
.

The right hand side converges to zero as ε tends to zero. Therefore

lim
ε→0

sup
t∈[0,T ]

W 2
2 ( ft ,µt) = 0.

5.5.3 Removal of the Regularisation

5.5.3.1 Classical Vlasov–Poisson

In this section, we prove the following Gronwall-type estimate between solutions of the
regularised and unregularised Vlasov-Poisson systems.

Proposition 5.11. (i) Let fε,r be a solution of (5.17) and fε a solution of (5.3), both having
the same initial datum fε(0). Let M = Mε,T be chosen such that (5.22) is satisfied. Then
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there exists a constant C, independent of r, M and ε , such that for all t ∈ [0,T ]

W2( fε,r(t), fε(t))≤Cε
−3/2M3/4r| logr|−1/4eCε−1M1/2| logr|1/2t .

(ii) Let { fε(0)} be a set of initial data satisfying Assumption 2. Let ζ be defined as in (5.12)-
(5.13), and let T > 0 be fixed. If ε = εN and r = rN are chosen to satisfy (5.23) for some
β < 1, then

lim
N→∞

sup
t∈[0,T ]

W2( fε,r(t), fε(t)) = 0. (5.40)

Proof. We consider couplings of fε,r and fε that evolve along the characteristic flows of
their respective equations. Since fε,r and fε have the same initial datum fε(0), the choice
π0(x,v,y,w) = f0(x,v)δ (x− y,v−w) is an optimal initial coupling, so that at time t = 0 we
have

W 2
2 ( fε,r, fε) =

∫
(Td×Rd)2

|x− y|2 + |v−w|2 dπ0(x,v,y,w)

We take πt to solve

(∂t + v ·∇x +w ·∇y)πt +(Eε,r[ fε,r](x) ·∇v +Eε [ fε ](y) ·∇w)πt = 0.

Then πt is a coupling of fε,r(t) and fε(t) for all times t. As before we define an anisotropic
distance D: let

D(t) =
1
2

∫
(Td×Rd)2

λ
2|x− y|2 + |v−w|2 dπt(x,v,y,w)

for some λ to be specified later. Then, as in the proof of Lemma 4.8, we estimate that

D′(t)≤ (λ +α)D(t)+
1

2α

∫
(Td×Rd)2

|Eε,r[ fε,r](x)−Eε [ fε ](y)|2 dπt . (5.41)

By the triangle inequality, the second term in (5.41) may be estimated as follows:

1
2α

∫
(Td×Rd)2

|Eε,r[ fε,r](x)−Eε [ fε ](y)|2 dπt ≤
1
α

∫
(Td×Rd)2

|Eε,r[ fε,r](x)−Eε,r[ fε,r](y)|2 dπt︸ ︷︷ ︸
:=I1

+
1
α

∫
(Td×Rd)2

|Eε,r[ fε,r](y)−Eε [ fε ](y)|2 dπt︸ ︷︷ ︸
:=I2

.

The term I1 is estimated using the Lipschitz regularity of the regularised forces (Lemma
4.6):
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I1 =
∫
(Td×Rd)2

|Eε,r[ fε,r](x)−Eε,r[ fε,r](y)|2 dπ

≤
∫
(Td×Rd)2

∥ε
−2

χr ∗Kper ∗ (χr ∗ρ fε,r)∥
2
Lip |x− y|2 dπ

≤Cε
−4| logr|2(1+∥χr ∗ρ fε,r∥L∞)2

∫
(Td×Rd)2

|x− y|2 dπ

≤Cε
−4| logr|2M2

λ
−2D(t).

For I2, we first observe that since the y-marginal of πt is ρ fε (y)dy,

I2 =
∫
Td

|ε−2Kper ∗ (χr ∗χr ∗ρ fε,r −ρ fε )|
2(y)ρ fε (y)dy

≤ M∥ε
−2Kper ∗ (χr ∗χr ∗ρ fε,r −ρ fε )∥

2
L2(Td), (5.42)

where (5.42) follows from the fact that ∥ρ fε∥L∞ ≤ M by definition (recall (5.22)).
We then apply the Loeper stability estimate, Theorem 1.17:

∥ε
−2Kper ∗ (χr ∗χr ∗ρ fε,r −ρ fε )∥L2(Td) ≤ ε

−2M1/2W2(χr ∗χr ∗ρ fε,r ,ρ fε ).

