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Abstract 

Theory of Superjunction Devices   

Hyemin Kang 

Since the first ideal specific resistance model by Fujihira in 1997 and the first commercial 

superjunction MOSFET by Infineon technology in 1998, the technology and the understanding 

of superjunction devices have been gradually progressed. Although Fujihira’s ideal model was 

developed to estimate the specific on-state resistance at a given cell pitch as a function of the 

breakdown voltage, the model does not work for sub micro cell pitches because it does not 

consider the parasitic junction field effect transistor (JFET) presented in the superjunction. 

Fujihira’s model assumes the limit of the minimum cell pitch, by saying that the specific 

resistance can be decreased indefinitely with decreasing the cell pitch.  

In 2018, the first universal model for the specific on-state resistance of a superjunction 

MOSFET including the parasitic JFET effect was derived by H. Kang and F. Udrea. This model 

employs the classical JFET theory into the superjunction structure and clearly presents the true 

limit of the cell pitch of superjunction MOSFETs, as well as the specific resistance for different 

semiconductor materials. The classical JFET theory can be also applied to various 

superjunction structures and the detailed derivation process is described in Chapter 2. In 

Chapter 3, an advance device structure, three-dimensional (3-D) superjunction MOSFET, is 

introduced. To understand the superior performance of 3-D superjunction MOSFET, radial 

Poisson equation is employed. From theses mathematical calculation, it can be clearly seen that 

the 3-D superjunction is able to decrease the specific on-state resistance by half of the 2-D. In 

Chapter 4, based on the depletion process of superjunction during the switching, the inner 

circuit models for capacitance are provided. From the inner circuit models, typical capacitance 

curves with respect to the applied bias are drawn and they are expressed in terms of material 

parameters.  
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1.      Introduction 

1.1. History 

The first power device goes back to the 1950’s when thyristors were first developed. Thyristors 

do not require vacuum tubes for the operation, as they operate at high currents and high voltages, 

as well as at high frequencies. Bipolar junction Transistors (BJTs) are another type of bipolar 

power device invented during this period. The main disadvantage of these bipolar devices is 

the driving switching loss. The gate (or base) for the bipolar devices are sensitive to the external 

noise and consumes high energy. By the 1970’s, Bipolar transistors evolved to over 5000 V 

blocking voltage in 4-inch wafers. At this time, metal oxide semiconductor field effect 

transistors (MOSFET) were developed for the power industries. MOSFETs are unipolar 

devices and as a result they can operate at higher frequencies. Also, since MOSFET’s gate is 

insulated from the active layer by oxide layer, the switching loss on the gate is ideally zero. In 

1978, a new type of varactor diode having a parallel arrangement of the n-pillar and p-pillar 

was introduced by Shirota and Kaneda as shown in figure 1.1 [1].  
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Figure 1.1 The first idea of a superjunction concept [2], [3]. 

 

The purpose of this idea was to achieve a more non-linear capacitance curve with respect to 

the applied reverse bias. Even though the study provided an analytic model to explain the 

behaviour of the parallel junction system, the concept was specifically conceived for capacitors. 

A superjunction MOSFET with multiple stacks of alternative p-pillar/n-pillar stripes were first 

devised by Coe et al. [4], [5]. The gate oxide was formed by V-groove etching to connect all 

the n-pillars to the channel as shown in figure 1.2. 

 

Figure 1.2 A schematic illustration of the first superjunction MOSFET [3]. 
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Figure 1.3 A schematic illustration of a lateral diffused MOSFET with a reduced surface field layer [3]. 

Another type of device is a lateral diffused metal oxide semiconductor field effect transistor 

with reduced surface field (RESURF) oxide layer as shown in figure 1.3 [6]. The oxide field 

plate drags the surface electric field to the drain side, facilitating even distribution of the electric 

field in the entire drift region. By inserting a p-type layer under the oxide plate, a double 

RESURF lateral MOSFET is realised and the concept resembles superjunction, as shown in 

figure 1.4 [7]. The p-type layer under the oxide field plate helps the depletion of the n-type drift 

region more effectively and therefore the concentration of the n-type drift region can be 

increased, while decreasing on-state resistance of the device. 

 

Figure 1.4 A schematic illustration of a lateral diffused MOSFET with a double reduced surface field layer [3]. 

In 1997, Fujihira tried to explain the superjunction system theoretically by deriving a 

relationship between the on-state resistance and the breakdown voltage [8]. In 1998, a 
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revolutionary concept, 3-D RESURF” was proposed by Udrea et al. [9], where multiple p-n 

stripe arrays are configured in the third dimension as shown in figure 1.5. The structure utilises 

a charge balance concept between the n-type and the p-type stripes to control the breakdown 

voltage [10].  

 

Figure 1.5 A schematic illustration of 3-D RESURF structure [3], [9]. 

 

 

Figure 1.6 Schematic illustrations of superjunction structure and superjunction device [3]. 

In 1998, the first commercial product, CoolMOSTM, was released by Infineon technology [11]. 

From the first mass production of 600 V rating superjunction power devices, industries and 

universities invested a huge effort to improve the performance of the device and to build the 
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theoretical backgrounds. For example, to understand the breakdown in a superjunction system, 

a complex two-dimensional Poisson equation should be solved. Napoli et al. provided the 

solution of the Poisson equation and firstly derived the electric field profiles in a superjunction 

system as shown in figure 1.7  [12]–[15].  

 

Figure 1.7 An electric field profile in a superjunction calculated from 2-D Poisson equation [13]. 

 

Saito also studied the process window of the superjunction system, with respect to the charge 

imbalance [16]. Disney and Dolny firstly simulated the limit of superjunction system but failed 

to develop an analytical model [17]. Kang and Udrea primarily derived the specific resistance 

of a superjunction system and provided the theoretical limit (true limit) of a superjunction 

devices [18], [19].  

Besides these theoretical approaches for superjunction MOSFETs, superjunction insulated gate 

bipolar transistors (IGBTs) have been intensively investigated by Bauer and Antoniou [20]–

[25] because of extremely low turn-off switching loss and high blocking capabilities. The low 

turn-off loss is facilitated by the deep collection of plasma, near the collector side of the drift 

region at a low reverse blocking voltage. In 2016, the first industrial superjunction IGBT had 

been reported by TRinno Technology [26]. Figure 1.8 shows a schematic illustration of a 

superjunction IGBT. Recently, Kang and Udrea provided an inner circuit model of a 
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superjunction IGBT and theoretically forecasted that the doping concentration in the pillars 

should be as high as possible, if one designs silicon-carbide superjunction IGBTs [27]. 

 

Figure 1.8 A schematic illustration of a superjunction IGBT [20]. 

However, as the silicon superjunction technology evolves to smaller and smaller cell pitches, 

the technological difficulty, such as the process window and the compensation of the doped 

ions, becomes prominent [28]. For this reason, silicon-carbide (SiC) device started to be studied 

for the next generation vertical power device because SiC can sustain 9 times higher breakdown 

voltage, with the help of the 9 times higher critical electric field [29], [30]. In 2011 and 2013, 

Cree and Rohm released 1200 V SiC MOSFET (standard type), opening a new era of power 

devices. In 2016, a superjunction SiC Schottky diode was experimentally demonstrated by 

Sheng et al. [31]. Even though the leakage of the device during the reverse bias was very high, 

due to the poor quality of the interface between the gap filling oxide and the SiC, the on-state 

performance showed the potential advantage of SiC device. Figure 1.9 shows the structure of 

the SiC Schottky diode. 
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Figure 1.9 A schematic illustration of a 4H-SiC superjunction Schottky diode [31]. 

 

Figure 1.10 A schematic illustration of 4H-SiC Superjunction MOSFET, first demonstration [32] 

After 20 years of the first demonstration of a silicon superjunction MOSFET in 1998, a SiC 

superjunction MOSFET featured 0.63 mΩcm2 /1700 V with 5 μm cell pitch, which was 

experimentally realised by NIAIST in Japan [32], [33]. The device was fabricated by multiple 
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epitaxy/implantation method and the channel formed by V-groove type. The gate oxide is 

shielded by the heavy p-type doping below the gate oxide. Meanwhile Infineon reported 12 

mohm∙cm2, 650 V Si superjunction MOSFET in 2015 [34], [35] still showing the possibility 

of the scaling down of a silicon superjunction structure.  Figure 1.10 shows the trend of the 650 

V class power devices by 2020 [36]. 

 

Figure 1.11 Future prospect of 650 V power MOSFET in silicon and wide bandgap devices [36]. 
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1.2. Basic Concept of Power Devices  

1.2.1.      Carrier Transport and Resistance  

Electrostatic Equations 

The first Maxwell equation is well known as, 

( ), ,D x y z  = , (1.1) 

where D is the electric flux density and ρ is the density of electric charges. The simplified 

version is known as Gauss law or Poisson equations [37], [38]. 

( )2

2

A D

S S

q n p N Nd dE

dx dx

 

 

− + −
= − = − =  (1.2) 

Where ψ, E, εS, and q are electric potential, electric field, the permittivity of a material and unit 

charge. N, p, NA, and, ND are density of free electron, free hole, positive ion, and negative ion, 

respectively.  

 

Carrier Concentration and Fermi Level 

The number of free carriers, n, in an intrinsic semiconductor is the integration form of the 

multiplication of the total number of states for electrons density, N(E), multiplied by the 

occupancy, F(E) 

( ) ( )
CmE

n N E F E dE


=  , (1.3) 

where ECm is the conduction band minimum. According to the Fermi-Dirac distribution, the 

occupancy, F(E), follows the relationship 
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( )
( )

1

1 exp /
F

F E
E E kT

=
 + − 

, (1.4) 

where EF is the Fermi level. 

By applying Boltzmann statistics into equation (1.4) and solving equation (1.3), the free 

electron and hole density equations become: 

exp Cm F

C

E E
n N

kT

− 
= − 

 
, or ln C

Cm F

N
E E kT

n

 
− =  

 
, (1.5) 

exp F Vm

V

E E
p N

kT

− 
= − 

 
, or ln V

F Vm

N
E E kT

p

 
− =  

 
 (1.6) 

where NV and EVm are the total number of states density for holes and the valance band energy, 

respectively. 

 

Current Density Equations 

The electron and hole current densities, Jn and Jp are the sum of the diffusion current and the 

drift current [37]: 

n n n

dn
J qn E qD

dx
= + , (1.7) 

p p p

dp
J qp E qD

dx
= − , (1.8) 

where, μn, μp, Dn, and Dp are the electron mobility and hole and the diffusivity of electrons and 

holes, respectively. The minus operator in front of the hole diffusion current means that the 

direction of the hole diffusion current is the opposite to the hole drift current. The total current 

density, JT, is the sum of the electron and hole current densities, 
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T n p
J J J= +  (1.9) 

 

Einstein Relationship 

If we consider an n-type or a p-type semiconductor with non-uniform doping, the total current 

will be zero without an applied voltage. By rewriting equations (1.7) and (1.8),  

0
n n n

dn
J qn E qD

dx
= + = , (1.10) 

0
p p p

dp
J qp E qD

dx
= − = , (1.11) 

 

and inserting equations (1.5) and (1.6) into equations (1.7) and (1.8), the diffusivity and 

the mobility have the following relationships, 

n n

kT
D

q


 
=  

 
, (1.12) 

p p

kT
D

q


 
=  

 
 (1.13) 

Equations (1.12) and (1.13) are well known as Einstein relationships, which are only valid for 

nondegenerate semiconductors [39]. The thermal voltage kT/q at room temperature, T= 300 K, 

is 0.0259 V, and the mobility of electron and hole are highly linked to that of diffusivities. i.e. 

if the carrier mobility is high, the diffusivity should be also high and therefore, a semiconductor 

having a high mobility is desirable for better conduction of the bipolar devices which require 

high diffusivities of electrons and holes. For this reason, Einstein relationships have been 

widely used to elaborate bipolar conduction. It should be noted that the diffusivity of the 

carriers is also linked to the carrier’s life times, τn and τp, and diffusion lengths, Ln and LP, 
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n n n
L D = , (1.14) 

p p p
L D =  (1.15) 

 

Continuity Equations 

The current density equations given by the equations (1.10) and (1.11) are only valid for steady 

state. Continuity equations deal with the time dependent carrier behaviour in a semiconductor 

when there is a low level injection, generation and recombination [37]. 

