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ABSTRACT: The self-assembly of normally soluble proteins into
fibrillar amyloid structures is associated with a range of neuro-
degenerative disorders, such as Parkinson’s and Alzheimer’s diseases. In
the present study, we show that specific events in the kinetics of the
complex, multistep aggregation process of one such protein, α-
synuclein, whose aggregation is a characteristic hallmark of Parkinson’s
disease, can be followed at the molecular level using optical super-
resolution microscopy. We have explored in particular the elongation of
preformed α-synuclein fibrils; using two-color single-molecule local-
ization microscopy we are able to provide conclusive evidence that the
elongation proceeds from both ends of the fibril seeds. Furthermore,
the technique reveals a large heterogeneity in the growth rates of
individual fibrils; some fibrils exhibit no detectable growth, whereas
others extend to more than ten times their original length within hours. These large variations in the growth kinetics can be
attributed to fibril structural polymorphism. Our technique offers new capabilities in the study of amyloid growth dynamics at the
molecular level and is readily translated to the study of the self-assembly of other nanostructures.

KEYWORDS: Two-color super-resolution microscopy, aggregation kinetics, amyloid fibril self-assembly, α-synuclein,
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The phenomenon of the self-assembly of functional
proteins into amyloid fibrils and its relationship to

medical conditions such as Parkinson’s and Alzheimer’s
diseases have been the focus of intense research efforts in
recent years.1,2 Considerable insight has been gained from both
experimental and theoretical studies into the events that
contribute to the overall conversion of soluble proteins to their
aggregated states, although much remains to be ascertained
about the individual molecular steps involved in such
processes.3−5 Of particular importance in this context is the
ability to probe at high resolution the various structural
mechanisms involved in the initiation and growth of different
fibrillar states. Fibril growth kinetics are most commonly
studied in vitro, using assays based on the enhancement of
fluorescence of dyes, such as Thioflavin-T (ThT) or by using
surface-based biosensing assays,4 both of which measure the
growth of large numbers of aggregates. Such measurements are
valuable for determining average rate constants via kinetic
models and global data fitting,5 although it is becoming
increasingly clear that the underlying processes depend
significantly on factors such as size, nature and local
environment of individual aggregate species.
Studies in which individual aggregates can be visualized using

techniques such as TIRF-ThT (total internal reflection-
Thioflavin-T)6−9 and in situ atomic force microscopy

(AFM)10−15 shed new light into the complex nature of the
individual molecular steps involved in the kinetics of
aggregation reactions, including the way in which fibrils can
elongate by addition of further soluble molecular species,
providing information that is not available from ensemble
measurements. Several of these studies have postulated that
amyloid fibrils grow via a “stop-and-go” mechanism,6,8,13,14,16

that is, that at any given time only a fraction of all fibrils
undergo elongation. One issue of considerable interest is the
extent to which individual fibrils have similar growth statistics,
and whether or not there are distinct populations exhibiting
variable growth rates over an extended period of time. This
question is of particular relevance in the context of the
existence and propagation of different morphologically defined
species leading to distinct pathological phenotypes, a
mechanism often referred to as templating.17

In this paper, we use super-resolution microscopy18−23to
visualize directly the growth of individual amyloid fibrils. This
technique has recently been applied in studies of amyloid
morphology both in aqueous solution24,25 and in cells.26−28 In
the present study we use two-color direct Stochastic Optical
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Reconstruction Microscopy (dSTORM) as a powerful means of
elucidating the nature and the kinetics of the growth of
individual fibrils in vitro, through its ability to distinguish by
color those regions of fibrils formed at different stages of the
reaction, providing details on the molecular level of the process.
Using differently labeled fibrillar seeds and monomers of α-
synuclein, a protein involved in Parkinson’s disease, we are able
to distinguish clearly individual fibrils formed at different stages
of the aggregation reaction as a result of the high spatial
resolution of better than 20 nm. Furthermore, we provide clear
evidence that fibril growth is bidirectional, a subject of
considerable debate in the amyloid field.6,7,9,10,12,13,27 In
addition, we establish that elongation is a highly heterogeneous
process, which cannot be fully described by a single rate
constant. We discuss possible molecular origins for the
observed variations in the growth kinetics and speculate that
these variations could be significant in the context of onset and
propagation of disease.
Amyloid Growth from Seed Fibrils Is a Bidirectional