To control the Wasserstein distance we first apply the triangle inequality:

W2(χr ∗χr ∗ρ fε,r ,ρ fε )≤W2(χr ∗χr ∗ρ fε,r ,χr ∗ρ fε,r)+W2(χr ∗ρ fε,r ,ρ fε,r)+W2(ρ fε,r ,ρ fε ).

The third term can be controlled by λ−1D1/2 due to (4.21). We apply Lemma 4.4 to each
of the first two terms. This results in the estimate

W2(χr ∗χr ∗ρ fε,r ,ρ fε )≤ 2r+λ
−1D1/2.

Thus we get the following estimate for I2:

I2 ≤Cε
−4M2(2r+λ

−1D1/2)2

≤Cε
−4M2(r2 +λ

−2D).
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Substituting these estimates into (5.41) gives us that

D′(t)≤
[

λ +α +
1
α

Cε
−4M2(| logr|2 +1)λ−2

]
D(t)+

C
α

ε
−4M2r2

≤
[

λ +α +
1
α

Cε
−4M2| logr|2λ

−2
]

D(t)+
C
α

ε
−4M2r2. (5.43)

We will now choose the parameters α and λ so as to minimise the constant in the exponential
part of our Gronwall estimate; that is, the coefficient of D in (5.43). This has a minimum for
(α,λ ) satisfying  α = Cλ−1ε−2M| logr|

λ =
(

Cε−4M2| logr|2
α

)1/3
,

that is, α = λ =Cε−1M1/2| logr|1/2. With this choice of parameters (5.43) becomes

D′(t)≤Cε
−1M1/2| logr|1/2D(t)+Cε

−3M3/2r2| logr|−1/2.

Since D(0) = 0, the above inequality implies that

D(t)≤Cε
−3M3/2r2| logr|−1/2eCε−1M1/2| logr|1/2t .

We conclude that

W2( fε,r(t), fε(t))≤Cε
−3/2M3/4r| logr|−1/4eCε−1M1/2| logr|1/2t .

Finally, we use this to prove (5.40). Since { fε(0)} are assumed to satisfy Assumption 2,
we may apply Proposition 5.5 to deduce that

M ≤Cε
−ζ d,

for ζ defined in (5.12)-(5.13). Next, we observe that the relation (5.23) implies that

ε
−(2+ζ d) ≤CT,β | logr|,

for some Cβ ,T . Thus
ε
−1M1/2 ≤Cβ ,T | logr|1/2.
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Moreover, by (5.29) and (5.31), we have

eCε−1M1/2| logr|1/2t ≤ r−β .

Thus
sup

t∈[0,T ]
W2( fε,r(t), fε(t))≤CT r1−β | logr|1/2.

Since β < 1, the right hand side converges to 0 as N → ∞. This completes the proof.

5.5.3.2 VPME

The next lemma is a quantified version of Lemma 4.9.

Lemma 5.12 (Approximation of (VPME) in quasineutral scaling). Let fε(0) satisfy the as-
sumptions of Theorem 3.1. Let fε,r be the solution of the scaled and regularised Vlasov equation
(5.18) with initial datum fε(0). Let fε be the unique bounded density solution of (3.1).

Fix T > 0. Then there exists a constant C depending on T and on { fε(0)}ε such that the
following holds. If r and ε satisfy

r ≤
[
exp3(Cε

−2)
]−1

,

then
lim
r→0

sup
[0,T ]

W2 ( fε,r(t), fε(t)) = 0.

