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Somatic mutations can result in the formation of neoantigens, immunogenic peptides 16 

that are presented on the tumor cell surface via HLA molecules. These mutations are 17 

expected to be under negative selection pressure, but the extent of the resulting 18 

neoantigen depletion remains unclear. Based on HLA affinity predictions, we 19 

annotated the human genome for its translatability to HLA binding peptides and 20 

screened for reduced single nucleotide substitution rates in large genomic datasets 21 

from untreated cancers. Apparent neoantigen depletion signals became negligible 22 

when considering trinucleotide-based mutational signatures, either due to lack of 23 

power or efficient immune evasion mechanisms active early during tumor evolution.  24 
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Cancer is caused by somatic mutations in driver genes. These genomic alterations result in 25 

a selective growth advantage and positive selection of the affected cells1. With the rise of 26 

next-generation sequencing technologies, increasing insights into the cancer genome have 27 

led to a comprehensive characterization of the frequencies and patterns of somatic 28 

mutations across different cancers2,3. For a tumor to evolve, it also needs to develop ways to 29 

avoid immune destruction, a process referred to as immunoediting and one of the more 30 

recent hallmarks of cancer4,5. Mouse studies have shown that T lymphocyte recognition of 31 

tumor-specific antigens is crucial for immunoediting to occur6. The accumulation of somatic 32 

mutations in the tumor genome results in the formation of neoantigens, small peptides 33 

presented on the cell surface that can stimulate cytotoxic (CD8+) T lymphocytes (CTLs). To 34 

attenuate these CTL responses, a cancer cell can upregulate ligands for checkpoint 35 

receptors7. Therapeutically blocking these checkpoint pathways has been shown effective in 36 

several cancers such as metastatic melanoma and non-small cell lung cancer7–9. However, 37 

responses to immune checkpoint blockade (ICB) therapy are still largely unpredictable, and 38 

it is not completely understood why some tumors do not respond or develop resistance to 39 

therapy. 40 

Several genomic alterations (e.g. CASP8 mutations, B2M mutations, HLA loss) have 41 

been discovered that can partially explain this ICB therapy unresponsiveness10–16. 42 

Furthermore, as stimulation of CTLs is critically dependent on the formation and presentation 43 

of neoantigens, it is not surprising that one of the main determinants of therapy 44 

responsiveness is mutation burden17–19. Indeed, the higher the mutation burden, the higher 45 

the number of potential neoantigens and hence ways to stimulate the immune system. On 46 

the other hand, negative (or purifying) selection is expected to act on neoantigen-forming 47 

mutations. This should result in a depletion of such mutations and escape from immune-48 

induced cancer cell death. The presence of neoantigen depletion has been suggested in 49 

several cancers such as colorectal cancer, metastatic melanoma, esophageal, bladder, 50 

cervical and lung cancer10,13,20,21. As the main determinant of CTL immunogenicity is a 51 

peptide’s capacity to bind to the cell’s human leukocyte antigens (HLA) from the type I major 52 
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histocompatibility complex (MHC-I), the conclusions of these studies are mostly based on 53 

lower-than-expected numbers of non-synonymous somatic mutations in predicted HLA-54 

binding peptides, using the number of synonymous mutations as a reference. 55 

Somatic mutations are caused by different mutational processes that are active 56 

during tumor evolution. A widely used method for characterizing the properties of mutational 57 

processes are trinucleotide-based mutational signatures, which describe frequencies for all 58 

single nucleotide substitutions in all possible sequence contexts in terms of adjacent 59 

upstream and downstream nucleotides, resulting in a total of 96 substitution types3. This 60 

implies that the mutation probability at any genomic position is dependent on the immediate 61 

sequence context in combination with the active mutational processes. It has now been 62 

clearly demonstrated that mutational signatures need to be accounted for in any model 63 

aiming at finding signals of selection in cancer22–24. However, it is currently not clear whether 64 

and how mutational signatures and their sequence context preferences influence signals of 65 

neoantigen depletion.   66 

Here we show that, when mutational signatures are considered, putative signals of 67 

neoantigen depletion become weak to absent in cancer genomics data from treatment-naïve 68 

tumor samples. Our results are in line with the overall weak signals of negative selection in 69 

cancer and challenge the idea that neoantigen depletion signals are detectable based on 70 

HLA affinity predictions in large-scale cancer mutation datasets.  71 

RESULTS 72 

Annotation of HLA-binding regions in the human genome.  73 

Somatic mutations are expected to result in neoantigen formation when (i) the resulting 74 

peptides are presented via MHC-I and (ii) they are recognized by CTLs through specific T-75 

cell receptor (TCR) binding, which only occurs when there is no immune tolerance, i.e. when 76 

presented peptides are new to the immune system. Given sufficient co-stimulatory signals, 77 

this will result in CTL-mediated killing of neoantigen-presenting cancer cells, enforcing a 78 
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negative selection pressure during tumor evolution (Fig. 1a). We hypothesized that this 79 

specific form of negative selection and hence neoantigen depletion should be detectable as 80 

reduced mutation rates in genomic regions that can be translated to HLA-binding peptides. 81 

Therefore, our first aim was to define these regions, thereby generating an HLA-binding 82 

genomic annotation. 83 

HLA-binding affinities are determined by both the amino acid sequence and by 84 

patient-specific HLA genotypes, composed of a combination of two HLA-A, two HLA-B and 85 

two HLA-C alleles. We initially considered a single prototypical HLA genotype consisting of 86 

the two most common HLA-alleles (HLA-A01:01, HLA-A02:01 HLA-B07:02, HLA-B08:01, 87 