1
n n n

n
G U J

t q


= − +  


, (1.16) 

1
p p p

p
G U J

t q


= − +  


 (1.17) 

Where Gn and GP are the generation rate for electrons and holes, and Un and UP are the 

recombination rate for electrons and holes, respectively. By inserting equations (1.10) and 

(1.12) into (1.16) and (1.17) the equations become 

2

0

2

p p p p p

n p n n n

n

n n n n nE
G n E D

t x x x
 



 −  
= − + + +

   
, (1.18) 

2

0

2

n n n n n

n n p p p

p

p p p p pE
G p E D

t x x x
 



 −  
= − + − +

   
 (1.19) 

Where np, pn, np0, and pn0 are the electron concentration in a p-type semiconductor, the hole 

concentration in a n-type semiconductor, initial electron concentration in a p-type 

semiconductor, and initial hole concentration in a n-type semiconductor, respectively 
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Conductivity and Resistivity 

In a uniformly doped semiconductor of either n-type or p-type, the conduction is given by the 

drift current only. The drift current is proportional its material properties, qnμn and qpμp, and 

the externally applied electric field, E as shown equations (1.10) and (1.11). Therefore, qnμn 

and qpμp become the electron and hole conductivities, σn and σp, of the material, 

n n
qn = , (1.20) 

p p
qp =  (1.21) 

The electron and hole resistivities, ρn and ρp, respectively, are the reciprocal form of the 

conductivities, 

1
n

n
qn




= , (1.22) 

1
p

p
qp




=  (1.23) 

The semiconductor resistances for n-type and p-type, Rn and Rp, respectively, are inversely 

proportional to the conduction area, A, and proportional to the length, L, 

1
n n

n

L L
R

qn A A



= = , (1.24) 

1
p p

p

L L
R

qp A A



= =  (1.25) 

Since the resistance decreases with increasing the conduction area, in power electronics, the 

resistance times the area is necessary to measure the performance of the device. The specific 
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on-state resistance, Rsp.n and Rsp.p, respectively, are obtained by multiplying the area with the 

resistance, 

.sp n n

n

L
R L

qn



= = , (1.26) 

.sp p p

p

L
R L

qp



= =  (1.27) 

 

1.2.2.      Critical Electric Field and Breakdown 

Impact Ionization Coefficients 

As free carriers are accelerated under an electric field and they repetitively collide with lattice 

atoms, provoking the lattice scattering.  If the carriers obtain more energy under a high enough 

electric field, normally above that corresponding to the saturation velocity in the material, they 

will generate electron and hole pairs during the collision with the atoms due to the impact 

ionization. These generated carriers are also highly accelerated by the high electric field and 

this process finally causes an avalanche breakdown. The condition for avalanche breakdown 

depends on the impact ionization coefficients. The impact ionization coefficients of Si and 4H-

SiC are given by Fulop (αF) and Baliga’s (αB) approximations, respectively [40], [41],   

( ) 35 7
1.8 10

F
Si E −

=  , (1.28) 

( ) 42 7
4 3.9 10

B
H SiC E −

− =   (1.29) 
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Poisson Equation 

The value of the electric field where the avalanche breakdown takes place in a semiconductor 

is known as the critical electric field, EC. The critical electric field can be calculated by using 

the impact ionization coefficient and simply solving one-dimensional P+/N Poisson equation. 

Equation (1.30) is one-dimensional Poisson equation for the electric field profile in the 

uniformly doped N-type semiconductor  

2

2

D

S

qNd V dE

dx dx 
= − = −  (1.30) 

Where, V and ND are the electrostatic potential sustained across the P+/N junction and the 

doping concentration in the N-type semiconductor, respectively. By solving equation (1.13), 

the electric field and the potential as a function of distance can be written as 

( ) ( )D

D

S

qN
E x W x


= − − , (1.31) 

( )
2

2

D

D

S

qN x
V x W x



 
= − − 

 
 (1.32) 
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Figure 1.12 Schematic illustrations of electric field and electrostatic potential  

as a function of distance in P+/N junction. 

 

By applying the boundary condition, V(WD)=VA, the maximum electric field, E(0)=EM, and 

the depletion width, WD become 

2
S a

D

D

V
W

qN


= , (1.33) 

2
D a

M

S

qN V
E


=  (1.34) 

The critical electric field is determined by the integral of impact ionization coefficient given 

by equations (1.28) and (1.29): 

0
1

DW

dx =  (1.35) 
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According to SZE and Baliga the critical electric field for Si and SiC are proportional to the 

doping concentration, ND, owing to the increased carrier scattering with the doped ions [39], 

[41], 

( ) 1/8
4010

C D
E Si N= , (1.36) 

( ) 1/8
4 33000

C D
E H SiC N− =  (1.37) 

From equations (1.36) and (1.37) the breakdown voltage, VB, for Si and SiC with respect to 

the doping concentration can be obtained [41]: 

( ) 13 3/4
5.34 10

B D
V Si N

−
=  , (1.38) 

( ) 15 3/4
4 3.0 10

B D
V H SiC N

−
− =   (1.39) 

 

1.2.3.      Trade-Offs and Figures of Merit 

Baliga’s Static Figure of Merit 

Combining the equations for on-state specific resistance, (1.26), depletion width, (1.33), and 

critical electric field, (1.34), the Rsp can be expressed in terms of material parameters [42], 

2

3

4
B

sp

S n C

V
R

E 
=  (1.40) 

The denominator of equation (1.40) is known as Baliga’s figure of merit (BFOM) which 

describes the ratio of the VB
2 to Rsp [3], [43]. 

3

S n C
BFOM E =  (1.41) 
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It is important to note that BFOM is only applicable for standard (planar) type power MOSFETs 

and it cannot be used to advanced power devices such as, superjunction, as it will be shown 

later. 

Fujihira’s Static Figure of Merit 

An ideal specific resistance of a superjunction power MOSFET with a pillar length, L, is 

2
sp

n D

L
R

q N
= . (1.42) 

The equation given by (1.42) is under the assumption that the width of the n-pillar and the 

width of the p-pillar are the same (a symmetrical super junction). According to Fujihira [3], [8], 

the ideal Rsp for a superjunction can be expressed as material parameters, 

2

4
B

sp

S n C

V
R d

E 
= , (1.43) 

where d is the cell pitch of the superjunction MOSFET. The derivation of equation (1.43) will 

be addressed in the next chapter. The problem of equation (1.43) is that the specific resistance 

of a superjunction MOSFET can be reduced indefinitely by scaling down the cell pitch. The 

denomination of equation (1.43) is defined as Fujihira’s figure of merit, FFOM [8], 

2

S n C
FFOM E =  (1.44) 

 

Total Power Loss in Switching Device 

As shown in figure 1.14, in a hard switching application, the total power loss consumed by the 

device is the sum of the on-state, DPON, the off-state, (1-D)POFF, the power loss in the gate 

driver, PGS, and the switching loss, PSW [44], respectively, where D is duty ratio in a cycle: 
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( )1
T ON OFF GS SW

P DP D P P P= + − + +  (1.45) 

 

Figure 1.13 A power device’s power loss in a hard switching [44]. 

 

Baliga’s Dynamic Figure of Merit 

In the power MOSFETs in switching applications, both the on-state resistance and the 

switching loss contribute to the total power loss. In 1989, Baliga proposed Baliga’s high 

frequency figure of merit, BHFFOM [43], 

.

1
B

sp iss sp

BHFFOM f
R C

= =


 (1.46) 

Where Ciss.sp and fB are input specific capacitance of the device and Baliga’s frequency limit, 

respectively. However, BHFFOM defined in equation (1.46) does not consider output 

capacitance and the losses [44]. 
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Kim’s Dynamic Figure of Merit 

To address the weakness of BHFFOM, Kim devised a figure of merit considering output 

capacitance, Coss.sp, during the switching, NHFFOM [45], 

.

1

sp oss sp

BHFFOM
R C

=


 (1.47) 

The limitation of equation (1.46) is that it does not take into account the input switching loss, 

PGS. 

 

Huang’s Dynamic Figure of Merit 

The power consumption for charging (turn-off) and discharging (turn-on) the gate to drain 

capacitance, CGD or Crss, can be indirectly regarded as the switching power consumption. Even 

though Huang’s figure of merit, HDFOM, does consider other capacitance components, CGS 

and CDS, it shows a guidance how the power device can lower the power loss [46]: 

.

1

sp rss sp

HDFOM
R C

=


 (1.48) 

However, as it is the case with Kim’s figure of merit, Huang’s figure of merit ignores PGS. Still 

there has not been an all-inclusive figure of merit which describes the total power losses of a 

power device given by equation (1.45). 
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2.      The 2-D Superjunction MOSFET 

Summary 

In the previous section, a brief history of the concepts of power MOSFETs was given. Though 

the evolvement in the structures, the materials, the on-state specific resistance and the 

breakdown voltage of power MOSFETs have been improved significantly. One of the most 

important turning points in power history, will be the introduction of superjunction MOSFETs. 

Since the first presentation of a superjunction MOSFET at IEDM 1998 [11] by Infineon 

Technology, the power MOSFET has broken the limit  of the standard (planar) type MOSFET 

postulated by Baliga [42], [43]. The theoretical approach for a superjunction MOSFET was 

firstly suggested by Fujihira [8] and his figure of merit clearly presented the potential of 

superjunction devices. However, the idea was based on the ideal specific on-state resistance of 

a superjunction MOSFET, not considering the parasitic JFET width presented in the n-pillar. 

Therefore, according to his figure of merit, there is no theoretic limitation on the specific 

resistance of a superjunction MOSFET. i.e. the specific resistance can be decreased indefinitely 

as the cell pitch is scaling down. In this section, to derive the true limit of a superjunction 

MOSFET, a classical JFET theory will be applied to the superjunction structure and a new 

figure of merit for a superjunction MOSFET will be suggested. The JFET theory is applied to 

several other possible superjunction structures to quantitatively show the decrease in specific 

resistance. 
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2.1. Conventional Pillar Model 

2.1.1. Ideal Approach  

Before considering the parasitic JFET region toward n-pillar, Fujihira’s ideal specific 

resistance and the figure of merit need to be examined first. The charge balance condition of 

superjunction give by figure 2.1 can be written as 

(1 )
D A

N d N d = − , ( )0 1  . (2.1.1) 

Where ND, NA, and d are the doping concentration, in the n-pillar, in the p-pillar, and the half-

cell pitch of the device, respectively. ꞵ is a ratio factor which determines the width of the n-

pillar and the p-pillar as shown in figure 2.1.  

 

Figure 2.1 A Schematic illustration of a 2-D conventional superjunction MOSFET  

with the parasitic JFET depletion in the pillars [19]. 

Superjunction’s depletion process during the off-state starts from the lateral depletion and the 

pillar should be fully depleted (pinch-off) before the breakdown. For this reason, the lateral 

field should not exceed the critical electric field, EC: 
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D

x C

S

qN
E E d 


= = , ( )0 1  , (2.1.2) 

Where is α the ratio between the lateral electric field and the critical electric field. Since the 

square of the critical electric field is the sum of the square of the lateral electric field, Ex, and 

the square of the vertical electric field, Ey, the vertical electric field is 

2
1

y C
E E = −  (2.1.3) 

The depletion process of a superjunction structure starts from the lateral depletion. After 

completing the lateral depletion, since there are no available ions in the pillars, vertical 

depletion occurs between the p+ region (p-body well) and the n+ region (drain). Therefore, the 

breakdown voltage of the superjunction device is the sum of the area under the lateral field and 

the vertical field. Considering the length of the pillar, L, is long enough compared to the 

cellpitch, the lateral component can be ignored. 