Process. In order to visualize α-synuclein fibrils using
dSTORM, we prepared separate batches of covalently labeled
cysteine variants (N122C) of the protein with Alexa Fluor 647
(AF647) and with Alexa Fluor 568 (AF568) dyes (Invitrogen,
Carlsbad, CA, U.S.A.) (see Materials and Methods in
Supporting Information). We verified that the dye labels do
not interfere with the aggregation process and that the fibril
morphology and the kinetics of fibril formation are
indistinguishable from those of the unlabeled protein, as
revealed by AFM and ThT assays (see Supporting
Information). We chose to use direct covalent labeling of α-
synuclein rather than immunofluorescence staining because of
the very small size of the Alexa dye labels compared to antibody
molecules, and because of the high specificity of labeling
afforded by use of covalent linkages, both of which result in an
increase in the resolution of the imaging process.25,26 We found
the optimal labeling ratio for two-color dSTORM to be ca. 1:20
for the fraction of labeled relative to unlabeled protein; too high
a labeling density would compromise resolution (by increasing
the likelihood that proximate fluorophores emit simultaneously
and therefore cause mislocalization) and might potentially lead
to steric interferences of the dye with the amyloid protein.
Figure 1a,c show the conventional, diffraction limited
fluorescence images of α-synuclein fibrils; the corresponding
dSTORM images are shown in Figure 1b,d. From the
dSTORM images, we inferred an average fibril diameter of 18
± 2 nm, which shows that the resolution achieved approaches
that of techniques such as AFM.29

Having established that α-synuclein fibrils can be reliably
imaged using our super-resolution technique, we proceeded to
perform two-color dSTORM experiments and to analyze the
dynamics of fibril growth. We visualized the process of fibril
elongation using a seeded aggregation assay;30,31 the starting
point was a solution of preformed fibrils of α-synuclein with an
average length of 400 nm, labeled at 5% with AF568 (green)
(see Materials and Methods in Supporting Information for
details). At the start of each such assay, a solution containing α-
synuclein in its monomeric state with 5% of the protein
molecules labeled with AF647 (red) was added to the initial
sample at a 10-fold excess (by mass); under these conditions
the only relevant molecular process is elongation,31,32

permitting the direct measurement of the rates of this specific
process. The solution was left to incubate for 24 h at 37 °C and
under quiescent conditions in which breakage of fibrils is

minimal. At different time points during the aggregation
reaction aliquots were taken from the solution and deposited
onto glass coverslip chambers containing photoswitching
buffer, optimized for two-color dSTORM (see Materials and
Methods in Supporting Information). The fibrils had therefore
been allowed to elongate in bulk solution in the absence of any
sample-substrate interactions that might have affected the
growth kinetics.11,13 Figure 2 shows the elongation of the seed
fibrils as a function of time. In Figure 2a, the seed fibrils, labeled
with green AF568, are shown before addition of the monomeric
protein. At the beginning of the experiment (t = 0 h)
monomeric protein labeled with red AF647 was added and two-
color super-resolution images were recorded at different time
points during 24 h of fibril growth, as shown in Figure 2b−h.
Using two-color dSTORM we are able to distinguish

between the seed fibrils initially present (indicated by
arrowheads and rendered in green color) and the freshly
added protein (indicated by arrows and rendered in red color).
We can therefore monitor the process of fibril elongation over
hours or even days in the absence of any destructive sample
preparation steps such as drying or shaking, which are known
to induce breakage. Indeed, fibril breakage was observed to be
negligible in our experiments, as all fibrils we had imaged
contained either elements of both green fluorescence (AF568
from the seed species) and red fluorescence (AF647, signifying
the newly added protein), or just green fluorescence (AF568,
the latter also indicating that no detectable growth had taken
place); no fibrils were observed that were solely labeled with
red fluorophores, indicating that neither monomer nucleation,
nor fibril breakage were significant under the experimental
conditions reported here. In contrast to conventional TIRF
fluorescence imaging (Figure 2i), two-color dSTORM (Figure
2h) clearly distinguishes between the original fibril seeds and
the grown regions of the fibrils. Importantly, our data establish
unambiguously that α-synuclein fibril elongation under the
conditions used here is a bidirectional process, that is, that it
proceeds from both ends of fibril seeds. In previous
experiments, both bidirectional10,12,13 and unidirectional6,7,9