Proof. By (1.66), Lemma 1.12 and (5.21) there exists a constant C depending on C0 and d only
such that

∥ρ
f (r)ε

∥
L∞([0,T ];L

d+2
d (Td))

,∥ρ fε∥L∞([0,T ];L
d+2

d (Td))
≤C. (5.44)

By Proposition 3.10, there exists a constant C depending on the initial data and T such that

∥ρ
f (r)ε

∥L∞([0,T ];L∞(Td)),∥ρ fε∥L∞([0,T ];L∞(Td)) ≤ exp(Cε
−2). (5.45)

We will control the Wasserstein distance between fε,r and fε using a particular coupling
πt . Since both solutions share the same initial datum, we take π0 to be the trivial coupling
fε(0)(x,v)δ ((x,v)− (y,w))dxdvdydw. We construct πt ∈ Π( fε(t), fε,r(t)) as in (2.25), using
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the scaled version of the characteristic systems in (4.35):

Ẋ (1)
x,v =V (1)

x,v

V̇ (1)
x,v = E(X (1)

x,v )

(X (1)
x,v (0),V

(1)
x,v (0)) = (x,v)

E =−∇U

ε2∆U = eU −ρ fε



Ẋ (2)
x,v =V (2)

x,v

V̇ (2)
x,v = Er(X

(2)
x,v )

(X (2)
x,v (0),V

(2)
x,v (0)) = (x,v)

Er =−χr ∗∇Ur

ε2∆Ur = eUr −χr ∗ρ fε,r .

We define D as in (4.19). As in Lemma 4.8, we obtain for any α > 0,

Ḋ ≤ (α +λ )D+
C
α

5

∑
i=1

Ii,

where

I1 :=
∫

|∇Ūr(X
(1)
t )−∇Ūr(X

(2)
t )|2 dπ0, I2 :=

∫
|∇Ūr(X

(1)
t )−∇Ū(X (1)

t )|2 dπ0,

I3 :=
∫

|∇Ûr(X
(1)
t )−∇Ûr(X

(2)
t )|2 dπ0, I4 :=

∫
|∇Û(X (1)

t )−∇Ûr(X
(1)
t )|2 dπ0

I5 :=
∫

|χr ∗∇Ur(X
(2)
t )−∇Ur(X

(2)
t )|2 dπ0.

I1 is estimated as in (4.36). There is an extra factor of ε−4 due to the quasineutral scaling
and the mass bound M = Mε,T depends on ε:

I1 ≤Cε
−4| logr|2M2

ε,T λ
−2D.

We estimate I2 as in (4.37), keeping track of the dependence on ε in Lemma 2.10:

∥∇Ū −∇Ūr∥L2(Td) ≤Cε
−2√Mε,T (r+λ

−1
√

D).

We conclude that
I2 ≤Cε

−4M2
ε,T (r+λ

−1
√

D)2.

For I3, by the regularity estimate from Proposition 2.4 and the uniform L
d+2

d (Td) estimate
on the density (5.44) we have

∥Ûr∥C2,α (Td) ≤ exp2(Cε
−2),
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where C depends only on C0. We obtain

I3 ≤ exp2(Cε
−2)

∫
Td×Rd

|X (1)
t −X (2)

t |2 dπ0

≤ exp2(Cε
−2)λ

−2D.

For I4 we use the stability estimate from Lemma 3.6 and the L
d+2

d (Td) estimate (5.44):

∥∇Û −∇Ûr∥L2(Td) ≤ exp2(Cε
−2)∥∇Ū −∇Ūr∥L2(Td) ≤ exp2(Cε

−2)
√

Mε,T (r+λ
−1
√

D).

Hence
I4 ≤ exp2(Cε

−2)M2
ε,T (r+λ

−1
√

D)2.

For I5, by (4.38) we have

∥χr ∗∇Ur −∇Ur∥2
L2(Td) ≤Cr2∥Ur∥2

W 2,2(Td).

Thus

I5 :=
∫
Td

|χr ∗∇Ur(x)−∇Ur(x)|2 ρ
f (r)ε

(dx)

≤ ∥ρ
f (r)ε

∥L∞(Td)∥χr ∗∇Ur −∇Ur∥2
L2(Td)

≤Cr2Mε,T∥Ur∥2
W 2,2(Td)

≤Cr2
ε
−4Mε,T∥eUr −ρ

f (r)ε

∥2
L2(Td).