2 21
1 1

2
B C C C

V dE E L E L  = + −  −  (2.1.4) 

The ideal specific resistance of the superjunction MOSFET is  

1 1
sp

D n D n

L L
R dZ

qN dZ qN   
= =  (2.1.5) 

Where Z is the third dimension (depth of the pillar). By inserting equations (2.1.2) and (2.1.4) 

into equation (2.1.5), the specific resistance can be described in terms of the material 

parameters: 

22 2

2

1

B B

sp

n S Cn S C

V V
R d d

EE     
= =

−
, 

1

2
 =  (2.1.6) 
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Equation (2.1.6) has the minimum value when the α is 1/√2. The calculation procedure given 

by equations (2.1.1) ~ (2.1.6) are firstly devised by Fujihira [8]. However, the equation given 

by (2.1.5) or (2.1.6) has a critical limitation. i.e. the specific resistance can be decreased 

indefinitely with scaling down the cell pitch, d. As shown in figure 2.1.1, there must be a Rsp 

limit of a superjunction because the parasitic JFET toward the n-pillar will narrow the 

conducting path at a very small cell pitch even if the concentrations in the pillars are high 

enough. 
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2.1.2.      JFET Approach  

Since Fujihira’s model does not take into account the parasitic JFET effect, a simulation study 

had been carried out by Disney and Dolny [17] to estimate the limit of superjunctions. From 

their simulations, the study roughly found that the cell pitch limit of a superjunction device will 

be around 400 nm and, below the minimum cell pitch, the Rsp increased rapidly. To provide a 

quantitative solution for the true limit, the exact model for a superjunction including parasitic 

JFET effect must be established first. However, owing to the irregular JFET shape from source 

to the drain shown in figure 2.2 at a given drain bias, the exact on-state model for a 

superjunction MOSFET has not been established yet. 

 

Figure 2.2 the profile of depletion width (JFET) during on-state;  

(a) electrostatic potential, (b) electric field. 

Previous researchers in this field have customarily called the parasitic depletion width toward 

the conducting path as a “JFET”, but no JFET model has been derived. i.e. the superjunction 

structure can be viewed as a vertical JFET where the n-pillar is the channel of the JFET and 

the p-pillar is the gate of the JFET. The only difference between a real JFET and a superjunction 
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is that the p-type gate (p-pillar) is grounded to the source of the MOSFET and therefore, the 

JFET channel (n-pillar) is normally on as shown in figure 2.3 [18], [19]. 

 

Figure 2.3 Superjunction MOSFET is a grounded gate JFET [18]. 

From the grounded gate JFET shown in figure 2.3, a new inner circuit configuration is also 

suggested. As the drift region (n-pillar) of a superjunction MOSFET has been regarded as a 

simple resistor, the resistor is replaced with a grounded gate JFET as shown in figure. 2.4. 

 

Figure 2.4 A new inner circuit model for a superjunction MOSFET [18]. 

The depletion width and the sheet charge density as a function of distance along the pillar need 

to be defined first. From the depletion width as a function of the applied bias developed from 
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1D Poisson equation given by (1.33), he depletion widths, WD(y), WDs, and WDd shown in figure 

2.3 are as follows: 

( )
( )

( )

( )2 2
S A S

D

D A D D

N y y
W y

qN N N qN

   
= =

+
, (2.1.7) 

2
S bi

Ds

D

W
qN

 
= , (2.1.8) 

( )2
S bi DS

Dd

D

V
W

qN

   +
=  (2.1.9) 

Where ψbi and ψ(y) are the built-in potential between the n-pillar and the p-pillar and the 

potential in the n-pillar, respectively. The differential form of equation (2.1.7) is required for 

the integral of the total current, 

SD

D D

dW

d qN W

 


=  (2.1.10) 

The sheet charge density, Qn(y) in the n-pillar along the y-axis is written as 

( )( )( )
n D D

Q y qN d W y= −  (2.1.11) 

The velocity of electron in the n-pillar, v(y), is 

( )
( )

n

d y
v y

dy


=  (2.1.12) 

The total drain current, ID, can be obtained from the integral of the multiplication of the sheet 

charge density and the velocity: 
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0
( ) ( )

L

D n

Z
I Q y v y dy

L
=   (2.1.13) 

By inserting equations given by (2.1.7) ~ (2.1.12) into (2.1.13), the drain current yields the 

following form: 

2 2

( )
Dd

Ds

W
n D

D D D D
W

S

Z q N
I d W W dW

L




 
= −  (2.1.14) 

Solving equation (2.1.14) leads to 

2 2 3 32 2 2 3

3 2
6

n D Dd Ds Dd Ds

D

S

Z q N d W W W W
I

L d d d d

 

    

           
    =  − − −                      

 (2.1.15) 

Equation (2.1.15) is a generalized superjunction’s drain current relationship at a given VDS. 

From the drain current form, the specific resistance as a function of VDS can be obtained: 
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(2.1.16) 

The minimum specific resistance is obtained when the applied bias is zero and by applying the 

well-known L’Hospital's rule [47] for the second term of equation (2.1.16), the final form of 

the Rsp becomes  
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The difference of equation (2.1.18) from Fujihira’s ideal Rsp is the second term which describes 

the increase in the Rsp owing to the parasitic depletion width, WDs, toward the n-pillar. In a 

practical device, the width of the n-pillar and the p-pillar are the same, ꞵ= 0.5: 
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. (2.1.19) 

It should be noted that the JFET approach for real superjunction’s drain current and specific 

resistance does not consider Kirk effect [48]. At a high drain voltage, the depletion width near 

the drain side cannot be exactly calculated by using equations (2.1.7) because the bottom region 

of the p-pillar is depleted, by the drain contact layer and a substantial reverse potential is formed 

on the p-pillar. Therefore, the potential difference between the n-pillar and the p-pillar on the 

drain side is less than drain voltage. 
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2.1.3.      Figure of Merit 

From equation (2.18), the superjunction’s Rsp cannot decrease indefinitely with decreasing the 

cell pitch and to find the minimum cellpitch, parameters should be expressed as a function of 

the cell pitch. According to Baliga, the critical electric field of Si and 4H-SiC vary with the 

doping concentration [41]: 

( )
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C D

E Si N=   , (2.1.20) 

( )
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( ) 3.3 10
C D

E SiC N=    (2.1.21) 

From equation (2.1.2) the doping concentration and the critical electric field have the following 

relationship 
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qN
E d


=  (2.1.22) 

Inserting equations (2.1.20) and (2.1.21) into (2.1.22) the optimum doping concentrations at a 

given cell pitch become 
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Figure 2.5 Optimum doping concentration at a given cellpitch for Si and 4H-SiC [19]. 

 

The optimum doping concentration given by equations (2.1.23) and (2.1.24) are plotted in 

figure 2.5. It should be noted that the higher the ꞵ, the lower the optimum concentration. 

However, the very small or very large values of ꞵ have technological challenges, as the width 

of the p-pillar or the n-pillar should be very small. In addition to this, when the pillar doping 

concentration exceeds 1×1018 cm-3 (degenerate doping level), the material will experience a 
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bandgap narrowing [49], [50] presenting a relatively lowered critical electric field. However, 

the following approaches ignore those physical phenomena. To establish the doping 

concentration dependent mobility model, Baliga’s mobility models are employed [41], 
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Figure 2.6 Black lines: doping concentration dependent mobility at a given cell pitch for Si and 4H-SiC, 

blue lines: approximated mobility curves [19]. 

 

The mobilities for Si and SiC as a function of cellpitch are shown in black lines of figure 2.6. 

From the blue lines in figure 2.6, the mobilities at a low cell pitch can be approximated as 

exponential functions: 
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By inserting equations (2.1.23), (2.1.24), (2.1.27) and (2.1.28) into (2.1.18) the specific 

resistance becomes a function of the cell pitch, 
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 (2.1.29) 

Where the built-in potential is assumed as Eg/q, Eg is the bandgap of the material, because the 

cell pitch having a minimum Rsp should have very high doping concentration. The minimum 

cell pitch can be obtained when the derivative of equation (2.1.29) is zero, 
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 (2.1.30) 

The minimum cell pitch is located when the built-in depletion width possesses 60% of the 

conducting path (n-pillar). By inserting equation (2.1.22) into equation (2.1.30), the minimum 

cell pitch is 
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From equations (2.1.20), (2.1.21) and (2.1.22) the critical electric field can be expressed in 

terms of the cell pitch, 
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By inserting the energy band gap of Si (1.12 eV) and 4H-SiC (3.25 eV) and equations (2.1.32), 

(2.1.33) into equation (2.1.31), the minimum cell pitch cam be also expressed in terms of ꞵ, 
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Figures 2.7 and 2.8 show the specific resistance curves of Si and 4H-SiC superjunction 

MOSFETs as a function of cell pitch at a given drain voltage. It should be noted that, for a VDS 

dependent electron mobility, a new mobility degradation model is devised, where μn0 is 

Baliga’s doping dependent mobility given by equations (2.1.25) and (2.1.26). 
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, m=1.73. 

(2.1.36) 

The mobility given by equation (2.1.36) is the averaged value in the n-pillar form source to 

drain.   
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Figure 2.7 Analytic model for the specific resistance of a Si Superjunction MOSFET at a given bias.  

Length of pillar, L= 30 μm. 

As the applied drain voltage increases, the JFET region towards the n-pillar will be wider by 

narrowing the conducting path. This is why the minimum cell pitch is shifted toward a larger 

cell pitch at a higher drain voltage. Below 1 μm cell pitch of silicon superjunction, a higher ꞵ 

shows a lower specific resistance and the lower specific resistance should be attributed to the 

higher mobility values shown in figure 2.6. In the case of 4H-SiC superjunction, owing to very 

high concentration values even at larger cell pitches (1 ~ 10 μm), the mobility values are in the 

range of rapid decrease. Therefore, a larger ꞵ superjunction has a lower specific resistance in 

overall cell pitch ranges. By inserting the minimum cell pitch given by (2.1.31) into (2.1.18) 

the Rsp in a superjunction MOSFET can be expressed in terms of material parameters, 
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From, Hudgins’ relationship [51], the square of the bandgap of the indirect semiconductor is 

proportional to the material’s critical electric field, Eg
2 ∝ EC, 
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Finally, a new figure of merit for a static superjunction MOSFET can be defined as 
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n S c S
FOM E   =   (2.1.40) 
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Figure 2.8 Analytic model for the specific resistance of a 4H-SiC Superjunction MOSFET at a given bias. 

Length of pillar, L= 30 μm. 

 

The specific resistance as a function of breakdown voltage at the minimum cell pitch (VDS= 0) 

is summarised in table 2.1. The Rsp is compared at a given cell pitch for d(Si)= 0.1 μm, and 

d(4H-SiC) = 0.2 μm.  Breakdown voltage is linear function of the pillar length given by 

equation (2.1.4) and the critical electric field is the function of doping concentration given by 

equations (2.1.22 ~ 2.1.24). 
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Table 2.1 Specific resistance as a function of breakdown voltage at a given ꞵ (VDS =0) for d(Si) = 0.2 μm and 

d(4H-SiC) = 0.1 μm. 

 Silicon 4H-Silicon-Carbide 
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Figure 2.9 shows the figure of merit (VB/Rsp) at a given cell pitch. 
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Figure 2.9 Figure of merits (VB/Rsp) for Si and 4H-SiC superjunction MOSFET at a given cell pitch. 