Figure 1. Comparison of conventional fluorescence and super-
resolution images of directly labeled amyloid fibrils of α-synuclein:
(a,c) conventional (diffraction limited) fluorescence images of the
fibrils, labeled with AF647 and AF568, respectively; (b,d) correspond-
ing dSTORM images, demonstrating the dramatic resolution enhance-
ment obtainable over conventional imaging.
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growth of different amyloid fibrils such as Aβ, amylin, and α-
synuclein have been reported, although issues such as substrate
interference with fibril growth could not be excluded, or the
resolution from conventional techniques was limited. Here, the
elongation reaction occurs in an undisturbed environment in
bulk solution, and hence is unaffected by such interference.
Furthermore, the resolution achieved with two-color dSTORM
enables to conclusively establish that fibril growth is bidirec-
tional.
We performed additional control experiments using solutions

containing either seed fibrils in the absence of monomeric
protein, or solutions containing monomeric protein in the
absence of seed fibrils. Incubation of these samples for 24 h at
37 °C resulted in no observable fibril elongation or fibril
formation (see Supporting Information Figure 3). These results
confirm that seed fibrils are inert in the absence of monomeric
protein and therefore do not, for example, join together by
mutual interaction of their free ends. Also, de novo formation of
α-synuclein amyloid fibrils via primary nucleation occurs at a
negligible rate relative to fibril growth, confirming elongation of

seeds as the only significant process during the aggregation
reactions presented here.

Analysis of Fibril Elongation Kinetics Reveals In-
homogeneous Growth Rates and Distinct Fibril Pop-
ulations. In order to investigate possible variations in growth
kinetics for individual fibrils, we analyzed multiple dSTORM
images of growing fibrils, recorded at different time points
during the aggregation reaction and in different regions of the
glass coverslips (see Materials and Methods in Supporting
Information for details); we then studied the distribution of
elongation values as a function of time. In Figure 3a, histograms
of the measured elongation lengths of individual fibrils are
shown (dSTORM, red channel) for different time points up to
24 h of the aggregation reaction. The width of the observed
distributions of fibril elongation values can be seen to increase
significantly with time; for example, after t = 24 h, some fibrils
have reached lengths of up to 7 μm, but others show either no,
or only a very small, increase in length. In Figure 3b, we have
plotted the histograms of the corresponding average growth
“velocities” (calculated as the length increase divided by the
overall growth time) at the same time points as depicted in

Figure 2. Two-color dSTORM images reveal details of the elongation of α-synuclein fibrils through addition of soluble protein molecules, in vitro.
(a) The initial sample consists of α-synuclein seed fibrils at 8 μM concentration, labeled with AF568 (green). At t = 0 h, monomeric α-synuclein at a
total concentration of 80 μM (76 μM wild type, 4 μM AF647-labeled N122C) (red) was added to the solution. (b−h) Aliquots were taken during
the aggregation reaction and imaged with two-color dSTORM. The images show the overlay of the two channels (green, AF568 and red, AF647).
The time points after the initiation of aggregation are (b) t = 1 h, (c) t = 2 h, (d) t = 3 h, (e) t = 5 h, (f) t = 6 h, and (g,h) t = 24 h. Each fibril consists
of the initial seed (green, indicated by an arrowhead) and the extended region formed through addition of monomeric protein (red, indicated by an
arrow). The lengths of the fibrils reach several micrometers with the initial seed fibril being extended from both ends. (h) Two-color dSTORM
image of a fibril at t = 24 h and (i) conventional fluorescence image in TIRF of the same fibril as in (h), showing that the increase in resolution
achieved by dSTORM enables the original and the newly formed section of the fibril to be clearly distinguished.
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Figure 3a. These histograms show that the variation in
elongation rates remains approximately constant over time,
indicating that at each time point there is a range of fibrils
displaying distinct growth rates.
We further investigated the two extreme elongation values;