As in (4.39), we have

∥ρ fε,r∥L2(Td) ≤ ∥ρ fε,r∥
d−2
2d

L∞(Td)
∥ρ fε,r∥

d+2
2d

L
d+2

d (Td)
≤CM

d−2
2d

ε,T .

To estimate eUr , first note that by Proposition 2.4 and (5.44),

∥Ūr∥L∞(Td) ≤Cε
−2.

By (3.8),
∥eÛr∥L2(Td) ≤ exp(Cε

−2).

Thus
∥eUr∥L2(Td) ≤C exp

(
∥Ūr∥L∞(Td)

)
∥eÛr∥L2(Td) ≤ exp(Cε

−2).
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Therefore

I5 ≤Cr2
ε
−4Mε,T

(
M

d−2
d

ε,T + eCε−2
)
.

Putting these five estimates together, we obtain

Ḋ ≤ (α +λ )D+
C

αλ 2 r2exp2(Cε
−2)M2

ε,T

+
C

αλ 2

{
exp2(Cε

−2)M2
ε,T + ε

−4| logr|2M2
ε,T + exp2(Cε

−2)
}

D.

By (5.45), we may estimate that

Mε,T ≤ exp(Cε
−2).

From this we deduce

Ḋ ≤ (α +λ )D+
C

αλ 2

{
exp(Cε

−2)| logr|2 + exp2(Cε
−2)
}

D+
C

αλ 2 exp2(Cε
−2)r2.

After choosing α and λ so as to minimise the constant in front of D we obtain

Ḋ ≤Cλ∗D+ exp2(Cε
−2)r2,

where
λ∗ =

[
exp(Cε

−2)| logr|2 + exp2(Cε
−2)
]1/4 ≥ 1,

for r,ε sufficiently small.
Therefore, by a Grönwall estimate

D(t)≤
(
D(0)+ exp2(Cε

−2)r2)exp [Ctλ∗].

Since π0 was trivial, D(0) = 0. Since D controls the squared Wasserstein distance,

W 2
2 ( fε,r(t), fε(t))≤ exp(Cε

−2)r2 exp [Ctλ∗].

Then, by definition of λ∗,

sup
t∈[0,T ]

W 2
2 ( fε,r(t), fε(t))≤ r2 exp

[
exp(CT ε

−2)| logr|1/2
]
· exp3(CT ε

−2).
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If r ≤
[
exp3(Aε−2)

]−1, then

eCε−2
| logr|−1/2 ≤ exp

[
CT ε

−2 − 1
2

exp(Aε
−2)

]
→ 0

as ε tends to zero, for any A ≥ 0. Hence, for any η > 0, for ε sufficiently small,

r2 exp
[
exp(CT ε

−2)| logr|1/2
]
≤ r2−exp(CT ε−2)| logr|−1/2

≤ r2−η .

Moreover,

r2−η exp3(CT ε
−2)≤ exp

[
exp2(CT ε

−2)− (2−η)exp2(Aε
−2)
]
,

which converges to zero for any η < 2 as ε tends to zero, as long as A ≥CT .
Therefore, if r ≤

[
exp3(Aε−2)

]−1 for A ≥CT , then as ε tends to zero (and so r also tends
to zero),

sup
t∈[0,T ]

W2( fε,r(t), fε(t))→ 0.

5.5.4 Conclusion of the Proof

5.5.4.1 From Extended Electrons to KInE

We combine the previous results to complete the proof of Theorem 5.1. We use µ̃ to denote
the distribution produced by filtering µ using the correctors defined in (1.53), following
Definition 5.

Proof of Theorem 5.1. In the following, µN
ε,r denotes the empirical measure associated to

the solution of the particle system (5.4), while fε,r denotes the solution of the regularised
Vlasov–Poisson system (5.17) with initial datum fε(0). fε denotes the solution of the scaled
Vlasov–Poisson system (5.3) with initial datum fε(0). Let g be the solution of the KInE
system (5.1), on some time interval [0,T∗], obtained in the quasineutral limit from fε using
Theorem 5.8.