The comparisons of previously reported figure of merits are summarised in table 2.2. The true 

figure of merit of a superjunction is located between Baliga and Fujihira’s figure of merits. In 

other words, Baliga underestimates the limit of the power MOSFET because he did not 

consider the superjunction system while Fujihira overestimates it, since he did not take into 

account the JFET effect in the superjunction. It is also noteworthy that Baliga overestimates 

the advantage of the wide bandgap materials because of EC
3 while Fujihira underestimates it 

because of the presence of EC
2. 

Table 2.2 –  Summary of static figure of merits for power MOSFETs with different materials [18]. 
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Baliga Fujihira 
Kang and 

Udrea  
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n S C
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2
CSn E   

2.5

n S C
E    

Si 1350 11.8 0.3 1 1 1 

4H-SiC 720 10 2 134 20 52 

h-GaN 900 9 3.3 677 62 204 

β-Ga2O3 300 10 8 3571 134 692 

AlN 1100 8.7 11.7 35636 914 5706 

Diamond 1900 5.5 5.6 4267 229 988 
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2.2. Sloped Pillar Model 

2.2.1.      Ideal Approach 

As shown in figure 2.10, some commercial superjunction MOSFET devices have a geometrical 

slope to make an arch-shape vertical electric field [28], [52]. The sloped pillar structure can be 

fabricated by etching the grown n-type epitaxial layer and filling the p-type epitaxial layer. As 

the cellpitch of a device is scaling down, the difficulty in fabricating a sloped pillar 

superjunction becomes higher, owing to the precise control of the trench angle [28].  

 

Figure 2.10 Schematic illustrations of a sloped pillar superjunction and the grounded JFET model. 

In an ideal approach, the parasitic depletion width toward the n-pillar is ignored. The derivative 

of the resistance, dR, in the n-pillar as a function of “y” should be taken first, 
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Where a is a slope factor described in figure 2.10.  The width of the n-pillar and the p-pillar is 

the same in the middle of the pillar (y= L/2) and the doping concentration of the pillars are the 

same for the charge balance. By integrating equation (2.2.1), the resistance of the sloped 

superjunction becomes 

0

1 2
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qN aZ d a
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By multiplying the area, the ideal specific resistance of a sloped pillar superjunction is 
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Sending the slope factor, a, to zero, equation 2.2.3 becomes a conventional superjunction’s 

ideal specific resistance. 
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The Rsp ratio of the sloped superjunction to the parallel (conventional) superjunction is    

.

.
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4 2
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R d d a

R a d a

+ 
=   

− 
 (2.2.5) 

Equation (2.2.5) is plotted in figure 2.11 as a function of the slope, a/d. When a approaches 

0.5d, the conducting path on the top of the n-pillar is blocked by p-pillar with increasing the 

Rsp rapidly. Therefore, for a moderate specific resistance, the slope, a/d, should be less than 0.3. 
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Figure 2.11 The specific resistance ratio of sloped pillar superjunction to the parallel superjunction 

 

2.2.2.      JFET Approach  

As shown in figure 2.10 and section 2.1, the superjunction structure can be regarded as a p-

type gate (p-pillar) JFET with n-type channel (n-pillar). The depletion widths along the distance, 

WD(y), the source side, WDs, and the drain side, WDd, are, respectively: 
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The sheet charge density of electrons in the n-pillar is: 
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By using equations (2.2.9), (2.1.10), and (2.1.12), equation (2.1.13) should be solved 
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The integral form of equation (2.1.13) can be expanded as: 
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For the integral of the second term of equation (2.2.10), derivative of the resistance given by 

equation (2.2.1) and the relationship between the potential and the electric field should be 

employed, 
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Combining equations (2.2.12). (2.2.13) and (2.2.10) the drain current as a function of VDS can 

be obtained as: 
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From equation (2.2.14), the specific resistance of a sloped pillar superjunction becomes 
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(2.2.15) 

By sending the VDS to zero, the minimum specific resistance is 

0
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(2.2.16) 

Equation (2.2.16) is linked with the conventional (parallel) superjunction MOSFET given by 

equations (2.1.18) and (2.1.19), by sending the slope factor, a, to zero, 
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(2.2.17) 

The VDS dependent Rsp of a sloped pillar superjunction given by equation (2.2.15) can be proved 

by comparing the analytical model with the simulation results as shown in figure 2.2.3.  
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The average mobility in the sloped pillar superjunction should be dependent on both the doping 

concentration and VDS as given by equation (2.1.36). 
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(2.1.25) 

The analytical Rsp (black lines) in Figure 2.12 shows very good agreement with the 

simulation results (red lines) in the range of 0.05 ~ 0.35 (a/d). The concentration of the pillars 

at a given cell pitch is determined by equation (2.1.23) at ꞵ= 0.5. 
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Figure 2.12 Simulation results (red dot lines) and the analytic model (black lines) given by equation (3.43) at (a) 

VDS= 0, and (b) VDS= 2.0 V. The length of pillar, L=30 μm. 
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2.3. Compensated Pillar Model 

Another possible structure of a superjunction device is based on a compensated pillar structure, 

shown in figure 2.13. In the case of Si device, owing to the high diffusivity of doped ions in 

the pillars, the boundary between the n-pillar and p-pillar experiences high rate of 

compensation (at least 70 %) during the thermal process [28]. As a result, the junction region 

of the pillars presents very low concentration. The low doping concentration region near the 

pillar junction can sustain more drain voltage according to Poisson equation as shown in figure 

2.14 and hence the parasitic depletion width toward the n-pillar can be decreased. 

 

Figure 2.13 A schematic illustration of a compensated pillar superjunction device [53]. 
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Figure 2.14 A schematic illustration of a lateral electric field at a given drain voltage [53]. 

 

2.3.1.      Ideal Approach  

The width of the n-pillar and the p-pillar are the same in this approach. To develop the model 

for the compensated pillar, the ideal approach (without parasitic JFET in the pillars) is carried 

out first. The ideal specific resistance for the compensated pillar superjunction is 

( ) ( )
.

1 2 1

/ 2 1
sp ideal

D n D n
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qN Z d d qN   
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− −
 (2.3.1) 

Where γ is the width factor for the compensated region. As the same way given by section 2.1, 

the lateral electric field should be less than the critical electric field, 
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With the equation given by 2.1.3, the breakdown voltage is the sum of the areas under the 

lateral electric field, VL + Vi, and the vertical electric field, VV, 

2
1 −= Cy EE , 
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x y C
E E E+ = , (2.1.3) 
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= + + = + −  −  (2.3.3) 

Where VL is lateral voltage formed across the p-pillar, the compensated pillar, and the n-pillar. 

Considering the superjunction structure has a relatively long length of the pillar, L, to the cell 

pitch, d, the breakdown voltage can be assumed to be only by the vertical voltage. Combining 

equations (2.3.1), (2.3.2) and (2.3.3), the material form of the ideal specific resistance of a 

compensated pillar superjunction becomes the same relationship of the conventional 

superjunction given by equation (2.1.6), 
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2.3.2.      JFET Approach  

The newly developed parasitic JFET model, in section 2.1 can be also applied to the 

compensated pillar structure, where p-type pillar is the grounded gate of the JFET and n-type 

pillar is the channel of the JFET. The compensated (intrinsic) region is always depleted, even 

without an applied bias, owing to the built-in potential between the p-pillar and the n-pillar. 

 

Figure 2.15 A schematic illustration of parasitic depletion width across the compensated pillar  

and the suggested inner circuit model [53]. 

The depletion widths shown in figure 2.14 can be obtained from the relationship with the 

applied potential, ψ(y),  

( ) 2D D

D A i D D

S S

qN qN
y W W d    

 
= + + = +  (2.3.4) 

Where ψD, ψA, and ψi are the potential sustained on the n-pillar, p-pillar, and the compensated 

pillar, respectively. Since the pillar structure is symmetric (the same width and doping 

concentration of the n-pillar and the p-pillar) the sustained potential on the n-pillar and the p-

pillar is the same (ψD = ψA). 
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The sheet charge density in the n-pillar is: 
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By the same way given by section 2.1 and 2.2, the drain current as a function of VDS can be 

obtained with the following equations, 
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 (2.3.10) 

From equation (2.3.10), specific resistance of a compensated superjunction becomes 
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As VDS approaches zero, the specific resistance given by equation (2.3.11) has a minimum 

value, 
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When the width of compensated pillar region is zero, γ = 0, the specific resistance given by 

(2.3.12) becomes the specific resistance of a conventional superjunction given by equation 

(2.1.19), 
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(2.3.13) 

The optimum concentration at a given cell pitch is derived from equation (2.3.2), and the 

concentration in the superjunction should be increased with increasing the width of the 

compensated region, γd, 
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To find the improvement of the compensated pillar superjunction compared to the conventional 

superjunction shown in section 2.1, the ratios of the specific resistance are plotted in figure 

2.16 for Si and 4H-SiC. The doping concentration was close to the half of the optimum 

concentration, at a given cell pitch for a practical implementation. The mobility degradation 

model with respect to the applied VDS is as follows: 
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Figure 2.16 Ratio of Rsp of the compensated pillar superjunction to the conventional superjunction  

for (a) Si and (b) SiC at a given cell pitch [53]. Length of pillar, L= 40 μm. 

 

Overall, the compensated pillar has the potential for decreased resistance compared to the 

conventional pillar. Higher γ (0.7 ~ 0.9) causes a very narrow conducting path (the n-pillar 

width) at small cell pitches, showing significant increase in the resistance. In the case of SiC 

1 2 3 4 5 6 7 8 9 10
0.6

0.7

0.8

0.9

1.0

Si, VDS= 3V

=0.1

=0.3

=0.5

=0.7

=0.9

=0.9

=0.7

=0.5

=0.3

 

 

R
at

io
 o

f 
sp

ec
if

ic
 r

es
is

ta
n

ce
, 

R
sp

(
=

n
)/

R
sp

(
=

0
)

Cellpitch, d (m)

=0.1

Si, VDS= 0V

(a)

1 2 3 4 5 6 7 8 9 10
0.6

0.7

0.8

0.9

1.0
 

  

1 2 3 4 5 6 7 8 9 10
0.90

0.95

1.00

1.05

1.10

SiC, VDS= 3V

=0.1

=0.3

=0.5

=0.7
=0.7

=0.5

=0.3  

 

R
at

io
 o

f 
sp

ec
if

ic
 r

es
is

ta
n

ce
, 

R
sp

(
=

n
)/

R
sp

(
=

0
)

Cellpitch, d (m)

=0.1

SiC, VDS= 0V

(b)

1 2 3 4 5 6 7 8 9 10
0.90

0.95

1.00

1.05

1.10
 

 



 

56 

 

superjunction, the Rsp reduction is relatively small compared to the Si because of the rapidly 

lowered mobility with high doping concentration, ND > 1×1016 cm-3.  Figure 2.17 shows the 

output drain current as a function of VDS for Si Superjunction. As the drain voltage increases, 

the improvement of the drain current becomes prominent, owing to the smaller parasitic JFET 

effect in the compensated pillar superjunction than the conventional superjunction. The larger 

JFET region in the n-pillar significantly decreases the saturation current level of the device 

[54], [55]. More specifically, with an expansion of the depletion width toward the n-pillar with 

respect to the increased bias, the electrons reach a saturation velocity level presenting a pillar’s 

saturation current. This phenomenon is referred to “quasi-saturation” in a superjunction device 

[55].  

 

Figure 2.17 Drain current of the compensated pillar superjunction and the conventional pillar superjunction  

and as a function of drain voltage [53]. Length of pillar, L= 40 μm. 

 

In the breakdown voltage simulation, the compensated pillar superjunction showed a similar 
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expected in figure 2.1.4, the electric field profile is flat in the compensated region sustaining 

substantial amount of potential. 