HLA-C07:01 and HLA-C07:02; Supplementary Fig. 1), enabling us to define a single HLA-88 

binding genome annotation to use throughout the analyses. For these six HLA alleles, the 89 

affinities were predicted for all possible nonapeptides (9-mers) translated from the coding 90 

genome and were aggregated in a single affinity, a similar approach to what has been 91 

described recently25 (see Methods and Supplementary Fig. 1). By considering a nonapeptide 92 

HLA-binding when the aggregated Kd was lower than 500 nM26, we found that the complete 93 

pool of HLA-binding nonapeptides mapped to 22.1% of the exome (Fig. 1b). 94 

Apparent negative selection signals in HLA-binding regions. 95 

Having annotated the human exome for the HLA-binding properties of its translated peptides, 96 

we next aimed to search for signals of immune-induced negative selection in the cancer 97 

genome. All available synonymous and non-synonymous (i.e. missense) somatic mutation 98 

data were downloaded from The Cancer Genome Atlas (TCGA), encompassing 1,836,369 99 

mutations from 8,683 different samples and spanning 32 cancer types (Supplementary Table 100 

1). As only non-synonymous mutations in HLA-binding regions are expected to be under 101 

immunogenic selection pressure, we used the number of synonymous mutations as a 102 

background reference and determined the ratio between the observed numbers of non-103 

synonymous and synonymous mutations (n/s) in HLA-binding as well as non-binding regions. 104 

We found that n/s was lower in HLA-binding regions on a pan-cancer level (n/s 2.23 in HLA-105 



6 
 

binding vs. 2.58 in non-binding regions, P = 3.24 × 10-298, Fisher’s exact test; Fig. 2a,b). To 106 

quantify the extent of this putative neoantigen depletion signal, we defined an HLA-binding 107 

mutation ratio (HBMR) as the ratio of n/s in HLA-binding to non-binding peptides. This way, 108 

negative immunogenic selection of somatic mutations is expected to result in HBMR values 109 

lower than 1 (or higher than 1 if these mutations have been influenced by positive selection). 110 

For the pan-cancer analysis this implied an HBMR of 0.87, suggesting the overall loss of 13% 111 

of non-synonymous mutations due to negative selection (Fig. 2a,b).  112 

We next aimed to determine how these signals differed between cancer types 113 

focusing on the 19 cancer types with at least 10,000 mutations in the TCGA dataset. Given 114 

the observed mutation burdens, we estimate sufficient power (0.8 at P < 0.05) to detect 115 

negative selection operating on between 2% (UCEC) and 13% (KIRP) of the predicted 116 

neoantigens (Supplementary Fig. 2). We observed HBMR values that were significantly 117 

below 1 for 12 out of 19 analyzed cancer types, including bladder cancer (BLCA, HBMR = 118 

0.66, P = 1.5 × 10-127), metastatic melanoma (SKCM, HBMR = 0.69, P = 0), cervical cancer 119 

(CESC, HBMR = 0.72, P = 1.3 × 10-51), lung adenocarcinoma (LUAD, HBMR = 0.77, P = 2.3 120 

× 10-60), head and neck cancer (HNSC, HBMR = 0.78, P = 6.6 × 10-36) and squamous cell 121 

lung cancer (LUSC, HBMR = 0.80, P = 1.4 × 10-34) (Fig. 2c and Supplementary Table 2). 122 

Reduced non-synonymous mutations in HLA-binding regions are not caused by 123 

selection processes. 124 

To be able to determine whether and to what extent selection processes and hence 125 

neoantigen depletion are indeed responsible for the observed reduction in non-synonymous 126 

mutations in HLA-binding regions, we determined the expected mutation rates in the 127 

absence of any selection pressure. For every observed somatic mutation, we simulated one 128 

mutation by randomly sampling from all possible point mutations with the same trinucleotide 129 

substitution type (e.g. TCC>TTC), resulting in a simulated mutation dataset with a similar 130 

size as the observed data. As expected, all signals of positive selection in driver genes 131 

disappeared in the simulated mutation data (Supplementary Fig. 3). Using this simulated 132 
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mutation database, we recalculated the mutation rates and HBMR values. Strikingly, a 133 

strong signal of apparent negative selection and hence neoantigen depletion, similar to the 134 

real mutation data, was still present (HBMR = 0.83, P = 0; Fig. 2b). This similarity was also 135 

present for the individual cancer types (Pearson’s r = 0.91, P = 7.5 × 10-8), with the strongest 136 

signals again observed for bladder cancer and metastatic melanoma (Fig. 2c). The fact that 137 

a set of randomly generated mutations, upon which selection cannot have acted, gave 138 

results that closely mimicked those from actual mutation data casts doubt on the apparent 139 

neoantigen depletion signals. As the simulated and real mutations were only matched with 140 

respect to trinucleotide substitution types, this analysis suggests that sequence differences 141 

between HLA-binding and non-binding regions, combined with specific sequence 142 

preferences of relevant mutagenic exposures, introduce biases in n/s ratios, leading to 143 

apparent signals of neoantigen depletion. 144 

We noted that these findings were robust to the way HLA-binding capacity was 145 

determined. Determining HLA affinities using patient-specific HLA genotypes (rather than the 146 

six most frequent alleles), focusing on the best binding allele only and using a more stringent 147 