Our aim is to estimate W1(µ̃
N
ε,r,g). First, we apply the triangle inequality for the Wasserstein

distance to get
W1(µ̃

N
ε,r,g)≤W1(µ̃

N
ε,r, f̃ε)+W1( f̃ε ,g)
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We begin by estimating W1(µ̃
N
ε,r, f̃ε). By Lemma 5.7 and the fact that W1 ≤W2,

sup
[0,T ]

W1(µ̃
N
ε,r, f̃ε)≤CT sup

[0,T ]
W1(µ

N
ε,r, fε)

≤CT sup
[0,T ]

W2(µ
N
ε,r, fε)

≤CT

(
sup
[0,T ]

W2(µ
N
ε,r, fε,r)+ sup

[0,T ]
W2( fε,r, fε)

)
.

Under conditions (5.24) and (5.23), the first term converges to zero by Proposition 5.9. The
second term converges by Proposition 5.11. Hence

lim
N→∞

sup
[0,T ]

W1(µ̃
N
ε,r, f̃ε) = 0.

For W1( f̃ε ,g), we apply Theorem 5.8 to deduce that

lim
N→∞

sup
[0,T ]

W1( f̃ε ,g) = 0.

Therefore
lim

N→∞
sup
[0,T ]

W1(µ̃
N
ε,r,g) = 0.

5.5.4.2 From Extended Ions to KIsE

Proof of Theorem 5.3. In the following, µN
ε,r denotes the empirical measure associated to the

solution of the particle system (5.8), while fε,r denotes the solution of the scaled version of
(5.18) with initial datum fε(0). fε denotes the solution of the scaled VPME system (5.7) with
initial datum fε(0). Let g be the solution of the KIE system (3.2), on some time interval [0,T∗],
obtained in the quasineutral limit from fε using Theorem 3.1.

Our aim is to estimate W1(µ
N
ε,r(t),g(t)). By the triangle inequality for W1,

sup
t∈[0,T∗]

W1(µ
N
ε,r(t),g(t))≤ sup

t∈[0,T∗]
W1(µ

N
ε,r(t), fε,r(t))

+ sup
t∈[0,T∗]

W1( fε,r(t), fε(t))+ sup
t∈[0,T∗]

W1( fε(t),g(t)). (5.46)

The last term converges to zero as ε tends to zero, by Theorem 3.1.
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For the other two terms, we first observe that

W1(µ
N
ε,r(t), fε,r(t))≤W2(µ

N
ε,r(t), fε,r(t)), W1( fε,r(t), fε(t))≤W2( fε,r(t), fε(t)).

Then the second term of (5.46) converges to zero by Lemma 5.10 and the third term of (5.46)
converges to zero by Lemma 5.12, provided that (5.34) is satisfied for C depending on T∗.

5.6 Typicality

5.6.1 Concentration Estimates

To prove the typicality theorems - Theorem 5.2 and Theorem 5.4, we use the same strategy as
in Section 4.6. We employ concentration estimates, due to Fournier and Guillin [29], that allow
us to quantify the rate of convergence of the empirical measures to the reference data fε(0). For
the regularised mean field limit, we used [29, Theorem 2], which we quoted as Theorem 4.10.

In this chapter, for each N we choose initial configurations by sampling from a different
reference distribution fε(N)(0). To use Theorem 4.10, we would need to track the dependence
of the constants c,C on (the moments of) fε(N)(0).

Instead, we will make use of the fact that we work with compactly supported data. We will
find it more convenient to use a slightly different version of the concentration estimates from
Fournier–Guillin [29]. These estimates are designed for compactly supported measures. The
following result is from [29, Proposition 10].