 

 

Figure 2.18 Simulated electric field profiles of (a) compensated pillar superjunction, (b) conventional pillar 

superjunction, and (c) lateral electric field profiles; d= 2 μm. The length of pillar, L= 40 μm, the number of cells: 

2.0 ×105, ND (γ = 0.5) = 2.19 ×1016 cm-3, and ND (γ = 0) = 9.91 ×1015 cm-3 [53]. 
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2.4. Oxide Pillar Model 

An oxide pillar inserted between the p-pillar and the n-pillar, could be an alternative solution 

to superjunction devices because of possible reduction in specific resistance. In section 2.3, a 

compensated pillar superjunction was able to reduce the specific resistance significantly, by 

increasing the pillar doping concentration. The increased pillar doping concentration was 

facilitated, when the compensated region sustains substantial amount of the applied bias, 

including the built-in potential between the pillars. Even though the oxide pillar superjunction 

could potentially lead to reliability issues such as, time dependent dielectric breakdown owing 

to the hot carrier injections and interface leakage, the parasitic JFET effect can be effectively 

reduced during the on-state. As shown in figures 2.19 and 2.20, to understand the electric field 

profile in a oxide pillar superjunction, Gauss law should be studied first [38]. 

S S ox ox
E E =  (2.4.1) 

Where, εS, εox, ES, and Eox are permittivity of the semiconductor, permittivity of the oxide, 

electric field of the semiconductor at the interface of the semiconductor and the oxide and 

electric field in the oxide, respectively. When an electric field transfers from a medium to 

another medium, the electric field in each medium follows the rule given by equation (2.4.1). 

The oxide’s permittivity, εox= 3.9, is 2.5~3 times smaller than that of Si and 4H-SiC and 

therefore, the lateral electric field profile at a given drain voltage can be schematically drawn 

as figures 2.19 and 2.20. 
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Figure 2.19 A schematic illustration of an oxide pillar superjunction [56]. 

 

 

Figure 2.20 A schematic illustration of the lateral electric field profile in an oxide pillar superjunction [56].  
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2.4.1. Ideal Approach 

In an ideal approach, the parasitic JFET toward the n-pillar does not take into account and 

therefore, the ideal specific resistance of an oxide pillar superjunction is identical as a 

compensated superjunction: 

( ) ( )
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The calculation procedure for expressing the ideal Rsp in terms of material parameters are the 

same as the compensated pillar superjunction, by rewriting the equations,  

2

D

x C

S

qN d d
E E






− 
= =  

  , (0 < α <1), 
(2.3.2) 

2
1 −= Cy EE

, 

2

x y C
E E E+ =

, 
(2.1.3) 

( ) 2 2
1

1 1
2

B L ox V C C C
V V V V E d E L E L


  

+
= + + = + −  −

 
(2.3.3) 

Where Vox is the lateral potential sustained on the oxide pillar region. Even though the oxide 

pillar region will sustain more lateral electric field than the compensated region, owing to the 

different dielectric constant, for a simpler calculation, Vox is ignored in total breakdown voltage. 
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2.4.2.      JFET Approach  

 

Figure 2.21 A schematic illustration of parasitic depletion in an oxide superjunction  

and the p-type grounded gate model [56]. 

To obtain the VDS dependent depletion width toward the conducting path (n-pillar), the 

relationship between the potential along the conducting path, ψ(y), and the corresponding 

depletion width, WD(y) should be established, 
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The sheet charge density at a given distance is  
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By combining the equations given by (2.4.3) ~ (2.4.8), the integral form of equation (2.1.13) 

leads to 
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Solving the integral given by equation (2.4.9) leads to the following relationship, 
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 (2.4.10) 

The specific resistance of an oxide pillar superjunction as a function of VDS can be obtained 

from equation (2.4.10), 
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The minimum specific resistance at VDS= 0 V is 

( )
0

2

2
lim

2

2

2
2 2

DS

sp DS
V

D n Ds

D n
S bi S S

D ox ox

L d
R V

qN d d W

L d

qN
d d

d d
qN

 


     


 

→
=

− −

=
 

  − − + − 
  
 

 (2.4.12) 

The Rsp given by equation (2.4.12) is highly linked to the compensated pillar superjunction in 

section 2.3 and the conventional pillar superjunction in section 2.1. By replacing εox in equation 

(2.4.12) to εS, the equation leads to the Rsp of a compensated pillar superjunction: 
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 (2.4.13) 

To measure the reduction in the Rsp of an oxide pillar superjunction compared to a conventional 

superjunction, the Rsp of ratios of an oxide pillar superjunction to a conventional pillar 
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superjunction are plotted in figure 2.22. The optimum doping concentration at a given cell pitch 

is the same as compensated pillar superjunction given by section 2.3.  
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The doping concentration dependent mobility model is borrowed from Baliga, and the drain 

voltage dependent mobility is empirically driven, 
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Figure 2.22 Ratio of Rsp of an oxide pillar superjunction to a conventional superjunction for Si with respect to 

the cell pitches. The length of pillar, L= 40 μm [56]. 

 

The doping concentration at a given cell pitch, is close to be half of the optimum concentration 

given by equation (2.3.14) for practical implantation. As the cell pitch decreases, from 10 to 1 

μm, the reduction in the Rsp of the oxide pillar superjunction becomes prominent owing to the 

reduced parasitic JFET effect toward the n-pillar. However, a thicker oxide, γ > 0.7, rather 

increases the resistance at 0 V due to the narrow conducting path (narrow n-pillar). The output 

drain current with respect to the drain voltage is shown in figure 2.23. As the drain voltage 

increases, the drain current of the oxide pillar superjunction shows around 30 % higher value 

than that of the conventional superjunction.  
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Figure 2.23 Drain current simulation result (lines) and analytic model (circled lines) for the oxide pillar SJ (red) 

and the conventional SJ (black) when the cellpitch is d= 2 μm. The length of pillar, L= 40 μm, the number of 

cells: 2.0 ×105, ND (γ = 0.5) = 2.19 ×1016 cm-3, and ND (γ = 0) = 9.91 ×1015 cm-3 [56]. 

 

Figures 2.24 shows the electric filed profiles of oxide pillar superjunctions with different oxide 

pillar thickness. As the oxide pillar thickness increases, the superjunction effect becomes weak 

having a lower breakdown voltage. The p-pillar interacts with the n+ substrate rather than the 

n-pillar to be depleted and the n-pillar tends to be depleted with p-body well owing to the thick 

oxide barrier. Therefore, a narrow oxide pillar (γ= 0.1 or 0.3) is desirable for a best trade-off 

between the breakdown voltage and the specific resistance. Fig. 2.25 shows the accumulated 

carrier densities at the interface between the oxide pillar and semiconductor pillars at a reverse 

bias condition (600 V). When a positive bias, VDS, toward the n-pillar/oxide pillar/p-pillar 

structure is applied, the positive VDS attracts electrons from the p-pillar and the same amounts 

of holes are accumulated near the interface between the n-pillar and the oxide pillar. The 

accumulation phenomenon is much similar to the metal-oxide-semiconductor’s depletion and 

accumulation behavior. 
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Figure 2.24 Breakdown simulation and the electric field profiles of the oxide pillar superjunctions; d= 2 μm.  

The length of pillar, L= 40 μm, ND (γ = 0) = 9.91 ×1015 cm-3, ND (γ= 0.1) = 1.12 ×1016 cm-3,  

ND (γ = 0.3) = 1.49 ×1016 cm-3, and ND (γ = 0.5) =2.19 ×1016 cm-3. 

 

Figure 2.25 Accumulated charge densities near the interface between the oxide pillar and the semiconductor 

pillars at VDS= 600 V; d= 2 μm. The length of pillar, L= 40 μm, ND (γ= 0.1) = 1.12 ×1016 cm-3, 
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Table 2.3 shows the summary of the specific resistance for each superjunction structure.  

Table 2.3 – Summary of specific resistance for each superjunction structure [18], [19], [53], [56]. 

Pillar type Specific resistance, Rsp (mΩcm
2) 
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3.      3-D Superjunction MOSFET 

Summary 

In chapter 2, most of 2-dimensional (2-D) superjunction structures have been discussed where 

all pillars are parallel stripes. From a newly developed parasitic JFET model, the true limit of 

2-D superjunction was able to be derived theoretically. However, the 2-D geometry only 

utilises lateral and vertical electric field to sustain a given potential and therefore, one would 

be able to come up with 3-dimensional (3-D) superjunction system, which utilises the third-

dimensional electric field. Figure 3.1 shows schematic illustrations of electric field in each 

dimension system. The peak lateral electric field in 3-D system is half of 2-D at the same doping 

concentration and therefore, the doping concentration in 3-D could be increased more with 

sustaining the same breakdown voltage. In the following section, it is shown that for the first 

time the minimum cell pitch and the specific resistance of 3-D superjunction MOSFET could 

be lowered compared to that of 2-D shown in section 2. By using the JFET theory, the model 

of specific resistance will be established and the comparative study with 2-D system carried 

out. 
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Figure 3.1 Schematic illustration of electric field profile in each dimensional system. 

 

3.1. Core (n-type) – Shell (p-type) Model 

3.1.1.      Ideal Approach  

In radial p-n junctions, the peak electric field can be lowered to that of 2-D for the same pillar 

concentration. As shown in figure 3.2 the doping concentration in each region is constant, but 

as the depletion width expands, the slope of the electric field becomes softer resulting in a low 

peak electric field across the junction. In a real three-dimensional superjunction structure, the 

unit cell should be arranged in a honeycomb configuration, where one type of a semiconductor 

is surrounded by another type of a semiconductor. However, for more simple approach, this 

study assumes that the unit cell is a cylinder where n-type cylinder pillar is surrounded by the 

p-type cylinder pillar. 
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Figure 3.2 Schematic illustrations of a 3D core (n-type) – shell (p-type)  

superjunction structure and the electric field profile 

 

Figure 3.3 Core (n-type) – shell (p-type) radial p-n junction. 

For the analytic approach, Poisson equation in a cylindrical coordination system should be 

employed, 

2

2

1d d dE E
r

dr r dr dr r
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
+ = − − = −  (3.1.1) 
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It should be noted that cylindrical coordination system consists of the radius (r) and the angle 

(θ). Owing to the perfectly symmetrical radial junction, the angle (θ) effect can be ignored.  

The charge balance condition of a 3-D superjunction shown in figure 3.3 can be specified as 

( ) ( )
2 2 2 2

D A
N d N d d = −  (3.1.2) 

By solving Poisson equation given by (3.1.1), the electric field as a function of the distance, r, 

becomes 
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 (3.1.3) 

By integrating the electric field, the potential sustained on each pillar can be obtained 
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 (3.1.4) 

On the boundary of the radial junction, the maximum lateral electric field, when the n-pillar 

and the p-pillar are fully depleted, should not exceed the critical electric field, 

( ), 0 1
2

D

x C

S

qN
E d E  


= =    (3.1.5) 
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
= =    (2.1.2) 

It should be noted that the maximum lateral electric field of a 3-D superjunction given by 

equation (3.1.5), is the half of the conventional 2-D superjunction given by equation (2.1.2) for 
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the same pillar concentration. As provided in chapter 2, the square of the critical electric field, 

EC, is the sum of the square of the lateral electric field, Ex, and the square of the vertical electric 

field, Ey, 

2
1

y C
E E = − , (2.1.3) 

From equation given by (2.1.3) and assuming the length of the pillar is long enough compared 

to the cell pitch, the lateral potential formed by the lateral electric field can be ignored [8]. the 

breakdown voltage of a 3-D superjunction can be expressed as  

2 21
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The ideal specific resistance of a 3-D superjunction based on figure 3.1.2 is as follows 
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By combining equations (3.1.5), (2.1.4), and (3.1.6), the specific resistance of a 3-D 

superjunction can be expressed in terms of material parameters, 
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Comparing the Rsp relationships given by equations (3.1.7) to (2.1.6), the Rsp of a 3-D 

superjunction could be lowered than that of the 2-D as the ꞵ increases more than 0.5. 
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3.1.2.      JFET Approach  

As shown in figure 3.4, the parasitic depletion width across toward the n-pillar is formed by 

the built-in potential and the applied drain voltage. To develop the analytical model for the 3-

D superjunction device including the parasitic depletion width, the JFET theory should be 

employed as described in chapter 2 [18], [19], where the p-pillar is the gate of the JFET and 

the n-pillar is the channel of the JFET. The p-pillar is normally grounded by the source contact.  