Kd cut-off of 50 nM or a percentile-based cut-off of 1%, did not substantially alter the 148 

observed reduction in HBMR values (Supplementary Fig. 4). Similar results were also 149 

obtained when the analysis was restricted to genomic regions encoding known epitopes 150 

from IEDB (immune epitope database; Supplementary Fig. 5).  151 

While the exclusion of non-expressed or cancer driver genes did not change the 152 

observed differences between tumor types either (Supplementary Fig. 4), we observed a 153 

lower overall percentage of somatic mutations in HLA-binding regions for expressed 154 

compared to non-expressed genes (21.7% vs. 28.3% respectively for the pan-cancer 155 

dataset, Fisher’s exact test P = 0), and an opposite effect for driver compared to non-driver 156 

genes (18.8% vs. 22.8% respectively, P = 7.6 × 10-238; Supplementary Fig. 6). Similar 157 

differences were observed for both non-synonymous and synonymous mutations, again 158 

raising doubts about a putative interpretation as immunogenic selection signals. These 159 

findings also imply that mutations in non-expressed transcripts should not be used as 160 
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background reference when studying immunogenic selection pressures in cancer genomics 161 

data. 162 

Different trinucleotide substitution probabilities explain lower non-synonymous 163 

mutation rates in HLA-binding regions.  164 

To better understand the association between trinucleotide substitution types and HLA-165 

binding regions, we simulated all possible point mutations in 17,992 genes (21,203,704 166 

synonymous and 67,766,542 non-synonymous mutations; Fig. 3a) and used the HBMR 167 

metric to quantify the difference between expected mutation rates in HLA-binding and non-168 

binding regions for each trinucleotide substitution type. There was a notable variability 169 

between the trinucleotide substitution types, with HBMR values ranging from 0.35 for 170 

TCT>TGT substitutions to 2.07 for ATG>ACG substitutions (Fig. 3b). The trinucleotide 171 

substitution types with the lowest HBMR values were the most abundant in the cancer types 172 

with low overall HBMRs (e.g. 23.9% of all malignant melanoma mutations are TCC>TTC, the 173 

trinucleotide substitution type with the second to lowest HBMR; Supplementary Fig. 7). 174 

Remarkably, many of the substitution types with the lowest HBMR values were TCN>TNN 175 

(Fig. 3b), and a strong negative correlation was indeed observed between a cancer type’s 176 

HBMR value and its proportion of TCN>TNN mutations (Pearson’s r = -0.81, P = 2.4 × 10-5; 177 

Supplementary Fig. 7). Mutational signatures 2 and 3 (APOBEC-related) and the UV-178 

induced signature 7, which are both related to these patterns, consequently had the lowest 179 

HBMR values (Supplementary Fig. 7). 180 

High synonymous mutation probabilities in hydrophobic amino acid codons correlate 181 

to lower perceived mutation rates in HLA-binding regions. 182 

We next aimed to explain the association between trinucleotide substitution types and HLA-183 

binding properties. Because different sequence contexts imply different amino acid codon 184 

probabilities on the one hand, while different physicochemical properties of amino acids 185 

influence binding to HLA on the other hand, we investigated the relationships between 186 
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trinucleotide substitution types, the amino acid content of peptides, and their expected 187 

HMBR values. 188 

We first focused on the correlation between HBMR values and amino acid classes 189 

(hydrophobic, polar or charged) in our annotated genome. For synonymous mutations, a 190 

strong negative correlation was observed between a trinucleotide substitution type’s HBMR 191 

value and the frequency of hydrophobic amino acid codons (Spearman’s r = -0.61, P = 8.1 × 192 

10-11; Fig. 3b), while an opposite, weaker and positive correlation was noted for non-193 

synonymous mutations (Spearman’s r = 0.30, P = 4.2 × 10-3; Fig. 3b). This effect was mainly 194 

related to Leu, Val and Iso (Supplementary Fig. 8); hydrophobic amino acids encoded by 195 

codons with a thymine on the second codon position (Supplementary Fig. 9). Combined with 196 

the observation that most of the corresponding trinucleotide substitution types conform to the 197 

pattern TCN>TNN, this association can be explained by the upstream T of the substitution 198 

type matching with the T at the second codon position and the substituted nucleotide 199 

matching with the third codon position (Fig. 3c). Indeed, when a codon with a T at the 200 

second position is hydrophobic, any mutation involving the third position of a Leu or Val 201 

codon always results in a synonymous mutation. This is also the case for most mutations 202 

that affect the same position in Ile and for some mutations at the Phe codon as exemplified 203 

in Figure 3c.  204 

Secondly, as hydrophobic amino acids are known to influence HLA-binding 205 

affinities27, we determined the correlation between the number of amino acids from a certain 206 

class in a nonapeptide and its HLA-binding capacity. By randomly sampling from 1 million 207 

coding regions and determining the translated peptides’ HLA-binding affinity, we observed a 208 

positive association between the number of hydrophobic amino acids in a peptide and its 209 

HLA-binding capacity (logistic regression coefficient β  = 0.48, Fig. 3d and Supplementary 210 

Fig. 10).  211 

These results demonstrate that certain trinucleotide substitution types, like 212 

TCN>TNN, which occur frequently in metastatic melanoma, bladder cancer and cervical 213 

cancer, are likely to lead to synonymous mutations in Leu, Val and Ile codons. Because 214 
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these amino acids are more frequent in HLA-binding peptides, this leads to lower perceived 215 

non-synonymous mutation rates when synonymous mutations are used as a background 216 

reference. The earlier described difference in apparent neoantigen depletion in expressed vs. 217 

non-expressed genes is also related to hydrophobic amino acid content, as a gene 218 

enrichment analysis of non-expressed genes showed a strong membrane protein 219 

enrichment (e.g. olfactory receptors; Supplementary Fig. 6).  220 

Weak to absent neoantigen depletion signals after correcting for trinucleotide 221 

substitution effects. 222 

Our study shows that differential mutation rates between HLA binding and non-binding 223 

peptides mainly result from differences in trinucleotide substitution probabilities. We next 224 

aimed to determine whether any remaining signal of neoantigen depletion would be 225 

detectable after correcting for these trinucleotide substitution effects.  226 

As a first approach, we normalized the observed HBMR value to its expected value 227 

for each cancer, under a trinucleotide substitution model and considering the HLA-binding 228 

annotation developed in this study (see Methods). We reanalyzed all cancers and observed 229 

a disappearance of neoantigen depletion signals, except for a limited signal in lung cancer 230 