namely the frequency of the occurrence of seeds that show no
detectable growth (denoted by the absence of any red regions
that would indicate that fibril elongation had taken place) or
that of species exhibiting very fast growth rates. The most
striking feature of the data presented in Figure 3c is that a

significant proportion of seed fibrils (17%) did not exhibit any
growth in the presence of monomeric protein and remained at
their initial length.33 In contrast, the majority of the fibrils
(63%) grew up to 10 times their initial length in 24 h; indeed, a
small fraction of fibrils (20%) grew more than 10 times their
initial length. Taking the average of all individual rates
observed, including data from fibrils that had not elongated,
we obtained a mean growth rate of 1.4 nm/min over 24 h, with
a standard deviation of 1 nm/min, which is in good agreement
with the values for average growth rates obtained using ThT

Figure 3. Histograms of the distributions of elongation lengths (corresponding to the newly formed (red) regions) of seed fibrils. The histograms in
panel (a) show the relative frequency of different elongation lengths obtained at 1, 3, 6, and 24 h. A curve depicting the Poisson distribution for the
number of attached monomers with the same average value as the average elongation value obtained from the histogram is overlaid at each time
point. The x-axis label, k, corresponds to the number of attached monomers divided by 2, assuming that each monomer has a length of 0.5 nm. (b)
Histograms showing the relative frequency of the mean growth “velocities” over the same time points as in (a). The bin size is 0.05 μm/h. (c)
Diagram summarizing the distribution of the elongation values of fibrils at the end of the incubation process (t = 24 h). Black bar: percentage of
fibrils that exhibit zero growth (no detectable red regions). Blue bar: percentage of fibrils that have grown to a size ranging from the lowest
detectable length to up to 10 times the length of the initial seed. Violet bar: percentage of fibrils that have elongated by more than 10 times the
length of the initial seed fibril.
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ensemble measurements.31 Clearly, the observed ensemble
kinetics are a consequence of a larger number of elementary
reaction steps that cannot be resolved in ensemble measure-
ments in which it is assumed that the growth of all fibrils
contributes equally to the observed total increase in fibril mass.
Of particular interest is the finding that some seed fibrils remain
inactive throughout the entire duration of the experiment (24
h) that suggests that individual seeds can have very different
elongation capacities.
The Mechanism of α-Synuclein Fibril Elongation

Deviates from a Purely Stochastic Process Involving
Random Growth. To gain insights into possible molecular
mechanisms underlying the observed variations in elongation
rates we carried out a more detailed analysis of rate
distributions and studied the results in the context of different
models of fibril elongation. For a random (stochastic) process
involving discrete events, such as the addition of monomeric
protein molecules to fibril ends, the probability of a certain
number of these events occurring in a given time is governed by
Poisson statistics. In each histogram of Figure 3a, we have
therefore overlaid curves depicting the corresponding Poisson
distributions for the number of attached monomers, based on
the averages of the elongation values obtained from the
histograms and assuming that addition of a single monomer of
α-synuclein leads to a fibril length increase of 0.5 nm.31 The
data indicate that the measured distributions are not at all
represented by Poisson distributions and that much larger
variations in elongation rates are observed than predicted by
this analysis, again indicating rapid growth of certain fibrils
whereas others exhibit imperceptible growth, as schematically
depicted in Figure 4.
A different model to account for inhomogenous growth

kinetics invokes the so-called “stop-and-go” mechanism, which
has been discussed for amyloid fibrils of Aβ25−35

14 and
glucagon.16 In these studies, it was proposed that the origin
of the observed switching between active (“go”) and inactive
(“stop”) states lies in the occasional incorrect addition of a
monomer onto a fibril end, such that the templating effect is
lost until this monomer detaches or rearranges into the
correctly folded state.34 The consistency of this hypothesis with
the reported in these studies data can, however, be probed by a
simple argument; the free energy barrier for the dissociation of
a correctly incorporated monomer from a fibril end must
represent an upper bound for the energy barrier of dissociation,
or for the rearrangement of improperly attached monomers,
given that the correctly incorporated monomer is likely to
represent the minimum in the free energy landscape.35 The
data presented in ref 14 allowed the elongation rate constants