 

Figure 3.4 A schematic illustration of a 3-D core (n-type) – shell (p-type)  

superjunction with parasitic depletion widths toward the n-pillar. 

 

By solving Poisson equation given by (3.1.1), the depletion widths in the n-pillar, WD, and the 

p-pillar, WA, have the following relationship, 
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The potential sustained across the pillars can be obtained by integrating the electric field given 

by equation (3.1.8), 
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However, the relationship between the depletion width and the applied potential given by 

equation (3.1.9) is non-linear owing to the log terms and for a simple calculation, the 

relationship should be linearized by using Taylor series [57]. From equation 3.1.2, the doping 

concentration in the pillars have the following relationship under the charge balance condition, 
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The depletion width in the n-pillar and the p-pillar should consume the same amounts of ions, 
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By inserting equation (3.1.10) into (3.1.11) and applying Taylor expansions, the depletion 

width in the pillars lead to the following relationship, 
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From equation (3.1.9) the sum of the potential in the n-pillar and the p-pillar is, 
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By applying Taylor expansion to the log terms given by equation (3.1.13), the potential 

becomes a linear function, 
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By inserting the charge balance condition given by equation (3.1.10) and the depletion width 

relationship given by equation (3.1.12) into (3.1.14), the potential and depletion width 

relationship in a 3-D superjunction becomes 
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From equation (3.1.15), the depletion width along the pillar can be specified, 
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The calculation of the drain current follows equation (2.1.13), 
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Where Qn(y) and v(y) are 
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By inserting equations (3.1.19), (3.1.20), and (2.1.12) into (2.1.13), the integral has the 

following form, 
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By solving the integral given by equation (3.1.21), the total drain current leads to 
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From the drain current given by equation (3.1.22) the specific resistance of a 3-D superjunction 

becomes 
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The specific resistance has the minimum value when VDS approaches zero, 
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The pre factor of equation (3.1.22) is the ideal Rsp without the parasitic depletion width, and 

the term in bracket is the JFET factor. By comparing the 3-D superjunction Rsp with the 

conventional 2-D Rsp, the second term of 3-D is area ratio because the circle area conducts the 

current.  
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From equations (3.1.24) and (2.1.18) the specific resistance ratio of 3D to 2D can be obtained,  

.3 .2 .2

1
sp D sp D sp D

Ds Ds

d d
R R R

d W d W



  

   
=  =    

− −   
 (3.1.25) 

Equation (3.1.25) provides a clear insight that the Rsp.3D can be decreased continuously with 

increasing the ꞵ compared to the conventional 2D superjunction. 
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3.2. Core (p-type) – Shell (n-type) Model 

The core-shell superjunction structure given in section 3.1 is less realistic because, in general, 

n-type epitaxial layer is grown first, and p-type ion implantation process is carried out by 

forming core (p-type) – shell (n-type) superjunction. As introduced in section 3.1, by solving 

the radial Poisson equation, this section will aim to establish core (p-type) -shell (n-type) model. 

3.2.1.      Ideal Approach  

 

Figure 3.5 Core (p-type) – shell (n-type) radial p-n junction. 

As shown in figure 3.5, the inverse core-shell superjunction structure is based on the p-type 

pillar is surrounded by the n-type pillar. The charge balance condition of the core (p-type) – 

shell (n-type) is 

( ) ( )
2 2 2 2

A D
N d N d d = −  (3.2.1) 

By applying the radial Poisson equation, the electric field as a function of the radius becomes 
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=      − − = −        

 (3.2.2) 

By integrating the electric field given by equation (3.2.2), the lateral potential sustained in each 

pillar is 

( ) ( )
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D D
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
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 
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    − = − − −        





 (3.2.3) 

From equation (3.2.2), the maximum lateral electric field on the junction should not exceed the 

critical electric field. 

( )
2

1
, 0 1

2

D

x C

S

qN
E d E


 

 

−
= =    (3.2.4) 

The ideal specific resistance of the 3-D core (p-type) – shell (n-type) superjunction is  

( )

2

22 2 2

1

1
sp

D n D n

L d L
R

qN qNd d



   
= =

−−
 (3.2.5) 

As shown in chapter 2, only the vertical electric field is assumed to be the breakdown voltage 

because the length of the pillar is long enough compared to the cell pitch, 

2
1

y C
E E = − , (2.1.3) 
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2 21
1 1

2
B C C C

V dE E L E L  = + −  −  (2.1.4) 

By inserting equations (3.2.4) and (2.1.4) into (3.2.5), the specific resistance can be expressed 

as the material parameters 

.3 22 2
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B B
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n S Cn S C
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R d

EE      
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−
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2


 
= 

 
 (3.1.7) 
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3.2.2. JFET Approach  

 As introduced previous sections, building an analytic model for a superjunction 

structure with a parasitic depletion width at a given drain voltage and built-in potential, the 

JFET model should be employed [37]. The p-type pillar (core) is the grounded gate of the JFET 

and the n-type pillar (shell) is the channel of the JFET in this case as shown in figure 3.6.  

 

Figure 3.6 A schematic illustration of a 3-D core (p-type) – shell (n-type) 

 superjunction with parasitic depletion widths toward the n-pillar. 

From the radial Poisson equation, the electric field and the potential across the junction 

can be specified in terms of the depletion width in the n-pillar, WD, and the p-pillar, WA, 
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By integrating equation (3.2.6), the potential is 
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 (3.2.7) 

As pointed out in section 3.1, the potential given by equation (3.2.7) has a non-linear log 

function and, for a simple development of the analytic model, the log term should be linearized 

by using Taylor expansion. During the depletion, the same amounts of the ions in each pillar 

are consumed, 

( ) ( )( ) ( ) ( )( )2 2 2 2

A A D D
N d d W N d W d   − − = + −  (3.2.8) 

By inserting the charge balance condition given by equation (3.2.1) and applying Taylor series, 

the depletion width has the following relationship 

( ) ( )
2 2 2 2

A D
N d N d d = − , (3.2.1) 
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W W
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 (3.2.9) 

The total potential sustained on the radial junction is 
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, (3.2.10) 

By applying Taylor series to the log terms given by equation (3.2.10), the potential leads to 

2 2
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2 2 2 2
2 3 2 3

4

A A D D

A D

S

W W W Wq
d N N
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 (3.2.11) 

By inserting equation (3.2.9) into (3.2.11) the potential as a function of depletion width can 

be simplified as 
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4 1
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, (3.2.12) 
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The drain current as a function of the applied bias can be obtained by solving the integral, 

0
( ) ( )

L

D n

Z
I Q y v y dy

L
=   (2.1.13) 

Where Qn(y) and v(y) are 
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( )( )22
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n D D
Q y qN d d W = − + , (3.2.16) 
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n

d y
v y
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
=  (2.1.12) 

By inserting equations (3.2.12), (3.2.16) and (2.1.12) into (2.1.13) the integral leads to 
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Solving the integral given by equation (3.2.17) produces the following drain current 
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 (3.2.18) 

From equation (3.2.18), the specific resistance for a core (p-type) – shell (n-type) 3-D 

superjunction becomes 
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 (3.2.19) 

The specific resistance given by equation (3.2.19) has the minimum value when VDS approaches 

zero, 
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=  
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 (3.1.22) 

The pre term of Rsp given by equation (3.2.20) is the ideal specific resistance and the term in 

the bracket is the increment of the Rsp owing to the parasitic depletion width. Equation (3.2.20) 

can be intuitively derived considering the effective conducting area to the total area. In the next 

chapter, both analytic models given by equations (3.1.22) and (3.2.20) will be proven by 

simulation and the comparisons will be carried out. 
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3.2.3.      Proofs and Comparisons of 3-D Superjunctions 

In the last two sections, two specific resistance models for 3-D superjunctions were established. 

In this section, the advantage of 3-D superjunction over 2-D superjunction will be discussed. 

To draw the specific resistance of the 3-D superjunction with respect to the cell pitches given 

by equations (3.1.22) and (3.2.20), the optimum pillar doping concentration should be defined 

first. 
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. 2
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 (3.2.20) 

Where Rsp.core is the minimum specific resistance of core (n-type) -shell (p-type) and Rsp.shell is 

the minimum specific resistance of core (p-type) -shell (n-type). 
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From the maximum lateral electric field relationship given by equation (3.1.5) and (3.2.4), the 

optimum doping concentration for each 3-D superjunction can be defined, 
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Comparing the optimum concentration of the 2-D conventional superjunction given by 

equation (2.1.22), the 3-D superjunction’s doping concentration is two times higher than that 

of 2-D.  

.2

2

2

S C

D D

E
N

q d




=  (2.1.22) 

The optimum doping concentrations for 3-D superjunction given by equation (3.3.1) and 

(3.3.2) are plotted in figure 3.7 as a function of cell pitch. 

 

Figure 3.7 um doping concentrations of 3-D superjunction,  

(left): core (n-type) – shell (p-type), (right): (left): core (p-type) – shell (n-type). 

The doping dependent mobility is borrowed from Baliga [41],  
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Figure 3.8 Black lines: mobility of 3-D superjunctions as a function of cell pitch, 

blue lines, approximated mobility at low cell pitches. 
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Figure 3.8 shows the doping concentration dependent mobility at given cell pitches (black 

lines). The mobility at low cell pitches can be approximated as exponential functions (blue 

lines), 

( )
1/2
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1100

n core
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Figure 3.9 Specific resistance of 3-D superjunctions as a function of cell pitch. Length of pillar L= 30 μm. 

Finally, the minimum specific resistance of both 3-D superfunctions, with respect to the given 

cell pitch are shown in figure 3.9. From 10 μm to 1 μm of cell pitch, both superjunctions show 

very similar Rsp and a higher ꞵ a lower Rsp. For a scaling down to sub-micro cell pitch, core (n-

type) -shell (p-type) is desirable because the minimum cell pitch of core (p-type) -shell (n-type) 

superjunction is located at higher cell pitches than that of core (n-type) -shell (p-type). 
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Figure 3.10 shows the analytical models and the simulation data in the range of 10 μm to 2 μm 

cell pitches. The analytical model shows a very good agreement with the simulation. Owing to 

the high diffusion (compensation) rate of impurities in silicon, it is not easy to make a sub-

micro cell pitch device. However, compared to the conventional 2D superjunction, a higher ꞵ 

(ꞵ > 0.7)  3D superjunction device will present a significantly lowered specific resistance even 

with the similar technological barrier.  

 

Figure 3.10 Specific resistance of 3-D superjunctions, analytic model (black lines)  

and simulation (red dotted lines). Length of pillar L= 30 μm.  