(Fig. 4a and Supplementary Table 2). In line with our earlier findings (Supplementary Fig. 4), 231 

results did not substantially change when different criteria were used to calculate HLA 232 

binding capacity or when mutations were called using the more recent MC3 mutation caller28 233 

(Supplementary Fig. 11). Similarly, dN/dS values did not suggest any signal of negative 234 

selection after correcting for differing trinucleotide sequence contexts in HLA binding vs. 235 

non-binding regions (Supplementary Fig. 12).  236 

Notably, correcting using mutation probabilities derived from the SSB7 or other 237 

models that do not consider the complete adjacent sequence context resulted in corrected 238 

signals falsely suggestive of neoantigen depletion in e.g. melanoma and bladder cancer (Fig. 239 

4a and Supplementary Fig. 12). Conversely, normalization using an extended sequence 240 
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context (pentanucleotide substitution model) further decreased the apparent selection 241 

signals, with loss of significance in lung squamous cell carcinoma (Fig. 4a,b). 242 

The previous results were all derived for a prototypical HLA genotype and for the 243 

reference genome (i.e. wild-type peptides). While this approach was useful in gathering new 244 

insights into associations between substitution types and HLA affinities, there is a risk of 245 

missing selection signals that are HLA genotype-specific and/or only act on mutations that 246 

result in new HLA binders (i.e. hit the HLA-binding residues of a nonapeptide, rather than the 247 

CTL contact residues). We thus searched for neoantigen depletion signals in mutated HLA-248 

binding peptides, where binding affinities were predicted for sample-specific genotypes. We 249 

noted that only 1.88% of all non-synonymous mutations resulted in a non-binding peptide 250 

gaining HLA-binding properties (Supplementary Fig. 13). Similar numbers (1.92%) were 251 

found using our simulated mutation database, thus again providing no convincing support for 252 

selection acting on these specific mutations.  253 

Finally, given that we have shown that synonymous mutation counts are particularly 254 

vulnerable to the effects of mutational signatures, we considered a selection metric 255 

(dNHLA/dNnonHLA) that was independent of synonymous mutations. This metric compares the 256 

observed ratio between the number of non-synonymous mutations in HLA-binding and non-257 

binding peptides with the corresponding expected ratio. The latter was determined for each 258 

HLA genotype from all TCGA samples, using mutated peptides from 960,000 randomly 259 

simulated mutations (10,000 for each trinucleotide substitution type) and considering the 260 

aggregated mutational signature from each cancer type (Fig. 5a,b). By normalizing the 261 

observed to the expected ratios for each sample, all tumor types were reanalyzed for 262 

putative selection signals. This analysis generally confirmed the absence of detectable 263 

neoantigen depletion, except for a signal in cervical cancer (median dNHLA/dNnonHLA = 0.91, 264 

one-sample Wilcoxon signed-rank test P = 2.4 × 10-4; Fig. 5c and Supplementary Table 2). 265 

Further, dNHLA/dNnonHLA did not correlate with immune cytolytic activity (Supplementary Fig. 266 

14). Notably, 3 out of 19 tumor types had values significantly above 1. These signals were 267 

comparable in effect size to cervical cancer, most pronounced in melanoma (median 268 
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dNHLA/dNnonHLA = 1.08, P = 1.2 × 10-10), and remained when using a pentanucleotide rather 269 

than trinucleotide model (Supplementary Fig. 14). As these positive signals are unlikely to 270 

indicate true positive selection, they may rather reflect limitations of the dNHLA/dNnonHLA model, 271 

which does not consider synonymous mutation rates. Finally, neoantigen depletion signals 272 

were absent when the number of non-synonymous mutations in HLA-binding peptides was 273 

normalized to an expected number that was estimated directly from the pan-cancer dataset, 274 

as suggested previously10 (Supplementary Fig. 14). Notably, we observed that the 275 

neoantigen depletion signals in colorectal and kidney cancer, as reported by Rooney et al.10 , 276 

disappeared after excluding samples with miscalled HLA genotypes from the original dataset 277 

(results obtained using authors’ source code; Supplementary Fig. 14).  278 

Taken together, these results point to a general absence of detectable neoantigen 279 

depletion signals in large-scale mutation data from untreated tumors and emphasize the 280 

importance of using accurate background mutation models to correct for sequence biases 281 

introduced by relevant mutational processes. 282 

DISCUSSION 283 

In this study, we initially observed an apparent reduction of somatic point mutations in 284 

genomic regions encoding HLA-binding nonapeptides. Rather than being an effect of 285 

negative selection acting on immunogenic mutations, we demonstrated correlative 286 

relationships between the probability of mutagenesis in different nucleotide sequences and 287 

predicted HLA affinities for corresponding peptides. In particular, the number of hydrophobic 288 

amino acids are a major determinant of HLA binding capacity for a peptide while 289 

simultaneously being a strong determinant of mutation rate, depending on the mutational 290 

processes at play. When correcting for these correlations, detectable negative selection 291 

signals were weak to absent. Our results demonstrate that mutation rate differences 292 

between peptides with variable HLA affinities should be interpreted with care and have broad 293 

relevance for other studies that derive selection signals from HLA affinity predictions.  294 
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To detect immunogenic selection signals, we initially annotated the human exome 295 

with respect to HLA-binding capacity by determining which segments are translatable to 296 