Theorem 5.13. Let ν be a probability measure supported on (−1,1]m. Let νN denote the
empirical measure of N independent samples from ν . Then there exist constants c,C depending
on p and m only such that for any x > 0,

P
(
W p

p (ν
N ,ν)≥ x

)
≤ a(N,x)1{x≤1},

where a(N,x) is defined, as in (4.41), by

a(N,x) =C


exp(−cNx2) p > m

2

exp

(
−cN

[
x

log(2+ 1
x )

]2
)

p = m
2

exp
(
−cNxm/p

)
p < m

2
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5.6.2 Rescaling of Measures

Our goal is to apply Theorem 5.13 in the case where ν = fε(0)dxdv, which has support
contained in Td ×BR for some R > 0. In order to apply the above estimate, we first rescale the
velocity variable in order to work with measures supported in [−1,1]2d .

Definition 6. Let ν be a measure on Td ×Rd . We define a scaled measure SR[ν ] such that for
any X ∈ B(Td) and V ∈ B(Rd),

SR[ν ](X ×V ) = ν(X ×RV ).

Similarly, let ν1 and ν2 be measures on Td ×Rd and let π ∈ Π(ν1,ν2). Then let S
(2)

R [π] be
defined via

S
(2)

R [π](X1 ×V1 ×X2 ×V2) = π(X1 ×RV1 ×X2 ×RV2).

Remarks 1. (i) Note that S
(2)

R [π] ∈ Π(SR[ν1],SR[ν2]) .

(ii) S
(2)

R gives a bijection between Π(ν1,ν2) and Π(SR[ν1],SR[ν2]).

We examine the effect of this scaling on the Wasserstein distance.

Lemma 5.14. Let ν1, ν2 be measures on Td ×Rd . Then

Wp(ν1,ν2)≤ RWp(SR[ν1],SR[ν2]).

Proof. Observe that for any π ∈ Π(ν1,ν2),∫
(Td×Rd)2

|x− y|p + |v−w|p dπ =
∫
(Td×Rd)2

|x− y|p +Rp|v−w|p dS
(2)

R [π]

≤ Rp
∫
(Td×Rd)2

|x− y|p + |v−w|p dS
(2)

R [π]

Since S
(2)

R is a bijection, taking infimum over π yields

Wp(ν1,ν2)≤ RWp(SR[ν1],SR[ν2]).

Remark 7. Note that, if (Z(R)
i )N

i=1 are N independent samples from SR[ν ], then (Z(R)
i )N

i=1 has
the same law as (Xi,

1
RVi)

N
i=1, where (Zi)

N
i=1 = (Xi,Vi)

N
i=1 are N independent samples from ν . We

will use this property in the proofs below to identify scaled empirical measures with empirical
measures drawn from scaled distributions.
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5.6.3 Conclusion of the Proof.

Proof of Theorem 5.2. We follow the strategy of Lazarovici [61], and consider the events where
the desired rate of convergence does not hold at N:

AN :=
{

W 2
2 (µ

N
ε (0), fε(0))≥Cε

−2γrd+2+η

}
Our goal is to show that ∑N P(AN) is finite for some choice of C and η . By the Borel-Cantelli
lemma, this will imply that the probability that these events occur infinitely often is zero. In
other words, with probability one, there exists N such that Ac

n occurs for all n ≥ N. This means
precisely that the desired rate of convergence holds. We estimate P(AN) using the concentration
inequality from Theorem 5.13 and the scaling argument described above.

By Lemma 5.14,

P(AN)≤ P
(

ε
−2γW 2

2 (Sε−γ [µN
ε (0)],Sε−γ [ fε(0)])≥Cε

−2γrd+2+η

)
.

By Remark 7, Sε−γ [µN
ε (0)] has the same law (as a random measure) as the empirical measure

of N independent samples from Sε−γ [ fε(0)]. Since the scaled measures have support contained
in [−1,1]2d , we may apply Theorem 5.13 to deduce the existence of constants κ,c,C depending
only on d such that

P
(

W 2
2 (Sε−γ [µN

0,ε ],Sε−γ [ fε(0)])≥ κrd+2+η

)
≤C

 exp
(
−cN

(
r4+η

log(2+r−(4+η)

)2
)

for d = 2

exp
(
−cNr3(5+η)

)
for d = 3.