To find an improvement of 3-D superjunctions compared to the conventional 2-D superjunction, 

the Rsp ratios with respect to the cell pitch are shown in figure 3.11. Above ꞵ= 0.7 (blue lines), 

the specific resistance can be decreases at least 20 % for both 3-D superjunctions compared to 

the 2-D conventional superjunction. Therefore, when designing 3-D superjunction devices, 

higher ꞵ is desirable for a low Rsp.  
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Figure 3.11 Ratio of 3-D superjunctions to the 2-D conventional superjunction. Blue line: ꞵ= 0.7. 
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calculation was carried out for the 3D core (n-type) – shell (p-type) superjunction. The specific 

resistance is 

2

. 2

1
sp core

n D Ds

L d
R

q N d W



  

 
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− 
 (3.1.22) 

The doping concentration around the minimum cell pitch, d, is very high as shown in figures 

3.7 and 3.9. and, therefore, the built-in depletion width can be approximated in terms of the 

material’s energy bandgap 
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3 3

gS S

Ds bi

D D

E
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qN qN q

 
  =   (3.3.5) 

The doping concentration at a given cell pitch can be derived from equations (3.3.1) and (2.1.20) 
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By inserting equations (3.3.5), (3.3.6) and the mobility given by equation (3.3.2) into (3.1.22), 

the condition of minimum Rsp can be calculated 

0
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
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=  (3.3.7) 

By inserting equation (3.3.5) into (3.3.7), the minimum cell pitch of 3-D superjunction is  

98 2
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
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Finally, by inserting equations (3.3.7) and (3.3.8) into (3.1.22) the minimum Rsp at the 

minimum cell pitch can be written as 
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By applying Hudgin’s relationship [51], EC∝Eg
2 , into equation (3.3.9), the figure of merit for 

3-D superjunction can be established as 
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Table 3.1 summarises static figure of merits which have reported up to date. 

Table 3.1 Expression of specific resistance and the static figure of merits of power MOSFETs 
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Specific 

Resistance as 

a function of 

cellpitch 

N/A 2

4 B

n S C

V
d

E 
 

2

2 B

Dsn S C

V d
d

d WE



 

 
 

− 
 

2

2

B

Dsn S C

V d d

d WE



  

 
 

− 
 

Minimum  

Specific 

Resistance 

2

3

4 B

n S C

V

E 
 N/A 3

20
g B

n S C

E V

q E 
 3

16
g B

n S C

E V

q E 
 

FOM 3
CSn E  

2
CSn E   

2.5
n S CE    

2.5
n S CE    
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Table 3.2 summarises the minimum specific resistance at a given ꞵ with respect to breakdown 

voltage. The specific resistance is measured at each minimum cell pitch as shown in figure 3.9. 

Table 3.2 Specific resistance with respect to breakdown voltage for Silicon 3-D superjunction 

 Core (n-type) – shell (p-type) Core (p-type) – shell (n-type) 

ꞵ= 0.2 4
0.82 10

sp B
R V

−
=    

4
20.1 10

sp B
R V

−
=    

ꞵ= 0.3 4
1.14 10

sp B
R V

−
=    

4
7.39 10

sp B
R V

−
=    

ꞵ= 0.4 4
1.39 10

sp B
R V

−
=    

4
4.00 10

sp B
R V

−
=    

ꞵ= 0.5 4
1.56 10

sp B
R V

−
=    

4
2.65 10

sp B
R V

−
=    

ꞵ= 0.6 4
1.67 10

sp B
R V

−
=    

4
1.93 10

sp B
R V

−
=    

ꞵ= 0.7 4
1.71 10

sp B
R V

−
=    

4
1.33 10

sp B
R V

−
=    

ꞵ= 0.8 4
1.69 10

sp B
R V

−
=    

4
0.69 10

sp B
R V

−
=    

ꞵ= 0.9 4
1.65 10

sp B
R V

−
=    

4
0.18 10

sp B
R V

−
=    
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4.      2-D Dynamic Superjunction MOSFET 

Summary 

From previous sections, the static model for 2-D and 3-D superjunction MOSFETs are 

established. Specifically, a newly developed JFET model was able to predict the theoretical 

limit of the specific resistance and the cell pitch at a given breakdown voltage. The static 

characteristics, especially the low specific resistance, will contribute to the low conduction loss 

during the on-state operation. However, since power MOSFETs are switching devices, the 

switching losses need to be considered. The switching loss of power MOSFETs is originated 

from its parasitic capacitance and Joule heating. Superjunction’s depletion behaviour during 

the turn-off transition is very non-linear and hard to model. This section will cover background 

knowledge of power losses in power MOSFETs with recent references. After investigating the 

depletion phenomenon in a superjunction system, inner circuit models will be provided and the 

capacitance model with respect to the applied drain voltage will be established. Finally, from 

the model, new dynamic figure of merits for superjunction MOSFET will be defined in terms 

of the material parameters. 
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4.1. Background and Issue  

Owing to the fast switching speed featured by the unipolar conduction, Power MOFETs have 

been widely applied to both hard and soft switching (especially zero voltage switching) 

applications [58]. There must be several power loss factors by the power MOSFETs as shown 

in figure 4.1.  

 

Figure 4.1 Schematic illustrations of (a) hard switching (b) soft (zero voltage) switching) of a power MOSFET. 

To turn on or turn off the device, the parasitic input capacitance, Ciss, and the output capacitance, 

Coss, must be charged or discharged during the switching transition, 

iss GS GD
C C C= + , (4.1.1) 

oss GD DS
C C C= +  (4.1.2) 

Where CGS, CGD, and CDS are gate-to-source, gate-to-drain and drain-to-source capacitances, 

respectively, Figure 4.2 shows a schematic illustration of parasitic capacitance components in 

a superjunction MOSFET. As shown in figure 4.3, during the turn-on process, the CGS and CGD 

should be charged by the applied gate bias and the required charges are, QGS and QGD. The 

turn-off process is the inverse of turn-on (t4 -> t0).  
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Figure 4.2 A schematic illustration of parasitic capacitances  

in a superjunction MOSFET. 

 

Figure 4.3 A schematic illustration of turn-on process of a power MOSFET. 

During the initial period of the turn-on (t0~ t2), since the source contact is grounded and the 

drain contact is sustained by a high voltage, due to the potential difference of the capacitances 

with the applied gate voltage, only CGS is charged first until the MOSFET’s channel can sustain 

enough drain current. Once the MOSFET channel turned on, the drain current (t2) flows and 

the gate current only charges CGD while the drain voltage decreases accordingly until t3. 
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Therefore, during both hard and soft switching, both CGS and CGD participate in the charging 

and discharging process. It should be noted that the CDS is charged and discharged during the 

period of t2 ~ t3 when the drain voltage decreases (increases) [59]. Specifically, the depletion 

width between the p-well (source contact) and the n-type drift is the CDS and is determined by 

the applied drain voltage.    

As introduced in section 1, the power loss of a power device consists of on-state conduction 

loss, DPON, off-state leakage, (1-D)POFF, gate driving loss, PGS, and switching loss, PSW [44]. 

( )1
T ON OFF GS SW

P DP D P P P= + − + + . (1.45) 

However, there has not been an exact figure of merit for describing the total power loss because 

it requires understanding of both circuits and devices’ behaviours in the circuits. Meanwhile, 

several dynamic figures of merits have been proposed by Baliga (BHFFOM), Kim (NHFFOM), 

and Huang (HDFOM): 

.

1

sp iss sp

BHFFOM
R C

=


[43], (1.46) 

.

1

sp oss sp

NHFFOM
R C

=


[45], (1.47) 

.

1

sp rss sp

HDFOM
R C

=


[46]. (1.48) 

Even though the above figures of merit partially indicate either input switching loss or output 

switching loss including on-state conduction loss, these figures of merit have been widely 

accepted by industry. The specific resistance of a superjunction MOSFET has been well 

defined by Fujihira [8] and this study [18], [19], but the specific capacitance of a superjunction 

device has not been clearly expressed by material parameters yet [60]–[62]. 
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4.2. Modelling of Dynamic Figure of Merit 

Until now, there has not been an exact model for the capacitor components in a superjunction 

MOSFET because the depletion behaviour in the superjunction is highly non-linear [35], [36], 

[63]. Since the depletion process of a superjunction device during the blocking mode have been 

well known, by visualising the depletion region in a superjunction at a given bias, this section 

will develop the gate-to-drain capacitance model.  

 

Figure 4.4 Schematic illustrations of gate-to-drain capacitance and the inner circuit model. 
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4.2.1.      Gate-to-Drain Capacitance 

The superjunction structure used in this chapter is balance with the same doping concentration 

and the width for both the n-pillar and the p-pillar. The gate-to-drain capacitance, CGD, is the 

capacitance between the gate contact and the drain contact. CGD includes both the gate oxide 

and the depletion region under the gate oxide as shown in figure 4.4. Where ψp is the pinch-off 

potential of the pillars which is the required voltage to fully deplete the pillars laterally, 

2

2

D

S

qNd V dE

dx dx 
= − = −  (1.30) 

From one-dimensional Poisson equation given by equation (1.30), the pinch-off potential can 

be obtained, 

2

4

D

p

S

qN d



=  (4.2.1) 

As shown in figure 4.4 (b), when the VDS is lower than the pinch-off potential, the CGD can be 

divided into two individual capacitances: one is the oxide-accumulation capacitance, Cox-ac, and 

another is the oxide-pillar capacitance, Cox-pi. Specifically, the components of Cox-ac, the oxide 

capacitance and the accumulation capacitance, are connected in series and, the components of 

Cox-pi, the oxide capacitance and the pillar capacitance, are connected in series. Therefore, each 

capacitance can be expressed as 

2

2

2

2 2

ox S
L

ox V

ox ac

ox S
L L

ox V

d
w Z

t w
C

d d
w Z w Z

t w

 

 
−

 
− 

 
=

   
− + −   

   

, (4.2.2) 
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2 2ox S
L

ox S

ox pi L

ox S
L L

ox

w Z
t L

C w Z
L

w Z w Z
t L

 



 −
= 

+

, (4.2.3) 

GD ox ac ox pi
C C C

− −
= + , ( )0

DS p
V    (4.2.4) 

Where the depletion widths WV and WL are 

2
S DS

V

D

V
w

qN


= , (4.2.5) 

S DS

L

D

V
w

qN


=  (4.2.6) 

Since the n-pillar region below the oxide is depleted in unidirectionally, the depletion width is 

multiplied by factor 2 as given by equation (4.2.5). When the pillars are fully depleted in the 

lateral direction (pinch-off potential), the CGD capacitance can be simply presented as figure 

4.4(c) and the capacitance can be written as 

2

S

GD

dZ
C

L


 , ( )p DS

V   (4.2.7) 

Figure 4.5 shows the analytic models given by equations (4.2.4), and (4.2.7) and the simulation 

data for both silicon and 4H-SiC. The analytic models show a good agreement with the 

simulation results.  



 

104 

 

 

Figure 4.5 Analytic models of gate-to-drain capacitance (black lines) and the simulation data for both Si and SiC 

(red lines). The cellpitch, d= 5 μm, the depth of pillar Z= 1.0 μm, the length of the pillar, L= 40 μm, the number 

of cells=2×105, the doping concentration in the pillars= 2.31×1015 cm-3 for Si, and 2.09×1016 cm-3 for SiC. 

The gate-to-drain capacitance rapidly decreases near the pinch-off potential where the 

depletion profile changes from figure 4.4 (b) to (c). The area under the CGD is the required 

amounts of charges, QGD.sp for charging the CGD, 

.
0

/
p DS

p

V

GD sp GD DS GD DS
Q C dV C dV dZ





 
= + 

 
   (4.2.8) 

.

2

8 2

ox S

GD sp D DS

ox S

d
Q qN d V

t L

 


 +  (4.2.9) 

Since most of the charge is consumed until VDS reaches the pinch-off potential, (the area under 

the CGD before pinch-off is very high compared to after pinch-off), ψp can be inserted into VDS 

in equation (4.2.9), 

2 2

.

2 2 2

2 2 2 4 8

ox S ox oxD D

GD sp p

ox ox s ox s

qN qN
Q d d

t L t t

   


 

   
= +  =      

   

 (4.2.10) 
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4.2.2.      Drain-to-Source Capacitance 

 

Figure 4.6 Schematic illustrations of drain-to-source capacitance and the inner circuit model. 