HLA-binding peptides, for simplicity assuming a single prototypical HLA genotype for all 297 

samples. This implies a focus on wild-type peptides under the hypothesis that mutations in 298 

CTL contact residues are subject to negative selection pressures. Using this annotation, the 299 

approach can be easily reproduced on any mutation dataset, without the need for complex 300 

and time-consuming HLA-typing or HLA affinity predictions. The theoretical drawback is that 301 

this does not capture neoantigenic mutations that lead to new HLA-binding peptides (i.e. 302 

increase the HLA affinities) and/or effects that are HLA genotype-specific. However, 303 

additional analyses addressing patient-specific HLA genotypes as well as de novo HLA-304 

binding peptides likewise failed to produce strong support for neoantigen depletion signals. 305 

Synonymous mutations are often used as a background mutation reference when 306 

analyzing non-synonymous substitutions with respect to selection, resulting in metrics such 307 

as dN/dS. Recent studies have shown that these metrics get confounded when not 308 

considering the adjacent sequence context22,23. A key finding of our study is that simplistic 309 

substitution models will lead to biased immunogenic selection signals, due to HLA affinity 310 

predictions also being sequence dependent. An important advantage of any metric that 311 

considers synonymous mutations as a background reference (like HBMR) is that any 312 

unexpected property that equally effects synonymous and non-synonymous mutation rates 313 

will be cancelled out (such as differential mutation burdens in expressed and non-expressed 314 

genes). However, given that we observed strong dependencies specifically between 315 

synonymous mutation probabilities and HLA-binding properties of corresponding encoded 316 

peptides, leaving synonymous mutations out of the equation may also have advantages. We 317 

did this by considering the ratio between the observed number of non-synonymous 318 

mutations in HLA-binding and non-binding regions and normalizing this ratio to an expected 319 

ratio, estimated under a trinucleotide substitution model for each individual HLA genotype. 320 

Calculation of the resulting dNHLA/dNnonHLA metric for each sample did not provide clear 321 

evidence of neoantigen depletion, similar to our initial analysis taking synonymous mutations 322 
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into account. We could only detect a weak signal in cervical cancer and demonstrated that 323 

the previously reported neoantigen depletion signal in colorectal adenocarcinoma10 was due 324 

to HLA genotyping problems in samples that were later removed from TCGA. Notably, the 325 

dNHLA/dNnonHLA approach also indicated positive signals in some cancers, at effect sizes 326 

comparable to the depletion in cervical cancer. Since positive selection in HLA-binding 327 

regions is improbable, this likely reflects limitations in the accuracy of the expectation model, 328 

casting doubt on the observed negative signal in cervical cancer as well. While this may 329 

reflect exclusion of synonymous mutations in this metric, it can also be noted that mutational 330 

signatures were here determined at the tumor type level, and it is possible that consideration 331 

of patient-specific mutational signatures from whole genome sequencing datasets may 332 

potentiate more refined analyses in the future.  333 

In addition to point mutations, which have been the main focus of studies of 334 

neoantigen depletion, future studies should also address frameshifting indels in this context. 335 

This is a different challenge, as single indels may generate large numbers of unnatural 336 

peptides through introduction of novel open reading frames, which may or may not be 337 

subject to nonsense-mediated decay29. Consistently, indels have been described as more 338 

strongly associated with response to immunotherapy30, and it can be noted that 339 

microsatellite unstable colon cancers, which harbor larger numbers of indels, appear 340 

responsive to checkpoint inhibitors while normal colon carcinomas are not31. 341 

In summary, our results indicate that signals of neoantigen depletion, detected using 342 

HLA affinity predictions, are overall weak to absent in the untreated cancer genome. While 343 

we cannot exclude that this is related to poor accuracy to predict neoantigen formation 344 

(Supplementary Fig. 2), it is noteworthy that signals of negative selection in general are 345 

weak in cancer mutation data22,23,32,33. Therefore, either only a very small fraction of 346 

predicted neoantigenic sites are immunogenic, or the lack of negative selection signals 347 

suggests that developing tumors possess or evolve efficient immune evasion mechanisms 348 

(e.g. HLA loss or PDL1 amplification). If this is indeed the case, detectable signals of 349 
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neoantigen depletion are only expected in the absence of these escape mechanisms, such 350 

as after ICB therapy21. 351 
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FIGURE LEGENDS 446 

Figure 1 | Development of an HLA-binding genomic annotation to detect somatic 447 

mutations under immunogenic selective pressure.  448 

a, Neoantigen formation is expected when a non-synonymous mutation leads to a structural 449 

change in the CTL (CD8+ cytotoxic T lymphocyte) contact residues of an HLA-binding 450 

nonapeptide. This can result in CTL-mediated apoptotic cell death and hence negative 451 

selection of the underlying somatic mutation. TCR, T cell receptor; MHC-I, type I major 452 

histocompatibility complex. b, Binding affinities of all possible nonapeptides were determined 453 

for the six most common HLA alleles as indicated. Peptides were considered HLA-binding 454 

when their aggregated Kd over the six alleles was below 500 nM (see Methods); HLA-455 

binding peptides mapped to 22.1% of the exome as indicated.  456 

Figure 2 | Analysis of somatic mutation rates in HLA-binding annotated genomic 457 

regions. 458 

a, Contingency table showing the total number of synonymous (s) and non-synonymous (n) 459 

mutations in the HLA-binding and non-binding exome. The HLA-binding mutation ratio 460 