during the growth phases, k+, to be determined as ∼106 M−1 s−1

and the critical concentration, ccrit to be ∼10 μM. At
equilibrium, the fluxes of growth and dissociation are equal,
and therefore the equilibrium constant is K = 1/ccrit = k+/koff,
where koff is the rate constant of dissociation. From this analysis
we estimate koff ≈ 10 s−1, which represents a rate more than 2
orders of magnitude faster than that of switching between the
growth-incompetent and the growth-competent states reported
in ref 14 (∼0.03 s−1). It therefore seems likely that additional
factors determine the duration of the inactive periods in the
experiments reported; one possibility is interactions with the
surfaces on which the fibrils grow. In the present study, the
seed fibrils grow in solution and are only deposited onto a
surface for imaging, therefore minimizing such additional
interactions.
We next explored whether or not the heterogeneous growth

kinetics for individual fibrils observed in our experiments are
compatible with a “stop-and-go” model. Looking at the
histograms in Figure 3 it is apparent that some fibrils have
inactive periods of several hours. Assuming that a fibril will
become active again when an incorrectly folded monomer
becomes detached at its end we can estimate using similar
arguments as above whether this time scale is compatible with
such a hypothesis: using a critical concentration of α-synuclein
of ∼2 μM,35 and the determined average growth rate of k+ ≈
103 ± 375 M−1 s−1 (this work and ref 31) we obtain an estimate
for the lower bound for the average dissociation rate, koff ≈ (2.0
± 0.8) × 10−3 s−1. Although this value may deviate from that
for individual fibrils, it cannot account for the observation that
some fibrils are inactive for the entire duration of the
experiment, that is, for at least 24 h. Additionally, since this
process should affect fibrils of all lengths equally, it is unlikely to
provide an explanation of the observed heterogeneity in fibril
elongation rates. Therefore we suggest the following alternative
explanations:
(1) Certain amyloid templates/seeds are not efficient in

recruiting monomeric protein, leading to different fibril
morphologies and growth rates (fibril polymorphism).36 This
mechanism has been proposed for several proteins such as the
yeast prion Sup35,37−39 glucagon,40 Aβ,41−45 tau,46 and α-
synuclein.47,48

(2) The spatial arrangement of fibrils, for example, because
of assembly into higher order structures31 or variations in
protofilament organization,42 may block the access needed for
monomers to attach to fibril ends. Additionally, the ends of
seed fibrils may become damaged during production, although
this is unlikely here, because neither sample drying nor harsh
fragmentation methods, such as sonication, were used.

Figure 4. Schematic diagram of the elongation of α-synuclein seed fibrils, depicting the different mechanisms that influence fibril growth. The green
cylinders correspond to fibrillar seeds labeled with Alexa Fluor 568 and the red spheres correspond to the monomeric protein labeled with Alexa
Fluor 647. ke denotes the average elongation rate constant.
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In conclusion, we have demonstrated the development and
application of two-color dSTORM as a powerful tool for the
visualization of α-synuclein fibril growth from seed templates
and have carried out a quantitative analysis of the kinetics of
this process. With this technique, we are able to distinguish de
novo growth of fibrils from the original seed and to follow
elongation at nanometer resolution. Our method proves
conclusively that α-synuclein fibril elongation, under the
conditions used here, is a bidirectional process. In addition,
no end-to-end association of seed fibrils was observed to occur
and elongation of seeds was evident only in the presence of
monomeric protein. The kinetics of fibril growth are not
adequately described by a single elongation rate parameter;
rather, a large variation in growth rates was found to exist. The
observed process is neither consistent with a “stop-and-go” type
mechanism in which misfolded species at the fibril end need to
be removed before growth can resume, nor with the notion that
monomer addition is a diffusion controlled, stochastic process,
for which variations in growth rates would be much smaller. We
therefore suggest two alternative mechanisms that can be
explored in future studies. Furthermore, the methodology
described here can be readily extended to in situ applications in
biological samples, for example, to monitor aggregation within
cells and to elucidate the various parameters that affect fibril
growth. It could also be used to identify different fibril strains,
which may arise in vivo, and to investigate their role in the
production and spreading of amyloidogenic species in disease.
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