Using this we deduce that

P(AN)≤C

 exp
(
−cN8α+η(2α− 1

4)
(

log
(

2+N− 1
2+4α+η(α− 1

8)
))−2

)
for d = 2

exp
(
−cN15α+η(3α− 1

5 )
)

for d = 3.

Thus ∑N P(AN) is finite for

η < α
d(d +2)2

1−αd(d +2)
,

which completes the proof.

Proof of Theorem 5.4. We use the same strategy as for Theorem 5.2. Recall that we already
assumed that fε(0) were compactly supported with the support in velocity growing no faster
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than eCε−2
for some C. It is enough to show that

∑
N
P(AN)< ∞, (5.47)

where AN denotes the event

AN :=
{

W 2
2 (Se−Cε−2 [µN

ε (0)], Se−Cε−2 [ fε(0)])>
1
2

rd+2+η exp(−2Cε
−2)

}
.

We observe that the assumption

r <
[
exp3(Aε

−2)
]−1

,

implies that
exp(−Cε

−2)> c(log logN)−ζ > cN−α

for ζ depending on C and A, any α > 0 and c depending on α , C and A. We then apply
Theorem 5.13 with the choice

xN = cN−γ(d+2+η)−α .

The assumption (5.16) on γ implies that it is possible to find η > 0 such that

∑
N

a(N,xN)< ∞.

This yields (5.47), which completes the proof.
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Appendix A

Differential Inequalities

Lemma A.1. Let K,C > 0, and define

z(t) = (1+2Ct) [K + log(1+2Ct)] .

Then
ż ≥C(1+ log(1+ z)).

Proof. By direct computation,

ż = 2C [(K +1)+ log(1+2Ct)] .

Secondly,

log(1+ z) = log [1+(1+2Ct) [K + log(1+2Ct)]]≤ log [(1+2Ct) [(K +1)+ log(1+2Ct)]].

Thus, since log(1+ x)≤ x,

log(1+ z) = log(1+2Ct)+ log [K +1+ log(1+2Ct)]≤ log(1+2Ct)+ log [K +1+2Ct]

≤ log(1+2Ct)+ log [(K +1)(1+2Ct)] = 2log(1+2Ct)+ log(K +1).

Therefore
1+ log(1+ z)≤ 2log(1+2Ct)+K +1 ≤ 1

C
ż,

which completes the proof.


	Table of contents
	1 Introduction
	1.1 Kinetic Equations in Physics
	1.2 Plasma Models
	1.3 Well-Posedness Theory for Vlasov Equations
	1.4 Well-Posedness Theory for the Vlasov-Poisson System
	1.5 The Quasi-Neutral Limit
	1.6 Mean Field Limits
	1.7 Summary of Results

	2 VPME: Global Well-posedness in 2D and 3D
	2.1 Statement of Results
	2.2 Strategy
	2.3 Basic Estimates
	2.4 Regularity of the Electric Field
	2.5 Stability of the Electric Field
	2.6 Wasserstein Stability and Uniqueness
	2.7 A Priori Estimates on the Mass Density
	2.8 A Regularised System
	2.9 Construction of Solutions

	3 The Quasi-Neutral Limit for the VPME System With Rough Data
	3.1 Statement of Results
	3.2 Estimates on the Electric Field
	3.3 Wasserstein Stability
	3.4 Growth Estimates
	3.5 Quasi-Neutral Limit

	4 Derivation of the VPME System from a System of Extended Ions
	4.1 Introduction
	4.2 Statement of Results
	4.3 Preliminary Estimates
	4.4 W2 stability for the regularised VPME system
	4.5 Convergence from the Regularised System to VPME
	4.6 Typicality

	5 Particle Derivations for Kinetic Euler Systems
	5.1 Introduction
	5.2 Statement of Results
	5.3 Strategy
	5.4 Preliminaries
	5.5 Proof for General Configurations
	5.6 Typicality

	References
	Appendix A Differential Inequalities