(HBMR) indicates the ratio of n/s in HLA-binding to non-binding regions. b, Bar plot 461 

comparing the n/s ratios of observed and simulated mutations. c, HBMR calculated for 462 

observed and simulated mutations from 19 cancer types containing at least 10,000 somatic 463 

mutations per cancer type. Error bars indicate 95% confidence intervals, calculated using 464 

two-sided Fisher’s exact test. Pearson correlation coefficient (r) and P value indicated on top 465 

left. See Supplementary Table 1 for cancer type abbreviations and sample sizes. 466 

Figure 3 | Association between trinucleotide substitution types and HLA-binding 467 

properties. 468 

a, All possible synonymous and non-synonymous mutations were determined in 17,992 469 

genes. Pie charts indicate the proportions of mutations that are located in HLA-binding 470 

regions. b, Bar plot on top indicates the expected HBMR value for each trinucleotide 471 
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substitution type, determined from all possible mutations from a given type in the complete 472 

exome (numbers shown in a). Main substitution types are colored as indicated by the legend 473 

on top left. Note that HBMR values are not derivable for four trinucleotide substitution types 474 

(ATT>AAT, ATT>AGT, ACT>AGT and ACT>AAT) due to the absence of synonymous 475 

mutations resulting from these substitution types (e.g. an ATT>AAT substitution can never 476 

be synonymous). TCN>TNN substitutions are indicated by red asterisks. Below the bar plot, 477 

the frequency of synonymous and non-synonymous mutations hitting hydrophobic amino 478 

acids is indicated for each substitution type (scale indicated on bottom right). Loess 479 

regression line in red with Spearman correlation coefficient (r) and P value indicated on top 480 

right (correlation between HBMR and mutation frequency for 92 different substitution types). 481 

c, Illustration of TCN>TNN mutations mainly resulting in synonymous mutations in 482 

hydrophobic amino acid codons. d, Logistic regression line indicating the correlation 483 

between a nonapeptide’s mean number of hydrophobic/charged/polar amino acids (0 to 9) 484 

and the HLA-binding probability. Regression coefficients (β) are given for each amino acid 485 

class. The mean number of amino acids for each class was determined for 1 million random 486 

exome locations (9 nonapeptides per position) to make the analysis comparable to the other 487 

analyses. A similar analysis on individual nonapeptides is shown in Supplementary Figure 488 

10. 489 

Figure 4 | Weak to absent neoantigen depletion signals after correcting for 490 

trinucleotide-based mutational signature effects. 491 

a, Bar plot showing normalized HBMR values for 19 different cancer types. HBMR values 492 

were obtained by normalization of the observed HBMR values to the expected tumor-type 493 

specific values. The latter were calculated using mutation probabilities derived from different 494 

models as indicated on top left. Error bars indicate 95% confidence intervals, calculated 495 

using two-sided Fisher’s exact test. See Supplementary Table 1 for cancer type 496 

abbreviations and sample sizes and Supplementary Table 2 for detailed results. b, 497 

Comparison of HBMR deviations from 1 after normalization using different substitution 498 
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models as indicated. Each dot represents a cancer type. Median values are indicated by 499 

horizontal lines. 500 

Figure 5 | An HLA genotype-specific analyses of mutated peptides confirms the 501 

absence of neoantigen depletion signals in most tumor types. 502 

a, Methodological approach. For each trinucleotide substitution type (i), 10,000 mutations 503 

were randomly simulated (960,000 mutations in total). The expected number of non-504 

synonymous mutations in HLA-binding and non-binding peptides were derived for each 505 

substitution type considering the mutated peptides’ HLA affinities for the sample-specific 506 

HLA genotype (heatmap on bottom). From these numbers, the expected ratio between non-507 

synonymous mutations in HLA-binding and non-binding peptides was calculated using the 508 

substitution probabilities of the corresponding cancer type (legoplot on top). b, Scatter plot 509 

shows the correlation between observed and expected ratios, with Pearson correlation 510 

coefficients (r) and P values indicated on top left. c, dNHLA/dNnonHLA values were calculated 511 

for each TCGA sample and grouped by tumor types. Boxplots indicate median values and 512 

lower/upper quartiles with whiskers extending to 1.5x the interquartile range. Two-sided 513 

Wilcoxon signed-rank test was used to test deviation from 1. P values are given for cancers 514 

with q values below 0.1. Mutations in cancer driver genes or non-expressed genes were 515 

excluded. See Supplementary Table 1 for cancer type abbreviations and sample sizes and 516 

Supplementary Table 2 for detailed results. 517 

METHODS 518 

TCGA mutation and expression data.  519 

MuTect2-called whole exome sequencing (WES) mutation annotation format (maf) files from 520 

all 33 available cancer types from The Cancer Genome Atlas (TCGA) were downloaded 521 

from the Genomic Data Commons (GDC) Data Portal (data release v7). Colon and rectal 522 

adenocarcinoma were considered as a single cancer type for the analysis. All mutation data 523 

were fused in a single mutation database and were converted from hg38 to hg19 using 524 
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UCSC’s liftOver34. Variants were reannotated using ANNOVAR35. For each mutation, the 525 

main substitution type (i.e. C>A, C>G, C>T, T>A, T>C and T>G) was derived by converting 526 

each purine substitution to its complementary base substitution. To determine the 527 

trinucleotide substitution type, additional information was added regarding the identity of the 528 

upstream and downstream base. Sequence information was derived from UCSC hg1934. 529 