The drain-to-source capacitance, CDS, in a superjunction MOSFET is the depletion region 

between the drain and source contacts. Mostly, the drain-to-source capacitance is formed by 

the junction between the p-pillar and the n-pillar and, as the length of the pillar increases, the 

CDS should be linearly proportional to the length as shown in figure 4.6. In a superjunction 

system, owing to the long enough pillar length, the total output capacitance, Coss can be 

assumed to be CDS. The CGD is normally 100 ~ 1000 times lower than CDS. From figure 4.6, the 

CDS can be expressed as 

( )2
2

S

DS V

L

C L w Z
w


= − , ( )0

DS p
V   , (4.2.11) 

S

DS
C dZ

L


= , ( )p DS

V   (4.2.12) 
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Figure 4.7 shows the analytic model of CDS and the simulation data for both Si and 4H-SiC. As 

mentioned in the previous section, the CDS also experiences a rapid decrease in the values near 

the pinch-off potential due to the change of the depletion profile. 

 

Figure 4.7 Analytic models of Drain-to-Source capacitance (black lines) and the simulation data  

for both Si and 4H-SiC (red lines). The cellpitch, d= 5 μm, the depth of pillar Z= 1.0 μm,  

the length of the pillar, L = 40 μm, the number of cells=2×105,  

the doping concentration in the pillars= 2.31×1015 cm-3 for Si, and 2.09×1016 cm-3 for SiC. 

As mentioned above, the area under the capacitance curve is the required charge amount, and 

the integral can be written as 

.
0

/
p DS

p

V

DS sp Oss DS Oss DS
Q C dV C dV dZ





 
= + 

 
   (4.2.13) 

The integral given by equation (4.2.13) leads to 

2

.
4 2 2

S D D D

DS sp DS

qN qN qN
Q V d L L

L L


= − +   (4.2.14) 

The first and the second terms given by equation (4.2.14) is relatively small compared to the 

third term and, therefore, QDS.sp can be approximated as qNDL/2. As mentioned above, since 
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the CDS is, at least, one hundred times higher than CGD, the output charge can be assumed to 

be QDS.sp 

. . . .
2

D

oss sp GD sp DS sp DS sp

qN
Q Q Q Q L= +  =  (4.2.15) 

It should be noted that the analytic capacitance models for CGD and CDS given by chapters 4.2.1 

and chapter 4.2.2 are valid for large cell pitches (d > 1 μm). Below sub-micro cell pitches, 

owing to the relatively wider built-in depletion width on the pillars, the models become 

inaccurate. 
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4.2.3.      Dynamic Figure of Merits 

In this section, several dynamic figure of merits for a 2-D superjunction will be defined based 

on the equations established in the previous sections. The ideal specific resistance of a 

superjunction is 

2
sp

D n

L
R

qN 
=  (2.1.5) 

The QGD.sp and QDS.sp are 

2

.

2

8

ox D

GD sp

ox s

qN
Q d

t




= , (4.2.10) 

. .
2

D

oss sp DS sp

qN
Q Q L =  (4.2.15) 

The multiplications of equation (2.15) with (4.2.10) and (4.2.15) lead to 

2

.

2

4

ox

sp GD sp

ox s n

L
R Q d

t



 
= , (4.2.16) 

2

. .sp oss sp sp DS sp

n

L
R Q R Q


 =  (4.2.17) 

From equation (2.1.4), the breakdown voltage and the electric field in a superjunction have the 

following relationship, 

2 B

C

V
L

E
=  (4.2.18) 

By inserting equation (4.2.18) into (4.2.16) and (4.2.17), the equations become 
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2

.

1

2

ox B

sp GD sp

ox n S C

V
R Q d

t E



 
= , (4.2.19) 

2

. . 2
2 B

sp oss sp sp DS sp

n C

V
R Q R Q

E
 =  (4.2.20) 

The RspQGD.sp given by equation (4.2.19) consists of two components: the technology 

dependent figure of merit, FOM(GDQ)T, 

( ) 2

ox

Q
T

ox

t
FOM GD

d
=  (4.2.21) 

and the material dependent figure of merit, FOM(GDQ)M, 

( )Q n S C
M

FOM GD E =  (4.2.22) 

The technology dependent figure of merit can be improved by the cell pitch (scaling down) and 

the oxide thickness. In the case of RspQoss.sp given by equation (4.2.20), the figure of merit 

should be compared to the Fujihira’s figure of merit [64], 

2

. . 2

81

64

B

SP oss sp Fujihira

n C

V
R Q

E
=  (4.2.23) 

Although the detailed modelling process is not described in Fujihira’s report, the material 

figure of merit for both Rsp.Qoss.sp is the same, 

2
( )

Q n C
FOM DS E=  (4.2.24) 

Equation (4.2.24) gives us a meaningful insight. i.e. as shown in figure 4.7, the pinch-off 

potential of the 4H-SiC superjunction is much higher than that of silicon owing to the 9 times 

higher doping concentration. Therefore, the decreased specific resistance in 4H-SiC 
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superjunction is cancelled by the increased capacitance charging loss as the Rsp and Qoss are 

multiplied. Despite this, since the critical electric field of 4H-SiC is 9 times higher than Si, the 

figure of merit for 4H-SiC is highly advantageous compared to the silicon.  

Even though equation (4.2.24) indirectly represents a trade-off between the on-state conduction 

loss (Rsp) and the turn-off switching loss (Qoss.sp), more direct expression should be RspEoss.sp 

(more generally used in the industries). Also, in a soft switching circuit, generally zero voltage 

switching applications, only turn-off switching loss should be considered because the turn-on 

switching loss is ideally zero. For this reason, RspEoss.sp represents the device’s performance. 

The turn-off switching energy loss, Eoss.sp can be obtained by solving equation (4.2.25), 

. .
0

/
p DS

p

V

oss sp DS sp DS DS DS DS DS DS
E E C V dV C V dV dZ





 
 = + 

 
   (4.2.25) 

As mentioned above, since the capacitance value of CDS is significantly higher than CGD in a 

superjunction MOSFET, CDS can be assumed to be the only the factor for EOSS. Developing 

equation (3.2.25) leads to 

2 2 2 2

3 2

.

1

2 24

D D

oss sp

S S

q N q N
E d Ld

 
 +  (4.2.26) 

By multiplying the ideal Rsp, the RspEoss.sp becomes 

2 2 2 2

3 2 2 2

.

1 2 1

2 24 12

D D D

sp oss sp

S S D n n S

q N q N qNL d
R E d Ld d L

qN L    

   
= + = +   

  

 (4.2.27) 

By inserting equation (2.1.2) into (4.2.27), the equation leads to 

2

D

C

S

qN
E d


= , 

1
0

2


 
  

 
, (2.1.2) 
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2

.

1
2

12

C

sp oss sp

n

Ed
R E dL

L




 
= + 

 
 (4.2.28) 

It should be noted that α should not exceed 1/√2 the optimum condition. Inserting equation 

(4.2.18) into (4.2.17) leads to 

2

.

1
4

12

B

sp oss sp

n C

Vd
R E d

L E




 
= + 

 
 (4.2.29) 

The coefficient of equation (4.2.29) can be varied by the selected cell pitch and the length of 

the pillar. However, the coefficient will be normally less than 1. By taking the material 

parameters, the figure of merit becomes 

( )
E n C

FOM DS E=  (4.2.30) 
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Table 4.1 summarizes the figure of merits derived in this chapter. 

Table 4.1 – Summary of dynamic figure of merits for power MOSFETs with different materials. 

 
n

  

( )2
/cm V s  

  
C

E  

( )/MV cm  

FOM(GDQ) FOM(DSQ) FOM(DSE) 

Material n S CE    2
n CE  n CE  

Si 1350 11.8 0.3 1 1 1 

4H-SiC 720 10 2 3 24 4 

h-GaN 900 9 3.3 6 81 7 

β-Ga2O3 300 10 8 5 159 6 

AlN 1100 8.7 11.7 23 1239 33 

Diamond 1900 5.5 5.6 12 490 26 
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5.      Conclusions 

In this dissertation, various static and dynamic models of superjunction MOSFETs were 

established. By employing the classical JFET theory into the superjunction system, the specific 

resistance models for 2-D and 3-D superjunction MOSFETs were derived. These models can 

predict the theoretical limit of specific resistance. The analytical results are in very good 

agreement with the simulation data. Following this, the static and dynamic figures of merit for 

superjunction MOSFETs were derived in terms of the material parameters. 

1. By using the classical JFET theory, an analytical model for a conventional 2-D stripe pillar 

superjunction was developed. The p-pillar of the superjunction was considered as the p-type 

gate of the JFET and the n-pillar was regarded as the n-type channel of the JFET. Through the 

analytical calculations, the true limit of the on-state resistance for the superjunction MOSFET 

was found and a new figure of merit was established. The figure of merit for 2-D superjunction 

MOSFETs found in this study is placed between those derived by Baliga  (which overestimates 

the inverse dependence of the  on-state resistance with the electric field) and Fujihira (which 

underestimates the inverse dependence of the  on-state resistance with the electric field) 

2. From the way of implementing the classical JFET theory into superjunction systems, an 

analytical model for a compensated pillar superjunction was derived. The compensated pillar 

region between the p-pillar and the n-pillar was able to sustain a higher lateral electric field 

than that of conventional superjunctions. With the help of the increased lateral electric field, 

the doping concentration of the compensated pillar superjunction could be increased 

significantly which yielded an on-state resistance reduction in excess of 30 %. 

3. An oxide pillar superjunction was introduced to reduce the on-state resistance of the 

superjunction MOSFETs. The oxide pillar was inserted between the p-pillar and the n-pillar. 

From Gauss law, the electric field sustained across the oxide is around 3 times higher than that 

at the interface within the semiconductor (Silicon). Therefore, a higher lateral electric field was 

able to be sustained in an oxide pillar superjunction than that in conventional superjunctions. 
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The higher electric field facilitates a higher pillar doping concentration. From the analytical 

model for an oxide superjunction, the specific resistance was decreased by more than 50 %. 

 4. The conventional 2-D superjunction system is based on a two-dimensional electric field 

(i.e. lateral and vertical).  In this thesis we propose a 3-D superjunction system which is able 

to utilise the electric field from the third dimension. Based on the radial Poisson equation, the 

electric field distribution in 3D core-shell superjunction was derived. The lateral electric field 

is softer than that of 2-D and the maximum electric field, with the peak concentration being 

half of that in an optimised 2-D superjunction system. Therefore, the doping concentration in 

the pillar was doubled compared to that hat of 2-D and this yielded a reduction in  the on-state 

resistance of 50%.. 

 5. A dynamic figure of merit for 2-D superjunction MOSFETs was derived. There have been 

several dynamic figures of merit, but they have not been expressed in terms of material 

parameters. One of the main reasons is that the parasitic capacitances in superjunction 

MOSFETs are highly non-linear and hence difficult to model. From the capacitance 

dependence with the applied drain voltage, the consumed charge, and the energy were derived, 

and finally a dynamic figure of merit in terms of the material parameters was derived. 
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Future work 

The purpose of this study was to establish the basic models for superjunctions in terms of 

material parameters. From the figures of merit introduced in this research, the trade-off between 

the on-state resistance and the breakdown voltage can be easily recognised. The fundamental 

purpose of improving the performance of superjunction devices is to increase the efficiency of 

the application circuits, when the switching devices are used in a power electronic system. 

Therefore, understanding the operational mechanisms of each topology in power electronics is 

very important. By extension, the influences of the power devices during the switching in each 

topology need to be investigated.  

Until now, device engineers have been primarily focusing on the static characteristics of power 

devices. Also, circuit engineers have been investigating the circuitry operation with simplified 

device models. For this reason, there has always been a huge gap between the power devices 

and power circuits.  One very important way to continue this research is to extend the models 

here and import them into device/circuit mixed mode simulation (i.e. the simulation tool that 

can run both device and circuit simulations in real time). From the investigation of the impact 

of the device performance in the circuits, device engineers need to study what design of devices 

is preferable for high efficiency and high robustness applications. 
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