TCGA Level 3 RNASeqV2 (RSEM normalized) mRNA expression data were 530 

downloaded from the Broad Institute TCGA Genome Data Analysis Center (2016): Firehose 531 

stddata__2016_01_28 run (Broad Institute of MIT and Harvard; doi:10.7908/C11G0KM9). 532 

Expression data were fused in a single gene x sample matrix. Each mutation’s gene 533 

expression value was added to the mutation database.   534 

HLA typing. 535 

HLA typing of all TCGA samples was performed using Polysolver11. WES normal bam files 536 

from all available TCGA samples were accessed using FireCloud36, the HLA regions from 537 

the main HLA-alleles (HLA-A, HLA-B and HLA-C) in chromosome 6 (coordinates 538 

6:29909037-29913661; 6:31321649-31324964; 6:31236526-31239869) were extracted and 539 

the resulting bam files were downloaded. Polysolver was run on these bam files using 540 

default settings and without setting prior population probabilities, resulting in the successful 541 

genotyping of 8,968 TCGA samples. The resulting output was converted in a sample x HLA 542 

allele matrix. To validate this HLA typing, the derived frequencies for each HLA allele were 543 

compared with the allele frequencies from a healthy US blood donor population, downloaded 544 

from Allele frequency net37 (Supplementary Fig. 1).  545 

HLA affinity predictions and annotation of the HLA-binding genome. 546 

Using the R GenomicRanges package38 and UCSC hg19 genome sequence information, a 547 

GPos object was created containing information about the complete exome. For each coding 548 

DNA sequence (CDS) position, the amino acid sequences of the nine possible translated 9-549 

mers (nonapeptides) were determined using Ensembl 75. Genes with unavailable or 550 



23 
 

ambiguous protein information in Ensembl were discarded, resulting in a GPos object 551 

containing nonapeptide information of 17,992 genes. HLA affinities of these nonapeptides 552 

were predicted for the most frequent HLA alleles (A02:01, A01:01, B07:02, B08:01, C07:01, 553 

C07:02; a combination referred to as the prototypical genotype) using netMHCPan3.039. For 554 

each CDS position, the best binding peptide (peptide with the lowest predicted Kd value) was 555 

determined for each of the six HLA alleles. Finally, one aggregated Kd value was calculated 556 

using the harmonic mean value of the Kd values of the six different peptides (one from each 557 

allele) and all genomic regions with aggregated Kd values below 500 nM were considered as 558 

HLA-binding regions. The same methodology was used to predict HLA affinities in TCGA 559 

somatic mutation data. These TCGA predictions were done for both the prototypical and the 560 

sample-specific HLA genotype (specific combination of two HLA-A, two HLA-B and two HLA-561 

C alleles) and for wild-type as well as mutated peptides. 562 

Simulation of somatic mutations. 563 

All possible point mutations were determined for 17,992 genes by considering for each CDS 564 

position the three possible substitutions (any nucleotide can be substituted in three different 565 

nucleotides). ANNOVAR35 was used to annotate the variants and determine the reference 566 

and alternative amino acids for each mutation. This information was added to the higher 567 

described GPos object.  568 

To determine the expected somatic mutation rates in the absence of any selection 569 

pressure, a simulated mutation database was created, with a similar size as the TCGA 570 

mutation database. To match this simulation database for differences in trinucleotide 571 

substitution probabilities, we randomly sampled the observed number of mutations from 572 

each corresponding substitution type from the GPos object. Like for the observed TCGA 573 

mutations, HLA affinities were predicted for the wild-type and the mutated nonapeptides and 574 

for both the prototypical and the sample-specific genotype. The later was determined by 575 

scrambling the columns from the sample x HLA allele matrix. This way, completely random 576 
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HLA genotypes were generated, with the same allele frequency and mutation frequency per 577 

type as in the real data.   578 

Amino acid analysis. 579 

To derive the probability of any substitution type to hit a certain amino acid or class of amino 580 

acids, we used the GPos object containing all possible mutations and determined the amino 581 

acid frequency for each substitution type and separately for synonymous and non-582 

synonymous mutations. Amino acids were grouped in three classes: hydrophobic (Gly, Ala, 583 

Pro, Val, Leu, Iso, Met, Trp and Phe), polar (Ser, Thr, Tyr, Asn, Gln and Cys) and charged 584 

(Lys, Arg, His, Asp and Glu). 585 

Calculation of the HLA-binding mutation ratio (HBMR) and related metrics. 586 

To quantify putative signals of immunogenic selection, we defined an HLA-binding mutation 587 

ratio (HBMR):  588 

𝐻𝐵𝑀𝑅 =  

𝑛+
𝑠+

⁄
𝑛−

𝑠−
⁄

 589 

where n+ and n- are the total number of non-synonymous mutations located in HLA-binding 590 

and non-binding regions, respectively. Similarly, s+ and s- are the number of synonymous 591 

mutations in- and outside HLA-binding genomic regions. A similar metric, called the epitope 592 

mutation ratio (EMR) was calculated for the analysis of the IEDB epitopes. Here, + and – 593 

refer to the location inside and outside of epitope mapped regions. HBMR P values and 95% 594 

confidence intervals were calculated using a two-sided Fisher’s exact test.  595 

dN/dS was calculated considering differences in specific trinucleotide substitution 596 

probabilities between cancer types22: 597 

𝑑𝑁

𝑑𝑆
 =    

𝑛
∑ 𝑁𝑖𝑃𝑖𝑖

⁄

𝑠
∑ 𝑆𝑖𝑃𝑖𝑖

⁄
 598 

 599 
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where Ni and Si are the number of (non-)synonymous sites with class i substitutions and Pi is 600 

the probability of substitution class i.  601 

The normalized HBMR was calculated as follows: 602 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐻𝐵𝑀𝑅 =
𝐻𝐵𝑀𝑅𝑜𝑏𝑠

𝐻𝐵𝑀𝑅𝑒𝑥𝑝
 603 

𝑤𝑖𝑡ℎ 𝐻𝐵𝑀𝑅𝑒𝑥𝑝 =  

𝑁+
𝑆+

⁄

𝑁−
𝑆−

⁄
=  

∑ 𝑁𝑖+𝑃𝑖𝑖
∑ 𝑆𝑖+𝑃𝑖𝑖

⁄

∑ 𝑁𝑖−𝑃𝑖𝑖
∑ 𝑆𝑖−𝑃𝑖𝑖

⁄
   604 

where Ni+ and Si+ are the number of (non-)synonymous sites with class i substitutions in 605 

HLA-binding regions, Ni- and Si- are the number of (non-)synonymous sites with class i 606 

substitutions in non-HLA-binding regions respectively and Pi is the probability of substitution 607 

class i.  608 

 The dNHLA/dNnonHLA ratio was calculated for each TCGA sample as follows: 609 

𝑑𝑁𝐻𝐿𝐴

𝑑𝑁𝑛𝑜𝑛𝐻𝐿𝐴
 =   

𝑛+
𝑛−

⁄

𝑁+
𝑁−

⁄
=  

𝑛+
𝑛−

⁄

∑ 𝑁𝑖+𝑃𝑖𝑖
∑ 𝑁𝑖−𝑃𝑖𝑖

⁄
  610 

with variables as defined above, but with HLA affinities determined for mutated peptides 611 

from individual genotypes. The number of HLA-binding and non-binding sites was 612 

determined for each individual TCGA genotype, under a trinucleotide substitution model. To 613 

achieve this, 960,000 substitutions were randomly sampled from the complete exome 614 

(10,000 for each substitution type) and HLA affinities were predicted for all the mutations, 615 

considering the cancer-type-specific mutational signature.   616 

 The ratio R of observed to expected neoantigens as described by Rooney et al.10 617 

was calculated for each TCGA sample as follows: 618 

𝑅 =  

𝑛+
𝑛⁄

𝑁+
𝑁⁄

=  

𝑛+
𝑛⁄

∑ 𝑆𝑖
𝑁𝑖

𝑆𝑖

𝑁𝑖+

𝑁𝑖
𝑖

∑ 𝑆𝑖
𝑁𝑖

𝑆𝑖
𝑖

⁄

  619 
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where 
𝑁𝑖

𝑆𝑖

⁄  is the expected number of non-synonymous mutations per synonymous site and 620 

𝑁𝑖+

𝑁𝑖

⁄ refers to the expected number of HLA-binders per non-synonymous site, both for 621 

substitution type i and estimated empirically from the pan-cancer dataset. Note that these 622 

variables are similar to the originally defined variables 𝑁𝑠(𝑚)  and 𝐵𝑠(𝑚) , respectively. 623 

Similarly, n+ and N+ were originally called Bobs and Bpred, while n and N were originally 624 

referred to as Nobs and Npred. They were defined here as such to be consistent with the rest 625 

of the methodology. 626 

Calculation of these metrics was always based on a trinucleotide substitution model 627 

as indicated (i index). The normalized HBMR, dN/dS and dNHLA/dNnonHLA were also 628 

calculated using alternative substitution models, either based on the six main substitution 629 

classes, pentanucleotide substitution classes or using the SSB7 model. The latter is based 630 

on the six main substitution classes but considers CpG mutations as a separate class20.   631 

Neoantigen depletion simulation and power analysis. 632 

All metrics developed in this study were evaluated using an in silico analysis of neoantigen 633 

depletion by removing increasing amounts of non-synonymous mutations hitting HLA-634 

binding regions from the mutation dataset. 635 

Statistical power of the HBMR metric was evaluated using the R exact2x2 package 636 

(Fisher’s exact test at significance level 0.05) for different amounts of neoantigen depletion, 637 

numbers of mutations and neoantigen prediction accuracies. For this analysis, the non-638 

synonymous mutation proportion (71%) and HLA-binding proportion (22.1%) were fixed to 639 

values derived from the pan-cancer dataset and the HLA-binding annotation respectively. 640 

For the power analysis of the dNHLA/dNnonHLA ratio, the ratios obtained from the 641 

simulated mutation database (containing no selection signals) were log-transformed to 642 

obtain a normal distribution. After resampling 1,000 times a predefined amount of values 643 

from this normal distribution and adding an in silico amount of neoantigen depletion, power 644 

was determined based on the number of significant deviations from 0 (corresponding to 1 in 645 
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non-logtransformed data) using Wilcoxon signed-rank test at P < 0.05. This analysis was 646 

performed again for different amounts of neoantigen depletion, sample numbers and 647 

neoantigen prediction accuracies. 648 

Human epitope mapping. 649 

Data from 66,698 known human IEDB (Immune Epitope Database) epitopes were 650 

downloaded from synapse at https://www.synapse.org/ (id syn11935058)20. These epitopes 651 

were mapped to the human genome (hg19) using the proteinToGenome function from the 652 

ensembldb R package and the EnsDb.Hsapiens.v75 R library. Mapping was successful for 653 

66,536 (99.8%) epitopes.      654 

Statistical analysis. 655 

The R statistical package was used for all data processing and statistical analysis. Details on 656 

statistical tests used are reported in the respective sections. Further information on research 657 

design is available in the Life Sciences Reporting Summary. 658 

DATA AVAILABILITY 659 

This study is based on public data (open or controlled access) from The Cancer Genome 660 
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